xref: /openbmc/linux/mm/shmem.c (revision 81d67439)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63 
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67 
68 /*
69  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71  *
72  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76  *
77  * We use / and * instead of shifts in the definitions below, so that the swap
78  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79  */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82 
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85 
86 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88 
89 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN	 VM_READ
94 #define SHMEM_TRUNCATE	 VM_WRITE
95 
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT	 64
98 
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101 
102 struct shmem_xattr {
103 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
104 	char *name;		/* xattr name */
105 	size_t size;
106 	char value[0];
107 };
108 
109 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110 enum sgp_type {
111 	SGP_READ,	/* don't exceed i_size, don't allocate page */
112 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
113 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
114 	SGP_WRITE,	/* may exceed i_size, may allocate page */
115 };
116 
117 #ifdef CONFIG_TMPFS
118 static unsigned long shmem_default_max_blocks(void)
119 {
120 	return totalram_pages / 2;
121 }
122 
123 static unsigned long shmem_default_max_inodes(void)
124 {
125 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
126 }
127 #endif
128 
129 static int shmem_getpage(struct inode *inode, unsigned long idx,
130 			 struct page **pagep, enum sgp_type sgp, int *type);
131 
132 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
133 {
134 	/*
135 	 * The above definition of ENTRIES_PER_PAGE, and the use of
136 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
138 	 *
139 	 * Mobility flags are masked out as swap vectors cannot move
140 	 */
141 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
142 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
143 }
144 
145 static inline void shmem_dir_free(struct page *page)
146 {
147 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
148 }
149 
150 static struct page **shmem_dir_map(struct page *page)
151 {
152 	return (struct page **)kmap_atomic(page, KM_USER0);
153 }
154 
155 static inline void shmem_dir_unmap(struct page **dir)
156 {
157 	kunmap_atomic(dir, KM_USER0);
158 }
159 
160 static swp_entry_t *shmem_swp_map(struct page *page)
161 {
162 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
163 }
164 
165 static inline void shmem_swp_balance_unmap(void)
166 {
167 	/*
168 	 * When passing a pointer to an i_direct entry, to code which
169 	 * also handles indirect entries and so will shmem_swp_unmap,
170 	 * we must arrange for the preempt count to remain in balance.
171 	 * What kmap_atomic of a lowmem page does depends on config
172 	 * and architecture, so pretend to kmap_atomic some lowmem page.
173 	 */
174 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
175 }
176 
177 static inline void shmem_swp_unmap(swp_entry_t *entry)
178 {
179 	kunmap_atomic(entry, KM_USER1);
180 }
181 
182 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
183 {
184 	return sb->s_fs_info;
185 }
186 
187 /*
188  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189  * for shared memory and for shared anonymous (/dev/zero) mappings
190  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191  * consistent with the pre-accounting of private mappings ...
192  */
193 static inline int shmem_acct_size(unsigned long flags, loff_t size)
194 {
195 	return (flags & VM_NORESERVE) ?
196 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
197 }
198 
199 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
200 {
201 	if (!(flags & VM_NORESERVE))
202 		vm_unacct_memory(VM_ACCT(size));
203 }
204 
205 /*
206  * ... whereas tmpfs objects are accounted incrementally as
207  * pages are allocated, in order to allow huge sparse files.
208  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
210  */
211 static inline int shmem_acct_block(unsigned long flags)
212 {
213 	return (flags & VM_NORESERVE) ?
214 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
215 }
216 
217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 	if (flags & VM_NORESERVE)
220 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
221 }
222 
223 static const struct super_operations shmem_ops;
224 static const struct address_space_operations shmem_aops;
225 static const struct file_operations shmem_file_operations;
226 static const struct inode_operations shmem_inode_operations;
227 static const struct inode_operations shmem_dir_inode_operations;
228 static const struct inode_operations shmem_special_inode_operations;
229 static const struct vm_operations_struct shmem_vm_ops;
230 
231 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
232 	.ra_pages	= 0,	/* No readahead */
233 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
234 };
235 
236 static LIST_HEAD(shmem_swaplist);
237 static DEFINE_MUTEX(shmem_swaplist_mutex);
238 
239 static void shmem_free_blocks(struct inode *inode, long pages)
240 {
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 	if (sbinfo->max_blocks) {
243 		percpu_counter_add(&sbinfo->used_blocks, -pages);
244 		spin_lock(&inode->i_lock);
245 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
246 		spin_unlock(&inode->i_lock);
247 	}
248 }
249 
250 static int shmem_reserve_inode(struct super_block *sb)
251 {
252 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
253 	if (sbinfo->max_inodes) {
254 		spin_lock(&sbinfo->stat_lock);
255 		if (!sbinfo->free_inodes) {
256 			spin_unlock(&sbinfo->stat_lock);
257 			return -ENOSPC;
258 		}
259 		sbinfo->free_inodes--;
260 		spin_unlock(&sbinfo->stat_lock);
261 	}
262 	return 0;
263 }
264 
265 static void shmem_free_inode(struct super_block *sb)
266 {
267 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
268 	if (sbinfo->max_inodes) {
269 		spin_lock(&sbinfo->stat_lock);
270 		sbinfo->free_inodes++;
271 		spin_unlock(&sbinfo->stat_lock);
272 	}
273 }
274 
275 /**
276  * shmem_recalc_inode - recalculate the size of an inode
277  * @inode: inode to recalc
278  *
279  * We have to calculate the free blocks since the mm can drop
280  * undirtied hole pages behind our back.
281  *
282  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
283  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284  *
285  * It has to be called with the spinlock held.
286  */
287 static void shmem_recalc_inode(struct inode *inode)
288 {
289 	struct shmem_inode_info *info = SHMEM_I(inode);
290 	long freed;
291 
292 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293 	if (freed > 0) {
294 		info->alloced -= freed;
295 		shmem_unacct_blocks(info->flags, freed);
296 		shmem_free_blocks(inode, freed);
297 	}
298 }
299 
300 /**
301  * shmem_swp_entry - find the swap vector position in the info structure
302  * @info:  info structure for the inode
303  * @index: index of the page to find
304  * @page:  optional page to add to the structure. Has to be preset to
305  *         all zeros
306  *
307  * If there is no space allocated yet it will return NULL when
308  * page is NULL, else it will use the page for the needed block,
309  * setting it to NULL on return to indicate that it has been used.
310  *
311  * The swap vector is organized the following way:
312  *
313  * There are SHMEM_NR_DIRECT entries directly stored in the
314  * shmem_inode_info structure. So small files do not need an addional
315  * allocation.
316  *
317  * For pages with index > SHMEM_NR_DIRECT there is the pointer
318  * i_indirect which points to a page which holds in the first half
319  * doubly indirect blocks, in the second half triple indirect blocks:
320  *
321  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322  * following layout (for SHMEM_NR_DIRECT == 16):
323  *
324  * i_indirect -> dir --> 16-19
325  * 	      |	     +-> 20-23
326  * 	      |
327  * 	      +-->dir2 --> 24-27
328  * 	      |	       +-> 28-31
329  * 	      |	       +-> 32-35
330  * 	      |	       +-> 36-39
331  * 	      |
332  * 	      +-->dir3 --> 40-43
333  * 	       	       +-> 44-47
334  * 	      	       +-> 48-51
335  * 	      	       +-> 52-55
336  */
337 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
338 {
339 	unsigned long offset;
340 	struct page **dir;
341 	struct page *subdir;
342 
343 	if (index < SHMEM_NR_DIRECT) {
344 		shmem_swp_balance_unmap();
345 		return info->i_direct+index;
346 	}
347 	if (!info->i_indirect) {
348 		if (page) {
349 			info->i_indirect = *page;
350 			*page = NULL;
351 		}
352 		return NULL;			/* need another page */
353 	}
354 
355 	index -= SHMEM_NR_DIRECT;
356 	offset = index % ENTRIES_PER_PAGE;
357 	index /= ENTRIES_PER_PAGE;
358 	dir = shmem_dir_map(info->i_indirect);
359 
360 	if (index >= ENTRIES_PER_PAGE/2) {
361 		index -= ENTRIES_PER_PAGE/2;
362 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
363 		index %= ENTRIES_PER_PAGE;
364 		subdir = *dir;
365 		if (!subdir) {
366 			if (page) {
367 				*dir = *page;
368 				*page = NULL;
369 			}
370 			shmem_dir_unmap(dir);
371 			return NULL;		/* need another page */
372 		}
373 		shmem_dir_unmap(dir);
374 		dir = shmem_dir_map(subdir);
375 	}
376 
377 	dir += index;
378 	subdir = *dir;
379 	if (!subdir) {
380 		if (!page || !(subdir = *page)) {
381 			shmem_dir_unmap(dir);
382 			return NULL;		/* need a page */
383 		}
384 		*dir = subdir;
385 		*page = NULL;
386 	}
387 	shmem_dir_unmap(dir);
388 	return shmem_swp_map(subdir) + offset;
389 }
390 
391 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
392 {
393 	long incdec = value? 1: -1;
394 
395 	entry->val = value;
396 	info->swapped += incdec;
397 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
398 		struct page *page = kmap_atomic_to_page(entry);
399 		set_page_private(page, page_private(page) + incdec);
400 	}
401 }
402 
403 /**
404  * shmem_swp_alloc - get the position of the swap entry for the page.
405  * @info:	info structure for the inode
406  * @index:	index of the page to find
407  * @sgp:	check and recheck i_size? skip allocation?
408  *
409  * If the entry does not exist, allocate it.
410  */
411 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
412 {
413 	struct inode *inode = &info->vfs_inode;
414 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
415 	struct page *page = NULL;
416 	swp_entry_t *entry;
417 
418 	if (sgp != SGP_WRITE &&
419 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
420 		return ERR_PTR(-EINVAL);
421 
422 	while (!(entry = shmem_swp_entry(info, index, &page))) {
423 		if (sgp == SGP_READ)
424 			return shmem_swp_map(ZERO_PAGE(0));
425 		/*
426 		 * Test used_blocks against 1 less max_blocks, since we have 1 data
427 		 * page (and perhaps indirect index pages) yet to allocate:
428 		 * a waste to allocate index if we cannot allocate data.
429 		 */
430 		if (sbinfo->max_blocks) {
431 			if (percpu_counter_compare(&sbinfo->used_blocks,
432 						sbinfo->max_blocks - 1) >= 0)
433 				return ERR_PTR(-ENOSPC);
434 			percpu_counter_inc(&sbinfo->used_blocks);
435 			spin_lock(&inode->i_lock);
436 			inode->i_blocks += BLOCKS_PER_PAGE;
437 			spin_unlock(&inode->i_lock);
438 		}
439 
440 		spin_unlock(&info->lock);
441 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
442 		spin_lock(&info->lock);
443 
444 		if (!page) {
445 			shmem_free_blocks(inode, 1);
446 			return ERR_PTR(-ENOMEM);
447 		}
448 		if (sgp != SGP_WRITE &&
449 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
450 			entry = ERR_PTR(-EINVAL);
451 			break;
452 		}
453 		if (info->next_index <= index)
454 			info->next_index = index + 1;
455 	}
456 	if (page) {
457 		/* another task gave its page, or truncated the file */
458 		shmem_free_blocks(inode, 1);
459 		shmem_dir_free(page);
460 	}
461 	if (info->next_index <= index && !IS_ERR(entry))
462 		info->next_index = index + 1;
463 	return entry;
464 }
465 
466 /**
467  * shmem_free_swp - free some swap entries in a directory
468  * @dir:        pointer to the directory
469  * @edir:       pointer after last entry of the directory
470  * @punch_lock: pointer to spinlock when needed for the holepunch case
471  */
472 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
473 						spinlock_t *punch_lock)
474 {
475 	spinlock_t *punch_unlock = NULL;
476 	swp_entry_t *ptr;
477 	int freed = 0;
478 
479 	for (ptr = dir; ptr < edir; ptr++) {
480 		if (ptr->val) {
481 			if (unlikely(punch_lock)) {
482 				punch_unlock = punch_lock;
483 				punch_lock = NULL;
484 				spin_lock(punch_unlock);
485 				if (!ptr->val)
486 					continue;
487 			}
488 			free_swap_and_cache(*ptr);
489 			*ptr = (swp_entry_t){0};
490 			freed++;
491 		}
492 	}
493 	if (punch_unlock)
494 		spin_unlock(punch_unlock);
495 	return freed;
496 }
497 
498 static int shmem_map_and_free_swp(struct page *subdir, int offset,
499 		int limit, struct page ***dir, spinlock_t *punch_lock)
500 {
501 	swp_entry_t *ptr;
502 	int freed = 0;
503 
504 	ptr = shmem_swp_map(subdir);
505 	for (; offset < limit; offset += LATENCY_LIMIT) {
506 		int size = limit - offset;
507 		if (size > LATENCY_LIMIT)
508 			size = LATENCY_LIMIT;
509 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
510 							punch_lock);
511 		if (need_resched()) {
512 			shmem_swp_unmap(ptr);
513 			if (*dir) {
514 				shmem_dir_unmap(*dir);
515 				*dir = NULL;
516 			}
517 			cond_resched();
518 			ptr = shmem_swp_map(subdir);
519 		}
520 	}
521 	shmem_swp_unmap(ptr);
522 	return freed;
523 }
524 
525 static void shmem_free_pages(struct list_head *next)
526 {
527 	struct page *page;
528 	int freed = 0;
529 
530 	do {
531 		page = container_of(next, struct page, lru);
532 		next = next->next;
533 		shmem_dir_free(page);
534 		freed++;
535 		if (freed >= LATENCY_LIMIT) {
536 			cond_resched();
537 			freed = 0;
538 		}
539 	} while (next);
540 }
541 
542 void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
543 {
544 	struct shmem_inode_info *info = SHMEM_I(inode);
545 	unsigned long idx;
546 	unsigned long size;
547 	unsigned long limit;
548 	unsigned long stage;
549 	unsigned long diroff;
550 	struct page **dir;
551 	struct page *topdir;
552 	struct page *middir;
553 	struct page *subdir;
554 	swp_entry_t *ptr;
555 	LIST_HEAD(pages_to_free);
556 	long nr_pages_to_free = 0;
557 	long nr_swaps_freed = 0;
558 	int offset;
559 	int freed;
560 	int punch_hole;
561 	spinlock_t *needs_lock;
562 	spinlock_t *punch_lock;
563 	unsigned long upper_limit;
564 
565 	truncate_inode_pages_range(inode->i_mapping, start, end);
566 
567 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
568 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
569 	if (idx >= info->next_index)
570 		return;
571 
572 	spin_lock(&info->lock);
573 	info->flags |= SHMEM_TRUNCATE;
574 	if (likely(end == (loff_t) -1)) {
575 		limit = info->next_index;
576 		upper_limit = SHMEM_MAX_INDEX;
577 		info->next_index = idx;
578 		needs_lock = NULL;
579 		punch_hole = 0;
580 	} else {
581 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
582 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
583 							PAGE_CACHE_SHIFT;
584 			upper_limit = SHMEM_MAX_INDEX;
585 		} else {
586 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
587 			upper_limit = limit;
588 		}
589 		needs_lock = &info->lock;
590 		punch_hole = 1;
591 	}
592 
593 	topdir = info->i_indirect;
594 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
595 		info->i_indirect = NULL;
596 		nr_pages_to_free++;
597 		list_add(&topdir->lru, &pages_to_free);
598 	}
599 	spin_unlock(&info->lock);
600 
601 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
602 		ptr = info->i_direct;
603 		size = limit;
604 		if (size > SHMEM_NR_DIRECT)
605 			size = SHMEM_NR_DIRECT;
606 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
607 	}
608 
609 	/*
610 	 * If there are no indirect blocks or we are punching a hole
611 	 * below indirect blocks, nothing to be done.
612 	 */
613 	if (!topdir || limit <= SHMEM_NR_DIRECT)
614 		goto done2;
615 
616 	/*
617 	 * The truncation case has already dropped info->lock, and we're safe
618 	 * because i_size and next_index have already been lowered, preventing
619 	 * access beyond.  But in the punch_hole case, we still need to take
620 	 * the lock when updating the swap directory, because there might be
621 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
622 	 * shmem_writepage.  However, whenever we find we can remove a whole
623 	 * directory page (not at the misaligned start or end of the range),
624 	 * we first NULLify its pointer in the level above, and then have no
625 	 * need to take the lock when updating its contents: needs_lock and
626 	 * punch_lock (either pointing to info->lock or NULL) manage this.
627 	 */
628 
629 	upper_limit -= SHMEM_NR_DIRECT;
630 	limit -= SHMEM_NR_DIRECT;
631 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
632 	offset = idx % ENTRIES_PER_PAGE;
633 	idx -= offset;
634 
635 	dir = shmem_dir_map(topdir);
636 	stage = ENTRIES_PER_PAGEPAGE/2;
637 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
638 		middir = topdir;
639 		diroff = idx/ENTRIES_PER_PAGE;
640 	} else {
641 		dir += ENTRIES_PER_PAGE/2;
642 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
643 		while (stage <= idx)
644 			stage += ENTRIES_PER_PAGEPAGE;
645 		middir = *dir;
646 		if (*dir) {
647 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
648 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
649 			if (!diroff && !offset && upper_limit >= stage) {
650 				if (needs_lock) {
651 					spin_lock(needs_lock);
652 					*dir = NULL;
653 					spin_unlock(needs_lock);
654 					needs_lock = NULL;
655 				} else
656 					*dir = NULL;
657 				nr_pages_to_free++;
658 				list_add(&middir->lru, &pages_to_free);
659 			}
660 			shmem_dir_unmap(dir);
661 			dir = shmem_dir_map(middir);
662 		} else {
663 			diroff = 0;
664 			offset = 0;
665 			idx = stage;
666 		}
667 	}
668 
669 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
670 		if (unlikely(idx == stage)) {
671 			shmem_dir_unmap(dir);
672 			dir = shmem_dir_map(topdir) +
673 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
674 			while (!*dir) {
675 				dir++;
676 				idx += ENTRIES_PER_PAGEPAGE;
677 				if (idx >= limit)
678 					goto done1;
679 			}
680 			stage = idx + ENTRIES_PER_PAGEPAGE;
681 			middir = *dir;
682 			if (punch_hole)
683 				needs_lock = &info->lock;
684 			if (upper_limit >= stage) {
685 				if (needs_lock) {
686 					spin_lock(needs_lock);
687 					*dir = NULL;
688 					spin_unlock(needs_lock);
689 					needs_lock = NULL;
690 				} else
691 					*dir = NULL;
692 				nr_pages_to_free++;
693 				list_add(&middir->lru, &pages_to_free);
694 			}
695 			shmem_dir_unmap(dir);
696 			cond_resched();
697 			dir = shmem_dir_map(middir);
698 			diroff = 0;
699 		}
700 		punch_lock = needs_lock;
701 		subdir = dir[diroff];
702 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
703 			if (needs_lock) {
704 				spin_lock(needs_lock);
705 				dir[diroff] = NULL;
706 				spin_unlock(needs_lock);
707 				punch_lock = NULL;
708 			} else
709 				dir[diroff] = NULL;
710 			nr_pages_to_free++;
711 			list_add(&subdir->lru, &pages_to_free);
712 		}
713 		if (subdir && page_private(subdir) /* has swap entries */) {
714 			size = limit - idx;
715 			if (size > ENTRIES_PER_PAGE)
716 				size = ENTRIES_PER_PAGE;
717 			freed = shmem_map_and_free_swp(subdir,
718 					offset, size, &dir, punch_lock);
719 			if (!dir)
720 				dir = shmem_dir_map(middir);
721 			nr_swaps_freed += freed;
722 			if (offset || punch_lock) {
723 				spin_lock(&info->lock);
724 				set_page_private(subdir,
725 					page_private(subdir) - freed);
726 				spin_unlock(&info->lock);
727 			} else
728 				BUG_ON(page_private(subdir) != freed);
729 		}
730 		offset = 0;
731 	}
732 done1:
733 	shmem_dir_unmap(dir);
734 done2:
735 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
736 		/*
737 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
738 		 * may have swizzled a page in from swap since
739 		 * truncate_pagecache or generic_delete_inode did it, before we
740 		 * lowered next_index.  Also, though shmem_getpage checks
741 		 * i_size before adding to cache, no recheck after: so fix the
742 		 * narrow window there too.
743 		 */
744 		truncate_inode_pages_range(inode->i_mapping, start, end);
745 	}
746 
747 	spin_lock(&info->lock);
748 	info->flags &= ~SHMEM_TRUNCATE;
749 	info->swapped -= nr_swaps_freed;
750 	if (nr_pages_to_free)
751 		shmem_free_blocks(inode, nr_pages_to_free);
752 	shmem_recalc_inode(inode);
753 	spin_unlock(&info->lock);
754 
755 	/*
756 	 * Empty swap vector directory pages to be freed?
757 	 */
758 	if (!list_empty(&pages_to_free)) {
759 		pages_to_free.prev->next = NULL;
760 		shmem_free_pages(pages_to_free.next);
761 	}
762 }
763 EXPORT_SYMBOL_GPL(shmem_truncate_range);
764 
765 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
766 {
767 	struct inode *inode = dentry->d_inode;
768 	int error;
769 
770 	error = inode_change_ok(inode, attr);
771 	if (error)
772 		return error;
773 
774 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
775 		loff_t oldsize = inode->i_size;
776 		loff_t newsize = attr->ia_size;
777 		struct page *page = NULL;
778 
779 		if (newsize < oldsize) {
780 			/*
781 			 * If truncating down to a partial page, then
782 			 * if that page is already allocated, hold it
783 			 * in memory until the truncation is over, so
784 			 * truncate_partial_page cannot miss it were
785 			 * it assigned to swap.
786 			 */
787 			if (newsize & (PAGE_CACHE_SIZE-1)) {
788 				(void) shmem_getpage(inode,
789 					newsize >> PAGE_CACHE_SHIFT,
790 						&page, SGP_READ, NULL);
791 				if (page)
792 					unlock_page(page);
793 			}
794 			/*
795 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
796 			 * detect if any pages might have been added to cache
797 			 * after truncate_inode_pages.  But we needn't bother
798 			 * if it's being fully truncated to zero-length: the
799 			 * nrpages check is efficient enough in that case.
800 			 */
801 			if (newsize) {
802 				struct shmem_inode_info *info = SHMEM_I(inode);
803 				spin_lock(&info->lock);
804 				info->flags &= ~SHMEM_PAGEIN;
805 				spin_unlock(&info->lock);
806 			}
807 		}
808 		if (newsize != oldsize) {
809 			i_size_write(inode, newsize);
810 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
811 		}
812 		if (newsize < oldsize) {
813 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
814 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
815 			shmem_truncate_range(inode, newsize, (loff_t)-1);
816 			/* unmap again to remove racily COWed private pages */
817 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
818 		}
819 		if (page)
820 			page_cache_release(page);
821 	}
822 
823 	setattr_copy(inode, attr);
824 #ifdef CONFIG_TMPFS_POSIX_ACL
825 	if (attr->ia_valid & ATTR_MODE)
826 		error = generic_acl_chmod(inode);
827 #endif
828 	return error;
829 }
830 
831 static void shmem_evict_inode(struct inode *inode)
832 {
833 	struct shmem_inode_info *info = SHMEM_I(inode);
834 	struct shmem_xattr *xattr, *nxattr;
835 
836 	if (inode->i_mapping->a_ops == &shmem_aops) {
837 		shmem_unacct_size(info->flags, inode->i_size);
838 		inode->i_size = 0;
839 		shmem_truncate_range(inode, 0, (loff_t)-1);
840 		if (!list_empty(&info->swaplist)) {
841 			mutex_lock(&shmem_swaplist_mutex);
842 			list_del_init(&info->swaplist);
843 			mutex_unlock(&shmem_swaplist_mutex);
844 		}
845 	}
846 
847 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
848 		kfree(xattr->name);
849 		kfree(xattr);
850 	}
851 	BUG_ON(inode->i_blocks);
852 	shmem_free_inode(inode->i_sb);
853 	end_writeback(inode);
854 }
855 
856 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
857 {
858 	swp_entry_t *ptr;
859 
860 	for (ptr = dir; ptr < edir; ptr++) {
861 		if (ptr->val == entry.val)
862 			return ptr - dir;
863 	}
864 	return -1;
865 }
866 
867 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
868 {
869 	struct address_space *mapping;
870 	unsigned long idx;
871 	unsigned long size;
872 	unsigned long limit;
873 	unsigned long stage;
874 	struct page **dir;
875 	struct page *subdir;
876 	swp_entry_t *ptr;
877 	int offset;
878 	int error;
879 
880 	idx = 0;
881 	ptr = info->i_direct;
882 	spin_lock(&info->lock);
883 	if (!info->swapped) {
884 		list_del_init(&info->swaplist);
885 		goto lost2;
886 	}
887 	limit = info->next_index;
888 	size = limit;
889 	if (size > SHMEM_NR_DIRECT)
890 		size = SHMEM_NR_DIRECT;
891 	offset = shmem_find_swp(entry, ptr, ptr+size);
892 	if (offset >= 0) {
893 		shmem_swp_balance_unmap();
894 		goto found;
895 	}
896 	if (!info->i_indirect)
897 		goto lost2;
898 
899 	dir = shmem_dir_map(info->i_indirect);
900 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
901 
902 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
903 		if (unlikely(idx == stage)) {
904 			shmem_dir_unmap(dir-1);
905 			if (cond_resched_lock(&info->lock)) {
906 				/* check it has not been truncated */
907 				if (limit > info->next_index) {
908 					limit = info->next_index;
909 					if (idx >= limit)
910 						goto lost2;
911 				}
912 			}
913 			dir = shmem_dir_map(info->i_indirect) +
914 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
915 			while (!*dir) {
916 				dir++;
917 				idx += ENTRIES_PER_PAGEPAGE;
918 				if (idx >= limit)
919 					goto lost1;
920 			}
921 			stage = idx + ENTRIES_PER_PAGEPAGE;
922 			subdir = *dir;
923 			shmem_dir_unmap(dir);
924 			dir = shmem_dir_map(subdir);
925 		}
926 		subdir = *dir;
927 		if (subdir && page_private(subdir)) {
928 			ptr = shmem_swp_map(subdir);
929 			size = limit - idx;
930 			if (size > ENTRIES_PER_PAGE)
931 				size = ENTRIES_PER_PAGE;
932 			offset = shmem_find_swp(entry, ptr, ptr+size);
933 			shmem_swp_unmap(ptr);
934 			if (offset >= 0) {
935 				shmem_dir_unmap(dir);
936 				ptr = shmem_swp_map(subdir);
937 				goto found;
938 			}
939 		}
940 	}
941 lost1:
942 	shmem_dir_unmap(dir-1);
943 lost2:
944 	spin_unlock(&info->lock);
945 	return 0;
946 found:
947 	idx += offset;
948 	ptr += offset;
949 
950 	/*
951 	 * Move _head_ to start search for next from here.
952 	 * But be careful: shmem_evict_inode checks list_empty without taking
953 	 * mutex, and there's an instant in list_move_tail when info->swaplist
954 	 * would appear empty, if it were the only one on shmem_swaplist.  We
955 	 * could avoid doing it if inode NULL; or use this minor optimization.
956 	 */
957 	if (shmem_swaplist.next != &info->swaplist)
958 		list_move_tail(&shmem_swaplist, &info->swaplist);
959 
960 	/*
961 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
962 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
963 	 * beneath us (pagelock doesn't help until the page is in pagecache).
964 	 */
965 	mapping = info->vfs_inode.i_mapping;
966 	error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
967 	/* which does mem_cgroup_uncharge_cache_page on error */
968 
969 	if (error == -EEXIST) {
970 		struct page *filepage = find_get_page(mapping, idx);
971 		error = 1;
972 		if (filepage) {
973 			/*
974 			 * There might be a more uptodate page coming down
975 			 * from a stacked writepage: forget our swappage if so.
976 			 */
977 			if (PageUptodate(filepage))
978 				error = 0;
979 			page_cache_release(filepage);
980 		}
981 	}
982 	if (!error) {
983 		delete_from_swap_cache(page);
984 		set_page_dirty(page);
985 		info->flags |= SHMEM_PAGEIN;
986 		shmem_swp_set(info, ptr, 0);
987 		swap_free(entry);
988 		error = 1;	/* not an error, but entry was found */
989 	}
990 	shmem_swp_unmap(ptr);
991 	spin_unlock(&info->lock);
992 	return error;
993 }
994 
995 /*
996  * shmem_unuse() search for an eventually swapped out shmem page.
997  */
998 int shmem_unuse(swp_entry_t entry, struct page *page)
999 {
1000 	struct list_head *p, *next;
1001 	struct shmem_inode_info *info;
1002 	int found = 0;
1003 	int error;
1004 
1005 	/*
1006 	 * Charge page using GFP_KERNEL while we can wait, before taking
1007 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1008 	 * Charged back to the user (not to caller) when swap account is used.
1009 	 * add_to_page_cache() will be called with GFP_NOWAIT.
1010 	 */
1011 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1012 	if (error)
1013 		goto out;
1014 	/*
1015 	 * Try to preload while we can wait, to not make a habit of
1016 	 * draining atomic reserves; but don't latch on to this cpu,
1017 	 * it's okay if sometimes we get rescheduled after this.
1018 	 */
1019 	error = radix_tree_preload(GFP_KERNEL);
1020 	if (error)
1021 		goto uncharge;
1022 	radix_tree_preload_end();
1023 
1024 	mutex_lock(&shmem_swaplist_mutex);
1025 	list_for_each_safe(p, next, &shmem_swaplist) {
1026 		info = list_entry(p, struct shmem_inode_info, swaplist);
1027 		found = shmem_unuse_inode(info, entry, page);
1028 		cond_resched();
1029 		if (found)
1030 			break;
1031 	}
1032 	mutex_unlock(&shmem_swaplist_mutex);
1033 
1034 uncharge:
1035 	if (!found)
1036 		mem_cgroup_uncharge_cache_page(page);
1037 	if (found < 0)
1038 		error = found;
1039 out:
1040 	unlock_page(page);
1041 	page_cache_release(page);
1042 	return error;
1043 }
1044 
1045 /*
1046  * Move the page from the page cache to the swap cache.
1047  */
1048 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1049 {
1050 	struct shmem_inode_info *info;
1051 	swp_entry_t *entry, swap;
1052 	struct address_space *mapping;
1053 	unsigned long index;
1054 	struct inode *inode;
1055 
1056 	BUG_ON(!PageLocked(page));
1057 	mapping = page->mapping;
1058 	index = page->index;
1059 	inode = mapping->host;
1060 	info = SHMEM_I(inode);
1061 	if (info->flags & VM_LOCKED)
1062 		goto redirty;
1063 	if (!total_swap_pages)
1064 		goto redirty;
1065 
1066 	/*
1067 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1068 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1069 	 * may use the ->writepage of its underlying filesystem, in which case
1070 	 * tmpfs should write out to swap only in response to memory pressure,
1071 	 * and not for the writeback threads or sync.  However, in those cases,
1072 	 * we do still want to check if there's a redundant swappage to be
1073 	 * discarded.
1074 	 */
1075 	if (wbc->for_reclaim)
1076 		swap = get_swap_page();
1077 	else
1078 		swap.val = 0;
1079 
1080 	/*
1081 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1082 	 * if it's not already there.  Do it now because we cannot take
1083 	 * mutex while holding spinlock, and must do so before the page
1084 	 * is moved to swap cache, when its pagelock no longer protects
1085 	 * the inode from eviction.  But don't unlock the mutex until
1086 	 * we've taken the spinlock, because shmem_unuse_inode() will
1087 	 * prune a !swapped inode from the swaplist under both locks.
1088 	 */
1089 	if (swap.val) {
1090 		mutex_lock(&shmem_swaplist_mutex);
1091 		if (list_empty(&info->swaplist))
1092 			list_add_tail(&info->swaplist, &shmem_swaplist);
1093 	}
1094 
1095 	spin_lock(&info->lock);
1096 	if (swap.val)
1097 		mutex_unlock(&shmem_swaplist_mutex);
1098 
1099 	if (index >= info->next_index) {
1100 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1101 		goto unlock;
1102 	}
1103 	entry = shmem_swp_entry(info, index, NULL);
1104 	if (entry->val) {
1105 		/*
1106 		 * The more uptodate page coming down from a stacked
1107 		 * writepage should replace our old swappage.
1108 		 */
1109 		free_swap_and_cache(*entry);
1110 		shmem_swp_set(info, entry, 0);
1111 	}
1112 	shmem_recalc_inode(inode);
1113 
1114 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1115 		delete_from_page_cache(page);
1116 		shmem_swp_set(info, entry, swap.val);
1117 		shmem_swp_unmap(entry);
1118 		swap_shmem_alloc(swap);
1119 		spin_unlock(&info->lock);
1120 		BUG_ON(page_mapped(page));
1121 		swap_writepage(page, wbc);
1122 		return 0;
1123 	}
1124 
1125 	shmem_swp_unmap(entry);
1126 unlock:
1127 	spin_unlock(&info->lock);
1128 	/*
1129 	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1130 	 * clear SWAP_HAS_CACHE flag.
1131 	 */
1132 	swapcache_free(swap, NULL);
1133 redirty:
1134 	set_page_dirty(page);
1135 	if (wbc->for_reclaim)
1136 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1137 	unlock_page(page);
1138 	return 0;
1139 }
1140 
1141 #ifdef CONFIG_NUMA
1142 #ifdef CONFIG_TMPFS
1143 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1144 {
1145 	char buffer[64];
1146 
1147 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1148 		return;		/* show nothing */
1149 
1150 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1151 
1152 	seq_printf(seq, ",mpol=%s", buffer);
1153 }
1154 
1155 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1156 {
1157 	struct mempolicy *mpol = NULL;
1158 	if (sbinfo->mpol) {
1159 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1160 		mpol = sbinfo->mpol;
1161 		mpol_get(mpol);
1162 		spin_unlock(&sbinfo->stat_lock);
1163 	}
1164 	return mpol;
1165 }
1166 #endif /* CONFIG_TMPFS */
1167 
1168 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1169 			struct shmem_inode_info *info, unsigned long idx)
1170 {
1171 	struct mempolicy mpol, *spol;
1172 	struct vm_area_struct pvma;
1173 	struct page *page;
1174 
1175 	spol = mpol_cond_copy(&mpol,
1176 				mpol_shared_policy_lookup(&info->policy, idx));
1177 
1178 	/* Create a pseudo vma that just contains the policy */
1179 	pvma.vm_start = 0;
1180 	pvma.vm_pgoff = idx;
1181 	pvma.vm_ops = NULL;
1182 	pvma.vm_policy = spol;
1183 	page = swapin_readahead(entry, gfp, &pvma, 0);
1184 	return page;
1185 }
1186 
1187 static struct page *shmem_alloc_page(gfp_t gfp,
1188 			struct shmem_inode_info *info, unsigned long idx)
1189 {
1190 	struct vm_area_struct pvma;
1191 
1192 	/* Create a pseudo vma that just contains the policy */
1193 	pvma.vm_start = 0;
1194 	pvma.vm_pgoff = idx;
1195 	pvma.vm_ops = NULL;
1196 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1197 
1198 	/*
1199 	 * alloc_page_vma() will drop the shared policy reference
1200 	 */
1201 	return alloc_page_vma(gfp, &pvma, 0);
1202 }
1203 #else /* !CONFIG_NUMA */
1204 #ifdef CONFIG_TMPFS
1205 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1206 {
1207 }
1208 #endif /* CONFIG_TMPFS */
1209 
1210 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1211 			struct shmem_inode_info *info, unsigned long idx)
1212 {
1213 	return swapin_readahead(entry, gfp, NULL, 0);
1214 }
1215 
1216 static inline struct page *shmem_alloc_page(gfp_t gfp,
1217 			struct shmem_inode_info *info, unsigned long idx)
1218 {
1219 	return alloc_page(gfp);
1220 }
1221 #endif /* CONFIG_NUMA */
1222 
1223 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1224 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1225 {
1226 	return NULL;
1227 }
1228 #endif
1229 
1230 /*
1231  * shmem_getpage - either get the page from swap or allocate a new one
1232  *
1233  * If we allocate a new one we do not mark it dirty. That's up to the
1234  * vm. If we swap it in we mark it dirty since we also free the swap
1235  * entry since a page cannot live in both the swap and page cache
1236  */
1237 static int shmem_getpage(struct inode *inode, unsigned long idx,
1238 			struct page **pagep, enum sgp_type sgp, int *type)
1239 {
1240 	struct address_space *mapping = inode->i_mapping;
1241 	struct shmem_inode_info *info = SHMEM_I(inode);
1242 	struct shmem_sb_info *sbinfo;
1243 	struct page *filepage = *pagep;
1244 	struct page *swappage;
1245 	struct page *prealloc_page = NULL;
1246 	swp_entry_t *entry;
1247 	swp_entry_t swap;
1248 	gfp_t gfp;
1249 	int error;
1250 
1251 	if (idx >= SHMEM_MAX_INDEX)
1252 		return -EFBIG;
1253 
1254 	if (type)
1255 		*type = 0;
1256 
1257 	/*
1258 	 * Normally, filepage is NULL on entry, and either found
1259 	 * uptodate immediately, or allocated and zeroed, or read
1260 	 * in under swappage, which is then assigned to filepage.
1261 	 * But shmem_readpage (required for splice) passes in a locked
1262 	 * filepage, which may be found not uptodate by other callers
1263 	 * too, and may need to be copied from the swappage read in.
1264 	 */
1265 repeat:
1266 	if (!filepage)
1267 		filepage = find_lock_page(mapping, idx);
1268 	if (filepage && PageUptodate(filepage))
1269 		goto done;
1270 	gfp = mapping_gfp_mask(mapping);
1271 	if (!filepage) {
1272 		/*
1273 		 * Try to preload while we can wait, to not make a habit of
1274 		 * draining atomic reserves; but don't latch on to this cpu.
1275 		 */
1276 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1277 		if (error)
1278 			goto failed;
1279 		radix_tree_preload_end();
1280 		if (sgp != SGP_READ && !prealloc_page) {
1281 			/* We don't care if this fails */
1282 			prealloc_page = shmem_alloc_page(gfp, info, idx);
1283 			if (prealloc_page) {
1284 				if (mem_cgroup_cache_charge(prealloc_page,
1285 						current->mm, GFP_KERNEL)) {
1286 					page_cache_release(prealloc_page);
1287 					prealloc_page = NULL;
1288 				}
1289 			}
1290 		}
1291 	}
1292 	error = 0;
1293 
1294 	spin_lock(&info->lock);
1295 	shmem_recalc_inode(inode);
1296 	entry = shmem_swp_alloc(info, idx, sgp);
1297 	if (IS_ERR(entry)) {
1298 		spin_unlock(&info->lock);
1299 		error = PTR_ERR(entry);
1300 		goto failed;
1301 	}
1302 	swap = *entry;
1303 
1304 	if (swap.val) {
1305 		/* Look it up and read it in.. */
1306 		swappage = lookup_swap_cache(swap);
1307 		if (!swappage) {
1308 			shmem_swp_unmap(entry);
1309 			spin_unlock(&info->lock);
1310 			/* here we actually do the io */
1311 			if (type)
1312 				*type |= VM_FAULT_MAJOR;
1313 			swappage = shmem_swapin(swap, gfp, info, idx);
1314 			if (!swappage) {
1315 				spin_lock(&info->lock);
1316 				entry = shmem_swp_alloc(info, idx, sgp);
1317 				if (IS_ERR(entry))
1318 					error = PTR_ERR(entry);
1319 				else {
1320 					if (entry->val == swap.val)
1321 						error = -ENOMEM;
1322 					shmem_swp_unmap(entry);
1323 				}
1324 				spin_unlock(&info->lock);
1325 				if (error)
1326 					goto failed;
1327 				goto repeat;
1328 			}
1329 			wait_on_page_locked(swappage);
1330 			page_cache_release(swappage);
1331 			goto repeat;
1332 		}
1333 
1334 		/* We have to do this with page locked to prevent races */
1335 		if (!trylock_page(swappage)) {
1336 			shmem_swp_unmap(entry);
1337 			spin_unlock(&info->lock);
1338 			wait_on_page_locked(swappage);
1339 			page_cache_release(swappage);
1340 			goto repeat;
1341 		}
1342 		if (PageWriteback(swappage)) {
1343 			shmem_swp_unmap(entry);
1344 			spin_unlock(&info->lock);
1345 			wait_on_page_writeback(swappage);
1346 			unlock_page(swappage);
1347 			page_cache_release(swappage);
1348 			goto repeat;
1349 		}
1350 		if (!PageUptodate(swappage)) {
1351 			shmem_swp_unmap(entry);
1352 			spin_unlock(&info->lock);
1353 			unlock_page(swappage);
1354 			page_cache_release(swappage);
1355 			error = -EIO;
1356 			goto failed;
1357 		}
1358 
1359 		if (filepage) {
1360 			shmem_swp_set(info, entry, 0);
1361 			shmem_swp_unmap(entry);
1362 			delete_from_swap_cache(swappage);
1363 			spin_unlock(&info->lock);
1364 			copy_highpage(filepage, swappage);
1365 			unlock_page(swappage);
1366 			page_cache_release(swappage);
1367 			flush_dcache_page(filepage);
1368 			SetPageUptodate(filepage);
1369 			set_page_dirty(filepage);
1370 			swap_free(swap);
1371 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1372 					idx, GFP_NOWAIT))) {
1373 			info->flags |= SHMEM_PAGEIN;
1374 			shmem_swp_set(info, entry, 0);
1375 			shmem_swp_unmap(entry);
1376 			delete_from_swap_cache(swappage);
1377 			spin_unlock(&info->lock);
1378 			filepage = swappage;
1379 			set_page_dirty(filepage);
1380 			swap_free(swap);
1381 		} else {
1382 			shmem_swp_unmap(entry);
1383 			spin_unlock(&info->lock);
1384 			if (error == -ENOMEM) {
1385 				/*
1386 				 * reclaim from proper memory cgroup and
1387 				 * call memcg's OOM if needed.
1388 				 */
1389 				error = mem_cgroup_shmem_charge_fallback(
1390 								swappage,
1391 								current->mm,
1392 								gfp);
1393 				if (error) {
1394 					unlock_page(swappage);
1395 					page_cache_release(swappage);
1396 					goto failed;
1397 				}
1398 			}
1399 			unlock_page(swappage);
1400 			page_cache_release(swappage);
1401 			goto repeat;
1402 		}
1403 	} else if (sgp == SGP_READ && !filepage) {
1404 		shmem_swp_unmap(entry);
1405 		filepage = find_get_page(mapping, idx);
1406 		if (filepage &&
1407 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1408 			spin_unlock(&info->lock);
1409 			wait_on_page_locked(filepage);
1410 			page_cache_release(filepage);
1411 			filepage = NULL;
1412 			goto repeat;
1413 		}
1414 		spin_unlock(&info->lock);
1415 	} else {
1416 		shmem_swp_unmap(entry);
1417 		sbinfo = SHMEM_SB(inode->i_sb);
1418 		if (sbinfo->max_blocks) {
1419 			if (percpu_counter_compare(&sbinfo->used_blocks,
1420 						sbinfo->max_blocks) >= 0 ||
1421 			    shmem_acct_block(info->flags))
1422 				goto nospace;
1423 			percpu_counter_inc(&sbinfo->used_blocks);
1424 			spin_lock(&inode->i_lock);
1425 			inode->i_blocks += BLOCKS_PER_PAGE;
1426 			spin_unlock(&inode->i_lock);
1427 		} else if (shmem_acct_block(info->flags))
1428 			goto nospace;
1429 
1430 		if (!filepage) {
1431 			int ret;
1432 
1433 			if (!prealloc_page) {
1434 				spin_unlock(&info->lock);
1435 				filepage = shmem_alloc_page(gfp, info, idx);
1436 				if (!filepage) {
1437 					shmem_unacct_blocks(info->flags, 1);
1438 					shmem_free_blocks(inode, 1);
1439 					error = -ENOMEM;
1440 					goto failed;
1441 				}
1442 				SetPageSwapBacked(filepage);
1443 
1444 				/*
1445 				 * Precharge page while we can wait, compensate
1446 				 * after
1447 				 */
1448 				error = mem_cgroup_cache_charge(filepage,
1449 					current->mm, GFP_KERNEL);
1450 				if (error) {
1451 					page_cache_release(filepage);
1452 					shmem_unacct_blocks(info->flags, 1);
1453 					shmem_free_blocks(inode, 1);
1454 					filepage = NULL;
1455 					goto failed;
1456 				}
1457 
1458 				spin_lock(&info->lock);
1459 			} else {
1460 				filepage = prealloc_page;
1461 				prealloc_page = NULL;
1462 				SetPageSwapBacked(filepage);
1463 			}
1464 
1465 			entry = shmem_swp_alloc(info, idx, sgp);
1466 			if (IS_ERR(entry))
1467 				error = PTR_ERR(entry);
1468 			else {
1469 				swap = *entry;
1470 				shmem_swp_unmap(entry);
1471 			}
1472 			ret = error || swap.val;
1473 			if (ret)
1474 				mem_cgroup_uncharge_cache_page(filepage);
1475 			else
1476 				ret = add_to_page_cache_lru(filepage, mapping,
1477 						idx, GFP_NOWAIT);
1478 			/*
1479 			 * At add_to_page_cache_lru() failure, uncharge will
1480 			 * be done automatically.
1481 			 */
1482 			if (ret) {
1483 				spin_unlock(&info->lock);
1484 				page_cache_release(filepage);
1485 				shmem_unacct_blocks(info->flags, 1);
1486 				shmem_free_blocks(inode, 1);
1487 				filepage = NULL;
1488 				if (error)
1489 					goto failed;
1490 				goto repeat;
1491 			}
1492 			info->flags |= SHMEM_PAGEIN;
1493 		}
1494 
1495 		info->alloced++;
1496 		spin_unlock(&info->lock);
1497 		clear_highpage(filepage);
1498 		flush_dcache_page(filepage);
1499 		SetPageUptodate(filepage);
1500 		if (sgp == SGP_DIRTY)
1501 			set_page_dirty(filepage);
1502 	}
1503 done:
1504 	*pagep = filepage;
1505 	error = 0;
1506 	goto out;
1507 
1508 nospace:
1509 	/*
1510 	 * Perhaps the page was brought in from swap between find_lock_page
1511 	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1512 	 * but must also avoid reporting a spurious ENOSPC while working on a
1513 	 * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1514 	 * is already in page cache, which prevents this race from occurring.)
1515 	 */
1516 	if (!filepage) {
1517 		struct page *page = find_get_page(mapping, idx);
1518 		if (page) {
1519 			spin_unlock(&info->lock);
1520 			page_cache_release(page);
1521 			goto repeat;
1522 		}
1523 	}
1524 	spin_unlock(&info->lock);
1525 	error = -ENOSPC;
1526 failed:
1527 	if (*pagep != filepage) {
1528 		unlock_page(filepage);
1529 		page_cache_release(filepage);
1530 	}
1531 out:
1532 	if (prealloc_page) {
1533 		mem_cgroup_uncharge_cache_page(prealloc_page);
1534 		page_cache_release(prealloc_page);
1535 	}
1536 	return error;
1537 }
1538 
1539 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1540 {
1541 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1542 	int error;
1543 	int ret;
1544 
1545 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1546 		return VM_FAULT_SIGBUS;
1547 
1548 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1549 	if (error)
1550 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1551 	if (ret & VM_FAULT_MAJOR) {
1552 		count_vm_event(PGMAJFAULT);
1553 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1554 	}
1555 	return ret | VM_FAULT_LOCKED;
1556 }
1557 
1558 #ifdef CONFIG_NUMA
1559 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1560 {
1561 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1562 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1563 }
1564 
1565 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1566 					  unsigned long addr)
1567 {
1568 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1569 	unsigned long idx;
1570 
1571 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1572 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1573 }
1574 #endif
1575 
1576 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1577 {
1578 	struct inode *inode = file->f_path.dentry->d_inode;
1579 	struct shmem_inode_info *info = SHMEM_I(inode);
1580 	int retval = -ENOMEM;
1581 
1582 	spin_lock(&info->lock);
1583 	if (lock && !(info->flags & VM_LOCKED)) {
1584 		if (!user_shm_lock(inode->i_size, user))
1585 			goto out_nomem;
1586 		info->flags |= VM_LOCKED;
1587 		mapping_set_unevictable(file->f_mapping);
1588 	}
1589 	if (!lock && (info->flags & VM_LOCKED) && user) {
1590 		user_shm_unlock(inode->i_size, user);
1591 		info->flags &= ~VM_LOCKED;
1592 		mapping_clear_unevictable(file->f_mapping);
1593 		scan_mapping_unevictable_pages(file->f_mapping);
1594 	}
1595 	retval = 0;
1596 
1597 out_nomem:
1598 	spin_unlock(&info->lock);
1599 	return retval;
1600 }
1601 
1602 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1603 {
1604 	file_accessed(file);
1605 	vma->vm_ops = &shmem_vm_ops;
1606 	vma->vm_flags |= VM_CAN_NONLINEAR;
1607 	return 0;
1608 }
1609 
1610 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1611 				     int mode, dev_t dev, unsigned long flags)
1612 {
1613 	struct inode *inode;
1614 	struct shmem_inode_info *info;
1615 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1616 
1617 	if (shmem_reserve_inode(sb))
1618 		return NULL;
1619 
1620 	inode = new_inode(sb);
1621 	if (inode) {
1622 		inode->i_ino = get_next_ino();
1623 		inode_init_owner(inode, dir, mode);
1624 		inode->i_blocks = 0;
1625 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1626 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1627 		inode->i_generation = get_seconds();
1628 		info = SHMEM_I(inode);
1629 		memset(info, 0, (char *)inode - (char *)info);
1630 		spin_lock_init(&info->lock);
1631 		info->flags = flags & VM_NORESERVE;
1632 		INIT_LIST_HEAD(&info->swaplist);
1633 		INIT_LIST_HEAD(&info->xattr_list);
1634 		cache_no_acl(inode);
1635 
1636 		switch (mode & S_IFMT) {
1637 		default:
1638 			inode->i_op = &shmem_special_inode_operations;
1639 			init_special_inode(inode, mode, dev);
1640 			break;
1641 		case S_IFREG:
1642 			inode->i_mapping->a_ops = &shmem_aops;
1643 			inode->i_op = &shmem_inode_operations;
1644 			inode->i_fop = &shmem_file_operations;
1645 			mpol_shared_policy_init(&info->policy,
1646 						 shmem_get_sbmpol(sbinfo));
1647 			break;
1648 		case S_IFDIR:
1649 			inc_nlink(inode);
1650 			/* Some things misbehave if size == 0 on a directory */
1651 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1652 			inode->i_op = &shmem_dir_inode_operations;
1653 			inode->i_fop = &simple_dir_operations;
1654 			break;
1655 		case S_IFLNK:
1656 			/*
1657 			 * Must not load anything in the rbtree,
1658 			 * mpol_free_shared_policy will not be called.
1659 			 */
1660 			mpol_shared_policy_init(&info->policy, NULL);
1661 			break;
1662 		}
1663 	} else
1664 		shmem_free_inode(sb);
1665 	return inode;
1666 }
1667 
1668 #ifdef CONFIG_TMPFS
1669 static const struct inode_operations shmem_symlink_inode_operations;
1670 static const struct inode_operations shmem_symlink_inline_operations;
1671 
1672 /*
1673  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1674  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1675  * below the loop driver, in the generic fashion that many filesystems support.
1676  */
1677 static int shmem_readpage(struct file *file, struct page *page)
1678 {
1679 	struct inode *inode = page->mapping->host;
1680 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1681 	unlock_page(page);
1682 	return error;
1683 }
1684 
1685 static int
1686 shmem_write_begin(struct file *file, struct address_space *mapping,
1687 			loff_t pos, unsigned len, unsigned flags,
1688 			struct page **pagep, void **fsdata)
1689 {
1690 	struct inode *inode = mapping->host;
1691 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1692 	*pagep = NULL;
1693 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1694 }
1695 
1696 static int
1697 shmem_write_end(struct file *file, struct address_space *mapping,
1698 			loff_t pos, unsigned len, unsigned copied,
1699 			struct page *page, void *fsdata)
1700 {
1701 	struct inode *inode = mapping->host;
1702 
1703 	if (pos + copied > inode->i_size)
1704 		i_size_write(inode, pos + copied);
1705 
1706 	set_page_dirty(page);
1707 	unlock_page(page);
1708 	page_cache_release(page);
1709 
1710 	return copied;
1711 }
1712 
1713 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1714 {
1715 	struct inode *inode = filp->f_path.dentry->d_inode;
1716 	struct address_space *mapping = inode->i_mapping;
1717 	unsigned long index, offset;
1718 	enum sgp_type sgp = SGP_READ;
1719 
1720 	/*
1721 	 * Might this read be for a stacking filesystem?  Then when reading
1722 	 * holes of a sparse file, we actually need to allocate those pages,
1723 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1724 	 */
1725 	if (segment_eq(get_fs(), KERNEL_DS))
1726 		sgp = SGP_DIRTY;
1727 
1728 	index = *ppos >> PAGE_CACHE_SHIFT;
1729 	offset = *ppos & ~PAGE_CACHE_MASK;
1730 
1731 	for (;;) {
1732 		struct page *page = NULL;
1733 		unsigned long end_index, nr, ret;
1734 		loff_t i_size = i_size_read(inode);
1735 
1736 		end_index = i_size >> PAGE_CACHE_SHIFT;
1737 		if (index > end_index)
1738 			break;
1739 		if (index == end_index) {
1740 			nr = i_size & ~PAGE_CACHE_MASK;
1741 			if (nr <= offset)
1742 				break;
1743 		}
1744 
1745 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1746 		if (desc->error) {
1747 			if (desc->error == -EINVAL)
1748 				desc->error = 0;
1749 			break;
1750 		}
1751 		if (page)
1752 			unlock_page(page);
1753 
1754 		/*
1755 		 * We must evaluate after, since reads (unlike writes)
1756 		 * are called without i_mutex protection against truncate
1757 		 */
1758 		nr = PAGE_CACHE_SIZE;
1759 		i_size = i_size_read(inode);
1760 		end_index = i_size >> PAGE_CACHE_SHIFT;
1761 		if (index == end_index) {
1762 			nr = i_size & ~PAGE_CACHE_MASK;
1763 			if (nr <= offset) {
1764 				if (page)
1765 					page_cache_release(page);
1766 				break;
1767 			}
1768 		}
1769 		nr -= offset;
1770 
1771 		if (page) {
1772 			/*
1773 			 * If users can be writing to this page using arbitrary
1774 			 * virtual addresses, take care about potential aliasing
1775 			 * before reading the page on the kernel side.
1776 			 */
1777 			if (mapping_writably_mapped(mapping))
1778 				flush_dcache_page(page);
1779 			/*
1780 			 * Mark the page accessed if we read the beginning.
1781 			 */
1782 			if (!offset)
1783 				mark_page_accessed(page);
1784 		} else {
1785 			page = ZERO_PAGE(0);
1786 			page_cache_get(page);
1787 		}
1788 
1789 		/*
1790 		 * Ok, we have the page, and it's up-to-date, so
1791 		 * now we can copy it to user space...
1792 		 *
1793 		 * The actor routine returns how many bytes were actually used..
1794 		 * NOTE! This may not be the same as how much of a user buffer
1795 		 * we filled up (we may be padding etc), so we can only update
1796 		 * "pos" here (the actor routine has to update the user buffer
1797 		 * pointers and the remaining count).
1798 		 */
1799 		ret = actor(desc, page, offset, nr);
1800 		offset += ret;
1801 		index += offset >> PAGE_CACHE_SHIFT;
1802 		offset &= ~PAGE_CACHE_MASK;
1803 
1804 		page_cache_release(page);
1805 		if (ret != nr || !desc->count)
1806 			break;
1807 
1808 		cond_resched();
1809 	}
1810 
1811 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1812 	file_accessed(filp);
1813 }
1814 
1815 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1816 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1817 {
1818 	struct file *filp = iocb->ki_filp;
1819 	ssize_t retval;
1820 	unsigned long seg;
1821 	size_t count;
1822 	loff_t *ppos = &iocb->ki_pos;
1823 
1824 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1825 	if (retval)
1826 		return retval;
1827 
1828 	for (seg = 0; seg < nr_segs; seg++) {
1829 		read_descriptor_t desc;
1830 
1831 		desc.written = 0;
1832 		desc.arg.buf = iov[seg].iov_base;
1833 		desc.count = iov[seg].iov_len;
1834 		if (desc.count == 0)
1835 			continue;
1836 		desc.error = 0;
1837 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1838 		retval += desc.written;
1839 		if (desc.error) {
1840 			retval = retval ?: desc.error;
1841 			break;
1842 		}
1843 		if (desc.count > 0)
1844 			break;
1845 	}
1846 	return retval;
1847 }
1848 
1849 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1850 {
1851 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1852 
1853 	buf->f_type = TMPFS_MAGIC;
1854 	buf->f_bsize = PAGE_CACHE_SIZE;
1855 	buf->f_namelen = NAME_MAX;
1856 	if (sbinfo->max_blocks) {
1857 		buf->f_blocks = sbinfo->max_blocks;
1858 		buf->f_bavail = buf->f_bfree =
1859 				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1860 	}
1861 	if (sbinfo->max_inodes) {
1862 		buf->f_files = sbinfo->max_inodes;
1863 		buf->f_ffree = sbinfo->free_inodes;
1864 	}
1865 	/* else leave those fields 0 like simple_statfs */
1866 	return 0;
1867 }
1868 
1869 /*
1870  * File creation. Allocate an inode, and we're done..
1871  */
1872 static int
1873 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1874 {
1875 	struct inode *inode;
1876 	int error = -ENOSPC;
1877 
1878 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1879 	if (inode) {
1880 		error = security_inode_init_security(inode, dir,
1881 						     &dentry->d_name, NULL,
1882 						     NULL, NULL);
1883 		if (error) {
1884 			if (error != -EOPNOTSUPP) {
1885 				iput(inode);
1886 				return error;
1887 			}
1888 		}
1889 #ifdef CONFIG_TMPFS_POSIX_ACL
1890 		error = generic_acl_init(inode, dir);
1891 		if (error) {
1892 			iput(inode);
1893 			return error;
1894 		}
1895 #else
1896 		error = 0;
1897 #endif
1898 		dir->i_size += BOGO_DIRENT_SIZE;
1899 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1900 		d_instantiate(dentry, inode);
1901 		dget(dentry); /* Extra count - pin the dentry in core */
1902 	}
1903 	return error;
1904 }
1905 
1906 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1907 {
1908 	int error;
1909 
1910 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1911 		return error;
1912 	inc_nlink(dir);
1913 	return 0;
1914 }
1915 
1916 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1917 		struct nameidata *nd)
1918 {
1919 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1920 }
1921 
1922 /*
1923  * Link a file..
1924  */
1925 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1926 {
1927 	struct inode *inode = old_dentry->d_inode;
1928 	int ret;
1929 
1930 	/*
1931 	 * No ordinary (disk based) filesystem counts links as inodes;
1932 	 * but each new link needs a new dentry, pinning lowmem, and
1933 	 * tmpfs dentries cannot be pruned until they are unlinked.
1934 	 */
1935 	ret = shmem_reserve_inode(inode->i_sb);
1936 	if (ret)
1937 		goto out;
1938 
1939 	dir->i_size += BOGO_DIRENT_SIZE;
1940 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1941 	inc_nlink(inode);
1942 	ihold(inode);	/* New dentry reference */
1943 	dget(dentry);		/* Extra pinning count for the created dentry */
1944 	d_instantiate(dentry, inode);
1945 out:
1946 	return ret;
1947 }
1948 
1949 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1950 {
1951 	struct inode *inode = dentry->d_inode;
1952 
1953 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1954 		shmem_free_inode(inode->i_sb);
1955 
1956 	dir->i_size -= BOGO_DIRENT_SIZE;
1957 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1958 	drop_nlink(inode);
1959 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1960 	return 0;
1961 }
1962 
1963 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1964 {
1965 	if (!simple_empty(dentry))
1966 		return -ENOTEMPTY;
1967 
1968 	drop_nlink(dentry->d_inode);
1969 	drop_nlink(dir);
1970 	return shmem_unlink(dir, dentry);
1971 }
1972 
1973 /*
1974  * The VFS layer already does all the dentry stuff for rename,
1975  * we just have to decrement the usage count for the target if
1976  * it exists so that the VFS layer correctly free's it when it
1977  * gets overwritten.
1978  */
1979 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1980 {
1981 	struct inode *inode = old_dentry->d_inode;
1982 	int they_are_dirs = S_ISDIR(inode->i_mode);
1983 
1984 	if (!simple_empty(new_dentry))
1985 		return -ENOTEMPTY;
1986 
1987 	if (new_dentry->d_inode) {
1988 		(void) shmem_unlink(new_dir, new_dentry);
1989 		if (they_are_dirs)
1990 			drop_nlink(old_dir);
1991 	} else if (they_are_dirs) {
1992 		drop_nlink(old_dir);
1993 		inc_nlink(new_dir);
1994 	}
1995 
1996 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1997 	new_dir->i_size += BOGO_DIRENT_SIZE;
1998 	old_dir->i_ctime = old_dir->i_mtime =
1999 	new_dir->i_ctime = new_dir->i_mtime =
2000 	inode->i_ctime = CURRENT_TIME;
2001 	return 0;
2002 }
2003 
2004 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2005 {
2006 	int error;
2007 	int len;
2008 	struct inode *inode;
2009 	struct page *page = NULL;
2010 	char *kaddr;
2011 	struct shmem_inode_info *info;
2012 
2013 	len = strlen(symname) + 1;
2014 	if (len > PAGE_CACHE_SIZE)
2015 		return -ENAMETOOLONG;
2016 
2017 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2018 	if (!inode)
2019 		return -ENOSPC;
2020 
2021 	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2022 					     NULL, NULL);
2023 	if (error) {
2024 		if (error != -EOPNOTSUPP) {
2025 			iput(inode);
2026 			return error;
2027 		}
2028 		error = 0;
2029 	}
2030 
2031 	info = SHMEM_I(inode);
2032 	inode->i_size = len-1;
2033 	if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2034 		/* do it inline */
2035 		memcpy(info->inline_symlink, symname, len);
2036 		inode->i_op = &shmem_symlink_inline_operations;
2037 	} else {
2038 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2039 		if (error) {
2040 			iput(inode);
2041 			return error;
2042 		}
2043 		inode->i_mapping->a_ops = &shmem_aops;
2044 		inode->i_op = &shmem_symlink_inode_operations;
2045 		kaddr = kmap_atomic(page, KM_USER0);
2046 		memcpy(kaddr, symname, len);
2047 		kunmap_atomic(kaddr, KM_USER0);
2048 		set_page_dirty(page);
2049 		unlock_page(page);
2050 		page_cache_release(page);
2051 	}
2052 	dir->i_size += BOGO_DIRENT_SIZE;
2053 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2054 	d_instantiate(dentry, inode);
2055 	dget(dentry);
2056 	return 0;
2057 }
2058 
2059 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2060 {
2061 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2062 	return NULL;
2063 }
2064 
2065 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2066 {
2067 	struct page *page = NULL;
2068 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2069 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2070 	if (page)
2071 		unlock_page(page);
2072 	return page;
2073 }
2074 
2075 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2076 {
2077 	if (!IS_ERR(nd_get_link(nd))) {
2078 		struct page *page = cookie;
2079 		kunmap(page);
2080 		mark_page_accessed(page);
2081 		page_cache_release(page);
2082 	}
2083 }
2084 
2085 #ifdef CONFIG_TMPFS_XATTR
2086 /*
2087  * Superblocks without xattr inode operations may get some security.* xattr
2088  * support from the LSM "for free". As soon as we have any other xattrs
2089  * like ACLs, we also need to implement the security.* handlers at
2090  * filesystem level, though.
2091  */
2092 
2093 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2094 			   void *buffer, size_t size)
2095 {
2096 	struct shmem_inode_info *info;
2097 	struct shmem_xattr *xattr;
2098 	int ret = -ENODATA;
2099 
2100 	info = SHMEM_I(dentry->d_inode);
2101 
2102 	spin_lock(&info->lock);
2103 	list_for_each_entry(xattr, &info->xattr_list, list) {
2104 		if (strcmp(name, xattr->name))
2105 			continue;
2106 
2107 		ret = xattr->size;
2108 		if (buffer) {
2109 			if (size < xattr->size)
2110 				ret = -ERANGE;
2111 			else
2112 				memcpy(buffer, xattr->value, xattr->size);
2113 		}
2114 		break;
2115 	}
2116 	spin_unlock(&info->lock);
2117 	return ret;
2118 }
2119 
2120 static int shmem_xattr_set(struct dentry *dentry, const char *name,
2121 			   const void *value, size_t size, int flags)
2122 {
2123 	struct inode *inode = dentry->d_inode;
2124 	struct shmem_inode_info *info = SHMEM_I(inode);
2125 	struct shmem_xattr *xattr;
2126 	struct shmem_xattr *new_xattr = NULL;
2127 	size_t len;
2128 	int err = 0;
2129 
2130 	/* value == NULL means remove */
2131 	if (value) {
2132 		/* wrap around? */
2133 		len = sizeof(*new_xattr) + size;
2134 		if (len <= sizeof(*new_xattr))
2135 			return -ENOMEM;
2136 
2137 		new_xattr = kmalloc(len, GFP_KERNEL);
2138 		if (!new_xattr)
2139 			return -ENOMEM;
2140 
2141 		new_xattr->name = kstrdup(name, GFP_KERNEL);
2142 		if (!new_xattr->name) {
2143 			kfree(new_xattr);
2144 			return -ENOMEM;
2145 		}
2146 
2147 		new_xattr->size = size;
2148 		memcpy(new_xattr->value, value, size);
2149 	}
2150 
2151 	spin_lock(&info->lock);
2152 	list_for_each_entry(xattr, &info->xattr_list, list) {
2153 		if (!strcmp(name, xattr->name)) {
2154 			if (flags & XATTR_CREATE) {
2155 				xattr = new_xattr;
2156 				err = -EEXIST;
2157 			} else if (new_xattr) {
2158 				list_replace(&xattr->list, &new_xattr->list);
2159 			} else {
2160 				list_del(&xattr->list);
2161 			}
2162 			goto out;
2163 		}
2164 	}
2165 	if (flags & XATTR_REPLACE) {
2166 		xattr = new_xattr;
2167 		err = -ENODATA;
2168 	} else {
2169 		list_add(&new_xattr->list, &info->xattr_list);
2170 		xattr = NULL;
2171 	}
2172 out:
2173 	spin_unlock(&info->lock);
2174 	if (xattr)
2175 		kfree(xattr->name);
2176 	kfree(xattr);
2177 	return err;
2178 }
2179 
2180 
2181 static const struct xattr_handler *shmem_xattr_handlers[] = {
2182 #ifdef CONFIG_TMPFS_POSIX_ACL
2183 	&generic_acl_access_handler,
2184 	&generic_acl_default_handler,
2185 #endif
2186 	NULL
2187 };
2188 
2189 static int shmem_xattr_validate(const char *name)
2190 {
2191 	struct { const char *prefix; size_t len; } arr[] = {
2192 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2193 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2194 	};
2195 	int i;
2196 
2197 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2198 		size_t preflen = arr[i].len;
2199 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2200 			if (!name[preflen])
2201 				return -EINVAL;
2202 			return 0;
2203 		}
2204 	}
2205 	return -EOPNOTSUPP;
2206 }
2207 
2208 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2209 			      void *buffer, size_t size)
2210 {
2211 	int err;
2212 
2213 	/*
2214 	 * If this is a request for a synthetic attribute in the system.*
2215 	 * namespace use the generic infrastructure to resolve a handler
2216 	 * for it via sb->s_xattr.
2217 	 */
2218 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2219 		return generic_getxattr(dentry, name, buffer, size);
2220 
2221 	err = shmem_xattr_validate(name);
2222 	if (err)
2223 		return err;
2224 
2225 	return shmem_xattr_get(dentry, name, buffer, size);
2226 }
2227 
2228 static int shmem_setxattr(struct dentry *dentry, const char *name,
2229 			  const void *value, size_t size, int flags)
2230 {
2231 	int err;
2232 
2233 	/*
2234 	 * If this is a request for a synthetic attribute in the system.*
2235 	 * namespace use the generic infrastructure to resolve a handler
2236 	 * for it via sb->s_xattr.
2237 	 */
2238 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2239 		return generic_setxattr(dentry, name, value, size, flags);
2240 
2241 	err = shmem_xattr_validate(name);
2242 	if (err)
2243 		return err;
2244 
2245 	if (size == 0)
2246 		value = "";  /* empty EA, do not remove */
2247 
2248 	return shmem_xattr_set(dentry, name, value, size, flags);
2249 
2250 }
2251 
2252 static int shmem_removexattr(struct dentry *dentry, const char *name)
2253 {
2254 	int err;
2255 
2256 	/*
2257 	 * If this is a request for a synthetic attribute in the system.*
2258 	 * namespace use the generic infrastructure to resolve a handler
2259 	 * for it via sb->s_xattr.
2260 	 */
2261 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2262 		return generic_removexattr(dentry, name);
2263 
2264 	err = shmem_xattr_validate(name);
2265 	if (err)
2266 		return err;
2267 
2268 	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2269 }
2270 
2271 static bool xattr_is_trusted(const char *name)
2272 {
2273 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2274 }
2275 
2276 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2277 {
2278 	bool trusted = capable(CAP_SYS_ADMIN);
2279 	struct shmem_xattr *xattr;
2280 	struct shmem_inode_info *info;
2281 	size_t used = 0;
2282 
2283 	info = SHMEM_I(dentry->d_inode);
2284 
2285 	spin_lock(&info->lock);
2286 	list_for_each_entry(xattr, &info->xattr_list, list) {
2287 		size_t len;
2288 
2289 		/* skip "trusted." attributes for unprivileged callers */
2290 		if (!trusted && xattr_is_trusted(xattr->name))
2291 			continue;
2292 
2293 		len = strlen(xattr->name) + 1;
2294 		used += len;
2295 		if (buffer) {
2296 			if (size < used) {
2297 				used = -ERANGE;
2298 				break;
2299 			}
2300 			memcpy(buffer, xattr->name, len);
2301 			buffer += len;
2302 		}
2303 	}
2304 	spin_unlock(&info->lock);
2305 
2306 	return used;
2307 }
2308 #endif /* CONFIG_TMPFS_XATTR */
2309 
2310 static const struct inode_operations shmem_symlink_inline_operations = {
2311 	.readlink	= generic_readlink,
2312 	.follow_link	= shmem_follow_link_inline,
2313 #ifdef CONFIG_TMPFS_XATTR
2314 	.setxattr	= shmem_setxattr,
2315 	.getxattr	= shmem_getxattr,
2316 	.listxattr	= shmem_listxattr,
2317 	.removexattr	= shmem_removexattr,
2318 #endif
2319 };
2320 
2321 static const struct inode_operations shmem_symlink_inode_operations = {
2322 	.readlink	= generic_readlink,
2323 	.follow_link	= shmem_follow_link,
2324 	.put_link	= shmem_put_link,
2325 #ifdef CONFIG_TMPFS_XATTR
2326 	.setxattr	= shmem_setxattr,
2327 	.getxattr	= shmem_getxattr,
2328 	.listxattr	= shmem_listxattr,
2329 	.removexattr	= shmem_removexattr,
2330 #endif
2331 };
2332 
2333 static struct dentry *shmem_get_parent(struct dentry *child)
2334 {
2335 	return ERR_PTR(-ESTALE);
2336 }
2337 
2338 static int shmem_match(struct inode *ino, void *vfh)
2339 {
2340 	__u32 *fh = vfh;
2341 	__u64 inum = fh[2];
2342 	inum = (inum << 32) | fh[1];
2343 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2344 }
2345 
2346 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2347 		struct fid *fid, int fh_len, int fh_type)
2348 {
2349 	struct inode *inode;
2350 	struct dentry *dentry = NULL;
2351 	u64 inum = fid->raw[2];
2352 	inum = (inum << 32) | fid->raw[1];
2353 
2354 	if (fh_len < 3)
2355 		return NULL;
2356 
2357 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2358 			shmem_match, fid->raw);
2359 	if (inode) {
2360 		dentry = d_find_alias(inode);
2361 		iput(inode);
2362 	}
2363 
2364 	return dentry;
2365 }
2366 
2367 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2368 				int connectable)
2369 {
2370 	struct inode *inode = dentry->d_inode;
2371 
2372 	if (*len < 3) {
2373 		*len = 3;
2374 		return 255;
2375 	}
2376 
2377 	if (inode_unhashed(inode)) {
2378 		/* Unfortunately insert_inode_hash is not idempotent,
2379 		 * so as we hash inodes here rather than at creation
2380 		 * time, we need a lock to ensure we only try
2381 		 * to do it once
2382 		 */
2383 		static DEFINE_SPINLOCK(lock);
2384 		spin_lock(&lock);
2385 		if (inode_unhashed(inode))
2386 			__insert_inode_hash(inode,
2387 					    inode->i_ino + inode->i_generation);
2388 		spin_unlock(&lock);
2389 	}
2390 
2391 	fh[0] = inode->i_generation;
2392 	fh[1] = inode->i_ino;
2393 	fh[2] = ((__u64)inode->i_ino) >> 32;
2394 
2395 	*len = 3;
2396 	return 1;
2397 }
2398 
2399 static const struct export_operations shmem_export_ops = {
2400 	.get_parent     = shmem_get_parent,
2401 	.encode_fh      = shmem_encode_fh,
2402 	.fh_to_dentry	= shmem_fh_to_dentry,
2403 };
2404 
2405 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2406 			       bool remount)
2407 {
2408 	char *this_char, *value, *rest;
2409 
2410 	while (options != NULL) {
2411 		this_char = options;
2412 		for (;;) {
2413 			/*
2414 			 * NUL-terminate this option: unfortunately,
2415 			 * mount options form a comma-separated list,
2416 			 * but mpol's nodelist may also contain commas.
2417 			 */
2418 			options = strchr(options, ',');
2419 			if (options == NULL)
2420 				break;
2421 			options++;
2422 			if (!isdigit(*options)) {
2423 				options[-1] = '\0';
2424 				break;
2425 			}
2426 		}
2427 		if (!*this_char)
2428 			continue;
2429 		if ((value = strchr(this_char,'=')) != NULL) {
2430 			*value++ = 0;
2431 		} else {
2432 			printk(KERN_ERR
2433 			    "tmpfs: No value for mount option '%s'\n",
2434 			    this_char);
2435 			return 1;
2436 		}
2437 
2438 		if (!strcmp(this_char,"size")) {
2439 			unsigned long long size;
2440 			size = memparse(value,&rest);
2441 			if (*rest == '%') {
2442 				size <<= PAGE_SHIFT;
2443 				size *= totalram_pages;
2444 				do_div(size, 100);
2445 				rest++;
2446 			}
2447 			if (*rest)
2448 				goto bad_val;
2449 			sbinfo->max_blocks =
2450 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2451 		} else if (!strcmp(this_char,"nr_blocks")) {
2452 			sbinfo->max_blocks = memparse(value, &rest);
2453 			if (*rest)
2454 				goto bad_val;
2455 		} else if (!strcmp(this_char,"nr_inodes")) {
2456 			sbinfo->max_inodes = memparse(value, &rest);
2457 			if (*rest)
2458 				goto bad_val;
2459 		} else if (!strcmp(this_char,"mode")) {
2460 			if (remount)
2461 				continue;
2462 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2463 			if (*rest)
2464 				goto bad_val;
2465 		} else if (!strcmp(this_char,"uid")) {
2466 			if (remount)
2467 				continue;
2468 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2469 			if (*rest)
2470 				goto bad_val;
2471 		} else if (!strcmp(this_char,"gid")) {
2472 			if (remount)
2473 				continue;
2474 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2475 			if (*rest)
2476 				goto bad_val;
2477 		} else if (!strcmp(this_char,"mpol")) {
2478 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2479 				goto bad_val;
2480 		} else {
2481 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2482 			       this_char);
2483 			return 1;
2484 		}
2485 	}
2486 	return 0;
2487 
2488 bad_val:
2489 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2490 	       value, this_char);
2491 	return 1;
2492 
2493 }
2494 
2495 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2496 {
2497 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2498 	struct shmem_sb_info config = *sbinfo;
2499 	unsigned long inodes;
2500 	int error = -EINVAL;
2501 
2502 	if (shmem_parse_options(data, &config, true))
2503 		return error;
2504 
2505 	spin_lock(&sbinfo->stat_lock);
2506 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2507 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2508 		goto out;
2509 	if (config.max_inodes < inodes)
2510 		goto out;
2511 	/*
2512 	 * Those tests also disallow limited->unlimited while any are in
2513 	 * use, so i_blocks will always be zero when max_blocks is zero;
2514 	 * but we must separately disallow unlimited->limited, because
2515 	 * in that case we have no record of how much is already in use.
2516 	 */
2517 	if (config.max_blocks && !sbinfo->max_blocks)
2518 		goto out;
2519 	if (config.max_inodes && !sbinfo->max_inodes)
2520 		goto out;
2521 
2522 	error = 0;
2523 	sbinfo->max_blocks  = config.max_blocks;
2524 	sbinfo->max_inodes  = config.max_inodes;
2525 	sbinfo->free_inodes = config.max_inodes - inodes;
2526 
2527 	mpol_put(sbinfo->mpol);
2528 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2529 out:
2530 	spin_unlock(&sbinfo->stat_lock);
2531 	return error;
2532 }
2533 
2534 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2535 {
2536 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2537 
2538 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2539 		seq_printf(seq, ",size=%luk",
2540 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2541 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2542 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2543 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2544 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2545 	if (sbinfo->uid != 0)
2546 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2547 	if (sbinfo->gid != 0)
2548 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2549 	shmem_show_mpol(seq, sbinfo->mpol);
2550 	return 0;
2551 }
2552 #endif /* CONFIG_TMPFS */
2553 
2554 static void shmem_put_super(struct super_block *sb)
2555 {
2556 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2557 
2558 	percpu_counter_destroy(&sbinfo->used_blocks);
2559 	kfree(sbinfo);
2560 	sb->s_fs_info = NULL;
2561 }
2562 
2563 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2564 {
2565 	struct inode *inode;
2566 	struct dentry *root;
2567 	struct shmem_sb_info *sbinfo;
2568 	int err = -ENOMEM;
2569 
2570 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2571 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2572 				L1_CACHE_BYTES), GFP_KERNEL);
2573 	if (!sbinfo)
2574 		return -ENOMEM;
2575 
2576 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2577 	sbinfo->uid = current_fsuid();
2578 	sbinfo->gid = current_fsgid();
2579 	sb->s_fs_info = sbinfo;
2580 
2581 #ifdef CONFIG_TMPFS
2582 	/*
2583 	 * Per default we only allow half of the physical ram per
2584 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2585 	 * but the internal instance is left unlimited.
2586 	 */
2587 	if (!(sb->s_flags & MS_NOUSER)) {
2588 		sbinfo->max_blocks = shmem_default_max_blocks();
2589 		sbinfo->max_inodes = shmem_default_max_inodes();
2590 		if (shmem_parse_options(data, sbinfo, false)) {
2591 			err = -EINVAL;
2592 			goto failed;
2593 		}
2594 	}
2595 	sb->s_export_op = &shmem_export_ops;
2596 #else
2597 	sb->s_flags |= MS_NOUSER;
2598 #endif
2599 
2600 	spin_lock_init(&sbinfo->stat_lock);
2601 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2602 		goto failed;
2603 	sbinfo->free_inodes = sbinfo->max_inodes;
2604 
2605 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2606 	sb->s_blocksize = PAGE_CACHE_SIZE;
2607 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2608 	sb->s_magic = TMPFS_MAGIC;
2609 	sb->s_op = &shmem_ops;
2610 	sb->s_time_gran = 1;
2611 #ifdef CONFIG_TMPFS_XATTR
2612 	sb->s_xattr = shmem_xattr_handlers;
2613 #endif
2614 #ifdef CONFIG_TMPFS_POSIX_ACL
2615 	sb->s_flags |= MS_POSIXACL;
2616 #endif
2617 
2618 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2619 	if (!inode)
2620 		goto failed;
2621 	inode->i_uid = sbinfo->uid;
2622 	inode->i_gid = sbinfo->gid;
2623 	root = d_alloc_root(inode);
2624 	if (!root)
2625 		goto failed_iput;
2626 	sb->s_root = root;
2627 	return 0;
2628 
2629 failed_iput:
2630 	iput(inode);
2631 failed:
2632 	shmem_put_super(sb);
2633 	return err;
2634 }
2635 
2636 static struct kmem_cache *shmem_inode_cachep;
2637 
2638 static struct inode *shmem_alloc_inode(struct super_block *sb)
2639 {
2640 	struct shmem_inode_info *p;
2641 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2642 	if (!p)
2643 		return NULL;
2644 	return &p->vfs_inode;
2645 }
2646 
2647 static void shmem_i_callback(struct rcu_head *head)
2648 {
2649 	struct inode *inode = container_of(head, struct inode, i_rcu);
2650 	INIT_LIST_HEAD(&inode->i_dentry);
2651 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2652 }
2653 
2654 static void shmem_destroy_inode(struct inode *inode)
2655 {
2656 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2657 		/* only struct inode is valid if it's an inline symlink */
2658 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2659 	}
2660 	call_rcu(&inode->i_rcu, shmem_i_callback);
2661 }
2662 
2663 static void init_once(void *foo)
2664 {
2665 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2666 
2667 	inode_init_once(&p->vfs_inode);
2668 }
2669 
2670 static int init_inodecache(void)
2671 {
2672 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2673 				sizeof(struct shmem_inode_info),
2674 				0, SLAB_PANIC, init_once);
2675 	return 0;
2676 }
2677 
2678 static void destroy_inodecache(void)
2679 {
2680 	kmem_cache_destroy(shmem_inode_cachep);
2681 }
2682 
2683 static const struct address_space_operations shmem_aops = {
2684 	.writepage	= shmem_writepage,
2685 	.set_page_dirty	= __set_page_dirty_no_writeback,
2686 #ifdef CONFIG_TMPFS
2687 	.readpage	= shmem_readpage,
2688 	.write_begin	= shmem_write_begin,
2689 	.write_end	= shmem_write_end,
2690 #endif
2691 	.migratepage	= migrate_page,
2692 	.error_remove_page = generic_error_remove_page,
2693 };
2694 
2695 static const struct file_operations shmem_file_operations = {
2696 	.mmap		= shmem_mmap,
2697 #ifdef CONFIG_TMPFS
2698 	.llseek		= generic_file_llseek,
2699 	.read		= do_sync_read,
2700 	.write		= do_sync_write,
2701 	.aio_read	= shmem_file_aio_read,
2702 	.aio_write	= generic_file_aio_write,
2703 	.fsync		= noop_fsync,
2704 	.splice_read	= generic_file_splice_read,
2705 	.splice_write	= generic_file_splice_write,
2706 #endif
2707 };
2708 
2709 static const struct inode_operations shmem_inode_operations = {
2710 	.setattr	= shmem_setattr,
2711 	.truncate_range	= shmem_truncate_range,
2712 #ifdef CONFIG_TMPFS_XATTR
2713 	.setxattr	= shmem_setxattr,
2714 	.getxattr	= shmem_getxattr,
2715 	.listxattr	= shmem_listxattr,
2716 	.removexattr	= shmem_removexattr,
2717 #endif
2718 #ifdef CONFIG_TMPFS_POSIX_ACL
2719 	.check_acl	= generic_check_acl,
2720 #endif
2721 
2722 };
2723 
2724 static const struct inode_operations shmem_dir_inode_operations = {
2725 #ifdef CONFIG_TMPFS
2726 	.create		= shmem_create,
2727 	.lookup		= simple_lookup,
2728 	.link		= shmem_link,
2729 	.unlink		= shmem_unlink,
2730 	.symlink	= shmem_symlink,
2731 	.mkdir		= shmem_mkdir,
2732 	.rmdir		= shmem_rmdir,
2733 	.mknod		= shmem_mknod,
2734 	.rename		= shmem_rename,
2735 #endif
2736 #ifdef CONFIG_TMPFS_XATTR
2737 	.setxattr	= shmem_setxattr,
2738 	.getxattr	= shmem_getxattr,
2739 	.listxattr	= shmem_listxattr,
2740 	.removexattr	= shmem_removexattr,
2741 #endif
2742 #ifdef CONFIG_TMPFS_POSIX_ACL
2743 	.setattr	= shmem_setattr,
2744 	.check_acl	= generic_check_acl,
2745 #endif
2746 };
2747 
2748 static const struct inode_operations shmem_special_inode_operations = {
2749 #ifdef CONFIG_TMPFS_XATTR
2750 	.setxattr	= shmem_setxattr,
2751 	.getxattr	= shmem_getxattr,
2752 	.listxattr	= shmem_listxattr,
2753 	.removexattr	= shmem_removexattr,
2754 #endif
2755 #ifdef CONFIG_TMPFS_POSIX_ACL
2756 	.setattr	= shmem_setattr,
2757 	.check_acl	= generic_check_acl,
2758 #endif
2759 };
2760 
2761 static const struct super_operations shmem_ops = {
2762 	.alloc_inode	= shmem_alloc_inode,
2763 	.destroy_inode	= shmem_destroy_inode,
2764 #ifdef CONFIG_TMPFS
2765 	.statfs		= shmem_statfs,
2766 	.remount_fs	= shmem_remount_fs,
2767 	.show_options	= shmem_show_options,
2768 #endif
2769 	.evict_inode	= shmem_evict_inode,
2770 	.drop_inode	= generic_delete_inode,
2771 	.put_super	= shmem_put_super,
2772 };
2773 
2774 static const struct vm_operations_struct shmem_vm_ops = {
2775 	.fault		= shmem_fault,
2776 #ifdef CONFIG_NUMA
2777 	.set_policy     = shmem_set_policy,
2778 	.get_policy     = shmem_get_policy,
2779 #endif
2780 };
2781 
2782 
2783 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2784 	int flags, const char *dev_name, void *data)
2785 {
2786 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2787 }
2788 
2789 static struct file_system_type tmpfs_fs_type = {
2790 	.owner		= THIS_MODULE,
2791 	.name		= "tmpfs",
2792 	.mount		= shmem_mount,
2793 	.kill_sb	= kill_litter_super,
2794 };
2795 
2796 int __init init_tmpfs(void)
2797 {
2798 	int error;
2799 
2800 	error = bdi_init(&shmem_backing_dev_info);
2801 	if (error)
2802 		goto out4;
2803 
2804 	error = init_inodecache();
2805 	if (error)
2806 		goto out3;
2807 
2808 	error = register_filesystem(&tmpfs_fs_type);
2809 	if (error) {
2810 		printk(KERN_ERR "Could not register tmpfs\n");
2811 		goto out2;
2812 	}
2813 
2814 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2815 				tmpfs_fs_type.name, NULL);
2816 	if (IS_ERR(shm_mnt)) {
2817 		error = PTR_ERR(shm_mnt);
2818 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2819 		goto out1;
2820 	}
2821 	return 0;
2822 
2823 out1:
2824 	unregister_filesystem(&tmpfs_fs_type);
2825 out2:
2826 	destroy_inodecache();
2827 out3:
2828 	bdi_destroy(&shmem_backing_dev_info);
2829 out4:
2830 	shm_mnt = ERR_PTR(error);
2831 	return error;
2832 }
2833 
2834 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2835 /**
2836  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2837  * @inode: the inode to be searched
2838  * @pgoff: the offset to be searched
2839  * @pagep: the pointer for the found page to be stored
2840  * @ent: the pointer for the found swap entry to be stored
2841  *
2842  * If a page is found, refcount of it is incremented. Callers should handle
2843  * these refcount.
2844  */
2845 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2846 					struct page **pagep, swp_entry_t *ent)
2847 {
2848 	swp_entry_t entry = { .val = 0 }, *ptr;
2849 	struct page *page = NULL;
2850 	struct shmem_inode_info *info = SHMEM_I(inode);
2851 
2852 	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2853 		goto out;
2854 
2855 	spin_lock(&info->lock);
2856 	ptr = shmem_swp_entry(info, pgoff, NULL);
2857 #ifdef CONFIG_SWAP
2858 	if (ptr && ptr->val) {
2859 		entry.val = ptr->val;
2860 		page = find_get_page(&swapper_space, entry.val);
2861 	} else
2862 #endif
2863 		page = find_get_page(inode->i_mapping, pgoff);
2864 	if (ptr)
2865 		shmem_swp_unmap(ptr);
2866 	spin_unlock(&info->lock);
2867 out:
2868 	*pagep = page;
2869 	*ent = entry;
2870 }
2871 #endif
2872 
2873 #else /* !CONFIG_SHMEM */
2874 
2875 /*
2876  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2877  *
2878  * This is intended for small system where the benefits of the full
2879  * shmem code (swap-backed and resource-limited) are outweighed by
2880  * their complexity. On systems without swap this code should be
2881  * effectively equivalent, but much lighter weight.
2882  */
2883 
2884 #include <linux/ramfs.h>
2885 
2886 static struct file_system_type tmpfs_fs_type = {
2887 	.name		= "tmpfs",
2888 	.mount		= ramfs_mount,
2889 	.kill_sb	= kill_litter_super,
2890 };
2891 
2892 int __init init_tmpfs(void)
2893 {
2894 	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2895 
2896 	shm_mnt = kern_mount(&tmpfs_fs_type);
2897 	BUG_ON(IS_ERR(shm_mnt));
2898 
2899 	return 0;
2900 }
2901 
2902 int shmem_unuse(swp_entry_t entry, struct page *page)
2903 {
2904 	return 0;
2905 }
2906 
2907 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2908 {
2909 	return 0;
2910 }
2911 
2912 void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2913 {
2914 	truncate_inode_pages_range(inode->i_mapping, start, end);
2915 }
2916 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2917 
2918 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2919 /**
2920  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2921  * @inode: the inode to be searched
2922  * @pgoff: the offset to be searched
2923  * @pagep: the pointer for the found page to be stored
2924  * @ent: the pointer for the found swap entry to be stored
2925  *
2926  * If a page is found, refcount of it is incremented. Callers should handle
2927  * these refcount.
2928  */
2929 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2930 					struct page **pagep, swp_entry_t *ent)
2931 {
2932 	struct page *page = NULL;
2933 
2934 	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2935 		goto out;
2936 	page = find_get_page(inode->i_mapping, pgoff);
2937 out:
2938 	*pagep = page;
2939 	*ent = (swp_entry_t){ .val = 0 };
2940 }
2941 #endif
2942 
2943 #define shmem_vm_ops				generic_file_vm_ops
2944 #define shmem_file_operations			ramfs_file_operations
2945 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2946 #define shmem_acct_size(flags, size)		0
2947 #define shmem_unacct_size(flags, size)		do {} while (0)
2948 #define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2949 
2950 #endif /* CONFIG_SHMEM */
2951 
2952 /* common code */
2953 
2954 /**
2955  * shmem_file_setup - get an unlinked file living in tmpfs
2956  * @name: name for dentry (to be seen in /proc/<pid>/maps
2957  * @size: size to be set for the file
2958  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2959  */
2960 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2961 {
2962 	int error;
2963 	struct file *file;
2964 	struct inode *inode;
2965 	struct path path;
2966 	struct dentry *root;
2967 	struct qstr this;
2968 
2969 	if (IS_ERR(shm_mnt))
2970 		return (void *)shm_mnt;
2971 
2972 	if (size < 0 || size > SHMEM_MAX_BYTES)
2973 		return ERR_PTR(-EINVAL);
2974 
2975 	if (shmem_acct_size(flags, size))
2976 		return ERR_PTR(-ENOMEM);
2977 
2978 	error = -ENOMEM;
2979 	this.name = name;
2980 	this.len = strlen(name);
2981 	this.hash = 0; /* will go */
2982 	root = shm_mnt->mnt_root;
2983 	path.dentry = d_alloc(root, &this);
2984 	if (!path.dentry)
2985 		goto put_memory;
2986 	path.mnt = mntget(shm_mnt);
2987 
2988 	error = -ENOSPC;
2989 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2990 	if (!inode)
2991 		goto put_dentry;
2992 
2993 	d_instantiate(path.dentry, inode);
2994 	inode->i_size = size;
2995 	inode->i_nlink = 0;	/* It is unlinked */
2996 #ifndef CONFIG_MMU
2997 	error = ramfs_nommu_expand_for_mapping(inode, size);
2998 	if (error)
2999 		goto put_dentry;
3000 #endif
3001 
3002 	error = -ENFILE;
3003 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3004 		  &shmem_file_operations);
3005 	if (!file)
3006 		goto put_dentry;
3007 
3008 	return file;
3009 
3010 put_dentry:
3011 	path_put(&path);
3012 put_memory:
3013 	shmem_unacct_size(flags, size);
3014 	return ERR_PTR(error);
3015 }
3016 EXPORT_SYMBOL_GPL(shmem_file_setup);
3017 
3018 /**
3019  * shmem_zero_setup - setup a shared anonymous mapping
3020  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3021  */
3022 int shmem_zero_setup(struct vm_area_struct *vma)
3023 {
3024 	struct file *file;
3025 	loff_t size = vma->vm_end - vma->vm_start;
3026 
3027 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3028 	if (IS_ERR(file))
3029 		return PTR_ERR(file);
3030 
3031 	if (vma->vm_file)
3032 		fput(vma->vm_file);
3033 	vma->vm_file = file;
3034 	vma->vm_ops = &shmem_vm_ops;
3035 	vma->vm_flags |= VM_CAN_NONLINEAR;
3036 	return 0;
3037 }
3038 
3039 /**
3040  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3041  * @mapping:	the page's address_space
3042  * @index:	the page index
3043  * @gfp:	the page allocator flags to use if allocating
3044  *
3045  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3046  * with any new page allocations done using the specified allocation flags.
3047  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3048  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3049  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3050  *
3051  * Provide a stub for those callers to start using now, then later
3052  * flesh it out to call shmem_getpage() with additional gfp mask, when
3053  * shmem_file_splice_read() is added and shmem_readpage() is removed.
3054  */
3055 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3056 					 pgoff_t index, gfp_t gfp)
3057 {
3058 	return read_cache_page_gfp(mapping, index, gfp);
3059 }
3060 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3061