1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 #include <linux/khugepaged.h> 36 37 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 38 39 static struct vfsmount *shm_mnt; 40 41 #ifdef CONFIG_SHMEM 42 /* 43 * This virtual memory filesystem is heavily based on the ramfs. It 44 * extends ramfs by the ability to use swap and honor resource limits 45 * which makes it a completely usable filesystem. 46 */ 47 48 #include <linux/xattr.h> 49 #include <linux/exportfs.h> 50 #include <linux/posix_acl.h> 51 #include <linux/posix_acl_xattr.h> 52 #include <linux/mman.h> 53 #include <linux/string.h> 54 #include <linux/slab.h> 55 #include <linux/backing-dev.h> 56 #include <linux/shmem_fs.h> 57 #include <linux/writeback.h> 58 #include <linux/blkdev.h> 59 #include <linux/pagevec.h> 60 #include <linux/percpu_counter.h> 61 #include <linux/falloc.h> 62 #include <linux/splice.h> 63 #include <linux/security.h> 64 #include <linux/swapops.h> 65 #include <linux/mempolicy.h> 66 #include <linux/namei.h> 67 #include <linux/ctype.h> 68 #include <linux/migrate.h> 69 #include <linux/highmem.h> 70 #include <linux/seq_file.h> 71 #include <linux/magic.h> 72 #include <linux/syscalls.h> 73 #include <linux/fcntl.h> 74 #include <uapi/linux/memfd.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/rmap.h> 77 78 #include <linux/uaccess.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 84 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 85 86 /* Pretend that each entry is of this size in directory's i_size */ 87 #define BOGO_DIRENT_SIZE 20 88 89 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 90 #define SHORT_SYMLINK_LEN 128 91 92 /* 93 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 94 * inode->i_private (with i_mutex making sure that it has only one user at 95 * a time): we would prefer not to enlarge the shmem inode just for that. 96 */ 97 struct shmem_falloc { 98 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 99 pgoff_t start; /* start of range currently being fallocated */ 100 pgoff_t next; /* the next page offset to be fallocated */ 101 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 102 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 103 }; 104 105 #ifdef CONFIG_TMPFS 106 static unsigned long shmem_default_max_blocks(void) 107 { 108 return totalram_pages / 2; 109 } 110 111 static unsigned long shmem_default_max_inodes(void) 112 { 113 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 114 } 115 #endif 116 117 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 118 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 119 struct shmem_inode_info *info, pgoff_t index); 120 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 121 struct page **pagep, enum sgp_type sgp, 122 gfp_t gfp, struct vm_area_struct *vma, 123 struct vm_fault *vmf, int *fault_type); 124 125 int shmem_getpage(struct inode *inode, pgoff_t index, 126 struct page **pagep, enum sgp_type sgp) 127 { 128 return shmem_getpage_gfp(inode, index, pagep, sgp, 129 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 130 } 131 132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 133 { 134 return sb->s_fs_info; 135 } 136 137 /* 138 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 139 * for shared memory and for shared anonymous (/dev/zero) mappings 140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 141 * consistent with the pre-accounting of private mappings ... 142 */ 143 static inline int shmem_acct_size(unsigned long flags, loff_t size) 144 { 145 return (flags & VM_NORESERVE) ? 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 147 } 148 149 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 150 { 151 if (!(flags & VM_NORESERVE)) 152 vm_unacct_memory(VM_ACCT(size)); 153 } 154 155 static inline int shmem_reacct_size(unsigned long flags, 156 loff_t oldsize, loff_t newsize) 157 { 158 if (!(flags & VM_NORESERVE)) { 159 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 160 return security_vm_enough_memory_mm(current->mm, 161 VM_ACCT(newsize) - VM_ACCT(oldsize)); 162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 164 } 165 return 0; 166 } 167 168 /* 169 * ... whereas tmpfs objects are accounted incrementally as 170 * pages are allocated, in order to allow large sparse files. 171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 173 */ 174 static inline int shmem_acct_block(unsigned long flags, long pages) 175 { 176 if (!(flags & VM_NORESERVE)) 177 return 0; 178 179 return security_vm_enough_memory_mm(current->mm, 180 pages * VM_ACCT(PAGE_SIZE)); 181 } 182 183 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 184 { 185 if (flags & VM_NORESERVE) 186 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 187 } 188 189 static const struct super_operations shmem_ops; 190 static const struct address_space_operations shmem_aops; 191 static const struct file_operations shmem_file_operations; 192 static const struct inode_operations shmem_inode_operations; 193 static const struct inode_operations shmem_dir_inode_operations; 194 static const struct inode_operations shmem_special_inode_operations; 195 static const struct vm_operations_struct shmem_vm_ops; 196 static struct file_system_type shmem_fs_type; 197 198 bool vma_is_shmem(struct vm_area_struct *vma) 199 { 200 return vma->vm_ops == &shmem_vm_ops; 201 } 202 203 static LIST_HEAD(shmem_swaplist); 204 static DEFINE_MUTEX(shmem_swaplist_mutex); 205 206 static int shmem_reserve_inode(struct super_block *sb) 207 { 208 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 209 if (sbinfo->max_inodes) { 210 spin_lock(&sbinfo->stat_lock); 211 if (!sbinfo->free_inodes) { 212 spin_unlock(&sbinfo->stat_lock); 213 return -ENOSPC; 214 } 215 sbinfo->free_inodes--; 216 spin_unlock(&sbinfo->stat_lock); 217 } 218 return 0; 219 } 220 221 static void shmem_free_inode(struct super_block *sb) 222 { 223 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 224 if (sbinfo->max_inodes) { 225 spin_lock(&sbinfo->stat_lock); 226 sbinfo->free_inodes++; 227 spin_unlock(&sbinfo->stat_lock); 228 } 229 } 230 231 /** 232 * shmem_recalc_inode - recalculate the block usage of an inode 233 * @inode: inode to recalc 234 * 235 * We have to calculate the free blocks since the mm can drop 236 * undirtied hole pages behind our back. 237 * 238 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 239 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 240 * 241 * It has to be called with the spinlock held. 242 */ 243 static void shmem_recalc_inode(struct inode *inode) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 long freed; 247 248 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 249 if (freed > 0) { 250 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 251 if (sbinfo->max_blocks) 252 percpu_counter_add(&sbinfo->used_blocks, -freed); 253 info->alloced -= freed; 254 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 255 shmem_unacct_blocks(info->flags, freed); 256 } 257 } 258 259 bool shmem_charge(struct inode *inode, long pages) 260 { 261 struct shmem_inode_info *info = SHMEM_I(inode); 262 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 263 unsigned long flags; 264 265 if (shmem_acct_block(info->flags, pages)) 266 return false; 267 spin_lock_irqsave(&info->lock, flags); 268 info->alloced += pages; 269 inode->i_blocks += pages * BLOCKS_PER_PAGE; 270 shmem_recalc_inode(inode); 271 spin_unlock_irqrestore(&info->lock, flags); 272 inode->i_mapping->nrpages += pages; 273 274 if (!sbinfo->max_blocks) 275 return true; 276 if (percpu_counter_compare(&sbinfo->used_blocks, 277 sbinfo->max_blocks - pages) > 0) { 278 inode->i_mapping->nrpages -= pages; 279 spin_lock_irqsave(&info->lock, flags); 280 info->alloced -= pages; 281 shmem_recalc_inode(inode); 282 spin_unlock_irqrestore(&info->lock, flags); 283 shmem_unacct_blocks(info->flags, pages); 284 return false; 285 } 286 percpu_counter_add(&sbinfo->used_blocks, pages); 287 return true; 288 } 289 290 void shmem_uncharge(struct inode *inode, long pages) 291 { 292 struct shmem_inode_info *info = SHMEM_I(inode); 293 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 294 unsigned long flags; 295 296 spin_lock_irqsave(&info->lock, flags); 297 info->alloced -= pages; 298 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 299 shmem_recalc_inode(inode); 300 spin_unlock_irqrestore(&info->lock, flags); 301 302 if (sbinfo->max_blocks) 303 percpu_counter_sub(&sbinfo->used_blocks, pages); 304 shmem_unacct_blocks(info->flags, pages); 305 } 306 307 /* 308 * Replace item expected in radix tree by a new item, while holding tree lock. 309 */ 310 static int shmem_radix_tree_replace(struct address_space *mapping, 311 pgoff_t index, void *expected, void *replacement) 312 { 313 struct radix_tree_node *node; 314 void **pslot; 315 void *item; 316 317 VM_BUG_ON(!expected); 318 VM_BUG_ON(!replacement); 319 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot); 320 if (!item) 321 return -ENOENT; 322 if (item != expected) 323 return -ENOENT; 324 __radix_tree_replace(&mapping->page_tree, node, pslot, 325 replacement, NULL, NULL); 326 return 0; 327 } 328 329 /* 330 * Sometimes, before we decide whether to proceed or to fail, we must check 331 * that an entry was not already brought back from swap by a racing thread. 332 * 333 * Checking page is not enough: by the time a SwapCache page is locked, it 334 * might be reused, and again be SwapCache, using the same swap as before. 335 */ 336 static bool shmem_confirm_swap(struct address_space *mapping, 337 pgoff_t index, swp_entry_t swap) 338 { 339 void *item; 340 341 rcu_read_lock(); 342 item = radix_tree_lookup(&mapping->page_tree, index); 343 rcu_read_unlock(); 344 return item == swp_to_radix_entry(swap); 345 } 346 347 /* 348 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 349 * 350 * SHMEM_HUGE_NEVER: 351 * disables huge pages for the mount; 352 * SHMEM_HUGE_ALWAYS: 353 * enables huge pages for the mount; 354 * SHMEM_HUGE_WITHIN_SIZE: 355 * only allocate huge pages if the page will be fully within i_size, 356 * also respect fadvise()/madvise() hints; 357 * SHMEM_HUGE_ADVISE: 358 * only allocate huge pages if requested with fadvise()/madvise(); 359 */ 360 361 #define SHMEM_HUGE_NEVER 0 362 #define SHMEM_HUGE_ALWAYS 1 363 #define SHMEM_HUGE_WITHIN_SIZE 2 364 #define SHMEM_HUGE_ADVISE 3 365 366 /* 367 * Special values. 368 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 369 * 370 * SHMEM_HUGE_DENY: 371 * disables huge on shm_mnt and all mounts, for emergency use; 372 * SHMEM_HUGE_FORCE: 373 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 374 * 375 */ 376 #define SHMEM_HUGE_DENY (-1) 377 #define SHMEM_HUGE_FORCE (-2) 378 379 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 380 /* ifdef here to avoid bloating shmem.o when not necessary */ 381 382 int shmem_huge __read_mostly; 383 384 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 385 static int shmem_parse_huge(const char *str) 386 { 387 if (!strcmp(str, "never")) 388 return SHMEM_HUGE_NEVER; 389 if (!strcmp(str, "always")) 390 return SHMEM_HUGE_ALWAYS; 391 if (!strcmp(str, "within_size")) 392 return SHMEM_HUGE_WITHIN_SIZE; 393 if (!strcmp(str, "advise")) 394 return SHMEM_HUGE_ADVISE; 395 if (!strcmp(str, "deny")) 396 return SHMEM_HUGE_DENY; 397 if (!strcmp(str, "force")) 398 return SHMEM_HUGE_FORCE; 399 return -EINVAL; 400 } 401 402 static const char *shmem_format_huge(int huge) 403 { 404 switch (huge) { 405 case SHMEM_HUGE_NEVER: 406 return "never"; 407 case SHMEM_HUGE_ALWAYS: 408 return "always"; 409 case SHMEM_HUGE_WITHIN_SIZE: 410 return "within_size"; 411 case SHMEM_HUGE_ADVISE: 412 return "advise"; 413 case SHMEM_HUGE_DENY: 414 return "deny"; 415 case SHMEM_HUGE_FORCE: 416 return "force"; 417 default: 418 VM_BUG_ON(1); 419 return "bad_val"; 420 } 421 } 422 #endif 423 424 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 425 struct shrink_control *sc, unsigned long nr_to_split) 426 { 427 LIST_HEAD(list), *pos, *next; 428 LIST_HEAD(to_remove); 429 struct inode *inode; 430 struct shmem_inode_info *info; 431 struct page *page; 432 unsigned long batch = sc ? sc->nr_to_scan : 128; 433 int removed = 0, split = 0; 434 435 if (list_empty(&sbinfo->shrinklist)) 436 return SHRINK_STOP; 437 438 spin_lock(&sbinfo->shrinklist_lock); 439 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 440 info = list_entry(pos, struct shmem_inode_info, shrinklist); 441 442 /* pin the inode */ 443 inode = igrab(&info->vfs_inode); 444 445 /* inode is about to be evicted */ 446 if (!inode) { 447 list_del_init(&info->shrinklist); 448 removed++; 449 goto next; 450 } 451 452 /* Check if there's anything to gain */ 453 if (round_up(inode->i_size, PAGE_SIZE) == 454 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 455 list_move(&info->shrinklist, &to_remove); 456 removed++; 457 goto next; 458 } 459 460 list_move(&info->shrinklist, &list); 461 next: 462 if (!--batch) 463 break; 464 } 465 spin_unlock(&sbinfo->shrinklist_lock); 466 467 list_for_each_safe(pos, next, &to_remove) { 468 info = list_entry(pos, struct shmem_inode_info, shrinklist); 469 inode = &info->vfs_inode; 470 list_del_init(&info->shrinklist); 471 iput(inode); 472 } 473 474 list_for_each_safe(pos, next, &list) { 475 int ret; 476 477 info = list_entry(pos, struct shmem_inode_info, shrinklist); 478 inode = &info->vfs_inode; 479 480 if (nr_to_split && split >= nr_to_split) { 481 iput(inode); 482 continue; 483 } 484 485 page = find_lock_page(inode->i_mapping, 486 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 487 if (!page) 488 goto drop; 489 490 if (!PageTransHuge(page)) { 491 unlock_page(page); 492 put_page(page); 493 goto drop; 494 } 495 496 ret = split_huge_page(page); 497 unlock_page(page); 498 put_page(page); 499 500 if (ret) { 501 /* split failed: leave it on the list */ 502 iput(inode); 503 continue; 504 } 505 506 split++; 507 drop: 508 list_del_init(&info->shrinklist); 509 removed++; 510 iput(inode); 511 } 512 513 spin_lock(&sbinfo->shrinklist_lock); 514 list_splice_tail(&list, &sbinfo->shrinklist); 515 sbinfo->shrinklist_len -= removed; 516 spin_unlock(&sbinfo->shrinklist_lock); 517 518 return split; 519 } 520 521 static long shmem_unused_huge_scan(struct super_block *sb, 522 struct shrink_control *sc) 523 { 524 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 525 526 if (!READ_ONCE(sbinfo->shrinklist_len)) 527 return SHRINK_STOP; 528 529 return shmem_unused_huge_shrink(sbinfo, sc, 0); 530 } 531 532 static long shmem_unused_huge_count(struct super_block *sb, 533 struct shrink_control *sc) 534 { 535 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 536 return READ_ONCE(sbinfo->shrinklist_len); 537 } 538 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 539 540 #define shmem_huge SHMEM_HUGE_DENY 541 542 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 543 struct shrink_control *sc, unsigned long nr_to_split) 544 { 545 return 0; 546 } 547 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 548 549 /* 550 * Like add_to_page_cache_locked, but error if expected item has gone. 551 */ 552 static int shmem_add_to_page_cache(struct page *page, 553 struct address_space *mapping, 554 pgoff_t index, void *expected) 555 { 556 int error, nr = hpage_nr_pages(page); 557 558 VM_BUG_ON_PAGE(PageTail(page), page); 559 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 560 VM_BUG_ON_PAGE(!PageLocked(page), page); 561 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 562 VM_BUG_ON(expected && PageTransHuge(page)); 563 564 page_ref_add(page, nr); 565 page->mapping = mapping; 566 page->index = index; 567 568 spin_lock_irq(&mapping->tree_lock); 569 if (PageTransHuge(page)) { 570 void __rcu **results; 571 pgoff_t idx; 572 int i; 573 574 error = 0; 575 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 576 &results, &idx, index, 1) && 577 idx < index + HPAGE_PMD_NR) { 578 error = -EEXIST; 579 } 580 581 if (!error) { 582 for (i = 0; i < HPAGE_PMD_NR; i++) { 583 error = radix_tree_insert(&mapping->page_tree, 584 index + i, page + i); 585 VM_BUG_ON(error); 586 } 587 count_vm_event(THP_FILE_ALLOC); 588 } 589 } else if (!expected) { 590 error = radix_tree_insert(&mapping->page_tree, index, page); 591 } else { 592 error = shmem_radix_tree_replace(mapping, index, expected, 593 page); 594 } 595 596 if (!error) { 597 mapping->nrpages += nr; 598 if (PageTransHuge(page)) 599 __inc_node_page_state(page, NR_SHMEM_THPS); 600 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 601 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 602 spin_unlock_irq(&mapping->tree_lock); 603 } else { 604 page->mapping = NULL; 605 spin_unlock_irq(&mapping->tree_lock); 606 page_ref_sub(page, nr); 607 } 608 return error; 609 } 610 611 /* 612 * Like delete_from_page_cache, but substitutes swap for page. 613 */ 614 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 615 { 616 struct address_space *mapping = page->mapping; 617 int error; 618 619 VM_BUG_ON_PAGE(PageCompound(page), page); 620 621 spin_lock_irq(&mapping->tree_lock); 622 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 623 page->mapping = NULL; 624 mapping->nrpages--; 625 __dec_node_page_state(page, NR_FILE_PAGES); 626 __dec_node_page_state(page, NR_SHMEM); 627 spin_unlock_irq(&mapping->tree_lock); 628 put_page(page); 629 BUG_ON(error); 630 } 631 632 /* 633 * Remove swap entry from radix tree, free the swap and its page cache. 634 */ 635 static int shmem_free_swap(struct address_space *mapping, 636 pgoff_t index, void *radswap) 637 { 638 void *old; 639 640 spin_lock_irq(&mapping->tree_lock); 641 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 642 spin_unlock_irq(&mapping->tree_lock); 643 if (old != radswap) 644 return -ENOENT; 645 free_swap_and_cache(radix_to_swp_entry(radswap)); 646 return 0; 647 } 648 649 /* 650 * Determine (in bytes) how many of the shmem object's pages mapped by the 651 * given offsets are swapped out. 652 * 653 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 654 * as long as the inode doesn't go away and racy results are not a problem. 655 */ 656 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 657 pgoff_t start, pgoff_t end) 658 { 659 struct radix_tree_iter iter; 660 void **slot; 661 struct page *page; 662 unsigned long swapped = 0; 663 664 rcu_read_lock(); 665 666 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 667 if (iter.index >= end) 668 break; 669 670 page = radix_tree_deref_slot(slot); 671 672 if (radix_tree_deref_retry(page)) { 673 slot = radix_tree_iter_retry(&iter); 674 continue; 675 } 676 677 if (radix_tree_exceptional_entry(page)) 678 swapped++; 679 680 if (need_resched()) { 681 slot = radix_tree_iter_resume(slot, &iter); 682 cond_resched_rcu(); 683 } 684 } 685 686 rcu_read_unlock(); 687 688 return swapped << PAGE_SHIFT; 689 } 690 691 /* 692 * Determine (in bytes) how many of the shmem object's pages mapped by the 693 * given vma is swapped out. 694 * 695 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 696 * as long as the inode doesn't go away and racy results are not a problem. 697 */ 698 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 699 { 700 struct inode *inode = file_inode(vma->vm_file); 701 struct shmem_inode_info *info = SHMEM_I(inode); 702 struct address_space *mapping = inode->i_mapping; 703 unsigned long swapped; 704 705 /* Be careful as we don't hold info->lock */ 706 swapped = READ_ONCE(info->swapped); 707 708 /* 709 * The easier cases are when the shmem object has nothing in swap, or 710 * the vma maps it whole. Then we can simply use the stats that we 711 * already track. 712 */ 713 if (!swapped) 714 return 0; 715 716 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 717 return swapped << PAGE_SHIFT; 718 719 /* Here comes the more involved part */ 720 return shmem_partial_swap_usage(mapping, 721 linear_page_index(vma, vma->vm_start), 722 linear_page_index(vma, vma->vm_end)); 723 } 724 725 /* 726 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 727 */ 728 void shmem_unlock_mapping(struct address_space *mapping) 729 { 730 struct pagevec pvec; 731 pgoff_t indices[PAGEVEC_SIZE]; 732 pgoff_t index = 0; 733 734 pagevec_init(&pvec, 0); 735 /* 736 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 737 */ 738 while (!mapping_unevictable(mapping)) { 739 /* 740 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 741 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 742 */ 743 pvec.nr = find_get_entries(mapping, index, 744 PAGEVEC_SIZE, pvec.pages, indices); 745 if (!pvec.nr) 746 break; 747 index = indices[pvec.nr - 1] + 1; 748 pagevec_remove_exceptionals(&pvec); 749 check_move_unevictable_pages(pvec.pages, pvec.nr); 750 pagevec_release(&pvec); 751 cond_resched(); 752 } 753 } 754 755 /* 756 * Remove range of pages and swap entries from radix tree, and free them. 757 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 758 */ 759 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 760 bool unfalloc) 761 { 762 struct address_space *mapping = inode->i_mapping; 763 struct shmem_inode_info *info = SHMEM_I(inode); 764 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 765 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 766 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 767 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 768 struct pagevec pvec; 769 pgoff_t indices[PAGEVEC_SIZE]; 770 long nr_swaps_freed = 0; 771 pgoff_t index; 772 int i; 773 774 if (lend == -1) 775 end = -1; /* unsigned, so actually very big */ 776 777 pagevec_init(&pvec, 0); 778 index = start; 779 while (index < end) { 780 pvec.nr = find_get_entries(mapping, index, 781 min(end - index, (pgoff_t)PAGEVEC_SIZE), 782 pvec.pages, indices); 783 if (!pvec.nr) 784 break; 785 for (i = 0; i < pagevec_count(&pvec); i++) { 786 struct page *page = pvec.pages[i]; 787 788 index = indices[i]; 789 if (index >= end) 790 break; 791 792 if (radix_tree_exceptional_entry(page)) { 793 if (unfalloc) 794 continue; 795 nr_swaps_freed += !shmem_free_swap(mapping, 796 index, page); 797 continue; 798 } 799 800 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 801 802 if (!trylock_page(page)) 803 continue; 804 805 if (PageTransTail(page)) { 806 /* Middle of THP: zero out the page */ 807 clear_highpage(page); 808 unlock_page(page); 809 continue; 810 } else if (PageTransHuge(page)) { 811 if (index == round_down(end, HPAGE_PMD_NR)) { 812 /* 813 * Range ends in the middle of THP: 814 * zero out the page 815 */ 816 clear_highpage(page); 817 unlock_page(page); 818 continue; 819 } 820 index += HPAGE_PMD_NR - 1; 821 i += HPAGE_PMD_NR - 1; 822 } 823 824 if (!unfalloc || !PageUptodate(page)) { 825 VM_BUG_ON_PAGE(PageTail(page), page); 826 if (page_mapping(page) == mapping) { 827 VM_BUG_ON_PAGE(PageWriteback(page), page); 828 truncate_inode_page(mapping, page); 829 } 830 } 831 unlock_page(page); 832 } 833 pagevec_remove_exceptionals(&pvec); 834 pagevec_release(&pvec); 835 cond_resched(); 836 index++; 837 } 838 839 if (partial_start) { 840 struct page *page = NULL; 841 shmem_getpage(inode, start - 1, &page, SGP_READ); 842 if (page) { 843 unsigned int top = PAGE_SIZE; 844 if (start > end) { 845 top = partial_end; 846 partial_end = 0; 847 } 848 zero_user_segment(page, partial_start, top); 849 set_page_dirty(page); 850 unlock_page(page); 851 put_page(page); 852 } 853 } 854 if (partial_end) { 855 struct page *page = NULL; 856 shmem_getpage(inode, end, &page, SGP_READ); 857 if (page) { 858 zero_user_segment(page, 0, partial_end); 859 set_page_dirty(page); 860 unlock_page(page); 861 put_page(page); 862 } 863 } 864 if (start >= end) 865 return; 866 867 index = start; 868 while (index < end) { 869 cond_resched(); 870 871 pvec.nr = find_get_entries(mapping, index, 872 min(end - index, (pgoff_t)PAGEVEC_SIZE), 873 pvec.pages, indices); 874 if (!pvec.nr) { 875 /* If all gone or hole-punch or unfalloc, we're done */ 876 if (index == start || end != -1) 877 break; 878 /* But if truncating, restart to make sure all gone */ 879 index = start; 880 continue; 881 } 882 for (i = 0; i < pagevec_count(&pvec); i++) { 883 struct page *page = pvec.pages[i]; 884 885 index = indices[i]; 886 if (index >= end) 887 break; 888 889 if (radix_tree_exceptional_entry(page)) { 890 if (unfalloc) 891 continue; 892 if (shmem_free_swap(mapping, index, page)) { 893 /* Swap was replaced by page: retry */ 894 index--; 895 break; 896 } 897 nr_swaps_freed++; 898 continue; 899 } 900 901 lock_page(page); 902 903 if (PageTransTail(page)) { 904 /* Middle of THP: zero out the page */ 905 clear_highpage(page); 906 unlock_page(page); 907 /* 908 * Partial thp truncate due 'start' in middle 909 * of THP: don't need to look on these pages 910 * again on !pvec.nr restart. 911 */ 912 if (index != round_down(end, HPAGE_PMD_NR)) 913 start++; 914 continue; 915 } else if (PageTransHuge(page)) { 916 if (index == round_down(end, HPAGE_PMD_NR)) { 917 /* 918 * Range ends in the middle of THP: 919 * zero out the page 920 */ 921 clear_highpage(page); 922 unlock_page(page); 923 continue; 924 } 925 index += HPAGE_PMD_NR - 1; 926 i += HPAGE_PMD_NR - 1; 927 } 928 929 if (!unfalloc || !PageUptodate(page)) { 930 VM_BUG_ON_PAGE(PageTail(page), page); 931 if (page_mapping(page) == mapping) { 932 VM_BUG_ON_PAGE(PageWriteback(page), page); 933 truncate_inode_page(mapping, page); 934 } else { 935 /* Page was replaced by swap: retry */ 936 unlock_page(page); 937 index--; 938 break; 939 } 940 } 941 unlock_page(page); 942 } 943 pagevec_remove_exceptionals(&pvec); 944 pagevec_release(&pvec); 945 index++; 946 } 947 948 spin_lock_irq(&info->lock); 949 info->swapped -= nr_swaps_freed; 950 shmem_recalc_inode(inode); 951 spin_unlock_irq(&info->lock); 952 } 953 954 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 955 { 956 shmem_undo_range(inode, lstart, lend, false); 957 inode->i_ctime = inode->i_mtime = current_time(inode); 958 } 959 EXPORT_SYMBOL_GPL(shmem_truncate_range); 960 961 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 962 struct kstat *stat) 963 { 964 struct inode *inode = dentry->d_inode; 965 struct shmem_inode_info *info = SHMEM_I(inode); 966 967 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 968 spin_lock_irq(&info->lock); 969 shmem_recalc_inode(inode); 970 spin_unlock_irq(&info->lock); 971 } 972 generic_fillattr(inode, stat); 973 return 0; 974 } 975 976 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 977 { 978 struct inode *inode = d_inode(dentry); 979 struct shmem_inode_info *info = SHMEM_I(inode); 980 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 981 int error; 982 983 error = setattr_prepare(dentry, attr); 984 if (error) 985 return error; 986 987 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 988 loff_t oldsize = inode->i_size; 989 loff_t newsize = attr->ia_size; 990 991 /* protected by i_mutex */ 992 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 993 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 994 return -EPERM; 995 996 if (newsize != oldsize) { 997 error = shmem_reacct_size(SHMEM_I(inode)->flags, 998 oldsize, newsize); 999 if (error) 1000 return error; 1001 i_size_write(inode, newsize); 1002 inode->i_ctime = inode->i_mtime = current_time(inode); 1003 } 1004 if (newsize <= oldsize) { 1005 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1006 if (oldsize > holebegin) 1007 unmap_mapping_range(inode->i_mapping, 1008 holebegin, 0, 1); 1009 if (info->alloced) 1010 shmem_truncate_range(inode, 1011 newsize, (loff_t)-1); 1012 /* unmap again to remove racily COWed private pages */ 1013 if (oldsize > holebegin) 1014 unmap_mapping_range(inode->i_mapping, 1015 holebegin, 0, 1); 1016 1017 /* 1018 * Part of the huge page can be beyond i_size: subject 1019 * to shrink under memory pressure. 1020 */ 1021 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1022 spin_lock(&sbinfo->shrinklist_lock); 1023 if (list_empty(&info->shrinklist)) { 1024 list_add_tail(&info->shrinklist, 1025 &sbinfo->shrinklist); 1026 sbinfo->shrinklist_len++; 1027 } 1028 spin_unlock(&sbinfo->shrinklist_lock); 1029 } 1030 } 1031 } 1032 1033 setattr_copy(inode, attr); 1034 if (attr->ia_valid & ATTR_MODE) 1035 error = posix_acl_chmod(inode, inode->i_mode); 1036 return error; 1037 } 1038 1039 static void shmem_evict_inode(struct inode *inode) 1040 { 1041 struct shmem_inode_info *info = SHMEM_I(inode); 1042 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1043 1044 if (inode->i_mapping->a_ops == &shmem_aops) { 1045 shmem_unacct_size(info->flags, inode->i_size); 1046 inode->i_size = 0; 1047 shmem_truncate_range(inode, 0, (loff_t)-1); 1048 if (!list_empty(&info->shrinklist)) { 1049 spin_lock(&sbinfo->shrinklist_lock); 1050 if (!list_empty(&info->shrinklist)) { 1051 list_del_init(&info->shrinklist); 1052 sbinfo->shrinklist_len--; 1053 } 1054 spin_unlock(&sbinfo->shrinklist_lock); 1055 } 1056 if (!list_empty(&info->swaplist)) { 1057 mutex_lock(&shmem_swaplist_mutex); 1058 list_del_init(&info->swaplist); 1059 mutex_unlock(&shmem_swaplist_mutex); 1060 } 1061 } 1062 1063 simple_xattrs_free(&info->xattrs); 1064 WARN_ON(inode->i_blocks); 1065 shmem_free_inode(inode->i_sb); 1066 clear_inode(inode); 1067 } 1068 1069 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1070 { 1071 struct radix_tree_iter iter; 1072 void **slot; 1073 unsigned long found = -1; 1074 unsigned int checked = 0; 1075 1076 rcu_read_lock(); 1077 radix_tree_for_each_slot(slot, root, &iter, 0) { 1078 if (*slot == item) { 1079 found = iter.index; 1080 break; 1081 } 1082 checked++; 1083 if ((checked % 4096) != 0) 1084 continue; 1085 slot = radix_tree_iter_resume(slot, &iter); 1086 cond_resched_rcu(); 1087 } 1088 1089 rcu_read_unlock(); 1090 return found; 1091 } 1092 1093 /* 1094 * If swap found in inode, free it and move page from swapcache to filecache. 1095 */ 1096 static int shmem_unuse_inode(struct shmem_inode_info *info, 1097 swp_entry_t swap, struct page **pagep) 1098 { 1099 struct address_space *mapping = info->vfs_inode.i_mapping; 1100 void *radswap; 1101 pgoff_t index; 1102 gfp_t gfp; 1103 int error = 0; 1104 1105 radswap = swp_to_radix_entry(swap); 1106 index = find_swap_entry(&mapping->page_tree, radswap); 1107 if (index == -1) 1108 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1109 1110 /* 1111 * Move _head_ to start search for next from here. 1112 * But be careful: shmem_evict_inode checks list_empty without taking 1113 * mutex, and there's an instant in list_move_tail when info->swaplist 1114 * would appear empty, if it were the only one on shmem_swaplist. 1115 */ 1116 if (shmem_swaplist.next != &info->swaplist) 1117 list_move_tail(&shmem_swaplist, &info->swaplist); 1118 1119 gfp = mapping_gfp_mask(mapping); 1120 if (shmem_should_replace_page(*pagep, gfp)) { 1121 mutex_unlock(&shmem_swaplist_mutex); 1122 error = shmem_replace_page(pagep, gfp, info, index); 1123 mutex_lock(&shmem_swaplist_mutex); 1124 /* 1125 * We needed to drop mutex to make that restrictive page 1126 * allocation, but the inode might have been freed while we 1127 * dropped it: although a racing shmem_evict_inode() cannot 1128 * complete without emptying the radix_tree, our page lock 1129 * on this swapcache page is not enough to prevent that - 1130 * free_swap_and_cache() of our swap entry will only 1131 * trylock_page(), removing swap from radix_tree whatever. 1132 * 1133 * We must not proceed to shmem_add_to_page_cache() if the 1134 * inode has been freed, but of course we cannot rely on 1135 * inode or mapping or info to check that. However, we can 1136 * safely check if our swap entry is still in use (and here 1137 * it can't have got reused for another page): if it's still 1138 * in use, then the inode cannot have been freed yet, and we 1139 * can safely proceed (if it's no longer in use, that tells 1140 * nothing about the inode, but we don't need to unuse swap). 1141 */ 1142 if (!page_swapcount(*pagep)) 1143 error = -ENOENT; 1144 } 1145 1146 /* 1147 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1148 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1149 * beneath us (pagelock doesn't help until the page is in pagecache). 1150 */ 1151 if (!error) 1152 error = shmem_add_to_page_cache(*pagep, mapping, index, 1153 radswap); 1154 if (error != -ENOMEM) { 1155 /* 1156 * Truncation and eviction use free_swap_and_cache(), which 1157 * only does trylock page: if we raced, best clean up here. 1158 */ 1159 delete_from_swap_cache(*pagep); 1160 set_page_dirty(*pagep); 1161 if (!error) { 1162 spin_lock_irq(&info->lock); 1163 info->swapped--; 1164 spin_unlock_irq(&info->lock); 1165 swap_free(swap); 1166 } 1167 } 1168 return error; 1169 } 1170 1171 /* 1172 * Search through swapped inodes to find and replace swap by page. 1173 */ 1174 int shmem_unuse(swp_entry_t swap, struct page *page) 1175 { 1176 struct list_head *this, *next; 1177 struct shmem_inode_info *info; 1178 struct mem_cgroup *memcg; 1179 int error = 0; 1180 1181 /* 1182 * There's a faint possibility that swap page was replaced before 1183 * caller locked it: caller will come back later with the right page. 1184 */ 1185 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1186 goto out; 1187 1188 /* 1189 * Charge page using GFP_KERNEL while we can wait, before taking 1190 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1191 * Charged back to the user (not to caller) when swap account is used. 1192 */ 1193 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1194 false); 1195 if (error) 1196 goto out; 1197 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1198 error = -EAGAIN; 1199 1200 mutex_lock(&shmem_swaplist_mutex); 1201 list_for_each_safe(this, next, &shmem_swaplist) { 1202 info = list_entry(this, struct shmem_inode_info, swaplist); 1203 if (info->swapped) 1204 error = shmem_unuse_inode(info, swap, &page); 1205 else 1206 list_del_init(&info->swaplist); 1207 cond_resched(); 1208 if (error != -EAGAIN) 1209 break; 1210 /* found nothing in this: move on to search the next */ 1211 } 1212 mutex_unlock(&shmem_swaplist_mutex); 1213 1214 if (error) { 1215 if (error != -ENOMEM) 1216 error = 0; 1217 mem_cgroup_cancel_charge(page, memcg, false); 1218 } else 1219 mem_cgroup_commit_charge(page, memcg, true, false); 1220 out: 1221 unlock_page(page); 1222 put_page(page); 1223 return error; 1224 } 1225 1226 /* 1227 * Move the page from the page cache to the swap cache. 1228 */ 1229 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1230 { 1231 struct shmem_inode_info *info; 1232 struct address_space *mapping; 1233 struct inode *inode; 1234 swp_entry_t swap; 1235 pgoff_t index; 1236 1237 VM_BUG_ON_PAGE(PageCompound(page), page); 1238 BUG_ON(!PageLocked(page)); 1239 mapping = page->mapping; 1240 index = page->index; 1241 inode = mapping->host; 1242 info = SHMEM_I(inode); 1243 if (info->flags & VM_LOCKED) 1244 goto redirty; 1245 if (!total_swap_pages) 1246 goto redirty; 1247 1248 /* 1249 * Our capabilities prevent regular writeback or sync from ever calling 1250 * shmem_writepage; but a stacking filesystem might use ->writepage of 1251 * its underlying filesystem, in which case tmpfs should write out to 1252 * swap only in response to memory pressure, and not for the writeback 1253 * threads or sync. 1254 */ 1255 if (!wbc->for_reclaim) { 1256 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1257 goto redirty; 1258 } 1259 1260 /* 1261 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1262 * value into swapfile.c, the only way we can correctly account for a 1263 * fallocated page arriving here is now to initialize it and write it. 1264 * 1265 * That's okay for a page already fallocated earlier, but if we have 1266 * not yet completed the fallocation, then (a) we want to keep track 1267 * of this page in case we have to undo it, and (b) it may not be a 1268 * good idea to continue anyway, once we're pushing into swap. So 1269 * reactivate the page, and let shmem_fallocate() quit when too many. 1270 */ 1271 if (!PageUptodate(page)) { 1272 if (inode->i_private) { 1273 struct shmem_falloc *shmem_falloc; 1274 spin_lock(&inode->i_lock); 1275 shmem_falloc = inode->i_private; 1276 if (shmem_falloc && 1277 !shmem_falloc->waitq && 1278 index >= shmem_falloc->start && 1279 index < shmem_falloc->next) 1280 shmem_falloc->nr_unswapped++; 1281 else 1282 shmem_falloc = NULL; 1283 spin_unlock(&inode->i_lock); 1284 if (shmem_falloc) 1285 goto redirty; 1286 } 1287 clear_highpage(page); 1288 flush_dcache_page(page); 1289 SetPageUptodate(page); 1290 } 1291 1292 swap = get_swap_page(); 1293 if (!swap.val) 1294 goto redirty; 1295 1296 if (mem_cgroup_try_charge_swap(page, swap)) 1297 goto free_swap; 1298 1299 /* 1300 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1301 * if it's not already there. Do it now before the page is 1302 * moved to swap cache, when its pagelock no longer protects 1303 * the inode from eviction. But don't unlock the mutex until 1304 * we've incremented swapped, because shmem_unuse_inode() will 1305 * prune a !swapped inode from the swaplist under this mutex. 1306 */ 1307 mutex_lock(&shmem_swaplist_mutex); 1308 if (list_empty(&info->swaplist)) 1309 list_add_tail(&info->swaplist, &shmem_swaplist); 1310 1311 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1312 spin_lock_irq(&info->lock); 1313 shmem_recalc_inode(inode); 1314 info->swapped++; 1315 spin_unlock_irq(&info->lock); 1316 1317 swap_shmem_alloc(swap); 1318 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1319 1320 mutex_unlock(&shmem_swaplist_mutex); 1321 BUG_ON(page_mapped(page)); 1322 swap_writepage(page, wbc); 1323 return 0; 1324 } 1325 1326 mutex_unlock(&shmem_swaplist_mutex); 1327 free_swap: 1328 swapcache_free(swap); 1329 redirty: 1330 set_page_dirty(page); 1331 if (wbc->for_reclaim) 1332 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1333 unlock_page(page); 1334 return 0; 1335 } 1336 1337 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1338 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1339 { 1340 char buffer[64]; 1341 1342 if (!mpol || mpol->mode == MPOL_DEFAULT) 1343 return; /* show nothing */ 1344 1345 mpol_to_str(buffer, sizeof(buffer), mpol); 1346 1347 seq_printf(seq, ",mpol=%s", buffer); 1348 } 1349 1350 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1351 { 1352 struct mempolicy *mpol = NULL; 1353 if (sbinfo->mpol) { 1354 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1355 mpol = sbinfo->mpol; 1356 mpol_get(mpol); 1357 spin_unlock(&sbinfo->stat_lock); 1358 } 1359 return mpol; 1360 } 1361 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1362 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1363 { 1364 } 1365 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1366 { 1367 return NULL; 1368 } 1369 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1370 #ifndef CONFIG_NUMA 1371 #define vm_policy vm_private_data 1372 #endif 1373 1374 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1375 struct shmem_inode_info *info, pgoff_t index) 1376 { 1377 /* Create a pseudo vma that just contains the policy */ 1378 vma->vm_start = 0; 1379 /* Bias interleave by inode number to distribute better across nodes */ 1380 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1381 vma->vm_ops = NULL; 1382 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1383 } 1384 1385 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1386 { 1387 /* Drop reference taken by mpol_shared_policy_lookup() */ 1388 mpol_cond_put(vma->vm_policy); 1389 } 1390 1391 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1392 struct shmem_inode_info *info, pgoff_t index) 1393 { 1394 struct vm_area_struct pvma; 1395 struct page *page; 1396 1397 shmem_pseudo_vma_init(&pvma, info, index); 1398 page = swapin_readahead(swap, gfp, &pvma, 0); 1399 shmem_pseudo_vma_destroy(&pvma); 1400 1401 return page; 1402 } 1403 1404 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1405 struct shmem_inode_info *info, pgoff_t index) 1406 { 1407 struct vm_area_struct pvma; 1408 struct inode *inode = &info->vfs_inode; 1409 struct address_space *mapping = inode->i_mapping; 1410 pgoff_t idx, hindex; 1411 void __rcu **results; 1412 struct page *page; 1413 1414 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1415 return NULL; 1416 1417 hindex = round_down(index, HPAGE_PMD_NR); 1418 rcu_read_lock(); 1419 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1420 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1421 rcu_read_unlock(); 1422 return NULL; 1423 } 1424 rcu_read_unlock(); 1425 1426 shmem_pseudo_vma_init(&pvma, info, hindex); 1427 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1428 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1429 shmem_pseudo_vma_destroy(&pvma); 1430 if (page) 1431 prep_transhuge_page(page); 1432 return page; 1433 } 1434 1435 static struct page *shmem_alloc_page(gfp_t gfp, 1436 struct shmem_inode_info *info, pgoff_t index) 1437 { 1438 struct vm_area_struct pvma; 1439 struct page *page; 1440 1441 shmem_pseudo_vma_init(&pvma, info, index); 1442 page = alloc_page_vma(gfp, &pvma, 0); 1443 shmem_pseudo_vma_destroy(&pvma); 1444 1445 return page; 1446 } 1447 1448 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1449 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, 1450 pgoff_t index, bool huge) 1451 { 1452 struct page *page; 1453 int nr; 1454 int err = -ENOSPC; 1455 1456 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1457 huge = false; 1458 nr = huge ? HPAGE_PMD_NR : 1; 1459 1460 if (shmem_acct_block(info->flags, nr)) 1461 goto failed; 1462 if (sbinfo->max_blocks) { 1463 if (percpu_counter_compare(&sbinfo->used_blocks, 1464 sbinfo->max_blocks - nr) > 0) 1465 goto unacct; 1466 percpu_counter_add(&sbinfo->used_blocks, nr); 1467 } 1468 1469 if (huge) 1470 page = shmem_alloc_hugepage(gfp, info, index); 1471 else 1472 page = shmem_alloc_page(gfp, info, index); 1473 if (page) { 1474 __SetPageLocked(page); 1475 __SetPageSwapBacked(page); 1476 return page; 1477 } 1478 1479 err = -ENOMEM; 1480 if (sbinfo->max_blocks) 1481 percpu_counter_add(&sbinfo->used_blocks, -nr); 1482 unacct: 1483 shmem_unacct_blocks(info->flags, nr); 1484 failed: 1485 return ERR_PTR(err); 1486 } 1487 1488 /* 1489 * When a page is moved from swapcache to shmem filecache (either by the 1490 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1491 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1492 * ignorance of the mapping it belongs to. If that mapping has special 1493 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1494 * we may need to copy to a suitable page before moving to filecache. 1495 * 1496 * In a future release, this may well be extended to respect cpuset and 1497 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1498 * but for now it is a simple matter of zone. 1499 */ 1500 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1501 { 1502 return page_zonenum(page) > gfp_zone(gfp); 1503 } 1504 1505 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1506 struct shmem_inode_info *info, pgoff_t index) 1507 { 1508 struct page *oldpage, *newpage; 1509 struct address_space *swap_mapping; 1510 pgoff_t swap_index; 1511 int error; 1512 1513 oldpage = *pagep; 1514 swap_index = page_private(oldpage); 1515 swap_mapping = page_mapping(oldpage); 1516 1517 /* 1518 * We have arrived here because our zones are constrained, so don't 1519 * limit chance of success by further cpuset and node constraints. 1520 */ 1521 gfp &= ~GFP_CONSTRAINT_MASK; 1522 newpage = shmem_alloc_page(gfp, info, index); 1523 if (!newpage) 1524 return -ENOMEM; 1525 1526 get_page(newpage); 1527 copy_highpage(newpage, oldpage); 1528 flush_dcache_page(newpage); 1529 1530 __SetPageLocked(newpage); 1531 __SetPageSwapBacked(newpage); 1532 SetPageUptodate(newpage); 1533 set_page_private(newpage, swap_index); 1534 SetPageSwapCache(newpage); 1535 1536 /* 1537 * Our caller will very soon move newpage out of swapcache, but it's 1538 * a nice clean interface for us to replace oldpage by newpage there. 1539 */ 1540 spin_lock_irq(&swap_mapping->tree_lock); 1541 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1542 newpage); 1543 if (!error) { 1544 __inc_node_page_state(newpage, NR_FILE_PAGES); 1545 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1546 } 1547 spin_unlock_irq(&swap_mapping->tree_lock); 1548 1549 if (unlikely(error)) { 1550 /* 1551 * Is this possible? I think not, now that our callers check 1552 * both PageSwapCache and page_private after getting page lock; 1553 * but be defensive. Reverse old to newpage for clear and free. 1554 */ 1555 oldpage = newpage; 1556 } else { 1557 mem_cgroup_migrate(oldpage, newpage); 1558 lru_cache_add_anon(newpage); 1559 *pagep = newpage; 1560 } 1561 1562 ClearPageSwapCache(oldpage); 1563 set_page_private(oldpage, 0); 1564 1565 unlock_page(oldpage); 1566 put_page(oldpage); 1567 put_page(oldpage); 1568 return error; 1569 } 1570 1571 /* 1572 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1573 * 1574 * If we allocate a new one we do not mark it dirty. That's up to the 1575 * vm. If we swap it in we mark it dirty since we also free the swap 1576 * entry since a page cannot live in both the swap and page cache. 1577 * 1578 * fault_mm and fault_type are only supplied by shmem_fault: 1579 * otherwise they are NULL. 1580 */ 1581 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1582 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1583 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1584 { 1585 struct address_space *mapping = inode->i_mapping; 1586 struct shmem_inode_info *info = SHMEM_I(inode); 1587 struct shmem_sb_info *sbinfo; 1588 struct mm_struct *charge_mm; 1589 struct mem_cgroup *memcg; 1590 struct page *page; 1591 swp_entry_t swap; 1592 enum sgp_type sgp_huge = sgp; 1593 pgoff_t hindex = index; 1594 int error; 1595 int once = 0; 1596 int alloced = 0; 1597 1598 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1599 return -EFBIG; 1600 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1601 sgp = SGP_CACHE; 1602 repeat: 1603 swap.val = 0; 1604 page = find_lock_entry(mapping, index); 1605 if (radix_tree_exceptional_entry(page)) { 1606 swap = radix_to_swp_entry(page); 1607 page = NULL; 1608 } 1609 1610 if (sgp <= SGP_CACHE && 1611 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1612 error = -EINVAL; 1613 goto unlock; 1614 } 1615 1616 if (page && sgp == SGP_WRITE) 1617 mark_page_accessed(page); 1618 1619 /* fallocated page? */ 1620 if (page && !PageUptodate(page)) { 1621 if (sgp != SGP_READ) 1622 goto clear; 1623 unlock_page(page); 1624 put_page(page); 1625 page = NULL; 1626 } 1627 if (page || (sgp == SGP_READ && !swap.val)) { 1628 *pagep = page; 1629 return 0; 1630 } 1631 1632 /* 1633 * Fast cache lookup did not find it: 1634 * bring it back from swap or allocate. 1635 */ 1636 sbinfo = SHMEM_SB(inode->i_sb); 1637 charge_mm = vma ? vma->vm_mm : current->mm; 1638 1639 if (swap.val) { 1640 /* Look it up and read it in.. */ 1641 page = lookup_swap_cache(swap); 1642 if (!page) { 1643 /* Or update major stats only when swapin succeeds?? */ 1644 if (fault_type) { 1645 *fault_type |= VM_FAULT_MAJOR; 1646 count_vm_event(PGMAJFAULT); 1647 mem_cgroup_count_vm_event(charge_mm, 1648 PGMAJFAULT); 1649 } 1650 /* Here we actually start the io */ 1651 page = shmem_swapin(swap, gfp, info, index); 1652 if (!page) { 1653 error = -ENOMEM; 1654 goto failed; 1655 } 1656 } 1657 1658 /* We have to do this with page locked to prevent races */ 1659 lock_page(page); 1660 if (!PageSwapCache(page) || page_private(page) != swap.val || 1661 !shmem_confirm_swap(mapping, index, swap)) { 1662 error = -EEXIST; /* try again */ 1663 goto unlock; 1664 } 1665 if (!PageUptodate(page)) { 1666 error = -EIO; 1667 goto failed; 1668 } 1669 wait_on_page_writeback(page); 1670 1671 if (shmem_should_replace_page(page, gfp)) { 1672 error = shmem_replace_page(&page, gfp, info, index); 1673 if (error) 1674 goto failed; 1675 } 1676 1677 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1678 false); 1679 if (!error) { 1680 error = shmem_add_to_page_cache(page, mapping, index, 1681 swp_to_radix_entry(swap)); 1682 /* 1683 * We already confirmed swap under page lock, and make 1684 * no memory allocation here, so usually no possibility 1685 * of error; but free_swap_and_cache() only trylocks a 1686 * page, so it is just possible that the entry has been 1687 * truncated or holepunched since swap was confirmed. 1688 * shmem_undo_range() will have done some of the 1689 * unaccounting, now delete_from_swap_cache() will do 1690 * the rest. 1691 * Reset swap.val? No, leave it so "failed" goes back to 1692 * "repeat": reading a hole and writing should succeed. 1693 */ 1694 if (error) { 1695 mem_cgroup_cancel_charge(page, memcg, false); 1696 delete_from_swap_cache(page); 1697 } 1698 } 1699 if (error) 1700 goto failed; 1701 1702 mem_cgroup_commit_charge(page, memcg, true, false); 1703 1704 spin_lock_irq(&info->lock); 1705 info->swapped--; 1706 shmem_recalc_inode(inode); 1707 spin_unlock_irq(&info->lock); 1708 1709 if (sgp == SGP_WRITE) 1710 mark_page_accessed(page); 1711 1712 delete_from_swap_cache(page); 1713 set_page_dirty(page); 1714 swap_free(swap); 1715 1716 } else { 1717 if (vma && userfaultfd_missing(vma)) { 1718 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1719 return 0; 1720 } 1721 1722 /* shmem_symlink() */ 1723 if (mapping->a_ops != &shmem_aops) 1724 goto alloc_nohuge; 1725 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1726 goto alloc_nohuge; 1727 if (shmem_huge == SHMEM_HUGE_FORCE) 1728 goto alloc_huge; 1729 switch (sbinfo->huge) { 1730 loff_t i_size; 1731 pgoff_t off; 1732 case SHMEM_HUGE_NEVER: 1733 goto alloc_nohuge; 1734 case SHMEM_HUGE_WITHIN_SIZE: 1735 off = round_up(index, HPAGE_PMD_NR); 1736 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1737 if (i_size >= HPAGE_PMD_SIZE && 1738 i_size >> PAGE_SHIFT >= off) 1739 goto alloc_huge; 1740 /* fallthrough */ 1741 case SHMEM_HUGE_ADVISE: 1742 if (sgp_huge == SGP_HUGE) 1743 goto alloc_huge; 1744 /* TODO: implement fadvise() hints */ 1745 goto alloc_nohuge; 1746 } 1747 1748 alloc_huge: 1749 page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1750 index, true); 1751 if (IS_ERR(page)) { 1752 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1753 index, false); 1754 } 1755 if (IS_ERR(page)) { 1756 int retry = 5; 1757 error = PTR_ERR(page); 1758 page = NULL; 1759 if (error != -ENOSPC) 1760 goto failed; 1761 /* 1762 * Try to reclaim some spece by splitting a huge page 1763 * beyond i_size on the filesystem. 1764 */ 1765 while (retry--) { 1766 int ret; 1767 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1768 if (ret == SHRINK_STOP) 1769 break; 1770 if (ret) 1771 goto alloc_nohuge; 1772 } 1773 goto failed; 1774 } 1775 1776 if (PageTransHuge(page)) 1777 hindex = round_down(index, HPAGE_PMD_NR); 1778 else 1779 hindex = index; 1780 1781 if (sgp == SGP_WRITE) 1782 __SetPageReferenced(page); 1783 1784 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1785 PageTransHuge(page)); 1786 if (error) 1787 goto unacct; 1788 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1789 compound_order(page)); 1790 if (!error) { 1791 error = shmem_add_to_page_cache(page, mapping, hindex, 1792 NULL); 1793 radix_tree_preload_end(); 1794 } 1795 if (error) { 1796 mem_cgroup_cancel_charge(page, memcg, 1797 PageTransHuge(page)); 1798 goto unacct; 1799 } 1800 mem_cgroup_commit_charge(page, memcg, false, 1801 PageTransHuge(page)); 1802 lru_cache_add_anon(page); 1803 1804 spin_lock_irq(&info->lock); 1805 info->alloced += 1 << compound_order(page); 1806 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1807 shmem_recalc_inode(inode); 1808 spin_unlock_irq(&info->lock); 1809 alloced = true; 1810 1811 if (PageTransHuge(page) && 1812 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1813 hindex + HPAGE_PMD_NR - 1) { 1814 /* 1815 * Part of the huge page is beyond i_size: subject 1816 * to shrink under memory pressure. 1817 */ 1818 spin_lock(&sbinfo->shrinklist_lock); 1819 if (list_empty(&info->shrinklist)) { 1820 list_add_tail(&info->shrinklist, 1821 &sbinfo->shrinklist); 1822 sbinfo->shrinklist_len++; 1823 } 1824 spin_unlock(&sbinfo->shrinklist_lock); 1825 } 1826 1827 /* 1828 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1829 */ 1830 if (sgp == SGP_FALLOC) 1831 sgp = SGP_WRITE; 1832 clear: 1833 /* 1834 * Let SGP_WRITE caller clear ends if write does not fill page; 1835 * but SGP_FALLOC on a page fallocated earlier must initialize 1836 * it now, lest undo on failure cancel our earlier guarantee. 1837 */ 1838 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1839 struct page *head = compound_head(page); 1840 int i; 1841 1842 for (i = 0; i < (1 << compound_order(head)); i++) { 1843 clear_highpage(head + i); 1844 flush_dcache_page(head + i); 1845 } 1846 SetPageUptodate(head); 1847 } 1848 } 1849 1850 /* Perhaps the file has been truncated since we checked */ 1851 if (sgp <= SGP_CACHE && 1852 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1853 if (alloced) { 1854 ClearPageDirty(page); 1855 delete_from_page_cache(page); 1856 spin_lock_irq(&info->lock); 1857 shmem_recalc_inode(inode); 1858 spin_unlock_irq(&info->lock); 1859 } 1860 error = -EINVAL; 1861 goto unlock; 1862 } 1863 *pagep = page + index - hindex; 1864 return 0; 1865 1866 /* 1867 * Error recovery. 1868 */ 1869 unacct: 1870 if (sbinfo->max_blocks) 1871 percpu_counter_sub(&sbinfo->used_blocks, 1872 1 << compound_order(page)); 1873 shmem_unacct_blocks(info->flags, 1 << compound_order(page)); 1874 1875 if (PageTransHuge(page)) { 1876 unlock_page(page); 1877 put_page(page); 1878 goto alloc_nohuge; 1879 } 1880 failed: 1881 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1882 error = -EEXIST; 1883 unlock: 1884 if (page) { 1885 unlock_page(page); 1886 put_page(page); 1887 } 1888 if (error == -ENOSPC && !once++) { 1889 spin_lock_irq(&info->lock); 1890 shmem_recalc_inode(inode); 1891 spin_unlock_irq(&info->lock); 1892 goto repeat; 1893 } 1894 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1895 goto repeat; 1896 return error; 1897 } 1898 1899 /* 1900 * This is like autoremove_wake_function, but it removes the wait queue 1901 * entry unconditionally - even if something else had already woken the 1902 * target. 1903 */ 1904 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) 1905 { 1906 int ret = default_wake_function(wait, mode, sync, key); 1907 list_del_init(&wait->task_list); 1908 return ret; 1909 } 1910 1911 static int shmem_fault(struct vm_fault *vmf) 1912 { 1913 struct vm_area_struct *vma = vmf->vma; 1914 struct inode *inode = file_inode(vma->vm_file); 1915 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1916 enum sgp_type sgp; 1917 int error; 1918 int ret = VM_FAULT_LOCKED; 1919 1920 /* 1921 * Trinity finds that probing a hole which tmpfs is punching can 1922 * prevent the hole-punch from ever completing: which in turn 1923 * locks writers out with its hold on i_mutex. So refrain from 1924 * faulting pages into the hole while it's being punched. Although 1925 * shmem_undo_range() does remove the additions, it may be unable to 1926 * keep up, as each new page needs its own unmap_mapping_range() call, 1927 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1928 * 1929 * It does not matter if we sometimes reach this check just before the 1930 * hole-punch begins, so that one fault then races with the punch: 1931 * we just need to make racing faults a rare case. 1932 * 1933 * The implementation below would be much simpler if we just used a 1934 * standard mutex or completion: but we cannot take i_mutex in fault, 1935 * and bloating every shmem inode for this unlikely case would be sad. 1936 */ 1937 if (unlikely(inode->i_private)) { 1938 struct shmem_falloc *shmem_falloc; 1939 1940 spin_lock(&inode->i_lock); 1941 shmem_falloc = inode->i_private; 1942 if (shmem_falloc && 1943 shmem_falloc->waitq && 1944 vmf->pgoff >= shmem_falloc->start && 1945 vmf->pgoff < shmem_falloc->next) { 1946 wait_queue_head_t *shmem_falloc_waitq; 1947 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1948 1949 ret = VM_FAULT_NOPAGE; 1950 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1951 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1952 /* It's polite to up mmap_sem if we can */ 1953 up_read(&vma->vm_mm->mmap_sem); 1954 ret = VM_FAULT_RETRY; 1955 } 1956 1957 shmem_falloc_waitq = shmem_falloc->waitq; 1958 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1959 TASK_UNINTERRUPTIBLE); 1960 spin_unlock(&inode->i_lock); 1961 schedule(); 1962 1963 /* 1964 * shmem_falloc_waitq points into the shmem_fallocate() 1965 * stack of the hole-punching task: shmem_falloc_waitq 1966 * is usually invalid by the time we reach here, but 1967 * finish_wait() does not dereference it in that case; 1968 * though i_lock needed lest racing with wake_up_all(). 1969 */ 1970 spin_lock(&inode->i_lock); 1971 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1972 spin_unlock(&inode->i_lock); 1973 return ret; 1974 } 1975 spin_unlock(&inode->i_lock); 1976 } 1977 1978 sgp = SGP_CACHE; 1979 if (vma->vm_flags & VM_HUGEPAGE) 1980 sgp = SGP_HUGE; 1981 else if (vma->vm_flags & VM_NOHUGEPAGE) 1982 sgp = SGP_NOHUGE; 1983 1984 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1985 gfp, vma, vmf, &ret); 1986 if (error) 1987 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1988 return ret; 1989 } 1990 1991 unsigned long shmem_get_unmapped_area(struct file *file, 1992 unsigned long uaddr, unsigned long len, 1993 unsigned long pgoff, unsigned long flags) 1994 { 1995 unsigned long (*get_area)(struct file *, 1996 unsigned long, unsigned long, unsigned long, unsigned long); 1997 unsigned long addr; 1998 unsigned long offset; 1999 unsigned long inflated_len; 2000 unsigned long inflated_addr; 2001 unsigned long inflated_offset; 2002 2003 if (len > TASK_SIZE) 2004 return -ENOMEM; 2005 2006 get_area = current->mm->get_unmapped_area; 2007 addr = get_area(file, uaddr, len, pgoff, flags); 2008 2009 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2010 return addr; 2011 if (IS_ERR_VALUE(addr)) 2012 return addr; 2013 if (addr & ~PAGE_MASK) 2014 return addr; 2015 if (addr > TASK_SIZE - len) 2016 return addr; 2017 2018 if (shmem_huge == SHMEM_HUGE_DENY) 2019 return addr; 2020 if (len < HPAGE_PMD_SIZE) 2021 return addr; 2022 if (flags & MAP_FIXED) 2023 return addr; 2024 /* 2025 * Our priority is to support MAP_SHARED mapped hugely; 2026 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2027 * But if caller specified an address hint, respect that as before. 2028 */ 2029 if (uaddr) 2030 return addr; 2031 2032 if (shmem_huge != SHMEM_HUGE_FORCE) { 2033 struct super_block *sb; 2034 2035 if (file) { 2036 VM_BUG_ON(file->f_op != &shmem_file_operations); 2037 sb = file_inode(file)->i_sb; 2038 } else { 2039 /* 2040 * Called directly from mm/mmap.c, or drivers/char/mem.c 2041 * for "/dev/zero", to create a shared anonymous object. 2042 */ 2043 if (IS_ERR(shm_mnt)) 2044 return addr; 2045 sb = shm_mnt->mnt_sb; 2046 } 2047 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2048 return addr; 2049 } 2050 2051 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2052 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2053 return addr; 2054 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2055 return addr; 2056 2057 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2058 if (inflated_len > TASK_SIZE) 2059 return addr; 2060 if (inflated_len < len) 2061 return addr; 2062 2063 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2064 if (IS_ERR_VALUE(inflated_addr)) 2065 return addr; 2066 if (inflated_addr & ~PAGE_MASK) 2067 return addr; 2068 2069 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2070 inflated_addr += offset - inflated_offset; 2071 if (inflated_offset > offset) 2072 inflated_addr += HPAGE_PMD_SIZE; 2073 2074 if (inflated_addr > TASK_SIZE - len) 2075 return addr; 2076 return inflated_addr; 2077 } 2078 2079 #ifdef CONFIG_NUMA 2080 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2081 { 2082 struct inode *inode = file_inode(vma->vm_file); 2083 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2084 } 2085 2086 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2087 unsigned long addr) 2088 { 2089 struct inode *inode = file_inode(vma->vm_file); 2090 pgoff_t index; 2091 2092 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2093 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2094 } 2095 #endif 2096 2097 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2098 { 2099 struct inode *inode = file_inode(file); 2100 struct shmem_inode_info *info = SHMEM_I(inode); 2101 int retval = -ENOMEM; 2102 2103 spin_lock_irq(&info->lock); 2104 if (lock && !(info->flags & VM_LOCKED)) { 2105 if (!user_shm_lock(inode->i_size, user)) 2106 goto out_nomem; 2107 info->flags |= VM_LOCKED; 2108 mapping_set_unevictable(file->f_mapping); 2109 } 2110 if (!lock && (info->flags & VM_LOCKED) && user) { 2111 user_shm_unlock(inode->i_size, user); 2112 info->flags &= ~VM_LOCKED; 2113 mapping_clear_unevictable(file->f_mapping); 2114 } 2115 retval = 0; 2116 2117 out_nomem: 2118 spin_unlock_irq(&info->lock); 2119 return retval; 2120 } 2121 2122 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2123 { 2124 file_accessed(file); 2125 vma->vm_ops = &shmem_vm_ops; 2126 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2127 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2128 (vma->vm_end & HPAGE_PMD_MASK)) { 2129 khugepaged_enter(vma, vma->vm_flags); 2130 } 2131 return 0; 2132 } 2133 2134 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2135 umode_t mode, dev_t dev, unsigned long flags) 2136 { 2137 struct inode *inode; 2138 struct shmem_inode_info *info; 2139 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2140 2141 if (shmem_reserve_inode(sb)) 2142 return NULL; 2143 2144 inode = new_inode(sb); 2145 if (inode) { 2146 inode->i_ino = get_next_ino(); 2147 inode_init_owner(inode, dir, mode); 2148 inode->i_blocks = 0; 2149 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2150 inode->i_generation = get_seconds(); 2151 info = SHMEM_I(inode); 2152 memset(info, 0, (char *)inode - (char *)info); 2153 spin_lock_init(&info->lock); 2154 info->seals = F_SEAL_SEAL; 2155 info->flags = flags & VM_NORESERVE; 2156 INIT_LIST_HEAD(&info->shrinklist); 2157 INIT_LIST_HEAD(&info->swaplist); 2158 simple_xattrs_init(&info->xattrs); 2159 cache_no_acl(inode); 2160 2161 switch (mode & S_IFMT) { 2162 default: 2163 inode->i_op = &shmem_special_inode_operations; 2164 init_special_inode(inode, mode, dev); 2165 break; 2166 case S_IFREG: 2167 inode->i_mapping->a_ops = &shmem_aops; 2168 inode->i_op = &shmem_inode_operations; 2169 inode->i_fop = &shmem_file_operations; 2170 mpol_shared_policy_init(&info->policy, 2171 shmem_get_sbmpol(sbinfo)); 2172 break; 2173 case S_IFDIR: 2174 inc_nlink(inode); 2175 /* Some things misbehave if size == 0 on a directory */ 2176 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2177 inode->i_op = &shmem_dir_inode_operations; 2178 inode->i_fop = &simple_dir_operations; 2179 break; 2180 case S_IFLNK: 2181 /* 2182 * Must not load anything in the rbtree, 2183 * mpol_free_shared_policy will not be called. 2184 */ 2185 mpol_shared_policy_init(&info->policy, NULL); 2186 break; 2187 } 2188 } else 2189 shmem_free_inode(sb); 2190 return inode; 2191 } 2192 2193 bool shmem_mapping(struct address_space *mapping) 2194 { 2195 return mapping->a_ops == &shmem_aops; 2196 } 2197 2198 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2199 pmd_t *dst_pmd, 2200 struct vm_area_struct *dst_vma, 2201 unsigned long dst_addr, 2202 unsigned long src_addr, 2203 struct page **pagep) 2204 { 2205 struct inode *inode = file_inode(dst_vma->vm_file); 2206 struct shmem_inode_info *info = SHMEM_I(inode); 2207 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2208 struct address_space *mapping = inode->i_mapping; 2209 gfp_t gfp = mapping_gfp_mask(mapping); 2210 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2211 struct mem_cgroup *memcg; 2212 spinlock_t *ptl; 2213 void *page_kaddr; 2214 struct page *page; 2215 pte_t _dst_pte, *dst_pte; 2216 int ret; 2217 2218 ret = -ENOMEM; 2219 if (shmem_acct_block(info->flags, 1)) 2220 goto out; 2221 if (sbinfo->max_blocks) { 2222 if (percpu_counter_compare(&sbinfo->used_blocks, 2223 sbinfo->max_blocks) >= 0) 2224 goto out_unacct_blocks; 2225 percpu_counter_inc(&sbinfo->used_blocks); 2226 } 2227 2228 if (!*pagep) { 2229 page = shmem_alloc_page(gfp, info, pgoff); 2230 if (!page) 2231 goto out_dec_used_blocks; 2232 2233 page_kaddr = kmap_atomic(page); 2234 ret = copy_from_user(page_kaddr, (const void __user *)src_addr, 2235 PAGE_SIZE); 2236 kunmap_atomic(page_kaddr); 2237 2238 /* fallback to copy_from_user outside mmap_sem */ 2239 if (unlikely(ret)) { 2240 *pagep = page; 2241 if (sbinfo->max_blocks) 2242 percpu_counter_add(&sbinfo->used_blocks, -1); 2243 shmem_unacct_blocks(info->flags, 1); 2244 /* don't free the page */ 2245 return -EFAULT; 2246 } 2247 } else { 2248 page = *pagep; 2249 *pagep = NULL; 2250 } 2251 2252 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2253 __SetPageLocked(page); 2254 __SetPageSwapBacked(page); 2255 __SetPageUptodate(page); 2256 2257 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2258 if (ret) 2259 goto out_release; 2260 2261 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2262 if (!ret) { 2263 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2264 radix_tree_preload_end(); 2265 } 2266 if (ret) 2267 goto out_release_uncharge; 2268 2269 mem_cgroup_commit_charge(page, memcg, false, false); 2270 2271 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2272 if (dst_vma->vm_flags & VM_WRITE) 2273 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2274 2275 ret = -EEXIST; 2276 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2277 if (!pte_none(*dst_pte)) 2278 goto out_release_uncharge_unlock; 2279 2280 lru_cache_add_anon(page); 2281 2282 spin_lock(&info->lock); 2283 info->alloced++; 2284 inode->i_blocks += BLOCKS_PER_PAGE; 2285 shmem_recalc_inode(inode); 2286 spin_unlock(&info->lock); 2287 2288 inc_mm_counter(dst_mm, mm_counter_file(page)); 2289 page_add_file_rmap(page, false); 2290 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2291 2292 /* No need to invalidate - it was non-present before */ 2293 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2294 unlock_page(page); 2295 pte_unmap_unlock(dst_pte, ptl); 2296 ret = 0; 2297 out: 2298 return ret; 2299 out_release_uncharge_unlock: 2300 pte_unmap_unlock(dst_pte, ptl); 2301 out_release_uncharge: 2302 mem_cgroup_cancel_charge(page, memcg, false); 2303 out_release: 2304 unlock_page(page); 2305 put_page(page); 2306 out_dec_used_blocks: 2307 if (sbinfo->max_blocks) 2308 percpu_counter_add(&sbinfo->used_blocks, -1); 2309 out_unacct_blocks: 2310 shmem_unacct_blocks(info->flags, 1); 2311 goto out; 2312 } 2313 2314 #ifdef CONFIG_TMPFS 2315 static const struct inode_operations shmem_symlink_inode_operations; 2316 static const struct inode_operations shmem_short_symlink_operations; 2317 2318 #ifdef CONFIG_TMPFS_XATTR 2319 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2320 #else 2321 #define shmem_initxattrs NULL 2322 #endif 2323 2324 static int 2325 shmem_write_begin(struct file *file, struct address_space *mapping, 2326 loff_t pos, unsigned len, unsigned flags, 2327 struct page **pagep, void **fsdata) 2328 { 2329 struct inode *inode = mapping->host; 2330 struct shmem_inode_info *info = SHMEM_I(inode); 2331 pgoff_t index = pos >> PAGE_SHIFT; 2332 2333 /* i_mutex is held by caller */ 2334 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2335 if (info->seals & F_SEAL_WRITE) 2336 return -EPERM; 2337 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2338 return -EPERM; 2339 } 2340 2341 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2342 } 2343 2344 static int 2345 shmem_write_end(struct file *file, struct address_space *mapping, 2346 loff_t pos, unsigned len, unsigned copied, 2347 struct page *page, void *fsdata) 2348 { 2349 struct inode *inode = mapping->host; 2350 2351 if (pos + copied > inode->i_size) 2352 i_size_write(inode, pos + copied); 2353 2354 if (!PageUptodate(page)) { 2355 struct page *head = compound_head(page); 2356 if (PageTransCompound(page)) { 2357 int i; 2358 2359 for (i = 0; i < HPAGE_PMD_NR; i++) { 2360 if (head + i == page) 2361 continue; 2362 clear_highpage(head + i); 2363 flush_dcache_page(head + i); 2364 } 2365 } 2366 if (copied < PAGE_SIZE) { 2367 unsigned from = pos & (PAGE_SIZE - 1); 2368 zero_user_segments(page, 0, from, 2369 from + copied, PAGE_SIZE); 2370 } 2371 SetPageUptodate(head); 2372 } 2373 set_page_dirty(page); 2374 unlock_page(page); 2375 put_page(page); 2376 2377 return copied; 2378 } 2379 2380 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2381 { 2382 struct file *file = iocb->ki_filp; 2383 struct inode *inode = file_inode(file); 2384 struct address_space *mapping = inode->i_mapping; 2385 pgoff_t index; 2386 unsigned long offset; 2387 enum sgp_type sgp = SGP_READ; 2388 int error = 0; 2389 ssize_t retval = 0; 2390 loff_t *ppos = &iocb->ki_pos; 2391 2392 /* 2393 * Might this read be for a stacking filesystem? Then when reading 2394 * holes of a sparse file, we actually need to allocate those pages, 2395 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2396 */ 2397 if (!iter_is_iovec(to)) 2398 sgp = SGP_CACHE; 2399 2400 index = *ppos >> PAGE_SHIFT; 2401 offset = *ppos & ~PAGE_MASK; 2402 2403 for (;;) { 2404 struct page *page = NULL; 2405 pgoff_t end_index; 2406 unsigned long nr, ret; 2407 loff_t i_size = i_size_read(inode); 2408 2409 end_index = i_size >> PAGE_SHIFT; 2410 if (index > end_index) 2411 break; 2412 if (index == end_index) { 2413 nr = i_size & ~PAGE_MASK; 2414 if (nr <= offset) 2415 break; 2416 } 2417 2418 error = shmem_getpage(inode, index, &page, sgp); 2419 if (error) { 2420 if (error == -EINVAL) 2421 error = 0; 2422 break; 2423 } 2424 if (page) { 2425 if (sgp == SGP_CACHE) 2426 set_page_dirty(page); 2427 unlock_page(page); 2428 } 2429 2430 /* 2431 * We must evaluate after, since reads (unlike writes) 2432 * are called without i_mutex protection against truncate 2433 */ 2434 nr = PAGE_SIZE; 2435 i_size = i_size_read(inode); 2436 end_index = i_size >> PAGE_SHIFT; 2437 if (index == end_index) { 2438 nr = i_size & ~PAGE_MASK; 2439 if (nr <= offset) { 2440 if (page) 2441 put_page(page); 2442 break; 2443 } 2444 } 2445 nr -= offset; 2446 2447 if (page) { 2448 /* 2449 * If users can be writing to this page using arbitrary 2450 * virtual addresses, take care about potential aliasing 2451 * before reading the page on the kernel side. 2452 */ 2453 if (mapping_writably_mapped(mapping)) 2454 flush_dcache_page(page); 2455 /* 2456 * Mark the page accessed if we read the beginning. 2457 */ 2458 if (!offset) 2459 mark_page_accessed(page); 2460 } else { 2461 page = ZERO_PAGE(0); 2462 get_page(page); 2463 } 2464 2465 /* 2466 * Ok, we have the page, and it's up-to-date, so 2467 * now we can copy it to user space... 2468 */ 2469 ret = copy_page_to_iter(page, offset, nr, to); 2470 retval += ret; 2471 offset += ret; 2472 index += offset >> PAGE_SHIFT; 2473 offset &= ~PAGE_MASK; 2474 2475 put_page(page); 2476 if (!iov_iter_count(to)) 2477 break; 2478 if (ret < nr) { 2479 error = -EFAULT; 2480 break; 2481 } 2482 cond_resched(); 2483 } 2484 2485 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2486 file_accessed(file); 2487 return retval ? retval : error; 2488 } 2489 2490 /* 2491 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2492 */ 2493 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2494 pgoff_t index, pgoff_t end, int whence) 2495 { 2496 struct page *page; 2497 struct pagevec pvec; 2498 pgoff_t indices[PAGEVEC_SIZE]; 2499 bool done = false; 2500 int i; 2501 2502 pagevec_init(&pvec, 0); 2503 pvec.nr = 1; /* start small: we may be there already */ 2504 while (!done) { 2505 pvec.nr = find_get_entries(mapping, index, 2506 pvec.nr, pvec.pages, indices); 2507 if (!pvec.nr) { 2508 if (whence == SEEK_DATA) 2509 index = end; 2510 break; 2511 } 2512 for (i = 0; i < pvec.nr; i++, index++) { 2513 if (index < indices[i]) { 2514 if (whence == SEEK_HOLE) { 2515 done = true; 2516 break; 2517 } 2518 index = indices[i]; 2519 } 2520 page = pvec.pages[i]; 2521 if (page && !radix_tree_exceptional_entry(page)) { 2522 if (!PageUptodate(page)) 2523 page = NULL; 2524 } 2525 if (index >= end || 2526 (page && whence == SEEK_DATA) || 2527 (!page && whence == SEEK_HOLE)) { 2528 done = true; 2529 break; 2530 } 2531 } 2532 pagevec_remove_exceptionals(&pvec); 2533 pagevec_release(&pvec); 2534 pvec.nr = PAGEVEC_SIZE; 2535 cond_resched(); 2536 } 2537 return index; 2538 } 2539 2540 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2541 { 2542 struct address_space *mapping = file->f_mapping; 2543 struct inode *inode = mapping->host; 2544 pgoff_t start, end; 2545 loff_t new_offset; 2546 2547 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2548 return generic_file_llseek_size(file, offset, whence, 2549 MAX_LFS_FILESIZE, i_size_read(inode)); 2550 inode_lock(inode); 2551 /* We're holding i_mutex so we can access i_size directly */ 2552 2553 if (offset < 0) 2554 offset = -EINVAL; 2555 else if (offset >= inode->i_size) 2556 offset = -ENXIO; 2557 else { 2558 start = offset >> PAGE_SHIFT; 2559 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2560 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2561 new_offset <<= PAGE_SHIFT; 2562 if (new_offset > offset) { 2563 if (new_offset < inode->i_size) 2564 offset = new_offset; 2565 else if (whence == SEEK_DATA) 2566 offset = -ENXIO; 2567 else 2568 offset = inode->i_size; 2569 } 2570 } 2571 2572 if (offset >= 0) 2573 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2574 inode_unlock(inode); 2575 return offset; 2576 } 2577 2578 /* 2579 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2580 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2581 */ 2582 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2583 #define LAST_SCAN 4 /* about 150ms max */ 2584 2585 static void shmem_tag_pins(struct address_space *mapping) 2586 { 2587 struct radix_tree_iter iter; 2588 void **slot; 2589 pgoff_t start; 2590 struct page *page; 2591 2592 lru_add_drain(); 2593 start = 0; 2594 rcu_read_lock(); 2595 2596 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2597 page = radix_tree_deref_slot(slot); 2598 if (!page || radix_tree_exception(page)) { 2599 if (radix_tree_deref_retry(page)) { 2600 slot = radix_tree_iter_retry(&iter); 2601 continue; 2602 } 2603 } else if (page_count(page) - page_mapcount(page) > 1) { 2604 spin_lock_irq(&mapping->tree_lock); 2605 radix_tree_tag_set(&mapping->page_tree, iter.index, 2606 SHMEM_TAG_PINNED); 2607 spin_unlock_irq(&mapping->tree_lock); 2608 } 2609 2610 if (need_resched()) { 2611 slot = radix_tree_iter_resume(slot, &iter); 2612 cond_resched_rcu(); 2613 } 2614 } 2615 rcu_read_unlock(); 2616 } 2617 2618 /* 2619 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2620 * via get_user_pages(), drivers might have some pending I/O without any active 2621 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2622 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2623 * them to be dropped. 2624 * The caller must guarantee that no new user will acquire writable references 2625 * to those pages to avoid races. 2626 */ 2627 static int shmem_wait_for_pins(struct address_space *mapping) 2628 { 2629 struct radix_tree_iter iter; 2630 void **slot; 2631 pgoff_t start; 2632 struct page *page; 2633 int error, scan; 2634 2635 shmem_tag_pins(mapping); 2636 2637 error = 0; 2638 for (scan = 0; scan <= LAST_SCAN; scan++) { 2639 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2640 break; 2641 2642 if (!scan) 2643 lru_add_drain_all(); 2644 else if (schedule_timeout_killable((HZ << scan) / 200)) 2645 scan = LAST_SCAN; 2646 2647 start = 0; 2648 rcu_read_lock(); 2649 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2650 start, SHMEM_TAG_PINNED) { 2651 2652 page = radix_tree_deref_slot(slot); 2653 if (radix_tree_exception(page)) { 2654 if (radix_tree_deref_retry(page)) { 2655 slot = radix_tree_iter_retry(&iter); 2656 continue; 2657 } 2658 2659 page = NULL; 2660 } 2661 2662 if (page && 2663 page_count(page) - page_mapcount(page) != 1) { 2664 if (scan < LAST_SCAN) 2665 goto continue_resched; 2666 2667 /* 2668 * On the last scan, we clean up all those tags 2669 * we inserted; but make a note that we still 2670 * found pages pinned. 2671 */ 2672 error = -EBUSY; 2673 } 2674 2675 spin_lock_irq(&mapping->tree_lock); 2676 radix_tree_tag_clear(&mapping->page_tree, 2677 iter.index, SHMEM_TAG_PINNED); 2678 spin_unlock_irq(&mapping->tree_lock); 2679 continue_resched: 2680 if (need_resched()) { 2681 slot = radix_tree_iter_resume(slot, &iter); 2682 cond_resched_rcu(); 2683 } 2684 } 2685 rcu_read_unlock(); 2686 } 2687 2688 return error; 2689 } 2690 2691 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2692 F_SEAL_SHRINK | \ 2693 F_SEAL_GROW | \ 2694 F_SEAL_WRITE) 2695 2696 int shmem_add_seals(struct file *file, unsigned int seals) 2697 { 2698 struct inode *inode = file_inode(file); 2699 struct shmem_inode_info *info = SHMEM_I(inode); 2700 int error; 2701 2702 /* 2703 * SEALING 2704 * Sealing allows multiple parties to share a shmem-file but restrict 2705 * access to a specific subset of file operations. Seals can only be 2706 * added, but never removed. This way, mutually untrusted parties can 2707 * share common memory regions with a well-defined policy. A malicious 2708 * peer can thus never perform unwanted operations on a shared object. 2709 * 2710 * Seals are only supported on special shmem-files and always affect 2711 * the whole underlying inode. Once a seal is set, it may prevent some 2712 * kinds of access to the file. Currently, the following seals are 2713 * defined: 2714 * SEAL_SEAL: Prevent further seals from being set on this file 2715 * SEAL_SHRINK: Prevent the file from shrinking 2716 * SEAL_GROW: Prevent the file from growing 2717 * SEAL_WRITE: Prevent write access to the file 2718 * 2719 * As we don't require any trust relationship between two parties, we 2720 * must prevent seals from being removed. Therefore, sealing a file 2721 * only adds a given set of seals to the file, it never touches 2722 * existing seals. Furthermore, the "setting seals"-operation can be 2723 * sealed itself, which basically prevents any further seal from being 2724 * added. 2725 * 2726 * Semantics of sealing are only defined on volatile files. Only 2727 * anonymous shmem files support sealing. More importantly, seals are 2728 * never written to disk. Therefore, there's no plan to support it on 2729 * other file types. 2730 */ 2731 2732 if (file->f_op != &shmem_file_operations) 2733 return -EINVAL; 2734 if (!(file->f_mode & FMODE_WRITE)) 2735 return -EPERM; 2736 if (seals & ~(unsigned int)F_ALL_SEALS) 2737 return -EINVAL; 2738 2739 inode_lock(inode); 2740 2741 if (info->seals & F_SEAL_SEAL) { 2742 error = -EPERM; 2743 goto unlock; 2744 } 2745 2746 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2747 error = mapping_deny_writable(file->f_mapping); 2748 if (error) 2749 goto unlock; 2750 2751 error = shmem_wait_for_pins(file->f_mapping); 2752 if (error) { 2753 mapping_allow_writable(file->f_mapping); 2754 goto unlock; 2755 } 2756 } 2757 2758 info->seals |= seals; 2759 error = 0; 2760 2761 unlock: 2762 inode_unlock(inode); 2763 return error; 2764 } 2765 EXPORT_SYMBOL_GPL(shmem_add_seals); 2766 2767 int shmem_get_seals(struct file *file) 2768 { 2769 if (file->f_op != &shmem_file_operations) 2770 return -EINVAL; 2771 2772 return SHMEM_I(file_inode(file))->seals; 2773 } 2774 EXPORT_SYMBOL_GPL(shmem_get_seals); 2775 2776 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2777 { 2778 long error; 2779 2780 switch (cmd) { 2781 case F_ADD_SEALS: 2782 /* disallow upper 32bit */ 2783 if (arg > UINT_MAX) 2784 return -EINVAL; 2785 2786 error = shmem_add_seals(file, arg); 2787 break; 2788 case F_GET_SEALS: 2789 error = shmem_get_seals(file); 2790 break; 2791 default: 2792 error = -EINVAL; 2793 break; 2794 } 2795 2796 return error; 2797 } 2798 2799 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2800 loff_t len) 2801 { 2802 struct inode *inode = file_inode(file); 2803 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2804 struct shmem_inode_info *info = SHMEM_I(inode); 2805 struct shmem_falloc shmem_falloc; 2806 pgoff_t start, index, end; 2807 int error; 2808 2809 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2810 return -EOPNOTSUPP; 2811 2812 inode_lock(inode); 2813 2814 if (mode & FALLOC_FL_PUNCH_HOLE) { 2815 struct address_space *mapping = file->f_mapping; 2816 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2817 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2818 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2819 2820 /* protected by i_mutex */ 2821 if (info->seals & F_SEAL_WRITE) { 2822 error = -EPERM; 2823 goto out; 2824 } 2825 2826 shmem_falloc.waitq = &shmem_falloc_waitq; 2827 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2828 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2829 spin_lock(&inode->i_lock); 2830 inode->i_private = &shmem_falloc; 2831 spin_unlock(&inode->i_lock); 2832 2833 if ((u64)unmap_end > (u64)unmap_start) 2834 unmap_mapping_range(mapping, unmap_start, 2835 1 + unmap_end - unmap_start, 0); 2836 shmem_truncate_range(inode, offset, offset + len - 1); 2837 /* No need to unmap again: hole-punching leaves COWed pages */ 2838 2839 spin_lock(&inode->i_lock); 2840 inode->i_private = NULL; 2841 wake_up_all(&shmem_falloc_waitq); 2842 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list)); 2843 spin_unlock(&inode->i_lock); 2844 error = 0; 2845 goto out; 2846 } 2847 2848 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2849 error = inode_newsize_ok(inode, offset + len); 2850 if (error) 2851 goto out; 2852 2853 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2854 error = -EPERM; 2855 goto out; 2856 } 2857 2858 start = offset >> PAGE_SHIFT; 2859 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2860 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2861 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2862 error = -ENOSPC; 2863 goto out; 2864 } 2865 2866 shmem_falloc.waitq = NULL; 2867 shmem_falloc.start = start; 2868 shmem_falloc.next = start; 2869 shmem_falloc.nr_falloced = 0; 2870 shmem_falloc.nr_unswapped = 0; 2871 spin_lock(&inode->i_lock); 2872 inode->i_private = &shmem_falloc; 2873 spin_unlock(&inode->i_lock); 2874 2875 for (index = start; index < end; index++) { 2876 struct page *page; 2877 2878 /* 2879 * Good, the fallocate(2) manpage permits EINTR: we may have 2880 * been interrupted because we are using up too much memory. 2881 */ 2882 if (signal_pending(current)) 2883 error = -EINTR; 2884 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2885 error = -ENOMEM; 2886 else 2887 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2888 if (error) { 2889 /* Remove the !PageUptodate pages we added */ 2890 if (index > start) { 2891 shmem_undo_range(inode, 2892 (loff_t)start << PAGE_SHIFT, 2893 ((loff_t)index << PAGE_SHIFT) - 1, true); 2894 } 2895 goto undone; 2896 } 2897 2898 /* 2899 * Inform shmem_writepage() how far we have reached. 2900 * No need for lock or barrier: we have the page lock. 2901 */ 2902 shmem_falloc.next++; 2903 if (!PageUptodate(page)) 2904 shmem_falloc.nr_falloced++; 2905 2906 /* 2907 * If !PageUptodate, leave it that way so that freeable pages 2908 * can be recognized if we need to rollback on error later. 2909 * But set_page_dirty so that memory pressure will swap rather 2910 * than free the pages we are allocating (and SGP_CACHE pages 2911 * might still be clean: we now need to mark those dirty too). 2912 */ 2913 set_page_dirty(page); 2914 unlock_page(page); 2915 put_page(page); 2916 cond_resched(); 2917 } 2918 2919 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2920 i_size_write(inode, offset + len); 2921 inode->i_ctime = current_time(inode); 2922 undone: 2923 spin_lock(&inode->i_lock); 2924 inode->i_private = NULL; 2925 spin_unlock(&inode->i_lock); 2926 out: 2927 inode_unlock(inode); 2928 return error; 2929 } 2930 2931 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2932 { 2933 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2934 2935 buf->f_type = TMPFS_MAGIC; 2936 buf->f_bsize = PAGE_SIZE; 2937 buf->f_namelen = NAME_MAX; 2938 if (sbinfo->max_blocks) { 2939 buf->f_blocks = sbinfo->max_blocks; 2940 buf->f_bavail = 2941 buf->f_bfree = sbinfo->max_blocks - 2942 percpu_counter_sum(&sbinfo->used_blocks); 2943 } 2944 if (sbinfo->max_inodes) { 2945 buf->f_files = sbinfo->max_inodes; 2946 buf->f_ffree = sbinfo->free_inodes; 2947 } 2948 /* else leave those fields 0 like simple_statfs */ 2949 return 0; 2950 } 2951 2952 /* 2953 * File creation. Allocate an inode, and we're done.. 2954 */ 2955 static int 2956 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2957 { 2958 struct inode *inode; 2959 int error = -ENOSPC; 2960 2961 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2962 if (inode) { 2963 error = simple_acl_create(dir, inode); 2964 if (error) 2965 goto out_iput; 2966 error = security_inode_init_security(inode, dir, 2967 &dentry->d_name, 2968 shmem_initxattrs, NULL); 2969 if (error && error != -EOPNOTSUPP) 2970 goto out_iput; 2971 2972 error = 0; 2973 dir->i_size += BOGO_DIRENT_SIZE; 2974 dir->i_ctime = dir->i_mtime = current_time(dir); 2975 d_instantiate(dentry, inode); 2976 dget(dentry); /* Extra count - pin the dentry in core */ 2977 } 2978 return error; 2979 out_iput: 2980 iput(inode); 2981 return error; 2982 } 2983 2984 static int 2985 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2986 { 2987 struct inode *inode; 2988 int error = -ENOSPC; 2989 2990 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2991 if (inode) { 2992 error = security_inode_init_security(inode, dir, 2993 NULL, 2994 shmem_initxattrs, NULL); 2995 if (error && error != -EOPNOTSUPP) 2996 goto out_iput; 2997 error = simple_acl_create(dir, inode); 2998 if (error) 2999 goto out_iput; 3000 d_tmpfile(dentry, inode); 3001 } 3002 return error; 3003 out_iput: 3004 iput(inode); 3005 return error; 3006 } 3007 3008 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3009 { 3010 int error; 3011 3012 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 3013 return error; 3014 inc_nlink(dir); 3015 return 0; 3016 } 3017 3018 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 3019 bool excl) 3020 { 3021 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 3022 } 3023 3024 /* 3025 * Link a file.. 3026 */ 3027 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3028 { 3029 struct inode *inode = d_inode(old_dentry); 3030 int ret; 3031 3032 /* 3033 * No ordinary (disk based) filesystem counts links as inodes; 3034 * but each new link needs a new dentry, pinning lowmem, and 3035 * tmpfs dentries cannot be pruned until they are unlinked. 3036 */ 3037 ret = shmem_reserve_inode(inode->i_sb); 3038 if (ret) 3039 goto out; 3040 3041 dir->i_size += BOGO_DIRENT_SIZE; 3042 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3043 inc_nlink(inode); 3044 ihold(inode); /* New dentry reference */ 3045 dget(dentry); /* Extra pinning count for the created dentry */ 3046 d_instantiate(dentry, inode); 3047 out: 3048 return ret; 3049 } 3050 3051 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3052 { 3053 struct inode *inode = d_inode(dentry); 3054 3055 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3056 shmem_free_inode(inode->i_sb); 3057 3058 dir->i_size -= BOGO_DIRENT_SIZE; 3059 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3060 drop_nlink(inode); 3061 dput(dentry); /* Undo the count from "create" - this does all the work */ 3062 return 0; 3063 } 3064 3065 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3066 { 3067 if (!simple_empty(dentry)) 3068 return -ENOTEMPTY; 3069 3070 drop_nlink(d_inode(dentry)); 3071 drop_nlink(dir); 3072 return shmem_unlink(dir, dentry); 3073 } 3074 3075 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3076 { 3077 bool old_is_dir = d_is_dir(old_dentry); 3078 bool new_is_dir = d_is_dir(new_dentry); 3079 3080 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3081 if (old_is_dir) { 3082 drop_nlink(old_dir); 3083 inc_nlink(new_dir); 3084 } else { 3085 drop_nlink(new_dir); 3086 inc_nlink(old_dir); 3087 } 3088 } 3089 old_dir->i_ctime = old_dir->i_mtime = 3090 new_dir->i_ctime = new_dir->i_mtime = 3091 d_inode(old_dentry)->i_ctime = 3092 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3093 3094 return 0; 3095 } 3096 3097 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3098 { 3099 struct dentry *whiteout; 3100 int error; 3101 3102 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3103 if (!whiteout) 3104 return -ENOMEM; 3105 3106 error = shmem_mknod(old_dir, whiteout, 3107 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3108 dput(whiteout); 3109 if (error) 3110 return error; 3111 3112 /* 3113 * Cheat and hash the whiteout while the old dentry is still in 3114 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3115 * 3116 * d_lookup() will consistently find one of them at this point, 3117 * not sure which one, but that isn't even important. 3118 */ 3119 d_rehash(whiteout); 3120 return 0; 3121 } 3122 3123 /* 3124 * The VFS layer already does all the dentry stuff for rename, 3125 * we just have to decrement the usage count for the target if 3126 * it exists so that the VFS layer correctly free's it when it 3127 * gets overwritten. 3128 */ 3129 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3130 { 3131 struct inode *inode = d_inode(old_dentry); 3132 int they_are_dirs = S_ISDIR(inode->i_mode); 3133 3134 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3135 return -EINVAL; 3136 3137 if (flags & RENAME_EXCHANGE) 3138 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3139 3140 if (!simple_empty(new_dentry)) 3141 return -ENOTEMPTY; 3142 3143 if (flags & RENAME_WHITEOUT) { 3144 int error; 3145 3146 error = shmem_whiteout(old_dir, old_dentry); 3147 if (error) 3148 return error; 3149 } 3150 3151 if (d_really_is_positive(new_dentry)) { 3152 (void) shmem_unlink(new_dir, new_dentry); 3153 if (they_are_dirs) { 3154 drop_nlink(d_inode(new_dentry)); 3155 drop_nlink(old_dir); 3156 } 3157 } else if (they_are_dirs) { 3158 drop_nlink(old_dir); 3159 inc_nlink(new_dir); 3160 } 3161 3162 old_dir->i_size -= BOGO_DIRENT_SIZE; 3163 new_dir->i_size += BOGO_DIRENT_SIZE; 3164 old_dir->i_ctime = old_dir->i_mtime = 3165 new_dir->i_ctime = new_dir->i_mtime = 3166 inode->i_ctime = current_time(old_dir); 3167 return 0; 3168 } 3169 3170 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3171 { 3172 int error; 3173 int len; 3174 struct inode *inode; 3175 struct page *page; 3176 struct shmem_inode_info *info; 3177 3178 len = strlen(symname) + 1; 3179 if (len > PAGE_SIZE) 3180 return -ENAMETOOLONG; 3181 3182 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3183 if (!inode) 3184 return -ENOSPC; 3185 3186 error = security_inode_init_security(inode, dir, &dentry->d_name, 3187 shmem_initxattrs, NULL); 3188 if (error) { 3189 if (error != -EOPNOTSUPP) { 3190 iput(inode); 3191 return error; 3192 } 3193 error = 0; 3194 } 3195 3196 info = SHMEM_I(inode); 3197 inode->i_size = len-1; 3198 if (len <= SHORT_SYMLINK_LEN) { 3199 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3200 if (!inode->i_link) { 3201 iput(inode); 3202 return -ENOMEM; 3203 } 3204 inode->i_op = &shmem_short_symlink_operations; 3205 } else { 3206 inode_nohighmem(inode); 3207 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3208 if (error) { 3209 iput(inode); 3210 return error; 3211 } 3212 inode->i_mapping->a_ops = &shmem_aops; 3213 inode->i_op = &shmem_symlink_inode_operations; 3214 memcpy(page_address(page), symname, len); 3215 SetPageUptodate(page); 3216 set_page_dirty(page); 3217 unlock_page(page); 3218 put_page(page); 3219 } 3220 dir->i_size += BOGO_DIRENT_SIZE; 3221 dir->i_ctime = dir->i_mtime = current_time(dir); 3222 d_instantiate(dentry, inode); 3223 dget(dentry); 3224 return 0; 3225 } 3226 3227 static void shmem_put_link(void *arg) 3228 { 3229 mark_page_accessed(arg); 3230 put_page(arg); 3231 } 3232 3233 static const char *shmem_get_link(struct dentry *dentry, 3234 struct inode *inode, 3235 struct delayed_call *done) 3236 { 3237 struct page *page = NULL; 3238 int error; 3239 if (!dentry) { 3240 page = find_get_page(inode->i_mapping, 0); 3241 if (!page) 3242 return ERR_PTR(-ECHILD); 3243 if (!PageUptodate(page)) { 3244 put_page(page); 3245 return ERR_PTR(-ECHILD); 3246 } 3247 } else { 3248 error = shmem_getpage(inode, 0, &page, SGP_READ); 3249 if (error) 3250 return ERR_PTR(error); 3251 unlock_page(page); 3252 } 3253 set_delayed_call(done, shmem_put_link, page); 3254 return page_address(page); 3255 } 3256 3257 #ifdef CONFIG_TMPFS_XATTR 3258 /* 3259 * Superblocks without xattr inode operations may get some security.* xattr 3260 * support from the LSM "for free". As soon as we have any other xattrs 3261 * like ACLs, we also need to implement the security.* handlers at 3262 * filesystem level, though. 3263 */ 3264 3265 /* 3266 * Callback for security_inode_init_security() for acquiring xattrs. 3267 */ 3268 static int shmem_initxattrs(struct inode *inode, 3269 const struct xattr *xattr_array, 3270 void *fs_info) 3271 { 3272 struct shmem_inode_info *info = SHMEM_I(inode); 3273 const struct xattr *xattr; 3274 struct simple_xattr *new_xattr; 3275 size_t len; 3276 3277 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3278 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3279 if (!new_xattr) 3280 return -ENOMEM; 3281 3282 len = strlen(xattr->name) + 1; 3283 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3284 GFP_KERNEL); 3285 if (!new_xattr->name) { 3286 kfree(new_xattr); 3287 return -ENOMEM; 3288 } 3289 3290 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3291 XATTR_SECURITY_PREFIX_LEN); 3292 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3293 xattr->name, len); 3294 3295 simple_xattr_list_add(&info->xattrs, new_xattr); 3296 } 3297 3298 return 0; 3299 } 3300 3301 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3302 struct dentry *unused, struct inode *inode, 3303 const char *name, void *buffer, size_t size) 3304 { 3305 struct shmem_inode_info *info = SHMEM_I(inode); 3306 3307 name = xattr_full_name(handler, name); 3308 return simple_xattr_get(&info->xattrs, name, buffer, size); 3309 } 3310 3311 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3312 struct dentry *unused, struct inode *inode, 3313 const char *name, const void *value, 3314 size_t size, int flags) 3315 { 3316 struct shmem_inode_info *info = SHMEM_I(inode); 3317 3318 name = xattr_full_name(handler, name); 3319 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3320 } 3321 3322 static const struct xattr_handler shmem_security_xattr_handler = { 3323 .prefix = XATTR_SECURITY_PREFIX, 3324 .get = shmem_xattr_handler_get, 3325 .set = shmem_xattr_handler_set, 3326 }; 3327 3328 static const struct xattr_handler shmem_trusted_xattr_handler = { 3329 .prefix = XATTR_TRUSTED_PREFIX, 3330 .get = shmem_xattr_handler_get, 3331 .set = shmem_xattr_handler_set, 3332 }; 3333 3334 static const struct xattr_handler *shmem_xattr_handlers[] = { 3335 #ifdef CONFIG_TMPFS_POSIX_ACL 3336 &posix_acl_access_xattr_handler, 3337 &posix_acl_default_xattr_handler, 3338 #endif 3339 &shmem_security_xattr_handler, 3340 &shmem_trusted_xattr_handler, 3341 NULL 3342 }; 3343 3344 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3345 { 3346 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3347 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3348 } 3349 #endif /* CONFIG_TMPFS_XATTR */ 3350 3351 static const struct inode_operations shmem_short_symlink_operations = { 3352 .get_link = simple_get_link, 3353 #ifdef CONFIG_TMPFS_XATTR 3354 .listxattr = shmem_listxattr, 3355 #endif 3356 }; 3357 3358 static const struct inode_operations shmem_symlink_inode_operations = { 3359 .get_link = shmem_get_link, 3360 #ifdef CONFIG_TMPFS_XATTR 3361 .listxattr = shmem_listxattr, 3362 #endif 3363 }; 3364 3365 static struct dentry *shmem_get_parent(struct dentry *child) 3366 { 3367 return ERR_PTR(-ESTALE); 3368 } 3369 3370 static int shmem_match(struct inode *ino, void *vfh) 3371 { 3372 __u32 *fh = vfh; 3373 __u64 inum = fh[2]; 3374 inum = (inum << 32) | fh[1]; 3375 return ino->i_ino == inum && fh[0] == ino->i_generation; 3376 } 3377 3378 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3379 struct fid *fid, int fh_len, int fh_type) 3380 { 3381 struct inode *inode; 3382 struct dentry *dentry = NULL; 3383 u64 inum; 3384 3385 if (fh_len < 3) 3386 return NULL; 3387 3388 inum = fid->raw[2]; 3389 inum = (inum << 32) | fid->raw[1]; 3390 3391 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3392 shmem_match, fid->raw); 3393 if (inode) { 3394 dentry = d_find_alias(inode); 3395 iput(inode); 3396 } 3397 3398 return dentry; 3399 } 3400 3401 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3402 struct inode *parent) 3403 { 3404 if (*len < 3) { 3405 *len = 3; 3406 return FILEID_INVALID; 3407 } 3408 3409 if (inode_unhashed(inode)) { 3410 /* Unfortunately insert_inode_hash is not idempotent, 3411 * so as we hash inodes here rather than at creation 3412 * time, we need a lock to ensure we only try 3413 * to do it once 3414 */ 3415 static DEFINE_SPINLOCK(lock); 3416 spin_lock(&lock); 3417 if (inode_unhashed(inode)) 3418 __insert_inode_hash(inode, 3419 inode->i_ino + inode->i_generation); 3420 spin_unlock(&lock); 3421 } 3422 3423 fh[0] = inode->i_generation; 3424 fh[1] = inode->i_ino; 3425 fh[2] = ((__u64)inode->i_ino) >> 32; 3426 3427 *len = 3; 3428 return 1; 3429 } 3430 3431 static const struct export_operations shmem_export_ops = { 3432 .get_parent = shmem_get_parent, 3433 .encode_fh = shmem_encode_fh, 3434 .fh_to_dentry = shmem_fh_to_dentry, 3435 }; 3436 3437 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3438 bool remount) 3439 { 3440 char *this_char, *value, *rest; 3441 struct mempolicy *mpol = NULL; 3442 uid_t uid; 3443 gid_t gid; 3444 3445 while (options != NULL) { 3446 this_char = options; 3447 for (;;) { 3448 /* 3449 * NUL-terminate this option: unfortunately, 3450 * mount options form a comma-separated list, 3451 * but mpol's nodelist may also contain commas. 3452 */ 3453 options = strchr(options, ','); 3454 if (options == NULL) 3455 break; 3456 options++; 3457 if (!isdigit(*options)) { 3458 options[-1] = '\0'; 3459 break; 3460 } 3461 } 3462 if (!*this_char) 3463 continue; 3464 if ((value = strchr(this_char,'=')) != NULL) { 3465 *value++ = 0; 3466 } else { 3467 pr_err("tmpfs: No value for mount option '%s'\n", 3468 this_char); 3469 goto error; 3470 } 3471 3472 if (!strcmp(this_char,"size")) { 3473 unsigned long long size; 3474 size = memparse(value,&rest); 3475 if (*rest == '%') { 3476 size <<= PAGE_SHIFT; 3477 size *= totalram_pages; 3478 do_div(size, 100); 3479 rest++; 3480 } 3481 if (*rest) 3482 goto bad_val; 3483 sbinfo->max_blocks = 3484 DIV_ROUND_UP(size, PAGE_SIZE); 3485 } else if (!strcmp(this_char,"nr_blocks")) { 3486 sbinfo->max_blocks = memparse(value, &rest); 3487 if (*rest) 3488 goto bad_val; 3489 } else if (!strcmp(this_char,"nr_inodes")) { 3490 sbinfo->max_inodes = memparse(value, &rest); 3491 if (*rest) 3492 goto bad_val; 3493 } else if (!strcmp(this_char,"mode")) { 3494 if (remount) 3495 continue; 3496 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3497 if (*rest) 3498 goto bad_val; 3499 } else if (!strcmp(this_char,"uid")) { 3500 if (remount) 3501 continue; 3502 uid = simple_strtoul(value, &rest, 0); 3503 if (*rest) 3504 goto bad_val; 3505 sbinfo->uid = make_kuid(current_user_ns(), uid); 3506 if (!uid_valid(sbinfo->uid)) 3507 goto bad_val; 3508 } else if (!strcmp(this_char,"gid")) { 3509 if (remount) 3510 continue; 3511 gid = simple_strtoul(value, &rest, 0); 3512 if (*rest) 3513 goto bad_val; 3514 sbinfo->gid = make_kgid(current_user_ns(), gid); 3515 if (!gid_valid(sbinfo->gid)) 3516 goto bad_val; 3517 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3518 } else if (!strcmp(this_char, "huge")) { 3519 int huge; 3520 huge = shmem_parse_huge(value); 3521 if (huge < 0) 3522 goto bad_val; 3523 if (!has_transparent_hugepage() && 3524 huge != SHMEM_HUGE_NEVER) 3525 goto bad_val; 3526 sbinfo->huge = huge; 3527 #endif 3528 #ifdef CONFIG_NUMA 3529 } else if (!strcmp(this_char,"mpol")) { 3530 mpol_put(mpol); 3531 mpol = NULL; 3532 if (mpol_parse_str(value, &mpol)) 3533 goto bad_val; 3534 #endif 3535 } else { 3536 pr_err("tmpfs: Bad mount option %s\n", this_char); 3537 goto error; 3538 } 3539 } 3540 sbinfo->mpol = mpol; 3541 return 0; 3542 3543 bad_val: 3544 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3545 value, this_char); 3546 error: 3547 mpol_put(mpol); 3548 return 1; 3549 3550 } 3551 3552 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3553 { 3554 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3555 struct shmem_sb_info config = *sbinfo; 3556 unsigned long inodes; 3557 int error = -EINVAL; 3558 3559 config.mpol = NULL; 3560 if (shmem_parse_options(data, &config, true)) 3561 return error; 3562 3563 spin_lock(&sbinfo->stat_lock); 3564 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3565 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3566 goto out; 3567 if (config.max_inodes < inodes) 3568 goto out; 3569 /* 3570 * Those tests disallow limited->unlimited while any are in use; 3571 * but we must separately disallow unlimited->limited, because 3572 * in that case we have no record of how much is already in use. 3573 */ 3574 if (config.max_blocks && !sbinfo->max_blocks) 3575 goto out; 3576 if (config.max_inodes && !sbinfo->max_inodes) 3577 goto out; 3578 3579 error = 0; 3580 sbinfo->huge = config.huge; 3581 sbinfo->max_blocks = config.max_blocks; 3582 sbinfo->max_inodes = config.max_inodes; 3583 sbinfo->free_inodes = config.max_inodes - inodes; 3584 3585 /* 3586 * Preserve previous mempolicy unless mpol remount option was specified. 3587 */ 3588 if (config.mpol) { 3589 mpol_put(sbinfo->mpol); 3590 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3591 } 3592 out: 3593 spin_unlock(&sbinfo->stat_lock); 3594 return error; 3595 } 3596 3597 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3598 { 3599 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3600 3601 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3602 seq_printf(seq, ",size=%luk", 3603 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3604 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3605 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3606 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3607 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3608 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3609 seq_printf(seq, ",uid=%u", 3610 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3611 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3612 seq_printf(seq, ",gid=%u", 3613 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3614 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3615 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3616 if (sbinfo->huge) 3617 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3618 #endif 3619 shmem_show_mpol(seq, sbinfo->mpol); 3620 return 0; 3621 } 3622 3623 #define MFD_NAME_PREFIX "memfd:" 3624 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3625 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3626 3627 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 3628 3629 SYSCALL_DEFINE2(memfd_create, 3630 const char __user *, uname, 3631 unsigned int, flags) 3632 { 3633 struct shmem_inode_info *info; 3634 struct file *file; 3635 int fd, error; 3636 char *name; 3637 long len; 3638 3639 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3640 return -EINVAL; 3641 3642 /* length includes terminating zero */ 3643 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3644 if (len <= 0) 3645 return -EFAULT; 3646 if (len > MFD_NAME_MAX_LEN + 1) 3647 return -EINVAL; 3648 3649 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 3650 if (!name) 3651 return -ENOMEM; 3652 3653 strcpy(name, MFD_NAME_PREFIX); 3654 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3655 error = -EFAULT; 3656 goto err_name; 3657 } 3658 3659 /* terminating-zero may have changed after strnlen_user() returned */ 3660 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3661 error = -EFAULT; 3662 goto err_name; 3663 } 3664 3665 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3666 if (fd < 0) { 3667 error = fd; 3668 goto err_name; 3669 } 3670 3671 file = shmem_file_setup(name, 0, VM_NORESERVE); 3672 if (IS_ERR(file)) { 3673 error = PTR_ERR(file); 3674 goto err_fd; 3675 } 3676 info = SHMEM_I(file_inode(file)); 3677 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3678 file->f_flags |= O_RDWR | O_LARGEFILE; 3679 if (flags & MFD_ALLOW_SEALING) 3680 info->seals &= ~F_SEAL_SEAL; 3681 3682 fd_install(fd, file); 3683 kfree(name); 3684 return fd; 3685 3686 err_fd: 3687 put_unused_fd(fd); 3688 err_name: 3689 kfree(name); 3690 return error; 3691 } 3692 3693 #endif /* CONFIG_TMPFS */ 3694 3695 static void shmem_put_super(struct super_block *sb) 3696 { 3697 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3698 3699 percpu_counter_destroy(&sbinfo->used_blocks); 3700 mpol_put(sbinfo->mpol); 3701 kfree(sbinfo); 3702 sb->s_fs_info = NULL; 3703 } 3704 3705 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3706 { 3707 struct inode *inode; 3708 struct shmem_sb_info *sbinfo; 3709 int err = -ENOMEM; 3710 3711 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3712 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3713 L1_CACHE_BYTES), GFP_KERNEL); 3714 if (!sbinfo) 3715 return -ENOMEM; 3716 3717 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3718 sbinfo->uid = current_fsuid(); 3719 sbinfo->gid = current_fsgid(); 3720 sb->s_fs_info = sbinfo; 3721 3722 #ifdef CONFIG_TMPFS 3723 /* 3724 * Per default we only allow half of the physical ram per 3725 * tmpfs instance, limiting inodes to one per page of lowmem; 3726 * but the internal instance is left unlimited. 3727 */ 3728 if (!(sb->s_flags & MS_KERNMOUNT)) { 3729 sbinfo->max_blocks = shmem_default_max_blocks(); 3730 sbinfo->max_inodes = shmem_default_max_inodes(); 3731 if (shmem_parse_options(data, sbinfo, false)) { 3732 err = -EINVAL; 3733 goto failed; 3734 } 3735 } else { 3736 sb->s_flags |= MS_NOUSER; 3737 } 3738 sb->s_export_op = &shmem_export_ops; 3739 sb->s_flags |= MS_NOSEC; 3740 #else 3741 sb->s_flags |= MS_NOUSER; 3742 #endif 3743 3744 spin_lock_init(&sbinfo->stat_lock); 3745 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3746 goto failed; 3747 sbinfo->free_inodes = sbinfo->max_inodes; 3748 spin_lock_init(&sbinfo->shrinklist_lock); 3749 INIT_LIST_HEAD(&sbinfo->shrinklist); 3750 3751 sb->s_maxbytes = MAX_LFS_FILESIZE; 3752 sb->s_blocksize = PAGE_SIZE; 3753 sb->s_blocksize_bits = PAGE_SHIFT; 3754 sb->s_magic = TMPFS_MAGIC; 3755 sb->s_op = &shmem_ops; 3756 sb->s_time_gran = 1; 3757 #ifdef CONFIG_TMPFS_XATTR 3758 sb->s_xattr = shmem_xattr_handlers; 3759 #endif 3760 #ifdef CONFIG_TMPFS_POSIX_ACL 3761 sb->s_flags |= MS_POSIXACL; 3762 #endif 3763 3764 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3765 if (!inode) 3766 goto failed; 3767 inode->i_uid = sbinfo->uid; 3768 inode->i_gid = sbinfo->gid; 3769 sb->s_root = d_make_root(inode); 3770 if (!sb->s_root) 3771 goto failed; 3772 return 0; 3773 3774 failed: 3775 shmem_put_super(sb); 3776 return err; 3777 } 3778 3779 static struct kmem_cache *shmem_inode_cachep; 3780 3781 static struct inode *shmem_alloc_inode(struct super_block *sb) 3782 { 3783 struct shmem_inode_info *info; 3784 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3785 if (!info) 3786 return NULL; 3787 return &info->vfs_inode; 3788 } 3789 3790 static void shmem_destroy_callback(struct rcu_head *head) 3791 { 3792 struct inode *inode = container_of(head, struct inode, i_rcu); 3793 if (S_ISLNK(inode->i_mode)) 3794 kfree(inode->i_link); 3795 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3796 } 3797 3798 static void shmem_destroy_inode(struct inode *inode) 3799 { 3800 if (S_ISREG(inode->i_mode)) 3801 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3802 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3803 } 3804 3805 static void shmem_init_inode(void *foo) 3806 { 3807 struct shmem_inode_info *info = foo; 3808 inode_init_once(&info->vfs_inode); 3809 } 3810 3811 static int shmem_init_inodecache(void) 3812 { 3813 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3814 sizeof(struct shmem_inode_info), 3815 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3816 return 0; 3817 } 3818 3819 static void shmem_destroy_inodecache(void) 3820 { 3821 kmem_cache_destroy(shmem_inode_cachep); 3822 } 3823 3824 static const struct address_space_operations shmem_aops = { 3825 .writepage = shmem_writepage, 3826 .set_page_dirty = __set_page_dirty_no_writeback, 3827 #ifdef CONFIG_TMPFS 3828 .write_begin = shmem_write_begin, 3829 .write_end = shmem_write_end, 3830 #endif 3831 #ifdef CONFIG_MIGRATION 3832 .migratepage = migrate_page, 3833 #endif 3834 .error_remove_page = generic_error_remove_page, 3835 }; 3836 3837 static const struct file_operations shmem_file_operations = { 3838 .mmap = shmem_mmap, 3839 .get_unmapped_area = shmem_get_unmapped_area, 3840 #ifdef CONFIG_TMPFS 3841 .llseek = shmem_file_llseek, 3842 .read_iter = shmem_file_read_iter, 3843 .write_iter = generic_file_write_iter, 3844 .fsync = noop_fsync, 3845 .splice_read = generic_file_splice_read, 3846 .splice_write = iter_file_splice_write, 3847 .fallocate = shmem_fallocate, 3848 #endif 3849 }; 3850 3851 static const struct inode_operations shmem_inode_operations = { 3852 .getattr = shmem_getattr, 3853 .setattr = shmem_setattr, 3854 #ifdef CONFIG_TMPFS_XATTR 3855 .listxattr = shmem_listxattr, 3856 .set_acl = simple_set_acl, 3857 #endif 3858 }; 3859 3860 static const struct inode_operations shmem_dir_inode_operations = { 3861 #ifdef CONFIG_TMPFS 3862 .create = shmem_create, 3863 .lookup = simple_lookup, 3864 .link = shmem_link, 3865 .unlink = shmem_unlink, 3866 .symlink = shmem_symlink, 3867 .mkdir = shmem_mkdir, 3868 .rmdir = shmem_rmdir, 3869 .mknod = shmem_mknod, 3870 .rename = shmem_rename2, 3871 .tmpfile = shmem_tmpfile, 3872 #endif 3873 #ifdef CONFIG_TMPFS_XATTR 3874 .listxattr = shmem_listxattr, 3875 #endif 3876 #ifdef CONFIG_TMPFS_POSIX_ACL 3877 .setattr = shmem_setattr, 3878 .set_acl = simple_set_acl, 3879 #endif 3880 }; 3881 3882 static const struct inode_operations shmem_special_inode_operations = { 3883 #ifdef CONFIG_TMPFS_XATTR 3884 .listxattr = shmem_listxattr, 3885 #endif 3886 #ifdef CONFIG_TMPFS_POSIX_ACL 3887 .setattr = shmem_setattr, 3888 .set_acl = simple_set_acl, 3889 #endif 3890 }; 3891 3892 static const struct super_operations shmem_ops = { 3893 .alloc_inode = shmem_alloc_inode, 3894 .destroy_inode = shmem_destroy_inode, 3895 #ifdef CONFIG_TMPFS 3896 .statfs = shmem_statfs, 3897 .remount_fs = shmem_remount_fs, 3898 .show_options = shmem_show_options, 3899 #endif 3900 .evict_inode = shmem_evict_inode, 3901 .drop_inode = generic_delete_inode, 3902 .put_super = shmem_put_super, 3903 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3904 .nr_cached_objects = shmem_unused_huge_count, 3905 .free_cached_objects = shmem_unused_huge_scan, 3906 #endif 3907 }; 3908 3909 static const struct vm_operations_struct shmem_vm_ops = { 3910 .fault = shmem_fault, 3911 .map_pages = filemap_map_pages, 3912 #ifdef CONFIG_NUMA 3913 .set_policy = shmem_set_policy, 3914 .get_policy = shmem_get_policy, 3915 #endif 3916 }; 3917 3918 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3919 int flags, const char *dev_name, void *data) 3920 { 3921 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3922 } 3923 3924 static struct file_system_type shmem_fs_type = { 3925 .owner = THIS_MODULE, 3926 .name = "tmpfs", 3927 .mount = shmem_mount, 3928 .kill_sb = kill_litter_super, 3929 .fs_flags = FS_USERNS_MOUNT, 3930 }; 3931 3932 int __init shmem_init(void) 3933 { 3934 int error; 3935 3936 /* If rootfs called this, don't re-init */ 3937 if (shmem_inode_cachep) 3938 return 0; 3939 3940 error = shmem_init_inodecache(); 3941 if (error) 3942 goto out3; 3943 3944 error = register_filesystem(&shmem_fs_type); 3945 if (error) { 3946 pr_err("Could not register tmpfs\n"); 3947 goto out2; 3948 } 3949 3950 shm_mnt = kern_mount(&shmem_fs_type); 3951 if (IS_ERR(shm_mnt)) { 3952 error = PTR_ERR(shm_mnt); 3953 pr_err("Could not kern_mount tmpfs\n"); 3954 goto out1; 3955 } 3956 3957 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3958 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY) 3959 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3960 else 3961 shmem_huge = 0; /* just in case it was patched */ 3962 #endif 3963 return 0; 3964 3965 out1: 3966 unregister_filesystem(&shmem_fs_type); 3967 out2: 3968 shmem_destroy_inodecache(); 3969 out3: 3970 shm_mnt = ERR_PTR(error); 3971 return error; 3972 } 3973 3974 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3975 static ssize_t shmem_enabled_show(struct kobject *kobj, 3976 struct kobj_attribute *attr, char *buf) 3977 { 3978 int values[] = { 3979 SHMEM_HUGE_ALWAYS, 3980 SHMEM_HUGE_WITHIN_SIZE, 3981 SHMEM_HUGE_ADVISE, 3982 SHMEM_HUGE_NEVER, 3983 SHMEM_HUGE_DENY, 3984 SHMEM_HUGE_FORCE, 3985 }; 3986 int i, count; 3987 3988 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3989 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3990 3991 count += sprintf(buf + count, fmt, 3992 shmem_format_huge(values[i])); 3993 } 3994 buf[count - 1] = '\n'; 3995 return count; 3996 } 3997 3998 static ssize_t shmem_enabled_store(struct kobject *kobj, 3999 struct kobj_attribute *attr, const char *buf, size_t count) 4000 { 4001 char tmp[16]; 4002 int huge; 4003 4004 if (count + 1 > sizeof(tmp)) 4005 return -EINVAL; 4006 memcpy(tmp, buf, count); 4007 tmp[count] = '\0'; 4008 if (count && tmp[count - 1] == '\n') 4009 tmp[count - 1] = '\0'; 4010 4011 huge = shmem_parse_huge(tmp); 4012 if (huge == -EINVAL) 4013 return -EINVAL; 4014 if (!has_transparent_hugepage() && 4015 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4016 return -EINVAL; 4017 4018 shmem_huge = huge; 4019 if (shmem_huge < SHMEM_HUGE_DENY) 4020 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4021 return count; 4022 } 4023 4024 struct kobj_attribute shmem_enabled_attr = 4025 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4026 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 4027 4028 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4029 bool shmem_huge_enabled(struct vm_area_struct *vma) 4030 { 4031 struct inode *inode = file_inode(vma->vm_file); 4032 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4033 loff_t i_size; 4034 pgoff_t off; 4035 4036 if (shmem_huge == SHMEM_HUGE_FORCE) 4037 return true; 4038 if (shmem_huge == SHMEM_HUGE_DENY) 4039 return false; 4040 switch (sbinfo->huge) { 4041 case SHMEM_HUGE_NEVER: 4042 return false; 4043 case SHMEM_HUGE_ALWAYS: 4044 return true; 4045 case SHMEM_HUGE_WITHIN_SIZE: 4046 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4047 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4048 if (i_size >= HPAGE_PMD_SIZE && 4049 i_size >> PAGE_SHIFT >= off) 4050 return true; 4051 case SHMEM_HUGE_ADVISE: 4052 /* TODO: implement fadvise() hints */ 4053 return (vma->vm_flags & VM_HUGEPAGE); 4054 default: 4055 VM_BUG_ON(1); 4056 return false; 4057 } 4058 } 4059 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4060 4061 #else /* !CONFIG_SHMEM */ 4062 4063 /* 4064 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4065 * 4066 * This is intended for small system where the benefits of the full 4067 * shmem code (swap-backed and resource-limited) are outweighed by 4068 * their complexity. On systems without swap this code should be 4069 * effectively equivalent, but much lighter weight. 4070 */ 4071 4072 static struct file_system_type shmem_fs_type = { 4073 .name = "tmpfs", 4074 .mount = ramfs_mount, 4075 .kill_sb = kill_litter_super, 4076 .fs_flags = FS_USERNS_MOUNT, 4077 }; 4078 4079 int __init shmem_init(void) 4080 { 4081 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4082 4083 shm_mnt = kern_mount(&shmem_fs_type); 4084 BUG_ON(IS_ERR(shm_mnt)); 4085 4086 return 0; 4087 } 4088 4089 int shmem_unuse(swp_entry_t swap, struct page *page) 4090 { 4091 return 0; 4092 } 4093 4094 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4095 { 4096 return 0; 4097 } 4098 4099 void shmem_unlock_mapping(struct address_space *mapping) 4100 { 4101 } 4102 4103 #ifdef CONFIG_MMU 4104 unsigned long shmem_get_unmapped_area(struct file *file, 4105 unsigned long addr, unsigned long len, 4106 unsigned long pgoff, unsigned long flags) 4107 { 4108 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4109 } 4110 #endif 4111 4112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4113 { 4114 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4115 } 4116 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4117 4118 #define shmem_vm_ops generic_file_vm_ops 4119 #define shmem_file_operations ramfs_file_operations 4120 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4121 #define shmem_acct_size(flags, size) 0 4122 #define shmem_unacct_size(flags, size) do {} while (0) 4123 4124 #endif /* CONFIG_SHMEM */ 4125 4126 /* common code */ 4127 4128 static const struct dentry_operations anon_ops = { 4129 .d_dname = simple_dname 4130 }; 4131 4132 static struct file *__shmem_file_setup(const char *name, loff_t size, 4133 unsigned long flags, unsigned int i_flags) 4134 { 4135 struct file *res; 4136 struct inode *inode; 4137 struct path path; 4138 struct super_block *sb; 4139 struct qstr this; 4140 4141 if (IS_ERR(shm_mnt)) 4142 return ERR_CAST(shm_mnt); 4143 4144 if (size < 0 || size > MAX_LFS_FILESIZE) 4145 return ERR_PTR(-EINVAL); 4146 4147 if (shmem_acct_size(flags, size)) 4148 return ERR_PTR(-ENOMEM); 4149 4150 res = ERR_PTR(-ENOMEM); 4151 this.name = name; 4152 this.len = strlen(name); 4153 this.hash = 0; /* will go */ 4154 sb = shm_mnt->mnt_sb; 4155 path.mnt = mntget(shm_mnt); 4156 path.dentry = d_alloc_pseudo(sb, &this); 4157 if (!path.dentry) 4158 goto put_memory; 4159 d_set_d_op(path.dentry, &anon_ops); 4160 4161 res = ERR_PTR(-ENOSPC); 4162 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4163 if (!inode) 4164 goto put_memory; 4165 4166 inode->i_flags |= i_flags; 4167 d_instantiate(path.dentry, inode); 4168 inode->i_size = size; 4169 clear_nlink(inode); /* It is unlinked */ 4170 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4171 if (IS_ERR(res)) 4172 goto put_path; 4173 4174 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4175 &shmem_file_operations); 4176 if (IS_ERR(res)) 4177 goto put_path; 4178 4179 return res; 4180 4181 put_memory: 4182 shmem_unacct_size(flags, size); 4183 put_path: 4184 path_put(&path); 4185 return res; 4186 } 4187 4188 /** 4189 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4190 * kernel internal. There will be NO LSM permission checks against the 4191 * underlying inode. So users of this interface must do LSM checks at a 4192 * higher layer. The users are the big_key and shm implementations. LSM 4193 * checks are provided at the key or shm level rather than the inode. 4194 * @name: name for dentry (to be seen in /proc/<pid>/maps 4195 * @size: size to be set for the file 4196 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4197 */ 4198 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4199 { 4200 return __shmem_file_setup(name, size, flags, S_PRIVATE); 4201 } 4202 4203 /** 4204 * shmem_file_setup - get an unlinked file living in tmpfs 4205 * @name: name for dentry (to be seen in /proc/<pid>/maps 4206 * @size: size to be set for the file 4207 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4208 */ 4209 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4210 { 4211 return __shmem_file_setup(name, size, flags, 0); 4212 } 4213 EXPORT_SYMBOL_GPL(shmem_file_setup); 4214 4215 /** 4216 * shmem_zero_setup - setup a shared anonymous mapping 4217 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4218 */ 4219 int shmem_zero_setup(struct vm_area_struct *vma) 4220 { 4221 struct file *file; 4222 loff_t size = vma->vm_end - vma->vm_start; 4223 4224 /* 4225 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4226 * between XFS directory reading and selinux: since this file is only 4227 * accessible to the user through its mapping, use S_PRIVATE flag to 4228 * bypass file security, in the same way as shmem_kernel_file_setup(). 4229 */ 4230 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 4231 if (IS_ERR(file)) 4232 return PTR_ERR(file); 4233 4234 if (vma->vm_file) 4235 fput(vma->vm_file); 4236 vma->vm_file = file; 4237 vma->vm_ops = &shmem_vm_ops; 4238 4239 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4240 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4241 (vma->vm_end & HPAGE_PMD_MASK)) { 4242 khugepaged_enter(vma, vma->vm_flags); 4243 } 4244 4245 return 0; 4246 } 4247 4248 /** 4249 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4250 * @mapping: the page's address_space 4251 * @index: the page index 4252 * @gfp: the page allocator flags to use if allocating 4253 * 4254 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4255 * with any new page allocations done using the specified allocation flags. 4256 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4257 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4258 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4259 * 4260 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4261 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4262 */ 4263 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4264 pgoff_t index, gfp_t gfp) 4265 { 4266 #ifdef CONFIG_SHMEM 4267 struct inode *inode = mapping->host; 4268 struct page *page; 4269 int error; 4270 4271 BUG_ON(mapping->a_ops != &shmem_aops); 4272 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4273 gfp, NULL, NULL, NULL); 4274 if (error) 4275 page = ERR_PTR(error); 4276 else 4277 unlock_page(page); 4278 return page; 4279 #else 4280 /* 4281 * The tiny !SHMEM case uses ramfs without swap 4282 */ 4283 return read_cache_page_gfp(mapping, index, gfp); 4284 #endif 4285 } 4286 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4287