1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #define SHMEM_SEEN_BLOCKS 1 126 #define SHMEM_SEEN_INODES 2 127 #define SHMEM_SEEN_HUGE 4 128 #define SHMEM_SEEN_INUMS 8 129 #define SHMEM_SEEN_NOSWAP 16 130 #define SHMEM_SEEN_QUOTA 32 131 }; 132 133 #ifdef CONFIG_TMPFS 134 static unsigned long shmem_default_max_blocks(void) 135 { 136 return totalram_pages() / 2; 137 } 138 139 static unsigned long shmem_default_max_inodes(void) 140 { 141 unsigned long nr_pages = totalram_pages(); 142 143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 144 ULONG_MAX / BOGO_INODE_SIZE); 145 } 146 #endif 147 148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 149 struct folio **foliop, enum sgp_type sgp, 150 gfp_t gfp, struct vm_area_struct *vma, 151 vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_block(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) 227 goto unacct; 228 229 percpu_counter_add(&sbinfo->used_blocks, pages); 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool vma_is_anon_shmem(struct vm_area_struct *vma) 267 { 268 return vma->vm_ops == &shmem_anon_vm_ops; 269 } 270 271 bool vma_is_shmem(struct vm_area_struct *vma) 272 { 273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 274 } 275 276 static LIST_HEAD(shmem_swaplist); 277 static DEFINE_MUTEX(shmem_swaplist_mutex); 278 279 #ifdef CONFIG_TMPFS_QUOTA 280 281 static int shmem_enable_quotas(struct super_block *sb, 282 unsigned short quota_types) 283 { 284 int type, err = 0; 285 286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 288 if (!(quota_types & (1 << type))) 289 continue; 290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 291 DQUOT_USAGE_ENABLED | 292 DQUOT_LIMITS_ENABLED); 293 if (err) 294 goto out_err; 295 } 296 return 0; 297 298 out_err: 299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 300 type, err); 301 for (type--; type >= 0; type--) 302 dquot_quota_off(sb, type); 303 return err; 304 } 305 306 static void shmem_disable_quotas(struct super_block *sb) 307 { 308 int type; 309 310 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 311 dquot_quota_off(sb, type); 312 } 313 314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 315 { 316 return SHMEM_I(inode)->i_dquot; 317 } 318 #endif /* CONFIG_TMPFS_QUOTA */ 319 320 /* 321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 322 * produces a novel ino for the newly allocated inode. 323 * 324 * It may also be called when making a hard link to permit the space needed by 325 * each dentry. However, in that case, no new inode number is needed since that 326 * internally draws from another pool of inode numbers (currently global 327 * get_next_ino()). This case is indicated by passing NULL as inop. 328 */ 329 #define SHMEM_INO_BATCH 1024 330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 331 { 332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 333 ino_t ino; 334 335 if (!(sb->s_flags & SB_KERNMOUNT)) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 if (sbinfo->max_inodes) { 338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 339 raw_spin_unlock(&sbinfo->stat_lock); 340 return -ENOSPC; 341 } 342 sbinfo->free_ispace -= BOGO_INODE_SIZE; 343 } 344 if (inop) { 345 ino = sbinfo->next_ino++; 346 if (unlikely(is_zero_ino(ino))) 347 ino = sbinfo->next_ino++; 348 if (unlikely(!sbinfo->full_inums && 349 ino > UINT_MAX)) { 350 /* 351 * Emulate get_next_ino uint wraparound for 352 * compatibility 353 */ 354 if (IS_ENABLED(CONFIG_64BIT)) 355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 356 __func__, MINOR(sb->s_dev)); 357 sbinfo->next_ino = 1; 358 ino = sbinfo->next_ino++; 359 } 360 *inop = ino; 361 } 362 raw_spin_unlock(&sbinfo->stat_lock); 363 } else if (inop) { 364 /* 365 * __shmem_file_setup, one of our callers, is lock-free: it 366 * doesn't hold stat_lock in shmem_reserve_inode since 367 * max_inodes is always 0, and is called from potentially 368 * unknown contexts. As such, use a per-cpu batched allocator 369 * which doesn't require the per-sb stat_lock unless we are at 370 * the batch boundary. 371 * 372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 373 * shmem mounts are not exposed to userspace, so we don't need 374 * to worry about things like glibc compatibility. 375 */ 376 ino_t *next_ino; 377 378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 379 ino = *next_ino; 380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 381 raw_spin_lock(&sbinfo->stat_lock); 382 ino = sbinfo->next_ino; 383 sbinfo->next_ino += SHMEM_INO_BATCH; 384 raw_spin_unlock(&sbinfo->stat_lock); 385 if (unlikely(is_zero_ino(ino))) 386 ino++; 387 } 388 *inop = ino; 389 *next_ino = ++ino; 390 put_cpu(); 391 } 392 393 return 0; 394 } 395 396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 397 { 398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 399 if (sbinfo->max_inodes) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 } 404 } 405 406 /** 407 * shmem_recalc_inode - recalculate the block usage of an inode 408 * @inode: inode to recalc 409 * @alloced: the change in number of pages allocated to inode 410 * @swapped: the change in number of pages swapped from inode 411 * 412 * We have to calculate the free blocks since the mm can drop 413 * undirtied hole pages behind our back. 414 * 415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 417 */ 418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 419 { 420 struct shmem_inode_info *info = SHMEM_I(inode); 421 long freed; 422 423 spin_lock(&info->lock); 424 info->alloced += alloced; 425 info->swapped += swapped; 426 freed = info->alloced - info->swapped - 427 READ_ONCE(inode->i_mapping->nrpages); 428 /* 429 * Special case: whereas normally shmem_recalc_inode() is called 430 * after i_mapping->nrpages has already been adjusted (up or down), 431 * shmem_writepage() has to raise swapped before nrpages is lowered - 432 * to stop a racing shmem_recalc_inode() from thinking that a page has 433 * been freed. Compensate here, to avoid the need for a followup call. 434 */ 435 if (swapped > 0) 436 freed += swapped; 437 if (freed > 0) 438 info->alloced -= freed; 439 spin_unlock(&info->lock); 440 441 /* The quota case may block */ 442 if (freed > 0) 443 shmem_inode_unacct_blocks(inode, freed); 444 } 445 446 bool shmem_charge(struct inode *inode, long pages) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 450 if (shmem_inode_acct_block(inode, pages)) 451 return false; 452 453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 454 xa_lock_irq(&mapping->i_pages); 455 mapping->nrpages += pages; 456 xa_unlock_irq(&mapping->i_pages); 457 458 shmem_recalc_inode(inode, pages, 0); 459 return true; 460 } 461 462 void shmem_uncharge(struct inode *inode, long pages) 463 { 464 /* pages argument is currently unused: keep it to help debugging */ 465 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 466 467 shmem_recalc_inode(inode, 0, 0); 468 } 469 470 /* 471 * Replace item expected in xarray by a new item, while holding xa_lock. 472 */ 473 static int shmem_replace_entry(struct address_space *mapping, 474 pgoff_t index, void *expected, void *replacement) 475 { 476 XA_STATE(xas, &mapping->i_pages, index); 477 void *item; 478 479 VM_BUG_ON(!expected); 480 VM_BUG_ON(!replacement); 481 item = xas_load(&xas); 482 if (item != expected) 483 return -ENOENT; 484 xas_store(&xas, replacement); 485 return 0; 486 } 487 488 /* 489 * Sometimes, before we decide whether to proceed or to fail, we must check 490 * that an entry was not already brought back from swap by a racing thread. 491 * 492 * Checking page is not enough: by the time a SwapCache page is locked, it 493 * might be reused, and again be SwapCache, using the same swap as before. 494 */ 495 static bool shmem_confirm_swap(struct address_space *mapping, 496 pgoff_t index, swp_entry_t swap) 497 { 498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 499 } 500 501 /* 502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 503 * 504 * SHMEM_HUGE_NEVER: 505 * disables huge pages for the mount; 506 * SHMEM_HUGE_ALWAYS: 507 * enables huge pages for the mount; 508 * SHMEM_HUGE_WITHIN_SIZE: 509 * only allocate huge pages if the page will be fully within i_size, 510 * also respect fadvise()/madvise() hints; 511 * SHMEM_HUGE_ADVISE: 512 * only allocate huge pages if requested with fadvise()/madvise(); 513 */ 514 515 #define SHMEM_HUGE_NEVER 0 516 #define SHMEM_HUGE_ALWAYS 1 517 #define SHMEM_HUGE_WITHIN_SIZE 2 518 #define SHMEM_HUGE_ADVISE 3 519 520 /* 521 * Special values. 522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 523 * 524 * SHMEM_HUGE_DENY: 525 * disables huge on shm_mnt and all mounts, for emergency use; 526 * SHMEM_HUGE_FORCE: 527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 528 * 529 */ 530 #define SHMEM_HUGE_DENY (-1) 531 #define SHMEM_HUGE_FORCE (-2) 532 533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 534 /* ifdef here to avoid bloating shmem.o when not necessary */ 535 536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 537 538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 539 struct mm_struct *mm, unsigned long vm_flags) 540 { 541 loff_t i_size; 542 543 if (!S_ISREG(inode->i_mode)) 544 return false; 545 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 546 return false; 547 if (shmem_huge == SHMEM_HUGE_DENY) 548 return false; 549 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 550 return true; 551 552 switch (SHMEM_SB(inode->i_sb)->huge) { 553 case SHMEM_HUGE_ALWAYS: 554 return true; 555 case SHMEM_HUGE_WITHIN_SIZE: 556 index = round_up(index + 1, HPAGE_PMD_NR); 557 i_size = round_up(i_size_read(inode), PAGE_SIZE); 558 if (i_size >> PAGE_SHIFT >= index) 559 return true; 560 fallthrough; 561 case SHMEM_HUGE_ADVISE: 562 if (mm && (vm_flags & VM_HUGEPAGE)) 563 return true; 564 fallthrough; 565 default: 566 return false; 567 } 568 } 569 570 #if defined(CONFIG_SYSFS) 571 static int shmem_parse_huge(const char *str) 572 { 573 if (!strcmp(str, "never")) 574 return SHMEM_HUGE_NEVER; 575 if (!strcmp(str, "always")) 576 return SHMEM_HUGE_ALWAYS; 577 if (!strcmp(str, "within_size")) 578 return SHMEM_HUGE_WITHIN_SIZE; 579 if (!strcmp(str, "advise")) 580 return SHMEM_HUGE_ADVISE; 581 if (!strcmp(str, "deny")) 582 return SHMEM_HUGE_DENY; 583 if (!strcmp(str, "force")) 584 return SHMEM_HUGE_FORCE; 585 return -EINVAL; 586 } 587 #endif 588 589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 590 static const char *shmem_format_huge(int huge) 591 { 592 switch (huge) { 593 case SHMEM_HUGE_NEVER: 594 return "never"; 595 case SHMEM_HUGE_ALWAYS: 596 return "always"; 597 case SHMEM_HUGE_WITHIN_SIZE: 598 return "within_size"; 599 case SHMEM_HUGE_ADVISE: 600 return "advise"; 601 case SHMEM_HUGE_DENY: 602 return "deny"; 603 case SHMEM_HUGE_FORCE: 604 return "force"; 605 default: 606 VM_BUG_ON(1); 607 return "bad_val"; 608 } 609 } 610 #endif 611 612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 613 struct shrink_control *sc, unsigned long nr_to_split) 614 { 615 LIST_HEAD(list), *pos, *next; 616 LIST_HEAD(to_remove); 617 struct inode *inode; 618 struct shmem_inode_info *info; 619 struct folio *folio; 620 unsigned long batch = sc ? sc->nr_to_scan : 128; 621 int split = 0; 622 623 if (list_empty(&sbinfo->shrinklist)) 624 return SHRINK_STOP; 625 626 spin_lock(&sbinfo->shrinklist_lock); 627 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 628 info = list_entry(pos, struct shmem_inode_info, shrinklist); 629 630 /* pin the inode */ 631 inode = igrab(&info->vfs_inode); 632 633 /* inode is about to be evicted */ 634 if (!inode) { 635 list_del_init(&info->shrinklist); 636 goto next; 637 } 638 639 /* Check if there's anything to gain */ 640 if (round_up(inode->i_size, PAGE_SIZE) == 641 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 642 list_move(&info->shrinklist, &to_remove); 643 goto next; 644 } 645 646 list_move(&info->shrinklist, &list); 647 next: 648 sbinfo->shrinklist_len--; 649 if (!--batch) 650 break; 651 } 652 spin_unlock(&sbinfo->shrinklist_lock); 653 654 list_for_each_safe(pos, next, &to_remove) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 inode = &info->vfs_inode; 657 list_del_init(&info->shrinklist); 658 iput(inode); 659 } 660 661 list_for_each_safe(pos, next, &list) { 662 int ret; 663 pgoff_t index; 664 665 info = list_entry(pos, struct shmem_inode_info, shrinklist); 666 inode = &info->vfs_inode; 667 668 if (nr_to_split && split >= nr_to_split) 669 goto move_back; 670 671 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 672 folio = filemap_get_folio(inode->i_mapping, index); 673 if (IS_ERR(folio)) 674 goto drop; 675 676 /* No huge page at the end of the file: nothing to split */ 677 if (!folio_test_large(folio)) { 678 folio_put(folio); 679 goto drop; 680 } 681 682 /* 683 * Move the inode on the list back to shrinklist if we failed 684 * to lock the page at this time. 685 * 686 * Waiting for the lock may lead to deadlock in the 687 * reclaim path. 688 */ 689 if (!folio_trylock(folio)) { 690 folio_put(folio); 691 goto move_back; 692 } 693 694 ret = split_folio(folio); 695 folio_unlock(folio); 696 folio_put(folio); 697 698 /* If split failed move the inode on the list back to shrinklist */ 699 if (ret) 700 goto move_back; 701 702 split++; 703 drop: 704 list_del_init(&info->shrinklist); 705 goto put; 706 move_back: 707 /* 708 * Make sure the inode is either on the global list or deleted 709 * from any local list before iput() since it could be deleted 710 * in another thread once we put the inode (then the local list 711 * is corrupted). 712 */ 713 spin_lock(&sbinfo->shrinklist_lock); 714 list_move(&info->shrinklist, &sbinfo->shrinklist); 715 sbinfo->shrinklist_len++; 716 spin_unlock(&sbinfo->shrinklist_lock); 717 put: 718 iput(inode); 719 } 720 721 return split; 722 } 723 724 static long shmem_unused_huge_scan(struct super_block *sb, 725 struct shrink_control *sc) 726 { 727 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 728 729 if (!READ_ONCE(sbinfo->shrinklist_len)) 730 return SHRINK_STOP; 731 732 return shmem_unused_huge_shrink(sbinfo, sc, 0); 733 } 734 735 static long shmem_unused_huge_count(struct super_block *sb, 736 struct shrink_control *sc) 737 { 738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 739 return READ_ONCE(sbinfo->shrinklist_len); 740 } 741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 742 743 #define shmem_huge SHMEM_HUGE_DENY 744 745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 746 struct mm_struct *mm, unsigned long vm_flags) 747 { 748 return false; 749 } 750 751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 752 struct shrink_control *sc, unsigned long nr_to_split) 753 { 754 return 0; 755 } 756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 757 758 /* 759 * Like filemap_add_folio, but error if expected item has gone. 760 */ 761 static int shmem_add_to_page_cache(struct folio *folio, 762 struct address_space *mapping, 763 pgoff_t index, void *expected, gfp_t gfp, 764 struct mm_struct *charge_mm) 765 { 766 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 767 long nr = folio_nr_pages(folio); 768 int error; 769 770 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 772 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 773 VM_BUG_ON(expected && folio_test_large(folio)); 774 775 folio_ref_add(folio, nr); 776 folio->mapping = mapping; 777 folio->index = index; 778 779 if (!folio_test_swapcache(folio)) { 780 error = mem_cgroup_charge(folio, charge_mm, gfp); 781 if (error) { 782 if (folio_test_pmd_mappable(folio)) { 783 count_vm_event(THP_FILE_FALLBACK); 784 count_vm_event(THP_FILE_FALLBACK_CHARGE); 785 } 786 goto error; 787 } 788 } 789 folio_throttle_swaprate(folio, gfp); 790 791 do { 792 xas_lock_irq(&xas); 793 if (expected != xas_find_conflict(&xas)) { 794 xas_set_err(&xas, -EEXIST); 795 goto unlock; 796 } 797 if (expected && xas_find_conflict(&xas)) { 798 xas_set_err(&xas, -EEXIST); 799 goto unlock; 800 } 801 xas_store(&xas, folio); 802 if (xas_error(&xas)) 803 goto unlock; 804 if (folio_test_pmd_mappable(folio)) { 805 count_vm_event(THP_FILE_ALLOC); 806 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 807 } 808 mapping->nrpages += nr; 809 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 810 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 811 unlock: 812 xas_unlock_irq(&xas); 813 } while (xas_nomem(&xas, gfp)); 814 815 if (xas_error(&xas)) { 816 error = xas_error(&xas); 817 goto error; 818 } 819 820 return 0; 821 error: 822 folio->mapping = NULL; 823 folio_ref_sub(folio, nr); 824 return error; 825 } 826 827 /* 828 * Like delete_from_page_cache, but substitutes swap for @folio. 829 */ 830 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 831 { 832 struct address_space *mapping = folio->mapping; 833 long nr = folio_nr_pages(folio); 834 int error; 835 836 xa_lock_irq(&mapping->i_pages); 837 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 838 folio->mapping = NULL; 839 mapping->nrpages -= nr; 840 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 841 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 842 xa_unlock_irq(&mapping->i_pages); 843 folio_put(folio); 844 BUG_ON(error); 845 } 846 847 /* 848 * Remove swap entry from page cache, free the swap and its page cache. 849 */ 850 static int shmem_free_swap(struct address_space *mapping, 851 pgoff_t index, void *radswap) 852 { 853 void *old; 854 855 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 856 if (old != radswap) 857 return -ENOENT; 858 free_swap_and_cache(radix_to_swp_entry(radswap)); 859 return 0; 860 } 861 862 /* 863 * Determine (in bytes) how many of the shmem object's pages mapped by the 864 * given offsets are swapped out. 865 * 866 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 867 * as long as the inode doesn't go away and racy results are not a problem. 868 */ 869 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 870 pgoff_t start, pgoff_t end) 871 { 872 XA_STATE(xas, &mapping->i_pages, start); 873 struct page *page; 874 unsigned long swapped = 0; 875 unsigned long max = end - 1; 876 877 rcu_read_lock(); 878 xas_for_each(&xas, page, max) { 879 if (xas_retry(&xas, page)) 880 continue; 881 if (xa_is_value(page)) 882 swapped++; 883 if (xas.xa_index == max) 884 break; 885 if (need_resched()) { 886 xas_pause(&xas); 887 cond_resched_rcu(); 888 } 889 } 890 891 rcu_read_unlock(); 892 893 return swapped << PAGE_SHIFT; 894 } 895 896 /* 897 * Determine (in bytes) how many of the shmem object's pages mapped by the 898 * given vma is swapped out. 899 * 900 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 901 * as long as the inode doesn't go away and racy results are not a problem. 902 */ 903 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 904 { 905 struct inode *inode = file_inode(vma->vm_file); 906 struct shmem_inode_info *info = SHMEM_I(inode); 907 struct address_space *mapping = inode->i_mapping; 908 unsigned long swapped; 909 910 /* Be careful as we don't hold info->lock */ 911 swapped = READ_ONCE(info->swapped); 912 913 /* 914 * The easier cases are when the shmem object has nothing in swap, or 915 * the vma maps it whole. Then we can simply use the stats that we 916 * already track. 917 */ 918 if (!swapped) 919 return 0; 920 921 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 922 return swapped << PAGE_SHIFT; 923 924 /* Here comes the more involved part */ 925 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 926 vma->vm_pgoff + vma_pages(vma)); 927 } 928 929 /* 930 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 931 */ 932 void shmem_unlock_mapping(struct address_space *mapping) 933 { 934 struct folio_batch fbatch; 935 pgoff_t index = 0; 936 937 folio_batch_init(&fbatch); 938 /* 939 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 940 */ 941 while (!mapping_unevictable(mapping) && 942 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 943 check_move_unevictable_folios(&fbatch); 944 folio_batch_release(&fbatch); 945 cond_resched(); 946 } 947 } 948 949 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 950 { 951 struct folio *folio; 952 953 /* 954 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 955 * beyond i_size, and reports fallocated folios as holes. 956 */ 957 folio = filemap_get_entry(inode->i_mapping, index); 958 if (!folio) 959 return folio; 960 if (!xa_is_value(folio)) { 961 folio_lock(folio); 962 if (folio->mapping == inode->i_mapping) 963 return folio; 964 /* The folio has been swapped out */ 965 folio_unlock(folio); 966 folio_put(folio); 967 } 968 /* 969 * But read a folio back from swap if any of it is within i_size 970 * (although in some cases this is just a waste of time). 971 */ 972 folio = NULL; 973 shmem_get_folio(inode, index, &folio, SGP_READ); 974 return folio; 975 } 976 977 /* 978 * Remove range of pages and swap entries from page cache, and free them. 979 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 980 */ 981 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 982 bool unfalloc) 983 { 984 struct address_space *mapping = inode->i_mapping; 985 struct shmem_inode_info *info = SHMEM_I(inode); 986 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 987 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 988 struct folio_batch fbatch; 989 pgoff_t indices[PAGEVEC_SIZE]; 990 struct folio *folio; 991 bool same_folio; 992 long nr_swaps_freed = 0; 993 pgoff_t index; 994 int i; 995 996 if (lend == -1) 997 end = -1; /* unsigned, so actually very big */ 998 999 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1000 info->fallocend = start; 1001 1002 folio_batch_init(&fbatch); 1003 index = start; 1004 while (index < end && find_lock_entries(mapping, &index, end - 1, 1005 &fbatch, indices)) { 1006 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1007 folio = fbatch.folios[i]; 1008 1009 if (xa_is_value(folio)) { 1010 if (unfalloc) 1011 continue; 1012 nr_swaps_freed += !shmem_free_swap(mapping, 1013 indices[i], folio); 1014 continue; 1015 } 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) 1018 truncate_inode_folio(mapping, folio); 1019 folio_unlock(folio); 1020 } 1021 folio_batch_remove_exceptionals(&fbatch); 1022 folio_batch_release(&fbatch); 1023 cond_resched(); 1024 } 1025 1026 /* 1027 * When undoing a failed fallocate, we want none of the partial folio 1028 * zeroing and splitting below, but shall want to truncate the whole 1029 * folio when !uptodate indicates that it was added by this fallocate, 1030 * even when [lstart, lend] covers only a part of the folio. 1031 */ 1032 if (unfalloc) 1033 goto whole_folios; 1034 1035 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1036 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1037 if (folio) { 1038 same_folio = lend < folio_pos(folio) + folio_size(folio); 1039 folio_mark_dirty(folio); 1040 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1041 start = folio_next_index(folio); 1042 if (same_folio) 1043 end = folio->index; 1044 } 1045 folio_unlock(folio); 1046 folio_put(folio); 1047 folio = NULL; 1048 } 1049 1050 if (!same_folio) 1051 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1052 if (folio) { 1053 folio_mark_dirty(folio); 1054 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1055 end = folio->index; 1056 folio_unlock(folio); 1057 folio_put(folio); 1058 } 1059 1060 whole_folios: 1061 1062 index = start; 1063 while (index < end) { 1064 cond_resched(); 1065 1066 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1067 indices)) { 1068 /* If all gone or hole-punch or unfalloc, we're done */ 1069 if (index == start || end != -1) 1070 break; 1071 /* But if truncating, restart to make sure all gone */ 1072 index = start; 1073 continue; 1074 } 1075 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1076 folio = fbatch.folios[i]; 1077 1078 if (xa_is_value(folio)) { 1079 if (unfalloc) 1080 continue; 1081 if (shmem_free_swap(mapping, indices[i], folio)) { 1082 /* Swap was replaced by page: retry */ 1083 index = indices[i]; 1084 break; 1085 } 1086 nr_swaps_freed++; 1087 continue; 1088 } 1089 1090 folio_lock(folio); 1091 1092 if (!unfalloc || !folio_test_uptodate(folio)) { 1093 if (folio_mapping(folio) != mapping) { 1094 /* Page was replaced by swap: retry */ 1095 folio_unlock(folio); 1096 index = indices[i]; 1097 break; 1098 } 1099 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1100 folio); 1101 1102 if (!folio_test_large(folio)) { 1103 truncate_inode_folio(mapping, folio); 1104 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1105 /* 1106 * If we split a page, reset the loop so 1107 * that we pick up the new sub pages. 1108 * Otherwise the THP was entirely 1109 * dropped or the target range was 1110 * zeroed, so just continue the loop as 1111 * is. 1112 */ 1113 if (!folio_test_large(folio)) { 1114 folio_unlock(folio); 1115 index = start; 1116 break; 1117 } 1118 } 1119 } 1120 folio_unlock(folio); 1121 } 1122 folio_batch_remove_exceptionals(&fbatch); 1123 folio_batch_release(&fbatch); 1124 } 1125 1126 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1127 } 1128 1129 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1130 { 1131 shmem_undo_range(inode, lstart, lend, false); 1132 inode->i_mtime = inode_set_ctime_current(inode); 1133 inode_inc_iversion(inode); 1134 } 1135 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1136 1137 static int shmem_getattr(struct mnt_idmap *idmap, 1138 const struct path *path, struct kstat *stat, 1139 u32 request_mask, unsigned int query_flags) 1140 { 1141 struct inode *inode = path->dentry->d_inode; 1142 struct shmem_inode_info *info = SHMEM_I(inode); 1143 1144 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1145 shmem_recalc_inode(inode, 0, 0); 1146 1147 if (info->fsflags & FS_APPEND_FL) 1148 stat->attributes |= STATX_ATTR_APPEND; 1149 if (info->fsflags & FS_IMMUTABLE_FL) 1150 stat->attributes |= STATX_ATTR_IMMUTABLE; 1151 if (info->fsflags & FS_NODUMP_FL) 1152 stat->attributes |= STATX_ATTR_NODUMP; 1153 stat->attributes_mask |= (STATX_ATTR_APPEND | 1154 STATX_ATTR_IMMUTABLE | 1155 STATX_ATTR_NODUMP); 1156 generic_fillattr(idmap, request_mask, inode, stat); 1157 1158 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1159 stat->blksize = HPAGE_PMD_SIZE; 1160 1161 if (request_mask & STATX_BTIME) { 1162 stat->result_mask |= STATX_BTIME; 1163 stat->btime.tv_sec = info->i_crtime.tv_sec; 1164 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1165 } 1166 1167 return 0; 1168 } 1169 1170 static int shmem_setattr(struct mnt_idmap *idmap, 1171 struct dentry *dentry, struct iattr *attr) 1172 { 1173 struct inode *inode = d_inode(dentry); 1174 struct shmem_inode_info *info = SHMEM_I(inode); 1175 int error; 1176 bool update_mtime = false; 1177 bool update_ctime = true; 1178 1179 error = setattr_prepare(idmap, dentry, attr); 1180 if (error) 1181 return error; 1182 1183 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1184 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1185 return -EPERM; 1186 } 1187 } 1188 1189 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1190 loff_t oldsize = inode->i_size; 1191 loff_t newsize = attr->ia_size; 1192 1193 /* protected by i_rwsem */ 1194 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1195 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1196 return -EPERM; 1197 1198 if (newsize != oldsize) { 1199 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1200 oldsize, newsize); 1201 if (error) 1202 return error; 1203 i_size_write(inode, newsize); 1204 update_mtime = true; 1205 } else { 1206 update_ctime = false; 1207 } 1208 if (newsize <= oldsize) { 1209 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1210 if (oldsize > holebegin) 1211 unmap_mapping_range(inode->i_mapping, 1212 holebegin, 0, 1); 1213 if (info->alloced) 1214 shmem_truncate_range(inode, 1215 newsize, (loff_t)-1); 1216 /* unmap again to remove racily COWed private pages */ 1217 if (oldsize > holebegin) 1218 unmap_mapping_range(inode->i_mapping, 1219 holebegin, 0, 1); 1220 } 1221 } 1222 1223 if (is_quota_modification(idmap, inode, attr)) { 1224 error = dquot_initialize(inode); 1225 if (error) 1226 return error; 1227 } 1228 1229 /* Transfer quota accounting */ 1230 if (i_uid_needs_update(idmap, attr, inode) || 1231 i_gid_needs_update(idmap, attr, inode)) { 1232 error = dquot_transfer(idmap, inode, attr); 1233 1234 if (error) 1235 return error; 1236 } 1237 1238 setattr_copy(idmap, inode, attr); 1239 if (attr->ia_valid & ATTR_MODE) 1240 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1241 if (!error && update_ctime) { 1242 inode_set_ctime_current(inode); 1243 if (update_mtime) 1244 inode->i_mtime = inode_get_ctime(inode); 1245 inode_inc_iversion(inode); 1246 } 1247 return error; 1248 } 1249 1250 static void shmem_evict_inode(struct inode *inode) 1251 { 1252 struct shmem_inode_info *info = SHMEM_I(inode); 1253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1254 size_t freed = 0; 1255 1256 if (shmem_mapping(inode->i_mapping)) { 1257 shmem_unacct_size(info->flags, inode->i_size); 1258 inode->i_size = 0; 1259 mapping_set_exiting(inode->i_mapping); 1260 shmem_truncate_range(inode, 0, (loff_t)-1); 1261 if (!list_empty(&info->shrinklist)) { 1262 spin_lock(&sbinfo->shrinklist_lock); 1263 if (!list_empty(&info->shrinklist)) { 1264 list_del_init(&info->shrinklist); 1265 sbinfo->shrinklist_len--; 1266 } 1267 spin_unlock(&sbinfo->shrinklist_lock); 1268 } 1269 while (!list_empty(&info->swaplist)) { 1270 /* Wait while shmem_unuse() is scanning this inode... */ 1271 wait_var_event(&info->stop_eviction, 1272 !atomic_read(&info->stop_eviction)); 1273 mutex_lock(&shmem_swaplist_mutex); 1274 /* ...but beware of the race if we peeked too early */ 1275 if (!atomic_read(&info->stop_eviction)) 1276 list_del_init(&info->swaplist); 1277 mutex_unlock(&shmem_swaplist_mutex); 1278 } 1279 } 1280 1281 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1282 shmem_free_inode(inode->i_sb, freed); 1283 WARN_ON(inode->i_blocks); 1284 clear_inode(inode); 1285 #ifdef CONFIG_TMPFS_QUOTA 1286 dquot_free_inode(inode); 1287 dquot_drop(inode); 1288 #endif 1289 } 1290 1291 static int shmem_find_swap_entries(struct address_space *mapping, 1292 pgoff_t start, struct folio_batch *fbatch, 1293 pgoff_t *indices, unsigned int type) 1294 { 1295 XA_STATE(xas, &mapping->i_pages, start); 1296 struct folio *folio; 1297 swp_entry_t entry; 1298 1299 rcu_read_lock(); 1300 xas_for_each(&xas, folio, ULONG_MAX) { 1301 if (xas_retry(&xas, folio)) 1302 continue; 1303 1304 if (!xa_is_value(folio)) 1305 continue; 1306 1307 entry = radix_to_swp_entry(folio); 1308 /* 1309 * swapin error entries can be found in the mapping. But they're 1310 * deliberately ignored here as we've done everything we can do. 1311 */ 1312 if (swp_type(entry) != type) 1313 continue; 1314 1315 indices[folio_batch_count(fbatch)] = xas.xa_index; 1316 if (!folio_batch_add(fbatch, folio)) 1317 break; 1318 1319 if (need_resched()) { 1320 xas_pause(&xas); 1321 cond_resched_rcu(); 1322 } 1323 } 1324 rcu_read_unlock(); 1325 1326 return xas.xa_index; 1327 } 1328 1329 /* 1330 * Move the swapped pages for an inode to page cache. Returns the count 1331 * of pages swapped in, or the error in case of failure. 1332 */ 1333 static int shmem_unuse_swap_entries(struct inode *inode, 1334 struct folio_batch *fbatch, pgoff_t *indices) 1335 { 1336 int i = 0; 1337 int ret = 0; 1338 int error = 0; 1339 struct address_space *mapping = inode->i_mapping; 1340 1341 for (i = 0; i < folio_batch_count(fbatch); i++) { 1342 struct folio *folio = fbatch->folios[i]; 1343 1344 if (!xa_is_value(folio)) 1345 continue; 1346 error = shmem_swapin_folio(inode, indices[i], 1347 &folio, SGP_CACHE, 1348 mapping_gfp_mask(mapping), 1349 NULL, NULL); 1350 if (error == 0) { 1351 folio_unlock(folio); 1352 folio_put(folio); 1353 ret++; 1354 } 1355 if (error == -ENOMEM) 1356 break; 1357 error = 0; 1358 } 1359 return error ? error : ret; 1360 } 1361 1362 /* 1363 * If swap found in inode, free it and move page from swapcache to filecache. 1364 */ 1365 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1366 { 1367 struct address_space *mapping = inode->i_mapping; 1368 pgoff_t start = 0; 1369 struct folio_batch fbatch; 1370 pgoff_t indices[PAGEVEC_SIZE]; 1371 int ret = 0; 1372 1373 do { 1374 folio_batch_init(&fbatch); 1375 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1376 if (folio_batch_count(&fbatch) == 0) { 1377 ret = 0; 1378 break; 1379 } 1380 1381 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1382 if (ret < 0) 1383 break; 1384 1385 start = indices[folio_batch_count(&fbatch) - 1]; 1386 } while (true); 1387 1388 return ret; 1389 } 1390 1391 /* 1392 * Read all the shared memory data that resides in the swap 1393 * device 'type' back into memory, so the swap device can be 1394 * unused. 1395 */ 1396 int shmem_unuse(unsigned int type) 1397 { 1398 struct shmem_inode_info *info, *next; 1399 int error = 0; 1400 1401 if (list_empty(&shmem_swaplist)) 1402 return 0; 1403 1404 mutex_lock(&shmem_swaplist_mutex); 1405 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1406 if (!info->swapped) { 1407 list_del_init(&info->swaplist); 1408 continue; 1409 } 1410 /* 1411 * Drop the swaplist mutex while searching the inode for swap; 1412 * but before doing so, make sure shmem_evict_inode() will not 1413 * remove placeholder inode from swaplist, nor let it be freed 1414 * (igrab() would protect from unlink, but not from unmount). 1415 */ 1416 atomic_inc(&info->stop_eviction); 1417 mutex_unlock(&shmem_swaplist_mutex); 1418 1419 error = shmem_unuse_inode(&info->vfs_inode, type); 1420 cond_resched(); 1421 1422 mutex_lock(&shmem_swaplist_mutex); 1423 next = list_next_entry(info, swaplist); 1424 if (!info->swapped) 1425 list_del_init(&info->swaplist); 1426 if (atomic_dec_and_test(&info->stop_eviction)) 1427 wake_up_var(&info->stop_eviction); 1428 if (error) 1429 break; 1430 } 1431 mutex_unlock(&shmem_swaplist_mutex); 1432 1433 return error; 1434 } 1435 1436 /* 1437 * Move the page from the page cache to the swap cache. 1438 */ 1439 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1440 { 1441 struct folio *folio = page_folio(page); 1442 struct address_space *mapping = folio->mapping; 1443 struct inode *inode = mapping->host; 1444 struct shmem_inode_info *info = SHMEM_I(inode); 1445 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1446 swp_entry_t swap; 1447 pgoff_t index; 1448 1449 /* 1450 * Our capabilities prevent regular writeback or sync from ever calling 1451 * shmem_writepage; but a stacking filesystem might use ->writepage of 1452 * its underlying filesystem, in which case tmpfs should write out to 1453 * swap only in response to memory pressure, and not for the writeback 1454 * threads or sync. 1455 */ 1456 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1457 goto redirty; 1458 1459 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1460 goto redirty; 1461 1462 if (!total_swap_pages) 1463 goto redirty; 1464 1465 /* 1466 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1467 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1468 * and its shmem_writeback() needs them to be split when swapping. 1469 */ 1470 if (folio_test_large(folio)) { 1471 /* Ensure the subpages are still dirty */ 1472 folio_test_set_dirty(folio); 1473 if (split_huge_page(page) < 0) 1474 goto redirty; 1475 folio = page_folio(page); 1476 folio_clear_dirty(folio); 1477 } 1478 1479 index = folio->index; 1480 1481 /* 1482 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1483 * value into swapfile.c, the only way we can correctly account for a 1484 * fallocated folio arriving here is now to initialize it and write it. 1485 * 1486 * That's okay for a folio already fallocated earlier, but if we have 1487 * not yet completed the fallocation, then (a) we want to keep track 1488 * of this folio in case we have to undo it, and (b) it may not be a 1489 * good idea to continue anyway, once we're pushing into swap. So 1490 * reactivate the folio, and let shmem_fallocate() quit when too many. 1491 */ 1492 if (!folio_test_uptodate(folio)) { 1493 if (inode->i_private) { 1494 struct shmem_falloc *shmem_falloc; 1495 spin_lock(&inode->i_lock); 1496 shmem_falloc = inode->i_private; 1497 if (shmem_falloc && 1498 !shmem_falloc->waitq && 1499 index >= shmem_falloc->start && 1500 index < shmem_falloc->next) 1501 shmem_falloc->nr_unswapped++; 1502 else 1503 shmem_falloc = NULL; 1504 spin_unlock(&inode->i_lock); 1505 if (shmem_falloc) 1506 goto redirty; 1507 } 1508 folio_zero_range(folio, 0, folio_size(folio)); 1509 flush_dcache_folio(folio); 1510 folio_mark_uptodate(folio); 1511 } 1512 1513 swap = folio_alloc_swap(folio); 1514 if (!swap.val) 1515 goto redirty; 1516 1517 /* 1518 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1519 * if it's not already there. Do it now before the folio is 1520 * moved to swap cache, when its pagelock no longer protects 1521 * the inode from eviction. But don't unlock the mutex until 1522 * we've incremented swapped, because shmem_unuse_inode() will 1523 * prune a !swapped inode from the swaplist under this mutex. 1524 */ 1525 mutex_lock(&shmem_swaplist_mutex); 1526 if (list_empty(&info->swaplist)) 1527 list_add(&info->swaplist, &shmem_swaplist); 1528 1529 if (add_to_swap_cache(folio, swap, 1530 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1531 NULL) == 0) { 1532 shmem_recalc_inode(inode, 0, 1); 1533 swap_shmem_alloc(swap); 1534 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1535 1536 mutex_unlock(&shmem_swaplist_mutex); 1537 BUG_ON(folio_mapped(folio)); 1538 swap_writepage(&folio->page, wbc); 1539 return 0; 1540 } 1541 1542 mutex_unlock(&shmem_swaplist_mutex); 1543 put_swap_folio(folio, swap); 1544 redirty: 1545 folio_mark_dirty(folio); 1546 if (wbc->for_reclaim) 1547 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1548 folio_unlock(folio); 1549 return 0; 1550 } 1551 1552 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1553 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1554 { 1555 char buffer[64]; 1556 1557 if (!mpol || mpol->mode == MPOL_DEFAULT) 1558 return; /* show nothing */ 1559 1560 mpol_to_str(buffer, sizeof(buffer), mpol); 1561 1562 seq_printf(seq, ",mpol=%s", buffer); 1563 } 1564 1565 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1566 { 1567 struct mempolicy *mpol = NULL; 1568 if (sbinfo->mpol) { 1569 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1570 mpol = sbinfo->mpol; 1571 mpol_get(mpol); 1572 raw_spin_unlock(&sbinfo->stat_lock); 1573 } 1574 return mpol; 1575 } 1576 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1577 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1578 { 1579 } 1580 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1581 { 1582 return NULL; 1583 } 1584 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1585 #ifndef CONFIG_NUMA 1586 #define vm_policy vm_private_data 1587 #endif 1588 1589 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1590 struct shmem_inode_info *info, pgoff_t index) 1591 { 1592 /* Create a pseudo vma that just contains the policy */ 1593 vma_init(vma, NULL); 1594 /* Bias interleave by inode number to distribute better across nodes */ 1595 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1596 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1597 } 1598 1599 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1600 { 1601 /* Drop reference taken by mpol_shared_policy_lookup() */ 1602 mpol_cond_put(vma->vm_policy); 1603 } 1604 1605 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1606 struct shmem_inode_info *info, pgoff_t index) 1607 { 1608 struct vm_area_struct pvma; 1609 struct page *page; 1610 struct vm_fault vmf = { 1611 .vma = &pvma, 1612 }; 1613 1614 shmem_pseudo_vma_init(&pvma, info, index); 1615 page = swap_cluster_readahead(swap, gfp, &vmf); 1616 shmem_pseudo_vma_destroy(&pvma); 1617 1618 if (!page) 1619 return NULL; 1620 return page_folio(page); 1621 } 1622 1623 /* 1624 * Make sure huge_gfp is always more limited than limit_gfp. 1625 * Some of the flags set permissions, while others set limitations. 1626 */ 1627 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1628 { 1629 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1630 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1631 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1632 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1633 1634 /* Allow allocations only from the originally specified zones. */ 1635 result |= zoneflags; 1636 1637 /* 1638 * Minimize the result gfp by taking the union with the deny flags, 1639 * and the intersection of the allow flags. 1640 */ 1641 result |= (limit_gfp & denyflags); 1642 result |= (huge_gfp & limit_gfp) & allowflags; 1643 1644 return result; 1645 } 1646 1647 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1648 struct shmem_inode_info *info, pgoff_t index) 1649 { 1650 struct vm_area_struct pvma; 1651 struct address_space *mapping = info->vfs_inode.i_mapping; 1652 pgoff_t hindex; 1653 struct folio *folio; 1654 1655 hindex = round_down(index, HPAGE_PMD_NR); 1656 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1657 XA_PRESENT)) 1658 return NULL; 1659 1660 shmem_pseudo_vma_init(&pvma, info, hindex); 1661 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1662 shmem_pseudo_vma_destroy(&pvma); 1663 if (!folio) 1664 count_vm_event(THP_FILE_FALLBACK); 1665 return folio; 1666 } 1667 1668 static struct folio *shmem_alloc_folio(gfp_t gfp, 1669 struct shmem_inode_info *info, pgoff_t index) 1670 { 1671 struct vm_area_struct pvma; 1672 struct folio *folio; 1673 1674 shmem_pseudo_vma_init(&pvma, info, index); 1675 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1676 shmem_pseudo_vma_destroy(&pvma); 1677 1678 return folio; 1679 } 1680 1681 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1682 pgoff_t index, bool huge) 1683 { 1684 struct shmem_inode_info *info = SHMEM_I(inode); 1685 struct folio *folio; 1686 int nr; 1687 int err; 1688 1689 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1690 huge = false; 1691 nr = huge ? HPAGE_PMD_NR : 1; 1692 1693 err = shmem_inode_acct_block(inode, nr); 1694 if (err) 1695 goto failed; 1696 1697 if (huge) 1698 folio = shmem_alloc_hugefolio(gfp, info, index); 1699 else 1700 folio = shmem_alloc_folio(gfp, info, index); 1701 if (folio) { 1702 __folio_set_locked(folio); 1703 __folio_set_swapbacked(folio); 1704 return folio; 1705 } 1706 1707 err = -ENOMEM; 1708 shmem_inode_unacct_blocks(inode, nr); 1709 failed: 1710 return ERR_PTR(err); 1711 } 1712 1713 /* 1714 * When a page is moved from swapcache to shmem filecache (either by the 1715 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1716 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1717 * ignorance of the mapping it belongs to. If that mapping has special 1718 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1719 * we may need to copy to a suitable page before moving to filecache. 1720 * 1721 * In a future release, this may well be extended to respect cpuset and 1722 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1723 * but for now it is a simple matter of zone. 1724 */ 1725 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1726 { 1727 return folio_zonenum(folio) > gfp_zone(gfp); 1728 } 1729 1730 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1731 struct shmem_inode_info *info, pgoff_t index) 1732 { 1733 struct folio *old, *new; 1734 struct address_space *swap_mapping; 1735 swp_entry_t entry; 1736 pgoff_t swap_index; 1737 int error; 1738 1739 old = *foliop; 1740 entry = old->swap; 1741 swap_index = swp_offset(entry); 1742 swap_mapping = swap_address_space(entry); 1743 1744 /* 1745 * We have arrived here because our zones are constrained, so don't 1746 * limit chance of success by further cpuset and node constraints. 1747 */ 1748 gfp &= ~GFP_CONSTRAINT_MASK; 1749 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1750 new = shmem_alloc_folio(gfp, info, index); 1751 if (!new) 1752 return -ENOMEM; 1753 1754 folio_get(new); 1755 folio_copy(new, old); 1756 flush_dcache_folio(new); 1757 1758 __folio_set_locked(new); 1759 __folio_set_swapbacked(new); 1760 folio_mark_uptodate(new); 1761 new->swap = entry; 1762 folio_set_swapcache(new); 1763 1764 /* 1765 * Our caller will very soon move newpage out of swapcache, but it's 1766 * a nice clean interface for us to replace oldpage by newpage there. 1767 */ 1768 xa_lock_irq(&swap_mapping->i_pages); 1769 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1770 if (!error) { 1771 mem_cgroup_migrate(old, new); 1772 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1773 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1774 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1775 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1776 } 1777 xa_unlock_irq(&swap_mapping->i_pages); 1778 1779 if (unlikely(error)) { 1780 /* 1781 * Is this possible? I think not, now that our callers check 1782 * both PageSwapCache and page_private after getting page lock; 1783 * but be defensive. Reverse old to newpage for clear and free. 1784 */ 1785 old = new; 1786 } else { 1787 folio_add_lru(new); 1788 *foliop = new; 1789 } 1790 1791 folio_clear_swapcache(old); 1792 old->private = NULL; 1793 1794 folio_unlock(old); 1795 folio_put_refs(old, 2); 1796 return error; 1797 } 1798 1799 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1800 struct folio *folio, swp_entry_t swap) 1801 { 1802 struct address_space *mapping = inode->i_mapping; 1803 swp_entry_t swapin_error; 1804 void *old; 1805 1806 swapin_error = make_poisoned_swp_entry(); 1807 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1808 swp_to_radix_entry(swap), 1809 swp_to_radix_entry(swapin_error), 0); 1810 if (old != swp_to_radix_entry(swap)) 1811 return; 1812 1813 folio_wait_writeback(folio); 1814 delete_from_swap_cache(folio); 1815 /* 1816 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1817 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1818 * in shmem_evict_inode(). 1819 */ 1820 shmem_recalc_inode(inode, -1, -1); 1821 swap_free(swap); 1822 } 1823 1824 /* 1825 * Swap in the folio pointed to by *foliop. 1826 * Caller has to make sure that *foliop contains a valid swapped folio. 1827 * Returns 0 and the folio in foliop if success. On failure, returns the 1828 * error code and NULL in *foliop. 1829 */ 1830 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1831 struct folio **foliop, enum sgp_type sgp, 1832 gfp_t gfp, struct vm_area_struct *vma, 1833 vm_fault_t *fault_type) 1834 { 1835 struct address_space *mapping = inode->i_mapping; 1836 struct shmem_inode_info *info = SHMEM_I(inode); 1837 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1838 struct swap_info_struct *si; 1839 struct folio *folio = NULL; 1840 swp_entry_t swap; 1841 int error; 1842 1843 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1844 swap = radix_to_swp_entry(*foliop); 1845 *foliop = NULL; 1846 1847 if (is_poisoned_swp_entry(swap)) 1848 return -EIO; 1849 1850 si = get_swap_device(swap); 1851 if (!si) { 1852 if (!shmem_confirm_swap(mapping, index, swap)) 1853 return -EEXIST; 1854 else 1855 return -EINVAL; 1856 } 1857 1858 /* Look it up and read it in.. */ 1859 folio = swap_cache_get_folio(swap, NULL, 0); 1860 if (!folio) { 1861 /* Or update major stats only when swapin succeeds?? */ 1862 if (fault_type) { 1863 *fault_type |= VM_FAULT_MAJOR; 1864 count_vm_event(PGMAJFAULT); 1865 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1866 } 1867 /* Here we actually start the io */ 1868 folio = shmem_swapin(swap, gfp, info, index); 1869 if (!folio) { 1870 error = -ENOMEM; 1871 goto failed; 1872 } 1873 } 1874 1875 /* We have to do this with folio locked to prevent races */ 1876 folio_lock(folio); 1877 if (!folio_test_swapcache(folio) || 1878 folio->swap.val != swap.val || 1879 !shmem_confirm_swap(mapping, index, swap)) { 1880 error = -EEXIST; 1881 goto unlock; 1882 } 1883 if (!folio_test_uptodate(folio)) { 1884 error = -EIO; 1885 goto failed; 1886 } 1887 folio_wait_writeback(folio); 1888 1889 /* 1890 * Some architectures may have to restore extra metadata to the 1891 * folio after reading from swap. 1892 */ 1893 arch_swap_restore(swap, folio); 1894 1895 if (shmem_should_replace_folio(folio, gfp)) { 1896 error = shmem_replace_folio(&folio, gfp, info, index); 1897 if (error) 1898 goto failed; 1899 } 1900 1901 error = shmem_add_to_page_cache(folio, mapping, index, 1902 swp_to_radix_entry(swap), gfp, 1903 charge_mm); 1904 if (error) 1905 goto failed; 1906 1907 shmem_recalc_inode(inode, 0, -1); 1908 1909 if (sgp == SGP_WRITE) 1910 folio_mark_accessed(folio); 1911 1912 delete_from_swap_cache(folio); 1913 folio_mark_dirty(folio); 1914 swap_free(swap); 1915 put_swap_device(si); 1916 1917 *foliop = folio; 1918 return 0; 1919 failed: 1920 if (!shmem_confirm_swap(mapping, index, swap)) 1921 error = -EEXIST; 1922 if (error == -EIO) 1923 shmem_set_folio_swapin_error(inode, index, folio, swap); 1924 unlock: 1925 if (folio) { 1926 folio_unlock(folio); 1927 folio_put(folio); 1928 } 1929 put_swap_device(si); 1930 1931 return error; 1932 } 1933 1934 /* 1935 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1936 * 1937 * If we allocate a new one we do not mark it dirty. That's up to the 1938 * vm. If we swap it in we mark it dirty since we also free the swap 1939 * entry since a page cannot live in both the swap and page cache. 1940 * 1941 * vma, vmf, and fault_type are only supplied by shmem_fault: 1942 * otherwise they are NULL. 1943 */ 1944 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1945 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1946 struct vm_area_struct *vma, struct vm_fault *vmf, 1947 vm_fault_t *fault_type) 1948 { 1949 struct address_space *mapping = inode->i_mapping; 1950 struct shmem_inode_info *info = SHMEM_I(inode); 1951 struct shmem_sb_info *sbinfo; 1952 struct mm_struct *charge_mm; 1953 struct folio *folio; 1954 pgoff_t hindex; 1955 gfp_t huge_gfp; 1956 int error; 1957 int once = 0; 1958 int alloced = 0; 1959 1960 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1961 return -EFBIG; 1962 repeat: 1963 if (sgp <= SGP_CACHE && 1964 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1965 return -EINVAL; 1966 } 1967 1968 sbinfo = SHMEM_SB(inode->i_sb); 1969 charge_mm = vma ? vma->vm_mm : NULL; 1970 1971 folio = filemap_get_entry(mapping, index); 1972 if (folio && vma && userfaultfd_minor(vma)) { 1973 if (!xa_is_value(folio)) 1974 folio_put(folio); 1975 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1976 return 0; 1977 } 1978 1979 if (xa_is_value(folio)) { 1980 error = shmem_swapin_folio(inode, index, &folio, 1981 sgp, gfp, vma, fault_type); 1982 if (error == -EEXIST) 1983 goto repeat; 1984 1985 *foliop = folio; 1986 return error; 1987 } 1988 1989 if (folio) { 1990 folio_lock(folio); 1991 1992 /* Has the folio been truncated or swapped out? */ 1993 if (unlikely(folio->mapping != mapping)) { 1994 folio_unlock(folio); 1995 folio_put(folio); 1996 goto repeat; 1997 } 1998 if (sgp == SGP_WRITE) 1999 folio_mark_accessed(folio); 2000 if (folio_test_uptodate(folio)) 2001 goto out; 2002 /* fallocated folio */ 2003 if (sgp != SGP_READ) 2004 goto clear; 2005 folio_unlock(folio); 2006 folio_put(folio); 2007 } 2008 2009 /* 2010 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2011 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2012 */ 2013 *foliop = NULL; 2014 if (sgp == SGP_READ) 2015 return 0; 2016 if (sgp == SGP_NOALLOC) 2017 return -ENOENT; 2018 2019 /* 2020 * Fast cache lookup and swap lookup did not find it: allocate. 2021 */ 2022 2023 if (vma && userfaultfd_missing(vma)) { 2024 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2025 return 0; 2026 } 2027 2028 if (!shmem_is_huge(inode, index, false, 2029 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 2030 goto alloc_nohuge; 2031 2032 huge_gfp = vma_thp_gfp_mask(vma); 2033 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2034 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 2035 if (IS_ERR(folio)) { 2036 alloc_nohuge: 2037 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 2038 } 2039 if (IS_ERR(folio)) { 2040 int retry = 5; 2041 2042 error = PTR_ERR(folio); 2043 folio = NULL; 2044 if (error != -ENOSPC) 2045 goto unlock; 2046 /* 2047 * Try to reclaim some space by splitting a large folio 2048 * beyond i_size on the filesystem. 2049 */ 2050 while (retry--) { 2051 int ret; 2052 2053 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 2054 if (ret == SHRINK_STOP) 2055 break; 2056 if (ret) 2057 goto alloc_nohuge; 2058 } 2059 goto unlock; 2060 } 2061 2062 hindex = round_down(index, folio_nr_pages(folio)); 2063 2064 if (sgp == SGP_WRITE) 2065 __folio_set_referenced(folio); 2066 2067 error = shmem_add_to_page_cache(folio, mapping, hindex, 2068 NULL, gfp & GFP_RECLAIM_MASK, 2069 charge_mm); 2070 if (error) 2071 goto unacct; 2072 2073 folio_add_lru(folio); 2074 shmem_recalc_inode(inode, folio_nr_pages(folio), 0); 2075 alloced = true; 2076 2077 if (folio_test_pmd_mappable(folio) && 2078 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2079 folio_next_index(folio) - 1) { 2080 /* 2081 * Part of the large folio is beyond i_size: subject 2082 * to shrink under memory pressure. 2083 */ 2084 spin_lock(&sbinfo->shrinklist_lock); 2085 /* 2086 * _careful to defend against unlocked access to 2087 * ->shrink_list in shmem_unused_huge_shrink() 2088 */ 2089 if (list_empty_careful(&info->shrinklist)) { 2090 list_add_tail(&info->shrinklist, 2091 &sbinfo->shrinklist); 2092 sbinfo->shrinklist_len++; 2093 } 2094 spin_unlock(&sbinfo->shrinklist_lock); 2095 } 2096 2097 /* 2098 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2099 */ 2100 if (sgp == SGP_FALLOC) 2101 sgp = SGP_WRITE; 2102 clear: 2103 /* 2104 * Let SGP_WRITE caller clear ends if write does not fill folio; 2105 * but SGP_FALLOC on a folio fallocated earlier must initialize 2106 * it now, lest undo on failure cancel our earlier guarantee. 2107 */ 2108 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2109 long i, n = folio_nr_pages(folio); 2110 2111 for (i = 0; i < n; i++) 2112 clear_highpage(folio_page(folio, i)); 2113 flush_dcache_folio(folio); 2114 folio_mark_uptodate(folio); 2115 } 2116 2117 /* Perhaps the file has been truncated since we checked */ 2118 if (sgp <= SGP_CACHE && 2119 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2120 if (alloced) { 2121 folio_clear_dirty(folio); 2122 filemap_remove_folio(folio); 2123 shmem_recalc_inode(inode, 0, 0); 2124 } 2125 error = -EINVAL; 2126 goto unlock; 2127 } 2128 out: 2129 *foliop = folio; 2130 return 0; 2131 2132 /* 2133 * Error recovery. 2134 */ 2135 unacct: 2136 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2137 2138 if (folio_test_large(folio)) { 2139 folio_unlock(folio); 2140 folio_put(folio); 2141 goto alloc_nohuge; 2142 } 2143 unlock: 2144 if (folio) { 2145 folio_unlock(folio); 2146 folio_put(folio); 2147 } 2148 if (error == -ENOSPC && !once++) { 2149 shmem_recalc_inode(inode, 0, 0); 2150 goto repeat; 2151 } 2152 if (error == -EEXIST) 2153 goto repeat; 2154 return error; 2155 } 2156 2157 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2158 enum sgp_type sgp) 2159 { 2160 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2161 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2162 } 2163 2164 /* 2165 * This is like autoremove_wake_function, but it removes the wait queue 2166 * entry unconditionally - even if something else had already woken the 2167 * target. 2168 */ 2169 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2170 { 2171 int ret = default_wake_function(wait, mode, sync, key); 2172 list_del_init(&wait->entry); 2173 return ret; 2174 } 2175 2176 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2177 { 2178 struct vm_area_struct *vma = vmf->vma; 2179 struct inode *inode = file_inode(vma->vm_file); 2180 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2181 struct folio *folio = NULL; 2182 int err; 2183 vm_fault_t ret = VM_FAULT_LOCKED; 2184 2185 /* 2186 * Trinity finds that probing a hole which tmpfs is punching can 2187 * prevent the hole-punch from ever completing: which in turn 2188 * locks writers out with its hold on i_rwsem. So refrain from 2189 * faulting pages into the hole while it's being punched. Although 2190 * shmem_undo_range() does remove the additions, it may be unable to 2191 * keep up, as each new page needs its own unmap_mapping_range() call, 2192 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2193 * 2194 * It does not matter if we sometimes reach this check just before the 2195 * hole-punch begins, so that one fault then races with the punch: 2196 * we just need to make racing faults a rare case. 2197 * 2198 * The implementation below would be much simpler if we just used a 2199 * standard mutex or completion: but we cannot take i_rwsem in fault, 2200 * and bloating every shmem inode for this unlikely case would be sad. 2201 */ 2202 if (unlikely(inode->i_private)) { 2203 struct shmem_falloc *shmem_falloc; 2204 2205 spin_lock(&inode->i_lock); 2206 shmem_falloc = inode->i_private; 2207 if (shmem_falloc && 2208 shmem_falloc->waitq && 2209 vmf->pgoff >= shmem_falloc->start && 2210 vmf->pgoff < shmem_falloc->next) { 2211 struct file *fpin; 2212 wait_queue_head_t *shmem_falloc_waitq; 2213 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2214 2215 ret = VM_FAULT_NOPAGE; 2216 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2217 if (fpin) 2218 ret = VM_FAULT_RETRY; 2219 2220 shmem_falloc_waitq = shmem_falloc->waitq; 2221 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2222 TASK_UNINTERRUPTIBLE); 2223 spin_unlock(&inode->i_lock); 2224 schedule(); 2225 2226 /* 2227 * shmem_falloc_waitq points into the shmem_fallocate() 2228 * stack of the hole-punching task: shmem_falloc_waitq 2229 * is usually invalid by the time we reach here, but 2230 * finish_wait() does not dereference it in that case; 2231 * though i_lock needed lest racing with wake_up_all(). 2232 */ 2233 spin_lock(&inode->i_lock); 2234 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2235 spin_unlock(&inode->i_lock); 2236 2237 if (fpin) 2238 fput(fpin); 2239 return ret; 2240 } 2241 spin_unlock(&inode->i_lock); 2242 } 2243 2244 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2245 gfp, vma, vmf, &ret); 2246 if (err) 2247 return vmf_error(err); 2248 if (folio) 2249 vmf->page = folio_file_page(folio, vmf->pgoff); 2250 return ret; 2251 } 2252 2253 unsigned long shmem_get_unmapped_area(struct file *file, 2254 unsigned long uaddr, unsigned long len, 2255 unsigned long pgoff, unsigned long flags) 2256 { 2257 unsigned long (*get_area)(struct file *, 2258 unsigned long, unsigned long, unsigned long, unsigned long); 2259 unsigned long addr; 2260 unsigned long offset; 2261 unsigned long inflated_len; 2262 unsigned long inflated_addr; 2263 unsigned long inflated_offset; 2264 2265 if (len > TASK_SIZE) 2266 return -ENOMEM; 2267 2268 get_area = current->mm->get_unmapped_area; 2269 addr = get_area(file, uaddr, len, pgoff, flags); 2270 2271 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2272 return addr; 2273 if (IS_ERR_VALUE(addr)) 2274 return addr; 2275 if (addr & ~PAGE_MASK) 2276 return addr; 2277 if (addr > TASK_SIZE - len) 2278 return addr; 2279 2280 if (shmem_huge == SHMEM_HUGE_DENY) 2281 return addr; 2282 if (len < HPAGE_PMD_SIZE) 2283 return addr; 2284 if (flags & MAP_FIXED) 2285 return addr; 2286 /* 2287 * Our priority is to support MAP_SHARED mapped hugely; 2288 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2289 * But if caller specified an address hint and we allocated area there 2290 * successfully, respect that as before. 2291 */ 2292 if (uaddr == addr) 2293 return addr; 2294 2295 if (shmem_huge != SHMEM_HUGE_FORCE) { 2296 struct super_block *sb; 2297 2298 if (file) { 2299 VM_BUG_ON(file->f_op != &shmem_file_operations); 2300 sb = file_inode(file)->i_sb; 2301 } else { 2302 /* 2303 * Called directly from mm/mmap.c, or drivers/char/mem.c 2304 * for "/dev/zero", to create a shared anonymous object. 2305 */ 2306 if (IS_ERR(shm_mnt)) 2307 return addr; 2308 sb = shm_mnt->mnt_sb; 2309 } 2310 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2311 return addr; 2312 } 2313 2314 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2315 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2316 return addr; 2317 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2318 return addr; 2319 2320 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2321 if (inflated_len > TASK_SIZE) 2322 return addr; 2323 if (inflated_len < len) 2324 return addr; 2325 2326 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2327 if (IS_ERR_VALUE(inflated_addr)) 2328 return addr; 2329 if (inflated_addr & ~PAGE_MASK) 2330 return addr; 2331 2332 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2333 inflated_addr += offset - inflated_offset; 2334 if (inflated_offset > offset) 2335 inflated_addr += HPAGE_PMD_SIZE; 2336 2337 if (inflated_addr > TASK_SIZE - len) 2338 return addr; 2339 return inflated_addr; 2340 } 2341 2342 #ifdef CONFIG_NUMA 2343 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2344 { 2345 struct inode *inode = file_inode(vma->vm_file); 2346 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2347 } 2348 2349 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2350 unsigned long addr) 2351 { 2352 struct inode *inode = file_inode(vma->vm_file); 2353 pgoff_t index; 2354 2355 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2356 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2357 } 2358 #endif 2359 2360 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2361 { 2362 struct inode *inode = file_inode(file); 2363 struct shmem_inode_info *info = SHMEM_I(inode); 2364 int retval = -ENOMEM; 2365 2366 /* 2367 * What serializes the accesses to info->flags? 2368 * ipc_lock_object() when called from shmctl_do_lock(), 2369 * no serialization needed when called from shm_destroy(). 2370 */ 2371 if (lock && !(info->flags & VM_LOCKED)) { 2372 if (!user_shm_lock(inode->i_size, ucounts)) 2373 goto out_nomem; 2374 info->flags |= VM_LOCKED; 2375 mapping_set_unevictable(file->f_mapping); 2376 } 2377 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2378 user_shm_unlock(inode->i_size, ucounts); 2379 info->flags &= ~VM_LOCKED; 2380 mapping_clear_unevictable(file->f_mapping); 2381 } 2382 retval = 0; 2383 2384 out_nomem: 2385 return retval; 2386 } 2387 2388 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2389 { 2390 struct inode *inode = file_inode(file); 2391 struct shmem_inode_info *info = SHMEM_I(inode); 2392 int ret; 2393 2394 ret = seal_check_future_write(info->seals, vma); 2395 if (ret) 2396 return ret; 2397 2398 /* arm64 - allow memory tagging on RAM-based files */ 2399 vm_flags_set(vma, VM_MTE_ALLOWED); 2400 2401 file_accessed(file); 2402 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2403 if (inode->i_nlink) 2404 vma->vm_ops = &shmem_vm_ops; 2405 else 2406 vma->vm_ops = &shmem_anon_vm_ops; 2407 return 0; 2408 } 2409 2410 static int shmem_file_open(struct inode *inode, struct file *file) 2411 { 2412 file->f_mode |= FMODE_CAN_ODIRECT; 2413 return generic_file_open(inode, file); 2414 } 2415 2416 #ifdef CONFIG_TMPFS_XATTR 2417 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2418 2419 /* 2420 * chattr's fsflags are unrelated to extended attributes, 2421 * but tmpfs has chosen to enable them under the same config option. 2422 */ 2423 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2424 { 2425 unsigned int i_flags = 0; 2426 2427 if (fsflags & FS_NOATIME_FL) 2428 i_flags |= S_NOATIME; 2429 if (fsflags & FS_APPEND_FL) 2430 i_flags |= S_APPEND; 2431 if (fsflags & FS_IMMUTABLE_FL) 2432 i_flags |= S_IMMUTABLE; 2433 /* 2434 * But FS_NODUMP_FL does not require any action in i_flags. 2435 */ 2436 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2437 } 2438 #else 2439 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2440 { 2441 } 2442 #define shmem_initxattrs NULL 2443 #endif 2444 2445 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2446 { 2447 return &SHMEM_I(inode)->dir_offsets; 2448 } 2449 2450 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2451 struct super_block *sb, 2452 struct inode *dir, umode_t mode, 2453 dev_t dev, unsigned long flags) 2454 { 2455 struct inode *inode; 2456 struct shmem_inode_info *info; 2457 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2458 ino_t ino; 2459 int err; 2460 2461 err = shmem_reserve_inode(sb, &ino); 2462 if (err) 2463 return ERR_PTR(err); 2464 2465 2466 inode = new_inode(sb); 2467 if (!inode) { 2468 shmem_free_inode(sb, 0); 2469 return ERR_PTR(-ENOSPC); 2470 } 2471 2472 inode->i_ino = ino; 2473 inode_init_owner(idmap, inode, dir, mode); 2474 inode->i_blocks = 0; 2475 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 2476 inode->i_generation = get_random_u32(); 2477 info = SHMEM_I(inode); 2478 memset(info, 0, (char *)inode - (char *)info); 2479 spin_lock_init(&info->lock); 2480 atomic_set(&info->stop_eviction, 0); 2481 info->seals = F_SEAL_SEAL; 2482 info->flags = flags & VM_NORESERVE; 2483 info->i_crtime = inode->i_mtime; 2484 info->fsflags = (dir == NULL) ? 0 : 2485 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2486 if (info->fsflags) 2487 shmem_set_inode_flags(inode, info->fsflags); 2488 INIT_LIST_HEAD(&info->shrinklist); 2489 INIT_LIST_HEAD(&info->swaplist); 2490 INIT_LIST_HEAD(&info->swaplist); 2491 if (sbinfo->noswap) 2492 mapping_set_unevictable(inode->i_mapping); 2493 simple_xattrs_init(&info->xattrs); 2494 cache_no_acl(inode); 2495 mapping_set_large_folios(inode->i_mapping); 2496 2497 switch (mode & S_IFMT) { 2498 default: 2499 inode->i_op = &shmem_special_inode_operations; 2500 init_special_inode(inode, mode, dev); 2501 break; 2502 case S_IFREG: 2503 inode->i_mapping->a_ops = &shmem_aops; 2504 inode->i_op = &shmem_inode_operations; 2505 inode->i_fop = &shmem_file_operations; 2506 mpol_shared_policy_init(&info->policy, 2507 shmem_get_sbmpol(sbinfo)); 2508 break; 2509 case S_IFDIR: 2510 inc_nlink(inode); 2511 /* Some things misbehave if size == 0 on a directory */ 2512 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2513 inode->i_op = &shmem_dir_inode_operations; 2514 inode->i_fop = &simple_offset_dir_operations; 2515 simple_offset_init(shmem_get_offset_ctx(inode)); 2516 break; 2517 case S_IFLNK: 2518 /* 2519 * Must not load anything in the rbtree, 2520 * mpol_free_shared_policy will not be called. 2521 */ 2522 mpol_shared_policy_init(&info->policy, NULL); 2523 break; 2524 } 2525 2526 lockdep_annotate_inode_mutex_key(inode); 2527 return inode; 2528 } 2529 2530 #ifdef CONFIG_TMPFS_QUOTA 2531 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2532 struct super_block *sb, struct inode *dir, 2533 umode_t mode, dev_t dev, unsigned long flags) 2534 { 2535 int err; 2536 struct inode *inode; 2537 2538 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2539 if (IS_ERR(inode)) 2540 return inode; 2541 2542 err = dquot_initialize(inode); 2543 if (err) 2544 goto errout; 2545 2546 err = dquot_alloc_inode(inode); 2547 if (err) { 2548 dquot_drop(inode); 2549 goto errout; 2550 } 2551 return inode; 2552 2553 errout: 2554 inode->i_flags |= S_NOQUOTA; 2555 iput(inode); 2556 return ERR_PTR(err); 2557 } 2558 #else 2559 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2560 struct super_block *sb, struct inode *dir, 2561 umode_t mode, dev_t dev, unsigned long flags) 2562 { 2563 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2564 } 2565 #endif /* CONFIG_TMPFS_QUOTA */ 2566 2567 #ifdef CONFIG_USERFAULTFD 2568 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2569 struct vm_area_struct *dst_vma, 2570 unsigned long dst_addr, 2571 unsigned long src_addr, 2572 uffd_flags_t flags, 2573 struct folio **foliop) 2574 { 2575 struct inode *inode = file_inode(dst_vma->vm_file); 2576 struct shmem_inode_info *info = SHMEM_I(inode); 2577 struct address_space *mapping = inode->i_mapping; 2578 gfp_t gfp = mapping_gfp_mask(mapping); 2579 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2580 void *page_kaddr; 2581 struct folio *folio; 2582 int ret; 2583 pgoff_t max_off; 2584 2585 if (shmem_inode_acct_block(inode, 1)) { 2586 /* 2587 * We may have got a page, returned -ENOENT triggering a retry, 2588 * and now we find ourselves with -ENOMEM. Release the page, to 2589 * avoid a BUG_ON in our caller. 2590 */ 2591 if (unlikely(*foliop)) { 2592 folio_put(*foliop); 2593 *foliop = NULL; 2594 } 2595 return -ENOMEM; 2596 } 2597 2598 if (!*foliop) { 2599 ret = -ENOMEM; 2600 folio = shmem_alloc_folio(gfp, info, pgoff); 2601 if (!folio) 2602 goto out_unacct_blocks; 2603 2604 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2605 page_kaddr = kmap_local_folio(folio, 0); 2606 /* 2607 * The read mmap_lock is held here. Despite the 2608 * mmap_lock being read recursive a deadlock is still 2609 * possible if a writer has taken a lock. For example: 2610 * 2611 * process A thread 1 takes read lock on own mmap_lock 2612 * process A thread 2 calls mmap, blocks taking write lock 2613 * process B thread 1 takes page fault, read lock on own mmap lock 2614 * process B thread 2 calls mmap, blocks taking write lock 2615 * process A thread 1 blocks taking read lock on process B 2616 * process B thread 1 blocks taking read lock on process A 2617 * 2618 * Disable page faults to prevent potential deadlock 2619 * and retry the copy outside the mmap_lock. 2620 */ 2621 pagefault_disable(); 2622 ret = copy_from_user(page_kaddr, 2623 (const void __user *)src_addr, 2624 PAGE_SIZE); 2625 pagefault_enable(); 2626 kunmap_local(page_kaddr); 2627 2628 /* fallback to copy_from_user outside mmap_lock */ 2629 if (unlikely(ret)) { 2630 *foliop = folio; 2631 ret = -ENOENT; 2632 /* don't free the page */ 2633 goto out_unacct_blocks; 2634 } 2635 2636 flush_dcache_folio(folio); 2637 } else { /* ZEROPAGE */ 2638 clear_user_highpage(&folio->page, dst_addr); 2639 } 2640 } else { 2641 folio = *foliop; 2642 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2643 *foliop = NULL; 2644 } 2645 2646 VM_BUG_ON(folio_test_locked(folio)); 2647 VM_BUG_ON(folio_test_swapbacked(folio)); 2648 __folio_set_locked(folio); 2649 __folio_set_swapbacked(folio); 2650 __folio_mark_uptodate(folio); 2651 2652 ret = -EFAULT; 2653 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2654 if (unlikely(pgoff >= max_off)) 2655 goto out_release; 2656 2657 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2658 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2659 if (ret) 2660 goto out_release; 2661 2662 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2663 &folio->page, true, flags); 2664 if (ret) 2665 goto out_delete_from_cache; 2666 2667 shmem_recalc_inode(inode, 1, 0); 2668 folio_unlock(folio); 2669 return 0; 2670 out_delete_from_cache: 2671 filemap_remove_folio(folio); 2672 out_release: 2673 folio_unlock(folio); 2674 folio_put(folio); 2675 out_unacct_blocks: 2676 shmem_inode_unacct_blocks(inode, 1); 2677 return ret; 2678 } 2679 #endif /* CONFIG_USERFAULTFD */ 2680 2681 #ifdef CONFIG_TMPFS 2682 static const struct inode_operations shmem_symlink_inode_operations; 2683 static const struct inode_operations shmem_short_symlink_operations; 2684 2685 static int 2686 shmem_write_begin(struct file *file, struct address_space *mapping, 2687 loff_t pos, unsigned len, 2688 struct page **pagep, void **fsdata) 2689 { 2690 struct inode *inode = mapping->host; 2691 struct shmem_inode_info *info = SHMEM_I(inode); 2692 pgoff_t index = pos >> PAGE_SHIFT; 2693 struct folio *folio; 2694 int ret = 0; 2695 2696 /* i_rwsem is held by caller */ 2697 if (unlikely(info->seals & (F_SEAL_GROW | 2698 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2699 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2700 return -EPERM; 2701 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2702 return -EPERM; 2703 } 2704 2705 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2706 2707 if (ret) 2708 return ret; 2709 2710 *pagep = folio_file_page(folio, index); 2711 if (PageHWPoison(*pagep)) { 2712 folio_unlock(folio); 2713 folio_put(folio); 2714 *pagep = NULL; 2715 return -EIO; 2716 } 2717 2718 return 0; 2719 } 2720 2721 static int 2722 shmem_write_end(struct file *file, struct address_space *mapping, 2723 loff_t pos, unsigned len, unsigned copied, 2724 struct page *page, void *fsdata) 2725 { 2726 struct folio *folio = page_folio(page); 2727 struct inode *inode = mapping->host; 2728 2729 if (pos + copied > inode->i_size) 2730 i_size_write(inode, pos + copied); 2731 2732 if (!folio_test_uptodate(folio)) { 2733 if (copied < folio_size(folio)) { 2734 size_t from = offset_in_folio(folio, pos); 2735 folio_zero_segments(folio, 0, from, 2736 from + copied, folio_size(folio)); 2737 } 2738 folio_mark_uptodate(folio); 2739 } 2740 folio_mark_dirty(folio); 2741 folio_unlock(folio); 2742 folio_put(folio); 2743 2744 return copied; 2745 } 2746 2747 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2748 { 2749 struct file *file = iocb->ki_filp; 2750 struct inode *inode = file_inode(file); 2751 struct address_space *mapping = inode->i_mapping; 2752 pgoff_t index; 2753 unsigned long offset; 2754 int error = 0; 2755 ssize_t retval = 0; 2756 loff_t *ppos = &iocb->ki_pos; 2757 2758 index = *ppos >> PAGE_SHIFT; 2759 offset = *ppos & ~PAGE_MASK; 2760 2761 for (;;) { 2762 struct folio *folio = NULL; 2763 struct page *page = NULL; 2764 pgoff_t end_index; 2765 unsigned long nr, ret; 2766 loff_t i_size = i_size_read(inode); 2767 2768 end_index = i_size >> PAGE_SHIFT; 2769 if (index > end_index) 2770 break; 2771 if (index == end_index) { 2772 nr = i_size & ~PAGE_MASK; 2773 if (nr <= offset) 2774 break; 2775 } 2776 2777 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2778 if (error) { 2779 if (error == -EINVAL) 2780 error = 0; 2781 break; 2782 } 2783 if (folio) { 2784 folio_unlock(folio); 2785 2786 page = folio_file_page(folio, index); 2787 if (PageHWPoison(page)) { 2788 folio_put(folio); 2789 error = -EIO; 2790 break; 2791 } 2792 } 2793 2794 /* 2795 * We must evaluate after, since reads (unlike writes) 2796 * are called without i_rwsem protection against truncate 2797 */ 2798 nr = PAGE_SIZE; 2799 i_size = i_size_read(inode); 2800 end_index = i_size >> PAGE_SHIFT; 2801 if (index == end_index) { 2802 nr = i_size & ~PAGE_MASK; 2803 if (nr <= offset) { 2804 if (folio) 2805 folio_put(folio); 2806 break; 2807 } 2808 } 2809 nr -= offset; 2810 2811 if (folio) { 2812 /* 2813 * If users can be writing to this page using arbitrary 2814 * virtual addresses, take care about potential aliasing 2815 * before reading the page on the kernel side. 2816 */ 2817 if (mapping_writably_mapped(mapping)) 2818 flush_dcache_page(page); 2819 /* 2820 * Mark the page accessed if we read the beginning. 2821 */ 2822 if (!offset) 2823 folio_mark_accessed(folio); 2824 /* 2825 * Ok, we have the page, and it's up-to-date, so 2826 * now we can copy it to user space... 2827 */ 2828 ret = copy_page_to_iter(page, offset, nr, to); 2829 folio_put(folio); 2830 2831 } else if (user_backed_iter(to)) { 2832 /* 2833 * Copy to user tends to be so well optimized, but 2834 * clear_user() not so much, that it is noticeably 2835 * faster to copy the zero page instead of clearing. 2836 */ 2837 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2838 } else { 2839 /* 2840 * But submitting the same page twice in a row to 2841 * splice() - or others? - can result in confusion: 2842 * so don't attempt that optimization on pipes etc. 2843 */ 2844 ret = iov_iter_zero(nr, to); 2845 } 2846 2847 retval += ret; 2848 offset += ret; 2849 index += offset >> PAGE_SHIFT; 2850 offset &= ~PAGE_MASK; 2851 2852 if (!iov_iter_count(to)) 2853 break; 2854 if (ret < nr) { 2855 error = -EFAULT; 2856 break; 2857 } 2858 cond_resched(); 2859 } 2860 2861 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2862 file_accessed(file); 2863 return retval ? retval : error; 2864 } 2865 2866 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2867 { 2868 struct file *file = iocb->ki_filp; 2869 struct inode *inode = file->f_mapping->host; 2870 ssize_t ret; 2871 2872 inode_lock(inode); 2873 ret = generic_write_checks(iocb, from); 2874 if (ret <= 0) 2875 goto unlock; 2876 ret = file_remove_privs(file); 2877 if (ret) 2878 goto unlock; 2879 ret = file_update_time(file); 2880 if (ret) 2881 goto unlock; 2882 ret = generic_perform_write(iocb, from); 2883 unlock: 2884 inode_unlock(inode); 2885 return ret; 2886 } 2887 2888 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2889 struct pipe_buffer *buf) 2890 { 2891 return true; 2892 } 2893 2894 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2895 struct pipe_buffer *buf) 2896 { 2897 } 2898 2899 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2900 struct pipe_buffer *buf) 2901 { 2902 return false; 2903 } 2904 2905 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2906 .release = zero_pipe_buf_release, 2907 .try_steal = zero_pipe_buf_try_steal, 2908 .get = zero_pipe_buf_get, 2909 }; 2910 2911 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2912 loff_t fpos, size_t size) 2913 { 2914 size_t offset = fpos & ~PAGE_MASK; 2915 2916 size = min_t(size_t, size, PAGE_SIZE - offset); 2917 2918 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2919 struct pipe_buffer *buf = pipe_head_buf(pipe); 2920 2921 *buf = (struct pipe_buffer) { 2922 .ops = &zero_pipe_buf_ops, 2923 .page = ZERO_PAGE(0), 2924 .offset = offset, 2925 .len = size, 2926 }; 2927 pipe->head++; 2928 } 2929 2930 return size; 2931 } 2932 2933 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2934 struct pipe_inode_info *pipe, 2935 size_t len, unsigned int flags) 2936 { 2937 struct inode *inode = file_inode(in); 2938 struct address_space *mapping = inode->i_mapping; 2939 struct folio *folio = NULL; 2940 size_t total_spliced = 0, used, npages, n, part; 2941 loff_t isize; 2942 int error = 0; 2943 2944 /* Work out how much data we can actually add into the pipe */ 2945 used = pipe_occupancy(pipe->head, pipe->tail); 2946 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2947 len = min_t(size_t, len, npages * PAGE_SIZE); 2948 2949 do { 2950 if (*ppos >= i_size_read(inode)) 2951 break; 2952 2953 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2954 SGP_READ); 2955 if (error) { 2956 if (error == -EINVAL) 2957 error = 0; 2958 break; 2959 } 2960 if (folio) { 2961 folio_unlock(folio); 2962 2963 if (folio_test_hwpoison(folio) || 2964 (folio_test_large(folio) && 2965 folio_test_has_hwpoisoned(folio))) { 2966 error = -EIO; 2967 break; 2968 } 2969 } 2970 2971 /* 2972 * i_size must be checked after we know the pages are Uptodate. 2973 * 2974 * Checking i_size after the check allows us to calculate 2975 * the correct value for "nr", which means the zero-filled 2976 * part of the page is not copied back to userspace (unless 2977 * another truncate extends the file - this is desired though). 2978 */ 2979 isize = i_size_read(inode); 2980 if (unlikely(*ppos >= isize)) 2981 break; 2982 part = min_t(loff_t, isize - *ppos, len); 2983 2984 if (folio) { 2985 /* 2986 * If users can be writing to this page using arbitrary 2987 * virtual addresses, take care about potential aliasing 2988 * before reading the page on the kernel side. 2989 */ 2990 if (mapping_writably_mapped(mapping)) 2991 flush_dcache_folio(folio); 2992 folio_mark_accessed(folio); 2993 /* 2994 * Ok, we have the page, and it's up-to-date, so we can 2995 * now splice it into the pipe. 2996 */ 2997 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 2998 folio_put(folio); 2999 folio = NULL; 3000 } else { 3001 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3002 } 3003 3004 if (!n) 3005 break; 3006 len -= n; 3007 total_spliced += n; 3008 *ppos += n; 3009 in->f_ra.prev_pos = *ppos; 3010 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3011 break; 3012 3013 cond_resched(); 3014 } while (len); 3015 3016 if (folio) 3017 folio_put(folio); 3018 3019 file_accessed(in); 3020 return total_spliced ? total_spliced : error; 3021 } 3022 3023 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3024 { 3025 struct address_space *mapping = file->f_mapping; 3026 struct inode *inode = mapping->host; 3027 3028 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3029 return generic_file_llseek_size(file, offset, whence, 3030 MAX_LFS_FILESIZE, i_size_read(inode)); 3031 if (offset < 0) 3032 return -ENXIO; 3033 3034 inode_lock(inode); 3035 /* We're holding i_rwsem so we can access i_size directly */ 3036 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3037 if (offset >= 0) 3038 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3039 inode_unlock(inode); 3040 return offset; 3041 } 3042 3043 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3044 loff_t len) 3045 { 3046 struct inode *inode = file_inode(file); 3047 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3048 struct shmem_inode_info *info = SHMEM_I(inode); 3049 struct shmem_falloc shmem_falloc; 3050 pgoff_t start, index, end, undo_fallocend; 3051 int error; 3052 3053 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3054 return -EOPNOTSUPP; 3055 3056 inode_lock(inode); 3057 3058 if (mode & FALLOC_FL_PUNCH_HOLE) { 3059 struct address_space *mapping = file->f_mapping; 3060 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3061 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3062 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3063 3064 /* protected by i_rwsem */ 3065 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3066 error = -EPERM; 3067 goto out; 3068 } 3069 3070 shmem_falloc.waitq = &shmem_falloc_waitq; 3071 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3072 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3073 spin_lock(&inode->i_lock); 3074 inode->i_private = &shmem_falloc; 3075 spin_unlock(&inode->i_lock); 3076 3077 if ((u64)unmap_end > (u64)unmap_start) 3078 unmap_mapping_range(mapping, unmap_start, 3079 1 + unmap_end - unmap_start, 0); 3080 shmem_truncate_range(inode, offset, offset + len - 1); 3081 /* No need to unmap again: hole-punching leaves COWed pages */ 3082 3083 spin_lock(&inode->i_lock); 3084 inode->i_private = NULL; 3085 wake_up_all(&shmem_falloc_waitq); 3086 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3087 spin_unlock(&inode->i_lock); 3088 error = 0; 3089 goto out; 3090 } 3091 3092 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3093 error = inode_newsize_ok(inode, offset + len); 3094 if (error) 3095 goto out; 3096 3097 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3098 error = -EPERM; 3099 goto out; 3100 } 3101 3102 start = offset >> PAGE_SHIFT; 3103 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3104 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3105 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3106 error = -ENOSPC; 3107 goto out; 3108 } 3109 3110 shmem_falloc.waitq = NULL; 3111 shmem_falloc.start = start; 3112 shmem_falloc.next = start; 3113 shmem_falloc.nr_falloced = 0; 3114 shmem_falloc.nr_unswapped = 0; 3115 spin_lock(&inode->i_lock); 3116 inode->i_private = &shmem_falloc; 3117 spin_unlock(&inode->i_lock); 3118 3119 /* 3120 * info->fallocend is only relevant when huge pages might be 3121 * involved: to prevent split_huge_page() freeing fallocated 3122 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3123 */ 3124 undo_fallocend = info->fallocend; 3125 if (info->fallocend < end) 3126 info->fallocend = end; 3127 3128 for (index = start; index < end; ) { 3129 struct folio *folio; 3130 3131 /* 3132 * Good, the fallocate(2) manpage permits EINTR: we may have 3133 * been interrupted because we are using up too much memory. 3134 */ 3135 if (signal_pending(current)) 3136 error = -EINTR; 3137 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3138 error = -ENOMEM; 3139 else 3140 error = shmem_get_folio(inode, index, &folio, 3141 SGP_FALLOC); 3142 if (error) { 3143 info->fallocend = undo_fallocend; 3144 /* Remove the !uptodate folios we added */ 3145 if (index > start) { 3146 shmem_undo_range(inode, 3147 (loff_t)start << PAGE_SHIFT, 3148 ((loff_t)index << PAGE_SHIFT) - 1, true); 3149 } 3150 goto undone; 3151 } 3152 3153 /* 3154 * Here is a more important optimization than it appears: 3155 * a second SGP_FALLOC on the same large folio will clear it, 3156 * making it uptodate and un-undoable if we fail later. 3157 */ 3158 index = folio_next_index(folio); 3159 /* Beware 32-bit wraparound */ 3160 if (!index) 3161 index--; 3162 3163 /* 3164 * Inform shmem_writepage() how far we have reached. 3165 * No need for lock or barrier: we have the page lock. 3166 */ 3167 if (!folio_test_uptodate(folio)) 3168 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3169 shmem_falloc.next = index; 3170 3171 /* 3172 * If !uptodate, leave it that way so that freeable folios 3173 * can be recognized if we need to rollback on error later. 3174 * But mark it dirty so that memory pressure will swap rather 3175 * than free the folios we are allocating (and SGP_CACHE folios 3176 * might still be clean: we now need to mark those dirty too). 3177 */ 3178 folio_mark_dirty(folio); 3179 folio_unlock(folio); 3180 folio_put(folio); 3181 cond_resched(); 3182 } 3183 3184 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3185 i_size_write(inode, offset + len); 3186 undone: 3187 spin_lock(&inode->i_lock); 3188 inode->i_private = NULL; 3189 spin_unlock(&inode->i_lock); 3190 out: 3191 if (!error) 3192 file_modified(file); 3193 inode_unlock(inode); 3194 return error; 3195 } 3196 3197 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3198 { 3199 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3200 3201 buf->f_type = TMPFS_MAGIC; 3202 buf->f_bsize = PAGE_SIZE; 3203 buf->f_namelen = NAME_MAX; 3204 if (sbinfo->max_blocks) { 3205 buf->f_blocks = sbinfo->max_blocks; 3206 buf->f_bavail = 3207 buf->f_bfree = sbinfo->max_blocks - 3208 percpu_counter_sum(&sbinfo->used_blocks); 3209 } 3210 if (sbinfo->max_inodes) { 3211 buf->f_files = sbinfo->max_inodes; 3212 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3213 } 3214 /* else leave those fields 0 like simple_statfs */ 3215 3216 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3217 3218 return 0; 3219 } 3220 3221 /* 3222 * File creation. Allocate an inode, and we're done.. 3223 */ 3224 static int 3225 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3226 struct dentry *dentry, umode_t mode, dev_t dev) 3227 { 3228 struct inode *inode; 3229 int error; 3230 3231 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3232 if (IS_ERR(inode)) 3233 return PTR_ERR(inode); 3234 3235 error = simple_acl_create(dir, inode); 3236 if (error) 3237 goto out_iput; 3238 error = security_inode_init_security(inode, dir, 3239 &dentry->d_name, 3240 shmem_initxattrs, NULL); 3241 if (error && error != -EOPNOTSUPP) 3242 goto out_iput; 3243 3244 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3245 if (error) 3246 goto out_iput; 3247 3248 dir->i_size += BOGO_DIRENT_SIZE; 3249 dir->i_mtime = inode_set_ctime_current(dir); 3250 inode_inc_iversion(dir); 3251 d_instantiate(dentry, inode); 3252 dget(dentry); /* Extra count - pin the dentry in core */ 3253 return error; 3254 3255 out_iput: 3256 iput(inode); 3257 return error; 3258 } 3259 3260 static int 3261 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3262 struct file *file, umode_t mode) 3263 { 3264 struct inode *inode; 3265 int error; 3266 3267 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3268 3269 if (IS_ERR(inode)) { 3270 error = PTR_ERR(inode); 3271 goto err_out; 3272 } 3273 3274 error = security_inode_init_security(inode, dir, 3275 NULL, 3276 shmem_initxattrs, NULL); 3277 if (error && error != -EOPNOTSUPP) 3278 goto out_iput; 3279 error = simple_acl_create(dir, inode); 3280 if (error) 3281 goto out_iput; 3282 d_tmpfile(file, inode); 3283 3284 err_out: 3285 return finish_open_simple(file, error); 3286 out_iput: 3287 iput(inode); 3288 return error; 3289 } 3290 3291 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3292 struct dentry *dentry, umode_t mode) 3293 { 3294 int error; 3295 3296 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3297 if (error) 3298 return error; 3299 inc_nlink(dir); 3300 return 0; 3301 } 3302 3303 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3304 struct dentry *dentry, umode_t mode, bool excl) 3305 { 3306 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3307 } 3308 3309 /* 3310 * Link a file.. 3311 */ 3312 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3313 { 3314 struct inode *inode = d_inode(old_dentry); 3315 int ret = 0; 3316 3317 /* 3318 * No ordinary (disk based) filesystem counts links as inodes; 3319 * but each new link needs a new dentry, pinning lowmem, and 3320 * tmpfs dentries cannot be pruned until they are unlinked. 3321 * But if an O_TMPFILE file is linked into the tmpfs, the 3322 * first link must skip that, to get the accounting right. 3323 */ 3324 if (inode->i_nlink) { 3325 ret = shmem_reserve_inode(inode->i_sb, NULL); 3326 if (ret) 3327 goto out; 3328 } 3329 3330 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3331 if (ret) { 3332 if (inode->i_nlink) 3333 shmem_free_inode(inode->i_sb, 0); 3334 goto out; 3335 } 3336 3337 dir->i_size += BOGO_DIRENT_SIZE; 3338 dir->i_mtime = inode_set_ctime_to_ts(dir, 3339 inode_set_ctime_current(inode)); 3340 inode_inc_iversion(dir); 3341 inc_nlink(inode); 3342 ihold(inode); /* New dentry reference */ 3343 dget(dentry); /* Extra pinning count for the created dentry */ 3344 d_instantiate(dentry, inode); 3345 out: 3346 return ret; 3347 } 3348 3349 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3350 { 3351 struct inode *inode = d_inode(dentry); 3352 3353 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3354 shmem_free_inode(inode->i_sb, 0); 3355 3356 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3357 3358 dir->i_size -= BOGO_DIRENT_SIZE; 3359 dir->i_mtime = inode_set_ctime_to_ts(dir, 3360 inode_set_ctime_current(inode)); 3361 inode_inc_iversion(dir); 3362 drop_nlink(inode); 3363 dput(dentry); /* Undo the count from "create" - this does all the work */ 3364 return 0; 3365 } 3366 3367 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3368 { 3369 if (!simple_empty(dentry)) 3370 return -ENOTEMPTY; 3371 3372 drop_nlink(d_inode(dentry)); 3373 drop_nlink(dir); 3374 return shmem_unlink(dir, dentry); 3375 } 3376 3377 static int shmem_whiteout(struct mnt_idmap *idmap, 3378 struct inode *old_dir, struct dentry *old_dentry) 3379 { 3380 struct dentry *whiteout; 3381 int error; 3382 3383 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3384 if (!whiteout) 3385 return -ENOMEM; 3386 3387 error = shmem_mknod(idmap, old_dir, whiteout, 3388 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3389 dput(whiteout); 3390 if (error) 3391 return error; 3392 3393 /* 3394 * Cheat and hash the whiteout while the old dentry is still in 3395 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3396 * 3397 * d_lookup() will consistently find one of them at this point, 3398 * not sure which one, but that isn't even important. 3399 */ 3400 d_rehash(whiteout); 3401 return 0; 3402 } 3403 3404 /* 3405 * The VFS layer already does all the dentry stuff for rename, 3406 * we just have to decrement the usage count for the target if 3407 * it exists so that the VFS layer correctly free's it when it 3408 * gets overwritten. 3409 */ 3410 static int shmem_rename2(struct mnt_idmap *idmap, 3411 struct inode *old_dir, struct dentry *old_dentry, 3412 struct inode *new_dir, struct dentry *new_dentry, 3413 unsigned int flags) 3414 { 3415 struct inode *inode = d_inode(old_dentry); 3416 int they_are_dirs = S_ISDIR(inode->i_mode); 3417 int error; 3418 3419 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3420 return -EINVAL; 3421 3422 if (flags & RENAME_EXCHANGE) 3423 return simple_offset_rename_exchange(old_dir, old_dentry, 3424 new_dir, new_dentry); 3425 3426 if (!simple_empty(new_dentry)) 3427 return -ENOTEMPTY; 3428 3429 if (flags & RENAME_WHITEOUT) { 3430 error = shmem_whiteout(idmap, old_dir, old_dentry); 3431 if (error) 3432 return error; 3433 } 3434 3435 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3436 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3437 if (error) 3438 return error; 3439 3440 if (d_really_is_positive(new_dentry)) { 3441 (void) shmem_unlink(new_dir, new_dentry); 3442 if (they_are_dirs) { 3443 drop_nlink(d_inode(new_dentry)); 3444 drop_nlink(old_dir); 3445 } 3446 } else if (they_are_dirs) { 3447 drop_nlink(old_dir); 3448 inc_nlink(new_dir); 3449 } 3450 3451 old_dir->i_size -= BOGO_DIRENT_SIZE; 3452 new_dir->i_size += BOGO_DIRENT_SIZE; 3453 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3454 inode_inc_iversion(old_dir); 3455 inode_inc_iversion(new_dir); 3456 return 0; 3457 } 3458 3459 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3460 struct dentry *dentry, const char *symname) 3461 { 3462 int error; 3463 int len; 3464 struct inode *inode; 3465 struct folio *folio; 3466 3467 len = strlen(symname) + 1; 3468 if (len > PAGE_SIZE) 3469 return -ENAMETOOLONG; 3470 3471 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3472 VM_NORESERVE); 3473 3474 if (IS_ERR(inode)) 3475 return PTR_ERR(inode); 3476 3477 error = security_inode_init_security(inode, dir, &dentry->d_name, 3478 shmem_initxattrs, NULL); 3479 if (error && error != -EOPNOTSUPP) 3480 goto out_iput; 3481 3482 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3483 if (error) 3484 goto out_iput; 3485 3486 inode->i_size = len-1; 3487 if (len <= SHORT_SYMLINK_LEN) { 3488 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3489 if (!inode->i_link) { 3490 error = -ENOMEM; 3491 goto out_remove_offset; 3492 } 3493 inode->i_op = &shmem_short_symlink_operations; 3494 } else { 3495 inode_nohighmem(inode); 3496 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3497 if (error) 3498 goto out_remove_offset; 3499 inode->i_mapping->a_ops = &shmem_aops; 3500 inode->i_op = &shmem_symlink_inode_operations; 3501 memcpy(folio_address(folio), symname, len); 3502 folio_mark_uptodate(folio); 3503 folio_mark_dirty(folio); 3504 folio_unlock(folio); 3505 folio_put(folio); 3506 } 3507 dir->i_size += BOGO_DIRENT_SIZE; 3508 dir->i_mtime = inode_set_ctime_current(dir); 3509 inode_inc_iversion(dir); 3510 d_instantiate(dentry, inode); 3511 dget(dentry); 3512 return 0; 3513 3514 out_remove_offset: 3515 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3516 out_iput: 3517 iput(inode); 3518 return error; 3519 } 3520 3521 static void shmem_put_link(void *arg) 3522 { 3523 folio_mark_accessed(arg); 3524 folio_put(arg); 3525 } 3526 3527 static const char *shmem_get_link(struct dentry *dentry, 3528 struct inode *inode, 3529 struct delayed_call *done) 3530 { 3531 struct folio *folio = NULL; 3532 int error; 3533 3534 if (!dentry) { 3535 folio = filemap_get_folio(inode->i_mapping, 0); 3536 if (IS_ERR(folio)) 3537 return ERR_PTR(-ECHILD); 3538 if (PageHWPoison(folio_page(folio, 0)) || 3539 !folio_test_uptodate(folio)) { 3540 folio_put(folio); 3541 return ERR_PTR(-ECHILD); 3542 } 3543 } else { 3544 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3545 if (error) 3546 return ERR_PTR(error); 3547 if (!folio) 3548 return ERR_PTR(-ECHILD); 3549 if (PageHWPoison(folio_page(folio, 0))) { 3550 folio_unlock(folio); 3551 folio_put(folio); 3552 return ERR_PTR(-ECHILD); 3553 } 3554 folio_unlock(folio); 3555 } 3556 set_delayed_call(done, shmem_put_link, folio); 3557 return folio_address(folio); 3558 } 3559 3560 #ifdef CONFIG_TMPFS_XATTR 3561 3562 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3563 { 3564 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3565 3566 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3567 3568 return 0; 3569 } 3570 3571 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3572 struct dentry *dentry, struct fileattr *fa) 3573 { 3574 struct inode *inode = d_inode(dentry); 3575 struct shmem_inode_info *info = SHMEM_I(inode); 3576 3577 if (fileattr_has_fsx(fa)) 3578 return -EOPNOTSUPP; 3579 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3580 return -EOPNOTSUPP; 3581 3582 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3583 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3584 3585 shmem_set_inode_flags(inode, info->fsflags); 3586 inode_set_ctime_current(inode); 3587 inode_inc_iversion(inode); 3588 return 0; 3589 } 3590 3591 /* 3592 * Superblocks without xattr inode operations may get some security.* xattr 3593 * support from the LSM "for free". As soon as we have any other xattrs 3594 * like ACLs, we also need to implement the security.* handlers at 3595 * filesystem level, though. 3596 */ 3597 3598 /* 3599 * Callback for security_inode_init_security() for acquiring xattrs. 3600 */ 3601 static int shmem_initxattrs(struct inode *inode, 3602 const struct xattr *xattr_array, 3603 void *fs_info) 3604 { 3605 struct shmem_inode_info *info = SHMEM_I(inode); 3606 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3607 const struct xattr *xattr; 3608 struct simple_xattr *new_xattr; 3609 size_t ispace = 0; 3610 size_t len; 3611 3612 if (sbinfo->max_inodes) { 3613 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3614 ispace += simple_xattr_space(xattr->name, 3615 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3616 } 3617 if (ispace) { 3618 raw_spin_lock(&sbinfo->stat_lock); 3619 if (sbinfo->free_ispace < ispace) 3620 ispace = 0; 3621 else 3622 sbinfo->free_ispace -= ispace; 3623 raw_spin_unlock(&sbinfo->stat_lock); 3624 if (!ispace) 3625 return -ENOSPC; 3626 } 3627 } 3628 3629 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3630 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3631 if (!new_xattr) 3632 break; 3633 3634 len = strlen(xattr->name) + 1; 3635 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3636 GFP_KERNEL_ACCOUNT); 3637 if (!new_xattr->name) { 3638 kvfree(new_xattr); 3639 break; 3640 } 3641 3642 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3643 XATTR_SECURITY_PREFIX_LEN); 3644 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3645 xattr->name, len); 3646 3647 simple_xattr_add(&info->xattrs, new_xattr); 3648 } 3649 3650 if (xattr->name != NULL) { 3651 if (ispace) { 3652 raw_spin_lock(&sbinfo->stat_lock); 3653 sbinfo->free_ispace += ispace; 3654 raw_spin_unlock(&sbinfo->stat_lock); 3655 } 3656 simple_xattrs_free(&info->xattrs, NULL); 3657 return -ENOMEM; 3658 } 3659 3660 return 0; 3661 } 3662 3663 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3664 struct dentry *unused, struct inode *inode, 3665 const char *name, void *buffer, size_t size) 3666 { 3667 struct shmem_inode_info *info = SHMEM_I(inode); 3668 3669 name = xattr_full_name(handler, name); 3670 return simple_xattr_get(&info->xattrs, name, buffer, size); 3671 } 3672 3673 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3674 struct mnt_idmap *idmap, 3675 struct dentry *unused, struct inode *inode, 3676 const char *name, const void *value, 3677 size_t size, int flags) 3678 { 3679 struct shmem_inode_info *info = SHMEM_I(inode); 3680 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3681 struct simple_xattr *old_xattr; 3682 size_t ispace = 0; 3683 3684 name = xattr_full_name(handler, name); 3685 if (value && sbinfo->max_inodes) { 3686 ispace = simple_xattr_space(name, size); 3687 raw_spin_lock(&sbinfo->stat_lock); 3688 if (sbinfo->free_ispace < ispace) 3689 ispace = 0; 3690 else 3691 sbinfo->free_ispace -= ispace; 3692 raw_spin_unlock(&sbinfo->stat_lock); 3693 if (!ispace) 3694 return -ENOSPC; 3695 } 3696 3697 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3698 if (!IS_ERR(old_xattr)) { 3699 ispace = 0; 3700 if (old_xattr && sbinfo->max_inodes) 3701 ispace = simple_xattr_space(old_xattr->name, 3702 old_xattr->size); 3703 simple_xattr_free(old_xattr); 3704 old_xattr = NULL; 3705 inode_set_ctime_current(inode); 3706 inode_inc_iversion(inode); 3707 } 3708 if (ispace) { 3709 raw_spin_lock(&sbinfo->stat_lock); 3710 sbinfo->free_ispace += ispace; 3711 raw_spin_unlock(&sbinfo->stat_lock); 3712 } 3713 return PTR_ERR(old_xattr); 3714 } 3715 3716 static const struct xattr_handler shmem_security_xattr_handler = { 3717 .prefix = XATTR_SECURITY_PREFIX, 3718 .get = shmem_xattr_handler_get, 3719 .set = shmem_xattr_handler_set, 3720 }; 3721 3722 static const struct xattr_handler shmem_trusted_xattr_handler = { 3723 .prefix = XATTR_TRUSTED_PREFIX, 3724 .get = shmem_xattr_handler_get, 3725 .set = shmem_xattr_handler_set, 3726 }; 3727 3728 static const struct xattr_handler shmem_user_xattr_handler = { 3729 .prefix = XATTR_USER_PREFIX, 3730 .get = shmem_xattr_handler_get, 3731 .set = shmem_xattr_handler_set, 3732 }; 3733 3734 static const struct xattr_handler *shmem_xattr_handlers[] = { 3735 &shmem_security_xattr_handler, 3736 &shmem_trusted_xattr_handler, 3737 &shmem_user_xattr_handler, 3738 NULL 3739 }; 3740 3741 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3742 { 3743 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3744 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3745 } 3746 #endif /* CONFIG_TMPFS_XATTR */ 3747 3748 static const struct inode_operations shmem_short_symlink_operations = { 3749 .getattr = shmem_getattr, 3750 .setattr = shmem_setattr, 3751 .get_link = simple_get_link, 3752 #ifdef CONFIG_TMPFS_XATTR 3753 .listxattr = shmem_listxattr, 3754 #endif 3755 }; 3756 3757 static const struct inode_operations shmem_symlink_inode_operations = { 3758 .getattr = shmem_getattr, 3759 .setattr = shmem_setattr, 3760 .get_link = shmem_get_link, 3761 #ifdef CONFIG_TMPFS_XATTR 3762 .listxattr = shmem_listxattr, 3763 #endif 3764 }; 3765 3766 static struct dentry *shmem_get_parent(struct dentry *child) 3767 { 3768 return ERR_PTR(-ESTALE); 3769 } 3770 3771 static int shmem_match(struct inode *ino, void *vfh) 3772 { 3773 __u32 *fh = vfh; 3774 __u64 inum = fh[2]; 3775 inum = (inum << 32) | fh[1]; 3776 return ino->i_ino == inum && fh[0] == ino->i_generation; 3777 } 3778 3779 /* Find any alias of inode, but prefer a hashed alias */ 3780 static struct dentry *shmem_find_alias(struct inode *inode) 3781 { 3782 struct dentry *alias = d_find_alias(inode); 3783 3784 return alias ?: d_find_any_alias(inode); 3785 } 3786 3787 3788 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3789 struct fid *fid, int fh_len, int fh_type) 3790 { 3791 struct inode *inode; 3792 struct dentry *dentry = NULL; 3793 u64 inum; 3794 3795 if (fh_len < 3) 3796 return NULL; 3797 3798 inum = fid->raw[2]; 3799 inum = (inum << 32) | fid->raw[1]; 3800 3801 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3802 shmem_match, fid->raw); 3803 if (inode) { 3804 dentry = shmem_find_alias(inode); 3805 iput(inode); 3806 } 3807 3808 return dentry; 3809 } 3810 3811 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3812 struct inode *parent) 3813 { 3814 if (*len < 3) { 3815 *len = 3; 3816 return FILEID_INVALID; 3817 } 3818 3819 if (inode_unhashed(inode)) { 3820 /* Unfortunately insert_inode_hash is not idempotent, 3821 * so as we hash inodes here rather than at creation 3822 * time, we need a lock to ensure we only try 3823 * to do it once 3824 */ 3825 static DEFINE_SPINLOCK(lock); 3826 spin_lock(&lock); 3827 if (inode_unhashed(inode)) 3828 __insert_inode_hash(inode, 3829 inode->i_ino + inode->i_generation); 3830 spin_unlock(&lock); 3831 } 3832 3833 fh[0] = inode->i_generation; 3834 fh[1] = inode->i_ino; 3835 fh[2] = ((__u64)inode->i_ino) >> 32; 3836 3837 *len = 3; 3838 return 1; 3839 } 3840 3841 static const struct export_operations shmem_export_ops = { 3842 .get_parent = shmem_get_parent, 3843 .encode_fh = shmem_encode_fh, 3844 .fh_to_dentry = shmem_fh_to_dentry, 3845 }; 3846 3847 enum shmem_param { 3848 Opt_gid, 3849 Opt_huge, 3850 Opt_mode, 3851 Opt_mpol, 3852 Opt_nr_blocks, 3853 Opt_nr_inodes, 3854 Opt_size, 3855 Opt_uid, 3856 Opt_inode32, 3857 Opt_inode64, 3858 Opt_noswap, 3859 Opt_quota, 3860 Opt_usrquota, 3861 Opt_grpquota, 3862 Opt_usrquota_block_hardlimit, 3863 Opt_usrquota_inode_hardlimit, 3864 Opt_grpquota_block_hardlimit, 3865 Opt_grpquota_inode_hardlimit, 3866 }; 3867 3868 static const struct constant_table shmem_param_enums_huge[] = { 3869 {"never", SHMEM_HUGE_NEVER }, 3870 {"always", SHMEM_HUGE_ALWAYS }, 3871 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3872 {"advise", SHMEM_HUGE_ADVISE }, 3873 {} 3874 }; 3875 3876 const struct fs_parameter_spec shmem_fs_parameters[] = { 3877 fsparam_u32 ("gid", Opt_gid), 3878 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3879 fsparam_u32oct("mode", Opt_mode), 3880 fsparam_string("mpol", Opt_mpol), 3881 fsparam_string("nr_blocks", Opt_nr_blocks), 3882 fsparam_string("nr_inodes", Opt_nr_inodes), 3883 fsparam_string("size", Opt_size), 3884 fsparam_u32 ("uid", Opt_uid), 3885 fsparam_flag ("inode32", Opt_inode32), 3886 fsparam_flag ("inode64", Opt_inode64), 3887 fsparam_flag ("noswap", Opt_noswap), 3888 #ifdef CONFIG_TMPFS_QUOTA 3889 fsparam_flag ("quota", Opt_quota), 3890 fsparam_flag ("usrquota", Opt_usrquota), 3891 fsparam_flag ("grpquota", Opt_grpquota), 3892 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3893 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3894 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3895 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3896 #endif 3897 {} 3898 }; 3899 3900 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3901 { 3902 struct shmem_options *ctx = fc->fs_private; 3903 struct fs_parse_result result; 3904 unsigned long long size; 3905 char *rest; 3906 int opt; 3907 kuid_t kuid; 3908 kgid_t kgid; 3909 3910 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3911 if (opt < 0) 3912 return opt; 3913 3914 switch (opt) { 3915 case Opt_size: 3916 size = memparse(param->string, &rest); 3917 if (*rest == '%') { 3918 size <<= PAGE_SHIFT; 3919 size *= totalram_pages(); 3920 do_div(size, 100); 3921 rest++; 3922 } 3923 if (*rest) 3924 goto bad_value; 3925 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3926 ctx->seen |= SHMEM_SEEN_BLOCKS; 3927 break; 3928 case Opt_nr_blocks: 3929 ctx->blocks = memparse(param->string, &rest); 3930 if (*rest || ctx->blocks > LONG_MAX) 3931 goto bad_value; 3932 ctx->seen |= SHMEM_SEEN_BLOCKS; 3933 break; 3934 case Opt_nr_inodes: 3935 ctx->inodes = memparse(param->string, &rest); 3936 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3937 goto bad_value; 3938 ctx->seen |= SHMEM_SEEN_INODES; 3939 break; 3940 case Opt_mode: 3941 ctx->mode = result.uint_32 & 07777; 3942 break; 3943 case Opt_uid: 3944 kuid = make_kuid(current_user_ns(), result.uint_32); 3945 if (!uid_valid(kuid)) 3946 goto bad_value; 3947 3948 /* 3949 * The requested uid must be representable in the 3950 * filesystem's idmapping. 3951 */ 3952 if (!kuid_has_mapping(fc->user_ns, kuid)) 3953 goto bad_value; 3954 3955 ctx->uid = kuid; 3956 break; 3957 case Opt_gid: 3958 kgid = make_kgid(current_user_ns(), result.uint_32); 3959 if (!gid_valid(kgid)) 3960 goto bad_value; 3961 3962 /* 3963 * The requested gid must be representable in the 3964 * filesystem's idmapping. 3965 */ 3966 if (!kgid_has_mapping(fc->user_ns, kgid)) 3967 goto bad_value; 3968 3969 ctx->gid = kgid; 3970 break; 3971 case Opt_huge: 3972 ctx->huge = result.uint_32; 3973 if (ctx->huge != SHMEM_HUGE_NEVER && 3974 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3975 has_transparent_hugepage())) 3976 goto unsupported_parameter; 3977 ctx->seen |= SHMEM_SEEN_HUGE; 3978 break; 3979 case Opt_mpol: 3980 if (IS_ENABLED(CONFIG_NUMA)) { 3981 mpol_put(ctx->mpol); 3982 ctx->mpol = NULL; 3983 if (mpol_parse_str(param->string, &ctx->mpol)) 3984 goto bad_value; 3985 break; 3986 } 3987 goto unsupported_parameter; 3988 case Opt_inode32: 3989 ctx->full_inums = false; 3990 ctx->seen |= SHMEM_SEEN_INUMS; 3991 break; 3992 case Opt_inode64: 3993 if (sizeof(ino_t) < 8) { 3994 return invalfc(fc, 3995 "Cannot use inode64 with <64bit inums in kernel\n"); 3996 } 3997 ctx->full_inums = true; 3998 ctx->seen |= SHMEM_SEEN_INUMS; 3999 break; 4000 case Opt_noswap: 4001 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4002 return invalfc(fc, 4003 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4004 } 4005 ctx->noswap = true; 4006 ctx->seen |= SHMEM_SEEN_NOSWAP; 4007 break; 4008 case Opt_quota: 4009 if (fc->user_ns != &init_user_ns) 4010 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4011 ctx->seen |= SHMEM_SEEN_QUOTA; 4012 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4013 break; 4014 case Opt_usrquota: 4015 if (fc->user_ns != &init_user_ns) 4016 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4017 ctx->seen |= SHMEM_SEEN_QUOTA; 4018 ctx->quota_types |= QTYPE_MASK_USR; 4019 break; 4020 case Opt_grpquota: 4021 if (fc->user_ns != &init_user_ns) 4022 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4023 ctx->seen |= SHMEM_SEEN_QUOTA; 4024 ctx->quota_types |= QTYPE_MASK_GRP; 4025 break; 4026 case Opt_usrquota_block_hardlimit: 4027 size = memparse(param->string, &rest); 4028 if (*rest || !size) 4029 goto bad_value; 4030 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4031 return invalfc(fc, 4032 "User quota block hardlimit too large."); 4033 ctx->qlimits.usrquota_bhardlimit = size; 4034 break; 4035 case Opt_grpquota_block_hardlimit: 4036 size = memparse(param->string, &rest); 4037 if (*rest || !size) 4038 goto bad_value; 4039 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4040 return invalfc(fc, 4041 "Group quota block hardlimit too large."); 4042 ctx->qlimits.grpquota_bhardlimit = size; 4043 break; 4044 case Opt_usrquota_inode_hardlimit: 4045 size = memparse(param->string, &rest); 4046 if (*rest || !size) 4047 goto bad_value; 4048 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4049 return invalfc(fc, 4050 "User quota inode hardlimit too large."); 4051 ctx->qlimits.usrquota_ihardlimit = size; 4052 break; 4053 case Opt_grpquota_inode_hardlimit: 4054 size = memparse(param->string, &rest); 4055 if (*rest || !size) 4056 goto bad_value; 4057 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4058 return invalfc(fc, 4059 "Group quota inode hardlimit too large."); 4060 ctx->qlimits.grpquota_ihardlimit = size; 4061 break; 4062 } 4063 return 0; 4064 4065 unsupported_parameter: 4066 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4067 bad_value: 4068 return invalfc(fc, "Bad value for '%s'", param->key); 4069 } 4070 4071 static int shmem_parse_options(struct fs_context *fc, void *data) 4072 { 4073 char *options = data; 4074 4075 if (options) { 4076 int err = security_sb_eat_lsm_opts(options, &fc->security); 4077 if (err) 4078 return err; 4079 } 4080 4081 while (options != NULL) { 4082 char *this_char = options; 4083 for (;;) { 4084 /* 4085 * NUL-terminate this option: unfortunately, 4086 * mount options form a comma-separated list, 4087 * but mpol's nodelist may also contain commas. 4088 */ 4089 options = strchr(options, ','); 4090 if (options == NULL) 4091 break; 4092 options++; 4093 if (!isdigit(*options)) { 4094 options[-1] = '\0'; 4095 break; 4096 } 4097 } 4098 if (*this_char) { 4099 char *value = strchr(this_char, '='); 4100 size_t len = 0; 4101 int err; 4102 4103 if (value) { 4104 *value++ = '\0'; 4105 len = strlen(value); 4106 } 4107 err = vfs_parse_fs_string(fc, this_char, value, len); 4108 if (err < 0) 4109 return err; 4110 } 4111 } 4112 return 0; 4113 } 4114 4115 /* 4116 * Reconfigure a shmem filesystem. 4117 */ 4118 static int shmem_reconfigure(struct fs_context *fc) 4119 { 4120 struct shmem_options *ctx = fc->fs_private; 4121 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4122 unsigned long used_isp; 4123 struct mempolicy *mpol = NULL; 4124 const char *err; 4125 4126 raw_spin_lock(&sbinfo->stat_lock); 4127 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4128 4129 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4130 if (!sbinfo->max_blocks) { 4131 err = "Cannot retroactively limit size"; 4132 goto out; 4133 } 4134 if (percpu_counter_compare(&sbinfo->used_blocks, 4135 ctx->blocks) > 0) { 4136 err = "Too small a size for current use"; 4137 goto out; 4138 } 4139 } 4140 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4141 if (!sbinfo->max_inodes) { 4142 err = "Cannot retroactively limit inodes"; 4143 goto out; 4144 } 4145 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4146 err = "Too few inodes for current use"; 4147 goto out; 4148 } 4149 } 4150 4151 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4152 sbinfo->next_ino > UINT_MAX) { 4153 err = "Current inum too high to switch to 32-bit inums"; 4154 goto out; 4155 } 4156 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4157 err = "Cannot disable swap on remount"; 4158 goto out; 4159 } 4160 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4161 err = "Cannot enable swap on remount if it was disabled on first mount"; 4162 goto out; 4163 } 4164 4165 if (ctx->seen & SHMEM_SEEN_QUOTA && 4166 !sb_any_quota_loaded(fc->root->d_sb)) { 4167 err = "Cannot enable quota on remount"; 4168 goto out; 4169 } 4170 4171 #ifdef CONFIG_TMPFS_QUOTA 4172 #define CHANGED_LIMIT(name) \ 4173 (ctx->qlimits.name## hardlimit && \ 4174 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4175 4176 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4177 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4178 err = "Cannot change global quota limit on remount"; 4179 goto out; 4180 } 4181 #endif /* CONFIG_TMPFS_QUOTA */ 4182 4183 if (ctx->seen & SHMEM_SEEN_HUGE) 4184 sbinfo->huge = ctx->huge; 4185 if (ctx->seen & SHMEM_SEEN_INUMS) 4186 sbinfo->full_inums = ctx->full_inums; 4187 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4188 sbinfo->max_blocks = ctx->blocks; 4189 if (ctx->seen & SHMEM_SEEN_INODES) { 4190 sbinfo->max_inodes = ctx->inodes; 4191 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4192 } 4193 4194 /* 4195 * Preserve previous mempolicy unless mpol remount option was specified. 4196 */ 4197 if (ctx->mpol) { 4198 mpol = sbinfo->mpol; 4199 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4200 ctx->mpol = NULL; 4201 } 4202 4203 if (ctx->noswap) 4204 sbinfo->noswap = true; 4205 4206 raw_spin_unlock(&sbinfo->stat_lock); 4207 mpol_put(mpol); 4208 return 0; 4209 out: 4210 raw_spin_unlock(&sbinfo->stat_lock); 4211 return invalfc(fc, "%s", err); 4212 } 4213 4214 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4215 { 4216 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4217 struct mempolicy *mpol; 4218 4219 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4220 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4221 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4222 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4223 if (sbinfo->mode != (0777 | S_ISVTX)) 4224 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4225 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4226 seq_printf(seq, ",uid=%u", 4227 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4228 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4229 seq_printf(seq, ",gid=%u", 4230 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4231 4232 /* 4233 * Showing inode{64,32} might be useful even if it's the system default, 4234 * since then people don't have to resort to checking both here and 4235 * /proc/config.gz to confirm 64-bit inums were successfully applied 4236 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4237 * 4238 * We hide it when inode64 isn't the default and we are using 32-bit 4239 * inodes, since that probably just means the feature isn't even under 4240 * consideration. 4241 * 4242 * As such: 4243 * 4244 * +-----------------+-----------------+ 4245 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4246 * +------------------+-----------------+-----------------+ 4247 * | full_inums=true | show | show | 4248 * | full_inums=false | show | hide | 4249 * +------------------+-----------------+-----------------+ 4250 * 4251 */ 4252 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4253 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4255 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4256 if (sbinfo->huge) 4257 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4258 #endif 4259 mpol = shmem_get_sbmpol(sbinfo); 4260 shmem_show_mpol(seq, mpol); 4261 mpol_put(mpol); 4262 if (sbinfo->noswap) 4263 seq_printf(seq, ",noswap"); 4264 return 0; 4265 } 4266 4267 #endif /* CONFIG_TMPFS */ 4268 4269 static void shmem_put_super(struct super_block *sb) 4270 { 4271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4272 4273 #ifdef CONFIG_TMPFS_QUOTA 4274 shmem_disable_quotas(sb); 4275 #endif 4276 free_percpu(sbinfo->ino_batch); 4277 percpu_counter_destroy(&sbinfo->used_blocks); 4278 mpol_put(sbinfo->mpol); 4279 kfree(sbinfo); 4280 sb->s_fs_info = NULL; 4281 } 4282 4283 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4284 { 4285 struct shmem_options *ctx = fc->fs_private; 4286 struct inode *inode; 4287 struct shmem_sb_info *sbinfo; 4288 int error = -ENOMEM; 4289 4290 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4291 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4292 L1_CACHE_BYTES), GFP_KERNEL); 4293 if (!sbinfo) 4294 return error; 4295 4296 sb->s_fs_info = sbinfo; 4297 4298 #ifdef CONFIG_TMPFS 4299 /* 4300 * Per default we only allow half of the physical ram per 4301 * tmpfs instance, limiting inodes to one per page of lowmem; 4302 * but the internal instance is left unlimited. 4303 */ 4304 if (!(sb->s_flags & SB_KERNMOUNT)) { 4305 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4306 ctx->blocks = shmem_default_max_blocks(); 4307 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4308 ctx->inodes = shmem_default_max_inodes(); 4309 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4310 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4311 sbinfo->noswap = ctx->noswap; 4312 } else { 4313 sb->s_flags |= SB_NOUSER; 4314 } 4315 sb->s_export_op = &shmem_export_ops; 4316 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4317 #else 4318 sb->s_flags |= SB_NOUSER; 4319 #endif 4320 sbinfo->max_blocks = ctx->blocks; 4321 sbinfo->max_inodes = ctx->inodes; 4322 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4323 if (sb->s_flags & SB_KERNMOUNT) { 4324 sbinfo->ino_batch = alloc_percpu(ino_t); 4325 if (!sbinfo->ino_batch) 4326 goto failed; 4327 } 4328 sbinfo->uid = ctx->uid; 4329 sbinfo->gid = ctx->gid; 4330 sbinfo->full_inums = ctx->full_inums; 4331 sbinfo->mode = ctx->mode; 4332 sbinfo->huge = ctx->huge; 4333 sbinfo->mpol = ctx->mpol; 4334 ctx->mpol = NULL; 4335 4336 raw_spin_lock_init(&sbinfo->stat_lock); 4337 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4338 goto failed; 4339 spin_lock_init(&sbinfo->shrinklist_lock); 4340 INIT_LIST_HEAD(&sbinfo->shrinklist); 4341 4342 sb->s_maxbytes = MAX_LFS_FILESIZE; 4343 sb->s_blocksize = PAGE_SIZE; 4344 sb->s_blocksize_bits = PAGE_SHIFT; 4345 sb->s_magic = TMPFS_MAGIC; 4346 sb->s_op = &shmem_ops; 4347 sb->s_time_gran = 1; 4348 #ifdef CONFIG_TMPFS_XATTR 4349 sb->s_xattr = shmem_xattr_handlers; 4350 #endif 4351 #ifdef CONFIG_TMPFS_POSIX_ACL 4352 sb->s_flags |= SB_POSIXACL; 4353 #endif 4354 uuid_gen(&sb->s_uuid); 4355 4356 #ifdef CONFIG_TMPFS_QUOTA 4357 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4358 sb->dq_op = &shmem_quota_operations; 4359 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4360 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4361 4362 /* Copy the default limits from ctx into sbinfo */ 4363 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4364 sizeof(struct shmem_quota_limits)); 4365 4366 if (shmem_enable_quotas(sb, ctx->quota_types)) 4367 goto failed; 4368 } 4369 #endif /* CONFIG_TMPFS_QUOTA */ 4370 4371 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4372 VM_NORESERVE); 4373 if (IS_ERR(inode)) { 4374 error = PTR_ERR(inode); 4375 goto failed; 4376 } 4377 inode->i_uid = sbinfo->uid; 4378 inode->i_gid = sbinfo->gid; 4379 sb->s_root = d_make_root(inode); 4380 if (!sb->s_root) 4381 goto failed; 4382 return 0; 4383 4384 failed: 4385 shmem_put_super(sb); 4386 return error; 4387 } 4388 4389 static int shmem_get_tree(struct fs_context *fc) 4390 { 4391 return get_tree_nodev(fc, shmem_fill_super); 4392 } 4393 4394 static void shmem_free_fc(struct fs_context *fc) 4395 { 4396 struct shmem_options *ctx = fc->fs_private; 4397 4398 if (ctx) { 4399 mpol_put(ctx->mpol); 4400 kfree(ctx); 4401 } 4402 } 4403 4404 static const struct fs_context_operations shmem_fs_context_ops = { 4405 .free = shmem_free_fc, 4406 .get_tree = shmem_get_tree, 4407 #ifdef CONFIG_TMPFS 4408 .parse_monolithic = shmem_parse_options, 4409 .parse_param = shmem_parse_one, 4410 .reconfigure = shmem_reconfigure, 4411 #endif 4412 }; 4413 4414 static struct kmem_cache *shmem_inode_cachep; 4415 4416 static struct inode *shmem_alloc_inode(struct super_block *sb) 4417 { 4418 struct shmem_inode_info *info; 4419 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4420 if (!info) 4421 return NULL; 4422 return &info->vfs_inode; 4423 } 4424 4425 static void shmem_free_in_core_inode(struct inode *inode) 4426 { 4427 if (S_ISLNK(inode->i_mode)) 4428 kfree(inode->i_link); 4429 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4430 } 4431 4432 static void shmem_destroy_inode(struct inode *inode) 4433 { 4434 if (S_ISREG(inode->i_mode)) 4435 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4436 if (S_ISDIR(inode->i_mode)) 4437 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4438 } 4439 4440 static void shmem_init_inode(void *foo) 4441 { 4442 struct shmem_inode_info *info = foo; 4443 inode_init_once(&info->vfs_inode); 4444 } 4445 4446 static void shmem_init_inodecache(void) 4447 { 4448 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4449 sizeof(struct shmem_inode_info), 4450 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4451 } 4452 4453 static void shmem_destroy_inodecache(void) 4454 { 4455 kmem_cache_destroy(shmem_inode_cachep); 4456 } 4457 4458 /* Keep the page in page cache instead of truncating it */ 4459 static int shmem_error_remove_page(struct address_space *mapping, 4460 struct page *page) 4461 { 4462 return 0; 4463 } 4464 4465 const struct address_space_operations shmem_aops = { 4466 .writepage = shmem_writepage, 4467 .dirty_folio = noop_dirty_folio, 4468 #ifdef CONFIG_TMPFS 4469 .write_begin = shmem_write_begin, 4470 .write_end = shmem_write_end, 4471 #endif 4472 #ifdef CONFIG_MIGRATION 4473 .migrate_folio = migrate_folio, 4474 #endif 4475 .error_remove_page = shmem_error_remove_page, 4476 }; 4477 EXPORT_SYMBOL(shmem_aops); 4478 4479 static const struct file_operations shmem_file_operations = { 4480 .mmap = shmem_mmap, 4481 .open = shmem_file_open, 4482 .get_unmapped_area = shmem_get_unmapped_area, 4483 #ifdef CONFIG_TMPFS 4484 .llseek = shmem_file_llseek, 4485 .read_iter = shmem_file_read_iter, 4486 .write_iter = shmem_file_write_iter, 4487 .fsync = noop_fsync, 4488 .splice_read = shmem_file_splice_read, 4489 .splice_write = iter_file_splice_write, 4490 .fallocate = shmem_fallocate, 4491 #endif 4492 }; 4493 4494 static const struct inode_operations shmem_inode_operations = { 4495 .getattr = shmem_getattr, 4496 .setattr = shmem_setattr, 4497 #ifdef CONFIG_TMPFS_XATTR 4498 .listxattr = shmem_listxattr, 4499 .set_acl = simple_set_acl, 4500 .fileattr_get = shmem_fileattr_get, 4501 .fileattr_set = shmem_fileattr_set, 4502 #endif 4503 }; 4504 4505 static const struct inode_operations shmem_dir_inode_operations = { 4506 #ifdef CONFIG_TMPFS 4507 .getattr = shmem_getattr, 4508 .create = shmem_create, 4509 .lookup = simple_lookup, 4510 .link = shmem_link, 4511 .unlink = shmem_unlink, 4512 .symlink = shmem_symlink, 4513 .mkdir = shmem_mkdir, 4514 .rmdir = shmem_rmdir, 4515 .mknod = shmem_mknod, 4516 .rename = shmem_rename2, 4517 .tmpfile = shmem_tmpfile, 4518 .get_offset_ctx = shmem_get_offset_ctx, 4519 #endif 4520 #ifdef CONFIG_TMPFS_XATTR 4521 .listxattr = shmem_listxattr, 4522 .fileattr_get = shmem_fileattr_get, 4523 .fileattr_set = shmem_fileattr_set, 4524 #endif 4525 #ifdef CONFIG_TMPFS_POSIX_ACL 4526 .setattr = shmem_setattr, 4527 .set_acl = simple_set_acl, 4528 #endif 4529 }; 4530 4531 static const struct inode_operations shmem_special_inode_operations = { 4532 .getattr = shmem_getattr, 4533 #ifdef CONFIG_TMPFS_XATTR 4534 .listxattr = shmem_listxattr, 4535 #endif 4536 #ifdef CONFIG_TMPFS_POSIX_ACL 4537 .setattr = shmem_setattr, 4538 .set_acl = simple_set_acl, 4539 #endif 4540 }; 4541 4542 static const struct super_operations shmem_ops = { 4543 .alloc_inode = shmem_alloc_inode, 4544 .free_inode = shmem_free_in_core_inode, 4545 .destroy_inode = shmem_destroy_inode, 4546 #ifdef CONFIG_TMPFS 4547 .statfs = shmem_statfs, 4548 .show_options = shmem_show_options, 4549 #endif 4550 #ifdef CONFIG_TMPFS_QUOTA 4551 .get_dquots = shmem_get_dquots, 4552 #endif 4553 .evict_inode = shmem_evict_inode, 4554 .drop_inode = generic_delete_inode, 4555 .put_super = shmem_put_super, 4556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4557 .nr_cached_objects = shmem_unused_huge_count, 4558 .free_cached_objects = shmem_unused_huge_scan, 4559 #endif 4560 }; 4561 4562 static const struct vm_operations_struct shmem_vm_ops = { 4563 .fault = shmem_fault, 4564 .map_pages = filemap_map_pages, 4565 #ifdef CONFIG_NUMA 4566 .set_policy = shmem_set_policy, 4567 .get_policy = shmem_get_policy, 4568 #endif 4569 }; 4570 4571 static const struct vm_operations_struct shmem_anon_vm_ops = { 4572 .fault = shmem_fault, 4573 .map_pages = filemap_map_pages, 4574 #ifdef CONFIG_NUMA 4575 .set_policy = shmem_set_policy, 4576 .get_policy = shmem_get_policy, 4577 #endif 4578 }; 4579 4580 int shmem_init_fs_context(struct fs_context *fc) 4581 { 4582 struct shmem_options *ctx; 4583 4584 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4585 if (!ctx) 4586 return -ENOMEM; 4587 4588 ctx->mode = 0777 | S_ISVTX; 4589 ctx->uid = current_fsuid(); 4590 ctx->gid = current_fsgid(); 4591 4592 fc->fs_private = ctx; 4593 fc->ops = &shmem_fs_context_ops; 4594 return 0; 4595 } 4596 4597 static struct file_system_type shmem_fs_type = { 4598 .owner = THIS_MODULE, 4599 .name = "tmpfs", 4600 .init_fs_context = shmem_init_fs_context, 4601 #ifdef CONFIG_TMPFS 4602 .parameters = shmem_fs_parameters, 4603 #endif 4604 .kill_sb = kill_litter_super, 4605 #ifdef CONFIG_SHMEM 4606 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4607 #else 4608 .fs_flags = FS_USERNS_MOUNT, 4609 #endif 4610 }; 4611 4612 void __init shmem_init(void) 4613 { 4614 int error; 4615 4616 shmem_init_inodecache(); 4617 4618 #ifdef CONFIG_TMPFS_QUOTA 4619 error = register_quota_format(&shmem_quota_format); 4620 if (error < 0) { 4621 pr_err("Could not register quota format\n"); 4622 goto out3; 4623 } 4624 #endif 4625 4626 error = register_filesystem(&shmem_fs_type); 4627 if (error) { 4628 pr_err("Could not register tmpfs\n"); 4629 goto out2; 4630 } 4631 4632 shm_mnt = kern_mount(&shmem_fs_type); 4633 if (IS_ERR(shm_mnt)) { 4634 error = PTR_ERR(shm_mnt); 4635 pr_err("Could not kern_mount tmpfs\n"); 4636 goto out1; 4637 } 4638 4639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4640 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4641 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4642 else 4643 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4644 #endif 4645 return; 4646 4647 out1: 4648 unregister_filesystem(&shmem_fs_type); 4649 out2: 4650 #ifdef CONFIG_TMPFS_QUOTA 4651 unregister_quota_format(&shmem_quota_format); 4652 out3: 4653 #endif 4654 shmem_destroy_inodecache(); 4655 shm_mnt = ERR_PTR(error); 4656 } 4657 4658 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4659 static ssize_t shmem_enabled_show(struct kobject *kobj, 4660 struct kobj_attribute *attr, char *buf) 4661 { 4662 static const int values[] = { 4663 SHMEM_HUGE_ALWAYS, 4664 SHMEM_HUGE_WITHIN_SIZE, 4665 SHMEM_HUGE_ADVISE, 4666 SHMEM_HUGE_NEVER, 4667 SHMEM_HUGE_DENY, 4668 SHMEM_HUGE_FORCE, 4669 }; 4670 int len = 0; 4671 int i; 4672 4673 for (i = 0; i < ARRAY_SIZE(values); i++) { 4674 len += sysfs_emit_at(buf, len, 4675 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4676 i ? " " : "", 4677 shmem_format_huge(values[i])); 4678 } 4679 4680 len += sysfs_emit_at(buf, len, "\n"); 4681 4682 return len; 4683 } 4684 4685 static ssize_t shmem_enabled_store(struct kobject *kobj, 4686 struct kobj_attribute *attr, const char *buf, size_t count) 4687 { 4688 char tmp[16]; 4689 int huge; 4690 4691 if (count + 1 > sizeof(tmp)) 4692 return -EINVAL; 4693 memcpy(tmp, buf, count); 4694 tmp[count] = '\0'; 4695 if (count && tmp[count - 1] == '\n') 4696 tmp[count - 1] = '\0'; 4697 4698 huge = shmem_parse_huge(tmp); 4699 if (huge == -EINVAL) 4700 return -EINVAL; 4701 if (!has_transparent_hugepage() && 4702 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4703 return -EINVAL; 4704 4705 shmem_huge = huge; 4706 if (shmem_huge > SHMEM_HUGE_DENY) 4707 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4708 return count; 4709 } 4710 4711 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4713 4714 #else /* !CONFIG_SHMEM */ 4715 4716 /* 4717 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4718 * 4719 * This is intended for small system where the benefits of the full 4720 * shmem code (swap-backed and resource-limited) are outweighed by 4721 * their complexity. On systems without swap this code should be 4722 * effectively equivalent, but much lighter weight. 4723 */ 4724 4725 static struct file_system_type shmem_fs_type = { 4726 .name = "tmpfs", 4727 .init_fs_context = ramfs_init_fs_context, 4728 .parameters = ramfs_fs_parameters, 4729 .kill_sb = ramfs_kill_sb, 4730 .fs_flags = FS_USERNS_MOUNT, 4731 }; 4732 4733 void __init shmem_init(void) 4734 { 4735 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4736 4737 shm_mnt = kern_mount(&shmem_fs_type); 4738 BUG_ON(IS_ERR(shm_mnt)); 4739 } 4740 4741 int shmem_unuse(unsigned int type) 4742 { 4743 return 0; 4744 } 4745 4746 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4747 { 4748 return 0; 4749 } 4750 4751 void shmem_unlock_mapping(struct address_space *mapping) 4752 { 4753 } 4754 4755 #ifdef CONFIG_MMU 4756 unsigned long shmem_get_unmapped_area(struct file *file, 4757 unsigned long addr, unsigned long len, 4758 unsigned long pgoff, unsigned long flags) 4759 { 4760 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4761 } 4762 #endif 4763 4764 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4765 { 4766 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4767 } 4768 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4769 4770 #define shmem_vm_ops generic_file_vm_ops 4771 #define shmem_anon_vm_ops generic_file_vm_ops 4772 #define shmem_file_operations ramfs_file_operations 4773 #define shmem_acct_size(flags, size) 0 4774 #define shmem_unacct_size(flags, size) do {} while (0) 4775 4776 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir, 4777 umode_t mode, dev_t dev, unsigned long flags) 4778 { 4779 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4780 return inode ? inode : ERR_PTR(-ENOSPC); 4781 } 4782 4783 #endif /* CONFIG_SHMEM */ 4784 4785 /* common code */ 4786 4787 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4788 unsigned long flags, unsigned int i_flags) 4789 { 4790 struct inode *inode; 4791 struct file *res; 4792 4793 if (IS_ERR(mnt)) 4794 return ERR_CAST(mnt); 4795 4796 if (size < 0 || size > MAX_LFS_FILESIZE) 4797 return ERR_PTR(-EINVAL); 4798 4799 if (shmem_acct_size(flags, size)) 4800 return ERR_PTR(-ENOMEM); 4801 4802 if (is_idmapped_mnt(mnt)) 4803 return ERR_PTR(-EINVAL); 4804 4805 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4806 S_IFREG | S_IRWXUGO, 0, flags); 4807 4808 if (IS_ERR(inode)) { 4809 shmem_unacct_size(flags, size); 4810 return ERR_CAST(inode); 4811 } 4812 inode->i_flags |= i_flags; 4813 inode->i_size = size; 4814 clear_nlink(inode); /* It is unlinked */ 4815 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4816 if (!IS_ERR(res)) 4817 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4818 &shmem_file_operations); 4819 if (IS_ERR(res)) 4820 iput(inode); 4821 return res; 4822 } 4823 4824 /** 4825 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4826 * kernel internal. There will be NO LSM permission checks against the 4827 * underlying inode. So users of this interface must do LSM checks at a 4828 * higher layer. The users are the big_key and shm implementations. LSM 4829 * checks are provided at the key or shm level rather than the inode. 4830 * @name: name for dentry (to be seen in /proc/<pid>/maps 4831 * @size: size to be set for the file 4832 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4833 */ 4834 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4835 { 4836 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4837 } 4838 4839 /** 4840 * shmem_file_setup - get an unlinked file living in tmpfs 4841 * @name: name for dentry (to be seen in /proc/<pid>/maps 4842 * @size: size to be set for the file 4843 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4844 */ 4845 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4846 { 4847 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4848 } 4849 EXPORT_SYMBOL_GPL(shmem_file_setup); 4850 4851 /** 4852 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4853 * @mnt: the tmpfs mount where the file will be created 4854 * @name: name for dentry (to be seen in /proc/<pid>/maps 4855 * @size: size to be set for the file 4856 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4857 */ 4858 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4859 loff_t size, unsigned long flags) 4860 { 4861 return __shmem_file_setup(mnt, name, size, flags, 0); 4862 } 4863 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4864 4865 /** 4866 * shmem_zero_setup - setup a shared anonymous mapping 4867 * @vma: the vma to be mmapped is prepared by do_mmap 4868 */ 4869 int shmem_zero_setup(struct vm_area_struct *vma) 4870 { 4871 struct file *file; 4872 loff_t size = vma->vm_end - vma->vm_start; 4873 4874 /* 4875 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4876 * between XFS directory reading and selinux: since this file is only 4877 * accessible to the user through its mapping, use S_PRIVATE flag to 4878 * bypass file security, in the same way as shmem_kernel_file_setup(). 4879 */ 4880 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4881 if (IS_ERR(file)) 4882 return PTR_ERR(file); 4883 4884 if (vma->vm_file) 4885 fput(vma->vm_file); 4886 vma->vm_file = file; 4887 vma->vm_ops = &shmem_anon_vm_ops; 4888 4889 return 0; 4890 } 4891 4892 /** 4893 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4894 * @mapping: the folio's address_space 4895 * @index: the folio index 4896 * @gfp: the page allocator flags to use if allocating 4897 * 4898 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4899 * with any new page allocations done using the specified allocation flags. 4900 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4901 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4902 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4903 * 4904 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4905 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4906 */ 4907 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4908 pgoff_t index, gfp_t gfp) 4909 { 4910 #ifdef CONFIG_SHMEM 4911 struct inode *inode = mapping->host; 4912 struct folio *folio; 4913 int error; 4914 4915 BUG_ON(!shmem_mapping(mapping)); 4916 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4917 gfp, NULL, NULL, NULL); 4918 if (error) 4919 return ERR_PTR(error); 4920 4921 folio_unlock(folio); 4922 return folio; 4923 #else 4924 /* 4925 * The tiny !SHMEM case uses ramfs without swap 4926 */ 4927 return mapping_read_folio_gfp(mapping, index, gfp); 4928 #endif 4929 } 4930 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4931 4932 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4933 pgoff_t index, gfp_t gfp) 4934 { 4935 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4936 struct page *page; 4937 4938 if (IS_ERR(folio)) 4939 return &folio->page; 4940 4941 page = folio_file_page(folio, index); 4942 if (PageHWPoison(page)) { 4943 folio_put(folio); 4944 return ERR_PTR(-EIO); 4945 } 4946 4947 return page; 4948 } 4949 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4950