xref: /openbmc/linux/mm/shmem.c (revision 7bcae826)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36 
37 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
38 
39 static struct vfsmount *shm_mnt;
40 
41 #ifdef CONFIG_SHMEM
42 /*
43  * This virtual memory filesystem is heavily based on the ramfs. It
44  * extends ramfs by the ability to use swap and honor resource limits
45  * which makes it a completely usable filesystem.
46  */
47 
48 #include <linux/xattr.h>
49 #include <linux/exportfs.h>
50 #include <linux/posix_acl.h>
51 #include <linux/posix_acl_xattr.h>
52 #include <linux/mman.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/backing-dev.h>
56 #include <linux/shmem_fs.h>
57 #include <linux/writeback.h>
58 #include <linux/blkdev.h>
59 #include <linux/pagevec.h>
60 #include <linux/percpu_counter.h>
61 #include <linux/falloc.h>
62 #include <linux/splice.h>
63 #include <linux/security.h>
64 #include <linux/swapops.h>
65 #include <linux/mempolicy.h>
66 #include <linux/namei.h>
67 #include <linux/ctype.h>
68 #include <linux/migrate.h>
69 #include <linux/highmem.h>
70 #include <linux/seq_file.h>
71 #include <linux/magic.h>
72 #include <linux/syscalls.h>
73 #include <linux/fcntl.h>
74 #include <uapi/linux/memfd.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/rmap.h>
77 
78 #include <linux/uaccess.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
84 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
85 
86 /* Pretend that each entry is of this size in directory's i_size */
87 #define BOGO_DIRENT_SIZE 20
88 
89 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
90 #define SHORT_SYMLINK_LEN 128
91 
92 /*
93  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
94  * inode->i_private (with i_mutex making sure that it has only one user at
95  * a time): we would prefer not to enlarge the shmem inode just for that.
96  */
97 struct shmem_falloc {
98 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
99 	pgoff_t start;		/* start of range currently being fallocated */
100 	pgoff_t next;		/* the next page offset to be fallocated */
101 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
102 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
103 };
104 
105 #ifdef CONFIG_TMPFS
106 static unsigned long shmem_default_max_blocks(void)
107 {
108 	return totalram_pages / 2;
109 }
110 
111 static unsigned long shmem_default_max_inodes(void)
112 {
113 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
114 }
115 #endif
116 
117 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
118 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
119 				struct shmem_inode_info *info, pgoff_t index);
120 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
121 		struct page **pagep, enum sgp_type sgp,
122 		gfp_t gfp, struct vm_area_struct *vma,
123 		struct vm_fault *vmf, int *fault_type);
124 
125 int shmem_getpage(struct inode *inode, pgoff_t index,
126 		struct page **pagep, enum sgp_type sgp)
127 {
128 	return shmem_getpage_gfp(inode, index, pagep, sgp,
129 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
130 }
131 
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 	return sb->s_fs_info;
135 }
136 
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 	return (flags & VM_NORESERVE) ?
146 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148 
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 	if (!(flags & VM_NORESERVE))
152 		vm_unacct_memory(VM_ACCT(size));
153 }
154 
155 static inline int shmem_reacct_size(unsigned long flags,
156 		loff_t oldsize, loff_t newsize)
157 {
158 	if (!(flags & VM_NORESERVE)) {
159 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 			return security_vm_enough_memory_mm(current->mm,
161 					VM_ACCT(newsize) - VM_ACCT(oldsize));
162 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 	}
165 	return 0;
166 }
167 
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow large sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
174 static inline int shmem_acct_block(unsigned long flags, long pages)
175 {
176 	if (!(flags & VM_NORESERVE))
177 		return 0;
178 
179 	return security_vm_enough_memory_mm(current->mm,
180 			pages * VM_ACCT(PAGE_SIZE));
181 }
182 
183 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
184 {
185 	if (flags & VM_NORESERVE)
186 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
187 }
188 
189 static const struct super_operations shmem_ops;
190 static const struct address_space_operations shmem_aops;
191 static const struct file_operations shmem_file_operations;
192 static const struct inode_operations shmem_inode_operations;
193 static const struct inode_operations shmem_dir_inode_operations;
194 static const struct inode_operations shmem_special_inode_operations;
195 static const struct vm_operations_struct shmem_vm_ops;
196 static struct file_system_type shmem_fs_type;
197 
198 bool vma_is_shmem(struct vm_area_struct *vma)
199 {
200 	return vma->vm_ops == &shmem_vm_ops;
201 }
202 
203 static LIST_HEAD(shmem_swaplist);
204 static DEFINE_MUTEX(shmem_swaplist_mutex);
205 
206 static int shmem_reserve_inode(struct super_block *sb)
207 {
208 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
209 	if (sbinfo->max_inodes) {
210 		spin_lock(&sbinfo->stat_lock);
211 		if (!sbinfo->free_inodes) {
212 			spin_unlock(&sbinfo->stat_lock);
213 			return -ENOSPC;
214 		}
215 		sbinfo->free_inodes--;
216 		spin_unlock(&sbinfo->stat_lock);
217 	}
218 	return 0;
219 }
220 
221 static void shmem_free_inode(struct super_block *sb)
222 {
223 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
224 	if (sbinfo->max_inodes) {
225 		spin_lock(&sbinfo->stat_lock);
226 		sbinfo->free_inodes++;
227 		spin_unlock(&sbinfo->stat_lock);
228 	}
229 }
230 
231 /**
232  * shmem_recalc_inode - recalculate the block usage of an inode
233  * @inode: inode to recalc
234  *
235  * We have to calculate the free blocks since the mm can drop
236  * undirtied hole pages behind our back.
237  *
238  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
239  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
240  *
241  * It has to be called with the spinlock held.
242  */
243 static void shmem_recalc_inode(struct inode *inode)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	long freed;
247 
248 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
249 	if (freed > 0) {
250 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
251 		if (sbinfo->max_blocks)
252 			percpu_counter_add(&sbinfo->used_blocks, -freed);
253 		info->alloced -= freed;
254 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
255 		shmem_unacct_blocks(info->flags, freed);
256 	}
257 }
258 
259 bool shmem_charge(struct inode *inode, long pages)
260 {
261 	struct shmem_inode_info *info = SHMEM_I(inode);
262 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
263 	unsigned long flags;
264 
265 	if (shmem_acct_block(info->flags, pages))
266 		return false;
267 	spin_lock_irqsave(&info->lock, flags);
268 	info->alloced += pages;
269 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
270 	shmem_recalc_inode(inode);
271 	spin_unlock_irqrestore(&info->lock, flags);
272 	inode->i_mapping->nrpages += pages;
273 
274 	if (!sbinfo->max_blocks)
275 		return true;
276 	if (percpu_counter_compare(&sbinfo->used_blocks,
277 				sbinfo->max_blocks - pages) > 0) {
278 		inode->i_mapping->nrpages -= pages;
279 		spin_lock_irqsave(&info->lock, flags);
280 		info->alloced -= pages;
281 		shmem_recalc_inode(inode);
282 		spin_unlock_irqrestore(&info->lock, flags);
283 		shmem_unacct_blocks(info->flags, pages);
284 		return false;
285 	}
286 	percpu_counter_add(&sbinfo->used_blocks, pages);
287 	return true;
288 }
289 
290 void shmem_uncharge(struct inode *inode, long pages)
291 {
292 	struct shmem_inode_info *info = SHMEM_I(inode);
293 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
294 	unsigned long flags;
295 
296 	spin_lock_irqsave(&info->lock, flags);
297 	info->alloced -= pages;
298 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
299 	shmem_recalc_inode(inode);
300 	spin_unlock_irqrestore(&info->lock, flags);
301 
302 	if (sbinfo->max_blocks)
303 		percpu_counter_sub(&sbinfo->used_blocks, pages);
304 	shmem_unacct_blocks(info->flags, pages);
305 }
306 
307 /*
308  * Replace item expected in radix tree by a new item, while holding tree lock.
309  */
310 static int shmem_radix_tree_replace(struct address_space *mapping,
311 			pgoff_t index, void *expected, void *replacement)
312 {
313 	struct radix_tree_node *node;
314 	void **pslot;
315 	void *item;
316 
317 	VM_BUG_ON(!expected);
318 	VM_BUG_ON(!replacement);
319 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
320 	if (!item)
321 		return -ENOENT;
322 	if (item != expected)
323 		return -ENOENT;
324 	__radix_tree_replace(&mapping->page_tree, node, pslot,
325 			     replacement, NULL, NULL);
326 	return 0;
327 }
328 
329 /*
330  * Sometimes, before we decide whether to proceed or to fail, we must check
331  * that an entry was not already brought back from swap by a racing thread.
332  *
333  * Checking page is not enough: by the time a SwapCache page is locked, it
334  * might be reused, and again be SwapCache, using the same swap as before.
335  */
336 static bool shmem_confirm_swap(struct address_space *mapping,
337 			       pgoff_t index, swp_entry_t swap)
338 {
339 	void *item;
340 
341 	rcu_read_lock();
342 	item = radix_tree_lookup(&mapping->page_tree, index);
343 	rcu_read_unlock();
344 	return item == swp_to_radix_entry(swap);
345 }
346 
347 /*
348  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
349  *
350  * SHMEM_HUGE_NEVER:
351  *	disables huge pages for the mount;
352  * SHMEM_HUGE_ALWAYS:
353  *	enables huge pages for the mount;
354  * SHMEM_HUGE_WITHIN_SIZE:
355  *	only allocate huge pages if the page will be fully within i_size,
356  *	also respect fadvise()/madvise() hints;
357  * SHMEM_HUGE_ADVISE:
358  *	only allocate huge pages if requested with fadvise()/madvise();
359  */
360 
361 #define SHMEM_HUGE_NEVER	0
362 #define SHMEM_HUGE_ALWAYS	1
363 #define SHMEM_HUGE_WITHIN_SIZE	2
364 #define SHMEM_HUGE_ADVISE	3
365 
366 /*
367  * Special values.
368  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
369  *
370  * SHMEM_HUGE_DENY:
371  *	disables huge on shm_mnt and all mounts, for emergency use;
372  * SHMEM_HUGE_FORCE:
373  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
374  *
375  */
376 #define SHMEM_HUGE_DENY		(-1)
377 #define SHMEM_HUGE_FORCE	(-2)
378 
379 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
380 /* ifdef here to avoid bloating shmem.o when not necessary */
381 
382 int shmem_huge __read_mostly;
383 
384 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
385 static int shmem_parse_huge(const char *str)
386 {
387 	if (!strcmp(str, "never"))
388 		return SHMEM_HUGE_NEVER;
389 	if (!strcmp(str, "always"))
390 		return SHMEM_HUGE_ALWAYS;
391 	if (!strcmp(str, "within_size"))
392 		return SHMEM_HUGE_WITHIN_SIZE;
393 	if (!strcmp(str, "advise"))
394 		return SHMEM_HUGE_ADVISE;
395 	if (!strcmp(str, "deny"))
396 		return SHMEM_HUGE_DENY;
397 	if (!strcmp(str, "force"))
398 		return SHMEM_HUGE_FORCE;
399 	return -EINVAL;
400 }
401 
402 static const char *shmem_format_huge(int huge)
403 {
404 	switch (huge) {
405 	case SHMEM_HUGE_NEVER:
406 		return "never";
407 	case SHMEM_HUGE_ALWAYS:
408 		return "always";
409 	case SHMEM_HUGE_WITHIN_SIZE:
410 		return "within_size";
411 	case SHMEM_HUGE_ADVISE:
412 		return "advise";
413 	case SHMEM_HUGE_DENY:
414 		return "deny";
415 	case SHMEM_HUGE_FORCE:
416 		return "force";
417 	default:
418 		VM_BUG_ON(1);
419 		return "bad_val";
420 	}
421 }
422 #endif
423 
424 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
425 		struct shrink_control *sc, unsigned long nr_to_split)
426 {
427 	LIST_HEAD(list), *pos, *next;
428 	LIST_HEAD(to_remove);
429 	struct inode *inode;
430 	struct shmem_inode_info *info;
431 	struct page *page;
432 	unsigned long batch = sc ? sc->nr_to_scan : 128;
433 	int removed = 0, split = 0;
434 
435 	if (list_empty(&sbinfo->shrinklist))
436 		return SHRINK_STOP;
437 
438 	spin_lock(&sbinfo->shrinklist_lock);
439 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
440 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
441 
442 		/* pin the inode */
443 		inode = igrab(&info->vfs_inode);
444 
445 		/* inode is about to be evicted */
446 		if (!inode) {
447 			list_del_init(&info->shrinklist);
448 			removed++;
449 			goto next;
450 		}
451 
452 		/* Check if there's anything to gain */
453 		if (round_up(inode->i_size, PAGE_SIZE) ==
454 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
455 			list_move(&info->shrinklist, &to_remove);
456 			removed++;
457 			goto next;
458 		}
459 
460 		list_move(&info->shrinklist, &list);
461 next:
462 		if (!--batch)
463 			break;
464 	}
465 	spin_unlock(&sbinfo->shrinklist_lock);
466 
467 	list_for_each_safe(pos, next, &to_remove) {
468 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
469 		inode = &info->vfs_inode;
470 		list_del_init(&info->shrinklist);
471 		iput(inode);
472 	}
473 
474 	list_for_each_safe(pos, next, &list) {
475 		int ret;
476 
477 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
478 		inode = &info->vfs_inode;
479 
480 		if (nr_to_split && split >= nr_to_split) {
481 			iput(inode);
482 			continue;
483 		}
484 
485 		page = find_lock_page(inode->i_mapping,
486 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
487 		if (!page)
488 			goto drop;
489 
490 		if (!PageTransHuge(page)) {
491 			unlock_page(page);
492 			put_page(page);
493 			goto drop;
494 		}
495 
496 		ret = split_huge_page(page);
497 		unlock_page(page);
498 		put_page(page);
499 
500 		if (ret) {
501 			/* split failed: leave it on the list */
502 			iput(inode);
503 			continue;
504 		}
505 
506 		split++;
507 drop:
508 		list_del_init(&info->shrinklist);
509 		removed++;
510 		iput(inode);
511 	}
512 
513 	spin_lock(&sbinfo->shrinklist_lock);
514 	list_splice_tail(&list, &sbinfo->shrinklist);
515 	sbinfo->shrinklist_len -= removed;
516 	spin_unlock(&sbinfo->shrinklist_lock);
517 
518 	return split;
519 }
520 
521 static long shmem_unused_huge_scan(struct super_block *sb,
522 		struct shrink_control *sc)
523 {
524 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
525 
526 	if (!READ_ONCE(sbinfo->shrinklist_len))
527 		return SHRINK_STOP;
528 
529 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
530 }
531 
532 static long shmem_unused_huge_count(struct super_block *sb,
533 		struct shrink_control *sc)
534 {
535 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
536 	return READ_ONCE(sbinfo->shrinklist_len);
537 }
538 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
539 
540 #define shmem_huge SHMEM_HUGE_DENY
541 
542 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
543 		struct shrink_control *sc, unsigned long nr_to_split)
544 {
545 	return 0;
546 }
547 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
548 
549 /*
550  * Like add_to_page_cache_locked, but error if expected item has gone.
551  */
552 static int shmem_add_to_page_cache(struct page *page,
553 				   struct address_space *mapping,
554 				   pgoff_t index, void *expected)
555 {
556 	int error, nr = hpage_nr_pages(page);
557 
558 	VM_BUG_ON_PAGE(PageTail(page), page);
559 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
560 	VM_BUG_ON_PAGE(!PageLocked(page), page);
561 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
562 	VM_BUG_ON(expected && PageTransHuge(page));
563 
564 	page_ref_add(page, nr);
565 	page->mapping = mapping;
566 	page->index = index;
567 
568 	spin_lock_irq(&mapping->tree_lock);
569 	if (PageTransHuge(page)) {
570 		void __rcu **results;
571 		pgoff_t idx;
572 		int i;
573 
574 		error = 0;
575 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
576 					&results, &idx, index, 1) &&
577 				idx < index + HPAGE_PMD_NR) {
578 			error = -EEXIST;
579 		}
580 
581 		if (!error) {
582 			for (i = 0; i < HPAGE_PMD_NR; i++) {
583 				error = radix_tree_insert(&mapping->page_tree,
584 						index + i, page + i);
585 				VM_BUG_ON(error);
586 			}
587 			count_vm_event(THP_FILE_ALLOC);
588 		}
589 	} else if (!expected) {
590 		error = radix_tree_insert(&mapping->page_tree, index, page);
591 	} else {
592 		error = shmem_radix_tree_replace(mapping, index, expected,
593 								 page);
594 	}
595 
596 	if (!error) {
597 		mapping->nrpages += nr;
598 		if (PageTransHuge(page))
599 			__inc_node_page_state(page, NR_SHMEM_THPS);
600 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
601 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
602 		spin_unlock_irq(&mapping->tree_lock);
603 	} else {
604 		page->mapping = NULL;
605 		spin_unlock_irq(&mapping->tree_lock);
606 		page_ref_sub(page, nr);
607 	}
608 	return error;
609 }
610 
611 /*
612  * Like delete_from_page_cache, but substitutes swap for page.
613  */
614 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
615 {
616 	struct address_space *mapping = page->mapping;
617 	int error;
618 
619 	VM_BUG_ON_PAGE(PageCompound(page), page);
620 
621 	spin_lock_irq(&mapping->tree_lock);
622 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
623 	page->mapping = NULL;
624 	mapping->nrpages--;
625 	__dec_node_page_state(page, NR_FILE_PAGES);
626 	__dec_node_page_state(page, NR_SHMEM);
627 	spin_unlock_irq(&mapping->tree_lock);
628 	put_page(page);
629 	BUG_ON(error);
630 }
631 
632 /*
633  * Remove swap entry from radix tree, free the swap and its page cache.
634  */
635 static int shmem_free_swap(struct address_space *mapping,
636 			   pgoff_t index, void *radswap)
637 {
638 	void *old;
639 
640 	spin_lock_irq(&mapping->tree_lock);
641 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
642 	spin_unlock_irq(&mapping->tree_lock);
643 	if (old != radswap)
644 		return -ENOENT;
645 	free_swap_and_cache(radix_to_swp_entry(radswap));
646 	return 0;
647 }
648 
649 /*
650  * Determine (in bytes) how many of the shmem object's pages mapped by the
651  * given offsets are swapped out.
652  *
653  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
654  * as long as the inode doesn't go away and racy results are not a problem.
655  */
656 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
657 						pgoff_t start, pgoff_t end)
658 {
659 	struct radix_tree_iter iter;
660 	void **slot;
661 	struct page *page;
662 	unsigned long swapped = 0;
663 
664 	rcu_read_lock();
665 
666 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
667 		if (iter.index >= end)
668 			break;
669 
670 		page = radix_tree_deref_slot(slot);
671 
672 		if (radix_tree_deref_retry(page)) {
673 			slot = radix_tree_iter_retry(&iter);
674 			continue;
675 		}
676 
677 		if (radix_tree_exceptional_entry(page))
678 			swapped++;
679 
680 		if (need_resched()) {
681 			slot = radix_tree_iter_resume(slot, &iter);
682 			cond_resched_rcu();
683 		}
684 	}
685 
686 	rcu_read_unlock();
687 
688 	return swapped << PAGE_SHIFT;
689 }
690 
691 /*
692  * Determine (in bytes) how many of the shmem object's pages mapped by the
693  * given vma is swapped out.
694  *
695  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
696  * as long as the inode doesn't go away and racy results are not a problem.
697  */
698 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
699 {
700 	struct inode *inode = file_inode(vma->vm_file);
701 	struct shmem_inode_info *info = SHMEM_I(inode);
702 	struct address_space *mapping = inode->i_mapping;
703 	unsigned long swapped;
704 
705 	/* Be careful as we don't hold info->lock */
706 	swapped = READ_ONCE(info->swapped);
707 
708 	/*
709 	 * The easier cases are when the shmem object has nothing in swap, or
710 	 * the vma maps it whole. Then we can simply use the stats that we
711 	 * already track.
712 	 */
713 	if (!swapped)
714 		return 0;
715 
716 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
717 		return swapped << PAGE_SHIFT;
718 
719 	/* Here comes the more involved part */
720 	return shmem_partial_swap_usage(mapping,
721 			linear_page_index(vma, vma->vm_start),
722 			linear_page_index(vma, vma->vm_end));
723 }
724 
725 /*
726  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
727  */
728 void shmem_unlock_mapping(struct address_space *mapping)
729 {
730 	struct pagevec pvec;
731 	pgoff_t indices[PAGEVEC_SIZE];
732 	pgoff_t index = 0;
733 
734 	pagevec_init(&pvec, 0);
735 	/*
736 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
737 	 */
738 	while (!mapping_unevictable(mapping)) {
739 		/*
740 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
741 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
742 		 */
743 		pvec.nr = find_get_entries(mapping, index,
744 					   PAGEVEC_SIZE, pvec.pages, indices);
745 		if (!pvec.nr)
746 			break;
747 		index = indices[pvec.nr - 1] + 1;
748 		pagevec_remove_exceptionals(&pvec);
749 		check_move_unevictable_pages(pvec.pages, pvec.nr);
750 		pagevec_release(&pvec);
751 		cond_resched();
752 	}
753 }
754 
755 /*
756  * Remove range of pages and swap entries from radix tree, and free them.
757  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
758  */
759 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
760 								 bool unfalloc)
761 {
762 	struct address_space *mapping = inode->i_mapping;
763 	struct shmem_inode_info *info = SHMEM_I(inode);
764 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
765 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
766 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
767 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
768 	struct pagevec pvec;
769 	pgoff_t indices[PAGEVEC_SIZE];
770 	long nr_swaps_freed = 0;
771 	pgoff_t index;
772 	int i;
773 
774 	if (lend == -1)
775 		end = -1;	/* unsigned, so actually very big */
776 
777 	pagevec_init(&pvec, 0);
778 	index = start;
779 	while (index < end) {
780 		pvec.nr = find_get_entries(mapping, index,
781 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
782 			pvec.pages, indices);
783 		if (!pvec.nr)
784 			break;
785 		for (i = 0; i < pagevec_count(&pvec); i++) {
786 			struct page *page = pvec.pages[i];
787 
788 			index = indices[i];
789 			if (index >= end)
790 				break;
791 
792 			if (radix_tree_exceptional_entry(page)) {
793 				if (unfalloc)
794 					continue;
795 				nr_swaps_freed += !shmem_free_swap(mapping,
796 								index, page);
797 				continue;
798 			}
799 
800 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
801 
802 			if (!trylock_page(page))
803 				continue;
804 
805 			if (PageTransTail(page)) {
806 				/* Middle of THP: zero out the page */
807 				clear_highpage(page);
808 				unlock_page(page);
809 				continue;
810 			} else if (PageTransHuge(page)) {
811 				if (index == round_down(end, HPAGE_PMD_NR)) {
812 					/*
813 					 * Range ends in the middle of THP:
814 					 * zero out the page
815 					 */
816 					clear_highpage(page);
817 					unlock_page(page);
818 					continue;
819 				}
820 				index += HPAGE_PMD_NR - 1;
821 				i += HPAGE_PMD_NR - 1;
822 			}
823 
824 			if (!unfalloc || !PageUptodate(page)) {
825 				VM_BUG_ON_PAGE(PageTail(page), page);
826 				if (page_mapping(page) == mapping) {
827 					VM_BUG_ON_PAGE(PageWriteback(page), page);
828 					truncate_inode_page(mapping, page);
829 				}
830 			}
831 			unlock_page(page);
832 		}
833 		pagevec_remove_exceptionals(&pvec);
834 		pagevec_release(&pvec);
835 		cond_resched();
836 		index++;
837 	}
838 
839 	if (partial_start) {
840 		struct page *page = NULL;
841 		shmem_getpage(inode, start - 1, &page, SGP_READ);
842 		if (page) {
843 			unsigned int top = PAGE_SIZE;
844 			if (start > end) {
845 				top = partial_end;
846 				partial_end = 0;
847 			}
848 			zero_user_segment(page, partial_start, top);
849 			set_page_dirty(page);
850 			unlock_page(page);
851 			put_page(page);
852 		}
853 	}
854 	if (partial_end) {
855 		struct page *page = NULL;
856 		shmem_getpage(inode, end, &page, SGP_READ);
857 		if (page) {
858 			zero_user_segment(page, 0, partial_end);
859 			set_page_dirty(page);
860 			unlock_page(page);
861 			put_page(page);
862 		}
863 	}
864 	if (start >= end)
865 		return;
866 
867 	index = start;
868 	while (index < end) {
869 		cond_resched();
870 
871 		pvec.nr = find_get_entries(mapping, index,
872 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
873 				pvec.pages, indices);
874 		if (!pvec.nr) {
875 			/* If all gone or hole-punch or unfalloc, we're done */
876 			if (index == start || end != -1)
877 				break;
878 			/* But if truncating, restart to make sure all gone */
879 			index = start;
880 			continue;
881 		}
882 		for (i = 0; i < pagevec_count(&pvec); i++) {
883 			struct page *page = pvec.pages[i];
884 
885 			index = indices[i];
886 			if (index >= end)
887 				break;
888 
889 			if (radix_tree_exceptional_entry(page)) {
890 				if (unfalloc)
891 					continue;
892 				if (shmem_free_swap(mapping, index, page)) {
893 					/* Swap was replaced by page: retry */
894 					index--;
895 					break;
896 				}
897 				nr_swaps_freed++;
898 				continue;
899 			}
900 
901 			lock_page(page);
902 
903 			if (PageTransTail(page)) {
904 				/* Middle of THP: zero out the page */
905 				clear_highpage(page);
906 				unlock_page(page);
907 				/*
908 				 * Partial thp truncate due 'start' in middle
909 				 * of THP: don't need to look on these pages
910 				 * again on !pvec.nr restart.
911 				 */
912 				if (index != round_down(end, HPAGE_PMD_NR))
913 					start++;
914 				continue;
915 			} else if (PageTransHuge(page)) {
916 				if (index == round_down(end, HPAGE_PMD_NR)) {
917 					/*
918 					 * Range ends in the middle of THP:
919 					 * zero out the page
920 					 */
921 					clear_highpage(page);
922 					unlock_page(page);
923 					continue;
924 				}
925 				index += HPAGE_PMD_NR - 1;
926 				i += HPAGE_PMD_NR - 1;
927 			}
928 
929 			if (!unfalloc || !PageUptodate(page)) {
930 				VM_BUG_ON_PAGE(PageTail(page), page);
931 				if (page_mapping(page) == mapping) {
932 					VM_BUG_ON_PAGE(PageWriteback(page), page);
933 					truncate_inode_page(mapping, page);
934 				} else {
935 					/* Page was replaced by swap: retry */
936 					unlock_page(page);
937 					index--;
938 					break;
939 				}
940 			}
941 			unlock_page(page);
942 		}
943 		pagevec_remove_exceptionals(&pvec);
944 		pagevec_release(&pvec);
945 		index++;
946 	}
947 
948 	spin_lock_irq(&info->lock);
949 	info->swapped -= nr_swaps_freed;
950 	shmem_recalc_inode(inode);
951 	spin_unlock_irq(&info->lock);
952 }
953 
954 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
955 {
956 	shmem_undo_range(inode, lstart, lend, false);
957 	inode->i_ctime = inode->i_mtime = current_time(inode);
958 }
959 EXPORT_SYMBOL_GPL(shmem_truncate_range);
960 
961 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
962 			 struct kstat *stat)
963 {
964 	struct inode *inode = dentry->d_inode;
965 	struct shmem_inode_info *info = SHMEM_I(inode);
966 
967 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
968 		spin_lock_irq(&info->lock);
969 		shmem_recalc_inode(inode);
970 		spin_unlock_irq(&info->lock);
971 	}
972 	generic_fillattr(inode, stat);
973 	return 0;
974 }
975 
976 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
977 {
978 	struct inode *inode = d_inode(dentry);
979 	struct shmem_inode_info *info = SHMEM_I(inode);
980 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
981 	int error;
982 
983 	error = setattr_prepare(dentry, attr);
984 	if (error)
985 		return error;
986 
987 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
988 		loff_t oldsize = inode->i_size;
989 		loff_t newsize = attr->ia_size;
990 
991 		/* protected by i_mutex */
992 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
993 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
994 			return -EPERM;
995 
996 		if (newsize != oldsize) {
997 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
998 					oldsize, newsize);
999 			if (error)
1000 				return error;
1001 			i_size_write(inode, newsize);
1002 			inode->i_ctime = inode->i_mtime = current_time(inode);
1003 		}
1004 		if (newsize <= oldsize) {
1005 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1006 			if (oldsize > holebegin)
1007 				unmap_mapping_range(inode->i_mapping,
1008 							holebegin, 0, 1);
1009 			if (info->alloced)
1010 				shmem_truncate_range(inode,
1011 							newsize, (loff_t)-1);
1012 			/* unmap again to remove racily COWed private pages */
1013 			if (oldsize > holebegin)
1014 				unmap_mapping_range(inode->i_mapping,
1015 							holebegin, 0, 1);
1016 
1017 			/*
1018 			 * Part of the huge page can be beyond i_size: subject
1019 			 * to shrink under memory pressure.
1020 			 */
1021 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1022 				spin_lock(&sbinfo->shrinklist_lock);
1023 				if (list_empty(&info->shrinklist)) {
1024 					list_add_tail(&info->shrinklist,
1025 							&sbinfo->shrinklist);
1026 					sbinfo->shrinklist_len++;
1027 				}
1028 				spin_unlock(&sbinfo->shrinklist_lock);
1029 			}
1030 		}
1031 	}
1032 
1033 	setattr_copy(inode, attr);
1034 	if (attr->ia_valid & ATTR_MODE)
1035 		error = posix_acl_chmod(inode, inode->i_mode);
1036 	return error;
1037 }
1038 
1039 static void shmem_evict_inode(struct inode *inode)
1040 {
1041 	struct shmem_inode_info *info = SHMEM_I(inode);
1042 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1043 
1044 	if (inode->i_mapping->a_ops == &shmem_aops) {
1045 		shmem_unacct_size(info->flags, inode->i_size);
1046 		inode->i_size = 0;
1047 		shmem_truncate_range(inode, 0, (loff_t)-1);
1048 		if (!list_empty(&info->shrinklist)) {
1049 			spin_lock(&sbinfo->shrinklist_lock);
1050 			if (!list_empty(&info->shrinklist)) {
1051 				list_del_init(&info->shrinklist);
1052 				sbinfo->shrinklist_len--;
1053 			}
1054 			spin_unlock(&sbinfo->shrinklist_lock);
1055 		}
1056 		if (!list_empty(&info->swaplist)) {
1057 			mutex_lock(&shmem_swaplist_mutex);
1058 			list_del_init(&info->swaplist);
1059 			mutex_unlock(&shmem_swaplist_mutex);
1060 		}
1061 	}
1062 
1063 	simple_xattrs_free(&info->xattrs);
1064 	WARN_ON(inode->i_blocks);
1065 	shmem_free_inode(inode->i_sb);
1066 	clear_inode(inode);
1067 }
1068 
1069 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1070 {
1071 	struct radix_tree_iter iter;
1072 	void **slot;
1073 	unsigned long found = -1;
1074 	unsigned int checked = 0;
1075 
1076 	rcu_read_lock();
1077 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1078 		if (*slot == item) {
1079 			found = iter.index;
1080 			break;
1081 		}
1082 		checked++;
1083 		if ((checked % 4096) != 0)
1084 			continue;
1085 		slot = radix_tree_iter_resume(slot, &iter);
1086 		cond_resched_rcu();
1087 	}
1088 
1089 	rcu_read_unlock();
1090 	return found;
1091 }
1092 
1093 /*
1094  * If swap found in inode, free it and move page from swapcache to filecache.
1095  */
1096 static int shmem_unuse_inode(struct shmem_inode_info *info,
1097 			     swp_entry_t swap, struct page **pagep)
1098 {
1099 	struct address_space *mapping = info->vfs_inode.i_mapping;
1100 	void *radswap;
1101 	pgoff_t index;
1102 	gfp_t gfp;
1103 	int error = 0;
1104 
1105 	radswap = swp_to_radix_entry(swap);
1106 	index = find_swap_entry(&mapping->page_tree, radswap);
1107 	if (index == -1)
1108 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1109 
1110 	/*
1111 	 * Move _head_ to start search for next from here.
1112 	 * But be careful: shmem_evict_inode checks list_empty without taking
1113 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1114 	 * would appear empty, if it were the only one on shmem_swaplist.
1115 	 */
1116 	if (shmem_swaplist.next != &info->swaplist)
1117 		list_move_tail(&shmem_swaplist, &info->swaplist);
1118 
1119 	gfp = mapping_gfp_mask(mapping);
1120 	if (shmem_should_replace_page(*pagep, gfp)) {
1121 		mutex_unlock(&shmem_swaplist_mutex);
1122 		error = shmem_replace_page(pagep, gfp, info, index);
1123 		mutex_lock(&shmem_swaplist_mutex);
1124 		/*
1125 		 * We needed to drop mutex to make that restrictive page
1126 		 * allocation, but the inode might have been freed while we
1127 		 * dropped it: although a racing shmem_evict_inode() cannot
1128 		 * complete without emptying the radix_tree, our page lock
1129 		 * on this swapcache page is not enough to prevent that -
1130 		 * free_swap_and_cache() of our swap entry will only
1131 		 * trylock_page(), removing swap from radix_tree whatever.
1132 		 *
1133 		 * We must not proceed to shmem_add_to_page_cache() if the
1134 		 * inode has been freed, but of course we cannot rely on
1135 		 * inode or mapping or info to check that.  However, we can
1136 		 * safely check if our swap entry is still in use (and here
1137 		 * it can't have got reused for another page): if it's still
1138 		 * in use, then the inode cannot have been freed yet, and we
1139 		 * can safely proceed (if it's no longer in use, that tells
1140 		 * nothing about the inode, but we don't need to unuse swap).
1141 		 */
1142 		if (!page_swapcount(*pagep))
1143 			error = -ENOENT;
1144 	}
1145 
1146 	/*
1147 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1148 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1149 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1150 	 */
1151 	if (!error)
1152 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1153 						radswap);
1154 	if (error != -ENOMEM) {
1155 		/*
1156 		 * Truncation and eviction use free_swap_and_cache(), which
1157 		 * only does trylock page: if we raced, best clean up here.
1158 		 */
1159 		delete_from_swap_cache(*pagep);
1160 		set_page_dirty(*pagep);
1161 		if (!error) {
1162 			spin_lock_irq(&info->lock);
1163 			info->swapped--;
1164 			spin_unlock_irq(&info->lock);
1165 			swap_free(swap);
1166 		}
1167 	}
1168 	return error;
1169 }
1170 
1171 /*
1172  * Search through swapped inodes to find and replace swap by page.
1173  */
1174 int shmem_unuse(swp_entry_t swap, struct page *page)
1175 {
1176 	struct list_head *this, *next;
1177 	struct shmem_inode_info *info;
1178 	struct mem_cgroup *memcg;
1179 	int error = 0;
1180 
1181 	/*
1182 	 * There's a faint possibility that swap page was replaced before
1183 	 * caller locked it: caller will come back later with the right page.
1184 	 */
1185 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1186 		goto out;
1187 
1188 	/*
1189 	 * Charge page using GFP_KERNEL while we can wait, before taking
1190 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1191 	 * Charged back to the user (not to caller) when swap account is used.
1192 	 */
1193 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1194 			false);
1195 	if (error)
1196 		goto out;
1197 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1198 	error = -EAGAIN;
1199 
1200 	mutex_lock(&shmem_swaplist_mutex);
1201 	list_for_each_safe(this, next, &shmem_swaplist) {
1202 		info = list_entry(this, struct shmem_inode_info, swaplist);
1203 		if (info->swapped)
1204 			error = shmem_unuse_inode(info, swap, &page);
1205 		else
1206 			list_del_init(&info->swaplist);
1207 		cond_resched();
1208 		if (error != -EAGAIN)
1209 			break;
1210 		/* found nothing in this: move on to search the next */
1211 	}
1212 	mutex_unlock(&shmem_swaplist_mutex);
1213 
1214 	if (error) {
1215 		if (error != -ENOMEM)
1216 			error = 0;
1217 		mem_cgroup_cancel_charge(page, memcg, false);
1218 	} else
1219 		mem_cgroup_commit_charge(page, memcg, true, false);
1220 out:
1221 	unlock_page(page);
1222 	put_page(page);
1223 	return error;
1224 }
1225 
1226 /*
1227  * Move the page from the page cache to the swap cache.
1228  */
1229 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1230 {
1231 	struct shmem_inode_info *info;
1232 	struct address_space *mapping;
1233 	struct inode *inode;
1234 	swp_entry_t swap;
1235 	pgoff_t index;
1236 
1237 	VM_BUG_ON_PAGE(PageCompound(page), page);
1238 	BUG_ON(!PageLocked(page));
1239 	mapping = page->mapping;
1240 	index = page->index;
1241 	inode = mapping->host;
1242 	info = SHMEM_I(inode);
1243 	if (info->flags & VM_LOCKED)
1244 		goto redirty;
1245 	if (!total_swap_pages)
1246 		goto redirty;
1247 
1248 	/*
1249 	 * Our capabilities prevent regular writeback or sync from ever calling
1250 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1251 	 * its underlying filesystem, in which case tmpfs should write out to
1252 	 * swap only in response to memory pressure, and not for the writeback
1253 	 * threads or sync.
1254 	 */
1255 	if (!wbc->for_reclaim) {
1256 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1257 		goto redirty;
1258 	}
1259 
1260 	/*
1261 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1262 	 * value into swapfile.c, the only way we can correctly account for a
1263 	 * fallocated page arriving here is now to initialize it and write it.
1264 	 *
1265 	 * That's okay for a page already fallocated earlier, but if we have
1266 	 * not yet completed the fallocation, then (a) we want to keep track
1267 	 * of this page in case we have to undo it, and (b) it may not be a
1268 	 * good idea to continue anyway, once we're pushing into swap.  So
1269 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1270 	 */
1271 	if (!PageUptodate(page)) {
1272 		if (inode->i_private) {
1273 			struct shmem_falloc *shmem_falloc;
1274 			spin_lock(&inode->i_lock);
1275 			shmem_falloc = inode->i_private;
1276 			if (shmem_falloc &&
1277 			    !shmem_falloc->waitq &&
1278 			    index >= shmem_falloc->start &&
1279 			    index < shmem_falloc->next)
1280 				shmem_falloc->nr_unswapped++;
1281 			else
1282 				shmem_falloc = NULL;
1283 			spin_unlock(&inode->i_lock);
1284 			if (shmem_falloc)
1285 				goto redirty;
1286 		}
1287 		clear_highpage(page);
1288 		flush_dcache_page(page);
1289 		SetPageUptodate(page);
1290 	}
1291 
1292 	swap = get_swap_page();
1293 	if (!swap.val)
1294 		goto redirty;
1295 
1296 	if (mem_cgroup_try_charge_swap(page, swap))
1297 		goto free_swap;
1298 
1299 	/*
1300 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1301 	 * if it's not already there.  Do it now before the page is
1302 	 * moved to swap cache, when its pagelock no longer protects
1303 	 * the inode from eviction.  But don't unlock the mutex until
1304 	 * we've incremented swapped, because shmem_unuse_inode() will
1305 	 * prune a !swapped inode from the swaplist under this mutex.
1306 	 */
1307 	mutex_lock(&shmem_swaplist_mutex);
1308 	if (list_empty(&info->swaplist))
1309 		list_add_tail(&info->swaplist, &shmem_swaplist);
1310 
1311 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1312 		spin_lock_irq(&info->lock);
1313 		shmem_recalc_inode(inode);
1314 		info->swapped++;
1315 		spin_unlock_irq(&info->lock);
1316 
1317 		swap_shmem_alloc(swap);
1318 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1319 
1320 		mutex_unlock(&shmem_swaplist_mutex);
1321 		BUG_ON(page_mapped(page));
1322 		swap_writepage(page, wbc);
1323 		return 0;
1324 	}
1325 
1326 	mutex_unlock(&shmem_swaplist_mutex);
1327 free_swap:
1328 	swapcache_free(swap);
1329 redirty:
1330 	set_page_dirty(page);
1331 	if (wbc->for_reclaim)
1332 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1333 	unlock_page(page);
1334 	return 0;
1335 }
1336 
1337 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1338 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1339 {
1340 	char buffer[64];
1341 
1342 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1343 		return;		/* show nothing */
1344 
1345 	mpol_to_str(buffer, sizeof(buffer), mpol);
1346 
1347 	seq_printf(seq, ",mpol=%s", buffer);
1348 }
1349 
1350 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1351 {
1352 	struct mempolicy *mpol = NULL;
1353 	if (sbinfo->mpol) {
1354 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1355 		mpol = sbinfo->mpol;
1356 		mpol_get(mpol);
1357 		spin_unlock(&sbinfo->stat_lock);
1358 	}
1359 	return mpol;
1360 }
1361 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1362 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1363 {
1364 }
1365 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1366 {
1367 	return NULL;
1368 }
1369 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1370 #ifndef CONFIG_NUMA
1371 #define vm_policy vm_private_data
1372 #endif
1373 
1374 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1375 		struct shmem_inode_info *info, pgoff_t index)
1376 {
1377 	/* Create a pseudo vma that just contains the policy */
1378 	vma->vm_start = 0;
1379 	/* Bias interleave by inode number to distribute better across nodes */
1380 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1381 	vma->vm_ops = NULL;
1382 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1383 }
1384 
1385 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1386 {
1387 	/* Drop reference taken by mpol_shared_policy_lookup() */
1388 	mpol_cond_put(vma->vm_policy);
1389 }
1390 
1391 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1392 			struct shmem_inode_info *info, pgoff_t index)
1393 {
1394 	struct vm_area_struct pvma;
1395 	struct page *page;
1396 
1397 	shmem_pseudo_vma_init(&pvma, info, index);
1398 	page = swapin_readahead(swap, gfp, &pvma, 0);
1399 	shmem_pseudo_vma_destroy(&pvma);
1400 
1401 	return page;
1402 }
1403 
1404 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1405 		struct shmem_inode_info *info, pgoff_t index)
1406 {
1407 	struct vm_area_struct pvma;
1408 	struct inode *inode = &info->vfs_inode;
1409 	struct address_space *mapping = inode->i_mapping;
1410 	pgoff_t idx, hindex;
1411 	void __rcu **results;
1412 	struct page *page;
1413 
1414 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1415 		return NULL;
1416 
1417 	hindex = round_down(index, HPAGE_PMD_NR);
1418 	rcu_read_lock();
1419 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1420 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1421 		rcu_read_unlock();
1422 		return NULL;
1423 	}
1424 	rcu_read_unlock();
1425 
1426 	shmem_pseudo_vma_init(&pvma, info, hindex);
1427 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1428 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1429 	shmem_pseudo_vma_destroy(&pvma);
1430 	if (page)
1431 		prep_transhuge_page(page);
1432 	return page;
1433 }
1434 
1435 static struct page *shmem_alloc_page(gfp_t gfp,
1436 			struct shmem_inode_info *info, pgoff_t index)
1437 {
1438 	struct vm_area_struct pvma;
1439 	struct page *page;
1440 
1441 	shmem_pseudo_vma_init(&pvma, info, index);
1442 	page = alloc_page_vma(gfp, &pvma, 0);
1443 	shmem_pseudo_vma_destroy(&pvma);
1444 
1445 	return page;
1446 }
1447 
1448 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1449 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1450 		pgoff_t index, bool huge)
1451 {
1452 	struct page *page;
1453 	int nr;
1454 	int err = -ENOSPC;
1455 
1456 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1457 		huge = false;
1458 	nr = huge ? HPAGE_PMD_NR : 1;
1459 
1460 	if (shmem_acct_block(info->flags, nr))
1461 		goto failed;
1462 	if (sbinfo->max_blocks) {
1463 		if (percpu_counter_compare(&sbinfo->used_blocks,
1464 					sbinfo->max_blocks - nr) > 0)
1465 			goto unacct;
1466 		percpu_counter_add(&sbinfo->used_blocks, nr);
1467 	}
1468 
1469 	if (huge)
1470 		page = shmem_alloc_hugepage(gfp, info, index);
1471 	else
1472 		page = shmem_alloc_page(gfp, info, index);
1473 	if (page) {
1474 		__SetPageLocked(page);
1475 		__SetPageSwapBacked(page);
1476 		return page;
1477 	}
1478 
1479 	err = -ENOMEM;
1480 	if (sbinfo->max_blocks)
1481 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1482 unacct:
1483 	shmem_unacct_blocks(info->flags, nr);
1484 failed:
1485 	return ERR_PTR(err);
1486 }
1487 
1488 /*
1489  * When a page is moved from swapcache to shmem filecache (either by the
1490  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1491  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1492  * ignorance of the mapping it belongs to.  If that mapping has special
1493  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1494  * we may need to copy to a suitable page before moving to filecache.
1495  *
1496  * In a future release, this may well be extended to respect cpuset and
1497  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1498  * but for now it is a simple matter of zone.
1499  */
1500 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1501 {
1502 	return page_zonenum(page) > gfp_zone(gfp);
1503 }
1504 
1505 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1506 				struct shmem_inode_info *info, pgoff_t index)
1507 {
1508 	struct page *oldpage, *newpage;
1509 	struct address_space *swap_mapping;
1510 	pgoff_t swap_index;
1511 	int error;
1512 
1513 	oldpage = *pagep;
1514 	swap_index = page_private(oldpage);
1515 	swap_mapping = page_mapping(oldpage);
1516 
1517 	/*
1518 	 * We have arrived here because our zones are constrained, so don't
1519 	 * limit chance of success by further cpuset and node constraints.
1520 	 */
1521 	gfp &= ~GFP_CONSTRAINT_MASK;
1522 	newpage = shmem_alloc_page(gfp, info, index);
1523 	if (!newpage)
1524 		return -ENOMEM;
1525 
1526 	get_page(newpage);
1527 	copy_highpage(newpage, oldpage);
1528 	flush_dcache_page(newpage);
1529 
1530 	__SetPageLocked(newpage);
1531 	__SetPageSwapBacked(newpage);
1532 	SetPageUptodate(newpage);
1533 	set_page_private(newpage, swap_index);
1534 	SetPageSwapCache(newpage);
1535 
1536 	/*
1537 	 * Our caller will very soon move newpage out of swapcache, but it's
1538 	 * a nice clean interface for us to replace oldpage by newpage there.
1539 	 */
1540 	spin_lock_irq(&swap_mapping->tree_lock);
1541 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1542 								   newpage);
1543 	if (!error) {
1544 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1545 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1546 	}
1547 	spin_unlock_irq(&swap_mapping->tree_lock);
1548 
1549 	if (unlikely(error)) {
1550 		/*
1551 		 * Is this possible?  I think not, now that our callers check
1552 		 * both PageSwapCache and page_private after getting page lock;
1553 		 * but be defensive.  Reverse old to newpage for clear and free.
1554 		 */
1555 		oldpage = newpage;
1556 	} else {
1557 		mem_cgroup_migrate(oldpage, newpage);
1558 		lru_cache_add_anon(newpage);
1559 		*pagep = newpage;
1560 	}
1561 
1562 	ClearPageSwapCache(oldpage);
1563 	set_page_private(oldpage, 0);
1564 
1565 	unlock_page(oldpage);
1566 	put_page(oldpage);
1567 	put_page(oldpage);
1568 	return error;
1569 }
1570 
1571 /*
1572  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1573  *
1574  * If we allocate a new one we do not mark it dirty. That's up to the
1575  * vm. If we swap it in we mark it dirty since we also free the swap
1576  * entry since a page cannot live in both the swap and page cache.
1577  *
1578  * fault_mm and fault_type are only supplied by shmem_fault:
1579  * otherwise they are NULL.
1580  */
1581 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1582 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1583 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1584 {
1585 	struct address_space *mapping = inode->i_mapping;
1586 	struct shmem_inode_info *info = SHMEM_I(inode);
1587 	struct shmem_sb_info *sbinfo;
1588 	struct mm_struct *charge_mm;
1589 	struct mem_cgroup *memcg;
1590 	struct page *page;
1591 	swp_entry_t swap;
1592 	enum sgp_type sgp_huge = sgp;
1593 	pgoff_t hindex = index;
1594 	int error;
1595 	int once = 0;
1596 	int alloced = 0;
1597 
1598 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1599 		return -EFBIG;
1600 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1601 		sgp = SGP_CACHE;
1602 repeat:
1603 	swap.val = 0;
1604 	page = find_lock_entry(mapping, index);
1605 	if (radix_tree_exceptional_entry(page)) {
1606 		swap = radix_to_swp_entry(page);
1607 		page = NULL;
1608 	}
1609 
1610 	if (sgp <= SGP_CACHE &&
1611 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1612 		error = -EINVAL;
1613 		goto unlock;
1614 	}
1615 
1616 	if (page && sgp == SGP_WRITE)
1617 		mark_page_accessed(page);
1618 
1619 	/* fallocated page? */
1620 	if (page && !PageUptodate(page)) {
1621 		if (sgp != SGP_READ)
1622 			goto clear;
1623 		unlock_page(page);
1624 		put_page(page);
1625 		page = NULL;
1626 	}
1627 	if (page || (sgp == SGP_READ && !swap.val)) {
1628 		*pagep = page;
1629 		return 0;
1630 	}
1631 
1632 	/*
1633 	 * Fast cache lookup did not find it:
1634 	 * bring it back from swap or allocate.
1635 	 */
1636 	sbinfo = SHMEM_SB(inode->i_sb);
1637 	charge_mm = vma ? vma->vm_mm : current->mm;
1638 
1639 	if (swap.val) {
1640 		/* Look it up and read it in.. */
1641 		page = lookup_swap_cache(swap);
1642 		if (!page) {
1643 			/* Or update major stats only when swapin succeeds?? */
1644 			if (fault_type) {
1645 				*fault_type |= VM_FAULT_MAJOR;
1646 				count_vm_event(PGMAJFAULT);
1647 				mem_cgroup_count_vm_event(charge_mm,
1648 							  PGMAJFAULT);
1649 			}
1650 			/* Here we actually start the io */
1651 			page = shmem_swapin(swap, gfp, info, index);
1652 			if (!page) {
1653 				error = -ENOMEM;
1654 				goto failed;
1655 			}
1656 		}
1657 
1658 		/* We have to do this with page locked to prevent races */
1659 		lock_page(page);
1660 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1661 		    !shmem_confirm_swap(mapping, index, swap)) {
1662 			error = -EEXIST;	/* try again */
1663 			goto unlock;
1664 		}
1665 		if (!PageUptodate(page)) {
1666 			error = -EIO;
1667 			goto failed;
1668 		}
1669 		wait_on_page_writeback(page);
1670 
1671 		if (shmem_should_replace_page(page, gfp)) {
1672 			error = shmem_replace_page(&page, gfp, info, index);
1673 			if (error)
1674 				goto failed;
1675 		}
1676 
1677 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1678 				false);
1679 		if (!error) {
1680 			error = shmem_add_to_page_cache(page, mapping, index,
1681 						swp_to_radix_entry(swap));
1682 			/*
1683 			 * We already confirmed swap under page lock, and make
1684 			 * no memory allocation here, so usually no possibility
1685 			 * of error; but free_swap_and_cache() only trylocks a
1686 			 * page, so it is just possible that the entry has been
1687 			 * truncated or holepunched since swap was confirmed.
1688 			 * shmem_undo_range() will have done some of the
1689 			 * unaccounting, now delete_from_swap_cache() will do
1690 			 * the rest.
1691 			 * Reset swap.val? No, leave it so "failed" goes back to
1692 			 * "repeat": reading a hole and writing should succeed.
1693 			 */
1694 			if (error) {
1695 				mem_cgroup_cancel_charge(page, memcg, false);
1696 				delete_from_swap_cache(page);
1697 			}
1698 		}
1699 		if (error)
1700 			goto failed;
1701 
1702 		mem_cgroup_commit_charge(page, memcg, true, false);
1703 
1704 		spin_lock_irq(&info->lock);
1705 		info->swapped--;
1706 		shmem_recalc_inode(inode);
1707 		spin_unlock_irq(&info->lock);
1708 
1709 		if (sgp == SGP_WRITE)
1710 			mark_page_accessed(page);
1711 
1712 		delete_from_swap_cache(page);
1713 		set_page_dirty(page);
1714 		swap_free(swap);
1715 
1716 	} else {
1717 		if (vma && userfaultfd_missing(vma)) {
1718 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1719 			return 0;
1720 		}
1721 
1722 		/* shmem_symlink() */
1723 		if (mapping->a_ops != &shmem_aops)
1724 			goto alloc_nohuge;
1725 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1726 			goto alloc_nohuge;
1727 		if (shmem_huge == SHMEM_HUGE_FORCE)
1728 			goto alloc_huge;
1729 		switch (sbinfo->huge) {
1730 			loff_t i_size;
1731 			pgoff_t off;
1732 		case SHMEM_HUGE_NEVER:
1733 			goto alloc_nohuge;
1734 		case SHMEM_HUGE_WITHIN_SIZE:
1735 			off = round_up(index, HPAGE_PMD_NR);
1736 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1737 			if (i_size >= HPAGE_PMD_SIZE &&
1738 					i_size >> PAGE_SHIFT >= off)
1739 				goto alloc_huge;
1740 			/* fallthrough */
1741 		case SHMEM_HUGE_ADVISE:
1742 			if (sgp_huge == SGP_HUGE)
1743 				goto alloc_huge;
1744 			/* TODO: implement fadvise() hints */
1745 			goto alloc_nohuge;
1746 		}
1747 
1748 alloc_huge:
1749 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1750 				index, true);
1751 		if (IS_ERR(page)) {
1752 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1753 					index, false);
1754 		}
1755 		if (IS_ERR(page)) {
1756 			int retry = 5;
1757 			error = PTR_ERR(page);
1758 			page = NULL;
1759 			if (error != -ENOSPC)
1760 				goto failed;
1761 			/*
1762 			 * Try to reclaim some spece by splitting a huge page
1763 			 * beyond i_size on the filesystem.
1764 			 */
1765 			while (retry--) {
1766 				int ret;
1767 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1768 				if (ret == SHRINK_STOP)
1769 					break;
1770 				if (ret)
1771 					goto alloc_nohuge;
1772 			}
1773 			goto failed;
1774 		}
1775 
1776 		if (PageTransHuge(page))
1777 			hindex = round_down(index, HPAGE_PMD_NR);
1778 		else
1779 			hindex = index;
1780 
1781 		if (sgp == SGP_WRITE)
1782 			__SetPageReferenced(page);
1783 
1784 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1785 				PageTransHuge(page));
1786 		if (error)
1787 			goto unacct;
1788 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1789 				compound_order(page));
1790 		if (!error) {
1791 			error = shmem_add_to_page_cache(page, mapping, hindex,
1792 							NULL);
1793 			radix_tree_preload_end();
1794 		}
1795 		if (error) {
1796 			mem_cgroup_cancel_charge(page, memcg,
1797 					PageTransHuge(page));
1798 			goto unacct;
1799 		}
1800 		mem_cgroup_commit_charge(page, memcg, false,
1801 				PageTransHuge(page));
1802 		lru_cache_add_anon(page);
1803 
1804 		spin_lock_irq(&info->lock);
1805 		info->alloced += 1 << compound_order(page);
1806 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1807 		shmem_recalc_inode(inode);
1808 		spin_unlock_irq(&info->lock);
1809 		alloced = true;
1810 
1811 		if (PageTransHuge(page) &&
1812 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1813 				hindex + HPAGE_PMD_NR - 1) {
1814 			/*
1815 			 * Part of the huge page is beyond i_size: subject
1816 			 * to shrink under memory pressure.
1817 			 */
1818 			spin_lock(&sbinfo->shrinklist_lock);
1819 			if (list_empty(&info->shrinklist)) {
1820 				list_add_tail(&info->shrinklist,
1821 						&sbinfo->shrinklist);
1822 				sbinfo->shrinklist_len++;
1823 			}
1824 			spin_unlock(&sbinfo->shrinklist_lock);
1825 		}
1826 
1827 		/*
1828 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1829 		 */
1830 		if (sgp == SGP_FALLOC)
1831 			sgp = SGP_WRITE;
1832 clear:
1833 		/*
1834 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1835 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1836 		 * it now, lest undo on failure cancel our earlier guarantee.
1837 		 */
1838 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1839 			struct page *head = compound_head(page);
1840 			int i;
1841 
1842 			for (i = 0; i < (1 << compound_order(head)); i++) {
1843 				clear_highpage(head + i);
1844 				flush_dcache_page(head + i);
1845 			}
1846 			SetPageUptodate(head);
1847 		}
1848 	}
1849 
1850 	/* Perhaps the file has been truncated since we checked */
1851 	if (sgp <= SGP_CACHE &&
1852 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1853 		if (alloced) {
1854 			ClearPageDirty(page);
1855 			delete_from_page_cache(page);
1856 			spin_lock_irq(&info->lock);
1857 			shmem_recalc_inode(inode);
1858 			spin_unlock_irq(&info->lock);
1859 		}
1860 		error = -EINVAL;
1861 		goto unlock;
1862 	}
1863 	*pagep = page + index - hindex;
1864 	return 0;
1865 
1866 	/*
1867 	 * Error recovery.
1868 	 */
1869 unacct:
1870 	if (sbinfo->max_blocks)
1871 		percpu_counter_sub(&sbinfo->used_blocks,
1872 				1 << compound_order(page));
1873 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1874 
1875 	if (PageTransHuge(page)) {
1876 		unlock_page(page);
1877 		put_page(page);
1878 		goto alloc_nohuge;
1879 	}
1880 failed:
1881 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1882 		error = -EEXIST;
1883 unlock:
1884 	if (page) {
1885 		unlock_page(page);
1886 		put_page(page);
1887 	}
1888 	if (error == -ENOSPC && !once++) {
1889 		spin_lock_irq(&info->lock);
1890 		shmem_recalc_inode(inode);
1891 		spin_unlock_irq(&info->lock);
1892 		goto repeat;
1893 	}
1894 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1895 		goto repeat;
1896 	return error;
1897 }
1898 
1899 /*
1900  * This is like autoremove_wake_function, but it removes the wait queue
1901  * entry unconditionally - even if something else had already woken the
1902  * target.
1903  */
1904 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1905 {
1906 	int ret = default_wake_function(wait, mode, sync, key);
1907 	list_del_init(&wait->task_list);
1908 	return ret;
1909 }
1910 
1911 static int shmem_fault(struct vm_fault *vmf)
1912 {
1913 	struct vm_area_struct *vma = vmf->vma;
1914 	struct inode *inode = file_inode(vma->vm_file);
1915 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1916 	enum sgp_type sgp;
1917 	int error;
1918 	int ret = VM_FAULT_LOCKED;
1919 
1920 	/*
1921 	 * Trinity finds that probing a hole which tmpfs is punching can
1922 	 * prevent the hole-punch from ever completing: which in turn
1923 	 * locks writers out with its hold on i_mutex.  So refrain from
1924 	 * faulting pages into the hole while it's being punched.  Although
1925 	 * shmem_undo_range() does remove the additions, it may be unable to
1926 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1927 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1928 	 *
1929 	 * It does not matter if we sometimes reach this check just before the
1930 	 * hole-punch begins, so that one fault then races with the punch:
1931 	 * we just need to make racing faults a rare case.
1932 	 *
1933 	 * The implementation below would be much simpler if we just used a
1934 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1935 	 * and bloating every shmem inode for this unlikely case would be sad.
1936 	 */
1937 	if (unlikely(inode->i_private)) {
1938 		struct shmem_falloc *shmem_falloc;
1939 
1940 		spin_lock(&inode->i_lock);
1941 		shmem_falloc = inode->i_private;
1942 		if (shmem_falloc &&
1943 		    shmem_falloc->waitq &&
1944 		    vmf->pgoff >= shmem_falloc->start &&
1945 		    vmf->pgoff < shmem_falloc->next) {
1946 			wait_queue_head_t *shmem_falloc_waitq;
1947 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1948 
1949 			ret = VM_FAULT_NOPAGE;
1950 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1951 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1952 				/* It's polite to up mmap_sem if we can */
1953 				up_read(&vma->vm_mm->mmap_sem);
1954 				ret = VM_FAULT_RETRY;
1955 			}
1956 
1957 			shmem_falloc_waitq = shmem_falloc->waitq;
1958 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1959 					TASK_UNINTERRUPTIBLE);
1960 			spin_unlock(&inode->i_lock);
1961 			schedule();
1962 
1963 			/*
1964 			 * shmem_falloc_waitq points into the shmem_fallocate()
1965 			 * stack of the hole-punching task: shmem_falloc_waitq
1966 			 * is usually invalid by the time we reach here, but
1967 			 * finish_wait() does not dereference it in that case;
1968 			 * though i_lock needed lest racing with wake_up_all().
1969 			 */
1970 			spin_lock(&inode->i_lock);
1971 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1972 			spin_unlock(&inode->i_lock);
1973 			return ret;
1974 		}
1975 		spin_unlock(&inode->i_lock);
1976 	}
1977 
1978 	sgp = SGP_CACHE;
1979 	if (vma->vm_flags & VM_HUGEPAGE)
1980 		sgp = SGP_HUGE;
1981 	else if (vma->vm_flags & VM_NOHUGEPAGE)
1982 		sgp = SGP_NOHUGE;
1983 
1984 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1985 				  gfp, vma, vmf, &ret);
1986 	if (error)
1987 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1988 	return ret;
1989 }
1990 
1991 unsigned long shmem_get_unmapped_area(struct file *file,
1992 				      unsigned long uaddr, unsigned long len,
1993 				      unsigned long pgoff, unsigned long flags)
1994 {
1995 	unsigned long (*get_area)(struct file *,
1996 		unsigned long, unsigned long, unsigned long, unsigned long);
1997 	unsigned long addr;
1998 	unsigned long offset;
1999 	unsigned long inflated_len;
2000 	unsigned long inflated_addr;
2001 	unsigned long inflated_offset;
2002 
2003 	if (len > TASK_SIZE)
2004 		return -ENOMEM;
2005 
2006 	get_area = current->mm->get_unmapped_area;
2007 	addr = get_area(file, uaddr, len, pgoff, flags);
2008 
2009 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2010 		return addr;
2011 	if (IS_ERR_VALUE(addr))
2012 		return addr;
2013 	if (addr & ~PAGE_MASK)
2014 		return addr;
2015 	if (addr > TASK_SIZE - len)
2016 		return addr;
2017 
2018 	if (shmem_huge == SHMEM_HUGE_DENY)
2019 		return addr;
2020 	if (len < HPAGE_PMD_SIZE)
2021 		return addr;
2022 	if (flags & MAP_FIXED)
2023 		return addr;
2024 	/*
2025 	 * Our priority is to support MAP_SHARED mapped hugely;
2026 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2027 	 * But if caller specified an address hint, respect that as before.
2028 	 */
2029 	if (uaddr)
2030 		return addr;
2031 
2032 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2033 		struct super_block *sb;
2034 
2035 		if (file) {
2036 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2037 			sb = file_inode(file)->i_sb;
2038 		} else {
2039 			/*
2040 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2041 			 * for "/dev/zero", to create a shared anonymous object.
2042 			 */
2043 			if (IS_ERR(shm_mnt))
2044 				return addr;
2045 			sb = shm_mnt->mnt_sb;
2046 		}
2047 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2048 			return addr;
2049 	}
2050 
2051 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2052 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2053 		return addr;
2054 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2055 		return addr;
2056 
2057 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2058 	if (inflated_len > TASK_SIZE)
2059 		return addr;
2060 	if (inflated_len < len)
2061 		return addr;
2062 
2063 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2064 	if (IS_ERR_VALUE(inflated_addr))
2065 		return addr;
2066 	if (inflated_addr & ~PAGE_MASK)
2067 		return addr;
2068 
2069 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2070 	inflated_addr += offset - inflated_offset;
2071 	if (inflated_offset > offset)
2072 		inflated_addr += HPAGE_PMD_SIZE;
2073 
2074 	if (inflated_addr > TASK_SIZE - len)
2075 		return addr;
2076 	return inflated_addr;
2077 }
2078 
2079 #ifdef CONFIG_NUMA
2080 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2081 {
2082 	struct inode *inode = file_inode(vma->vm_file);
2083 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2084 }
2085 
2086 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2087 					  unsigned long addr)
2088 {
2089 	struct inode *inode = file_inode(vma->vm_file);
2090 	pgoff_t index;
2091 
2092 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2093 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2094 }
2095 #endif
2096 
2097 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2098 {
2099 	struct inode *inode = file_inode(file);
2100 	struct shmem_inode_info *info = SHMEM_I(inode);
2101 	int retval = -ENOMEM;
2102 
2103 	spin_lock_irq(&info->lock);
2104 	if (lock && !(info->flags & VM_LOCKED)) {
2105 		if (!user_shm_lock(inode->i_size, user))
2106 			goto out_nomem;
2107 		info->flags |= VM_LOCKED;
2108 		mapping_set_unevictable(file->f_mapping);
2109 	}
2110 	if (!lock && (info->flags & VM_LOCKED) && user) {
2111 		user_shm_unlock(inode->i_size, user);
2112 		info->flags &= ~VM_LOCKED;
2113 		mapping_clear_unevictable(file->f_mapping);
2114 	}
2115 	retval = 0;
2116 
2117 out_nomem:
2118 	spin_unlock_irq(&info->lock);
2119 	return retval;
2120 }
2121 
2122 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2123 {
2124 	file_accessed(file);
2125 	vma->vm_ops = &shmem_vm_ops;
2126 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2127 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2128 			(vma->vm_end & HPAGE_PMD_MASK)) {
2129 		khugepaged_enter(vma, vma->vm_flags);
2130 	}
2131 	return 0;
2132 }
2133 
2134 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2135 				     umode_t mode, dev_t dev, unsigned long flags)
2136 {
2137 	struct inode *inode;
2138 	struct shmem_inode_info *info;
2139 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2140 
2141 	if (shmem_reserve_inode(sb))
2142 		return NULL;
2143 
2144 	inode = new_inode(sb);
2145 	if (inode) {
2146 		inode->i_ino = get_next_ino();
2147 		inode_init_owner(inode, dir, mode);
2148 		inode->i_blocks = 0;
2149 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2150 		inode->i_generation = get_seconds();
2151 		info = SHMEM_I(inode);
2152 		memset(info, 0, (char *)inode - (char *)info);
2153 		spin_lock_init(&info->lock);
2154 		info->seals = F_SEAL_SEAL;
2155 		info->flags = flags & VM_NORESERVE;
2156 		INIT_LIST_HEAD(&info->shrinklist);
2157 		INIT_LIST_HEAD(&info->swaplist);
2158 		simple_xattrs_init(&info->xattrs);
2159 		cache_no_acl(inode);
2160 
2161 		switch (mode & S_IFMT) {
2162 		default:
2163 			inode->i_op = &shmem_special_inode_operations;
2164 			init_special_inode(inode, mode, dev);
2165 			break;
2166 		case S_IFREG:
2167 			inode->i_mapping->a_ops = &shmem_aops;
2168 			inode->i_op = &shmem_inode_operations;
2169 			inode->i_fop = &shmem_file_operations;
2170 			mpol_shared_policy_init(&info->policy,
2171 						 shmem_get_sbmpol(sbinfo));
2172 			break;
2173 		case S_IFDIR:
2174 			inc_nlink(inode);
2175 			/* Some things misbehave if size == 0 on a directory */
2176 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2177 			inode->i_op = &shmem_dir_inode_operations;
2178 			inode->i_fop = &simple_dir_operations;
2179 			break;
2180 		case S_IFLNK:
2181 			/*
2182 			 * Must not load anything in the rbtree,
2183 			 * mpol_free_shared_policy will not be called.
2184 			 */
2185 			mpol_shared_policy_init(&info->policy, NULL);
2186 			break;
2187 		}
2188 	} else
2189 		shmem_free_inode(sb);
2190 	return inode;
2191 }
2192 
2193 bool shmem_mapping(struct address_space *mapping)
2194 {
2195 	return mapping->a_ops == &shmem_aops;
2196 }
2197 
2198 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2199 			   pmd_t *dst_pmd,
2200 			   struct vm_area_struct *dst_vma,
2201 			   unsigned long dst_addr,
2202 			   unsigned long src_addr,
2203 			   struct page **pagep)
2204 {
2205 	struct inode *inode = file_inode(dst_vma->vm_file);
2206 	struct shmem_inode_info *info = SHMEM_I(inode);
2207 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2208 	struct address_space *mapping = inode->i_mapping;
2209 	gfp_t gfp = mapping_gfp_mask(mapping);
2210 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2211 	struct mem_cgroup *memcg;
2212 	spinlock_t *ptl;
2213 	void *page_kaddr;
2214 	struct page *page;
2215 	pte_t _dst_pte, *dst_pte;
2216 	int ret;
2217 
2218 	ret = -ENOMEM;
2219 	if (shmem_acct_block(info->flags, 1))
2220 		goto out;
2221 	if (sbinfo->max_blocks) {
2222 		if (percpu_counter_compare(&sbinfo->used_blocks,
2223 					   sbinfo->max_blocks) >= 0)
2224 			goto out_unacct_blocks;
2225 		percpu_counter_inc(&sbinfo->used_blocks);
2226 	}
2227 
2228 	if (!*pagep) {
2229 		page = shmem_alloc_page(gfp, info, pgoff);
2230 		if (!page)
2231 			goto out_dec_used_blocks;
2232 
2233 		page_kaddr = kmap_atomic(page);
2234 		ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2235 				     PAGE_SIZE);
2236 		kunmap_atomic(page_kaddr);
2237 
2238 		/* fallback to copy_from_user outside mmap_sem */
2239 		if (unlikely(ret)) {
2240 			*pagep = page;
2241 			if (sbinfo->max_blocks)
2242 				percpu_counter_add(&sbinfo->used_blocks, -1);
2243 			shmem_unacct_blocks(info->flags, 1);
2244 			/* don't free the page */
2245 			return -EFAULT;
2246 		}
2247 	} else {
2248 		page = *pagep;
2249 		*pagep = NULL;
2250 	}
2251 
2252 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2253 	__SetPageLocked(page);
2254 	__SetPageSwapBacked(page);
2255 	__SetPageUptodate(page);
2256 
2257 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2258 	if (ret)
2259 		goto out_release;
2260 
2261 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2262 	if (!ret) {
2263 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2264 		radix_tree_preload_end();
2265 	}
2266 	if (ret)
2267 		goto out_release_uncharge;
2268 
2269 	mem_cgroup_commit_charge(page, memcg, false, false);
2270 
2271 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2272 	if (dst_vma->vm_flags & VM_WRITE)
2273 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2274 
2275 	ret = -EEXIST;
2276 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2277 	if (!pte_none(*dst_pte))
2278 		goto out_release_uncharge_unlock;
2279 
2280 	lru_cache_add_anon(page);
2281 
2282 	spin_lock(&info->lock);
2283 	info->alloced++;
2284 	inode->i_blocks += BLOCKS_PER_PAGE;
2285 	shmem_recalc_inode(inode);
2286 	spin_unlock(&info->lock);
2287 
2288 	inc_mm_counter(dst_mm, mm_counter_file(page));
2289 	page_add_file_rmap(page, false);
2290 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2291 
2292 	/* No need to invalidate - it was non-present before */
2293 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2294 	unlock_page(page);
2295 	pte_unmap_unlock(dst_pte, ptl);
2296 	ret = 0;
2297 out:
2298 	return ret;
2299 out_release_uncharge_unlock:
2300 	pte_unmap_unlock(dst_pte, ptl);
2301 out_release_uncharge:
2302 	mem_cgroup_cancel_charge(page, memcg, false);
2303 out_release:
2304 	unlock_page(page);
2305 	put_page(page);
2306 out_dec_used_blocks:
2307 	if (sbinfo->max_blocks)
2308 		percpu_counter_add(&sbinfo->used_blocks, -1);
2309 out_unacct_blocks:
2310 	shmem_unacct_blocks(info->flags, 1);
2311 	goto out;
2312 }
2313 
2314 #ifdef CONFIG_TMPFS
2315 static const struct inode_operations shmem_symlink_inode_operations;
2316 static const struct inode_operations shmem_short_symlink_operations;
2317 
2318 #ifdef CONFIG_TMPFS_XATTR
2319 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2320 #else
2321 #define shmem_initxattrs NULL
2322 #endif
2323 
2324 static int
2325 shmem_write_begin(struct file *file, struct address_space *mapping,
2326 			loff_t pos, unsigned len, unsigned flags,
2327 			struct page **pagep, void **fsdata)
2328 {
2329 	struct inode *inode = mapping->host;
2330 	struct shmem_inode_info *info = SHMEM_I(inode);
2331 	pgoff_t index = pos >> PAGE_SHIFT;
2332 
2333 	/* i_mutex is held by caller */
2334 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2335 		if (info->seals & F_SEAL_WRITE)
2336 			return -EPERM;
2337 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2338 			return -EPERM;
2339 	}
2340 
2341 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2342 }
2343 
2344 static int
2345 shmem_write_end(struct file *file, struct address_space *mapping,
2346 			loff_t pos, unsigned len, unsigned copied,
2347 			struct page *page, void *fsdata)
2348 {
2349 	struct inode *inode = mapping->host;
2350 
2351 	if (pos + copied > inode->i_size)
2352 		i_size_write(inode, pos + copied);
2353 
2354 	if (!PageUptodate(page)) {
2355 		struct page *head = compound_head(page);
2356 		if (PageTransCompound(page)) {
2357 			int i;
2358 
2359 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2360 				if (head + i == page)
2361 					continue;
2362 				clear_highpage(head + i);
2363 				flush_dcache_page(head + i);
2364 			}
2365 		}
2366 		if (copied < PAGE_SIZE) {
2367 			unsigned from = pos & (PAGE_SIZE - 1);
2368 			zero_user_segments(page, 0, from,
2369 					from + copied, PAGE_SIZE);
2370 		}
2371 		SetPageUptodate(head);
2372 	}
2373 	set_page_dirty(page);
2374 	unlock_page(page);
2375 	put_page(page);
2376 
2377 	return copied;
2378 }
2379 
2380 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2381 {
2382 	struct file *file = iocb->ki_filp;
2383 	struct inode *inode = file_inode(file);
2384 	struct address_space *mapping = inode->i_mapping;
2385 	pgoff_t index;
2386 	unsigned long offset;
2387 	enum sgp_type sgp = SGP_READ;
2388 	int error = 0;
2389 	ssize_t retval = 0;
2390 	loff_t *ppos = &iocb->ki_pos;
2391 
2392 	/*
2393 	 * Might this read be for a stacking filesystem?  Then when reading
2394 	 * holes of a sparse file, we actually need to allocate those pages,
2395 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2396 	 */
2397 	if (!iter_is_iovec(to))
2398 		sgp = SGP_CACHE;
2399 
2400 	index = *ppos >> PAGE_SHIFT;
2401 	offset = *ppos & ~PAGE_MASK;
2402 
2403 	for (;;) {
2404 		struct page *page = NULL;
2405 		pgoff_t end_index;
2406 		unsigned long nr, ret;
2407 		loff_t i_size = i_size_read(inode);
2408 
2409 		end_index = i_size >> PAGE_SHIFT;
2410 		if (index > end_index)
2411 			break;
2412 		if (index == end_index) {
2413 			nr = i_size & ~PAGE_MASK;
2414 			if (nr <= offset)
2415 				break;
2416 		}
2417 
2418 		error = shmem_getpage(inode, index, &page, sgp);
2419 		if (error) {
2420 			if (error == -EINVAL)
2421 				error = 0;
2422 			break;
2423 		}
2424 		if (page) {
2425 			if (sgp == SGP_CACHE)
2426 				set_page_dirty(page);
2427 			unlock_page(page);
2428 		}
2429 
2430 		/*
2431 		 * We must evaluate after, since reads (unlike writes)
2432 		 * are called without i_mutex protection against truncate
2433 		 */
2434 		nr = PAGE_SIZE;
2435 		i_size = i_size_read(inode);
2436 		end_index = i_size >> PAGE_SHIFT;
2437 		if (index == end_index) {
2438 			nr = i_size & ~PAGE_MASK;
2439 			if (nr <= offset) {
2440 				if (page)
2441 					put_page(page);
2442 				break;
2443 			}
2444 		}
2445 		nr -= offset;
2446 
2447 		if (page) {
2448 			/*
2449 			 * If users can be writing to this page using arbitrary
2450 			 * virtual addresses, take care about potential aliasing
2451 			 * before reading the page on the kernel side.
2452 			 */
2453 			if (mapping_writably_mapped(mapping))
2454 				flush_dcache_page(page);
2455 			/*
2456 			 * Mark the page accessed if we read the beginning.
2457 			 */
2458 			if (!offset)
2459 				mark_page_accessed(page);
2460 		} else {
2461 			page = ZERO_PAGE(0);
2462 			get_page(page);
2463 		}
2464 
2465 		/*
2466 		 * Ok, we have the page, and it's up-to-date, so
2467 		 * now we can copy it to user space...
2468 		 */
2469 		ret = copy_page_to_iter(page, offset, nr, to);
2470 		retval += ret;
2471 		offset += ret;
2472 		index += offset >> PAGE_SHIFT;
2473 		offset &= ~PAGE_MASK;
2474 
2475 		put_page(page);
2476 		if (!iov_iter_count(to))
2477 			break;
2478 		if (ret < nr) {
2479 			error = -EFAULT;
2480 			break;
2481 		}
2482 		cond_resched();
2483 	}
2484 
2485 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2486 	file_accessed(file);
2487 	return retval ? retval : error;
2488 }
2489 
2490 /*
2491  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2492  */
2493 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2494 				    pgoff_t index, pgoff_t end, int whence)
2495 {
2496 	struct page *page;
2497 	struct pagevec pvec;
2498 	pgoff_t indices[PAGEVEC_SIZE];
2499 	bool done = false;
2500 	int i;
2501 
2502 	pagevec_init(&pvec, 0);
2503 	pvec.nr = 1;		/* start small: we may be there already */
2504 	while (!done) {
2505 		pvec.nr = find_get_entries(mapping, index,
2506 					pvec.nr, pvec.pages, indices);
2507 		if (!pvec.nr) {
2508 			if (whence == SEEK_DATA)
2509 				index = end;
2510 			break;
2511 		}
2512 		for (i = 0; i < pvec.nr; i++, index++) {
2513 			if (index < indices[i]) {
2514 				if (whence == SEEK_HOLE) {
2515 					done = true;
2516 					break;
2517 				}
2518 				index = indices[i];
2519 			}
2520 			page = pvec.pages[i];
2521 			if (page && !radix_tree_exceptional_entry(page)) {
2522 				if (!PageUptodate(page))
2523 					page = NULL;
2524 			}
2525 			if (index >= end ||
2526 			    (page && whence == SEEK_DATA) ||
2527 			    (!page && whence == SEEK_HOLE)) {
2528 				done = true;
2529 				break;
2530 			}
2531 		}
2532 		pagevec_remove_exceptionals(&pvec);
2533 		pagevec_release(&pvec);
2534 		pvec.nr = PAGEVEC_SIZE;
2535 		cond_resched();
2536 	}
2537 	return index;
2538 }
2539 
2540 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2541 {
2542 	struct address_space *mapping = file->f_mapping;
2543 	struct inode *inode = mapping->host;
2544 	pgoff_t start, end;
2545 	loff_t new_offset;
2546 
2547 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2548 		return generic_file_llseek_size(file, offset, whence,
2549 					MAX_LFS_FILESIZE, i_size_read(inode));
2550 	inode_lock(inode);
2551 	/* We're holding i_mutex so we can access i_size directly */
2552 
2553 	if (offset < 0)
2554 		offset = -EINVAL;
2555 	else if (offset >= inode->i_size)
2556 		offset = -ENXIO;
2557 	else {
2558 		start = offset >> PAGE_SHIFT;
2559 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2560 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2561 		new_offset <<= PAGE_SHIFT;
2562 		if (new_offset > offset) {
2563 			if (new_offset < inode->i_size)
2564 				offset = new_offset;
2565 			else if (whence == SEEK_DATA)
2566 				offset = -ENXIO;
2567 			else
2568 				offset = inode->i_size;
2569 		}
2570 	}
2571 
2572 	if (offset >= 0)
2573 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2574 	inode_unlock(inode);
2575 	return offset;
2576 }
2577 
2578 /*
2579  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2580  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2581  */
2582 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2583 #define LAST_SCAN               4       /* about 150ms max */
2584 
2585 static void shmem_tag_pins(struct address_space *mapping)
2586 {
2587 	struct radix_tree_iter iter;
2588 	void **slot;
2589 	pgoff_t start;
2590 	struct page *page;
2591 
2592 	lru_add_drain();
2593 	start = 0;
2594 	rcu_read_lock();
2595 
2596 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2597 		page = radix_tree_deref_slot(slot);
2598 		if (!page || radix_tree_exception(page)) {
2599 			if (radix_tree_deref_retry(page)) {
2600 				slot = radix_tree_iter_retry(&iter);
2601 				continue;
2602 			}
2603 		} else if (page_count(page) - page_mapcount(page) > 1) {
2604 			spin_lock_irq(&mapping->tree_lock);
2605 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2606 					   SHMEM_TAG_PINNED);
2607 			spin_unlock_irq(&mapping->tree_lock);
2608 		}
2609 
2610 		if (need_resched()) {
2611 			slot = radix_tree_iter_resume(slot, &iter);
2612 			cond_resched_rcu();
2613 		}
2614 	}
2615 	rcu_read_unlock();
2616 }
2617 
2618 /*
2619  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2620  * via get_user_pages(), drivers might have some pending I/O without any active
2621  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2622  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2623  * them to be dropped.
2624  * The caller must guarantee that no new user will acquire writable references
2625  * to those pages to avoid races.
2626  */
2627 static int shmem_wait_for_pins(struct address_space *mapping)
2628 {
2629 	struct radix_tree_iter iter;
2630 	void **slot;
2631 	pgoff_t start;
2632 	struct page *page;
2633 	int error, scan;
2634 
2635 	shmem_tag_pins(mapping);
2636 
2637 	error = 0;
2638 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2639 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2640 			break;
2641 
2642 		if (!scan)
2643 			lru_add_drain_all();
2644 		else if (schedule_timeout_killable((HZ << scan) / 200))
2645 			scan = LAST_SCAN;
2646 
2647 		start = 0;
2648 		rcu_read_lock();
2649 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2650 					   start, SHMEM_TAG_PINNED) {
2651 
2652 			page = radix_tree_deref_slot(slot);
2653 			if (radix_tree_exception(page)) {
2654 				if (radix_tree_deref_retry(page)) {
2655 					slot = radix_tree_iter_retry(&iter);
2656 					continue;
2657 				}
2658 
2659 				page = NULL;
2660 			}
2661 
2662 			if (page &&
2663 			    page_count(page) - page_mapcount(page) != 1) {
2664 				if (scan < LAST_SCAN)
2665 					goto continue_resched;
2666 
2667 				/*
2668 				 * On the last scan, we clean up all those tags
2669 				 * we inserted; but make a note that we still
2670 				 * found pages pinned.
2671 				 */
2672 				error = -EBUSY;
2673 			}
2674 
2675 			spin_lock_irq(&mapping->tree_lock);
2676 			radix_tree_tag_clear(&mapping->page_tree,
2677 					     iter.index, SHMEM_TAG_PINNED);
2678 			spin_unlock_irq(&mapping->tree_lock);
2679 continue_resched:
2680 			if (need_resched()) {
2681 				slot = radix_tree_iter_resume(slot, &iter);
2682 				cond_resched_rcu();
2683 			}
2684 		}
2685 		rcu_read_unlock();
2686 	}
2687 
2688 	return error;
2689 }
2690 
2691 #define F_ALL_SEALS (F_SEAL_SEAL | \
2692 		     F_SEAL_SHRINK | \
2693 		     F_SEAL_GROW | \
2694 		     F_SEAL_WRITE)
2695 
2696 int shmem_add_seals(struct file *file, unsigned int seals)
2697 {
2698 	struct inode *inode = file_inode(file);
2699 	struct shmem_inode_info *info = SHMEM_I(inode);
2700 	int error;
2701 
2702 	/*
2703 	 * SEALING
2704 	 * Sealing allows multiple parties to share a shmem-file but restrict
2705 	 * access to a specific subset of file operations. Seals can only be
2706 	 * added, but never removed. This way, mutually untrusted parties can
2707 	 * share common memory regions with a well-defined policy. A malicious
2708 	 * peer can thus never perform unwanted operations on a shared object.
2709 	 *
2710 	 * Seals are only supported on special shmem-files and always affect
2711 	 * the whole underlying inode. Once a seal is set, it may prevent some
2712 	 * kinds of access to the file. Currently, the following seals are
2713 	 * defined:
2714 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2715 	 *   SEAL_SHRINK: Prevent the file from shrinking
2716 	 *   SEAL_GROW: Prevent the file from growing
2717 	 *   SEAL_WRITE: Prevent write access to the file
2718 	 *
2719 	 * As we don't require any trust relationship between two parties, we
2720 	 * must prevent seals from being removed. Therefore, sealing a file
2721 	 * only adds a given set of seals to the file, it never touches
2722 	 * existing seals. Furthermore, the "setting seals"-operation can be
2723 	 * sealed itself, which basically prevents any further seal from being
2724 	 * added.
2725 	 *
2726 	 * Semantics of sealing are only defined on volatile files. Only
2727 	 * anonymous shmem files support sealing. More importantly, seals are
2728 	 * never written to disk. Therefore, there's no plan to support it on
2729 	 * other file types.
2730 	 */
2731 
2732 	if (file->f_op != &shmem_file_operations)
2733 		return -EINVAL;
2734 	if (!(file->f_mode & FMODE_WRITE))
2735 		return -EPERM;
2736 	if (seals & ~(unsigned int)F_ALL_SEALS)
2737 		return -EINVAL;
2738 
2739 	inode_lock(inode);
2740 
2741 	if (info->seals & F_SEAL_SEAL) {
2742 		error = -EPERM;
2743 		goto unlock;
2744 	}
2745 
2746 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2747 		error = mapping_deny_writable(file->f_mapping);
2748 		if (error)
2749 			goto unlock;
2750 
2751 		error = shmem_wait_for_pins(file->f_mapping);
2752 		if (error) {
2753 			mapping_allow_writable(file->f_mapping);
2754 			goto unlock;
2755 		}
2756 	}
2757 
2758 	info->seals |= seals;
2759 	error = 0;
2760 
2761 unlock:
2762 	inode_unlock(inode);
2763 	return error;
2764 }
2765 EXPORT_SYMBOL_GPL(shmem_add_seals);
2766 
2767 int shmem_get_seals(struct file *file)
2768 {
2769 	if (file->f_op != &shmem_file_operations)
2770 		return -EINVAL;
2771 
2772 	return SHMEM_I(file_inode(file))->seals;
2773 }
2774 EXPORT_SYMBOL_GPL(shmem_get_seals);
2775 
2776 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2777 {
2778 	long error;
2779 
2780 	switch (cmd) {
2781 	case F_ADD_SEALS:
2782 		/* disallow upper 32bit */
2783 		if (arg > UINT_MAX)
2784 			return -EINVAL;
2785 
2786 		error = shmem_add_seals(file, arg);
2787 		break;
2788 	case F_GET_SEALS:
2789 		error = shmem_get_seals(file);
2790 		break;
2791 	default:
2792 		error = -EINVAL;
2793 		break;
2794 	}
2795 
2796 	return error;
2797 }
2798 
2799 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2800 							 loff_t len)
2801 {
2802 	struct inode *inode = file_inode(file);
2803 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2804 	struct shmem_inode_info *info = SHMEM_I(inode);
2805 	struct shmem_falloc shmem_falloc;
2806 	pgoff_t start, index, end;
2807 	int error;
2808 
2809 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2810 		return -EOPNOTSUPP;
2811 
2812 	inode_lock(inode);
2813 
2814 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2815 		struct address_space *mapping = file->f_mapping;
2816 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2817 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2818 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2819 
2820 		/* protected by i_mutex */
2821 		if (info->seals & F_SEAL_WRITE) {
2822 			error = -EPERM;
2823 			goto out;
2824 		}
2825 
2826 		shmem_falloc.waitq = &shmem_falloc_waitq;
2827 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2828 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2829 		spin_lock(&inode->i_lock);
2830 		inode->i_private = &shmem_falloc;
2831 		spin_unlock(&inode->i_lock);
2832 
2833 		if ((u64)unmap_end > (u64)unmap_start)
2834 			unmap_mapping_range(mapping, unmap_start,
2835 					    1 + unmap_end - unmap_start, 0);
2836 		shmem_truncate_range(inode, offset, offset + len - 1);
2837 		/* No need to unmap again: hole-punching leaves COWed pages */
2838 
2839 		spin_lock(&inode->i_lock);
2840 		inode->i_private = NULL;
2841 		wake_up_all(&shmem_falloc_waitq);
2842 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2843 		spin_unlock(&inode->i_lock);
2844 		error = 0;
2845 		goto out;
2846 	}
2847 
2848 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2849 	error = inode_newsize_ok(inode, offset + len);
2850 	if (error)
2851 		goto out;
2852 
2853 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2854 		error = -EPERM;
2855 		goto out;
2856 	}
2857 
2858 	start = offset >> PAGE_SHIFT;
2859 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2860 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2861 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2862 		error = -ENOSPC;
2863 		goto out;
2864 	}
2865 
2866 	shmem_falloc.waitq = NULL;
2867 	shmem_falloc.start = start;
2868 	shmem_falloc.next  = start;
2869 	shmem_falloc.nr_falloced = 0;
2870 	shmem_falloc.nr_unswapped = 0;
2871 	spin_lock(&inode->i_lock);
2872 	inode->i_private = &shmem_falloc;
2873 	spin_unlock(&inode->i_lock);
2874 
2875 	for (index = start; index < end; index++) {
2876 		struct page *page;
2877 
2878 		/*
2879 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2880 		 * been interrupted because we are using up too much memory.
2881 		 */
2882 		if (signal_pending(current))
2883 			error = -EINTR;
2884 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2885 			error = -ENOMEM;
2886 		else
2887 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2888 		if (error) {
2889 			/* Remove the !PageUptodate pages we added */
2890 			if (index > start) {
2891 				shmem_undo_range(inode,
2892 				    (loff_t)start << PAGE_SHIFT,
2893 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2894 			}
2895 			goto undone;
2896 		}
2897 
2898 		/*
2899 		 * Inform shmem_writepage() how far we have reached.
2900 		 * No need for lock or barrier: we have the page lock.
2901 		 */
2902 		shmem_falloc.next++;
2903 		if (!PageUptodate(page))
2904 			shmem_falloc.nr_falloced++;
2905 
2906 		/*
2907 		 * If !PageUptodate, leave it that way so that freeable pages
2908 		 * can be recognized if we need to rollback on error later.
2909 		 * But set_page_dirty so that memory pressure will swap rather
2910 		 * than free the pages we are allocating (and SGP_CACHE pages
2911 		 * might still be clean: we now need to mark those dirty too).
2912 		 */
2913 		set_page_dirty(page);
2914 		unlock_page(page);
2915 		put_page(page);
2916 		cond_resched();
2917 	}
2918 
2919 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2920 		i_size_write(inode, offset + len);
2921 	inode->i_ctime = current_time(inode);
2922 undone:
2923 	spin_lock(&inode->i_lock);
2924 	inode->i_private = NULL;
2925 	spin_unlock(&inode->i_lock);
2926 out:
2927 	inode_unlock(inode);
2928 	return error;
2929 }
2930 
2931 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2932 {
2933 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2934 
2935 	buf->f_type = TMPFS_MAGIC;
2936 	buf->f_bsize = PAGE_SIZE;
2937 	buf->f_namelen = NAME_MAX;
2938 	if (sbinfo->max_blocks) {
2939 		buf->f_blocks = sbinfo->max_blocks;
2940 		buf->f_bavail =
2941 		buf->f_bfree  = sbinfo->max_blocks -
2942 				percpu_counter_sum(&sbinfo->used_blocks);
2943 	}
2944 	if (sbinfo->max_inodes) {
2945 		buf->f_files = sbinfo->max_inodes;
2946 		buf->f_ffree = sbinfo->free_inodes;
2947 	}
2948 	/* else leave those fields 0 like simple_statfs */
2949 	return 0;
2950 }
2951 
2952 /*
2953  * File creation. Allocate an inode, and we're done..
2954  */
2955 static int
2956 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2957 {
2958 	struct inode *inode;
2959 	int error = -ENOSPC;
2960 
2961 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2962 	if (inode) {
2963 		error = simple_acl_create(dir, inode);
2964 		if (error)
2965 			goto out_iput;
2966 		error = security_inode_init_security(inode, dir,
2967 						     &dentry->d_name,
2968 						     shmem_initxattrs, NULL);
2969 		if (error && error != -EOPNOTSUPP)
2970 			goto out_iput;
2971 
2972 		error = 0;
2973 		dir->i_size += BOGO_DIRENT_SIZE;
2974 		dir->i_ctime = dir->i_mtime = current_time(dir);
2975 		d_instantiate(dentry, inode);
2976 		dget(dentry); /* Extra count - pin the dentry in core */
2977 	}
2978 	return error;
2979 out_iput:
2980 	iput(inode);
2981 	return error;
2982 }
2983 
2984 static int
2985 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2986 {
2987 	struct inode *inode;
2988 	int error = -ENOSPC;
2989 
2990 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2991 	if (inode) {
2992 		error = security_inode_init_security(inode, dir,
2993 						     NULL,
2994 						     shmem_initxattrs, NULL);
2995 		if (error && error != -EOPNOTSUPP)
2996 			goto out_iput;
2997 		error = simple_acl_create(dir, inode);
2998 		if (error)
2999 			goto out_iput;
3000 		d_tmpfile(dentry, inode);
3001 	}
3002 	return error;
3003 out_iput:
3004 	iput(inode);
3005 	return error;
3006 }
3007 
3008 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3009 {
3010 	int error;
3011 
3012 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3013 		return error;
3014 	inc_nlink(dir);
3015 	return 0;
3016 }
3017 
3018 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3019 		bool excl)
3020 {
3021 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3022 }
3023 
3024 /*
3025  * Link a file..
3026  */
3027 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3028 {
3029 	struct inode *inode = d_inode(old_dentry);
3030 	int ret;
3031 
3032 	/*
3033 	 * No ordinary (disk based) filesystem counts links as inodes;
3034 	 * but each new link needs a new dentry, pinning lowmem, and
3035 	 * tmpfs dentries cannot be pruned until they are unlinked.
3036 	 */
3037 	ret = shmem_reserve_inode(inode->i_sb);
3038 	if (ret)
3039 		goto out;
3040 
3041 	dir->i_size += BOGO_DIRENT_SIZE;
3042 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3043 	inc_nlink(inode);
3044 	ihold(inode);	/* New dentry reference */
3045 	dget(dentry);		/* Extra pinning count for the created dentry */
3046 	d_instantiate(dentry, inode);
3047 out:
3048 	return ret;
3049 }
3050 
3051 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3052 {
3053 	struct inode *inode = d_inode(dentry);
3054 
3055 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3056 		shmem_free_inode(inode->i_sb);
3057 
3058 	dir->i_size -= BOGO_DIRENT_SIZE;
3059 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3060 	drop_nlink(inode);
3061 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3062 	return 0;
3063 }
3064 
3065 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3066 {
3067 	if (!simple_empty(dentry))
3068 		return -ENOTEMPTY;
3069 
3070 	drop_nlink(d_inode(dentry));
3071 	drop_nlink(dir);
3072 	return shmem_unlink(dir, dentry);
3073 }
3074 
3075 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3076 {
3077 	bool old_is_dir = d_is_dir(old_dentry);
3078 	bool new_is_dir = d_is_dir(new_dentry);
3079 
3080 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3081 		if (old_is_dir) {
3082 			drop_nlink(old_dir);
3083 			inc_nlink(new_dir);
3084 		} else {
3085 			drop_nlink(new_dir);
3086 			inc_nlink(old_dir);
3087 		}
3088 	}
3089 	old_dir->i_ctime = old_dir->i_mtime =
3090 	new_dir->i_ctime = new_dir->i_mtime =
3091 	d_inode(old_dentry)->i_ctime =
3092 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3093 
3094 	return 0;
3095 }
3096 
3097 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3098 {
3099 	struct dentry *whiteout;
3100 	int error;
3101 
3102 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3103 	if (!whiteout)
3104 		return -ENOMEM;
3105 
3106 	error = shmem_mknod(old_dir, whiteout,
3107 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3108 	dput(whiteout);
3109 	if (error)
3110 		return error;
3111 
3112 	/*
3113 	 * Cheat and hash the whiteout while the old dentry is still in
3114 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3115 	 *
3116 	 * d_lookup() will consistently find one of them at this point,
3117 	 * not sure which one, but that isn't even important.
3118 	 */
3119 	d_rehash(whiteout);
3120 	return 0;
3121 }
3122 
3123 /*
3124  * The VFS layer already does all the dentry stuff for rename,
3125  * we just have to decrement the usage count for the target if
3126  * it exists so that the VFS layer correctly free's it when it
3127  * gets overwritten.
3128  */
3129 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3130 {
3131 	struct inode *inode = d_inode(old_dentry);
3132 	int they_are_dirs = S_ISDIR(inode->i_mode);
3133 
3134 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3135 		return -EINVAL;
3136 
3137 	if (flags & RENAME_EXCHANGE)
3138 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3139 
3140 	if (!simple_empty(new_dentry))
3141 		return -ENOTEMPTY;
3142 
3143 	if (flags & RENAME_WHITEOUT) {
3144 		int error;
3145 
3146 		error = shmem_whiteout(old_dir, old_dentry);
3147 		if (error)
3148 			return error;
3149 	}
3150 
3151 	if (d_really_is_positive(new_dentry)) {
3152 		(void) shmem_unlink(new_dir, new_dentry);
3153 		if (they_are_dirs) {
3154 			drop_nlink(d_inode(new_dentry));
3155 			drop_nlink(old_dir);
3156 		}
3157 	} else if (they_are_dirs) {
3158 		drop_nlink(old_dir);
3159 		inc_nlink(new_dir);
3160 	}
3161 
3162 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3163 	new_dir->i_size += BOGO_DIRENT_SIZE;
3164 	old_dir->i_ctime = old_dir->i_mtime =
3165 	new_dir->i_ctime = new_dir->i_mtime =
3166 	inode->i_ctime = current_time(old_dir);
3167 	return 0;
3168 }
3169 
3170 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3171 {
3172 	int error;
3173 	int len;
3174 	struct inode *inode;
3175 	struct page *page;
3176 	struct shmem_inode_info *info;
3177 
3178 	len = strlen(symname) + 1;
3179 	if (len > PAGE_SIZE)
3180 		return -ENAMETOOLONG;
3181 
3182 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3183 	if (!inode)
3184 		return -ENOSPC;
3185 
3186 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3187 					     shmem_initxattrs, NULL);
3188 	if (error) {
3189 		if (error != -EOPNOTSUPP) {
3190 			iput(inode);
3191 			return error;
3192 		}
3193 		error = 0;
3194 	}
3195 
3196 	info = SHMEM_I(inode);
3197 	inode->i_size = len-1;
3198 	if (len <= SHORT_SYMLINK_LEN) {
3199 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3200 		if (!inode->i_link) {
3201 			iput(inode);
3202 			return -ENOMEM;
3203 		}
3204 		inode->i_op = &shmem_short_symlink_operations;
3205 	} else {
3206 		inode_nohighmem(inode);
3207 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3208 		if (error) {
3209 			iput(inode);
3210 			return error;
3211 		}
3212 		inode->i_mapping->a_ops = &shmem_aops;
3213 		inode->i_op = &shmem_symlink_inode_operations;
3214 		memcpy(page_address(page), symname, len);
3215 		SetPageUptodate(page);
3216 		set_page_dirty(page);
3217 		unlock_page(page);
3218 		put_page(page);
3219 	}
3220 	dir->i_size += BOGO_DIRENT_SIZE;
3221 	dir->i_ctime = dir->i_mtime = current_time(dir);
3222 	d_instantiate(dentry, inode);
3223 	dget(dentry);
3224 	return 0;
3225 }
3226 
3227 static void shmem_put_link(void *arg)
3228 {
3229 	mark_page_accessed(arg);
3230 	put_page(arg);
3231 }
3232 
3233 static const char *shmem_get_link(struct dentry *dentry,
3234 				  struct inode *inode,
3235 				  struct delayed_call *done)
3236 {
3237 	struct page *page = NULL;
3238 	int error;
3239 	if (!dentry) {
3240 		page = find_get_page(inode->i_mapping, 0);
3241 		if (!page)
3242 			return ERR_PTR(-ECHILD);
3243 		if (!PageUptodate(page)) {
3244 			put_page(page);
3245 			return ERR_PTR(-ECHILD);
3246 		}
3247 	} else {
3248 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3249 		if (error)
3250 			return ERR_PTR(error);
3251 		unlock_page(page);
3252 	}
3253 	set_delayed_call(done, shmem_put_link, page);
3254 	return page_address(page);
3255 }
3256 
3257 #ifdef CONFIG_TMPFS_XATTR
3258 /*
3259  * Superblocks without xattr inode operations may get some security.* xattr
3260  * support from the LSM "for free". As soon as we have any other xattrs
3261  * like ACLs, we also need to implement the security.* handlers at
3262  * filesystem level, though.
3263  */
3264 
3265 /*
3266  * Callback for security_inode_init_security() for acquiring xattrs.
3267  */
3268 static int shmem_initxattrs(struct inode *inode,
3269 			    const struct xattr *xattr_array,
3270 			    void *fs_info)
3271 {
3272 	struct shmem_inode_info *info = SHMEM_I(inode);
3273 	const struct xattr *xattr;
3274 	struct simple_xattr *new_xattr;
3275 	size_t len;
3276 
3277 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3278 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3279 		if (!new_xattr)
3280 			return -ENOMEM;
3281 
3282 		len = strlen(xattr->name) + 1;
3283 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3284 					  GFP_KERNEL);
3285 		if (!new_xattr->name) {
3286 			kfree(new_xattr);
3287 			return -ENOMEM;
3288 		}
3289 
3290 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3291 		       XATTR_SECURITY_PREFIX_LEN);
3292 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3293 		       xattr->name, len);
3294 
3295 		simple_xattr_list_add(&info->xattrs, new_xattr);
3296 	}
3297 
3298 	return 0;
3299 }
3300 
3301 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3302 				   struct dentry *unused, struct inode *inode,
3303 				   const char *name, void *buffer, size_t size)
3304 {
3305 	struct shmem_inode_info *info = SHMEM_I(inode);
3306 
3307 	name = xattr_full_name(handler, name);
3308 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3309 }
3310 
3311 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3312 				   struct dentry *unused, struct inode *inode,
3313 				   const char *name, const void *value,
3314 				   size_t size, int flags)
3315 {
3316 	struct shmem_inode_info *info = SHMEM_I(inode);
3317 
3318 	name = xattr_full_name(handler, name);
3319 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3320 }
3321 
3322 static const struct xattr_handler shmem_security_xattr_handler = {
3323 	.prefix = XATTR_SECURITY_PREFIX,
3324 	.get = shmem_xattr_handler_get,
3325 	.set = shmem_xattr_handler_set,
3326 };
3327 
3328 static const struct xattr_handler shmem_trusted_xattr_handler = {
3329 	.prefix = XATTR_TRUSTED_PREFIX,
3330 	.get = shmem_xattr_handler_get,
3331 	.set = shmem_xattr_handler_set,
3332 };
3333 
3334 static const struct xattr_handler *shmem_xattr_handlers[] = {
3335 #ifdef CONFIG_TMPFS_POSIX_ACL
3336 	&posix_acl_access_xattr_handler,
3337 	&posix_acl_default_xattr_handler,
3338 #endif
3339 	&shmem_security_xattr_handler,
3340 	&shmem_trusted_xattr_handler,
3341 	NULL
3342 };
3343 
3344 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3345 {
3346 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3347 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3348 }
3349 #endif /* CONFIG_TMPFS_XATTR */
3350 
3351 static const struct inode_operations shmem_short_symlink_operations = {
3352 	.get_link	= simple_get_link,
3353 #ifdef CONFIG_TMPFS_XATTR
3354 	.listxattr	= shmem_listxattr,
3355 #endif
3356 };
3357 
3358 static const struct inode_operations shmem_symlink_inode_operations = {
3359 	.get_link	= shmem_get_link,
3360 #ifdef CONFIG_TMPFS_XATTR
3361 	.listxattr	= shmem_listxattr,
3362 #endif
3363 };
3364 
3365 static struct dentry *shmem_get_parent(struct dentry *child)
3366 {
3367 	return ERR_PTR(-ESTALE);
3368 }
3369 
3370 static int shmem_match(struct inode *ino, void *vfh)
3371 {
3372 	__u32 *fh = vfh;
3373 	__u64 inum = fh[2];
3374 	inum = (inum << 32) | fh[1];
3375 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3376 }
3377 
3378 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3379 		struct fid *fid, int fh_len, int fh_type)
3380 {
3381 	struct inode *inode;
3382 	struct dentry *dentry = NULL;
3383 	u64 inum;
3384 
3385 	if (fh_len < 3)
3386 		return NULL;
3387 
3388 	inum = fid->raw[2];
3389 	inum = (inum << 32) | fid->raw[1];
3390 
3391 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3392 			shmem_match, fid->raw);
3393 	if (inode) {
3394 		dentry = d_find_alias(inode);
3395 		iput(inode);
3396 	}
3397 
3398 	return dentry;
3399 }
3400 
3401 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3402 				struct inode *parent)
3403 {
3404 	if (*len < 3) {
3405 		*len = 3;
3406 		return FILEID_INVALID;
3407 	}
3408 
3409 	if (inode_unhashed(inode)) {
3410 		/* Unfortunately insert_inode_hash is not idempotent,
3411 		 * so as we hash inodes here rather than at creation
3412 		 * time, we need a lock to ensure we only try
3413 		 * to do it once
3414 		 */
3415 		static DEFINE_SPINLOCK(lock);
3416 		spin_lock(&lock);
3417 		if (inode_unhashed(inode))
3418 			__insert_inode_hash(inode,
3419 					    inode->i_ino + inode->i_generation);
3420 		spin_unlock(&lock);
3421 	}
3422 
3423 	fh[0] = inode->i_generation;
3424 	fh[1] = inode->i_ino;
3425 	fh[2] = ((__u64)inode->i_ino) >> 32;
3426 
3427 	*len = 3;
3428 	return 1;
3429 }
3430 
3431 static const struct export_operations shmem_export_ops = {
3432 	.get_parent     = shmem_get_parent,
3433 	.encode_fh      = shmem_encode_fh,
3434 	.fh_to_dentry	= shmem_fh_to_dentry,
3435 };
3436 
3437 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3438 			       bool remount)
3439 {
3440 	char *this_char, *value, *rest;
3441 	struct mempolicy *mpol = NULL;
3442 	uid_t uid;
3443 	gid_t gid;
3444 
3445 	while (options != NULL) {
3446 		this_char = options;
3447 		for (;;) {
3448 			/*
3449 			 * NUL-terminate this option: unfortunately,
3450 			 * mount options form a comma-separated list,
3451 			 * but mpol's nodelist may also contain commas.
3452 			 */
3453 			options = strchr(options, ',');
3454 			if (options == NULL)
3455 				break;
3456 			options++;
3457 			if (!isdigit(*options)) {
3458 				options[-1] = '\0';
3459 				break;
3460 			}
3461 		}
3462 		if (!*this_char)
3463 			continue;
3464 		if ((value = strchr(this_char,'=')) != NULL) {
3465 			*value++ = 0;
3466 		} else {
3467 			pr_err("tmpfs: No value for mount option '%s'\n",
3468 			       this_char);
3469 			goto error;
3470 		}
3471 
3472 		if (!strcmp(this_char,"size")) {
3473 			unsigned long long size;
3474 			size = memparse(value,&rest);
3475 			if (*rest == '%') {
3476 				size <<= PAGE_SHIFT;
3477 				size *= totalram_pages;
3478 				do_div(size, 100);
3479 				rest++;
3480 			}
3481 			if (*rest)
3482 				goto bad_val;
3483 			sbinfo->max_blocks =
3484 				DIV_ROUND_UP(size, PAGE_SIZE);
3485 		} else if (!strcmp(this_char,"nr_blocks")) {
3486 			sbinfo->max_blocks = memparse(value, &rest);
3487 			if (*rest)
3488 				goto bad_val;
3489 		} else if (!strcmp(this_char,"nr_inodes")) {
3490 			sbinfo->max_inodes = memparse(value, &rest);
3491 			if (*rest)
3492 				goto bad_val;
3493 		} else if (!strcmp(this_char,"mode")) {
3494 			if (remount)
3495 				continue;
3496 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3497 			if (*rest)
3498 				goto bad_val;
3499 		} else if (!strcmp(this_char,"uid")) {
3500 			if (remount)
3501 				continue;
3502 			uid = simple_strtoul(value, &rest, 0);
3503 			if (*rest)
3504 				goto bad_val;
3505 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3506 			if (!uid_valid(sbinfo->uid))
3507 				goto bad_val;
3508 		} else if (!strcmp(this_char,"gid")) {
3509 			if (remount)
3510 				continue;
3511 			gid = simple_strtoul(value, &rest, 0);
3512 			if (*rest)
3513 				goto bad_val;
3514 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3515 			if (!gid_valid(sbinfo->gid))
3516 				goto bad_val;
3517 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3518 		} else if (!strcmp(this_char, "huge")) {
3519 			int huge;
3520 			huge = shmem_parse_huge(value);
3521 			if (huge < 0)
3522 				goto bad_val;
3523 			if (!has_transparent_hugepage() &&
3524 					huge != SHMEM_HUGE_NEVER)
3525 				goto bad_val;
3526 			sbinfo->huge = huge;
3527 #endif
3528 #ifdef CONFIG_NUMA
3529 		} else if (!strcmp(this_char,"mpol")) {
3530 			mpol_put(mpol);
3531 			mpol = NULL;
3532 			if (mpol_parse_str(value, &mpol))
3533 				goto bad_val;
3534 #endif
3535 		} else {
3536 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3537 			goto error;
3538 		}
3539 	}
3540 	sbinfo->mpol = mpol;
3541 	return 0;
3542 
3543 bad_val:
3544 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3545 	       value, this_char);
3546 error:
3547 	mpol_put(mpol);
3548 	return 1;
3549 
3550 }
3551 
3552 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3553 {
3554 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3555 	struct shmem_sb_info config = *sbinfo;
3556 	unsigned long inodes;
3557 	int error = -EINVAL;
3558 
3559 	config.mpol = NULL;
3560 	if (shmem_parse_options(data, &config, true))
3561 		return error;
3562 
3563 	spin_lock(&sbinfo->stat_lock);
3564 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3565 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3566 		goto out;
3567 	if (config.max_inodes < inodes)
3568 		goto out;
3569 	/*
3570 	 * Those tests disallow limited->unlimited while any are in use;
3571 	 * but we must separately disallow unlimited->limited, because
3572 	 * in that case we have no record of how much is already in use.
3573 	 */
3574 	if (config.max_blocks && !sbinfo->max_blocks)
3575 		goto out;
3576 	if (config.max_inodes && !sbinfo->max_inodes)
3577 		goto out;
3578 
3579 	error = 0;
3580 	sbinfo->huge = config.huge;
3581 	sbinfo->max_blocks  = config.max_blocks;
3582 	sbinfo->max_inodes  = config.max_inodes;
3583 	sbinfo->free_inodes = config.max_inodes - inodes;
3584 
3585 	/*
3586 	 * Preserve previous mempolicy unless mpol remount option was specified.
3587 	 */
3588 	if (config.mpol) {
3589 		mpol_put(sbinfo->mpol);
3590 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3591 	}
3592 out:
3593 	spin_unlock(&sbinfo->stat_lock);
3594 	return error;
3595 }
3596 
3597 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3598 {
3599 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3600 
3601 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3602 		seq_printf(seq, ",size=%luk",
3603 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3604 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3605 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3606 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3607 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3608 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3609 		seq_printf(seq, ",uid=%u",
3610 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3611 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3612 		seq_printf(seq, ",gid=%u",
3613 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3614 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3615 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3616 	if (sbinfo->huge)
3617 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3618 #endif
3619 	shmem_show_mpol(seq, sbinfo->mpol);
3620 	return 0;
3621 }
3622 
3623 #define MFD_NAME_PREFIX "memfd:"
3624 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3625 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3626 
3627 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3628 
3629 SYSCALL_DEFINE2(memfd_create,
3630 		const char __user *, uname,
3631 		unsigned int, flags)
3632 {
3633 	struct shmem_inode_info *info;
3634 	struct file *file;
3635 	int fd, error;
3636 	char *name;
3637 	long len;
3638 
3639 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3640 		return -EINVAL;
3641 
3642 	/* length includes terminating zero */
3643 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3644 	if (len <= 0)
3645 		return -EFAULT;
3646 	if (len > MFD_NAME_MAX_LEN + 1)
3647 		return -EINVAL;
3648 
3649 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3650 	if (!name)
3651 		return -ENOMEM;
3652 
3653 	strcpy(name, MFD_NAME_PREFIX);
3654 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3655 		error = -EFAULT;
3656 		goto err_name;
3657 	}
3658 
3659 	/* terminating-zero may have changed after strnlen_user() returned */
3660 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3661 		error = -EFAULT;
3662 		goto err_name;
3663 	}
3664 
3665 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3666 	if (fd < 0) {
3667 		error = fd;
3668 		goto err_name;
3669 	}
3670 
3671 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3672 	if (IS_ERR(file)) {
3673 		error = PTR_ERR(file);
3674 		goto err_fd;
3675 	}
3676 	info = SHMEM_I(file_inode(file));
3677 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3678 	file->f_flags |= O_RDWR | O_LARGEFILE;
3679 	if (flags & MFD_ALLOW_SEALING)
3680 		info->seals &= ~F_SEAL_SEAL;
3681 
3682 	fd_install(fd, file);
3683 	kfree(name);
3684 	return fd;
3685 
3686 err_fd:
3687 	put_unused_fd(fd);
3688 err_name:
3689 	kfree(name);
3690 	return error;
3691 }
3692 
3693 #endif /* CONFIG_TMPFS */
3694 
3695 static void shmem_put_super(struct super_block *sb)
3696 {
3697 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3698 
3699 	percpu_counter_destroy(&sbinfo->used_blocks);
3700 	mpol_put(sbinfo->mpol);
3701 	kfree(sbinfo);
3702 	sb->s_fs_info = NULL;
3703 }
3704 
3705 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3706 {
3707 	struct inode *inode;
3708 	struct shmem_sb_info *sbinfo;
3709 	int err = -ENOMEM;
3710 
3711 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3712 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3713 				L1_CACHE_BYTES), GFP_KERNEL);
3714 	if (!sbinfo)
3715 		return -ENOMEM;
3716 
3717 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3718 	sbinfo->uid = current_fsuid();
3719 	sbinfo->gid = current_fsgid();
3720 	sb->s_fs_info = sbinfo;
3721 
3722 #ifdef CONFIG_TMPFS
3723 	/*
3724 	 * Per default we only allow half of the physical ram per
3725 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3726 	 * but the internal instance is left unlimited.
3727 	 */
3728 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3729 		sbinfo->max_blocks = shmem_default_max_blocks();
3730 		sbinfo->max_inodes = shmem_default_max_inodes();
3731 		if (shmem_parse_options(data, sbinfo, false)) {
3732 			err = -EINVAL;
3733 			goto failed;
3734 		}
3735 	} else {
3736 		sb->s_flags |= MS_NOUSER;
3737 	}
3738 	sb->s_export_op = &shmem_export_ops;
3739 	sb->s_flags |= MS_NOSEC;
3740 #else
3741 	sb->s_flags |= MS_NOUSER;
3742 #endif
3743 
3744 	spin_lock_init(&sbinfo->stat_lock);
3745 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3746 		goto failed;
3747 	sbinfo->free_inodes = sbinfo->max_inodes;
3748 	spin_lock_init(&sbinfo->shrinklist_lock);
3749 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3750 
3751 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3752 	sb->s_blocksize = PAGE_SIZE;
3753 	sb->s_blocksize_bits = PAGE_SHIFT;
3754 	sb->s_magic = TMPFS_MAGIC;
3755 	sb->s_op = &shmem_ops;
3756 	sb->s_time_gran = 1;
3757 #ifdef CONFIG_TMPFS_XATTR
3758 	sb->s_xattr = shmem_xattr_handlers;
3759 #endif
3760 #ifdef CONFIG_TMPFS_POSIX_ACL
3761 	sb->s_flags |= MS_POSIXACL;
3762 #endif
3763 
3764 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3765 	if (!inode)
3766 		goto failed;
3767 	inode->i_uid = sbinfo->uid;
3768 	inode->i_gid = sbinfo->gid;
3769 	sb->s_root = d_make_root(inode);
3770 	if (!sb->s_root)
3771 		goto failed;
3772 	return 0;
3773 
3774 failed:
3775 	shmem_put_super(sb);
3776 	return err;
3777 }
3778 
3779 static struct kmem_cache *shmem_inode_cachep;
3780 
3781 static struct inode *shmem_alloc_inode(struct super_block *sb)
3782 {
3783 	struct shmem_inode_info *info;
3784 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3785 	if (!info)
3786 		return NULL;
3787 	return &info->vfs_inode;
3788 }
3789 
3790 static void shmem_destroy_callback(struct rcu_head *head)
3791 {
3792 	struct inode *inode = container_of(head, struct inode, i_rcu);
3793 	if (S_ISLNK(inode->i_mode))
3794 		kfree(inode->i_link);
3795 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3796 }
3797 
3798 static void shmem_destroy_inode(struct inode *inode)
3799 {
3800 	if (S_ISREG(inode->i_mode))
3801 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3802 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3803 }
3804 
3805 static void shmem_init_inode(void *foo)
3806 {
3807 	struct shmem_inode_info *info = foo;
3808 	inode_init_once(&info->vfs_inode);
3809 }
3810 
3811 static int shmem_init_inodecache(void)
3812 {
3813 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3814 				sizeof(struct shmem_inode_info),
3815 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3816 	return 0;
3817 }
3818 
3819 static void shmem_destroy_inodecache(void)
3820 {
3821 	kmem_cache_destroy(shmem_inode_cachep);
3822 }
3823 
3824 static const struct address_space_operations shmem_aops = {
3825 	.writepage	= shmem_writepage,
3826 	.set_page_dirty	= __set_page_dirty_no_writeback,
3827 #ifdef CONFIG_TMPFS
3828 	.write_begin	= shmem_write_begin,
3829 	.write_end	= shmem_write_end,
3830 #endif
3831 #ifdef CONFIG_MIGRATION
3832 	.migratepage	= migrate_page,
3833 #endif
3834 	.error_remove_page = generic_error_remove_page,
3835 };
3836 
3837 static const struct file_operations shmem_file_operations = {
3838 	.mmap		= shmem_mmap,
3839 	.get_unmapped_area = shmem_get_unmapped_area,
3840 #ifdef CONFIG_TMPFS
3841 	.llseek		= shmem_file_llseek,
3842 	.read_iter	= shmem_file_read_iter,
3843 	.write_iter	= generic_file_write_iter,
3844 	.fsync		= noop_fsync,
3845 	.splice_read	= generic_file_splice_read,
3846 	.splice_write	= iter_file_splice_write,
3847 	.fallocate	= shmem_fallocate,
3848 #endif
3849 };
3850 
3851 static const struct inode_operations shmem_inode_operations = {
3852 	.getattr	= shmem_getattr,
3853 	.setattr	= shmem_setattr,
3854 #ifdef CONFIG_TMPFS_XATTR
3855 	.listxattr	= shmem_listxattr,
3856 	.set_acl	= simple_set_acl,
3857 #endif
3858 };
3859 
3860 static const struct inode_operations shmem_dir_inode_operations = {
3861 #ifdef CONFIG_TMPFS
3862 	.create		= shmem_create,
3863 	.lookup		= simple_lookup,
3864 	.link		= shmem_link,
3865 	.unlink		= shmem_unlink,
3866 	.symlink	= shmem_symlink,
3867 	.mkdir		= shmem_mkdir,
3868 	.rmdir		= shmem_rmdir,
3869 	.mknod		= shmem_mknod,
3870 	.rename		= shmem_rename2,
3871 	.tmpfile	= shmem_tmpfile,
3872 #endif
3873 #ifdef CONFIG_TMPFS_XATTR
3874 	.listxattr	= shmem_listxattr,
3875 #endif
3876 #ifdef CONFIG_TMPFS_POSIX_ACL
3877 	.setattr	= shmem_setattr,
3878 	.set_acl	= simple_set_acl,
3879 #endif
3880 };
3881 
3882 static const struct inode_operations shmem_special_inode_operations = {
3883 #ifdef CONFIG_TMPFS_XATTR
3884 	.listxattr	= shmem_listxattr,
3885 #endif
3886 #ifdef CONFIG_TMPFS_POSIX_ACL
3887 	.setattr	= shmem_setattr,
3888 	.set_acl	= simple_set_acl,
3889 #endif
3890 };
3891 
3892 static const struct super_operations shmem_ops = {
3893 	.alloc_inode	= shmem_alloc_inode,
3894 	.destroy_inode	= shmem_destroy_inode,
3895 #ifdef CONFIG_TMPFS
3896 	.statfs		= shmem_statfs,
3897 	.remount_fs	= shmem_remount_fs,
3898 	.show_options	= shmem_show_options,
3899 #endif
3900 	.evict_inode	= shmem_evict_inode,
3901 	.drop_inode	= generic_delete_inode,
3902 	.put_super	= shmem_put_super,
3903 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3904 	.nr_cached_objects	= shmem_unused_huge_count,
3905 	.free_cached_objects	= shmem_unused_huge_scan,
3906 #endif
3907 };
3908 
3909 static const struct vm_operations_struct shmem_vm_ops = {
3910 	.fault		= shmem_fault,
3911 	.map_pages	= filemap_map_pages,
3912 #ifdef CONFIG_NUMA
3913 	.set_policy     = shmem_set_policy,
3914 	.get_policy     = shmem_get_policy,
3915 #endif
3916 };
3917 
3918 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3919 	int flags, const char *dev_name, void *data)
3920 {
3921 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3922 }
3923 
3924 static struct file_system_type shmem_fs_type = {
3925 	.owner		= THIS_MODULE,
3926 	.name		= "tmpfs",
3927 	.mount		= shmem_mount,
3928 	.kill_sb	= kill_litter_super,
3929 	.fs_flags	= FS_USERNS_MOUNT,
3930 };
3931 
3932 int __init shmem_init(void)
3933 {
3934 	int error;
3935 
3936 	/* If rootfs called this, don't re-init */
3937 	if (shmem_inode_cachep)
3938 		return 0;
3939 
3940 	error = shmem_init_inodecache();
3941 	if (error)
3942 		goto out3;
3943 
3944 	error = register_filesystem(&shmem_fs_type);
3945 	if (error) {
3946 		pr_err("Could not register tmpfs\n");
3947 		goto out2;
3948 	}
3949 
3950 	shm_mnt = kern_mount(&shmem_fs_type);
3951 	if (IS_ERR(shm_mnt)) {
3952 		error = PTR_ERR(shm_mnt);
3953 		pr_err("Could not kern_mount tmpfs\n");
3954 		goto out1;
3955 	}
3956 
3957 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3958 	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3959 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3960 	else
3961 		shmem_huge = 0; /* just in case it was patched */
3962 #endif
3963 	return 0;
3964 
3965 out1:
3966 	unregister_filesystem(&shmem_fs_type);
3967 out2:
3968 	shmem_destroy_inodecache();
3969 out3:
3970 	shm_mnt = ERR_PTR(error);
3971 	return error;
3972 }
3973 
3974 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3975 static ssize_t shmem_enabled_show(struct kobject *kobj,
3976 		struct kobj_attribute *attr, char *buf)
3977 {
3978 	int values[] = {
3979 		SHMEM_HUGE_ALWAYS,
3980 		SHMEM_HUGE_WITHIN_SIZE,
3981 		SHMEM_HUGE_ADVISE,
3982 		SHMEM_HUGE_NEVER,
3983 		SHMEM_HUGE_DENY,
3984 		SHMEM_HUGE_FORCE,
3985 	};
3986 	int i, count;
3987 
3988 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3989 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3990 
3991 		count += sprintf(buf + count, fmt,
3992 				shmem_format_huge(values[i]));
3993 	}
3994 	buf[count - 1] = '\n';
3995 	return count;
3996 }
3997 
3998 static ssize_t shmem_enabled_store(struct kobject *kobj,
3999 		struct kobj_attribute *attr, const char *buf, size_t count)
4000 {
4001 	char tmp[16];
4002 	int huge;
4003 
4004 	if (count + 1 > sizeof(tmp))
4005 		return -EINVAL;
4006 	memcpy(tmp, buf, count);
4007 	tmp[count] = '\0';
4008 	if (count && tmp[count - 1] == '\n')
4009 		tmp[count - 1] = '\0';
4010 
4011 	huge = shmem_parse_huge(tmp);
4012 	if (huge == -EINVAL)
4013 		return -EINVAL;
4014 	if (!has_transparent_hugepage() &&
4015 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4016 		return -EINVAL;
4017 
4018 	shmem_huge = huge;
4019 	if (shmem_huge < SHMEM_HUGE_DENY)
4020 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4021 	return count;
4022 }
4023 
4024 struct kobj_attribute shmem_enabled_attr =
4025 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4026 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4027 
4028 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4029 bool shmem_huge_enabled(struct vm_area_struct *vma)
4030 {
4031 	struct inode *inode = file_inode(vma->vm_file);
4032 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4033 	loff_t i_size;
4034 	pgoff_t off;
4035 
4036 	if (shmem_huge == SHMEM_HUGE_FORCE)
4037 		return true;
4038 	if (shmem_huge == SHMEM_HUGE_DENY)
4039 		return false;
4040 	switch (sbinfo->huge) {
4041 		case SHMEM_HUGE_NEVER:
4042 			return false;
4043 		case SHMEM_HUGE_ALWAYS:
4044 			return true;
4045 		case SHMEM_HUGE_WITHIN_SIZE:
4046 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4047 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4048 			if (i_size >= HPAGE_PMD_SIZE &&
4049 					i_size >> PAGE_SHIFT >= off)
4050 				return true;
4051 		case SHMEM_HUGE_ADVISE:
4052 			/* TODO: implement fadvise() hints */
4053 			return (vma->vm_flags & VM_HUGEPAGE);
4054 		default:
4055 			VM_BUG_ON(1);
4056 			return false;
4057 	}
4058 }
4059 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4060 
4061 #else /* !CONFIG_SHMEM */
4062 
4063 /*
4064  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4065  *
4066  * This is intended for small system where the benefits of the full
4067  * shmem code (swap-backed and resource-limited) are outweighed by
4068  * their complexity. On systems without swap this code should be
4069  * effectively equivalent, but much lighter weight.
4070  */
4071 
4072 static struct file_system_type shmem_fs_type = {
4073 	.name		= "tmpfs",
4074 	.mount		= ramfs_mount,
4075 	.kill_sb	= kill_litter_super,
4076 	.fs_flags	= FS_USERNS_MOUNT,
4077 };
4078 
4079 int __init shmem_init(void)
4080 {
4081 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4082 
4083 	shm_mnt = kern_mount(&shmem_fs_type);
4084 	BUG_ON(IS_ERR(shm_mnt));
4085 
4086 	return 0;
4087 }
4088 
4089 int shmem_unuse(swp_entry_t swap, struct page *page)
4090 {
4091 	return 0;
4092 }
4093 
4094 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4095 {
4096 	return 0;
4097 }
4098 
4099 void shmem_unlock_mapping(struct address_space *mapping)
4100 {
4101 }
4102 
4103 #ifdef CONFIG_MMU
4104 unsigned long shmem_get_unmapped_area(struct file *file,
4105 				      unsigned long addr, unsigned long len,
4106 				      unsigned long pgoff, unsigned long flags)
4107 {
4108 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4109 }
4110 #endif
4111 
4112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4113 {
4114 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4115 }
4116 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4117 
4118 #define shmem_vm_ops				generic_file_vm_ops
4119 #define shmem_file_operations			ramfs_file_operations
4120 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4121 #define shmem_acct_size(flags, size)		0
4122 #define shmem_unacct_size(flags, size)		do {} while (0)
4123 
4124 #endif /* CONFIG_SHMEM */
4125 
4126 /* common code */
4127 
4128 static const struct dentry_operations anon_ops = {
4129 	.d_dname = simple_dname
4130 };
4131 
4132 static struct file *__shmem_file_setup(const char *name, loff_t size,
4133 				       unsigned long flags, unsigned int i_flags)
4134 {
4135 	struct file *res;
4136 	struct inode *inode;
4137 	struct path path;
4138 	struct super_block *sb;
4139 	struct qstr this;
4140 
4141 	if (IS_ERR(shm_mnt))
4142 		return ERR_CAST(shm_mnt);
4143 
4144 	if (size < 0 || size > MAX_LFS_FILESIZE)
4145 		return ERR_PTR(-EINVAL);
4146 
4147 	if (shmem_acct_size(flags, size))
4148 		return ERR_PTR(-ENOMEM);
4149 
4150 	res = ERR_PTR(-ENOMEM);
4151 	this.name = name;
4152 	this.len = strlen(name);
4153 	this.hash = 0; /* will go */
4154 	sb = shm_mnt->mnt_sb;
4155 	path.mnt = mntget(shm_mnt);
4156 	path.dentry = d_alloc_pseudo(sb, &this);
4157 	if (!path.dentry)
4158 		goto put_memory;
4159 	d_set_d_op(path.dentry, &anon_ops);
4160 
4161 	res = ERR_PTR(-ENOSPC);
4162 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4163 	if (!inode)
4164 		goto put_memory;
4165 
4166 	inode->i_flags |= i_flags;
4167 	d_instantiate(path.dentry, inode);
4168 	inode->i_size = size;
4169 	clear_nlink(inode);	/* It is unlinked */
4170 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4171 	if (IS_ERR(res))
4172 		goto put_path;
4173 
4174 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4175 		  &shmem_file_operations);
4176 	if (IS_ERR(res))
4177 		goto put_path;
4178 
4179 	return res;
4180 
4181 put_memory:
4182 	shmem_unacct_size(flags, size);
4183 put_path:
4184 	path_put(&path);
4185 	return res;
4186 }
4187 
4188 /**
4189  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4190  * 	kernel internal.  There will be NO LSM permission checks against the
4191  * 	underlying inode.  So users of this interface must do LSM checks at a
4192  *	higher layer.  The users are the big_key and shm implementations.  LSM
4193  *	checks are provided at the key or shm level rather than the inode.
4194  * @name: name for dentry (to be seen in /proc/<pid>/maps
4195  * @size: size to be set for the file
4196  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4197  */
4198 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4199 {
4200 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4201 }
4202 
4203 /**
4204  * shmem_file_setup - get an unlinked file living in tmpfs
4205  * @name: name for dentry (to be seen in /proc/<pid>/maps
4206  * @size: size to be set for the file
4207  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4208  */
4209 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4210 {
4211 	return __shmem_file_setup(name, size, flags, 0);
4212 }
4213 EXPORT_SYMBOL_GPL(shmem_file_setup);
4214 
4215 /**
4216  * shmem_zero_setup - setup a shared anonymous mapping
4217  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4218  */
4219 int shmem_zero_setup(struct vm_area_struct *vma)
4220 {
4221 	struct file *file;
4222 	loff_t size = vma->vm_end - vma->vm_start;
4223 
4224 	/*
4225 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4226 	 * between XFS directory reading and selinux: since this file is only
4227 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4228 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4229 	 */
4230 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4231 	if (IS_ERR(file))
4232 		return PTR_ERR(file);
4233 
4234 	if (vma->vm_file)
4235 		fput(vma->vm_file);
4236 	vma->vm_file = file;
4237 	vma->vm_ops = &shmem_vm_ops;
4238 
4239 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4240 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4241 			(vma->vm_end & HPAGE_PMD_MASK)) {
4242 		khugepaged_enter(vma, vma->vm_flags);
4243 	}
4244 
4245 	return 0;
4246 }
4247 
4248 /**
4249  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4250  * @mapping:	the page's address_space
4251  * @index:	the page index
4252  * @gfp:	the page allocator flags to use if allocating
4253  *
4254  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4255  * with any new page allocations done using the specified allocation flags.
4256  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4257  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4258  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4259  *
4260  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4261  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4262  */
4263 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4264 					 pgoff_t index, gfp_t gfp)
4265 {
4266 #ifdef CONFIG_SHMEM
4267 	struct inode *inode = mapping->host;
4268 	struct page *page;
4269 	int error;
4270 
4271 	BUG_ON(mapping->a_ops != &shmem_aops);
4272 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4273 				  gfp, NULL, NULL, NULL);
4274 	if (error)
4275 		page = ERR_PTR(error);
4276 	else
4277 		unlock_page(page);
4278 	return page;
4279 #else
4280 	/*
4281 	 * The tiny !SHMEM case uses ramfs without swap
4282 	 */
4283 	return read_cache_page_gfp(mapping, index, gfp);
4284 #endif
4285 }
4286 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4287