1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 #include <linux/khugepaged.h> 36 37 static struct vfsmount *shm_mnt; 38 39 #ifdef CONFIG_SHMEM 40 /* 41 * This virtual memory filesystem is heavily based on the ramfs. It 42 * extends ramfs by the ability to use swap and honor resource limits 43 * which makes it a completely usable filesystem. 44 */ 45 46 #include <linux/xattr.h> 47 #include <linux/exportfs.h> 48 #include <linux/posix_acl.h> 49 #include <linux/posix_acl_xattr.h> 50 #include <linux/mman.h> 51 #include <linux/string.h> 52 #include <linux/slab.h> 53 #include <linux/backing-dev.h> 54 #include <linux/shmem_fs.h> 55 #include <linux/writeback.h> 56 #include <linux/blkdev.h> 57 #include <linux/pagevec.h> 58 #include <linux/percpu_counter.h> 59 #include <linux/falloc.h> 60 #include <linux/splice.h> 61 #include <linux/security.h> 62 #include <linux/swapops.h> 63 #include <linux/mempolicy.h> 64 #include <linux/namei.h> 65 #include <linux/ctype.h> 66 #include <linux/migrate.h> 67 #include <linux/highmem.h> 68 #include <linux/seq_file.h> 69 #include <linux/magic.h> 70 #include <linux/syscalls.h> 71 #include <linux/fcntl.h> 72 #include <uapi/linux/memfd.h> 73 74 #include <asm/uaccess.h> 75 #include <asm/pgtable.h> 76 77 #include "internal.h" 78 79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 81 82 /* Pretend that each entry is of this size in directory's i_size */ 83 #define BOGO_DIRENT_SIZE 20 84 85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 86 #define SHORT_SYMLINK_LEN 128 87 88 /* 89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 90 * inode->i_private (with i_mutex making sure that it has only one user at 91 * a time): we would prefer not to enlarge the shmem inode just for that. 92 */ 93 struct shmem_falloc { 94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 95 pgoff_t start; /* start of range currently being fallocated */ 96 pgoff_t next; /* the next page offset to be fallocated */ 97 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 99 }; 100 101 #ifdef CONFIG_TMPFS 102 static unsigned long shmem_default_max_blocks(void) 103 { 104 return totalram_pages / 2; 105 } 106 107 static unsigned long shmem_default_max_inodes(void) 108 { 109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 110 } 111 #endif 112 113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 114 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 115 struct shmem_inode_info *info, pgoff_t index); 116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 117 struct page **pagep, enum sgp_type sgp, 118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type); 119 120 int shmem_getpage(struct inode *inode, pgoff_t index, 121 struct page **pagep, enum sgp_type sgp) 122 { 123 return shmem_getpage_gfp(inode, index, pagep, sgp, 124 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 125 } 126 127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 128 { 129 return sb->s_fs_info; 130 } 131 132 /* 133 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 134 * for shared memory and for shared anonymous (/dev/zero) mappings 135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 136 * consistent with the pre-accounting of private mappings ... 137 */ 138 static inline int shmem_acct_size(unsigned long flags, loff_t size) 139 { 140 return (flags & VM_NORESERVE) ? 141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 142 } 143 144 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 145 { 146 if (!(flags & VM_NORESERVE)) 147 vm_unacct_memory(VM_ACCT(size)); 148 } 149 150 static inline int shmem_reacct_size(unsigned long flags, 151 loff_t oldsize, loff_t newsize) 152 { 153 if (!(flags & VM_NORESERVE)) { 154 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 155 return security_vm_enough_memory_mm(current->mm, 156 VM_ACCT(newsize) - VM_ACCT(oldsize)); 157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 159 } 160 return 0; 161 } 162 163 /* 164 * ... whereas tmpfs objects are accounted incrementally as 165 * pages are allocated, in order to allow large sparse files. 166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 168 */ 169 static inline int shmem_acct_block(unsigned long flags, long pages) 170 { 171 if (!(flags & VM_NORESERVE)) 172 return 0; 173 174 return security_vm_enough_memory_mm(current->mm, 175 pages * VM_ACCT(PAGE_SIZE)); 176 } 177 178 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 179 { 180 if (flags & VM_NORESERVE) 181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 182 } 183 184 static const struct super_operations shmem_ops; 185 static const struct address_space_operations shmem_aops; 186 static const struct file_operations shmem_file_operations; 187 static const struct inode_operations shmem_inode_operations; 188 static const struct inode_operations shmem_dir_inode_operations; 189 static const struct inode_operations shmem_special_inode_operations; 190 static const struct vm_operations_struct shmem_vm_ops; 191 static struct file_system_type shmem_fs_type; 192 193 static LIST_HEAD(shmem_swaplist); 194 static DEFINE_MUTEX(shmem_swaplist_mutex); 195 196 static int shmem_reserve_inode(struct super_block *sb) 197 { 198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 199 if (sbinfo->max_inodes) { 200 spin_lock(&sbinfo->stat_lock); 201 if (!sbinfo->free_inodes) { 202 spin_unlock(&sbinfo->stat_lock); 203 return -ENOSPC; 204 } 205 sbinfo->free_inodes--; 206 spin_unlock(&sbinfo->stat_lock); 207 } 208 return 0; 209 } 210 211 static void shmem_free_inode(struct super_block *sb) 212 { 213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 214 if (sbinfo->max_inodes) { 215 spin_lock(&sbinfo->stat_lock); 216 sbinfo->free_inodes++; 217 spin_unlock(&sbinfo->stat_lock); 218 } 219 } 220 221 /** 222 * shmem_recalc_inode - recalculate the block usage of an inode 223 * @inode: inode to recalc 224 * 225 * We have to calculate the free blocks since the mm can drop 226 * undirtied hole pages behind our back. 227 * 228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 230 * 231 * It has to be called with the spinlock held. 232 */ 233 static void shmem_recalc_inode(struct inode *inode) 234 { 235 struct shmem_inode_info *info = SHMEM_I(inode); 236 long freed; 237 238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 239 if (freed > 0) { 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 if (sbinfo->max_blocks) 242 percpu_counter_add(&sbinfo->used_blocks, -freed); 243 info->alloced -= freed; 244 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 245 shmem_unacct_blocks(info->flags, freed); 246 } 247 } 248 249 bool shmem_charge(struct inode *inode, long pages) 250 { 251 struct shmem_inode_info *info = SHMEM_I(inode); 252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 253 unsigned long flags; 254 255 if (shmem_acct_block(info->flags, pages)) 256 return false; 257 spin_lock_irqsave(&info->lock, flags); 258 info->alloced += pages; 259 inode->i_blocks += pages * BLOCKS_PER_PAGE; 260 shmem_recalc_inode(inode); 261 spin_unlock_irqrestore(&info->lock, flags); 262 inode->i_mapping->nrpages += pages; 263 264 if (!sbinfo->max_blocks) 265 return true; 266 if (percpu_counter_compare(&sbinfo->used_blocks, 267 sbinfo->max_blocks - pages) > 0) { 268 inode->i_mapping->nrpages -= pages; 269 spin_lock_irqsave(&info->lock, flags); 270 info->alloced -= pages; 271 shmem_recalc_inode(inode); 272 spin_unlock_irqrestore(&info->lock, flags); 273 274 return false; 275 } 276 percpu_counter_add(&sbinfo->used_blocks, pages); 277 return true; 278 } 279 280 void shmem_uncharge(struct inode *inode, long pages) 281 { 282 struct shmem_inode_info *info = SHMEM_I(inode); 283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 284 unsigned long flags; 285 286 spin_lock_irqsave(&info->lock, flags); 287 info->alloced -= pages; 288 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 289 shmem_recalc_inode(inode); 290 spin_unlock_irqrestore(&info->lock, flags); 291 292 if (sbinfo->max_blocks) 293 percpu_counter_sub(&sbinfo->used_blocks, pages); 294 } 295 296 /* 297 * Replace item expected in radix tree by a new item, while holding tree lock. 298 */ 299 static int shmem_radix_tree_replace(struct address_space *mapping, 300 pgoff_t index, void *expected, void *replacement) 301 { 302 void **pslot; 303 void *item; 304 305 VM_BUG_ON(!expected); 306 VM_BUG_ON(!replacement); 307 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 308 if (!pslot) 309 return -ENOENT; 310 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 311 if (item != expected) 312 return -ENOENT; 313 radix_tree_replace_slot(pslot, replacement); 314 return 0; 315 } 316 317 /* 318 * Sometimes, before we decide whether to proceed or to fail, we must check 319 * that an entry was not already brought back from swap by a racing thread. 320 * 321 * Checking page is not enough: by the time a SwapCache page is locked, it 322 * might be reused, and again be SwapCache, using the same swap as before. 323 */ 324 static bool shmem_confirm_swap(struct address_space *mapping, 325 pgoff_t index, swp_entry_t swap) 326 { 327 void *item; 328 329 rcu_read_lock(); 330 item = radix_tree_lookup(&mapping->page_tree, index); 331 rcu_read_unlock(); 332 return item == swp_to_radix_entry(swap); 333 } 334 335 /* 336 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 337 * 338 * SHMEM_HUGE_NEVER: 339 * disables huge pages for the mount; 340 * SHMEM_HUGE_ALWAYS: 341 * enables huge pages for the mount; 342 * SHMEM_HUGE_WITHIN_SIZE: 343 * only allocate huge pages if the page will be fully within i_size, 344 * also respect fadvise()/madvise() hints; 345 * SHMEM_HUGE_ADVISE: 346 * only allocate huge pages if requested with fadvise()/madvise(); 347 */ 348 349 #define SHMEM_HUGE_NEVER 0 350 #define SHMEM_HUGE_ALWAYS 1 351 #define SHMEM_HUGE_WITHIN_SIZE 2 352 #define SHMEM_HUGE_ADVISE 3 353 354 /* 355 * Special values. 356 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 357 * 358 * SHMEM_HUGE_DENY: 359 * disables huge on shm_mnt and all mounts, for emergency use; 360 * SHMEM_HUGE_FORCE: 361 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 362 * 363 */ 364 #define SHMEM_HUGE_DENY (-1) 365 #define SHMEM_HUGE_FORCE (-2) 366 367 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 368 /* ifdef here to avoid bloating shmem.o when not necessary */ 369 370 int shmem_huge __read_mostly; 371 372 static int shmem_parse_huge(const char *str) 373 { 374 if (!strcmp(str, "never")) 375 return SHMEM_HUGE_NEVER; 376 if (!strcmp(str, "always")) 377 return SHMEM_HUGE_ALWAYS; 378 if (!strcmp(str, "within_size")) 379 return SHMEM_HUGE_WITHIN_SIZE; 380 if (!strcmp(str, "advise")) 381 return SHMEM_HUGE_ADVISE; 382 if (!strcmp(str, "deny")) 383 return SHMEM_HUGE_DENY; 384 if (!strcmp(str, "force")) 385 return SHMEM_HUGE_FORCE; 386 return -EINVAL; 387 } 388 389 static const char *shmem_format_huge(int huge) 390 { 391 switch (huge) { 392 case SHMEM_HUGE_NEVER: 393 return "never"; 394 case SHMEM_HUGE_ALWAYS: 395 return "always"; 396 case SHMEM_HUGE_WITHIN_SIZE: 397 return "within_size"; 398 case SHMEM_HUGE_ADVISE: 399 return "advise"; 400 case SHMEM_HUGE_DENY: 401 return "deny"; 402 case SHMEM_HUGE_FORCE: 403 return "force"; 404 default: 405 VM_BUG_ON(1); 406 return "bad_val"; 407 } 408 } 409 410 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 411 struct shrink_control *sc, unsigned long nr_to_split) 412 { 413 LIST_HEAD(list), *pos, *next; 414 struct inode *inode; 415 struct shmem_inode_info *info; 416 struct page *page; 417 unsigned long batch = sc ? sc->nr_to_scan : 128; 418 int removed = 0, split = 0; 419 420 if (list_empty(&sbinfo->shrinklist)) 421 return SHRINK_STOP; 422 423 spin_lock(&sbinfo->shrinklist_lock); 424 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 425 info = list_entry(pos, struct shmem_inode_info, shrinklist); 426 427 /* pin the inode */ 428 inode = igrab(&info->vfs_inode); 429 430 /* inode is about to be evicted */ 431 if (!inode) { 432 list_del_init(&info->shrinklist); 433 removed++; 434 goto next; 435 } 436 437 /* Check if there's anything to gain */ 438 if (round_up(inode->i_size, PAGE_SIZE) == 439 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 440 list_del_init(&info->shrinklist); 441 removed++; 442 iput(inode); 443 goto next; 444 } 445 446 list_move(&info->shrinklist, &list); 447 next: 448 if (!--batch) 449 break; 450 } 451 spin_unlock(&sbinfo->shrinklist_lock); 452 453 list_for_each_safe(pos, next, &list) { 454 int ret; 455 456 info = list_entry(pos, struct shmem_inode_info, shrinklist); 457 inode = &info->vfs_inode; 458 459 if (nr_to_split && split >= nr_to_split) { 460 iput(inode); 461 continue; 462 } 463 464 page = find_lock_page(inode->i_mapping, 465 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 466 if (!page) 467 goto drop; 468 469 if (!PageTransHuge(page)) { 470 unlock_page(page); 471 put_page(page); 472 goto drop; 473 } 474 475 ret = split_huge_page(page); 476 unlock_page(page); 477 put_page(page); 478 479 if (ret) { 480 /* split failed: leave it on the list */ 481 iput(inode); 482 continue; 483 } 484 485 split++; 486 drop: 487 list_del_init(&info->shrinklist); 488 removed++; 489 iput(inode); 490 } 491 492 spin_lock(&sbinfo->shrinklist_lock); 493 list_splice_tail(&list, &sbinfo->shrinklist); 494 sbinfo->shrinklist_len -= removed; 495 spin_unlock(&sbinfo->shrinklist_lock); 496 497 return split; 498 } 499 500 static long shmem_unused_huge_scan(struct super_block *sb, 501 struct shrink_control *sc) 502 { 503 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 504 505 if (!READ_ONCE(sbinfo->shrinklist_len)) 506 return SHRINK_STOP; 507 508 return shmem_unused_huge_shrink(sbinfo, sc, 0); 509 } 510 511 static long shmem_unused_huge_count(struct super_block *sb, 512 struct shrink_control *sc) 513 { 514 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 515 return READ_ONCE(sbinfo->shrinklist_len); 516 } 517 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 518 519 #define shmem_huge SHMEM_HUGE_DENY 520 521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 522 struct shrink_control *sc, unsigned long nr_to_split) 523 { 524 return 0; 525 } 526 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 527 528 /* 529 * Like add_to_page_cache_locked, but error if expected item has gone. 530 */ 531 static int shmem_add_to_page_cache(struct page *page, 532 struct address_space *mapping, 533 pgoff_t index, void *expected) 534 { 535 int error, nr = hpage_nr_pages(page); 536 537 VM_BUG_ON_PAGE(PageTail(page), page); 538 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 539 VM_BUG_ON_PAGE(!PageLocked(page), page); 540 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 541 VM_BUG_ON(expected && PageTransHuge(page)); 542 543 page_ref_add(page, nr); 544 page->mapping = mapping; 545 page->index = index; 546 547 spin_lock_irq(&mapping->tree_lock); 548 if (PageTransHuge(page)) { 549 void __rcu **results; 550 pgoff_t idx; 551 int i; 552 553 error = 0; 554 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 555 &results, &idx, index, 1) && 556 idx < index + HPAGE_PMD_NR) { 557 error = -EEXIST; 558 } 559 560 if (!error) { 561 for (i = 0; i < HPAGE_PMD_NR; i++) { 562 error = radix_tree_insert(&mapping->page_tree, 563 index + i, page + i); 564 VM_BUG_ON(error); 565 } 566 count_vm_event(THP_FILE_ALLOC); 567 } 568 } else if (!expected) { 569 error = radix_tree_insert(&mapping->page_tree, index, page); 570 } else { 571 error = shmem_radix_tree_replace(mapping, index, expected, 572 page); 573 } 574 575 if (!error) { 576 mapping->nrpages += nr; 577 if (PageTransHuge(page)) 578 __inc_node_page_state(page, NR_SHMEM_THPS); 579 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 580 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 581 spin_unlock_irq(&mapping->tree_lock); 582 } else { 583 page->mapping = NULL; 584 spin_unlock_irq(&mapping->tree_lock); 585 page_ref_sub(page, nr); 586 } 587 return error; 588 } 589 590 /* 591 * Like delete_from_page_cache, but substitutes swap for page. 592 */ 593 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 594 { 595 struct address_space *mapping = page->mapping; 596 int error; 597 598 VM_BUG_ON_PAGE(PageCompound(page), page); 599 600 spin_lock_irq(&mapping->tree_lock); 601 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 602 page->mapping = NULL; 603 mapping->nrpages--; 604 __dec_node_page_state(page, NR_FILE_PAGES); 605 __dec_node_page_state(page, NR_SHMEM); 606 spin_unlock_irq(&mapping->tree_lock); 607 put_page(page); 608 BUG_ON(error); 609 } 610 611 /* 612 * Remove swap entry from radix tree, free the swap and its page cache. 613 */ 614 static int shmem_free_swap(struct address_space *mapping, 615 pgoff_t index, void *radswap) 616 { 617 void *old; 618 619 spin_lock_irq(&mapping->tree_lock); 620 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 621 spin_unlock_irq(&mapping->tree_lock); 622 if (old != radswap) 623 return -ENOENT; 624 free_swap_and_cache(radix_to_swp_entry(radswap)); 625 return 0; 626 } 627 628 /* 629 * Determine (in bytes) how many of the shmem object's pages mapped by the 630 * given offsets are swapped out. 631 * 632 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 633 * as long as the inode doesn't go away and racy results are not a problem. 634 */ 635 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 636 pgoff_t start, pgoff_t end) 637 { 638 struct radix_tree_iter iter; 639 void **slot; 640 struct page *page; 641 unsigned long swapped = 0; 642 643 rcu_read_lock(); 644 645 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 646 if (iter.index >= end) 647 break; 648 649 page = radix_tree_deref_slot(slot); 650 651 if (radix_tree_deref_retry(page)) { 652 slot = radix_tree_iter_retry(&iter); 653 continue; 654 } 655 656 if (radix_tree_exceptional_entry(page)) 657 swapped++; 658 659 if (need_resched()) { 660 cond_resched_rcu(); 661 slot = radix_tree_iter_next(&iter); 662 } 663 } 664 665 rcu_read_unlock(); 666 667 return swapped << PAGE_SHIFT; 668 } 669 670 /* 671 * Determine (in bytes) how many of the shmem object's pages mapped by the 672 * given vma is swapped out. 673 * 674 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 675 * as long as the inode doesn't go away and racy results are not a problem. 676 */ 677 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 678 { 679 struct inode *inode = file_inode(vma->vm_file); 680 struct shmem_inode_info *info = SHMEM_I(inode); 681 struct address_space *mapping = inode->i_mapping; 682 unsigned long swapped; 683 684 /* Be careful as we don't hold info->lock */ 685 swapped = READ_ONCE(info->swapped); 686 687 /* 688 * The easier cases are when the shmem object has nothing in swap, or 689 * the vma maps it whole. Then we can simply use the stats that we 690 * already track. 691 */ 692 if (!swapped) 693 return 0; 694 695 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 696 return swapped << PAGE_SHIFT; 697 698 /* Here comes the more involved part */ 699 return shmem_partial_swap_usage(mapping, 700 linear_page_index(vma, vma->vm_start), 701 linear_page_index(vma, vma->vm_end)); 702 } 703 704 /* 705 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 706 */ 707 void shmem_unlock_mapping(struct address_space *mapping) 708 { 709 struct pagevec pvec; 710 pgoff_t indices[PAGEVEC_SIZE]; 711 pgoff_t index = 0; 712 713 pagevec_init(&pvec, 0); 714 /* 715 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 716 */ 717 while (!mapping_unevictable(mapping)) { 718 /* 719 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 720 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 721 */ 722 pvec.nr = find_get_entries(mapping, index, 723 PAGEVEC_SIZE, pvec.pages, indices); 724 if (!pvec.nr) 725 break; 726 index = indices[pvec.nr - 1] + 1; 727 pagevec_remove_exceptionals(&pvec); 728 check_move_unevictable_pages(pvec.pages, pvec.nr); 729 pagevec_release(&pvec); 730 cond_resched(); 731 } 732 } 733 734 /* 735 * Remove range of pages and swap entries from radix tree, and free them. 736 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 737 */ 738 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 739 bool unfalloc) 740 { 741 struct address_space *mapping = inode->i_mapping; 742 struct shmem_inode_info *info = SHMEM_I(inode); 743 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 744 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 745 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 746 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 747 struct pagevec pvec; 748 pgoff_t indices[PAGEVEC_SIZE]; 749 long nr_swaps_freed = 0; 750 pgoff_t index; 751 int i; 752 753 if (lend == -1) 754 end = -1; /* unsigned, so actually very big */ 755 756 pagevec_init(&pvec, 0); 757 index = start; 758 while (index < end) { 759 pvec.nr = find_get_entries(mapping, index, 760 min(end - index, (pgoff_t)PAGEVEC_SIZE), 761 pvec.pages, indices); 762 if (!pvec.nr) 763 break; 764 for (i = 0; i < pagevec_count(&pvec); i++) { 765 struct page *page = pvec.pages[i]; 766 767 index = indices[i]; 768 if (index >= end) 769 break; 770 771 if (radix_tree_exceptional_entry(page)) { 772 if (unfalloc) 773 continue; 774 nr_swaps_freed += !shmem_free_swap(mapping, 775 index, page); 776 continue; 777 } 778 779 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 780 781 if (!trylock_page(page)) 782 continue; 783 784 if (PageTransTail(page)) { 785 /* Middle of THP: zero out the page */ 786 clear_highpage(page); 787 unlock_page(page); 788 continue; 789 } else if (PageTransHuge(page)) { 790 if (index == round_down(end, HPAGE_PMD_NR)) { 791 /* 792 * Range ends in the middle of THP: 793 * zero out the page 794 */ 795 clear_highpage(page); 796 unlock_page(page); 797 continue; 798 } 799 index += HPAGE_PMD_NR - 1; 800 i += HPAGE_PMD_NR - 1; 801 } 802 803 if (!unfalloc || !PageUptodate(page)) { 804 VM_BUG_ON_PAGE(PageTail(page), page); 805 if (page_mapping(page) == mapping) { 806 VM_BUG_ON_PAGE(PageWriteback(page), page); 807 truncate_inode_page(mapping, page); 808 } 809 } 810 unlock_page(page); 811 } 812 pagevec_remove_exceptionals(&pvec); 813 pagevec_release(&pvec); 814 cond_resched(); 815 index++; 816 } 817 818 if (partial_start) { 819 struct page *page = NULL; 820 shmem_getpage(inode, start - 1, &page, SGP_READ); 821 if (page) { 822 unsigned int top = PAGE_SIZE; 823 if (start > end) { 824 top = partial_end; 825 partial_end = 0; 826 } 827 zero_user_segment(page, partial_start, top); 828 set_page_dirty(page); 829 unlock_page(page); 830 put_page(page); 831 } 832 } 833 if (partial_end) { 834 struct page *page = NULL; 835 shmem_getpage(inode, end, &page, SGP_READ); 836 if (page) { 837 zero_user_segment(page, 0, partial_end); 838 set_page_dirty(page); 839 unlock_page(page); 840 put_page(page); 841 } 842 } 843 if (start >= end) 844 return; 845 846 index = start; 847 while (index < end) { 848 cond_resched(); 849 850 pvec.nr = find_get_entries(mapping, index, 851 min(end - index, (pgoff_t)PAGEVEC_SIZE), 852 pvec.pages, indices); 853 if (!pvec.nr) { 854 /* If all gone or hole-punch or unfalloc, we're done */ 855 if (index == start || end != -1) 856 break; 857 /* But if truncating, restart to make sure all gone */ 858 index = start; 859 continue; 860 } 861 for (i = 0; i < pagevec_count(&pvec); i++) { 862 struct page *page = pvec.pages[i]; 863 864 index = indices[i]; 865 if (index >= end) 866 break; 867 868 if (radix_tree_exceptional_entry(page)) { 869 if (unfalloc) 870 continue; 871 if (shmem_free_swap(mapping, index, page)) { 872 /* Swap was replaced by page: retry */ 873 index--; 874 break; 875 } 876 nr_swaps_freed++; 877 continue; 878 } 879 880 lock_page(page); 881 882 if (PageTransTail(page)) { 883 /* Middle of THP: zero out the page */ 884 clear_highpage(page); 885 unlock_page(page); 886 /* 887 * Partial thp truncate due 'start' in middle 888 * of THP: don't need to look on these pages 889 * again on !pvec.nr restart. 890 */ 891 if (index != round_down(end, HPAGE_PMD_NR)) 892 start++; 893 continue; 894 } else if (PageTransHuge(page)) { 895 if (index == round_down(end, HPAGE_PMD_NR)) { 896 /* 897 * Range ends in the middle of THP: 898 * zero out the page 899 */ 900 clear_highpage(page); 901 unlock_page(page); 902 continue; 903 } 904 index += HPAGE_PMD_NR - 1; 905 i += HPAGE_PMD_NR - 1; 906 } 907 908 if (!unfalloc || !PageUptodate(page)) { 909 VM_BUG_ON_PAGE(PageTail(page), page); 910 if (page_mapping(page) == mapping) { 911 VM_BUG_ON_PAGE(PageWriteback(page), page); 912 truncate_inode_page(mapping, page); 913 } else { 914 /* Page was replaced by swap: retry */ 915 unlock_page(page); 916 index--; 917 break; 918 } 919 } 920 unlock_page(page); 921 } 922 pagevec_remove_exceptionals(&pvec); 923 pagevec_release(&pvec); 924 index++; 925 } 926 927 spin_lock_irq(&info->lock); 928 info->swapped -= nr_swaps_freed; 929 shmem_recalc_inode(inode); 930 spin_unlock_irq(&info->lock); 931 } 932 933 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 934 { 935 shmem_undo_range(inode, lstart, lend, false); 936 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 937 } 938 EXPORT_SYMBOL_GPL(shmem_truncate_range); 939 940 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 941 struct kstat *stat) 942 { 943 struct inode *inode = dentry->d_inode; 944 struct shmem_inode_info *info = SHMEM_I(inode); 945 946 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 947 spin_lock_irq(&info->lock); 948 shmem_recalc_inode(inode); 949 spin_unlock_irq(&info->lock); 950 } 951 generic_fillattr(inode, stat); 952 return 0; 953 } 954 955 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 956 { 957 struct inode *inode = d_inode(dentry); 958 struct shmem_inode_info *info = SHMEM_I(inode); 959 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 960 int error; 961 962 error = inode_change_ok(inode, attr); 963 if (error) 964 return error; 965 966 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 967 loff_t oldsize = inode->i_size; 968 loff_t newsize = attr->ia_size; 969 970 /* protected by i_mutex */ 971 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 972 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 973 return -EPERM; 974 975 if (newsize != oldsize) { 976 error = shmem_reacct_size(SHMEM_I(inode)->flags, 977 oldsize, newsize); 978 if (error) 979 return error; 980 i_size_write(inode, newsize); 981 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 982 } 983 if (newsize <= oldsize) { 984 loff_t holebegin = round_up(newsize, PAGE_SIZE); 985 if (oldsize > holebegin) 986 unmap_mapping_range(inode->i_mapping, 987 holebegin, 0, 1); 988 if (info->alloced) 989 shmem_truncate_range(inode, 990 newsize, (loff_t)-1); 991 /* unmap again to remove racily COWed private pages */ 992 if (oldsize > holebegin) 993 unmap_mapping_range(inode->i_mapping, 994 holebegin, 0, 1); 995 996 /* 997 * Part of the huge page can be beyond i_size: subject 998 * to shrink under memory pressure. 999 */ 1000 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1001 spin_lock(&sbinfo->shrinklist_lock); 1002 if (list_empty(&info->shrinklist)) { 1003 list_add_tail(&info->shrinklist, 1004 &sbinfo->shrinklist); 1005 sbinfo->shrinklist_len++; 1006 } 1007 spin_unlock(&sbinfo->shrinklist_lock); 1008 } 1009 } 1010 } 1011 1012 setattr_copy(inode, attr); 1013 if (attr->ia_valid & ATTR_MODE) 1014 error = posix_acl_chmod(inode, inode->i_mode); 1015 return error; 1016 } 1017 1018 static void shmem_evict_inode(struct inode *inode) 1019 { 1020 struct shmem_inode_info *info = SHMEM_I(inode); 1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1022 1023 if (inode->i_mapping->a_ops == &shmem_aops) { 1024 shmem_unacct_size(info->flags, inode->i_size); 1025 inode->i_size = 0; 1026 shmem_truncate_range(inode, 0, (loff_t)-1); 1027 if (!list_empty(&info->shrinklist)) { 1028 spin_lock(&sbinfo->shrinklist_lock); 1029 if (!list_empty(&info->shrinklist)) { 1030 list_del_init(&info->shrinklist); 1031 sbinfo->shrinklist_len--; 1032 } 1033 spin_unlock(&sbinfo->shrinklist_lock); 1034 } 1035 if (!list_empty(&info->swaplist)) { 1036 mutex_lock(&shmem_swaplist_mutex); 1037 list_del_init(&info->swaplist); 1038 mutex_unlock(&shmem_swaplist_mutex); 1039 } 1040 } 1041 1042 simple_xattrs_free(&info->xattrs); 1043 WARN_ON(inode->i_blocks); 1044 shmem_free_inode(inode->i_sb); 1045 clear_inode(inode); 1046 } 1047 1048 /* 1049 * If swap found in inode, free it and move page from swapcache to filecache. 1050 */ 1051 static int shmem_unuse_inode(struct shmem_inode_info *info, 1052 swp_entry_t swap, struct page **pagep) 1053 { 1054 struct address_space *mapping = info->vfs_inode.i_mapping; 1055 void *radswap; 1056 pgoff_t index; 1057 gfp_t gfp; 1058 int error = 0; 1059 1060 radswap = swp_to_radix_entry(swap); 1061 index = radix_tree_locate_item(&mapping->page_tree, radswap); 1062 if (index == -1) 1063 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1064 1065 /* 1066 * Move _head_ to start search for next from here. 1067 * But be careful: shmem_evict_inode checks list_empty without taking 1068 * mutex, and there's an instant in list_move_tail when info->swaplist 1069 * would appear empty, if it were the only one on shmem_swaplist. 1070 */ 1071 if (shmem_swaplist.next != &info->swaplist) 1072 list_move_tail(&shmem_swaplist, &info->swaplist); 1073 1074 gfp = mapping_gfp_mask(mapping); 1075 if (shmem_should_replace_page(*pagep, gfp)) { 1076 mutex_unlock(&shmem_swaplist_mutex); 1077 error = shmem_replace_page(pagep, gfp, info, index); 1078 mutex_lock(&shmem_swaplist_mutex); 1079 /* 1080 * We needed to drop mutex to make that restrictive page 1081 * allocation, but the inode might have been freed while we 1082 * dropped it: although a racing shmem_evict_inode() cannot 1083 * complete without emptying the radix_tree, our page lock 1084 * on this swapcache page is not enough to prevent that - 1085 * free_swap_and_cache() of our swap entry will only 1086 * trylock_page(), removing swap from radix_tree whatever. 1087 * 1088 * We must not proceed to shmem_add_to_page_cache() if the 1089 * inode has been freed, but of course we cannot rely on 1090 * inode or mapping or info to check that. However, we can 1091 * safely check if our swap entry is still in use (and here 1092 * it can't have got reused for another page): if it's still 1093 * in use, then the inode cannot have been freed yet, and we 1094 * can safely proceed (if it's no longer in use, that tells 1095 * nothing about the inode, but we don't need to unuse swap). 1096 */ 1097 if (!page_swapcount(*pagep)) 1098 error = -ENOENT; 1099 } 1100 1101 /* 1102 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1103 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1104 * beneath us (pagelock doesn't help until the page is in pagecache). 1105 */ 1106 if (!error) 1107 error = shmem_add_to_page_cache(*pagep, mapping, index, 1108 radswap); 1109 if (error != -ENOMEM) { 1110 /* 1111 * Truncation and eviction use free_swap_and_cache(), which 1112 * only does trylock page: if we raced, best clean up here. 1113 */ 1114 delete_from_swap_cache(*pagep); 1115 set_page_dirty(*pagep); 1116 if (!error) { 1117 spin_lock_irq(&info->lock); 1118 info->swapped--; 1119 spin_unlock_irq(&info->lock); 1120 swap_free(swap); 1121 } 1122 } 1123 return error; 1124 } 1125 1126 /* 1127 * Search through swapped inodes to find and replace swap by page. 1128 */ 1129 int shmem_unuse(swp_entry_t swap, struct page *page) 1130 { 1131 struct list_head *this, *next; 1132 struct shmem_inode_info *info; 1133 struct mem_cgroup *memcg; 1134 int error = 0; 1135 1136 /* 1137 * There's a faint possibility that swap page was replaced before 1138 * caller locked it: caller will come back later with the right page. 1139 */ 1140 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1141 goto out; 1142 1143 /* 1144 * Charge page using GFP_KERNEL while we can wait, before taking 1145 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1146 * Charged back to the user (not to caller) when swap account is used. 1147 */ 1148 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1149 false); 1150 if (error) 1151 goto out; 1152 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1153 error = -EAGAIN; 1154 1155 mutex_lock(&shmem_swaplist_mutex); 1156 list_for_each_safe(this, next, &shmem_swaplist) { 1157 info = list_entry(this, struct shmem_inode_info, swaplist); 1158 if (info->swapped) 1159 error = shmem_unuse_inode(info, swap, &page); 1160 else 1161 list_del_init(&info->swaplist); 1162 cond_resched(); 1163 if (error != -EAGAIN) 1164 break; 1165 /* found nothing in this: move on to search the next */ 1166 } 1167 mutex_unlock(&shmem_swaplist_mutex); 1168 1169 if (error) { 1170 if (error != -ENOMEM) 1171 error = 0; 1172 mem_cgroup_cancel_charge(page, memcg, false); 1173 } else 1174 mem_cgroup_commit_charge(page, memcg, true, false); 1175 out: 1176 unlock_page(page); 1177 put_page(page); 1178 return error; 1179 } 1180 1181 /* 1182 * Move the page from the page cache to the swap cache. 1183 */ 1184 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1185 { 1186 struct shmem_inode_info *info; 1187 struct address_space *mapping; 1188 struct inode *inode; 1189 swp_entry_t swap; 1190 pgoff_t index; 1191 1192 VM_BUG_ON_PAGE(PageCompound(page), page); 1193 BUG_ON(!PageLocked(page)); 1194 mapping = page->mapping; 1195 index = page->index; 1196 inode = mapping->host; 1197 info = SHMEM_I(inode); 1198 if (info->flags & VM_LOCKED) 1199 goto redirty; 1200 if (!total_swap_pages) 1201 goto redirty; 1202 1203 /* 1204 * Our capabilities prevent regular writeback or sync from ever calling 1205 * shmem_writepage; but a stacking filesystem might use ->writepage of 1206 * its underlying filesystem, in which case tmpfs should write out to 1207 * swap only in response to memory pressure, and not for the writeback 1208 * threads or sync. 1209 */ 1210 if (!wbc->for_reclaim) { 1211 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1212 goto redirty; 1213 } 1214 1215 /* 1216 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1217 * value into swapfile.c, the only way we can correctly account for a 1218 * fallocated page arriving here is now to initialize it and write it. 1219 * 1220 * That's okay for a page already fallocated earlier, but if we have 1221 * not yet completed the fallocation, then (a) we want to keep track 1222 * of this page in case we have to undo it, and (b) it may not be a 1223 * good idea to continue anyway, once we're pushing into swap. So 1224 * reactivate the page, and let shmem_fallocate() quit when too many. 1225 */ 1226 if (!PageUptodate(page)) { 1227 if (inode->i_private) { 1228 struct shmem_falloc *shmem_falloc; 1229 spin_lock(&inode->i_lock); 1230 shmem_falloc = inode->i_private; 1231 if (shmem_falloc && 1232 !shmem_falloc->waitq && 1233 index >= shmem_falloc->start && 1234 index < shmem_falloc->next) 1235 shmem_falloc->nr_unswapped++; 1236 else 1237 shmem_falloc = NULL; 1238 spin_unlock(&inode->i_lock); 1239 if (shmem_falloc) 1240 goto redirty; 1241 } 1242 clear_highpage(page); 1243 flush_dcache_page(page); 1244 SetPageUptodate(page); 1245 } 1246 1247 swap = get_swap_page(); 1248 if (!swap.val) 1249 goto redirty; 1250 1251 if (mem_cgroup_try_charge_swap(page, swap)) 1252 goto free_swap; 1253 1254 /* 1255 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1256 * if it's not already there. Do it now before the page is 1257 * moved to swap cache, when its pagelock no longer protects 1258 * the inode from eviction. But don't unlock the mutex until 1259 * we've incremented swapped, because shmem_unuse_inode() will 1260 * prune a !swapped inode from the swaplist under this mutex. 1261 */ 1262 mutex_lock(&shmem_swaplist_mutex); 1263 if (list_empty(&info->swaplist)) 1264 list_add_tail(&info->swaplist, &shmem_swaplist); 1265 1266 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1267 spin_lock_irq(&info->lock); 1268 shmem_recalc_inode(inode); 1269 info->swapped++; 1270 spin_unlock_irq(&info->lock); 1271 1272 swap_shmem_alloc(swap); 1273 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1274 1275 mutex_unlock(&shmem_swaplist_mutex); 1276 BUG_ON(page_mapped(page)); 1277 swap_writepage(page, wbc); 1278 return 0; 1279 } 1280 1281 mutex_unlock(&shmem_swaplist_mutex); 1282 free_swap: 1283 swapcache_free(swap); 1284 redirty: 1285 set_page_dirty(page); 1286 if (wbc->for_reclaim) 1287 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1288 unlock_page(page); 1289 return 0; 1290 } 1291 1292 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1293 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1294 { 1295 char buffer[64]; 1296 1297 if (!mpol || mpol->mode == MPOL_DEFAULT) 1298 return; /* show nothing */ 1299 1300 mpol_to_str(buffer, sizeof(buffer), mpol); 1301 1302 seq_printf(seq, ",mpol=%s", buffer); 1303 } 1304 1305 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1306 { 1307 struct mempolicy *mpol = NULL; 1308 if (sbinfo->mpol) { 1309 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1310 mpol = sbinfo->mpol; 1311 mpol_get(mpol); 1312 spin_unlock(&sbinfo->stat_lock); 1313 } 1314 return mpol; 1315 } 1316 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1317 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1318 { 1319 } 1320 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1321 { 1322 return NULL; 1323 } 1324 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1325 #ifndef CONFIG_NUMA 1326 #define vm_policy vm_private_data 1327 #endif 1328 1329 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1330 struct shmem_inode_info *info, pgoff_t index) 1331 { 1332 /* Create a pseudo vma that just contains the policy */ 1333 vma->vm_start = 0; 1334 /* Bias interleave by inode number to distribute better across nodes */ 1335 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1336 vma->vm_ops = NULL; 1337 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1338 } 1339 1340 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1341 { 1342 /* Drop reference taken by mpol_shared_policy_lookup() */ 1343 mpol_cond_put(vma->vm_policy); 1344 } 1345 1346 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1347 struct shmem_inode_info *info, pgoff_t index) 1348 { 1349 struct vm_area_struct pvma; 1350 struct page *page; 1351 1352 shmem_pseudo_vma_init(&pvma, info, index); 1353 page = swapin_readahead(swap, gfp, &pvma, 0); 1354 shmem_pseudo_vma_destroy(&pvma); 1355 1356 return page; 1357 } 1358 1359 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1360 struct shmem_inode_info *info, pgoff_t index) 1361 { 1362 struct vm_area_struct pvma; 1363 struct inode *inode = &info->vfs_inode; 1364 struct address_space *mapping = inode->i_mapping; 1365 pgoff_t idx, hindex; 1366 void __rcu **results; 1367 struct page *page; 1368 1369 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1370 return NULL; 1371 1372 hindex = round_down(index, HPAGE_PMD_NR); 1373 rcu_read_lock(); 1374 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1375 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1376 rcu_read_unlock(); 1377 return NULL; 1378 } 1379 rcu_read_unlock(); 1380 1381 shmem_pseudo_vma_init(&pvma, info, hindex); 1382 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1383 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1384 shmem_pseudo_vma_destroy(&pvma); 1385 if (page) 1386 prep_transhuge_page(page); 1387 return page; 1388 } 1389 1390 static struct page *shmem_alloc_page(gfp_t gfp, 1391 struct shmem_inode_info *info, pgoff_t index) 1392 { 1393 struct vm_area_struct pvma; 1394 struct page *page; 1395 1396 shmem_pseudo_vma_init(&pvma, info, index); 1397 page = alloc_page_vma(gfp, &pvma, 0); 1398 shmem_pseudo_vma_destroy(&pvma); 1399 1400 return page; 1401 } 1402 1403 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1404 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, 1405 pgoff_t index, bool huge) 1406 { 1407 struct page *page; 1408 int nr; 1409 int err = -ENOSPC; 1410 1411 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1412 huge = false; 1413 nr = huge ? HPAGE_PMD_NR : 1; 1414 1415 if (shmem_acct_block(info->flags, nr)) 1416 goto failed; 1417 if (sbinfo->max_blocks) { 1418 if (percpu_counter_compare(&sbinfo->used_blocks, 1419 sbinfo->max_blocks - nr) > 0) 1420 goto unacct; 1421 percpu_counter_add(&sbinfo->used_blocks, nr); 1422 } 1423 1424 if (huge) 1425 page = shmem_alloc_hugepage(gfp, info, index); 1426 else 1427 page = shmem_alloc_page(gfp, info, index); 1428 if (page) { 1429 __SetPageLocked(page); 1430 __SetPageSwapBacked(page); 1431 return page; 1432 } 1433 1434 err = -ENOMEM; 1435 if (sbinfo->max_blocks) 1436 percpu_counter_add(&sbinfo->used_blocks, -nr); 1437 unacct: 1438 shmem_unacct_blocks(info->flags, nr); 1439 failed: 1440 return ERR_PTR(err); 1441 } 1442 1443 /* 1444 * When a page is moved from swapcache to shmem filecache (either by the 1445 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1446 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1447 * ignorance of the mapping it belongs to. If that mapping has special 1448 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1449 * we may need to copy to a suitable page before moving to filecache. 1450 * 1451 * In a future release, this may well be extended to respect cpuset and 1452 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1453 * but for now it is a simple matter of zone. 1454 */ 1455 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1456 { 1457 return page_zonenum(page) > gfp_zone(gfp); 1458 } 1459 1460 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1461 struct shmem_inode_info *info, pgoff_t index) 1462 { 1463 struct page *oldpage, *newpage; 1464 struct address_space *swap_mapping; 1465 pgoff_t swap_index; 1466 int error; 1467 1468 oldpage = *pagep; 1469 swap_index = page_private(oldpage); 1470 swap_mapping = page_mapping(oldpage); 1471 1472 /* 1473 * We have arrived here because our zones are constrained, so don't 1474 * limit chance of success by further cpuset and node constraints. 1475 */ 1476 gfp &= ~GFP_CONSTRAINT_MASK; 1477 newpage = shmem_alloc_page(gfp, info, index); 1478 if (!newpage) 1479 return -ENOMEM; 1480 1481 get_page(newpage); 1482 copy_highpage(newpage, oldpage); 1483 flush_dcache_page(newpage); 1484 1485 SetPageUptodate(newpage); 1486 set_page_private(newpage, swap_index); 1487 SetPageSwapCache(newpage); 1488 1489 /* 1490 * Our caller will very soon move newpage out of swapcache, but it's 1491 * a nice clean interface for us to replace oldpage by newpage there. 1492 */ 1493 spin_lock_irq(&swap_mapping->tree_lock); 1494 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1495 newpage); 1496 if (!error) { 1497 __inc_node_page_state(newpage, NR_FILE_PAGES); 1498 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1499 } 1500 spin_unlock_irq(&swap_mapping->tree_lock); 1501 1502 if (unlikely(error)) { 1503 /* 1504 * Is this possible? I think not, now that our callers check 1505 * both PageSwapCache and page_private after getting page lock; 1506 * but be defensive. Reverse old to newpage for clear and free. 1507 */ 1508 oldpage = newpage; 1509 } else { 1510 mem_cgroup_migrate(oldpage, newpage); 1511 lru_cache_add_anon(newpage); 1512 *pagep = newpage; 1513 } 1514 1515 ClearPageSwapCache(oldpage); 1516 set_page_private(oldpage, 0); 1517 1518 unlock_page(oldpage); 1519 put_page(oldpage); 1520 put_page(oldpage); 1521 return error; 1522 } 1523 1524 /* 1525 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1526 * 1527 * If we allocate a new one we do not mark it dirty. That's up to the 1528 * vm. If we swap it in we mark it dirty since we also free the swap 1529 * entry since a page cannot live in both the swap and page cache. 1530 * 1531 * fault_mm and fault_type are only supplied by shmem_fault: 1532 * otherwise they are NULL. 1533 */ 1534 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1535 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1536 struct mm_struct *fault_mm, int *fault_type) 1537 { 1538 struct address_space *mapping = inode->i_mapping; 1539 struct shmem_inode_info *info; 1540 struct shmem_sb_info *sbinfo; 1541 struct mm_struct *charge_mm; 1542 struct mem_cgroup *memcg; 1543 struct page *page; 1544 swp_entry_t swap; 1545 enum sgp_type sgp_huge = sgp; 1546 pgoff_t hindex = index; 1547 int error; 1548 int once = 0; 1549 int alloced = 0; 1550 1551 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1552 return -EFBIG; 1553 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1554 sgp = SGP_CACHE; 1555 repeat: 1556 swap.val = 0; 1557 page = find_lock_entry(mapping, index); 1558 if (radix_tree_exceptional_entry(page)) { 1559 swap = radix_to_swp_entry(page); 1560 page = NULL; 1561 } 1562 1563 if (sgp <= SGP_CACHE && 1564 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1565 error = -EINVAL; 1566 goto unlock; 1567 } 1568 1569 if (page && sgp == SGP_WRITE) 1570 mark_page_accessed(page); 1571 1572 /* fallocated page? */ 1573 if (page && !PageUptodate(page)) { 1574 if (sgp != SGP_READ) 1575 goto clear; 1576 unlock_page(page); 1577 put_page(page); 1578 page = NULL; 1579 } 1580 if (page || (sgp == SGP_READ && !swap.val)) { 1581 *pagep = page; 1582 return 0; 1583 } 1584 1585 /* 1586 * Fast cache lookup did not find it: 1587 * bring it back from swap or allocate. 1588 */ 1589 info = SHMEM_I(inode); 1590 sbinfo = SHMEM_SB(inode->i_sb); 1591 charge_mm = fault_mm ? : current->mm; 1592 1593 if (swap.val) { 1594 /* Look it up and read it in.. */ 1595 page = lookup_swap_cache(swap); 1596 if (!page) { 1597 /* Or update major stats only when swapin succeeds?? */ 1598 if (fault_type) { 1599 *fault_type |= VM_FAULT_MAJOR; 1600 count_vm_event(PGMAJFAULT); 1601 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT); 1602 } 1603 /* Here we actually start the io */ 1604 page = shmem_swapin(swap, gfp, info, index); 1605 if (!page) { 1606 error = -ENOMEM; 1607 goto failed; 1608 } 1609 } 1610 1611 /* We have to do this with page locked to prevent races */ 1612 lock_page(page); 1613 if (!PageSwapCache(page) || page_private(page) != swap.val || 1614 !shmem_confirm_swap(mapping, index, swap)) { 1615 error = -EEXIST; /* try again */ 1616 goto unlock; 1617 } 1618 if (!PageUptodate(page)) { 1619 error = -EIO; 1620 goto failed; 1621 } 1622 wait_on_page_writeback(page); 1623 1624 if (shmem_should_replace_page(page, gfp)) { 1625 error = shmem_replace_page(&page, gfp, info, index); 1626 if (error) 1627 goto failed; 1628 } 1629 1630 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1631 false); 1632 if (!error) { 1633 error = shmem_add_to_page_cache(page, mapping, index, 1634 swp_to_radix_entry(swap)); 1635 /* 1636 * We already confirmed swap under page lock, and make 1637 * no memory allocation here, so usually no possibility 1638 * of error; but free_swap_and_cache() only trylocks a 1639 * page, so it is just possible that the entry has been 1640 * truncated or holepunched since swap was confirmed. 1641 * shmem_undo_range() will have done some of the 1642 * unaccounting, now delete_from_swap_cache() will do 1643 * the rest. 1644 * Reset swap.val? No, leave it so "failed" goes back to 1645 * "repeat": reading a hole and writing should succeed. 1646 */ 1647 if (error) { 1648 mem_cgroup_cancel_charge(page, memcg, false); 1649 delete_from_swap_cache(page); 1650 } 1651 } 1652 if (error) 1653 goto failed; 1654 1655 mem_cgroup_commit_charge(page, memcg, true, false); 1656 1657 spin_lock_irq(&info->lock); 1658 info->swapped--; 1659 shmem_recalc_inode(inode); 1660 spin_unlock_irq(&info->lock); 1661 1662 if (sgp == SGP_WRITE) 1663 mark_page_accessed(page); 1664 1665 delete_from_swap_cache(page); 1666 set_page_dirty(page); 1667 swap_free(swap); 1668 1669 } else { 1670 /* shmem_symlink() */ 1671 if (mapping->a_ops != &shmem_aops) 1672 goto alloc_nohuge; 1673 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1674 goto alloc_nohuge; 1675 if (shmem_huge == SHMEM_HUGE_FORCE) 1676 goto alloc_huge; 1677 switch (sbinfo->huge) { 1678 loff_t i_size; 1679 pgoff_t off; 1680 case SHMEM_HUGE_NEVER: 1681 goto alloc_nohuge; 1682 case SHMEM_HUGE_WITHIN_SIZE: 1683 off = round_up(index, HPAGE_PMD_NR); 1684 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1685 if (i_size >= HPAGE_PMD_SIZE && 1686 i_size >> PAGE_SHIFT >= off) 1687 goto alloc_huge; 1688 /* fallthrough */ 1689 case SHMEM_HUGE_ADVISE: 1690 if (sgp_huge == SGP_HUGE) 1691 goto alloc_huge; 1692 /* TODO: implement fadvise() hints */ 1693 goto alloc_nohuge; 1694 } 1695 1696 alloc_huge: 1697 page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1698 index, true); 1699 if (IS_ERR(page)) { 1700 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1701 index, false); 1702 } 1703 if (IS_ERR(page)) { 1704 int retry = 5; 1705 error = PTR_ERR(page); 1706 page = NULL; 1707 if (error != -ENOSPC) 1708 goto failed; 1709 /* 1710 * Try to reclaim some spece by splitting a huge page 1711 * beyond i_size on the filesystem. 1712 */ 1713 while (retry--) { 1714 int ret; 1715 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1716 if (ret == SHRINK_STOP) 1717 break; 1718 if (ret) 1719 goto alloc_nohuge; 1720 } 1721 goto failed; 1722 } 1723 1724 if (PageTransHuge(page)) 1725 hindex = round_down(index, HPAGE_PMD_NR); 1726 else 1727 hindex = index; 1728 1729 if (sgp == SGP_WRITE) 1730 __SetPageReferenced(page); 1731 1732 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1733 PageTransHuge(page)); 1734 if (error) 1735 goto unacct; 1736 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1737 compound_order(page)); 1738 if (!error) { 1739 error = shmem_add_to_page_cache(page, mapping, hindex, 1740 NULL); 1741 radix_tree_preload_end(); 1742 } 1743 if (error) { 1744 mem_cgroup_cancel_charge(page, memcg, 1745 PageTransHuge(page)); 1746 goto unacct; 1747 } 1748 mem_cgroup_commit_charge(page, memcg, false, 1749 PageTransHuge(page)); 1750 lru_cache_add_anon(page); 1751 1752 spin_lock_irq(&info->lock); 1753 info->alloced += 1 << compound_order(page); 1754 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1755 shmem_recalc_inode(inode); 1756 spin_unlock_irq(&info->lock); 1757 alloced = true; 1758 1759 if (PageTransHuge(page) && 1760 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1761 hindex + HPAGE_PMD_NR - 1) { 1762 /* 1763 * Part of the huge page is beyond i_size: subject 1764 * to shrink under memory pressure. 1765 */ 1766 spin_lock(&sbinfo->shrinklist_lock); 1767 if (list_empty(&info->shrinklist)) { 1768 list_add_tail(&info->shrinklist, 1769 &sbinfo->shrinklist); 1770 sbinfo->shrinklist_len++; 1771 } 1772 spin_unlock(&sbinfo->shrinklist_lock); 1773 } 1774 1775 /* 1776 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1777 */ 1778 if (sgp == SGP_FALLOC) 1779 sgp = SGP_WRITE; 1780 clear: 1781 /* 1782 * Let SGP_WRITE caller clear ends if write does not fill page; 1783 * but SGP_FALLOC on a page fallocated earlier must initialize 1784 * it now, lest undo on failure cancel our earlier guarantee. 1785 */ 1786 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1787 struct page *head = compound_head(page); 1788 int i; 1789 1790 for (i = 0; i < (1 << compound_order(head)); i++) { 1791 clear_highpage(head + i); 1792 flush_dcache_page(head + i); 1793 } 1794 SetPageUptodate(head); 1795 } 1796 } 1797 1798 /* Perhaps the file has been truncated since we checked */ 1799 if (sgp <= SGP_CACHE && 1800 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1801 if (alloced) { 1802 ClearPageDirty(page); 1803 delete_from_page_cache(page); 1804 spin_lock_irq(&info->lock); 1805 shmem_recalc_inode(inode); 1806 spin_unlock_irq(&info->lock); 1807 } 1808 error = -EINVAL; 1809 goto unlock; 1810 } 1811 *pagep = page + index - hindex; 1812 return 0; 1813 1814 /* 1815 * Error recovery. 1816 */ 1817 unacct: 1818 if (sbinfo->max_blocks) 1819 percpu_counter_sub(&sbinfo->used_blocks, 1820 1 << compound_order(page)); 1821 shmem_unacct_blocks(info->flags, 1 << compound_order(page)); 1822 1823 if (PageTransHuge(page)) { 1824 unlock_page(page); 1825 put_page(page); 1826 goto alloc_nohuge; 1827 } 1828 failed: 1829 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1830 error = -EEXIST; 1831 unlock: 1832 if (page) { 1833 unlock_page(page); 1834 put_page(page); 1835 } 1836 if (error == -ENOSPC && !once++) { 1837 info = SHMEM_I(inode); 1838 spin_lock_irq(&info->lock); 1839 shmem_recalc_inode(inode); 1840 spin_unlock_irq(&info->lock); 1841 goto repeat; 1842 } 1843 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1844 goto repeat; 1845 return error; 1846 } 1847 1848 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1849 { 1850 struct inode *inode = file_inode(vma->vm_file); 1851 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1852 enum sgp_type sgp; 1853 int error; 1854 int ret = VM_FAULT_LOCKED; 1855 1856 /* 1857 * Trinity finds that probing a hole which tmpfs is punching can 1858 * prevent the hole-punch from ever completing: which in turn 1859 * locks writers out with its hold on i_mutex. So refrain from 1860 * faulting pages into the hole while it's being punched. Although 1861 * shmem_undo_range() does remove the additions, it may be unable to 1862 * keep up, as each new page needs its own unmap_mapping_range() call, 1863 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1864 * 1865 * It does not matter if we sometimes reach this check just before the 1866 * hole-punch begins, so that one fault then races with the punch: 1867 * we just need to make racing faults a rare case. 1868 * 1869 * The implementation below would be much simpler if we just used a 1870 * standard mutex or completion: but we cannot take i_mutex in fault, 1871 * and bloating every shmem inode for this unlikely case would be sad. 1872 */ 1873 if (unlikely(inode->i_private)) { 1874 struct shmem_falloc *shmem_falloc; 1875 1876 spin_lock(&inode->i_lock); 1877 shmem_falloc = inode->i_private; 1878 if (shmem_falloc && 1879 shmem_falloc->waitq && 1880 vmf->pgoff >= shmem_falloc->start && 1881 vmf->pgoff < shmem_falloc->next) { 1882 wait_queue_head_t *shmem_falloc_waitq; 1883 DEFINE_WAIT(shmem_fault_wait); 1884 1885 ret = VM_FAULT_NOPAGE; 1886 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1887 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1888 /* It's polite to up mmap_sem if we can */ 1889 up_read(&vma->vm_mm->mmap_sem); 1890 ret = VM_FAULT_RETRY; 1891 } 1892 1893 shmem_falloc_waitq = shmem_falloc->waitq; 1894 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1895 TASK_UNINTERRUPTIBLE); 1896 spin_unlock(&inode->i_lock); 1897 schedule(); 1898 1899 /* 1900 * shmem_falloc_waitq points into the shmem_fallocate() 1901 * stack of the hole-punching task: shmem_falloc_waitq 1902 * is usually invalid by the time we reach here, but 1903 * finish_wait() does not dereference it in that case; 1904 * though i_lock needed lest racing with wake_up_all(). 1905 */ 1906 spin_lock(&inode->i_lock); 1907 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1908 spin_unlock(&inode->i_lock); 1909 return ret; 1910 } 1911 spin_unlock(&inode->i_lock); 1912 } 1913 1914 sgp = SGP_CACHE; 1915 if (vma->vm_flags & VM_HUGEPAGE) 1916 sgp = SGP_HUGE; 1917 else if (vma->vm_flags & VM_NOHUGEPAGE) 1918 sgp = SGP_NOHUGE; 1919 1920 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1921 gfp, vma->vm_mm, &ret); 1922 if (error) 1923 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1924 return ret; 1925 } 1926 1927 unsigned long shmem_get_unmapped_area(struct file *file, 1928 unsigned long uaddr, unsigned long len, 1929 unsigned long pgoff, unsigned long flags) 1930 { 1931 unsigned long (*get_area)(struct file *, 1932 unsigned long, unsigned long, unsigned long, unsigned long); 1933 unsigned long addr; 1934 unsigned long offset; 1935 unsigned long inflated_len; 1936 unsigned long inflated_addr; 1937 unsigned long inflated_offset; 1938 1939 if (len > TASK_SIZE) 1940 return -ENOMEM; 1941 1942 get_area = current->mm->get_unmapped_area; 1943 addr = get_area(file, uaddr, len, pgoff, flags); 1944 1945 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1946 return addr; 1947 if (IS_ERR_VALUE(addr)) 1948 return addr; 1949 if (addr & ~PAGE_MASK) 1950 return addr; 1951 if (addr > TASK_SIZE - len) 1952 return addr; 1953 1954 if (shmem_huge == SHMEM_HUGE_DENY) 1955 return addr; 1956 if (len < HPAGE_PMD_SIZE) 1957 return addr; 1958 if (flags & MAP_FIXED) 1959 return addr; 1960 /* 1961 * Our priority is to support MAP_SHARED mapped hugely; 1962 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 1963 * But if caller specified an address hint, respect that as before. 1964 */ 1965 if (uaddr) 1966 return addr; 1967 1968 if (shmem_huge != SHMEM_HUGE_FORCE) { 1969 struct super_block *sb; 1970 1971 if (file) { 1972 VM_BUG_ON(file->f_op != &shmem_file_operations); 1973 sb = file_inode(file)->i_sb; 1974 } else { 1975 /* 1976 * Called directly from mm/mmap.c, or drivers/char/mem.c 1977 * for "/dev/zero", to create a shared anonymous object. 1978 */ 1979 if (IS_ERR(shm_mnt)) 1980 return addr; 1981 sb = shm_mnt->mnt_sb; 1982 } 1983 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 1984 return addr; 1985 } 1986 1987 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 1988 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 1989 return addr; 1990 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 1991 return addr; 1992 1993 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 1994 if (inflated_len > TASK_SIZE) 1995 return addr; 1996 if (inflated_len < len) 1997 return addr; 1998 1999 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2000 if (IS_ERR_VALUE(inflated_addr)) 2001 return addr; 2002 if (inflated_addr & ~PAGE_MASK) 2003 return addr; 2004 2005 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2006 inflated_addr += offset - inflated_offset; 2007 if (inflated_offset > offset) 2008 inflated_addr += HPAGE_PMD_SIZE; 2009 2010 if (inflated_addr > TASK_SIZE - len) 2011 return addr; 2012 return inflated_addr; 2013 } 2014 2015 #ifdef CONFIG_NUMA 2016 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2017 { 2018 struct inode *inode = file_inode(vma->vm_file); 2019 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2020 } 2021 2022 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2023 unsigned long addr) 2024 { 2025 struct inode *inode = file_inode(vma->vm_file); 2026 pgoff_t index; 2027 2028 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2029 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2030 } 2031 #endif 2032 2033 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2034 { 2035 struct inode *inode = file_inode(file); 2036 struct shmem_inode_info *info = SHMEM_I(inode); 2037 int retval = -ENOMEM; 2038 2039 spin_lock_irq(&info->lock); 2040 if (lock && !(info->flags & VM_LOCKED)) { 2041 if (!user_shm_lock(inode->i_size, user)) 2042 goto out_nomem; 2043 info->flags |= VM_LOCKED; 2044 mapping_set_unevictable(file->f_mapping); 2045 } 2046 if (!lock && (info->flags & VM_LOCKED) && user) { 2047 user_shm_unlock(inode->i_size, user); 2048 info->flags &= ~VM_LOCKED; 2049 mapping_clear_unevictable(file->f_mapping); 2050 } 2051 retval = 0; 2052 2053 out_nomem: 2054 spin_unlock_irq(&info->lock); 2055 return retval; 2056 } 2057 2058 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2059 { 2060 file_accessed(file); 2061 vma->vm_ops = &shmem_vm_ops; 2062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2063 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2064 (vma->vm_end & HPAGE_PMD_MASK)) { 2065 khugepaged_enter(vma, vma->vm_flags); 2066 } 2067 return 0; 2068 } 2069 2070 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2071 umode_t mode, dev_t dev, unsigned long flags) 2072 { 2073 struct inode *inode; 2074 struct shmem_inode_info *info; 2075 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2076 2077 if (shmem_reserve_inode(sb)) 2078 return NULL; 2079 2080 inode = new_inode(sb); 2081 if (inode) { 2082 inode->i_ino = get_next_ino(); 2083 inode_init_owner(inode, dir, mode); 2084 inode->i_blocks = 0; 2085 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2086 inode->i_generation = get_seconds(); 2087 info = SHMEM_I(inode); 2088 memset(info, 0, (char *)inode - (char *)info); 2089 spin_lock_init(&info->lock); 2090 info->seals = F_SEAL_SEAL; 2091 info->flags = flags & VM_NORESERVE; 2092 INIT_LIST_HEAD(&info->shrinklist); 2093 INIT_LIST_HEAD(&info->swaplist); 2094 simple_xattrs_init(&info->xattrs); 2095 cache_no_acl(inode); 2096 2097 switch (mode & S_IFMT) { 2098 default: 2099 inode->i_op = &shmem_special_inode_operations; 2100 init_special_inode(inode, mode, dev); 2101 break; 2102 case S_IFREG: 2103 inode->i_mapping->a_ops = &shmem_aops; 2104 inode->i_op = &shmem_inode_operations; 2105 inode->i_fop = &shmem_file_operations; 2106 mpol_shared_policy_init(&info->policy, 2107 shmem_get_sbmpol(sbinfo)); 2108 break; 2109 case S_IFDIR: 2110 inc_nlink(inode); 2111 /* Some things misbehave if size == 0 on a directory */ 2112 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2113 inode->i_op = &shmem_dir_inode_operations; 2114 inode->i_fop = &simple_dir_operations; 2115 break; 2116 case S_IFLNK: 2117 /* 2118 * Must not load anything in the rbtree, 2119 * mpol_free_shared_policy will not be called. 2120 */ 2121 mpol_shared_policy_init(&info->policy, NULL); 2122 break; 2123 } 2124 } else 2125 shmem_free_inode(sb); 2126 return inode; 2127 } 2128 2129 bool shmem_mapping(struct address_space *mapping) 2130 { 2131 if (!mapping->host) 2132 return false; 2133 2134 return mapping->host->i_sb->s_op == &shmem_ops; 2135 } 2136 2137 #ifdef CONFIG_TMPFS 2138 static const struct inode_operations shmem_symlink_inode_operations; 2139 static const struct inode_operations shmem_short_symlink_operations; 2140 2141 #ifdef CONFIG_TMPFS_XATTR 2142 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2143 #else 2144 #define shmem_initxattrs NULL 2145 #endif 2146 2147 static int 2148 shmem_write_begin(struct file *file, struct address_space *mapping, 2149 loff_t pos, unsigned len, unsigned flags, 2150 struct page **pagep, void **fsdata) 2151 { 2152 struct inode *inode = mapping->host; 2153 struct shmem_inode_info *info = SHMEM_I(inode); 2154 pgoff_t index = pos >> PAGE_SHIFT; 2155 2156 /* i_mutex is held by caller */ 2157 if (unlikely(info->seals)) { 2158 if (info->seals & F_SEAL_WRITE) 2159 return -EPERM; 2160 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2161 return -EPERM; 2162 } 2163 2164 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2165 } 2166 2167 static int 2168 shmem_write_end(struct file *file, struct address_space *mapping, 2169 loff_t pos, unsigned len, unsigned copied, 2170 struct page *page, void *fsdata) 2171 { 2172 struct inode *inode = mapping->host; 2173 2174 if (pos + copied > inode->i_size) 2175 i_size_write(inode, pos + copied); 2176 2177 if (!PageUptodate(page)) { 2178 struct page *head = compound_head(page); 2179 if (PageTransCompound(page)) { 2180 int i; 2181 2182 for (i = 0; i < HPAGE_PMD_NR; i++) { 2183 if (head + i == page) 2184 continue; 2185 clear_highpage(head + i); 2186 flush_dcache_page(head + i); 2187 } 2188 } 2189 if (copied < PAGE_SIZE) { 2190 unsigned from = pos & (PAGE_SIZE - 1); 2191 zero_user_segments(page, 0, from, 2192 from + copied, PAGE_SIZE); 2193 } 2194 SetPageUptodate(head); 2195 } 2196 set_page_dirty(page); 2197 unlock_page(page); 2198 put_page(page); 2199 2200 return copied; 2201 } 2202 2203 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2204 { 2205 struct file *file = iocb->ki_filp; 2206 struct inode *inode = file_inode(file); 2207 struct address_space *mapping = inode->i_mapping; 2208 pgoff_t index; 2209 unsigned long offset; 2210 enum sgp_type sgp = SGP_READ; 2211 int error = 0; 2212 ssize_t retval = 0; 2213 loff_t *ppos = &iocb->ki_pos; 2214 2215 /* 2216 * Might this read be for a stacking filesystem? Then when reading 2217 * holes of a sparse file, we actually need to allocate those pages, 2218 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2219 */ 2220 if (!iter_is_iovec(to)) 2221 sgp = SGP_CACHE; 2222 2223 index = *ppos >> PAGE_SHIFT; 2224 offset = *ppos & ~PAGE_MASK; 2225 2226 for (;;) { 2227 struct page *page = NULL; 2228 pgoff_t end_index; 2229 unsigned long nr, ret; 2230 loff_t i_size = i_size_read(inode); 2231 2232 end_index = i_size >> PAGE_SHIFT; 2233 if (index > end_index) 2234 break; 2235 if (index == end_index) { 2236 nr = i_size & ~PAGE_MASK; 2237 if (nr <= offset) 2238 break; 2239 } 2240 2241 error = shmem_getpage(inode, index, &page, sgp); 2242 if (error) { 2243 if (error == -EINVAL) 2244 error = 0; 2245 break; 2246 } 2247 if (page) { 2248 if (sgp == SGP_CACHE) 2249 set_page_dirty(page); 2250 unlock_page(page); 2251 } 2252 2253 /* 2254 * We must evaluate after, since reads (unlike writes) 2255 * are called without i_mutex protection against truncate 2256 */ 2257 nr = PAGE_SIZE; 2258 i_size = i_size_read(inode); 2259 end_index = i_size >> PAGE_SHIFT; 2260 if (index == end_index) { 2261 nr = i_size & ~PAGE_MASK; 2262 if (nr <= offset) { 2263 if (page) 2264 put_page(page); 2265 break; 2266 } 2267 } 2268 nr -= offset; 2269 2270 if (page) { 2271 /* 2272 * If users can be writing to this page using arbitrary 2273 * virtual addresses, take care about potential aliasing 2274 * before reading the page on the kernel side. 2275 */ 2276 if (mapping_writably_mapped(mapping)) 2277 flush_dcache_page(page); 2278 /* 2279 * Mark the page accessed if we read the beginning. 2280 */ 2281 if (!offset) 2282 mark_page_accessed(page); 2283 } else { 2284 page = ZERO_PAGE(0); 2285 get_page(page); 2286 } 2287 2288 /* 2289 * Ok, we have the page, and it's up-to-date, so 2290 * now we can copy it to user space... 2291 */ 2292 ret = copy_page_to_iter(page, offset, nr, to); 2293 retval += ret; 2294 offset += ret; 2295 index += offset >> PAGE_SHIFT; 2296 offset &= ~PAGE_MASK; 2297 2298 put_page(page); 2299 if (!iov_iter_count(to)) 2300 break; 2301 if (ret < nr) { 2302 error = -EFAULT; 2303 break; 2304 } 2305 cond_resched(); 2306 } 2307 2308 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2309 file_accessed(file); 2310 return retval ? retval : error; 2311 } 2312 2313 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2314 struct pipe_inode_info *pipe, size_t len, 2315 unsigned int flags) 2316 { 2317 struct address_space *mapping = in->f_mapping; 2318 struct inode *inode = mapping->host; 2319 unsigned int loff, nr_pages, req_pages; 2320 struct page *pages[PIPE_DEF_BUFFERS]; 2321 struct partial_page partial[PIPE_DEF_BUFFERS]; 2322 struct page *page; 2323 pgoff_t index, end_index; 2324 loff_t isize, left; 2325 int error, page_nr; 2326 struct splice_pipe_desc spd = { 2327 .pages = pages, 2328 .partial = partial, 2329 .nr_pages_max = PIPE_DEF_BUFFERS, 2330 .flags = flags, 2331 .ops = &page_cache_pipe_buf_ops, 2332 .spd_release = spd_release_page, 2333 }; 2334 2335 isize = i_size_read(inode); 2336 if (unlikely(*ppos >= isize)) 2337 return 0; 2338 2339 left = isize - *ppos; 2340 if (unlikely(left < len)) 2341 len = left; 2342 2343 if (splice_grow_spd(pipe, &spd)) 2344 return -ENOMEM; 2345 2346 index = *ppos >> PAGE_SHIFT; 2347 loff = *ppos & ~PAGE_MASK; 2348 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT; 2349 nr_pages = min(req_pages, spd.nr_pages_max); 2350 2351 spd.nr_pages = find_get_pages_contig(mapping, index, 2352 nr_pages, spd.pages); 2353 index += spd.nr_pages; 2354 error = 0; 2355 2356 while (spd.nr_pages < nr_pages) { 2357 error = shmem_getpage(inode, index, &page, SGP_CACHE); 2358 if (error) 2359 break; 2360 unlock_page(page); 2361 spd.pages[spd.nr_pages++] = page; 2362 index++; 2363 } 2364 2365 index = *ppos >> PAGE_SHIFT; 2366 nr_pages = spd.nr_pages; 2367 spd.nr_pages = 0; 2368 2369 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 2370 unsigned int this_len; 2371 2372 if (!len) 2373 break; 2374 2375 this_len = min_t(unsigned long, len, PAGE_SIZE - loff); 2376 page = spd.pages[page_nr]; 2377 2378 if (!PageUptodate(page) || page->mapping != mapping) { 2379 error = shmem_getpage(inode, index, &page, SGP_CACHE); 2380 if (error) 2381 break; 2382 unlock_page(page); 2383 put_page(spd.pages[page_nr]); 2384 spd.pages[page_nr] = page; 2385 } 2386 2387 isize = i_size_read(inode); 2388 end_index = (isize - 1) >> PAGE_SHIFT; 2389 if (unlikely(!isize || index > end_index)) 2390 break; 2391 2392 if (end_index == index) { 2393 unsigned int plen; 2394 2395 plen = ((isize - 1) & ~PAGE_MASK) + 1; 2396 if (plen <= loff) 2397 break; 2398 2399 this_len = min(this_len, plen - loff); 2400 len = this_len; 2401 } 2402 2403 spd.partial[page_nr].offset = loff; 2404 spd.partial[page_nr].len = this_len; 2405 len -= this_len; 2406 loff = 0; 2407 spd.nr_pages++; 2408 index++; 2409 } 2410 2411 while (page_nr < nr_pages) 2412 put_page(spd.pages[page_nr++]); 2413 2414 if (spd.nr_pages) 2415 error = splice_to_pipe(pipe, &spd); 2416 2417 splice_shrink_spd(&spd); 2418 2419 if (error > 0) { 2420 *ppos += error; 2421 file_accessed(in); 2422 } 2423 return error; 2424 } 2425 2426 /* 2427 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2428 */ 2429 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2430 pgoff_t index, pgoff_t end, int whence) 2431 { 2432 struct page *page; 2433 struct pagevec pvec; 2434 pgoff_t indices[PAGEVEC_SIZE]; 2435 bool done = false; 2436 int i; 2437 2438 pagevec_init(&pvec, 0); 2439 pvec.nr = 1; /* start small: we may be there already */ 2440 while (!done) { 2441 pvec.nr = find_get_entries(mapping, index, 2442 pvec.nr, pvec.pages, indices); 2443 if (!pvec.nr) { 2444 if (whence == SEEK_DATA) 2445 index = end; 2446 break; 2447 } 2448 for (i = 0; i < pvec.nr; i++, index++) { 2449 if (index < indices[i]) { 2450 if (whence == SEEK_HOLE) { 2451 done = true; 2452 break; 2453 } 2454 index = indices[i]; 2455 } 2456 page = pvec.pages[i]; 2457 if (page && !radix_tree_exceptional_entry(page)) { 2458 if (!PageUptodate(page)) 2459 page = NULL; 2460 } 2461 if (index >= end || 2462 (page && whence == SEEK_DATA) || 2463 (!page && whence == SEEK_HOLE)) { 2464 done = true; 2465 break; 2466 } 2467 } 2468 pagevec_remove_exceptionals(&pvec); 2469 pagevec_release(&pvec); 2470 pvec.nr = PAGEVEC_SIZE; 2471 cond_resched(); 2472 } 2473 return index; 2474 } 2475 2476 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2477 { 2478 struct address_space *mapping = file->f_mapping; 2479 struct inode *inode = mapping->host; 2480 pgoff_t start, end; 2481 loff_t new_offset; 2482 2483 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2484 return generic_file_llseek_size(file, offset, whence, 2485 MAX_LFS_FILESIZE, i_size_read(inode)); 2486 inode_lock(inode); 2487 /* We're holding i_mutex so we can access i_size directly */ 2488 2489 if (offset < 0) 2490 offset = -EINVAL; 2491 else if (offset >= inode->i_size) 2492 offset = -ENXIO; 2493 else { 2494 start = offset >> PAGE_SHIFT; 2495 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2496 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2497 new_offset <<= PAGE_SHIFT; 2498 if (new_offset > offset) { 2499 if (new_offset < inode->i_size) 2500 offset = new_offset; 2501 else if (whence == SEEK_DATA) 2502 offset = -ENXIO; 2503 else 2504 offset = inode->i_size; 2505 } 2506 } 2507 2508 if (offset >= 0) 2509 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2510 inode_unlock(inode); 2511 return offset; 2512 } 2513 2514 /* 2515 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2516 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2517 */ 2518 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2519 #define LAST_SCAN 4 /* about 150ms max */ 2520 2521 static void shmem_tag_pins(struct address_space *mapping) 2522 { 2523 struct radix_tree_iter iter; 2524 void **slot; 2525 pgoff_t start; 2526 struct page *page; 2527 2528 lru_add_drain(); 2529 start = 0; 2530 rcu_read_lock(); 2531 2532 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2533 page = radix_tree_deref_slot(slot); 2534 if (!page || radix_tree_exception(page)) { 2535 if (radix_tree_deref_retry(page)) { 2536 slot = radix_tree_iter_retry(&iter); 2537 continue; 2538 } 2539 } else if (page_count(page) - page_mapcount(page) > 1) { 2540 spin_lock_irq(&mapping->tree_lock); 2541 radix_tree_tag_set(&mapping->page_tree, iter.index, 2542 SHMEM_TAG_PINNED); 2543 spin_unlock_irq(&mapping->tree_lock); 2544 } 2545 2546 if (need_resched()) { 2547 cond_resched_rcu(); 2548 slot = radix_tree_iter_next(&iter); 2549 } 2550 } 2551 rcu_read_unlock(); 2552 } 2553 2554 /* 2555 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2556 * via get_user_pages(), drivers might have some pending I/O without any active 2557 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2558 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2559 * them to be dropped. 2560 * The caller must guarantee that no new user will acquire writable references 2561 * to those pages to avoid races. 2562 */ 2563 static int shmem_wait_for_pins(struct address_space *mapping) 2564 { 2565 struct radix_tree_iter iter; 2566 void **slot; 2567 pgoff_t start; 2568 struct page *page; 2569 int error, scan; 2570 2571 shmem_tag_pins(mapping); 2572 2573 error = 0; 2574 for (scan = 0; scan <= LAST_SCAN; scan++) { 2575 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2576 break; 2577 2578 if (!scan) 2579 lru_add_drain_all(); 2580 else if (schedule_timeout_killable((HZ << scan) / 200)) 2581 scan = LAST_SCAN; 2582 2583 start = 0; 2584 rcu_read_lock(); 2585 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2586 start, SHMEM_TAG_PINNED) { 2587 2588 page = radix_tree_deref_slot(slot); 2589 if (radix_tree_exception(page)) { 2590 if (radix_tree_deref_retry(page)) { 2591 slot = radix_tree_iter_retry(&iter); 2592 continue; 2593 } 2594 2595 page = NULL; 2596 } 2597 2598 if (page && 2599 page_count(page) - page_mapcount(page) != 1) { 2600 if (scan < LAST_SCAN) 2601 goto continue_resched; 2602 2603 /* 2604 * On the last scan, we clean up all those tags 2605 * we inserted; but make a note that we still 2606 * found pages pinned. 2607 */ 2608 error = -EBUSY; 2609 } 2610 2611 spin_lock_irq(&mapping->tree_lock); 2612 radix_tree_tag_clear(&mapping->page_tree, 2613 iter.index, SHMEM_TAG_PINNED); 2614 spin_unlock_irq(&mapping->tree_lock); 2615 continue_resched: 2616 if (need_resched()) { 2617 cond_resched_rcu(); 2618 slot = radix_tree_iter_next(&iter); 2619 } 2620 } 2621 rcu_read_unlock(); 2622 } 2623 2624 return error; 2625 } 2626 2627 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2628 F_SEAL_SHRINK | \ 2629 F_SEAL_GROW | \ 2630 F_SEAL_WRITE) 2631 2632 int shmem_add_seals(struct file *file, unsigned int seals) 2633 { 2634 struct inode *inode = file_inode(file); 2635 struct shmem_inode_info *info = SHMEM_I(inode); 2636 int error; 2637 2638 /* 2639 * SEALING 2640 * Sealing allows multiple parties to share a shmem-file but restrict 2641 * access to a specific subset of file operations. Seals can only be 2642 * added, but never removed. This way, mutually untrusted parties can 2643 * share common memory regions with a well-defined policy. A malicious 2644 * peer can thus never perform unwanted operations on a shared object. 2645 * 2646 * Seals are only supported on special shmem-files and always affect 2647 * the whole underlying inode. Once a seal is set, it may prevent some 2648 * kinds of access to the file. Currently, the following seals are 2649 * defined: 2650 * SEAL_SEAL: Prevent further seals from being set on this file 2651 * SEAL_SHRINK: Prevent the file from shrinking 2652 * SEAL_GROW: Prevent the file from growing 2653 * SEAL_WRITE: Prevent write access to the file 2654 * 2655 * As we don't require any trust relationship between two parties, we 2656 * must prevent seals from being removed. Therefore, sealing a file 2657 * only adds a given set of seals to the file, it never touches 2658 * existing seals. Furthermore, the "setting seals"-operation can be 2659 * sealed itself, which basically prevents any further seal from being 2660 * added. 2661 * 2662 * Semantics of sealing are only defined on volatile files. Only 2663 * anonymous shmem files support sealing. More importantly, seals are 2664 * never written to disk. Therefore, there's no plan to support it on 2665 * other file types. 2666 */ 2667 2668 if (file->f_op != &shmem_file_operations) 2669 return -EINVAL; 2670 if (!(file->f_mode & FMODE_WRITE)) 2671 return -EPERM; 2672 if (seals & ~(unsigned int)F_ALL_SEALS) 2673 return -EINVAL; 2674 2675 inode_lock(inode); 2676 2677 if (info->seals & F_SEAL_SEAL) { 2678 error = -EPERM; 2679 goto unlock; 2680 } 2681 2682 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2683 error = mapping_deny_writable(file->f_mapping); 2684 if (error) 2685 goto unlock; 2686 2687 error = shmem_wait_for_pins(file->f_mapping); 2688 if (error) { 2689 mapping_allow_writable(file->f_mapping); 2690 goto unlock; 2691 } 2692 } 2693 2694 info->seals |= seals; 2695 error = 0; 2696 2697 unlock: 2698 inode_unlock(inode); 2699 return error; 2700 } 2701 EXPORT_SYMBOL_GPL(shmem_add_seals); 2702 2703 int shmem_get_seals(struct file *file) 2704 { 2705 if (file->f_op != &shmem_file_operations) 2706 return -EINVAL; 2707 2708 return SHMEM_I(file_inode(file))->seals; 2709 } 2710 EXPORT_SYMBOL_GPL(shmem_get_seals); 2711 2712 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2713 { 2714 long error; 2715 2716 switch (cmd) { 2717 case F_ADD_SEALS: 2718 /* disallow upper 32bit */ 2719 if (arg > UINT_MAX) 2720 return -EINVAL; 2721 2722 error = shmem_add_seals(file, arg); 2723 break; 2724 case F_GET_SEALS: 2725 error = shmem_get_seals(file); 2726 break; 2727 default: 2728 error = -EINVAL; 2729 break; 2730 } 2731 2732 return error; 2733 } 2734 2735 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2736 loff_t len) 2737 { 2738 struct inode *inode = file_inode(file); 2739 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2740 struct shmem_inode_info *info = SHMEM_I(inode); 2741 struct shmem_falloc shmem_falloc; 2742 pgoff_t start, index, end; 2743 int error; 2744 2745 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2746 return -EOPNOTSUPP; 2747 2748 inode_lock(inode); 2749 2750 if (mode & FALLOC_FL_PUNCH_HOLE) { 2751 struct address_space *mapping = file->f_mapping; 2752 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2753 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2754 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2755 2756 /* protected by i_mutex */ 2757 if (info->seals & F_SEAL_WRITE) { 2758 error = -EPERM; 2759 goto out; 2760 } 2761 2762 shmem_falloc.waitq = &shmem_falloc_waitq; 2763 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2764 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2765 spin_lock(&inode->i_lock); 2766 inode->i_private = &shmem_falloc; 2767 spin_unlock(&inode->i_lock); 2768 2769 if ((u64)unmap_end > (u64)unmap_start) 2770 unmap_mapping_range(mapping, unmap_start, 2771 1 + unmap_end - unmap_start, 0); 2772 shmem_truncate_range(inode, offset, offset + len - 1); 2773 /* No need to unmap again: hole-punching leaves COWed pages */ 2774 2775 spin_lock(&inode->i_lock); 2776 inode->i_private = NULL; 2777 wake_up_all(&shmem_falloc_waitq); 2778 spin_unlock(&inode->i_lock); 2779 error = 0; 2780 goto out; 2781 } 2782 2783 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2784 error = inode_newsize_ok(inode, offset + len); 2785 if (error) 2786 goto out; 2787 2788 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2789 error = -EPERM; 2790 goto out; 2791 } 2792 2793 start = offset >> PAGE_SHIFT; 2794 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2795 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2796 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2797 error = -ENOSPC; 2798 goto out; 2799 } 2800 2801 shmem_falloc.waitq = NULL; 2802 shmem_falloc.start = start; 2803 shmem_falloc.next = start; 2804 shmem_falloc.nr_falloced = 0; 2805 shmem_falloc.nr_unswapped = 0; 2806 spin_lock(&inode->i_lock); 2807 inode->i_private = &shmem_falloc; 2808 spin_unlock(&inode->i_lock); 2809 2810 for (index = start; index < end; index++) { 2811 struct page *page; 2812 2813 /* 2814 * Good, the fallocate(2) manpage permits EINTR: we may have 2815 * been interrupted because we are using up too much memory. 2816 */ 2817 if (signal_pending(current)) 2818 error = -EINTR; 2819 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2820 error = -ENOMEM; 2821 else 2822 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2823 if (error) { 2824 /* Remove the !PageUptodate pages we added */ 2825 if (index > start) { 2826 shmem_undo_range(inode, 2827 (loff_t)start << PAGE_SHIFT, 2828 ((loff_t)index << PAGE_SHIFT) - 1, true); 2829 } 2830 goto undone; 2831 } 2832 2833 /* 2834 * Inform shmem_writepage() how far we have reached. 2835 * No need for lock or barrier: we have the page lock. 2836 */ 2837 shmem_falloc.next++; 2838 if (!PageUptodate(page)) 2839 shmem_falloc.nr_falloced++; 2840 2841 /* 2842 * If !PageUptodate, leave it that way so that freeable pages 2843 * can be recognized if we need to rollback on error later. 2844 * But set_page_dirty so that memory pressure will swap rather 2845 * than free the pages we are allocating (and SGP_CACHE pages 2846 * might still be clean: we now need to mark those dirty too). 2847 */ 2848 set_page_dirty(page); 2849 unlock_page(page); 2850 put_page(page); 2851 cond_resched(); 2852 } 2853 2854 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2855 i_size_write(inode, offset + len); 2856 inode->i_ctime = CURRENT_TIME; 2857 undone: 2858 spin_lock(&inode->i_lock); 2859 inode->i_private = NULL; 2860 spin_unlock(&inode->i_lock); 2861 out: 2862 inode_unlock(inode); 2863 return error; 2864 } 2865 2866 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2867 { 2868 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2869 2870 buf->f_type = TMPFS_MAGIC; 2871 buf->f_bsize = PAGE_SIZE; 2872 buf->f_namelen = NAME_MAX; 2873 if (sbinfo->max_blocks) { 2874 buf->f_blocks = sbinfo->max_blocks; 2875 buf->f_bavail = 2876 buf->f_bfree = sbinfo->max_blocks - 2877 percpu_counter_sum(&sbinfo->used_blocks); 2878 } 2879 if (sbinfo->max_inodes) { 2880 buf->f_files = sbinfo->max_inodes; 2881 buf->f_ffree = sbinfo->free_inodes; 2882 } 2883 /* else leave those fields 0 like simple_statfs */ 2884 return 0; 2885 } 2886 2887 /* 2888 * File creation. Allocate an inode, and we're done.. 2889 */ 2890 static int 2891 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2892 { 2893 struct inode *inode; 2894 int error = -ENOSPC; 2895 2896 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2897 if (inode) { 2898 error = simple_acl_create(dir, inode); 2899 if (error) 2900 goto out_iput; 2901 error = security_inode_init_security(inode, dir, 2902 &dentry->d_name, 2903 shmem_initxattrs, NULL); 2904 if (error && error != -EOPNOTSUPP) 2905 goto out_iput; 2906 2907 error = 0; 2908 dir->i_size += BOGO_DIRENT_SIZE; 2909 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2910 d_instantiate(dentry, inode); 2911 dget(dentry); /* Extra count - pin the dentry in core */ 2912 } 2913 return error; 2914 out_iput: 2915 iput(inode); 2916 return error; 2917 } 2918 2919 static int 2920 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2921 { 2922 struct inode *inode; 2923 int error = -ENOSPC; 2924 2925 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2926 if (inode) { 2927 error = security_inode_init_security(inode, dir, 2928 NULL, 2929 shmem_initxattrs, NULL); 2930 if (error && error != -EOPNOTSUPP) 2931 goto out_iput; 2932 error = simple_acl_create(dir, inode); 2933 if (error) 2934 goto out_iput; 2935 d_tmpfile(dentry, inode); 2936 } 2937 return error; 2938 out_iput: 2939 iput(inode); 2940 return error; 2941 } 2942 2943 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2944 { 2945 int error; 2946 2947 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2948 return error; 2949 inc_nlink(dir); 2950 return 0; 2951 } 2952 2953 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2954 bool excl) 2955 { 2956 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2957 } 2958 2959 /* 2960 * Link a file.. 2961 */ 2962 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2963 { 2964 struct inode *inode = d_inode(old_dentry); 2965 int ret; 2966 2967 /* 2968 * No ordinary (disk based) filesystem counts links as inodes; 2969 * but each new link needs a new dentry, pinning lowmem, and 2970 * tmpfs dentries cannot be pruned until they are unlinked. 2971 */ 2972 ret = shmem_reserve_inode(inode->i_sb); 2973 if (ret) 2974 goto out; 2975 2976 dir->i_size += BOGO_DIRENT_SIZE; 2977 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2978 inc_nlink(inode); 2979 ihold(inode); /* New dentry reference */ 2980 dget(dentry); /* Extra pinning count for the created dentry */ 2981 d_instantiate(dentry, inode); 2982 out: 2983 return ret; 2984 } 2985 2986 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2987 { 2988 struct inode *inode = d_inode(dentry); 2989 2990 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2991 shmem_free_inode(inode->i_sb); 2992 2993 dir->i_size -= BOGO_DIRENT_SIZE; 2994 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2995 drop_nlink(inode); 2996 dput(dentry); /* Undo the count from "create" - this does all the work */ 2997 return 0; 2998 } 2999 3000 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3001 { 3002 if (!simple_empty(dentry)) 3003 return -ENOTEMPTY; 3004 3005 drop_nlink(d_inode(dentry)); 3006 drop_nlink(dir); 3007 return shmem_unlink(dir, dentry); 3008 } 3009 3010 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3011 { 3012 bool old_is_dir = d_is_dir(old_dentry); 3013 bool new_is_dir = d_is_dir(new_dentry); 3014 3015 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3016 if (old_is_dir) { 3017 drop_nlink(old_dir); 3018 inc_nlink(new_dir); 3019 } else { 3020 drop_nlink(new_dir); 3021 inc_nlink(old_dir); 3022 } 3023 } 3024 old_dir->i_ctime = old_dir->i_mtime = 3025 new_dir->i_ctime = new_dir->i_mtime = 3026 d_inode(old_dentry)->i_ctime = 3027 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 3028 3029 return 0; 3030 } 3031 3032 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3033 { 3034 struct dentry *whiteout; 3035 int error; 3036 3037 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3038 if (!whiteout) 3039 return -ENOMEM; 3040 3041 error = shmem_mknod(old_dir, whiteout, 3042 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3043 dput(whiteout); 3044 if (error) 3045 return error; 3046 3047 /* 3048 * Cheat and hash the whiteout while the old dentry is still in 3049 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3050 * 3051 * d_lookup() will consistently find one of them at this point, 3052 * not sure which one, but that isn't even important. 3053 */ 3054 d_rehash(whiteout); 3055 return 0; 3056 } 3057 3058 /* 3059 * The VFS layer already does all the dentry stuff for rename, 3060 * we just have to decrement the usage count for the target if 3061 * it exists so that the VFS layer correctly free's it when it 3062 * gets overwritten. 3063 */ 3064 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3065 { 3066 struct inode *inode = d_inode(old_dentry); 3067 int they_are_dirs = S_ISDIR(inode->i_mode); 3068 3069 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3070 return -EINVAL; 3071 3072 if (flags & RENAME_EXCHANGE) 3073 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3074 3075 if (!simple_empty(new_dentry)) 3076 return -ENOTEMPTY; 3077 3078 if (flags & RENAME_WHITEOUT) { 3079 int error; 3080 3081 error = shmem_whiteout(old_dir, old_dentry); 3082 if (error) 3083 return error; 3084 } 3085 3086 if (d_really_is_positive(new_dentry)) { 3087 (void) shmem_unlink(new_dir, new_dentry); 3088 if (they_are_dirs) { 3089 drop_nlink(d_inode(new_dentry)); 3090 drop_nlink(old_dir); 3091 } 3092 } else if (they_are_dirs) { 3093 drop_nlink(old_dir); 3094 inc_nlink(new_dir); 3095 } 3096 3097 old_dir->i_size -= BOGO_DIRENT_SIZE; 3098 new_dir->i_size += BOGO_DIRENT_SIZE; 3099 old_dir->i_ctime = old_dir->i_mtime = 3100 new_dir->i_ctime = new_dir->i_mtime = 3101 inode->i_ctime = CURRENT_TIME; 3102 return 0; 3103 } 3104 3105 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3106 { 3107 int error; 3108 int len; 3109 struct inode *inode; 3110 struct page *page; 3111 struct shmem_inode_info *info; 3112 3113 len = strlen(symname) + 1; 3114 if (len > PAGE_SIZE) 3115 return -ENAMETOOLONG; 3116 3117 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3118 if (!inode) 3119 return -ENOSPC; 3120 3121 error = security_inode_init_security(inode, dir, &dentry->d_name, 3122 shmem_initxattrs, NULL); 3123 if (error) { 3124 if (error != -EOPNOTSUPP) { 3125 iput(inode); 3126 return error; 3127 } 3128 error = 0; 3129 } 3130 3131 info = SHMEM_I(inode); 3132 inode->i_size = len-1; 3133 if (len <= SHORT_SYMLINK_LEN) { 3134 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3135 if (!inode->i_link) { 3136 iput(inode); 3137 return -ENOMEM; 3138 } 3139 inode->i_op = &shmem_short_symlink_operations; 3140 } else { 3141 inode_nohighmem(inode); 3142 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3143 if (error) { 3144 iput(inode); 3145 return error; 3146 } 3147 inode->i_mapping->a_ops = &shmem_aops; 3148 inode->i_op = &shmem_symlink_inode_operations; 3149 memcpy(page_address(page), symname, len); 3150 SetPageUptodate(page); 3151 set_page_dirty(page); 3152 unlock_page(page); 3153 put_page(page); 3154 } 3155 dir->i_size += BOGO_DIRENT_SIZE; 3156 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 3157 d_instantiate(dentry, inode); 3158 dget(dentry); 3159 return 0; 3160 } 3161 3162 static void shmem_put_link(void *arg) 3163 { 3164 mark_page_accessed(arg); 3165 put_page(arg); 3166 } 3167 3168 static const char *shmem_get_link(struct dentry *dentry, 3169 struct inode *inode, 3170 struct delayed_call *done) 3171 { 3172 struct page *page = NULL; 3173 int error; 3174 if (!dentry) { 3175 page = find_get_page(inode->i_mapping, 0); 3176 if (!page) 3177 return ERR_PTR(-ECHILD); 3178 if (!PageUptodate(page)) { 3179 put_page(page); 3180 return ERR_PTR(-ECHILD); 3181 } 3182 } else { 3183 error = shmem_getpage(inode, 0, &page, SGP_READ); 3184 if (error) 3185 return ERR_PTR(error); 3186 unlock_page(page); 3187 } 3188 set_delayed_call(done, shmem_put_link, page); 3189 return page_address(page); 3190 } 3191 3192 #ifdef CONFIG_TMPFS_XATTR 3193 /* 3194 * Superblocks without xattr inode operations may get some security.* xattr 3195 * support from the LSM "for free". As soon as we have any other xattrs 3196 * like ACLs, we also need to implement the security.* handlers at 3197 * filesystem level, though. 3198 */ 3199 3200 /* 3201 * Callback for security_inode_init_security() for acquiring xattrs. 3202 */ 3203 static int shmem_initxattrs(struct inode *inode, 3204 const struct xattr *xattr_array, 3205 void *fs_info) 3206 { 3207 struct shmem_inode_info *info = SHMEM_I(inode); 3208 const struct xattr *xattr; 3209 struct simple_xattr *new_xattr; 3210 size_t len; 3211 3212 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3213 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3214 if (!new_xattr) 3215 return -ENOMEM; 3216 3217 len = strlen(xattr->name) + 1; 3218 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3219 GFP_KERNEL); 3220 if (!new_xattr->name) { 3221 kfree(new_xattr); 3222 return -ENOMEM; 3223 } 3224 3225 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3226 XATTR_SECURITY_PREFIX_LEN); 3227 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3228 xattr->name, len); 3229 3230 simple_xattr_list_add(&info->xattrs, new_xattr); 3231 } 3232 3233 return 0; 3234 } 3235 3236 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3237 struct dentry *unused, struct inode *inode, 3238 const char *name, void *buffer, size_t size) 3239 { 3240 struct shmem_inode_info *info = SHMEM_I(inode); 3241 3242 name = xattr_full_name(handler, name); 3243 return simple_xattr_get(&info->xattrs, name, buffer, size); 3244 } 3245 3246 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3247 struct dentry *unused, struct inode *inode, 3248 const char *name, const void *value, 3249 size_t size, int flags) 3250 { 3251 struct shmem_inode_info *info = SHMEM_I(inode); 3252 3253 name = xattr_full_name(handler, name); 3254 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3255 } 3256 3257 static const struct xattr_handler shmem_security_xattr_handler = { 3258 .prefix = XATTR_SECURITY_PREFIX, 3259 .get = shmem_xattr_handler_get, 3260 .set = shmem_xattr_handler_set, 3261 }; 3262 3263 static const struct xattr_handler shmem_trusted_xattr_handler = { 3264 .prefix = XATTR_TRUSTED_PREFIX, 3265 .get = shmem_xattr_handler_get, 3266 .set = shmem_xattr_handler_set, 3267 }; 3268 3269 static const struct xattr_handler *shmem_xattr_handlers[] = { 3270 #ifdef CONFIG_TMPFS_POSIX_ACL 3271 &posix_acl_access_xattr_handler, 3272 &posix_acl_default_xattr_handler, 3273 #endif 3274 &shmem_security_xattr_handler, 3275 &shmem_trusted_xattr_handler, 3276 NULL 3277 }; 3278 3279 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3280 { 3281 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3282 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3283 } 3284 #endif /* CONFIG_TMPFS_XATTR */ 3285 3286 static const struct inode_operations shmem_short_symlink_operations = { 3287 .readlink = generic_readlink, 3288 .get_link = simple_get_link, 3289 #ifdef CONFIG_TMPFS_XATTR 3290 .setxattr = generic_setxattr, 3291 .getxattr = generic_getxattr, 3292 .listxattr = shmem_listxattr, 3293 .removexattr = generic_removexattr, 3294 #endif 3295 }; 3296 3297 static const struct inode_operations shmem_symlink_inode_operations = { 3298 .readlink = generic_readlink, 3299 .get_link = shmem_get_link, 3300 #ifdef CONFIG_TMPFS_XATTR 3301 .setxattr = generic_setxattr, 3302 .getxattr = generic_getxattr, 3303 .listxattr = shmem_listxattr, 3304 .removexattr = generic_removexattr, 3305 #endif 3306 }; 3307 3308 static struct dentry *shmem_get_parent(struct dentry *child) 3309 { 3310 return ERR_PTR(-ESTALE); 3311 } 3312 3313 static int shmem_match(struct inode *ino, void *vfh) 3314 { 3315 __u32 *fh = vfh; 3316 __u64 inum = fh[2]; 3317 inum = (inum << 32) | fh[1]; 3318 return ino->i_ino == inum && fh[0] == ino->i_generation; 3319 } 3320 3321 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3322 struct fid *fid, int fh_len, int fh_type) 3323 { 3324 struct inode *inode; 3325 struct dentry *dentry = NULL; 3326 u64 inum; 3327 3328 if (fh_len < 3) 3329 return NULL; 3330 3331 inum = fid->raw[2]; 3332 inum = (inum << 32) | fid->raw[1]; 3333 3334 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3335 shmem_match, fid->raw); 3336 if (inode) { 3337 dentry = d_find_alias(inode); 3338 iput(inode); 3339 } 3340 3341 return dentry; 3342 } 3343 3344 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3345 struct inode *parent) 3346 { 3347 if (*len < 3) { 3348 *len = 3; 3349 return FILEID_INVALID; 3350 } 3351 3352 if (inode_unhashed(inode)) { 3353 /* Unfortunately insert_inode_hash is not idempotent, 3354 * so as we hash inodes here rather than at creation 3355 * time, we need a lock to ensure we only try 3356 * to do it once 3357 */ 3358 static DEFINE_SPINLOCK(lock); 3359 spin_lock(&lock); 3360 if (inode_unhashed(inode)) 3361 __insert_inode_hash(inode, 3362 inode->i_ino + inode->i_generation); 3363 spin_unlock(&lock); 3364 } 3365 3366 fh[0] = inode->i_generation; 3367 fh[1] = inode->i_ino; 3368 fh[2] = ((__u64)inode->i_ino) >> 32; 3369 3370 *len = 3; 3371 return 1; 3372 } 3373 3374 static const struct export_operations shmem_export_ops = { 3375 .get_parent = shmem_get_parent, 3376 .encode_fh = shmem_encode_fh, 3377 .fh_to_dentry = shmem_fh_to_dentry, 3378 }; 3379 3380 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3381 bool remount) 3382 { 3383 char *this_char, *value, *rest; 3384 struct mempolicy *mpol = NULL; 3385 uid_t uid; 3386 gid_t gid; 3387 3388 while (options != NULL) { 3389 this_char = options; 3390 for (;;) { 3391 /* 3392 * NUL-terminate this option: unfortunately, 3393 * mount options form a comma-separated list, 3394 * but mpol's nodelist may also contain commas. 3395 */ 3396 options = strchr(options, ','); 3397 if (options == NULL) 3398 break; 3399 options++; 3400 if (!isdigit(*options)) { 3401 options[-1] = '\0'; 3402 break; 3403 } 3404 } 3405 if (!*this_char) 3406 continue; 3407 if ((value = strchr(this_char,'=')) != NULL) { 3408 *value++ = 0; 3409 } else { 3410 pr_err("tmpfs: No value for mount option '%s'\n", 3411 this_char); 3412 goto error; 3413 } 3414 3415 if (!strcmp(this_char,"size")) { 3416 unsigned long long size; 3417 size = memparse(value,&rest); 3418 if (*rest == '%') { 3419 size <<= PAGE_SHIFT; 3420 size *= totalram_pages; 3421 do_div(size, 100); 3422 rest++; 3423 } 3424 if (*rest) 3425 goto bad_val; 3426 sbinfo->max_blocks = 3427 DIV_ROUND_UP(size, PAGE_SIZE); 3428 } else if (!strcmp(this_char,"nr_blocks")) { 3429 sbinfo->max_blocks = memparse(value, &rest); 3430 if (*rest) 3431 goto bad_val; 3432 } else if (!strcmp(this_char,"nr_inodes")) { 3433 sbinfo->max_inodes = memparse(value, &rest); 3434 if (*rest) 3435 goto bad_val; 3436 } else if (!strcmp(this_char,"mode")) { 3437 if (remount) 3438 continue; 3439 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3440 if (*rest) 3441 goto bad_val; 3442 } else if (!strcmp(this_char,"uid")) { 3443 if (remount) 3444 continue; 3445 uid = simple_strtoul(value, &rest, 0); 3446 if (*rest) 3447 goto bad_val; 3448 sbinfo->uid = make_kuid(current_user_ns(), uid); 3449 if (!uid_valid(sbinfo->uid)) 3450 goto bad_val; 3451 } else if (!strcmp(this_char,"gid")) { 3452 if (remount) 3453 continue; 3454 gid = simple_strtoul(value, &rest, 0); 3455 if (*rest) 3456 goto bad_val; 3457 sbinfo->gid = make_kgid(current_user_ns(), gid); 3458 if (!gid_valid(sbinfo->gid)) 3459 goto bad_val; 3460 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3461 } else if (!strcmp(this_char, "huge")) { 3462 int huge; 3463 huge = shmem_parse_huge(value); 3464 if (huge < 0) 3465 goto bad_val; 3466 if (!has_transparent_hugepage() && 3467 huge != SHMEM_HUGE_NEVER) 3468 goto bad_val; 3469 sbinfo->huge = huge; 3470 #endif 3471 #ifdef CONFIG_NUMA 3472 } else if (!strcmp(this_char,"mpol")) { 3473 mpol_put(mpol); 3474 mpol = NULL; 3475 if (mpol_parse_str(value, &mpol)) 3476 goto bad_val; 3477 #endif 3478 } else { 3479 pr_err("tmpfs: Bad mount option %s\n", this_char); 3480 goto error; 3481 } 3482 } 3483 sbinfo->mpol = mpol; 3484 return 0; 3485 3486 bad_val: 3487 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3488 value, this_char); 3489 error: 3490 mpol_put(mpol); 3491 return 1; 3492 3493 } 3494 3495 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3496 { 3497 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3498 struct shmem_sb_info config = *sbinfo; 3499 unsigned long inodes; 3500 int error = -EINVAL; 3501 3502 config.mpol = NULL; 3503 if (shmem_parse_options(data, &config, true)) 3504 return error; 3505 3506 spin_lock(&sbinfo->stat_lock); 3507 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3508 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3509 goto out; 3510 if (config.max_inodes < inodes) 3511 goto out; 3512 /* 3513 * Those tests disallow limited->unlimited while any are in use; 3514 * but we must separately disallow unlimited->limited, because 3515 * in that case we have no record of how much is already in use. 3516 */ 3517 if (config.max_blocks && !sbinfo->max_blocks) 3518 goto out; 3519 if (config.max_inodes && !sbinfo->max_inodes) 3520 goto out; 3521 3522 error = 0; 3523 sbinfo->huge = config.huge; 3524 sbinfo->max_blocks = config.max_blocks; 3525 sbinfo->max_inodes = config.max_inodes; 3526 sbinfo->free_inodes = config.max_inodes - inodes; 3527 3528 /* 3529 * Preserve previous mempolicy unless mpol remount option was specified. 3530 */ 3531 if (config.mpol) { 3532 mpol_put(sbinfo->mpol); 3533 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3534 } 3535 out: 3536 spin_unlock(&sbinfo->stat_lock); 3537 return error; 3538 } 3539 3540 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3541 { 3542 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3543 3544 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3545 seq_printf(seq, ",size=%luk", 3546 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3547 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3548 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3549 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3550 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3551 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3552 seq_printf(seq, ",uid=%u", 3553 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3554 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3555 seq_printf(seq, ",gid=%u", 3556 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3557 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3558 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3559 if (sbinfo->huge) 3560 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3561 #endif 3562 shmem_show_mpol(seq, sbinfo->mpol); 3563 return 0; 3564 } 3565 3566 #define MFD_NAME_PREFIX "memfd:" 3567 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3568 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3569 3570 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 3571 3572 SYSCALL_DEFINE2(memfd_create, 3573 const char __user *, uname, 3574 unsigned int, flags) 3575 { 3576 struct shmem_inode_info *info; 3577 struct file *file; 3578 int fd, error; 3579 char *name; 3580 long len; 3581 3582 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3583 return -EINVAL; 3584 3585 /* length includes terminating zero */ 3586 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3587 if (len <= 0) 3588 return -EFAULT; 3589 if (len > MFD_NAME_MAX_LEN + 1) 3590 return -EINVAL; 3591 3592 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 3593 if (!name) 3594 return -ENOMEM; 3595 3596 strcpy(name, MFD_NAME_PREFIX); 3597 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3598 error = -EFAULT; 3599 goto err_name; 3600 } 3601 3602 /* terminating-zero may have changed after strnlen_user() returned */ 3603 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3604 error = -EFAULT; 3605 goto err_name; 3606 } 3607 3608 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3609 if (fd < 0) { 3610 error = fd; 3611 goto err_name; 3612 } 3613 3614 file = shmem_file_setup(name, 0, VM_NORESERVE); 3615 if (IS_ERR(file)) { 3616 error = PTR_ERR(file); 3617 goto err_fd; 3618 } 3619 info = SHMEM_I(file_inode(file)); 3620 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3621 file->f_flags |= O_RDWR | O_LARGEFILE; 3622 if (flags & MFD_ALLOW_SEALING) 3623 info->seals &= ~F_SEAL_SEAL; 3624 3625 fd_install(fd, file); 3626 kfree(name); 3627 return fd; 3628 3629 err_fd: 3630 put_unused_fd(fd); 3631 err_name: 3632 kfree(name); 3633 return error; 3634 } 3635 3636 #endif /* CONFIG_TMPFS */ 3637 3638 static void shmem_put_super(struct super_block *sb) 3639 { 3640 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3641 3642 percpu_counter_destroy(&sbinfo->used_blocks); 3643 mpol_put(sbinfo->mpol); 3644 kfree(sbinfo); 3645 sb->s_fs_info = NULL; 3646 } 3647 3648 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3649 { 3650 struct inode *inode; 3651 struct shmem_sb_info *sbinfo; 3652 int err = -ENOMEM; 3653 3654 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3655 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3656 L1_CACHE_BYTES), GFP_KERNEL); 3657 if (!sbinfo) 3658 return -ENOMEM; 3659 3660 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3661 sbinfo->uid = current_fsuid(); 3662 sbinfo->gid = current_fsgid(); 3663 sb->s_fs_info = sbinfo; 3664 3665 #ifdef CONFIG_TMPFS 3666 /* 3667 * Per default we only allow half of the physical ram per 3668 * tmpfs instance, limiting inodes to one per page of lowmem; 3669 * but the internal instance is left unlimited. 3670 */ 3671 if (!(sb->s_flags & MS_KERNMOUNT)) { 3672 sbinfo->max_blocks = shmem_default_max_blocks(); 3673 sbinfo->max_inodes = shmem_default_max_inodes(); 3674 if (shmem_parse_options(data, sbinfo, false)) { 3675 err = -EINVAL; 3676 goto failed; 3677 } 3678 } else { 3679 sb->s_flags |= MS_NOUSER; 3680 } 3681 sb->s_export_op = &shmem_export_ops; 3682 sb->s_flags |= MS_NOSEC; 3683 #else 3684 sb->s_flags |= MS_NOUSER; 3685 #endif 3686 3687 spin_lock_init(&sbinfo->stat_lock); 3688 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3689 goto failed; 3690 sbinfo->free_inodes = sbinfo->max_inodes; 3691 spin_lock_init(&sbinfo->shrinklist_lock); 3692 INIT_LIST_HEAD(&sbinfo->shrinklist); 3693 3694 sb->s_maxbytes = MAX_LFS_FILESIZE; 3695 sb->s_blocksize = PAGE_SIZE; 3696 sb->s_blocksize_bits = PAGE_SHIFT; 3697 sb->s_magic = TMPFS_MAGIC; 3698 sb->s_op = &shmem_ops; 3699 sb->s_time_gran = 1; 3700 #ifdef CONFIG_TMPFS_XATTR 3701 sb->s_xattr = shmem_xattr_handlers; 3702 #endif 3703 #ifdef CONFIG_TMPFS_POSIX_ACL 3704 sb->s_flags |= MS_POSIXACL; 3705 #endif 3706 3707 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3708 if (!inode) 3709 goto failed; 3710 inode->i_uid = sbinfo->uid; 3711 inode->i_gid = sbinfo->gid; 3712 sb->s_root = d_make_root(inode); 3713 if (!sb->s_root) 3714 goto failed; 3715 return 0; 3716 3717 failed: 3718 shmem_put_super(sb); 3719 return err; 3720 } 3721 3722 static struct kmem_cache *shmem_inode_cachep; 3723 3724 static struct inode *shmem_alloc_inode(struct super_block *sb) 3725 { 3726 struct shmem_inode_info *info; 3727 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3728 if (!info) 3729 return NULL; 3730 return &info->vfs_inode; 3731 } 3732 3733 static void shmem_destroy_callback(struct rcu_head *head) 3734 { 3735 struct inode *inode = container_of(head, struct inode, i_rcu); 3736 if (S_ISLNK(inode->i_mode)) 3737 kfree(inode->i_link); 3738 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3739 } 3740 3741 static void shmem_destroy_inode(struct inode *inode) 3742 { 3743 if (S_ISREG(inode->i_mode)) 3744 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3745 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3746 } 3747 3748 static void shmem_init_inode(void *foo) 3749 { 3750 struct shmem_inode_info *info = foo; 3751 inode_init_once(&info->vfs_inode); 3752 } 3753 3754 static int shmem_init_inodecache(void) 3755 { 3756 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3757 sizeof(struct shmem_inode_info), 3758 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3759 return 0; 3760 } 3761 3762 static void shmem_destroy_inodecache(void) 3763 { 3764 kmem_cache_destroy(shmem_inode_cachep); 3765 } 3766 3767 static const struct address_space_operations shmem_aops = { 3768 .writepage = shmem_writepage, 3769 .set_page_dirty = __set_page_dirty_no_writeback, 3770 #ifdef CONFIG_TMPFS 3771 .write_begin = shmem_write_begin, 3772 .write_end = shmem_write_end, 3773 #endif 3774 #ifdef CONFIG_MIGRATION 3775 .migratepage = migrate_page, 3776 #endif 3777 .error_remove_page = generic_error_remove_page, 3778 }; 3779 3780 static const struct file_operations shmem_file_operations = { 3781 .mmap = shmem_mmap, 3782 .get_unmapped_area = shmem_get_unmapped_area, 3783 #ifdef CONFIG_TMPFS 3784 .llseek = shmem_file_llseek, 3785 .read_iter = shmem_file_read_iter, 3786 .write_iter = generic_file_write_iter, 3787 .fsync = noop_fsync, 3788 .splice_read = shmem_file_splice_read, 3789 .splice_write = iter_file_splice_write, 3790 .fallocate = shmem_fallocate, 3791 #endif 3792 }; 3793 3794 static const struct inode_operations shmem_inode_operations = { 3795 .getattr = shmem_getattr, 3796 .setattr = shmem_setattr, 3797 #ifdef CONFIG_TMPFS_XATTR 3798 .setxattr = generic_setxattr, 3799 .getxattr = generic_getxattr, 3800 .listxattr = shmem_listxattr, 3801 .removexattr = generic_removexattr, 3802 .set_acl = simple_set_acl, 3803 #endif 3804 }; 3805 3806 static const struct inode_operations shmem_dir_inode_operations = { 3807 #ifdef CONFIG_TMPFS 3808 .create = shmem_create, 3809 .lookup = simple_lookup, 3810 .link = shmem_link, 3811 .unlink = shmem_unlink, 3812 .symlink = shmem_symlink, 3813 .mkdir = shmem_mkdir, 3814 .rmdir = shmem_rmdir, 3815 .mknod = shmem_mknod, 3816 .rename2 = shmem_rename2, 3817 .tmpfile = shmem_tmpfile, 3818 #endif 3819 #ifdef CONFIG_TMPFS_XATTR 3820 .setxattr = generic_setxattr, 3821 .getxattr = generic_getxattr, 3822 .listxattr = shmem_listxattr, 3823 .removexattr = generic_removexattr, 3824 #endif 3825 #ifdef CONFIG_TMPFS_POSIX_ACL 3826 .setattr = shmem_setattr, 3827 .set_acl = simple_set_acl, 3828 #endif 3829 }; 3830 3831 static const struct inode_operations shmem_special_inode_operations = { 3832 #ifdef CONFIG_TMPFS_XATTR 3833 .setxattr = generic_setxattr, 3834 .getxattr = generic_getxattr, 3835 .listxattr = shmem_listxattr, 3836 .removexattr = generic_removexattr, 3837 #endif 3838 #ifdef CONFIG_TMPFS_POSIX_ACL 3839 .setattr = shmem_setattr, 3840 .set_acl = simple_set_acl, 3841 #endif 3842 }; 3843 3844 static const struct super_operations shmem_ops = { 3845 .alloc_inode = shmem_alloc_inode, 3846 .destroy_inode = shmem_destroy_inode, 3847 #ifdef CONFIG_TMPFS 3848 .statfs = shmem_statfs, 3849 .remount_fs = shmem_remount_fs, 3850 .show_options = shmem_show_options, 3851 #endif 3852 .evict_inode = shmem_evict_inode, 3853 .drop_inode = generic_delete_inode, 3854 .put_super = shmem_put_super, 3855 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3856 .nr_cached_objects = shmem_unused_huge_count, 3857 .free_cached_objects = shmem_unused_huge_scan, 3858 #endif 3859 }; 3860 3861 static const struct vm_operations_struct shmem_vm_ops = { 3862 .fault = shmem_fault, 3863 .map_pages = filemap_map_pages, 3864 #ifdef CONFIG_NUMA 3865 .set_policy = shmem_set_policy, 3866 .get_policy = shmem_get_policy, 3867 #endif 3868 }; 3869 3870 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3871 int flags, const char *dev_name, void *data) 3872 { 3873 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3874 } 3875 3876 static struct file_system_type shmem_fs_type = { 3877 .owner = THIS_MODULE, 3878 .name = "tmpfs", 3879 .mount = shmem_mount, 3880 .kill_sb = kill_litter_super, 3881 .fs_flags = FS_USERNS_MOUNT, 3882 }; 3883 3884 int __init shmem_init(void) 3885 { 3886 int error; 3887 3888 /* If rootfs called this, don't re-init */ 3889 if (shmem_inode_cachep) 3890 return 0; 3891 3892 error = shmem_init_inodecache(); 3893 if (error) 3894 goto out3; 3895 3896 error = register_filesystem(&shmem_fs_type); 3897 if (error) { 3898 pr_err("Could not register tmpfs\n"); 3899 goto out2; 3900 } 3901 3902 shm_mnt = kern_mount(&shmem_fs_type); 3903 if (IS_ERR(shm_mnt)) { 3904 error = PTR_ERR(shm_mnt); 3905 pr_err("Could not kern_mount tmpfs\n"); 3906 goto out1; 3907 } 3908 3909 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3910 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY) 3911 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3912 else 3913 shmem_huge = 0; /* just in case it was patched */ 3914 #endif 3915 return 0; 3916 3917 out1: 3918 unregister_filesystem(&shmem_fs_type); 3919 out2: 3920 shmem_destroy_inodecache(); 3921 out3: 3922 shm_mnt = ERR_PTR(error); 3923 return error; 3924 } 3925 3926 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3927 static ssize_t shmem_enabled_show(struct kobject *kobj, 3928 struct kobj_attribute *attr, char *buf) 3929 { 3930 int values[] = { 3931 SHMEM_HUGE_ALWAYS, 3932 SHMEM_HUGE_WITHIN_SIZE, 3933 SHMEM_HUGE_ADVISE, 3934 SHMEM_HUGE_NEVER, 3935 SHMEM_HUGE_DENY, 3936 SHMEM_HUGE_FORCE, 3937 }; 3938 int i, count; 3939 3940 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3941 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3942 3943 count += sprintf(buf + count, fmt, 3944 shmem_format_huge(values[i])); 3945 } 3946 buf[count - 1] = '\n'; 3947 return count; 3948 } 3949 3950 static ssize_t shmem_enabled_store(struct kobject *kobj, 3951 struct kobj_attribute *attr, const char *buf, size_t count) 3952 { 3953 char tmp[16]; 3954 int huge; 3955 3956 if (count + 1 > sizeof(tmp)) 3957 return -EINVAL; 3958 memcpy(tmp, buf, count); 3959 tmp[count] = '\0'; 3960 if (count && tmp[count - 1] == '\n') 3961 tmp[count - 1] = '\0'; 3962 3963 huge = shmem_parse_huge(tmp); 3964 if (huge == -EINVAL) 3965 return -EINVAL; 3966 if (!has_transparent_hugepage() && 3967 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3968 return -EINVAL; 3969 3970 shmem_huge = huge; 3971 if (shmem_huge < SHMEM_HUGE_DENY) 3972 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3973 return count; 3974 } 3975 3976 struct kobj_attribute shmem_enabled_attr = 3977 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3978 3979 bool shmem_huge_enabled(struct vm_area_struct *vma) 3980 { 3981 struct inode *inode = file_inode(vma->vm_file); 3982 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3983 loff_t i_size; 3984 pgoff_t off; 3985 3986 if (shmem_huge == SHMEM_HUGE_FORCE) 3987 return true; 3988 if (shmem_huge == SHMEM_HUGE_DENY) 3989 return false; 3990 switch (sbinfo->huge) { 3991 case SHMEM_HUGE_NEVER: 3992 return false; 3993 case SHMEM_HUGE_ALWAYS: 3994 return true; 3995 case SHMEM_HUGE_WITHIN_SIZE: 3996 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3997 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3998 if (i_size >= HPAGE_PMD_SIZE && 3999 i_size >> PAGE_SHIFT >= off) 4000 return true; 4001 case SHMEM_HUGE_ADVISE: 4002 /* TODO: implement fadvise() hints */ 4003 return (vma->vm_flags & VM_HUGEPAGE); 4004 default: 4005 VM_BUG_ON(1); 4006 return false; 4007 } 4008 } 4009 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 4010 4011 #else /* !CONFIG_SHMEM */ 4012 4013 /* 4014 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4015 * 4016 * This is intended for small system where the benefits of the full 4017 * shmem code (swap-backed and resource-limited) are outweighed by 4018 * their complexity. On systems without swap this code should be 4019 * effectively equivalent, but much lighter weight. 4020 */ 4021 4022 static struct file_system_type shmem_fs_type = { 4023 .name = "tmpfs", 4024 .mount = ramfs_mount, 4025 .kill_sb = kill_litter_super, 4026 .fs_flags = FS_USERNS_MOUNT, 4027 }; 4028 4029 int __init shmem_init(void) 4030 { 4031 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4032 4033 shm_mnt = kern_mount(&shmem_fs_type); 4034 BUG_ON(IS_ERR(shm_mnt)); 4035 4036 return 0; 4037 } 4038 4039 int shmem_unuse(swp_entry_t swap, struct page *page) 4040 { 4041 return 0; 4042 } 4043 4044 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4045 { 4046 return 0; 4047 } 4048 4049 void shmem_unlock_mapping(struct address_space *mapping) 4050 { 4051 } 4052 4053 #ifdef CONFIG_MMU 4054 unsigned long shmem_get_unmapped_area(struct file *file, 4055 unsigned long addr, unsigned long len, 4056 unsigned long pgoff, unsigned long flags) 4057 { 4058 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4059 } 4060 #endif 4061 4062 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4063 { 4064 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4065 } 4066 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4067 4068 #define shmem_vm_ops generic_file_vm_ops 4069 #define shmem_file_operations ramfs_file_operations 4070 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4071 #define shmem_acct_size(flags, size) 0 4072 #define shmem_unacct_size(flags, size) do {} while (0) 4073 4074 #endif /* CONFIG_SHMEM */ 4075 4076 /* common code */ 4077 4078 static struct dentry_operations anon_ops = { 4079 .d_dname = simple_dname 4080 }; 4081 4082 static struct file *__shmem_file_setup(const char *name, loff_t size, 4083 unsigned long flags, unsigned int i_flags) 4084 { 4085 struct file *res; 4086 struct inode *inode; 4087 struct path path; 4088 struct super_block *sb; 4089 struct qstr this; 4090 4091 if (IS_ERR(shm_mnt)) 4092 return ERR_CAST(shm_mnt); 4093 4094 if (size < 0 || size > MAX_LFS_FILESIZE) 4095 return ERR_PTR(-EINVAL); 4096 4097 if (shmem_acct_size(flags, size)) 4098 return ERR_PTR(-ENOMEM); 4099 4100 res = ERR_PTR(-ENOMEM); 4101 this.name = name; 4102 this.len = strlen(name); 4103 this.hash = 0; /* will go */ 4104 sb = shm_mnt->mnt_sb; 4105 path.mnt = mntget(shm_mnt); 4106 path.dentry = d_alloc_pseudo(sb, &this); 4107 if (!path.dentry) 4108 goto put_memory; 4109 d_set_d_op(path.dentry, &anon_ops); 4110 4111 res = ERR_PTR(-ENOSPC); 4112 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4113 if (!inode) 4114 goto put_memory; 4115 4116 inode->i_flags |= i_flags; 4117 d_instantiate(path.dentry, inode); 4118 inode->i_size = size; 4119 clear_nlink(inode); /* It is unlinked */ 4120 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4121 if (IS_ERR(res)) 4122 goto put_path; 4123 4124 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4125 &shmem_file_operations); 4126 if (IS_ERR(res)) 4127 goto put_path; 4128 4129 return res; 4130 4131 put_memory: 4132 shmem_unacct_size(flags, size); 4133 put_path: 4134 path_put(&path); 4135 return res; 4136 } 4137 4138 /** 4139 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4140 * kernel internal. There will be NO LSM permission checks against the 4141 * underlying inode. So users of this interface must do LSM checks at a 4142 * higher layer. The users are the big_key and shm implementations. LSM 4143 * checks are provided at the key or shm level rather than the inode. 4144 * @name: name for dentry (to be seen in /proc/<pid>/maps 4145 * @size: size to be set for the file 4146 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4147 */ 4148 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4149 { 4150 return __shmem_file_setup(name, size, flags, S_PRIVATE); 4151 } 4152 4153 /** 4154 * shmem_file_setup - get an unlinked file living in tmpfs 4155 * @name: name for dentry (to be seen in /proc/<pid>/maps 4156 * @size: size to be set for the file 4157 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4158 */ 4159 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4160 { 4161 return __shmem_file_setup(name, size, flags, 0); 4162 } 4163 EXPORT_SYMBOL_GPL(shmem_file_setup); 4164 4165 /** 4166 * shmem_zero_setup - setup a shared anonymous mapping 4167 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4168 */ 4169 int shmem_zero_setup(struct vm_area_struct *vma) 4170 { 4171 struct file *file; 4172 loff_t size = vma->vm_end - vma->vm_start; 4173 4174 /* 4175 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4176 * between XFS directory reading and selinux: since this file is only 4177 * accessible to the user through its mapping, use S_PRIVATE flag to 4178 * bypass file security, in the same way as shmem_kernel_file_setup(). 4179 */ 4180 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 4181 if (IS_ERR(file)) 4182 return PTR_ERR(file); 4183 4184 if (vma->vm_file) 4185 fput(vma->vm_file); 4186 vma->vm_file = file; 4187 vma->vm_ops = &shmem_vm_ops; 4188 4189 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4190 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4191 (vma->vm_end & HPAGE_PMD_MASK)) { 4192 khugepaged_enter(vma, vma->vm_flags); 4193 } 4194 4195 return 0; 4196 } 4197 4198 /** 4199 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4200 * @mapping: the page's address_space 4201 * @index: the page index 4202 * @gfp: the page allocator flags to use if allocating 4203 * 4204 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4205 * with any new page allocations done using the specified allocation flags. 4206 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4207 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4208 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4209 * 4210 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4211 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4212 */ 4213 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4214 pgoff_t index, gfp_t gfp) 4215 { 4216 #ifdef CONFIG_SHMEM 4217 struct inode *inode = mapping->host; 4218 struct page *page; 4219 int error; 4220 4221 BUG_ON(mapping->a_ops != &shmem_aops); 4222 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4223 gfp, NULL, NULL); 4224 if (error) 4225 page = ERR_PTR(error); 4226 else 4227 unlock_page(page); 4228 return page; 4229 #else 4230 /* 4231 * The tiny !SHMEM case uses ramfs without swap 4232 */ 4233 return read_cache_page_gfp(mapping, index, gfp); 4234 #endif 4235 } 4236 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4237