1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include <linux/iversion.h> 42 #include "swap.h" 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 140 struct folio **foliop, enum sgp_type sgp, 141 gfp_t gfp, struct vm_area_struct *vma, 142 vm_fault_t *fault_type); 143 144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 145 { 146 return sb->s_fs_info; 147 } 148 149 /* 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 151 * for shared memory and for shared anonymous (/dev/zero) mappings 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 153 * consistent with the pre-accounting of private mappings ... 154 */ 155 static inline int shmem_acct_size(unsigned long flags, loff_t size) 156 { 157 return (flags & VM_NORESERVE) ? 158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 159 } 160 161 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 162 { 163 if (!(flags & VM_NORESERVE)) 164 vm_unacct_memory(VM_ACCT(size)); 165 } 166 167 static inline int shmem_reacct_size(unsigned long flags, 168 loff_t oldsize, loff_t newsize) 169 { 170 if (!(flags & VM_NORESERVE)) { 171 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 172 return security_vm_enough_memory_mm(current->mm, 173 VM_ACCT(newsize) - VM_ACCT(oldsize)); 174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 176 } 177 return 0; 178 } 179 180 /* 181 * ... whereas tmpfs objects are accounted incrementally as 182 * pages are allocated, in order to allow large sparse files. 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 185 */ 186 static inline int shmem_acct_block(unsigned long flags, long pages) 187 { 188 if (!(flags & VM_NORESERVE)) 189 return 0; 190 191 return security_vm_enough_memory_mm(current->mm, 192 pages * VM_ACCT(PAGE_SIZE)); 193 } 194 195 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 196 { 197 if (flags & VM_NORESERVE) 198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 199 } 200 201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 202 { 203 struct shmem_inode_info *info = SHMEM_I(inode); 204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 205 206 if (shmem_acct_block(info->flags, pages)) 207 return false; 208 209 if (sbinfo->max_blocks) { 210 if (percpu_counter_compare(&sbinfo->used_blocks, 211 sbinfo->max_blocks - pages) > 0) 212 goto unacct; 213 percpu_counter_add(&sbinfo->used_blocks, pages); 214 } 215 216 return true; 217 218 unacct: 219 shmem_unacct_blocks(info->flags, pages); 220 return false; 221 } 222 223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 227 228 if (sbinfo->max_blocks) 229 percpu_counter_sub(&sbinfo->used_blocks, pages); 230 shmem_unacct_blocks(info->flags, pages); 231 } 232 233 static const struct super_operations shmem_ops; 234 const struct address_space_operations shmem_aops; 235 static const struct file_operations shmem_file_operations; 236 static const struct inode_operations shmem_inode_operations; 237 static const struct inode_operations shmem_dir_inode_operations; 238 static const struct inode_operations shmem_special_inode_operations; 239 static const struct vm_operations_struct shmem_vm_ops; 240 static struct file_system_type shmem_fs_type; 241 242 bool vma_is_shmem(struct vm_area_struct *vma) 243 { 244 return vma->vm_ops == &shmem_vm_ops; 245 } 246 247 static LIST_HEAD(shmem_swaplist); 248 static DEFINE_MUTEX(shmem_swaplist_mutex); 249 250 /* 251 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 252 * produces a novel ino for the newly allocated inode. 253 * 254 * It may also be called when making a hard link to permit the space needed by 255 * each dentry. However, in that case, no new inode number is needed since that 256 * internally draws from another pool of inode numbers (currently global 257 * get_next_ino()). This case is indicated by passing NULL as inop. 258 */ 259 #define SHMEM_INO_BATCH 1024 260 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 261 { 262 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 263 ino_t ino; 264 265 if (!(sb->s_flags & SB_KERNMOUNT)) { 266 raw_spin_lock(&sbinfo->stat_lock); 267 if (sbinfo->max_inodes) { 268 if (!sbinfo->free_inodes) { 269 raw_spin_unlock(&sbinfo->stat_lock); 270 return -ENOSPC; 271 } 272 sbinfo->free_inodes--; 273 } 274 if (inop) { 275 ino = sbinfo->next_ino++; 276 if (unlikely(is_zero_ino(ino))) 277 ino = sbinfo->next_ino++; 278 if (unlikely(!sbinfo->full_inums && 279 ino > UINT_MAX)) { 280 /* 281 * Emulate get_next_ino uint wraparound for 282 * compatibility 283 */ 284 if (IS_ENABLED(CONFIG_64BIT)) 285 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 286 __func__, MINOR(sb->s_dev)); 287 sbinfo->next_ino = 1; 288 ino = sbinfo->next_ino++; 289 } 290 *inop = ino; 291 } 292 raw_spin_unlock(&sbinfo->stat_lock); 293 } else if (inop) { 294 /* 295 * __shmem_file_setup, one of our callers, is lock-free: it 296 * doesn't hold stat_lock in shmem_reserve_inode since 297 * max_inodes is always 0, and is called from potentially 298 * unknown contexts. As such, use a per-cpu batched allocator 299 * which doesn't require the per-sb stat_lock unless we are at 300 * the batch boundary. 301 * 302 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 303 * shmem mounts are not exposed to userspace, so we don't need 304 * to worry about things like glibc compatibility. 305 */ 306 ino_t *next_ino; 307 308 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 309 ino = *next_ino; 310 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 311 raw_spin_lock(&sbinfo->stat_lock); 312 ino = sbinfo->next_ino; 313 sbinfo->next_ino += SHMEM_INO_BATCH; 314 raw_spin_unlock(&sbinfo->stat_lock); 315 if (unlikely(is_zero_ino(ino))) 316 ino++; 317 } 318 *inop = ino; 319 *next_ino = ++ino; 320 put_cpu(); 321 } 322 323 return 0; 324 } 325 326 static void shmem_free_inode(struct super_block *sb) 327 { 328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 329 if (sbinfo->max_inodes) { 330 raw_spin_lock(&sbinfo->stat_lock); 331 sbinfo->free_inodes++; 332 raw_spin_unlock(&sbinfo->stat_lock); 333 } 334 } 335 336 /** 337 * shmem_recalc_inode - recalculate the block usage of an inode 338 * @inode: inode to recalc 339 * 340 * We have to calculate the free blocks since the mm can drop 341 * undirtied hole pages behind our back. 342 * 343 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 344 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 345 * 346 * It has to be called with the spinlock held. 347 */ 348 static void shmem_recalc_inode(struct inode *inode) 349 { 350 struct shmem_inode_info *info = SHMEM_I(inode); 351 long freed; 352 353 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 354 if (freed > 0) { 355 info->alloced -= freed; 356 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 357 shmem_inode_unacct_blocks(inode, freed); 358 } 359 } 360 361 bool shmem_charge(struct inode *inode, long pages) 362 { 363 struct shmem_inode_info *info = SHMEM_I(inode); 364 unsigned long flags; 365 366 if (!shmem_inode_acct_block(inode, pages)) 367 return false; 368 369 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 370 inode->i_mapping->nrpages += pages; 371 372 spin_lock_irqsave(&info->lock, flags); 373 info->alloced += pages; 374 inode->i_blocks += pages * BLOCKS_PER_PAGE; 375 shmem_recalc_inode(inode); 376 spin_unlock_irqrestore(&info->lock, flags); 377 378 return true; 379 } 380 381 void shmem_uncharge(struct inode *inode, long pages) 382 { 383 struct shmem_inode_info *info = SHMEM_I(inode); 384 unsigned long flags; 385 386 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 387 388 spin_lock_irqsave(&info->lock, flags); 389 info->alloced -= pages; 390 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 391 shmem_recalc_inode(inode); 392 spin_unlock_irqrestore(&info->lock, flags); 393 394 shmem_inode_unacct_blocks(inode, pages); 395 } 396 397 /* 398 * Replace item expected in xarray by a new item, while holding xa_lock. 399 */ 400 static int shmem_replace_entry(struct address_space *mapping, 401 pgoff_t index, void *expected, void *replacement) 402 { 403 XA_STATE(xas, &mapping->i_pages, index); 404 void *item; 405 406 VM_BUG_ON(!expected); 407 VM_BUG_ON(!replacement); 408 item = xas_load(&xas); 409 if (item != expected) 410 return -ENOENT; 411 xas_store(&xas, replacement); 412 return 0; 413 } 414 415 /* 416 * Sometimes, before we decide whether to proceed or to fail, we must check 417 * that an entry was not already brought back from swap by a racing thread. 418 * 419 * Checking page is not enough: by the time a SwapCache page is locked, it 420 * might be reused, and again be SwapCache, using the same swap as before. 421 */ 422 static bool shmem_confirm_swap(struct address_space *mapping, 423 pgoff_t index, swp_entry_t swap) 424 { 425 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 426 } 427 428 /* 429 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 430 * 431 * SHMEM_HUGE_NEVER: 432 * disables huge pages for the mount; 433 * SHMEM_HUGE_ALWAYS: 434 * enables huge pages for the mount; 435 * SHMEM_HUGE_WITHIN_SIZE: 436 * only allocate huge pages if the page will be fully within i_size, 437 * also respect fadvise()/madvise() hints; 438 * SHMEM_HUGE_ADVISE: 439 * only allocate huge pages if requested with fadvise()/madvise(); 440 */ 441 442 #define SHMEM_HUGE_NEVER 0 443 #define SHMEM_HUGE_ALWAYS 1 444 #define SHMEM_HUGE_WITHIN_SIZE 2 445 #define SHMEM_HUGE_ADVISE 3 446 447 /* 448 * Special values. 449 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 450 * 451 * SHMEM_HUGE_DENY: 452 * disables huge on shm_mnt and all mounts, for emergency use; 453 * SHMEM_HUGE_FORCE: 454 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 455 * 456 */ 457 #define SHMEM_HUGE_DENY (-1) 458 #define SHMEM_HUGE_FORCE (-2) 459 460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 461 /* ifdef here to avoid bloating shmem.o when not necessary */ 462 463 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 464 465 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 466 pgoff_t index, bool shmem_huge_force) 467 { 468 loff_t i_size; 469 470 if (!S_ISREG(inode->i_mode)) 471 return false; 472 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 473 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 474 return false; 475 if (shmem_huge_force) 476 return true; 477 if (shmem_huge == SHMEM_HUGE_FORCE) 478 return true; 479 if (shmem_huge == SHMEM_HUGE_DENY) 480 return false; 481 482 switch (SHMEM_SB(inode->i_sb)->huge) { 483 case SHMEM_HUGE_ALWAYS: 484 return true; 485 case SHMEM_HUGE_WITHIN_SIZE: 486 index = round_up(index + 1, HPAGE_PMD_NR); 487 i_size = round_up(i_size_read(inode), PAGE_SIZE); 488 if (i_size >> PAGE_SHIFT >= index) 489 return true; 490 fallthrough; 491 case SHMEM_HUGE_ADVISE: 492 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 493 return true; 494 fallthrough; 495 default: 496 return false; 497 } 498 } 499 500 #if defined(CONFIG_SYSFS) 501 static int shmem_parse_huge(const char *str) 502 { 503 if (!strcmp(str, "never")) 504 return SHMEM_HUGE_NEVER; 505 if (!strcmp(str, "always")) 506 return SHMEM_HUGE_ALWAYS; 507 if (!strcmp(str, "within_size")) 508 return SHMEM_HUGE_WITHIN_SIZE; 509 if (!strcmp(str, "advise")) 510 return SHMEM_HUGE_ADVISE; 511 if (!strcmp(str, "deny")) 512 return SHMEM_HUGE_DENY; 513 if (!strcmp(str, "force")) 514 return SHMEM_HUGE_FORCE; 515 return -EINVAL; 516 } 517 #endif 518 519 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 520 static const char *shmem_format_huge(int huge) 521 { 522 switch (huge) { 523 case SHMEM_HUGE_NEVER: 524 return "never"; 525 case SHMEM_HUGE_ALWAYS: 526 return "always"; 527 case SHMEM_HUGE_WITHIN_SIZE: 528 return "within_size"; 529 case SHMEM_HUGE_ADVISE: 530 return "advise"; 531 case SHMEM_HUGE_DENY: 532 return "deny"; 533 case SHMEM_HUGE_FORCE: 534 return "force"; 535 default: 536 VM_BUG_ON(1); 537 return "bad_val"; 538 } 539 } 540 #endif 541 542 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 543 struct shrink_control *sc, unsigned long nr_to_split) 544 { 545 LIST_HEAD(list), *pos, *next; 546 LIST_HEAD(to_remove); 547 struct inode *inode; 548 struct shmem_inode_info *info; 549 struct folio *folio; 550 unsigned long batch = sc ? sc->nr_to_scan : 128; 551 int split = 0; 552 553 if (list_empty(&sbinfo->shrinklist)) 554 return SHRINK_STOP; 555 556 spin_lock(&sbinfo->shrinklist_lock); 557 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 558 info = list_entry(pos, struct shmem_inode_info, shrinklist); 559 560 /* pin the inode */ 561 inode = igrab(&info->vfs_inode); 562 563 /* inode is about to be evicted */ 564 if (!inode) { 565 list_del_init(&info->shrinklist); 566 goto next; 567 } 568 569 /* Check if there's anything to gain */ 570 if (round_up(inode->i_size, PAGE_SIZE) == 571 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 572 list_move(&info->shrinklist, &to_remove); 573 goto next; 574 } 575 576 list_move(&info->shrinklist, &list); 577 next: 578 sbinfo->shrinklist_len--; 579 if (!--batch) 580 break; 581 } 582 spin_unlock(&sbinfo->shrinklist_lock); 583 584 list_for_each_safe(pos, next, &to_remove) { 585 info = list_entry(pos, struct shmem_inode_info, shrinklist); 586 inode = &info->vfs_inode; 587 list_del_init(&info->shrinklist); 588 iput(inode); 589 } 590 591 list_for_each_safe(pos, next, &list) { 592 int ret; 593 pgoff_t index; 594 595 info = list_entry(pos, struct shmem_inode_info, shrinklist); 596 inode = &info->vfs_inode; 597 598 if (nr_to_split && split >= nr_to_split) 599 goto move_back; 600 601 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 602 folio = filemap_get_folio(inode->i_mapping, index); 603 if (!folio) 604 goto drop; 605 606 /* No huge page at the end of the file: nothing to split */ 607 if (!folio_test_large(folio)) { 608 folio_put(folio); 609 goto drop; 610 } 611 612 /* 613 * Move the inode on the list back to shrinklist if we failed 614 * to lock the page at this time. 615 * 616 * Waiting for the lock may lead to deadlock in the 617 * reclaim path. 618 */ 619 if (!folio_trylock(folio)) { 620 folio_put(folio); 621 goto move_back; 622 } 623 624 ret = split_folio(folio); 625 folio_unlock(folio); 626 folio_put(folio); 627 628 /* If split failed move the inode on the list back to shrinklist */ 629 if (ret) 630 goto move_back; 631 632 split++; 633 drop: 634 list_del_init(&info->shrinklist); 635 goto put; 636 move_back: 637 /* 638 * Make sure the inode is either on the global list or deleted 639 * from any local list before iput() since it could be deleted 640 * in another thread once we put the inode (then the local list 641 * is corrupted). 642 */ 643 spin_lock(&sbinfo->shrinklist_lock); 644 list_move(&info->shrinklist, &sbinfo->shrinklist); 645 sbinfo->shrinklist_len++; 646 spin_unlock(&sbinfo->shrinklist_lock); 647 put: 648 iput(inode); 649 } 650 651 return split; 652 } 653 654 static long shmem_unused_huge_scan(struct super_block *sb, 655 struct shrink_control *sc) 656 { 657 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 658 659 if (!READ_ONCE(sbinfo->shrinklist_len)) 660 return SHRINK_STOP; 661 662 return shmem_unused_huge_shrink(sbinfo, sc, 0); 663 } 664 665 static long shmem_unused_huge_count(struct super_block *sb, 666 struct shrink_control *sc) 667 { 668 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 669 return READ_ONCE(sbinfo->shrinklist_len); 670 } 671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 672 673 #define shmem_huge SHMEM_HUGE_DENY 674 675 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 676 pgoff_t index, bool shmem_huge_force) 677 { 678 return false; 679 } 680 681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 682 struct shrink_control *sc, unsigned long nr_to_split) 683 { 684 return 0; 685 } 686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 687 688 /* 689 * Like filemap_add_folio, but error if expected item has gone. 690 */ 691 static int shmem_add_to_page_cache(struct folio *folio, 692 struct address_space *mapping, 693 pgoff_t index, void *expected, gfp_t gfp, 694 struct mm_struct *charge_mm) 695 { 696 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 697 long nr = folio_nr_pages(folio); 698 int error; 699 700 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 701 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 702 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 703 VM_BUG_ON(expected && folio_test_large(folio)); 704 705 folio_ref_add(folio, nr); 706 folio->mapping = mapping; 707 folio->index = index; 708 709 if (!folio_test_swapcache(folio)) { 710 error = mem_cgroup_charge(folio, charge_mm, gfp); 711 if (error) { 712 if (folio_test_pmd_mappable(folio)) { 713 count_vm_event(THP_FILE_FALLBACK); 714 count_vm_event(THP_FILE_FALLBACK_CHARGE); 715 } 716 goto error; 717 } 718 } 719 folio_throttle_swaprate(folio, gfp); 720 721 do { 722 xas_lock_irq(&xas); 723 if (expected != xas_find_conflict(&xas)) { 724 xas_set_err(&xas, -EEXIST); 725 goto unlock; 726 } 727 if (expected && xas_find_conflict(&xas)) { 728 xas_set_err(&xas, -EEXIST); 729 goto unlock; 730 } 731 xas_store(&xas, folio); 732 if (xas_error(&xas)) 733 goto unlock; 734 if (folio_test_pmd_mappable(folio)) { 735 count_vm_event(THP_FILE_ALLOC); 736 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 737 } 738 mapping->nrpages += nr; 739 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 740 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 741 unlock: 742 xas_unlock_irq(&xas); 743 } while (xas_nomem(&xas, gfp)); 744 745 if (xas_error(&xas)) { 746 error = xas_error(&xas); 747 goto error; 748 } 749 750 return 0; 751 error: 752 folio->mapping = NULL; 753 folio_ref_sub(folio, nr); 754 return error; 755 } 756 757 /* 758 * Like delete_from_page_cache, but substitutes swap for @folio. 759 */ 760 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 761 { 762 struct address_space *mapping = folio->mapping; 763 long nr = folio_nr_pages(folio); 764 int error; 765 766 xa_lock_irq(&mapping->i_pages); 767 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 768 folio->mapping = NULL; 769 mapping->nrpages -= nr; 770 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 771 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 772 xa_unlock_irq(&mapping->i_pages); 773 folio_put(folio); 774 BUG_ON(error); 775 } 776 777 /* 778 * Remove swap entry from page cache, free the swap and its page cache. 779 */ 780 static int shmem_free_swap(struct address_space *mapping, 781 pgoff_t index, void *radswap) 782 { 783 void *old; 784 785 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 786 if (old != radswap) 787 return -ENOENT; 788 free_swap_and_cache(radix_to_swp_entry(radswap)); 789 return 0; 790 } 791 792 /* 793 * Determine (in bytes) how many of the shmem object's pages mapped by the 794 * given offsets are swapped out. 795 * 796 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 797 * as long as the inode doesn't go away and racy results are not a problem. 798 */ 799 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 800 pgoff_t start, pgoff_t end) 801 { 802 XA_STATE(xas, &mapping->i_pages, start); 803 struct page *page; 804 unsigned long swapped = 0; 805 806 rcu_read_lock(); 807 xas_for_each(&xas, page, end - 1) { 808 if (xas_retry(&xas, page)) 809 continue; 810 if (xa_is_value(page)) 811 swapped++; 812 813 if (need_resched()) { 814 xas_pause(&xas); 815 cond_resched_rcu(); 816 } 817 } 818 819 rcu_read_unlock(); 820 821 return swapped << PAGE_SHIFT; 822 } 823 824 /* 825 * Determine (in bytes) how many of the shmem object's pages mapped by the 826 * given vma is swapped out. 827 * 828 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 829 * as long as the inode doesn't go away and racy results are not a problem. 830 */ 831 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 832 { 833 struct inode *inode = file_inode(vma->vm_file); 834 struct shmem_inode_info *info = SHMEM_I(inode); 835 struct address_space *mapping = inode->i_mapping; 836 unsigned long swapped; 837 838 /* Be careful as we don't hold info->lock */ 839 swapped = READ_ONCE(info->swapped); 840 841 /* 842 * The easier cases are when the shmem object has nothing in swap, or 843 * the vma maps it whole. Then we can simply use the stats that we 844 * already track. 845 */ 846 if (!swapped) 847 return 0; 848 849 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 850 return swapped << PAGE_SHIFT; 851 852 /* Here comes the more involved part */ 853 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 854 vma->vm_pgoff + vma_pages(vma)); 855 } 856 857 /* 858 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 859 */ 860 void shmem_unlock_mapping(struct address_space *mapping) 861 { 862 struct folio_batch fbatch; 863 pgoff_t index = 0; 864 865 folio_batch_init(&fbatch); 866 /* 867 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 868 */ 869 while (!mapping_unevictable(mapping) && 870 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 871 check_move_unevictable_folios(&fbatch); 872 folio_batch_release(&fbatch); 873 cond_resched(); 874 } 875 } 876 877 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 878 { 879 struct folio *folio; 880 881 /* 882 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 883 * beyond i_size, and reports fallocated pages as holes. 884 */ 885 folio = __filemap_get_folio(inode->i_mapping, index, 886 FGP_ENTRY | FGP_LOCK, 0); 887 if (!xa_is_value(folio)) 888 return folio; 889 /* 890 * But read a page back from swap if any of it is within i_size 891 * (although in some cases this is just a waste of time). 892 */ 893 folio = NULL; 894 shmem_get_folio(inode, index, &folio, SGP_READ); 895 return folio; 896 } 897 898 /* 899 * Remove range of pages and swap entries from page cache, and free them. 900 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 901 */ 902 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 903 bool unfalloc) 904 { 905 struct address_space *mapping = inode->i_mapping; 906 struct shmem_inode_info *info = SHMEM_I(inode); 907 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 908 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 909 struct folio_batch fbatch; 910 pgoff_t indices[PAGEVEC_SIZE]; 911 struct folio *folio; 912 bool same_folio; 913 long nr_swaps_freed = 0; 914 pgoff_t index; 915 int i; 916 917 if (lend == -1) 918 end = -1; /* unsigned, so actually very big */ 919 920 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 921 info->fallocend = start; 922 923 folio_batch_init(&fbatch); 924 index = start; 925 while (index < end && find_lock_entries(mapping, index, end - 1, 926 &fbatch, indices)) { 927 for (i = 0; i < folio_batch_count(&fbatch); i++) { 928 folio = fbatch.folios[i]; 929 930 index = indices[i]; 931 932 if (xa_is_value(folio)) { 933 if (unfalloc) 934 continue; 935 nr_swaps_freed += !shmem_free_swap(mapping, 936 index, folio); 937 continue; 938 } 939 index += folio_nr_pages(folio) - 1; 940 941 if (!unfalloc || !folio_test_uptodate(folio)) 942 truncate_inode_folio(mapping, folio); 943 folio_unlock(folio); 944 } 945 folio_batch_remove_exceptionals(&fbatch); 946 folio_batch_release(&fbatch); 947 cond_resched(); 948 index++; 949 } 950 951 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 952 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 953 if (folio) { 954 same_folio = lend < folio_pos(folio) + folio_size(folio); 955 folio_mark_dirty(folio); 956 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 957 start = folio->index + folio_nr_pages(folio); 958 if (same_folio) 959 end = folio->index; 960 } 961 folio_unlock(folio); 962 folio_put(folio); 963 folio = NULL; 964 } 965 966 if (!same_folio) 967 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 968 if (folio) { 969 folio_mark_dirty(folio); 970 if (!truncate_inode_partial_folio(folio, lstart, lend)) 971 end = folio->index; 972 folio_unlock(folio); 973 folio_put(folio); 974 } 975 976 index = start; 977 while (index < end) { 978 cond_resched(); 979 980 if (!find_get_entries(mapping, index, end - 1, &fbatch, 981 indices)) { 982 /* If all gone or hole-punch or unfalloc, we're done */ 983 if (index == start || end != -1) 984 break; 985 /* But if truncating, restart to make sure all gone */ 986 index = start; 987 continue; 988 } 989 for (i = 0; i < folio_batch_count(&fbatch); i++) { 990 folio = fbatch.folios[i]; 991 992 index = indices[i]; 993 if (xa_is_value(folio)) { 994 if (unfalloc) 995 continue; 996 if (shmem_free_swap(mapping, index, folio)) { 997 /* Swap was replaced by page: retry */ 998 index--; 999 break; 1000 } 1001 nr_swaps_freed++; 1002 continue; 1003 } 1004 1005 folio_lock(folio); 1006 1007 if (!unfalloc || !folio_test_uptodate(folio)) { 1008 if (folio_mapping(folio) != mapping) { 1009 /* Page was replaced by swap: retry */ 1010 folio_unlock(folio); 1011 index--; 1012 break; 1013 } 1014 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1015 folio); 1016 truncate_inode_folio(mapping, folio); 1017 } 1018 index = folio->index + folio_nr_pages(folio) - 1; 1019 folio_unlock(folio); 1020 } 1021 folio_batch_remove_exceptionals(&fbatch); 1022 folio_batch_release(&fbatch); 1023 index++; 1024 } 1025 1026 spin_lock_irq(&info->lock); 1027 info->swapped -= nr_swaps_freed; 1028 shmem_recalc_inode(inode); 1029 spin_unlock_irq(&info->lock); 1030 } 1031 1032 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1033 { 1034 shmem_undo_range(inode, lstart, lend, false); 1035 inode->i_ctime = inode->i_mtime = current_time(inode); 1036 inode_inc_iversion(inode); 1037 } 1038 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1039 1040 static int shmem_getattr(struct user_namespace *mnt_userns, 1041 const struct path *path, struct kstat *stat, 1042 u32 request_mask, unsigned int query_flags) 1043 { 1044 struct inode *inode = path->dentry->d_inode; 1045 struct shmem_inode_info *info = SHMEM_I(inode); 1046 1047 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1048 spin_lock_irq(&info->lock); 1049 shmem_recalc_inode(inode); 1050 spin_unlock_irq(&info->lock); 1051 } 1052 if (info->fsflags & FS_APPEND_FL) 1053 stat->attributes |= STATX_ATTR_APPEND; 1054 if (info->fsflags & FS_IMMUTABLE_FL) 1055 stat->attributes |= STATX_ATTR_IMMUTABLE; 1056 if (info->fsflags & FS_NODUMP_FL) 1057 stat->attributes |= STATX_ATTR_NODUMP; 1058 stat->attributes_mask |= (STATX_ATTR_APPEND | 1059 STATX_ATTR_IMMUTABLE | 1060 STATX_ATTR_NODUMP); 1061 generic_fillattr(&init_user_ns, inode, stat); 1062 1063 if (shmem_is_huge(NULL, inode, 0, false)) 1064 stat->blksize = HPAGE_PMD_SIZE; 1065 1066 if (request_mask & STATX_BTIME) { 1067 stat->result_mask |= STATX_BTIME; 1068 stat->btime.tv_sec = info->i_crtime.tv_sec; 1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int shmem_setattr(struct user_namespace *mnt_userns, 1076 struct dentry *dentry, struct iattr *attr) 1077 { 1078 struct inode *inode = d_inode(dentry); 1079 struct shmem_inode_info *info = SHMEM_I(inode); 1080 int error; 1081 bool update_mtime = false; 1082 bool update_ctime = true; 1083 1084 error = setattr_prepare(&init_user_ns, dentry, attr); 1085 if (error) 1086 return error; 1087 1088 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1089 loff_t oldsize = inode->i_size; 1090 loff_t newsize = attr->ia_size; 1091 1092 /* protected by i_rwsem */ 1093 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1094 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1095 return -EPERM; 1096 1097 if (newsize != oldsize) { 1098 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1099 oldsize, newsize); 1100 if (error) 1101 return error; 1102 i_size_write(inode, newsize); 1103 update_mtime = true; 1104 } else { 1105 update_ctime = false; 1106 } 1107 if (newsize <= oldsize) { 1108 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1109 if (oldsize > holebegin) 1110 unmap_mapping_range(inode->i_mapping, 1111 holebegin, 0, 1); 1112 if (info->alloced) 1113 shmem_truncate_range(inode, 1114 newsize, (loff_t)-1); 1115 /* unmap again to remove racily COWed private pages */ 1116 if (oldsize > holebegin) 1117 unmap_mapping_range(inode->i_mapping, 1118 holebegin, 0, 1); 1119 } 1120 } 1121 1122 setattr_copy(&init_user_ns, inode, attr); 1123 if (attr->ia_valid & ATTR_MODE) 1124 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1125 if (!error && update_ctime) { 1126 inode->i_ctime = current_time(inode); 1127 if (update_mtime) 1128 inode->i_mtime = inode->i_ctime; 1129 inode_inc_iversion(inode); 1130 } 1131 return error; 1132 } 1133 1134 static void shmem_evict_inode(struct inode *inode) 1135 { 1136 struct shmem_inode_info *info = SHMEM_I(inode); 1137 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1138 1139 if (shmem_mapping(inode->i_mapping)) { 1140 shmem_unacct_size(info->flags, inode->i_size); 1141 inode->i_size = 0; 1142 mapping_set_exiting(inode->i_mapping); 1143 shmem_truncate_range(inode, 0, (loff_t)-1); 1144 if (!list_empty(&info->shrinklist)) { 1145 spin_lock(&sbinfo->shrinklist_lock); 1146 if (!list_empty(&info->shrinklist)) { 1147 list_del_init(&info->shrinklist); 1148 sbinfo->shrinklist_len--; 1149 } 1150 spin_unlock(&sbinfo->shrinklist_lock); 1151 } 1152 while (!list_empty(&info->swaplist)) { 1153 /* Wait while shmem_unuse() is scanning this inode... */ 1154 wait_var_event(&info->stop_eviction, 1155 !atomic_read(&info->stop_eviction)); 1156 mutex_lock(&shmem_swaplist_mutex); 1157 /* ...but beware of the race if we peeked too early */ 1158 if (!atomic_read(&info->stop_eviction)) 1159 list_del_init(&info->swaplist); 1160 mutex_unlock(&shmem_swaplist_mutex); 1161 } 1162 } 1163 1164 simple_xattrs_free(&info->xattrs); 1165 WARN_ON(inode->i_blocks); 1166 shmem_free_inode(inode->i_sb); 1167 clear_inode(inode); 1168 } 1169 1170 static int shmem_find_swap_entries(struct address_space *mapping, 1171 pgoff_t start, struct folio_batch *fbatch, 1172 pgoff_t *indices, unsigned int type) 1173 { 1174 XA_STATE(xas, &mapping->i_pages, start); 1175 struct folio *folio; 1176 swp_entry_t entry; 1177 1178 rcu_read_lock(); 1179 xas_for_each(&xas, folio, ULONG_MAX) { 1180 if (xas_retry(&xas, folio)) 1181 continue; 1182 1183 if (!xa_is_value(folio)) 1184 continue; 1185 1186 entry = radix_to_swp_entry(folio); 1187 /* 1188 * swapin error entries can be found in the mapping. But they're 1189 * deliberately ignored here as we've done everything we can do. 1190 */ 1191 if (swp_type(entry) != type) 1192 continue; 1193 1194 indices[folio_batch_count(fbatch)] = xas.xa_index; 1195 if (!folio_batch_add(fbatch, folio)) 1196 break; 1197 1198 if (need_resched()) { 1199 xas_pause(&xas); 1200 cond_resched_rcu(); 1201 } 1202 } 1203 rcu_read_unlock(); 1204 1205 return xas.xa_index; 1206 } 1207 1208 /* 1209 * Move the swapped pages for an inode to page cache. Returns the count 1210 * of pages swapped in, or the error in case of failure. 1211 */ 1212 static int shmem_unuse_swap_entries(struct inode *inode, 1213 struct folio_batch *fbatch, pgoff_t *indices) 1214 { 1215 int i = 0; 1216 int ret = 0; 1217 int error = 0; 1218 struct address_space *mapping = inode->i_mapping; 1219 1220 for (i = 0; i < folio_batch_count(fbatch); i++) { 1221 struct folio *folio = fbatch->folios[i]; 1222 1223 if (!xa_is_value(folio)) 1224 continue; 1225 error = shmem_swapin_folio(inode, indices[i], 1226 &folio, SGP_CACHE, 1227 mapping_gfp_mask(mapping), 1228 NULL, NULL); 1229 if (error == 0) { 1230 folio_unlock(folio); 1231 folio_put(folio); 1232 ret++; 1233 } 1234 if (error == -ENOMEM) 1235 break; 1236 error = 0; 1237 } 1238 return error ? error : ret; 1239 } 1240 1241 /* 1242 * If swap found in inode, free it and move page from swapcache to filecache. 1243 */ 1244 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1245 { 1246 struct address_space *mapping = inode->i_mapping; 1247 pgoff_t start = 0; 1248 struct folio_batch fbatch; 1249 pgoff_t indices[PAGEVEC_SIZE]; 1250 int ret = 0; 1251 1252 do { 1253 folio_batch_init(&fbatch); 1254 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1255 if (folio_batch_count(&fbatch) == 0) { 1256 ret = 0; 1257 break; 1258 } 1259 1260 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1261 if (ret < 0) 1262 break; 1263 1264 start = indices[folio_batch_count(&fbatch) - 1]; 1265 } while (true); 1266 1267 return ret; 1268 } 1269 1270 /* 1271 * Read all the shared memory data that resides in the swap 1272 * device 'type' back into memory, so the swap device can be 1273 * unused. 1274 */ 1275 int shmem_unuse(unsigned int type) 1276 { 1277 struct shmem_inode_info *info, *next; 1278 int error = 0; 1279 1280 if (list_empty(&shmem_swaplist)) 1281 return 0; 1282 1283 mutex_lock(&shmem_swaplist_mutex); 1284 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1285 if (!info->swapped) { 1286 list_del_init(&info->swaplist); 1287 continue; 1288 } 1289 /* 1290 * Drop the swaplist mutex while searching the inode for swap; 1291 * but before doing so, make sure shmem_evict_inode() will not 1292 * remove placeholder inode from swaplist, nor let it be freed 1293 * (igrab() would protect from unlink, but not from unmount). 1294 */ 1295 atomic_inc(&info->stop_eviction); 1296 mutex_unlock(&shmem_swaplist_mutex); 1297 1298 error = shmem_unuse_inode(&info->vfs_inode, type); 1299 cond_resched(); 1300 1301 mutex_lock(&shmem_swaplist_mutex); 1302 next = list_next_entry(info, swaplist); 1303 if (!info->swapped) 1304 list_del_init(&info->swaplist); 1305 if (atomic_dec_and_test(&info->stop_eviction)) 1306 wake_up_var(&info->stop_eviction); 1307 if (error) 1308 break; 1309 } 1310 mutex_unlock(&shmem_swaplist_mutex); 1311 1312 return error; 1313 } 1314 1315 /* 1316 * Move the page from the page cache to the swap cache. 1317 */ 1318 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1319 { 1320 struct folio *folio = page_folio(page); 1321 struct shmem_inode_info *info; 1322 struct address_space *mapping; 1323 struct inode *inode; 1324 swp_entry_t swap; 1325 pgoff_t index; 1326 1327 /* 1328 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1329 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1330 * and its shmem_writeback() needs them to be split when swapping. 1331 */ 1332 if (folio_test_large(folio)) { 1333 /* Ensure the subpages are still dirty */ 1334 folio_test_set_dirty(folio); 1335 if (split_huge_page(page) < 0) 1336 goto redirty; 1337 folio = page_folio(page); 1338 folio_clear_dirty(folio); 1339 } 1340 1341 BUG_ON(!folio_test_locked(folio)); 1342 mapping = folio->mapping; 1343 index = folio->index; 1344 inode = mapping->host; 1345 info = SHMEM_I(inode); 1346 if (info->flags & VM_LOCKED) 1347 goto redirty; 1348 if (!total_swap_pages) 1349 goto redirty; 1350 1351 /* 1352 * Our capabilities prevent regular writeback or sync from ever calling 1353 * shmem_writepage; but a stacking filesystem might use ->writepage of 1354 * its underlying filesystem, in which case tmpfs should write out to 1355 * swap only in response to memory pressure, and not for the writeback 1356 * threads or sync. 1357 */ 1358 if (!wbc->for_reclaim) { 1359 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1360 goto redirty; 1361 } 1362 1363 /* 1364 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1365 * value into swapfile.c, the only way we can correctly account for a 1366 * fallocated folio arriving here is now to initialize it and write it. 1367 * 1368 * That's okay for a folio already fallocated earlier, but if we have 1369 * not yet completed the fallocation, then (a) we want to keep track 1370 * of this folio in case we have to undo it, and (b) it may not be a 1371 * good idea to continue anyway, once we're pushing into swap. So 1372 * reactivate the folio, and let shmem_fallocate() quit when too many. 1373 */ 1374 if (!folio_test_uptodate(folio)) { 1375 if (inode->i_private) { 1376 struct shmem_falloc *shmem_falloc; 1377 spin_lock(&inode->i_lock); 1378 shmem_falloc = inode->i_private; 1379 if (shmem_falloc && 1380 !shmem_falloc->waitq && 1381 index >= shmem_falloc->start && 1382 index < shmem_falloc->next) 1383 shmem_falloc->nr_unswapped++; 1384 else 1385 shmem_falloc = NULL; 1386 spin_unlock(&inode->i_lock); 1387 if (shmem_falloc) 1388 goto redirty; 1389 } 1390 folio_zero_range(folio, 0, folio_size(folio)); 1391 flush_dcache_folio(folio); 1392 folio_mark_uptodate(folio); 1393 } 1394 1395 swap = folio_alloc_swap(folio); 1396 if (!swap.val) 1397 goto redirty; 1398 1399 /* 1400 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1401 * if it's not already there. Do it now before the folio is 1402 * moved to swap cache, when its pagelock no longer protects 1403 * the inode from eviction. But don't unlock the mutex until 1404 * we've incremented swapped, because shmem_unuse_inode() will 1405 * prune a !swapped inode from the swaplist under this mutex. 1406 */ 1407 mutex_lock(&shmem_swaplist_mutex); 1408 if (list_empty(&info->swaplist)) 1409 list_add(&info->swaplist, &shmem_swaplist); 1410 1411 if (add_to_swap_cache(folio, swap, 1412 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1413 NULL) == 0) { 1414 spin_lock_irq(&info->lock); 1415 shmem_recalc_inode(inode); 1416 info->swapped++; 1417 spin_unlock_irq(&info->lock); 1418 1419 swap_shmem_alloc(swap); 1420 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1421 1422 mutex_unlock(&shmem_swaplist_mutex); 1423 BUG_ON(folio_mapped(folio)); 1424 swap_writepage(&folio->page, wbc); 1425 return 0; 1426 } 1427 1428 mutex_unlock(&shmem_swaplist_mutex); 1429 put_swap_folio(folio, swap); 1430 redirty: 1431 folio_mark_dirty(folio); 1432 if (wbc->for_reclaim) 1433 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1434 folio_unlock(folio); 1435 return 0; 1436 } 1437 1438 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1439 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1440 { 1441 char buffer[64]; 1442 1443 if (!mpol || mpol->mode == MPOL_DEFAULT) 1444 return; /* show nothing */ 1445 1446 mpol_to_str(buffer, sizeof(buffer), mpol); 1447 1448 seq_printf(seq, ",mpol=%s", buffer); 1449 } 1450 1451 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1452 { 1453 struct mempolicy *mpol = NULL; 1454 if (sbinfo->mpol) { 1455 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1456 mpol = sbinfo->mpol; 1457 mpol_get(mpol); 1458 raw_spin_unlock(&sbinfo->stat_lock); 1459 } 1460 return mpol; 1461 } 1462 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1463 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1464 { 1465 } 1466 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1467 { 1468 return NULL; 1469 } 1470 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1471 #ifndef CONFIG_NUMA 1472 #define vm_policy vm_private_data 1473 #endif 1474 1475 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1476 struct shmem_inode_info *info, pgoff_t index) 1477 { 1478 /* Create a pseudo vma that just contains the policy */ 1479 vma_init(vma, NULL); 1480 /* Bias interleave by inode number to distribute better across nodes */ 1481 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1482 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1483 } 1484 1485 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1486 { 1487 /* Drop reference taken by mpol_shared_policy_lookup() */ 1488 mpol_cond_put(vma->vm_policy); 1489 } 1490 1491 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1492 struct shmem_inode_info *info, pgoff_t index) 1493 { 1494 struct vm_area_struct pvma; 1495 struct page *page; 1496 struct vm_fault vmf = { 1497 .vma = &pvma, 1498 }; 1499 1500 shmem_pseudo_vma_init(&pvma, info, index); 1501 page = swap_cluster_readahead(swap, gfp, &vmf); 1502 shmem_pseudo_vma_destroy(&pvma); 1503 1504 if (!page) 1505 return NULL; 1506 return page_folio(page); 1507 } 1508 1509 /* 1510 * Make sure huge_gfp is always more limited than limit_gfp. 1511 * Some of the flags set permissions, while others set limitations. 1512 */ 1513 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1514 { 1515 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1516 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1517 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1518 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1519 1520 /* Allow allocations only from the originally specified zones. */ 1521 result |= zoneflags; 1522 1523 /* 1524 * Minimize the result gfp by taking the union with the deny flags, 1525 * and the intersection of the allow flags. 1526 */ 1527 result |= (limit_gfp & denyflags); 1528 result |= (huge_gfp & limit_gfp) & allowflags; 1529 1530 return result; 1531 } 1532 1533 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1534 struct shmem_inode_info *info, pgoff_t index) 1535 { 1536 struct vm_area_struct pvma; 1537 struct address_space *mapping = info->vfs_inode.i_mapping; 1538 pgoff_t hindex; 1539 struct folio *folio; 1540 1541 hindex = round_down(index, HPAGE_PMD_NR); 1542 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1543 XA_PRESENT)) 1544 return NULL; 1545 1546 shmem_pseudo_vma_init(&pvma, info, hindex); 1547 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1548 shmem_pseudo_vma_destroy(&pvma); 1549 if (!folio) 1550 count_vm_event(THP_FILE_FALLBACK); 1551 return folio; 1552 } 1553 1554 static struct folio *shmem_alloc_folio(gfp_t gfp, 1555 struct shmem_inode_info *info, pgoff_t index) 1556 { 1557 struct vm_area_struct pvma; 1558 struct folio *folio; 1559 1560 shmem_pseudo_vma_init(&pvma, info, index); 1561 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1562 shmem_pseudo_vma_destroy(&pvma); 1563 1564 return folio; 1565 } 1566 1567 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1568 pgoff_t index, bool huge) 1569 { 1570 struct shmem_inode_info *info = SHMEM_I(inode); 1571 struct folio *folio; 1572 int nr; 1573 int err = -ENOSPC; 1574 1575 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1576 huge = false; 1577 nr = huge ? HPAGE_PMD_NR : 1; 1578 1579 if (!shmem_inode_acct_block(inode, nr)) 1580 goto failed; 1581 1582 if (huge) 1583 folio = shmem_alloc_hugefolio(gfp, info, index); 1584 else 1585 folio = shmem_alloc_folio(gfp, info, index); 1586 if (folio) { 1587 __folio_set_locked(folio); 1588 __folio_set_swapbacked(folio); 1589 return folio; 1590 } 1591 1592 err = -ENOMEM; 1593 shmem_inode_unacct_blocks(inode, nr); 1594 failed: 1595 return ERR_PTR(err); 1596 } 1597 1598 /* 1599 * When a page is moved from swapcache to shmem filecache (either by the 1600 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1601 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1602 * ignorance of the mapping it belongs to. If that mapping has special 1603 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1604 * we may need to copy to a suitable page before moving to filecache. 1605 * 1606 * In a future release, this may well be extended to respect cpuset and 1607 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1608 * but for now it is a simple matter of zone. 1609 */ 1610 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1611 { 1612 return folio_zonenum(folio) > gfp_zone(gfp); 1613 } 1614 1615 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1616 struct shmem_inode_info *info, pgoff_t index) 1617 { 1618 struct folio *old, *new; 1619 struct address_space *swap_mapping; 1620 swp_entry_t entry; 1621 pgoff_t swap_index; 1622 int error; 1623 1624 old = *foliop; 1625 entry = folio_swap_entry(old); 1626 swap_index = swp_offset(entry); 1627 swap_mapping = swap_address_space(entry); 1628 1629 /* 1630 * We have arrived here because our zones are constrained, so don't 1631 * limit chance of success by further cpuset and node constraints. 1632 */ 1633 gfp &= ~GFP_CONSTRAINT_MASK; 1634 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1635 new = shmem_alloc_folio(gfp, info, index); 1636 if (!new) 1637 return -ENOMEM; 1638 1639 folio_get(new); 1640 folio_copy(new, old); 1641 flush_dcache_folio(new); 1642 1643 __folio_set_locked(new); 1644 __folio_set_swapbacked(new); 1645 folio_mark_uptodate(new); 1646 folio_set_swap_entry(new, entry); 1647 folio_set_swapcache(new); 1648 1649 /* 1650 * Our caller will very soon move newpage out of swapcache, but it's 1651 * a nice clean interface for us to replace oldpage by newpage there. 1652 */ 1653 xa_lock_irq(&swap_mapping->i_pages); 1654 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1655 if (!error) { 1656 mem_cgroup_migrate(old, new); 1657 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1658 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1659 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1660 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1661 } 1662 xa_unlock_irq(&swap_mapping->i_pages); 1663 1664 if (unlikely(error)) { 1665 /* 1666 * Is this possible? I think not, now that our callers check 1667 * both PageSwapCache and page_private after getting page lock; 1668 * but be defensive. Reverse old to newpage for clear and free. 1669 */ 1670 old = new; 1671 } else { 1672 folio_add_lru(new); 1673 *foliop = new; 1674 } 1675 1676 folio_clear_swapcache(old); 1677 old->private = NULL; 1678 1679 folio_unlock(old); 1680 folio_put_refs(old, 2); 1681 return error; 1682 } 1683 1684 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1685 struct folio *folio, swp_entry_t swap) 1686 { 1687 struct address_space *mapping = inode->i_mapping; 1688 struct shmem_inode_info *info = SHMEM_I(inode); 1689 swp_entry_t swapin_error; 1690 void *old; 1691 1692 swapin_error = make_swapin_error_entry(&folio->page); 1693 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1694 swp_to_radix_entry(swap), 1695 swp_to_radix_entry(swapin_error), 0); 1696 if (old != swp_to_radix_entry(swap)) 1697 return; 1698 1699 folio_wait_writeback(folio); 1700 delete_from_swap_cache(folio); 1701 spin_lock_irq(&info->lock); 1702 /* 1703 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1704 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1705 * shmem_evict_inode. 1706 */ 1707 info->alloced--; 1708 info->swapped--; 1709 shmem_recalc_inode(inode); 1710 spin_unlock_irq(&info->lock); 1711 swap_free(swap); 1712 } 1713 1714 /* 1715 * Swap in the folio pointed to by *foliop. 1716 * Caller has to make sure that *foliop contains a valid swapped folio. 1717 * Returns 0 and the folio in foliop if success. On failure, returns the 1718 * error code and NULL in *foliop. 1719 */ 1720 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1721 struct folio **foliop, enum sgp_type sgp, 1722 gfp_t gfp, struct vm_area_struct *vma, 1723 vm_fault_t *fault_type) 1724 { 1725 struct address_space *mapping = inode->i_mapping; 1726 struct shmem_inode_info *info = SHMEM_I(inode); 1727 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1728 struct folio *folio = NULL; 1729 swp_entry_t swap; 1730 int error; 1731 1732 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1733 swap = radix_to_swp_entry(*foliop); 1734 *foliop = NULL; 1735 1736 if (is_swapin_error_entry(swap)) 1737 return -EIO; 1738 1739 /* Look it up and read it in.. */ 1740 folio = swap_cache_get_folio(swap, NULL, 0); 1741 if (!folio) { 1742 /* Or update major stats only when swapin succeeds?? */ 1743 if (fault_type) { 1744 *fault_type |= VM_FAULT_MAJOR; 1745 count_vm_event(PGMAJFAULT); 1746 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1747 } 1748 /* Here we actually start the io */ 1749 folio = shmem_swapin(swap, gfp, info, index); 1750 if (!folio) { 1751 error = -ENOMEM; 1752 goto failed; 1753 } 1754 } 1755 1756 /* We have to do this with folio locked to prevent races */ 1757 folio_lock(folio); 1758 if (!folio_test_swapcache(folio) || 1759 folio_swap_entry(folio).val != swap.val || 1760 !shmem_confirm_swap(mapping, index, swap)) { 1761 error = -EEXIST; 1762 goto unlock; 1763 } 1764 if (!folio_test_uptodate(folio)) { 1765 error = -EIO; 1766 goto failed; 1767 } 1768 folio_wait_writeback(folio); 1769 1770 /* 1771 * Some architectures may have to restore extra metadata to the 1772 * folio after reading from swap. 1773 */ 1774 arch_swap_restore(swap, folio); 1775 1776 if (shmem_should_replace_folio(folio, gfp)) { 1777 error = shmem_replace_folio(&folio, gfp, info, index); 1778 if (error) 1779 goto failed; 1780 } 1781 1782 error = shmem_add_to_page_cache(folio, mapping, index, 1783 swp_to_radix_entry(swap), gfp, 1784 charge_mm); 1785 if (error) 1786 goto failed; 1787 1788 spin_lock_irq(&info->lock); 1789 info->swapped--; 1790 shmem_recalc_inode(inode); 1791 spin_unlock_irq(&info->lock); 1792 1793 if (sgp == SGP_WRITE) 1794 folio_mark_accessed(folio); 1795 1796 delete_from_swap_cache(folio); 1797 folio_mark_dirty(folio); 1798 swap_free(swap); 1799 1800 *foliop = folio; 1801 return 0; 1802 failed: 1803 if (!shmem_confirm_swap(mapping, index, swap)) 1804 error = -EEXIST; 1805 if (error == -EIO) 1806 shmem_set_folio_swapin_error(inode, index, folio, swap); 1807 unlock: 1808 if (folio) { 1809 folio_unlock(folio); 1810 folio_put(folio); 1811 } 1812 1813 return error; 1814 } 1815 1816 /* 1817 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1818 * 1819 * If we allocate a new one we do not mark it dirty. That's up to the 1820 * vm. If we swap it in we mark it dirty since we also free the swap 1821 * entry since a page cannot live in both the swap and page cache. 1822 * 1823 * vma, vmf, and fault_type are only supplied by shmem_fault: 1824 * otherwise they are NULL. 1825 */ 1826 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1827 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1828 struct vm_area_struct *vma, struct vm_fault *vmf, 1829 vm_fault_t *fault_type) 1830 { 1831 struct address_space *mapping = inode->i_mapping; 1832 struct shmem_inode_info *info = SHMEM_I(inode); 1833 struct shmem_sb_info *sbinfo; 1834 struct mm_struct *charge_mm; 1835 struct folio *folio; 1836 pgoff_t hindex = index; 1837 gfp_t huge_gfp; 1838 int error; 1839 int once = 0; 1840 int alloced = 0; 1841 1842 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1843 return -EFBIG; 1844 repeat: 1845 if (sgp <= SGP_CACHE && 1846 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1847 return -EINVAL; 1848 } 1849 1850 sbinfo = SHMEM_SB(inode->i_sb); 1851 charge_mm = vma ? vma->vm_mm : NULL; 1852 1853 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1854 if (folio && vma && userfaultfd_minor(vma)) { 1855 if (!xa_is_value(folio)) { 1856 folio_unlock(folio); 1857 folio_put(folio); 1858 } 1859 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1860 return 0; 1861 } 1862 1863 if (xa_is_value(folio)) { 1864 error = shmem_swapin_folio(inode, index, &folio, 1865 sgp, gfp, vma, fault_type); 1866 if (error == -EEXIST) 1867 goto repeat; 1868 1869 *foliop = folio; 1870 return error; 1871 } 1872 1873 if (folio) { 1874 hindex = folio->index; 1875 if (sgp == SGP_WRITE) 1876 folio_mark_accessed(folio); 1877 if (folio_test_uptodate(folio)) 1878 goto out; 1879 /* fallocated folio */ 1880 if (sgp != SGP_READ) 1881 goto clear; 1882 folio_unlock(folio); 1883 folio_put(folio); 1884 } 1885 1886 /* 1887 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1888 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1889 */ 1890 *foliop = NULL; 1891 if (sgp == SGP_READ) 1892 return 0; 1893 if (sgp == SGP_NOALLOC) 1894 return -ENOENT; 1895 1896 /* 1897 * Fast cache lookup and swap lookup did not find it: allocate. 1898 */ 1899 1900 if (vma && userfaultfd_missing(vma)) { 1901 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1902 return 0; 1903 } 1904 1905 if (!shmem_is_huge(vma, inode, index, false)) 1906 goto alloc_nohuge; 1907 1908 huge_gfp = vma_thp_gfp_mask(vma); 1909 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1910 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1911 if (IS_ERR(folio)) { 1912 alloc_nohuge: 1913 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1914 } 1915 if (IS_ERR(folio)) { 1916 int retry = 5; 1917 1918 error = PTR_ERR(folio); 1919 folio = NULL; 1920 if (error != -ENOSPC) 1921 goto unlock; 1922 /* 1923 * Try to reclaim some space by splitting a large folio 1924 * beyond i_size on the filesystem. 1925 */ 1926 while (retry--) { 1927 int ret; 1928 1929 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1930 if (ret == SHRINK_STOP) 1931 break; 1932 if (ret) 1933 goto alloc_nohuge; 1934 } 1935 goto unlock; 1936 } 1937 1938 hindex = round_down(index, folio_nr_pages(folio)); 1939 1940 if (sgp == SGP_WRITE) 1941 __folio_set_referenced(folio); 1942 1943 error = shmem_add_to_page_cache(folio, mapping, hindex, 1944 NULL, gfp & GFP_RECLAIM_MASK, 1945 charge_mm); 1946 if (error) 1947 goto unacct; 1948 folio_add_lru(folio); 1949 1950 spin_lock_irq(&info->lock); 1951 info->alloced += folio_nr_pages(folio); 1952 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1953 shmem_recalc_inode(inode); 1954 spin_unlock_irq(&info->lock); 1955 alloced = true; 1956 1957 if (folio_test_pmd_mappable(folio) && 1958 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1959 folio_next_index(folio) - 1) { 1960 /* 1961 * Part of the large folio is beyond i_size: subject 1962 * to shrink under memory pressure. 1963 */ 1964 spin_lock(&sbinfo->shrinklist_lock); 1965 /* 1966 * _careful to defend against unlocked access to 1967 * ->shrink_list in shmem_unused_huge_shrink() 1968 */ 1969 if (list_empty_careful(&info->shrinklist)) { 1970 list_add_tail(&info->shrinklist, 1971 &sbinfo->shrinklist); 1972 sbinfo->shrinklist_len++; 1973 } 1974 spin_unlock(&sbinfo->shrinklist_lock); 1975 } 1976 1977 /* 1978 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 1979 */ 1980 if (sgp == SGP_FALLOC) 1981 sgp = SGP_WRITE; 1982 clear: 1983 /* 1984 * Let SGP_WRITE caller clear ends if write does not fill folio; 1985 * but SGP_FALLOC on a folio fallocated earlier must initialize 1986 * it now, lest undo on failure cancel our earlier guarantee. 1987 */ 1988 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1989 long i, n = folio_nr_pages(folio); 1990 1991 for (i = 0; i < n; i++) 1992 clear_highpage(folio_page(folio, i)); 1993 flush_dcache_folio(folio); 1994 folio_mark_uptodate(folio); 1995 } 1996 1997 /* Perhaps the file has been truncated since we checked */ 1998 if (sgp <= SGP_CACHE && 1999 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2000 if (alloced) { 2001 folio_clear_dirty(folio); 2002 filemap_remove_folio(folio); 2003 spin_lock_irq(&info->lock); 2004 shmem_recalc_inode(inode); 2005 spin_unlock_irq(&info->lock); 2006 } 2007 error = -EINVAL; 2008 goto unlock; 2009 } 2010 out: 2011 *foliop = folio; 2012 return 0; 2013 2014 /* 2015 * Error recovery. 2016 */ 2017 unacct: 2018 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2019 2020 if (folio_test_large(folio)) { 2021 folio_unlock(folio); 2022 folio_put(folio); 2023 goto alloc_nohuge; 2024 } 2025 unlock: 2026 if (folio) { 2027 folio_unlock(folio); 2028 folio_put(folio); 2029 } 2030 if (error == -ENOSPC && !once++) { 2031 spin_lock_irq(&info->lock); 2032 shmem_recalc_inode(inode); 2033 spin_unlock_irq(&info->lock); 2034 goto repeat; 2035 } 2036 if (error == -EEXIST) 2037 goto repeat; 2038 return error; 2039 } 2040 2041 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2042 enum sgp_type sgp) 2043 { 2044 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2045 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2046 } 2047 2048 /* 2049 * This is like autoremove_wake_function, but it removes the wait queue 2050 * entry unconditionally - even if something else had already woken the 2051 * target. 2052 */ 2053 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2054 { 2055 int ret = default_wake_function(wait, mode, sync, key); 2056 list_del_init(&wait->entry); 2057 return ret; 2058 } 2059 2060 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2061 { 2062 struct vm_area_struct *vma = vmf->vma; 2063 struct inode *inode = file_inode(vma->vm_file); 2064 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2065 struct folio *folio = NULL; 2066 int err; 2067 vm_fault_t ret = VM_FAULT_LOCKED; 2068 2069 /* 2070 * Trinity finds that probing a hole which tmpfs is punching can 2071 * prevent the hole-punch from ever completing: which in turn 2072 * locks writers out with its hold on i_rwsem. So refrain from 2073 * faulting pages into the hole while it's being punched. Although 2074 * shmem_undo_range() does remove the additions, it may be unable to 2075 * keep up, as each new page needs its own unmap_mapping_range() call, 2076 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2077 * 2078 * It does not matter if we sometimes reach this check just before the 2079 * hole-punch begins, so that one fault then races with the punch: 2080 * we just need to make racing faults a rare case. 2081 * 2082 * The implementation below would be much simpler if we just used a 2083 * standard mutex or completion: but we cannot take i_rwsem in fault, 2084 * and bloating every shmem inode for this unlikely case would be sad. 2085 */ 2086 if (unlikely(inode->i_private)) { 2087 struct shmem_falloc *shmem_falloc; 2088 2089 spin_lock(&inode->i_lock); 2090 shmem_falloc = inode->i_private; 2091 if (shmem_falloc && 2092 shmem_falloc->waitq && 2093 vmf->pgoff >= shmem_falloc->start && 2094 vmf->pgoff < shmem_falloc->next) { 2095 struct file *fpin; 2096 wait_queue_head_t *shmem_falloc_waitq; 2097 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2098 2099 ret = VM_FAULT_NOPAGE; 2100 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2101 if (fpin) 2102 ret = VM_FAULT_RETRY; 2103 2104 shmem_falloc_waitq = shmem_falloc->waitq; 2105 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2106 TASK_UNINTERRUPTIBLE); 2107 spin_unlock(&inode->i_lock); 2108 schedule(); 2109 2110 /* 2111 * shmem_falloc_waitq points into the shmem_fallocate() 2112 * stack of the hole-punching task: shmem_falloc_waitq 2113 * is usually invalid by the time we reach here, but 2114 * finish_wait() does not dereference it in that case; 2115 * though i_lock needed lest racing with wake_up_all(). 2116 */ 2117 spin_lock(&inode->i_lock); 2118 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2119 spin_unlock(&inode->i_lock); 2120 2121 if (fpin) 2122 fput(fpin); 2123 return ret; 2124 } 2125 spin_unlock(&inode->i_lock); 2126 } 2127 2128 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2129 gfp, vma, vmf, &ret); 2130 if (err) 2131 return vmf_error(err); 2132 if (folio) 2133 vmf->page = folio_file_page(folio, vmf->pgoff); 2134 return ret; 2135 } 2136 2137 unsigned long shmem_get_unmapped_area(struct file *file, 2138 unsigned long uaddr, unsigned long len, 2139 unsigned long pgoff, unsigned long flags) 2140 { 2141 unsigned long (*get_area)(struct file *, 2142 unsigned long, unsigned long, unsigned long, unsigned long); 2143 unsigned long addr; 2144 unsigned long offset; 2145 unsigned long inflated_len; 2146 unsigned long inflated_addr; 2147 unsigned long inflated_offset; 2148 2149 if (len > TASK_SIZE) 2150 return -ENOMEM; 2151 2152 get_area = current->mm->get_unmapped_area; 2153 addr = get_area(file, uaddr, len, pgoff, flags); 2154 2155 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2156 return addr; 2157 if (IS_ERR_VALUE(addr)) 2158 return addr; 2159 if (addr & ~PAGE_MASK) 2160 return addr; 2161 if (addr > TASK_SIZE - len) 2162 return addr; 2163 2164 if (shmem_huge == SHMEM_HUGE_DENY) 2165 return addr; 2166 if (len < HPAGE_PMD_SIZE) 2167 return addr; 2168 if (flags & MAP_FIXED) 2169 return addr; 2170 /* 2171 * Our priority is to support MAP_SHARED mapped hugely; 2172 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2173 * But if caller specified an address hint and we allocated area there 2174 * successfully, respect that as before. 2175 */ 2176 if (uaddr == addr) 2177 return addr; 2178 2179 if (shmem_huge != SHMEM_HUGE_FORCE) { 2180 struct super_block *sb; 2181 2182 if (file) { 2183 VM_BUG_ON(file->f_op != &shmem_file_operations); 2184 sb = file_inode(file)->i_sb; 2185 } else { 2186 /* 2187 * Called directly from mm/mmap.c, or drivers/char/mem.c 2188 * for "/dev/zero", to create a shared anonymous object. 2189 */ 2190 if (IS_ERR(shm_mnt)) 2191 return addr; 2192 sb = shm_mnt->mnt_sb; 2193 } 2194 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2195 return addr; 2196 } 2197 2198 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2199 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2200 return addr; 2201 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2202 return addr; 2203 2204 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2205 if (inflated_len > TASK_SIZE) 2206 return addr; 2207 if (inflated_len < len) 2208 return addr; 2209 2210 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2211 if (IS_ERR_VALUE(inflated_addr)) 2212 return addr; 2213 if (inflated_addr & ~PAGE_MASK) 2214 return addr; 2215 2216 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2217 inflated_addr += offset - inflated_offset; 2218 if (inflated_offset > offset) 2219 inflated_addr += HPAGE_PMD_SIZE; 2220 2221 if (inflated_addr > TASK_SIZE - len) 2222 return addr; 2223 return inflated_addr; 2224 } 2225 2226 #ifdef CONFIG_NUMA 2227 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2228 { 2229 struct inode *inode = file_inode(vma->vm_file); 2230 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2231 } 2232 2233 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2234 unsigned long addr) 2235 { 2236 struct inode *inode = file_inode(vma->vm_file); 2237 pgoff_t index; 2238 2239 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2240 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2241 } 2242 #endif 2243 2244 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2245 { 2246 struct inode *inode = file_inode(file); 2247 struct shmem_inode_info *info = SHMEM_I(inode); 2248 int retval = -ENOMEM; 2249 2250 /* 2251 * What serializes the accesses to info->flags? 2252 * ipc_lock_object() when called from shmctl_do_lock(), 2253 * no serialization needed when called from shm_destroy(). 2254 */ 2255 if (lock && !(info->flags & VM_LOCKED)) { 2256 if (!user_shm_lock(inode->i_size, ucounts)) 2257 goto out_nomem; 2258 info->flags |= VM_LOCKED; 2259 mapping_set_unevictable(file->f_mapping); 2260 } 2261 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2262 user_shm_unlock(inode->i_size, ucounts); 2263 info->flags &= ~VM_LOCKED; 2264 mapping_clear_unevictable(file->f_mapping); 2265 } 2266 retval = 0; 2267 2268 out_nomem: 2269 return retval; 2270 } 2271 2272 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2273 { 2274 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2275 int ret; 2276 2277 ret = seal_check_future_write(info->seals, vma); 2278 if (ret) 2279 return ret; 2280 2281 /* arm64 - allow memory tagging on RAM-based files */ 2282 vma->vm_flags |= VM_MTE_ALLOWED; 2283 2284 file_accessed(file); 2285 vma->vm_ops = &shmem_vm_ops; 2286 return 0; 2287 } 2288 2289 #ifdef CONFIG_TMPFS_XATTR 2290 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2291 2292 /* 2293 * chattr's fsflags are unrelated to extended attributes, 2294 * but tmpfs has chosen to enable them under the same config option. 2295 */ 2296 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2297 { 2298 unsigned int i_flags = 0; 2299 2300 if (fsflags & FS_NOATIME_FL) 2301 i_flags |= S_NOATIME; 2302 if (fsflags & FS_APPEND_FL) 2303 i_flags |= S_APPEND; 2304 if (fsflags & FS_IMMUTABLE_FL) 2305 i_flags |= S_IMMUTABLE; 2306 /* 2307 * But FS_NODUMP_FL does not require any action in i_flags. 2308 */ 2309 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2310 } 2311 #else 2312 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2313 { 2314 } 2315 #define shmem_initxattrs NULL 2316 #endif 2317 2318 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir, 2319 umode_t mode, dev_t dev, unsigned long flags) 2320 { 2321 struct inode *inode; 2322 struct shmem_inode_info *info; 2323 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2324 ino_t ino; 2325 2326 if (shmem_reserve_inode(sb, &ino)) 2327 return NULL; 2328 2329 inode = new_inode(sb); 2330 if (inode) { 2331 inode->i_ino = ino; 2332 inode_init_owner(&init_user_ns, inode, dir, mode); 2333 inode->i_blocks = 0; 2334 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2335 inode->i_generation = get_random_u32(); 2336 info = SHMEM_I(inode); 2337 memset(info, 0, (char *)inode - (char *)info); 2338 spin_lock_init(&info->lock); 2339 atomic_set(&info->stop_eviction, 0); 2340 info->seals = F_SEAL_SEAL; 2341 info->flags = flags & VM_NORESERVE; 2342 info->i_crtime = inode->i_mtime; 2343 info->fsflags = (dir == NULL) ? 0 : 2344 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2345 if (info->fsflags) 2346 shmem_set_inode_flags(inode, info->fsflags); 2347 INIT_LIST_HEAD(&info->shrinklist); 2348 INIT_LIST_HEAD(&info->swaplist); 2349 simple_xattrs_init(&info->xattrs); 2350 cache_no_acl(inode); 2351 mapping_set_large_folios(inode->i_mapping); 2352 2353 switch (mode & S_IFMT) { 2354 default: 2355 inode->i_op = &shmem_special_inode_operations; 2356 init_special_inode(inode, mode, dev); 2357 break; 2358 case S_IFREG: 2359 inode->i_mapping->a_ops = &shmem_aops; 2360 inode->i_op = &shmem_inode_operations; 2361 inode->i_fop = &shmem_file_operations; 2362 mpol_shared_policy_init(&info->policy, 2363 shmem_get_sbmpol(sbinfo)); 2364 break; 2365 case S_IFDIR: 2366 inc_nlink(inode); 2367 /* Some things misbehave if size == 0 on a directory */ 2368 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2369 inode->i_op = &shmem_dir_inode_operations; 2370 inode->i_fop = &simple_dir_operations; 2371 break; 2372 case S_IFLNK: 2373 /* 2374 * Must not load anything in the rbtree, 2375 * mpol_free_shared_policy will not be called. 2376 */ 2377 mpol_shared_policy_init(&info->policy, NULL); 2378 break; 2379 } 2380 2381 lockdep_annotate_inode_mutex_key(inode); 2382 } else 2383 shmem_free_inode(sb); 2384 return inode; 2385 } 2386 2387 #ifdef CONFIG_USERFAULTFD 2388 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2389 pmd_t *dst_pmd, 2390 struct vm_area_struct *dst_vma, 2391 unsigned long dst_addr, 2392 unsigned long src_addr, 2393 bool zeropage, bool wp_copy, 2394 struct page **pagep) 2395 { 2396 struct inode *inode = file_inode(dst_vma->vm_file); 2397 struct shmem_inode_info *info = SHMEM_I(inode); 2398 struct address_space *mapping = inode->i_mapping; 2399 gfp_t gfp = mapping_gfp_mask(mapping); 2400 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2401 void *page_kaddr; 2402 struct folio *folio; 2403 int ret; 2404 pgoff_t max_off; 2405 2406 if (!shmem_inode_acct_block(inode, 1)) { 2407 /* 2408 * We may have got a page, returned -ENOENT triggering a retry, 2409 * and now we find ourselves with -ENOMEM. Release the page, to 2410 * avoid a BUG_ON in our caller. 2411 */ 2412 if (unlikely(*pagep)) { 2413 put_page(*pagep); 2414 *pagep = NULL; 2415 } 2416 return -ENOMEM; 2417 } 2418 2419 if (!*pagep) { 2420 ret = -ENOMEM; 2421 folio = shmem_alloc_folio(gfp, info, pgoff); 2422 if (!folio) 2423 goto out_unacct_blocks; 2424 2425 if (!zeropage) { /* COPY */ 2426 page_kaddr = kmap_local_folio(folio, 0); 2427 /* 2428 * The read mmap_lock is held here. Despite the 2429 * mmap_lock being read recursive a deadlock is still 2430 * possible if a writer has taken a lock. For example: 2431 * 2432 * process A thread 1 takes read lock on own mmap_lock 2433 * process A thread 2 calls mmap, blocks taking write lock 2434 * process B thread 1 takes page fault, read lock on own mmap lock 2435 * process B thread 2 calls mmap, blocks taking write lock 2436 * process A thread 1 blocks taking read lock on process B 2437 * process B thread 1 blocks taking read lock on process A 2438 * 2439 * Disable page faults to prevent potential deadlock 2440 * and retry the copy outside the mmap_lock. 2441 */ 2442 pagefault_disable(); 2443 ret = copy_from_user(page_kaddr, 2444 (const void __user *)src_addr, 2445 PAGE_SIZE); 2446 pagefault_enable(); 2447 kunmap_local(page_kaddr); 2448 2449 /* fallback to copy_from_user outside mmap_lock */ 2450 if (unlikely(ret)) { 2451 *pagep = &folio->page; 2452 ret = -ENOENT; 2453 /* don't free the page */ 2454 goto out_unacct_blocks; 2455 } 2456 2457 flush_dcache_folio(folio); 2458 } else { /* ZEROPAGE */ 2459 clear_user_highpage(&folio->page, dst_addr); 2460 } 2461 } else { 2462 folio = page_folio(*pagep); 2463 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2464 *pagep = NULL; 2465 } 2466 2467 VM_BUG_ON(folio_test_locked(folio)); 2468 VM_BUG_ON(folio_test_swapbacked(folio)); 2469 __folio_set_locked(folio); 2470 __folio_set_swapbacked(folio); 2471 __folio_mark_uptodate(folio); 2472 2473 ret = -EFAULT; 2474 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2475 if (unlikely(pgoff >= max_off)) 2476 goto out_release; 2477 2478 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2479 gfp & GFP_RECLAIM_MASK, dst_mm); 2480 if (ret) 2481 goto out_release; 2482 2483 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2484 &folio->page, true, wp_copy); 2485 if (ret) 2486 goto out_delete_from_cache; 2487 2488 spin_lock_irq(&info->lock); 2489 info->alloced++; 2490 inode->i_blocks += BLOCKS_PER_PAGE; 2491 shmem_recalc_inode(inode); 2492 spin_unlock_irq(&info->lock); 2493 2494 folio_unlock(folio); 2495 return 0; 2496 out_delete_from_cache: 2497 filemap_remove_folio(folio); 2498 out_release: 2499 folio_unlock(folio); 2500 folio_put(folio); 2501 out_unacct_blocks: 2502 shmem_inode_unacct_blocks(inode, 1); 2503 return ret; 2504 } 2505 #endif /* CONFIG_USERFAULTFD */ 2506 2507 #ifdef CONFIG_TMPFS 2508 static const struct inode_operations shmem_symlink_inode_operations; 2509 static const struct inode_operations shmem_short_symlink_operations; 2510 2511 static int 2512 shmem_write_begin(struct file *file, struct address_space *mapping, 2513 loff_t pos, unsigned len, 2514 struct page **pagep, void **fsdata) 2515 { 2516 struct inode *inode = mapping->host; 2517 struct shmem_inode_info *info = SHMEM_I(inode); 2518 pgoff_t index = pos >> PAGE_SHIFT; 2519 struct folio *folio; 2520 int ret = 0; 2521 2522 /* i_rwsem is held by caller */ 2523 if (unlikely(info->seals & (F_SEAL_GROW | 2524 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2525 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2526 return -EPERM; 2527 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2528 return -EPERM; 2529 } 2530 2531 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2532 2533 if (ret) 2534 return ret; 2535 2536 *pagep = folio_file_page(folio, index); 2537 if (PageHWPoison(*pagep)) { 2538 folio_unlock(folio); 2539 folio_put(folio); 2540 *pagep = NULL; 2541 return -EIO; 2542 } 2543 2544 return 0; 2545 } 2546 2547 static int 2548 shmem_write_end(struct file *file, struct address_space *mapping, 2549 loff_t pos, unsigned len, unsigned copied, 2550 struct page *page, void *fsdata) 2551 { 2552 struct inode *inode = mapping->host; 2553 2554 if (pos + copied > inode->i_size) 2555 i_size_write(inode, pos + copied); 2556 2557 if (!PageUptodate(page)) { 2558 struct page *head = compound_head(page); 2559 if (PageTransCompound(page)) { 2560 int i; 2561 2562 for (i = 0; i < HPAGE_PMD_NR; i++) { 2563 if (head + i == page) 2564 continue; 2565 clear_highpage(head + i); 2566 flush_dcache_page(head + i); 2567 } 2568 } 2569 if (copied < PAGE_SIZE) { 2570 unsigned from = pos & (PAGE_SIZE - 1); 2571 zero_user_segments(page, 0, from, 2572 from + copied, PAGE_SIZE); 2573 } 2574 SetPageUptodate(head); 2575 } 2576 set_page_dirty(page); 2577 unlock_page(page); 2578 put_page(page); 2579 2580 return copied; 2581 } 2582 2583 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2584 { 2585 struct file *file = iocb->ki_filp; 2586 struct inode *inode = file_inode(file); 2587 struct address_space *mapping = inode->i_mapping; 2588 pgoff_t index; 2589 unsigned long offset; 2590 int error = 0; 2591 ssize_t retval = 0; 2592 loff_t *ppos = &iocb->ki_pos; 2593 2594 index = *ppos >> PAGE_SHIFT; 2595 offset = *ppos & ~PAGE_MASK; 2596 2597 for (;;) { 2598 struct folio *folio = NULL; 2599 struct page *page = NULL; 2600 pgoff_t end_index; 2601 unsigned long nr, ret; 2602 loff_t i_size = i_size_read(inode); 2603 2604 end_index = i_size >> PAGE_SHIFT; 2605 if (index > end_index) 2606 break; 2607 if (index == end_index) { 2608 nr = i_size & ~PAGE_MASK; 2609 if (nr <= offset) 2610 break; 2611 } 2612 2613 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2614 if (error) { 2615 if (error == -EINVAL) 2616 error = 0; 2617 break; 2618 } 2619 if (folio) { 2620 folio_unlock(folio); 2621 2622 page = folio_file_page(folio, index); 2623 if (PageHWPoison(page)) { 2624 folio_put(folio); 2625 error = -EIO; 2626 break; 2627 } 2628 } 2629 2630 /* 2631 * We must evaluate after, since reads (unlike writes) 2632 * are called without i_rwsem protection against truncate 2633 */ 2634 nr = PAGE_SIZE; 2635 i_size = i_size_read(inode); 2636 end_index = i_size >> PAGE_SHIFT; 2637 if (index == end_index) { 2638 nr = i_size & ~PAGE_MASK; 2639 if (nr <= offset) { 2640 if (folio) 2641 folio_put(folio); 2642 break; 2643 } 2644 } 2645 nr -= offset; 2646 2647 if (folio) { 2648 /* 2649 * If users can be writing to this page using arbitrary 2650 * virtual addresses, take care about potential aliasing 2651 * before reading the page on the kernel side. 2652 */ 2653 if (mapping_writably_mapped(mapping)) 2654 flush_dcache_page(page); 2655 /* 2656 * Mark the page accessed if we read the beginning. 2657 */ 2658 if (!offset) 2659 folio_mark_accessed(folio); 2660 /* 2661 * Ok, we have the page, and it's up-to-date, so 2662 * now we can copy it to user space... 2663 */ 2664 ret = copy_page_to_iter(page, offset, nr, to); 2665 folio_put(folio); 2666 2667 } else if (user_backed_iter(to)) { 2668 /* 2669 * Copy to user tends to be so well optimized, but 2670 * clear_user() not so much, that it is noticeably 2671 * faster to copy the zero page instead of clearing. 2672 */ 2673 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2674 } else { 2675 /* 2676 * But submitting the same page twice in a row to 2677 * splice() - or others? - can result in confusion: 2678 * so don't attempt that optimization on pipes etc. 2679 */ 2680 ret = iov_iter_zero(nr, to); 2681 } 2682 2683 retval += ret; 2684 offset += ret; 2685 index += offset >> PAGE_SHIFT; 2686 offset &= ~PAGE_MASK; 2687 2688 if (!iov_iter_count(to)) 2689 break; 2690 if (ret < nr) { 2691 error = -EFAULT; 2692 break; 2693 } 2694 cond_resched(); 2695 } 2696 2697 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2698 file_accessed(file); 2699 return retval ? retval : error; 2700 } 2701 2702 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2703 { 2704 struct address_space *mapping = file->f_mapping; 2705 struct inode *inode = mapping->host; 2706 2707 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2708 return generic_file_llseek_size(file, offset, whence, 2709 MAX_LFS_FILESIZE, i_size_read(inode)); 2710 if (offset < 0) 2711 return -ENXIO; 2712 2713 inode_lock(inode); 2714 /* We're holding i_rwsem so we can access i_size directly */ 2715 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2716 if (offset >= 0) 2717 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2718 inode_unlock(inode); 2719 return offset; 2720 } 2721 2722 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2723 loff_t len) 2724 { 2725 struct inode *inode = file_inode(file); 2726 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2727 struct shmem_inode_info *info = SHMEM_I(inode); 2728 struct shmem_falloc shmem_falloc; 2729 pgoff_t start, index, end, undo_fallocend; 2730 int error; 2731 2732 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2733 return -EOPNOTSUPP; 2734 2735 inode_lock(inode); 2736 2737 if (mode & FALLOC_FL_PUNCH_HOLE) { 2738 struct address_space *mapping = file->f_mapping; 2739 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2740 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2741 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2742 2743 /* protected by i_rwsem */ 2744 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2745 error = -EPERM; 2746 goto out; 2747 } 2748 2749 shmem_falloc.waitq = &shmem_falloc_waitq; 2750 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2751 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2752 spin_lock(&inode->i_lock); 2753 inode->i_private = &shmem_falloc; 2754 spin_unlock(&inode->i_lock); 2755 2756 if ((u64)unmap_end > (u64)unmap_start) 2757 unmap_mapping_range(mapping, unmap_start, 2758 1 + unmap_end - unmap_start, 0); 2759 shmem_truncate_range(inode, offset, offset + len - 1); 2760 /* No need to unmap again: hole-punching leaves COWed pages */ 2761 2762 spin_lock(&inode->i_lock); 2763 inode->i_private = NULL; 2764 wake_up_all(&shmem_falloc_waitq); 2765 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2766 spin_unlock(&inode->i_lock); 2767 error = 0; 2768 goto out; 2769 } 2770 2771 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2772 error = inode_newsize_ok(inode, offset + len); 2773 if (error) 2774 goto out; 2775 2776 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2777 error = -EPERM; 2778 goto out; 2779 } 2780 2781 start = offset >> PAGE_SHIFT; 2782 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2783 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2784 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2785 error = -ENOSPC; 2786 goto out; 2787 } 2788 2789 shmem_falloc.waitq = NULL; 2790 shmem_falloc.start = start; 2791 shmem_falloc.next = start; 2792 shmem_falloc.nr_falloced = 0; 2793 shmem_falloc.nr_unswapped = 0; 2794 spin_lock(&inode->i_lock); 2795 inode->i_private = &shmem_falloc; 2796 spin_unlock(&inode->i_lock); 2797 2798 /* 2799 * info->fallocend is only relevant when huge pages might be 2800 * involved: to prevent split_huge_page() freeing fallocated 2801 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2802 */ 2803 undo_fallocend = info->fallocend; 2804 if (info->fallocend < end) 2805 info->fallocend = end; 2806 2807 for (index = start; index < end; ) { 2808 struct folio *folio; 2809 2810 /* 2811 * Good, the fallocate(2) manpage permits EINTR: we may have 2812 * been interrupted because we are using up too much memory. 2813 */ 2814 if (signal_pending(current)) 2815 error = -EINTR; 2816 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2817 error = -ENOMEM; 2818 else 2819 error = shmem_get_folio(inode, index, &folio, 2820 SGP_FALLOC); 2821 if (error) { 2822 info->fallocend = undo_fallocend; 2823 /* Remove the !uptodate folios we added */ 2824 if (index > start) { 2825 shmem_undo_range(inode, 2826 (loff_t)start << PAGE_SHIFT, 2827 ((loff_t)index << PAGE_SHIFT) - 1, true); 2828 } 2829 goto undone; 2830 } 2831 2832 /* 2833 * Here is a more important optimization than it appears: 2834 * a second SGP_FALLOC on the same large folio will clear it, 2835 * making it uptodate and un-undoable if we fail later. 2836 */ 2837 index = folio_next_index(folio); 2838 /* Beware 32-bit wraparound */ 2839 if (!index) 2840 index--; 2841 2842 /* 2843 * Inform shmem_writepage() how far we have reached. 2844 * No need for lock or barrier: we have the page lock. 2845 */ 2846 if (!folio_test_uptodate(folio)) 2847 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2848 shmem_falloc.next = index; 2849 2850 /* 2851 * If !uptodate, leave it that way so that freeable folios 2852 * can be recognized if we need to rollback on error later. 2853 * But mark it dirty so that memory pressure will swap rather 2854 * than free the folios we are allocating (and SGP_CACHE folios 2855 * might still be clean: we now need to mark those dirty too). 2856 */ 2857 folio_mark_dirty(folio); 2858 folio_unlock(folio); 2859 folio_put(folio); 2860 cond_resched(); 2861 } 2862 2863 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2864 i_size_write(inode, offset + len); 2865 undone: 2866 spin_lock(&inode->i_lock); 2867 inode->i_private = NULL; 2868 spin_unlock(&inode->i_lock); 2869 out: 2870 if (!error) 2871 file_modified(file); 2872 inode_unlock(inode); 2873 return error; 2874 } 2875 2876 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2877 { 2878 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2879 2880 buf->f_type = TMPFS_MAGIC; 2881 buf->f_bsize = PAGE_SIZE; 2882 buf->f_namelen = NAME_MAX; 2883 if (sbinfo->max_blocks) { 2884 buf->f_blocks = sbinfo->max_blocks; 2885 buf->f_bavail = 2886 buf->f_bfree = sbinfo->max_blocks - 2887 percpu_counter_sum(&sbinfo->used_blocks); 2888 } 2889 if (sbinfo->max_inodes) { 2890 buf->f_files = sbinfo->max_inodes; 2891 buf->f_ffree = sbinfo->free_inodes; 2892 } 2893 /* else leave those fields 0 like simple_statfs */ 2894 2895 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2896 2897 return 0; 2898 } 2899 2900 /* 2901 * File creation. Allocate an inode, and we're done.. 2902 */ 2903 static int 2904 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2905 struct dentry *dentry, umode_t mode, dev_t dev) 2906 { 2907 struct inode *inode; 2908 int error = -ENOSPC; 2909 2910 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2911 if (inode) { 2912 error = simple_acl_create(dir, inode); 2913 if (error) 2914 goto out_iput; 2915 error = security_inode_init_security(inode, dir, 2916 &dentry->d_name, 2917 shmem_initxattrs, NULL); 2918 if (error && error != -EOPNOTSUPP) 2919 goto out_iput; 2920 2921 error = 0; 2922 dir->i_size += BOGO_DIRENT_SIZE; 2923 dir->i_ctime = dir->i_mtime = current_time(dir); 2924 inode_inc_iversion(dir); 2925 d_instantiate(dentry, inode); 2926 dget(dentry); /* Extra count - pin the dentry in core */ 2927 } 2928 return error; 2929 out_iput: 2930 iput(inode); 2931 return error; 2932 } 2933 2934 static int 2935 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2936 struct file *file, umode_t mode) 2937 { 2938 struct inode *inode; 2939 int error = -ENOSPC; 2940 2941 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2942 if (inode) { 2943 error = security_inode_init_security(inode, dir, 2944 NULL, 2945 shmem_initxattrs, NULL); 2946 if (error && error != -EOPNOTSUPP) 2947 goto out_iput; 2948 error = simple_acl_create(dir, inode); 2949 if (error) 2950 goto out_iput; 2951 d_tmpfile(file, inode); 2952 } 2953 return finish_open_simple(file, error); 2954 out_iput: 2955 iput(inode); 2956 return error; 2957 } 2958 2959 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2960 struct dentry *dentry, umode_t mode) 2961 { 2962 int error; 2963 2964 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2965 mode | S_IFDIR, 0))) 2966 return error; 2967 inc_nlink(dir); 2968 return 0; 2969 } 2970 2971 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2972 struct dentry *dentry, umode_t mode, bool excl) 2973 { 2974 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2975 } 2976 2977 /* 2978 * Link a file.. 2979 */ 2980 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2981 { 2982 struct inode *inode = d_inode(old_dentry); 2983 int ret = 0; 2984 2985 /* 2986 * No ordinary (disk based) filesystem counts links as inodes; 2987 * but each new link needs a new dentry, pinning lowmem, and 2988 * tmpfs dentries cannot be pruned until they are unlinked. 2989 * But if an O_TMPFILE file is linked into the tmpfs, the 2990 * first link must skip that, to get the accounting right. 2991 */ 2992 if (inode->i_nlink) { 2993 ret = shmem_reserve_inode(inode->i_sb, NULL); 2994 if (ret) 2995 goto out; 2996 } 2997 2998 dir->i_size += BOGO_DIRENT_SIZE; 2999 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3000 inode_inc_iversion(dir); 3001 inc_nlink(inode); 3002 ihold(inode); /* New dentry reference */ 3003 dget(dentry); /* Extra pinning count for the created dentry */ 3004 d_instantiate(dentry, inode); 3005 out: 3006 return ret; 3007 } 3008 3009 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3010 { 3011 struct inode *inode = d_inode(dentry); 3012 3013 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3014 shmem_free_inode(inode->i_sb); 3015 3016 dir->i_size -= BOGO_DIRENT_SIZE; 3017 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3018 inode_inc_iversion(dir); 3019 drop_nlink(inode); 3020 dput(dentry); /* Undo the count from "create" - this does all the work */ 3021 return 0; 3022 } 3023 3024 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3025 { 3026 if (!simple_empty(dentry)) 3027 return -ENOTEMPTY; 3028 3029 drop_nlink(d_inode(dentry)); 3030 drop_nlink(dir); 3031 return shmem_unlink(dir, dentry); 3032 } 3033 3034 static int shmem_whiteout(struct user_namespace *mnt_userns, 3035 struct inode *old_dir, struct dentry *old_dentry) 3036 { 3037 struct dentry *whiteout; 3038 int error; 3039 3040 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3041 if (!whiteout) 3042 return -ENOMEM; 3043 3044 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3045 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3046 dput(whiteout); 3047 if (error) 3048 return error; 3049 3050 /* 3051 * Cheat and hash the whiteout while the old dentry is still in 3052 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3053 * 3054 * d_lookup() will consistently find one of them at this point, 3055 * not sure which one, but that isn't even important. 3056 */ 3057 d_rehash(whiteout); 3058 return 0; 3059 } 3060 3061 /* 3062 * The VFS layer already does all the dentry stuff for rename, 3063 * we just have to decrement the usage count for the target if 3064 * it exists so that the VFS layer correctly free's it when it 3065 * gets overwritten. 3066 */ 3067 static int shmem_rename2(struct user_namespace *mnt_userns, 3068 struct inode *old_dir, struct dentry *old_dentry, 3069 struct inode *new_dir, struct dentry *new_dentry, 3070 unsigned int flags) 3071 { 3072 struct inode *inode = d_inode(old_dentry); 3073 int they_are_dirs = S_ISDIR(inode->i_mode); 3074 3075 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3076 return -EINVAL; 3077 3078 if (flags & RENAME_EXCHANGE) 3079 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3080 3081 if (!simple_empty(new_dentry)) 3082 return -ENOTEMPTY; 3083 3084 if (flags & RENAME_WHITEOUT) { 3085 int error; 3086 3087 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3088 if (error) 3089 return error; 3090 } 3091 3092 if (d_really_is_positive(new_dentry)) { 3093 (void) shmem_unlink(new_dir, new_dentry); 3094 if (they_are_dirs) { 3095 drop_nlink(d_inode(new_dentry)); 3096 drop_nlink(old_dir); 3097 } 3098 } else if (they_are_dirs) { 3099 drop_nlink(old_dir); 3100 inc_nlink(new_dir); 3101 } 3102 3103 old_dir->i_size -= BOGO_DIRENT_SIZE; 3104 new_dir->i_size += BOGO_DIRENT_SIZE; 3105 old_dir->i_ctime = old_dir->i_mtime = 3106 new_dir->i_ctime = new_dir->i_mtime = 3107 inode->i_ctime = current_time(old_dir); 3108 inode_inc_iversion(old_dir); 3109 inode_inc_iversion(new_dir); 3110 return 0; 3111 } 3112 3113 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3114 struct dentry *dentry, const char *symname) 3115 { 3116 int error; 3117 int len; 3118 struct inode *inode; 3119 struct folio *folio; 3120 3121 len = strlen(symname) + 1; 3122 if (len > PAGE_SIZE) 3123 return -ENAMETOOLONG; 3124 3125 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3126 VM_NORESERVE); 3127 if (!inode) 3128 return -ENOSPC; 3129 3130 error = security_inode_init_security(inode, dir, &dentry->d_name, 3131 shmem_initxattrs, NULL); 3132 if (error && error != -EOPNOTSUPP) { 3133 iput(inode); 3134 return error; 3135 } 3136 3137 inode->i_size = len-1; 3138 if (len <= SHORT_SYMLINK_LEN) { 3139 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3140 if (!inode->i_link) { 3141 iput(inode); 3142 return -ENOMEM; 3143 } 3144 inode->i_op = &shmem_short_symlink_operations; 3145 } else { 3146 inode_nohighmem(inode); 3147 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3148 if (error) { 3149 iput(inode); 3150 return error; 3151 } 3152 inode->i_mapping->a_ops = &shmem_aops; 3153 inode->i_op = &shmem_symlink_inode_operations; 3154 memcpy(folio_address(folio), symname, len); 3155 folio_mark_uptodate(folio); 3156 folio_mark_dirty(folio); 3157 folio_unlock(folio); 3158 folio_put(folio); 3159 } 3160 dir->i_size += BOGO_DIRENT_SIZE; 3161 dir->i_ctime = dir->i_mtime = current_time(dir); 3162 inode_inc_iversion(dir); 3163 d_instantiate(dentry, inode); 3164 dget(dentry); 3165 return 0; 3166 } 3167 3168 static void shmem_put_link(void *arg) 3169 { 3170 folio_mark_accessed(arg); 3171 folio_put(arg); 3172 } 3173 3174 static const char *shmem_get_link(struct dentry *dentry, 3175 struct inode *inode, 3176 struct delayed_call *done) 3177 { 3178 struct folio *folio = NULL; 3179 int error; 3180 3181 if (!dentry) { 3182 folio = filemap_get_folio(inode->i_mapping, 0); 3183 if (!folio) 3184 return ERR_PTR(-ECHILD); 3185 if (PageHWPoison(folio_page(folio, 0)) || 3186 !folio_test_uptodate(folio)) { 3187 folio_put(folio); 3188 return ERR_PTR(-ECHILD); 3189 } 3190 } else { 3191 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3192 if (error) 3193 return ERR_PTR(error); 3194 if (!folio) 3195 return ERR_PTR(-ECHILD); 3196 if (PageHWPoison(folio_page(folio, 0))) { 3197 folio_unlock(folio); 3198 folio_put(folio); 3199 return ERR_PTR(-ECHILD); 3200 } 3201 folio_unlock(folio); 3202 } 3203 set_delayed_call(done, shmem_put_link, folio); 3204 return folio_address(folio); 3205 } 3206 3207 #ifdef CONFIG_TMPFS_XATTR 3208 3209 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3210 { 3211 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3212 3213 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3214 3215 return 0; 3216 } 3217 3218 static int shmem_fileattr_set(struct user_namespace *mnt_userns, 3219 struct dentry *dentry, struct fileattr *fa) 3220 { 3221 struct inode *inode = d_inode(dentry); 3222 struct shmem_inode_info *info = SHMEM_I(inode); 3223 3224 if (fileattr_has_fsx(fa)) 3225 return -EOPNOTSUPP; 3226 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3227 return -EOPNOTSUPP; 3228 3229 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3230 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3231 3232 shmem_set_inode_flags(inode, info->fsflags); 3233 inode->i_ctime = current_time(inode); 3234 inode_inc_iversion(inode); 3235 return 0; 3236 } 3237 3238 /* 3239 * Superblocks without xattr inode operations may get some security.* xattr 3240 * support from the LSM "for free". As soon as we have any other xattrs 3241 * like ACLs, we also need to implement the security.* handlers at 3242 * filesystem level, though. 3243 */ 3244 3245 /* 3246 * Callback for security_inode_init_security() for acquiring xattrs. 3247 */ 3248 static int shmem_initxattrs(struct inode *inode, 3249 const struct xattr *xattr_array, 3250 void *fs_info) 3251 { 3252 struct shmem_inode_info *info = SHMEM_I(inode); 3253 const struct xattr *xattr; 3254 struct simple_xattr *new_xattr; 3255 size_t len; 3256 3257 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3258 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3259 if (!new_xattr) 3260 return -ENOMEM; 3261 3262 len = strlen(xattr->name) + 1; 3263 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3264 GFP_KERNEL); 3265 if (!new_xattr->name) { 3266 kvfree(new_xattr); 3267 return -ENOMEM; 3268 } 3269 3270 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3271 XATTR_SECURITY_PREFIX_LEN); 3272 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3273 xattr->name, len); 3274 3275 simple_xattr_list_add(&info->xattrs, new_xattr); 3276 } 3277 3278 return 0; 3279 } 3280 3281 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3282 struct dentry *unused, struct inode *inode, 3283 const char *name, void *buffer, size_t size) 3284 { 3285 struct shmem_inode_info *info = SHMEM_I(inode); 3286 3287 name = xattr_full_name(handler, name); 3288 return simple_xattr_get(&info->xattrs, name, buffer, size); 3289 } 3290 3291 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3292 struct user_namespace *mnt_userns, 3293 struct dentry *unused, struct inode *inode, 3294 const char *name, const void *value, 3295 size_t size, int flags) 3296 { 3297 struct shmem_inode_info *info = SHMEM_I(inode); 3298 int err; 3299 3300 name = xattr_full_name(handler, name); 3301 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3302 if (!err) { 3303 inode->i_ctime = current_time(inode); 3304 inode_inc_iversion(inode); 3305 } 3306 return err; 3307 } 3308 3309 static const struct xattr_handler shmem_security_xattr_handler = { 3310 .prefix = XATTR_SECURITY_PREFIX, 3311 .get = shmem_xattr_handler_get, 3312 .set = shmem_xattr_handler_set, 3313 }; 3314 3315 static const struct xattr_handler shmem_trusted_xattr_handler = { 3316 .prefix = XATTR_TRUSTED_PREFIX, 3317 .get = shmem_xattr_handler_get, 3318 .set = shmem_xattr_handler_set, 3319 }; 3320 3321 static const struct xattr_handler *shmem_xattr_handlers[] = { 3322 #ifdef CONFIG_TMPFS_POSIX_ACL 3323 &posix_acl_access_xattr_handler, 3324 &posix_acl_default_xattr_handler, 3325 #endif 3326 &shmem_security_xattr_handler, 3327 &shmem_trusted_xattr_handler, 3328 NULL 3329 }; 3330 3331 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3332 { 3333 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3334 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3335 } 3336 #endif /* CONFIG_TMPFS_XATTR */ 3337 3338 static const struct inode_operations shmem_short_symlink_operations = { 3339 .getattr = shmem_getattr, 3340 .get_link = simple_get_link, 3341 #ifdef CONFIG_TMPFS_XATTR 3342 .listxattr = shmem_listxattr, 3343 #endif 3344 }; 3345 3346 static const struct inode_operations shmem_symlink_inode_operations = { 3347 .getattr = shmem_getattr, 3348 .get_link = shmem_get_link, 3349 #ifdef CONFIG_TMPFS_XATTR 3350 .listxattr = shmem_listxattr, 3351 #endif 3352 }; 3353 3354 static struct dentry *shmem_get_parent(struct dentry *child) 3355 { 3356 return ERR_PTR(-ESTALE); 3357 } 3358 3359 static int shmem_match(struct inode *ino, void *vfh) 3360 { 3361 __u32 *fh = vfh; 3362 __u64 inum = fh[2]; 3363 inum = (inum << 32) | fh[1]; 3364 return ino->i_ino == inum && fh[0] == ino->i_generation; 3365 } 3366 3367 /* Find any alias of inode, but prefer a hashed alias */ 3368 static struct dentry *shmem_find_alias(struct inode *inode) 3369 { 3370 struct dentry *alias = d_find_alias(inode); 3371 3372 return alias ?: d_find_any_alias(inode); 3373 } 3374 3375 3376 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3377 struct fid *fid, int fh_len, int fh_type) 3378 { 3379 struct inode *inode; 3380 struct dentry *dentry = NULL; 3381 u64 inum; 3382 3383 if (fh_len < 3) 3384 return NULL; 3385 3386 inum = fid->raw[2]; 3387 inum = (inum << 32) | fid->raw[1]; 3388 3389 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3390 shmem_match, fid->raw); 3391 if (inode) { 3392 dentry = shmem_find_alias(inode); 3393 iput(inode); 3394 } 3395 3396 return dentry; 3397 } 3398 3399 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3400 struct inode *parent) 3401 { 3402 if (*len < 3) { 3403 *len = 3; 3404 return FILEID_INVALID; 3405 } 3406 3407 if (inode_unhashed(inode)) { 3408 /* Unfortunately insert_inode_hash is not idempotent, 3409 * so as we hash inodes here rather than at creation 3410 * time, we need a lock to ensure we only try 3411 * to do it once 3412 */ 3413 static DEFINE_SPINLOCK(lock); 3414 spin_lock(&lock); 3415 if (inode_unhashed(inode)) 3416 __insert_inode_hash(inode, 3417 inode->i_ino + inode->i_generation); 3418 spin_unlock(&lock); 3419 } 3420 3421 fh[0] = inode->i_generation; 3422 fh[1] = inode->i_ino; 3423 fh[2] = ((__u64)inode->i_ino) >> 32; 3424 3425 *len = 3; 3426 return 1; 3427 } 3428 3429 static const struct export_operations shmem_export_ops = { 3430 .get_parent = shmem_get_parent, 3431 .encode_fh = shmem_encode_fh, 3432 .fh_to_dentry = shmem_fh_to_dentry, 3433 }; 3434 3435 enum shmem_param { 3436 Opt_gid, 3437 Opt_huge, 3438 Opt_mode, 3439 Opt_mpol, 3440 Opt_nr_blocks, 3441 Opt_nr_inodes, 3442 Opt_size, 3443 Opt_uid, 3444 Opt_inode32, 3445 Opt_inode64, 3446 }; 3447 3448 static const struct constant_table shmem_param_enums_huge[] = { 3449 {"never", SHMEM_HUGE_NEVER }, 3450 {"always", SHMEM_HUGE_ALWAYS }, 3451 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3452 {"advise", SHMEM_HUGE_ADVISE }, 3453 {} 3454 }; 3455 3456 const struct fs_parameter_spec shmem_fs_parameters[] = { 3457 fsparam_u32 ("gid", Opt_gid), 3458 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3459 fsparam_u32oct("mode", Opt_mode), 3460 fsparam_string("mpol", Opt_mpol), 3461 fsparam_string("nr_blocks", Opt_nr_blocks), 3462 fsparam_string("nr_inodes", Opt_nr_inodes), 3463 fsparam_string("size", Opt_size), 3464 fsparam_u32 ("uid", Opt_uid), 3465 fsparam_flag ("inode32", Opt_inode32), 3466 fsparam_flag ("inode64", Opt_inode64), 3467 {} 3468 }; 3469 3470 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3471 { 3472 struct shmem_options *ctx = fc->fs_private; 3473 struct fs_parse_result result; 3474 unsigned long long size; 3475 char *rest; 3476 int opt; 3477 3478 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3479 if (opt < 0) 3480 return opt; 3481 3482 switch (opt) { 3483 case Opt_size: 3484 size = memparse(param->string, &rest); 3485 if (*rest == '%') { 3486 size <<= PAGE_SHIFT; 3487 size *= totalram_pages(); 3488 do_div(size, 100); 3489 rest++; 3490 } 3491 if (*rest) 3492 goto bad_value; 3493 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3494 ctx->seen |= SHMEM_SEEN_BLOCKS; 3495 break; 3496 case Opt_nr_blocks: 3497 ctx->blocks = memparse(param->string, &rest); 3498 if (*rest || ctx->blocks > S64_MAX) 3499 goto bad_value; 3500 ctx->seen |= SHMEM_SEEN_BLOCKS; 3501 break; 3502 case Opt_nr_inodes: 3503 ctx->inodes = memparse(param->string, &rest); 3504 if (*rest) 3505 goto bad_value; 3506 ctx->seen |= SHMEM_SEEN_INODES; 3507 break; 3508 case Opt_mode: 3509 ctx->mode = result.uint_32 & 07777; 3510 break; 3511 case Opt_uid: 3512 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3513 if (!uid_valid(ctx->uid)) 3514 goto bad_value; 3515 break; 3516 case Opt_gid: 3517 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3518 if (!gid_valid(ctx->gid)) 3519 goto bad_value; 3520 break; 3521 case Opt_huge: 3522 ctx->huge = result.uint_32; 3523 if (ctx->huge != SHMEM_HUGE_NEVER && 3524 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3525 has_transparent_hugepage())) 3526 goto unsupported_parameter; 3527 ctx->seen |= SHMEM_SEEN_HUGE; 3528 break; 3529 case Opt_mpol: 3530 if (IS_ENABLED(CONFIG_NUMA)) { 3531 mpol_put(ctx->mpol); 3532 ctx->mpol = NULL; 3533 if (mpol_parse_str(param->string, &ctx->mpol)) 3534 goto bad_value; 3535 break; 3536 } 3537 goto unsupported_parameter; 3538 case Opt_inode32: 3539 ctx->full_inums = false; 3540 ctx->seen |= SHMEM_SEEN_INUMS; 3541 break; 3542 case Opt_inode64: 3543 if (sizeof(ino_t) < 8) { 3544 return invalfc(fc, 3545 "Cannot use inode64 with <64bit inums in kernel\n"); 3546 } 3547 ctx->full_inums = true; 3548 ctx->seen |= SHMEM_SEEN_INUMS; 3549 break; 3550 } 3551 return 0; 3552 3553 unsupported_parameter: 3554 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3555 bad_value: 3556 return invalfc(fc, "Bad value for '%s'", param->key); 3557 } 3558 3559 static int shmem_parse_options(struct fs_context *fc, void *data) 3560 { 3561 char *options = data; 3562 3563 if (options) { 3564 int err = security_sb_eat_lsm_opts(options, &fc->security); 3565 if (err) 3566 return err; 3567 } 3568 3569 while (options != NULL) { 3570 char *this_char = options; 3571 for (;;) { 3572 /* 3573 * NUL-terminate this option: unfortunately, 3574 * mount options form a comma-separated list, 3575 * but mpol's nodelist may also contain commas. 3576 */ 3577 options = strchr(options, ','); 3578 if (options == NULL) 3579 break; 3580 options++; 3581 if (!isdigit(*options)) { 3582 options[-1] = '\0'; 3583 break; 3584 } 3585 } 3586 if (*this_char) { 3587 char *value = strchr(this_char, '='); 3588 size_t len = 0; 3589 int err; 3590 3591 if (value) { 3592 *value++ = '\0'; 3593 len = strlen(value); 3594 } 3595 err = vfs_parse_fs_string(fc, this_char, value, len); 3596 if (err < 0) 3597 return err; 3598 } 3599 } 3600 return 0; 3601 } 3602 3603 /* 3604 * Reconfigure a shmem filesystem. 3605 * 3606 * Note that we disallow change from limited->unlimited blocks/inodes while any 3607 * are in use; but we must separately disallow unlimited->limited, because in 3608 * that case we have no record of how much is already in use. 3609 */ 3610 static int shmem_reconfigure(struct fs_context *fc) 3611 { 3612 struct shmem_options *ctx = fc->fs_private; 3613 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3614 unsigned long inodes; 3615 struct mempolicy *mpol = NULL; 3616 const char *err; 3617 3618 raw_spin_lock(&sbinfo->stat_lock); 3619 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3620 3621 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3622 if (!sbinfo->max_blocks) { 3623 err = "Cannot retroactively limit size"; 3624 goto out; 3625 } 3626 if (percpu_counter_compare(&sbinfo->used_blocks, 3627 ctx->blocks) > 0) { 3628 err = "Too small a size for current use"; 3629 goto out; 3630 } 3631 } 3632 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3633 if (!sbinfo->max_inodes) { 3634 err = "Cannot retroactively limit inodes"; 3635 goto out; 3636 } 3637 if (ctx->inodes < inodes) { 3638 err = "Too few inodes for current use"; 3639 goto out; 3640 } 3641 } 3642 3643 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3644 sbinfo->next_ino > UINT_MAX) { 3645 err = "Current inum too high to switch to 32-bit inums"; 3646 goto out; 3647 } 3648 3649 if (ctx->seen & SHMEM_SEEN_HUGE) 3650 sbinfo->huge = ctx->huge; 3651 if (ctx->seen & SHMEM_SEEN_INUMS) 3652 sbinfo->full_inums = ctx->full_inums; 3653 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3654 sbinfo->max_blocks = ctx->blocks; 3655 if (ctx->seen & SHMEM_SEEN_INODES) { 3656 sbinfo->max_inodes = ctx->inodes; 3657 sbinfo->free_inodes = ctx->inodes - inodes; 3658 } 3659 3660 /* 3661 * Preserve previous mempolicy unless mpol remount option was specified. 3662 */ 3663 if (ctx->mpol) { 3664 mpol = sbinfo->mpol; 3665 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3666 ctx->mpol = NULL; 3667 } 3668 raw_spin_unlock(&sbinfo->stat_lock); 3669 mpol_put(mpol); 3670 return 0; 3671 out: 3672 raw_spin_unlock(&sbinfo->stat_lock); 3673 return invalfc(fc, "%s", err); 3674 } 3675 3676 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3677 { 3678 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3679 3680 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3681 seq_printf(seq, ",size=%luk", 3682 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3683 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3684 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3685 if (sbinfo->mode != (0777 | S_ISVTX)) 3686 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3687 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3688 seq_printf(seq, ",uid=%u", 3689 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3690 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3691 seq_printf(seq, ",gid=%u", 3692 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3693 3694 /* 3695 * Showing inode{64,32} might be useful even if it's the system default, 3696 * since then people don't have to resort to checking both here and 3697 * /proc/config.gz to confirm 64-bit inums were successfully applied 3698 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3699 * 3700 * We hide it when inode64 isn't the default and we are using 32-bit 3701 * inodes, since that probably just means the feature isn't even under 3702 * consideration. 3703 * 3704 * As such: 3705 * 3706 * +-----------------+-----------------+ 3707 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3708 * +------------------+-----------------+-----------------+ 3709 * | full_inums=true | show | show | 3710 * | full_inums=false | show | hide | 3711 * +------------------+-----------------+-----------------+ 3712 * 3713 */ 3714 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3715 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3716 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3717 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3718 if (sbinfo->huge) 3719 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3720 #endif 3721 shmem_show_mpol(seq, sbinfo->mpol); 3722 return 0; 3723 } 3724 3725 #endif /* CONFIG_TMPFS */ 3726 3727 static void shmem_put_super(struct super_block *sb) 3728 { 3729 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3730 3731 free_percpu(sbinfo->ino_batch); 3732 percpu_counter_destroy(&sbinfo->used_blocks); 3733 mpol_put(sbinfo->mpol); 3734 kfree(sbinfo); 3735 sb->s_fs_info = NULL; 3736 } 3737 3738 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3739 { 3740 struct shmem_options *ctx = fc->fs_private; 3741 struct inode *inode; 3742 struct shmem_sb_info *sbinfo; 3743 3744 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3745 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3746 L1_CACHE_BYTES), GFP_KERNEL); 3747 if (!sbinfo) 3748 return -ENOMEM; 3749 3750 sb->s_fs_info = sbinfo; 3751 3752 #ifdef CONFIG_TMPFS 3753 /* 3754 * Per default we only allow half of the physical ram per 3755 * tmpfs instance, limiting inodes to one per page of lowmem; 3756 * but the internal instance is left unlimited. 3757 */ 3758 if (!(sb->s_flags & SB_KERNMOUNT)) { 3759 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3760 ctx->blocks = shmem_default_max_blocks(); 3761 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3762 ctx->inodes = shmem_default_max_inodes(); 3763 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3764 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3765 } else { 3766 sb->s_flags |= SB_NOUSER; 3767 } 3768 sb->s_export_op = &shmem_export_ops; 3769 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 3770 #else 3771 sb->s_flags |= SB_NOUSER; 3772 #endif 3773 sbinfo->max_blocks = ctx->blocks; 3774 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3775 if (sb->s_flags & SB_KERNMOUNT) { 3776 sbinfo->ino_batch = alloc_percpu(ino_t); 3777 if (!sbinfo->ino_batch) 3778 goto failed; 3779 } 3780 sbinfo->uid = ctx->uid; 3781 sbinfo->gid = ctx->gid; 3782 sbinfo->full_inums = ctx->full_inums; 3783 sbinfo->mode = ctx->mode; 3784 sbinfo->huge = ctx->huge; 3785 sbinfo->mpol = ctx->mpol; 3786 ctx->mpol = NULL; 3787 3788 raw_spin_lock_init(&sbinfo->stat_lock); 3789 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3790 goto failed; 3791 spin_lock_init(&sbinfo->shrinklist_lock); 3792 INIT_LIST_HEAD(&sbinfo->shrinklist); 3793 3794 sb->s_maxbytes = MAX_LFS_FILESIZE; 3795 sb->s_blocksize = PAGE_SIZE; 3796 sb->s_blocksize_bits = PAGE_SHIFT; 3797 sb->s_magic = TMPFS_MAGIC; 3798 sb->s_op = &shmem_ops; 3799 sb->s_time_gran = 1; 3800 #ifdef CONFIG_TMPFS_XATTR 3801 sb->s_xattr = shmem_xattr_handlers; 3802 #endif 3803 #ifdef CONFIG_TMPFS_POSIX_ACL 3804 sb->s_flags |= SB_POSIXACL; 3805 #endif 3806 uuid_gen(&sb->s_uuid); 3807 3808 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3809 if (!inode) 3810 goto failed; 3811 inode->i_uid = sbinfo->uid; 3812 inode->i_gid = sbinfo->gid; 3813 sb->s_root = d_make_root(inode); 3814 if (!sb->s_root) 3815 goto failed; 3816 return 0; 3817 3818 failed: 3819 shmem_put_super(sb); 3820 return -ENOMEM; 3821 } 3822 3823 static int shmem_get_tree(struct fs_context *fc) 3824 { 3825 return get_tree_nodev(fc, shmem_fill_super); 3826 } 3827 3828 static void shmem_free_fc(struct fs_context *fc) 3829 { 3830 struct shmem_options *ctx = fc->fs_private; 3831 3832 if (ctx) { 3833 mpol_put(ctx->mpol); 3834 kfree(ctx); 3835 } 3836 } 3837 3838 static const struct fs_context_operations shmem_fs_context_ops = { 3839 .free = shmem_free_fc, 3840 .get_tree = shmem_get_tree, 3841 #ifdef CONFIG_TMPFS 3842 .parse_monolithic = shmem_parse_options, 3843 .parse_param = shmem_parse_one, 3844 .reconfigure = shmem_reconfigure, 3845 #endif 3846 }; 3847 3848 static struct kmem_cache *shmem_inode_cachep; 3849 3850 static struct inode *shmem_alloc_inode(struct super_block *sb) 3851 { 3852 struct shmem_inode_info *info; 3853 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3854 if (!info) 3855 return NULL; 3856 return &info->vfs_inode; 3857 } 3858 3859 static void shmem_free_in_core_inode(struct inode *inode) 3860 { 3861 if (S_ISLNK(inode->i_mode)) 3862 kfree(inode->i_link); 3863 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3864 } 3865 3866 static void shmem_destroy_inode(struct inode *inode) 3867 { 3868 if (S_ISREG(inode->i_mode)) 3869 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3870 } 3871 3872 static void shmem_init_inode(void *foo) 3873 { 3874 struct shmem_inode_info *info = foo; 3875 inode_init_once(&info->vfs_inode); 3876 } 3877 3878 static void shmem_init_inodecache(void) 3879 { 3880 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3881 sizeof(struct shmem_inode_info), 3882 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3883 } 3884 3885 static void shmem_destroy_inodecache(void) 3886 { 3887 kmem_cache_destroy(shmem_inode_cachep); 3888 } 3889 3890 /* Keep the page in page cache instead of truncating it */ 3891 static int shmem_error_remove_page(struct address_space *mapping, 3892 struct page *page) 3893 { 3894 return 0; 3895 } 3896 3897 const struct address_space_operations shmem_aops = { 3898 .writepage = shmem_writepage, 3899 .dirty_folio = noop_dirty_folio, 3900 #ifdef CONFIG_TMPFS 3901 .write_begin = shmem_write_begin, 3902 .write_end = shmem_write_end, 3903 #endif 3904 #ifdef CONFIG_MIGRATION 3905 .migrate_folio = migrate_folio, 3906 #endif 3907 .error_remove_page = shmem_error_remove_page, 3908 }; 3909 EXPORT_SYMBOL(shmem_aops); 3910 3911 static const struct file_operations shmem_file_operations = { 3912 .mmap = shmem_mmap, 3913 .get_unmapped_area = shmem_get_unmapped_area, 3914 #ifdef CONFIG_TMPFS 3915 .llseek = shmem_file_llseek, 3916 .read_iter = shmem_file_read_iter, 3917 .write_iter = generic_file_write_iter, 3918 .fsync = noop_fsync, 3919 .splice_read = generic_file_splice_read, 3920 .splice_write = iter_file_splice_write, 3921 .fallocate = shmem_fallocate, 3922 #endif 3923 }; 3924 3925 static const struct inode_operations shmem_inode_operations = { 3926 .getattr = shmem_getattr, 3927 .setattr = shmem_setattr, 3928 #ifdef CONFIG_TMPFS_XATTR 3929 .listxattr = shmem_listxattr, 3930 .set_acl = simple_set_acl, 3931 .fileattr_get = shmem_fileattr_get, 3932 .fileattr_set = shmem_fileattr_set, 3933 #endif 3934 }; 3935 3936 static const struct inode_operations shmem_dir_inode_operations = { 3937 #ifdef CONFIG_TMPFS 3938 .getattr = shmem_getattr, 3939 .create = shmem_create, 3940 .lookup = simple_lookup, 3941 .link = shmem_link, 3942 .unlink = shmem_unlink, 3943 .symlink = shmem_symlink, 3944 .mkdir = shmem_mkdir, 3945 .rmdir = shmem_rmdir, 3946 .mknod = shmem_mknod, 3947 .rename = shmem_rename2, 3948 .tmpfile = shmem_tmpfile, 3949 #endif 3950 #ifdef CONFIG_TMPFS_XATTR 3951 .listxattr = shmem_listxattr, 3952 .fileattr_get = shmem_fileattr_get, 3953 .fileattr_set = shmem_fileattr_set, 3954 #endif 3955 #ifdef CONFIG_TMPFS_POSIX_ACL 3956 .setattr = shmem_setattr, 3957 .set_acl = simple_set_acl, 3958 #endif 3959 }; 3960 3961 static const struct inode_operations shmem_special_inode_operations = { 3962 .getattr = shmem_getattr, 3963 #ifdef CONFIG_TMPFS_XATTR 3964 .listxattr = shmem_listxattr, 3965 #endif 3966 #ifdef CONFIG_TMPFS_POSIX_ACL 3967 .setattr = shmem_setattr, 3968 .set_acl = simple_set_acl, 3969 #endif 3970 }; 3971 3972 static const struct super_operations shmem_ops = { 3973 .alloc_inode = shmem_alloc_inode, 3974 .free_inode = shmem_free_in_core_inode, 3975 .destroy_inode = shmem_destroy_inode, 3976 #ifdef CONFIG_TMPFS 3977 .statfs = shmem_statfs, 3978 .show_options = shmem_show_options, 3979 #endif 3980 .evict_inode = shmem_evict_inode, 3981 .drop_inode = generic_delete_inode, 3982 .put_super = shmem_put_super, 3983 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3984 .nr_cached_objects = shmem_unused_huge_count, 3985 .free_cached_objects = shmem_unused_huge_scan, 3986 #endif 3987 }; 3988 3989 static const struct vm_operations_struct shmem_vm_ops = { 3990 .fault = shmem_fault, 3991 .map_pages = filemap_map_pages, 3992 #ifdef CONFIG_NUMA 3993 .set_policy = shmem_set_policy, 3994 .get_policy = shmem_get_policy, 3995 #endif 3996 }; 3997 3998 int shmem_init_fs_context(struct fs_context *fc) 3999 { 4000 struct shmem_options *ctx; 4001 4002 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4003 if (!ctx) 4004 return -ENOMEM; 4005 4006 ctx->mode = 0777 | S_ISVTX; 4007 ctx->uid = current_fsuid(); 4008 ctx->gid = current_fsgid(); 4009 4010 fc->fs_private = ctx; 4011 fc->ops = &shmem_fs_context_ops; 4012 return 0; 4013 } 4014 4015 static struct file_system_type shmem_fs_type = { 4016 .owner = THIS_MODULE, 4017 .name = "tmpfs", 4018 .init_fs_context = shmem_init_fs_context, 4019 #ifdef CONFIG_TMPFS 4020 .parameters = shmem_fs_parameters, 4021 #endif 4022 .kill_sb = kill_litter_super, 4023 .fs_flags = FS_USERNS_MOUNT, 4024 }; 4025 4026 void __init shmem_init(void) 4027 { 4028 int error; 4029 4030 shmem_init_inodecache(); 4031 4032 error = register_filesystem(&shmem_fs_type); 4033 if (error) { 4034 pr_err("Could not register tmpfs\n"); 4035 goto out2; 4036 } 4037 4038 shm_mnt = kern_mount(&shmem_fs_type); 4039 if (IS_ERR(shm_mnt)) { 4040 error = PTR_ERR(shm_mnt); 4041 pr_err("Could not kern_mount tmpfs\n"); 4042 goto out1; 4043 } 4044 4045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4046 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4047 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4048 else 4049 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4050 #endif 4051 return; 4052 4053 out1: 4054 unregister_filesystem(&shmem_fs_type); 4055 out2: 4056 shmem_destroy_inodecache(); 4057 shm_mnt = ERR_PTR(error); 4058 } 4059 4060 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4061 static ssize_t shmem_enabled_show(struct kobject *kobj, 4062 struct kobj_attribute *attr, char *buf) 4063 { 4064 static const int values[] = { 4065 SHMEM_HUGE_ALWAYS, 4066 SHMEM_HUGE_WITHIN_SIZE, 4067 SHMEM_HUGE_ADVISE, 4068 SHMEM_HUGE_NEVER, 4069 SHMEM_HUGE_DENY, 4070 SHMEM_HUGE_FORCE, 4071 }; 4072 int len = 0; 4073 int i; 4074 4075 for (i = 0; i < ARRAY_SIZE(values); i++) { 4076 len += sysfs_emit_at(buf, len, 4077 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4078 i ? " " : "", 4079 shmem_format_huge(values[i])); 4080 } 4081 4082 len += sysfs_emit_at(buf, len, "\n"); 4083 4084 return len; 4085 } 4086 4087 static ssize_t shmem_enabled_store(struct kobject *kobj, 4088 struct kobj_attribute *attr, const char *buf, size_t count) 4089 { 4090 char tmp[16]; 4091 int huge; 4092 4093 if (count + 1 > sizeof(tmp)) 4094 return -EINVAL; 4095 memcpy(tmp, buf, count); 4096 tmp[count] = '\0'; 4097 if (count && tmp[count - 1] == '\n') 4098 tmp[count - 1] = '\0'; 4099 4100 huge = shmem_parse_huge(tmp); 4101 if (huge == -EINVAL) 4102 return -EINVAL; 4103 if (!has_transparent_hugepage() && 4104 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4105 return -EINVAL; 4106 4107 shmem_huge = huge; 4108 if (shmem_huge > SHMEM_HUGE_DENY) 4109 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4110 return count; 4111 } 4112 4113 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4114 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4115 4116 #else /* !CONFIG_SHMEM */ 4117 4118 /* 4119 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4120 * 4121 * This is intended for small system where the benefits of the full 4122 * shmem code (swap-backed and resource-limited) are outweighed by 4123 * their complexity. On systems without swap this code should be 4124 * effectively equivalent, but much lighter weight. 4125 */ 4126 4127 static struct file_system_type shmem_fs_type = { 4128 .name = "tmpfs", 4129 .init_fs_context = ramfs_init_fs_context, 4130 .parameters = ramfs_fs_parameters, 4131 .kill_sb = kill_litter_super, 4132 .fs_flags = FS_USERNS_MOUNT, 4133 }; 4134 4135 void __init shmem_init(void) 4136 { 4137 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4138 4139 shm_mnt = kern_mount(&shmem_fs_type); 4140 BUG_ON(IS_ERR(shm_mnt)); 4141 } 4142 4143 int shmem_unuse(unsigned int type) 4144 { 4145 return 0; 4146 } 4147 4148 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4149 { 4150 return 0; 4151 } 4152 4153 void shmem_unlock_mapping(struct address_space *mapping) 4154 { 4155 } 4156 4157 #ifdef CONFIG_MMU 4158 unsigned long shmem_get_unmapped_area(struct file *file, 4159 unsigned long addr, unsigned long len, 4160 unsigned long pgoff, unsigned long flags) 4161 { 4162 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4163 } 4164 #endif 4165 4166 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4167 { 4168 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4169 } 4170 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4171 4172 #define shmem_vm_ops generic_file_vm_ops 4173 #define shmem_file_operations ramfs_file_operations 4174 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4175 #define shmem_acct_size(flags, size) 0 4176 #define shmem_unacct_size(flags, size) do {} while (0) 4177 4178 #endif /* CONFIG_SHMEM */ 4179 4180 /* common code */ 4181 4182 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4183 unsigned long flags, unsigned int i_flags) 4184 { 4185 struct inode *inode; 4186 struct file *res; 4187 4188 if (IS_ERR(mnt)) 4189 return ERR_CAST(mnt); 4190 4191 if (size < 0 || size > MAX_LFS_FILESIZE) 4192 return ERR_PTR(-EINVAL); 4193 4194 if (shmem_acct_size(flags, size)) 4195 return ERR_PTR(-ENOMEM); 4196 4197 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4198 flags); 4199 if (unlikely(!inode)) { 4200 shmem_unacct_size(flags, size); 4201 return ERR_PTR(-ENOSPC); 4202 } 4203 inode->i_flags |= i_flags; 4204 inode->i_size = size; 4205 clear_nlink(inode); /* It is unlinked */ 4206 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4207 if (!IS_ERR(res)) 4208 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4209 &shmem_file_operations); 4210 if (IS_ERR(res)) 4211 iput(inode); 4212 return res; 4213 } 4214 4215 /** 4216 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4217 * kernel internal. There will be NO LSM permission checks against the 4218 * underlying inode. So users of this interface must do LSM checks at a 4219 * higher layer. The users are the big_key and shm implementations. LSM 4220 * checks are provided at the key or shm level rather than the inode. 4221 * @name: name for dentry (to be seen in /proc/<pid>/maps 4222 * @size: size to be set for the file 4223 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4224 */ 4225 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4226 { 4227 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4228 } 4229 4230 /** 4231 * shmem_file_setup - get an unlinked file living in tmpfs 4232 * @name: name for dentry (to be seen in /proc/<pid>/maps 4233 * @size: size to be set for the file 4234 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4235 */ 4236 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4237 { 4238 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4239 } 4240 EXPORT_SYMBOL_GPL(shmem_file_setup); 4241 4242 /** 4243 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4244 * @mnt: the tmpfs mount where the file will be created 4245 * @name: name for dentry (to be seen in /proc/<pid>/maps 4246 * @size: size to be set for the file 4247 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4248 */ 4249 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4250 loff_t size, unsigned long flags) 4251 { 4252 return __shmem_file_setup(mnt, name, size, flags, 0); 4253 } 4254 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4255 4256 /** 4257 * shmem_zero_setup - setup a shared anonymous mapping 4258 * @vma: the vma to be mmapped is prepared by do_mmap 4259 */ 4260 int shmem_zero_setup(struct vm_area_struct *vma) 4261 { 4262 struct file *file; 4263 loff_t size = vma->vm_end - vma->vm_start; 4264 4265 /* 4266 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4267 * between XFS directory reading and selinux: since this file is only 4268 * accessible to the user through its mapping, use S_PRIVATE flag to 4269 * bypass file security, in the same way as shmem_kernel_file_setup(). 4270 */ 4271 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4272 if (IS_ERR(file)) 4273 return PTR_ERR(file); 4274 4275 if (vma->vm_file) 4276 fput(vma->vm_file); 4277 vma->vm_file = file; 4278 vma->vm_ops = &shmem_vm_ops; 4279 4280 return 0; 4281 } 4282 4283 /** 4284 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4285 * @mapping: the page's address_space 4286 * @index: the page index 4287 * @gfp: the page allocator flags to use if allocating 4288 * 4289 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4290 * with any new page allocations done using the specified allocation flags. 4291 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4292 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4293 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4294 * 4295 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4296 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4297 */ 4298 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4299 pgoff_t index, gfp_t gfp) 4300 { 4301 #ifdef CONFIG_SHMEM 4302 struct inode *inode = mapping->host; 4303 struct folio *folio; 4304 struct page *page; 4305 int error; 4306 4307 BUG_ON(!shmem_mapping(mapping)); 4308 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4309 gfp, NULL, NULL, NULL); 4310 if (error) 4311 return ERR_PTR(error); 4312 4313 folio_unlock(folio); 4314 page = folio_file_page(folio, index); 4315 if (PageHWPoison(page)) { 4316 folio_put(folio); 4317 return ERR_PTR(-EIO); 4318 } 4319 4320 return page; 4321 #else 4322 /* 4323 * The tiny !SHMEM case uses ramfs without swap 4324 */ 4325 return read_cache_page_gfp(mapping, index, gfp); 4326 #endif 4327 } 4328 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4329