xref: /openbmc/linux/mm/shmem.c (revision 7aacf86b)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39 
40 static struct vfsmount *shm_mnt;
41 
42 #ifdef CONFIG_SHMEM
43 /*
44  * This virtual memory filesystem is heavily based on the ramfs. It
45  * extends ramfs by the ability to use swap and honor resource limits
46  * which makes it a completely usable filesystem.
47  */
48 
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
79 
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_mutex making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 	return totalram_pages / 2;
111 }
112 
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118 
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 				struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 		struct page **pagep, enum sgp_type sgp,
124 		gfp_t gfp, struct vm_area_struct *vma,
125 		struct vm_fault *vmf, int *fault_type);
126 
127 int shmem_getpage(struct inode *inode, pgoff_t index,
128 		struct page **pagep, enum sgp_type sgp)
129 {
130 	return shmem_getpage_gfp(inode, index, pagep, sgp,
131 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (!(flags & VM_NORESERVE))
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 static inline int shmem_reacct_size(unsigned long flags,
158 		loff_t oldsize, loff_t newsize)
159 {
160 	if (!(flags & VM_NORESERVE)) {
161 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 			return security_vm_enough_memory_mm(current->mm,
163 					VM_ACCT(newsize) - VM_ACCT(oldsize));
164 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 	}
167 	return 0;
168 }
169 
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow large sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags, long pages)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		return 0;
180 
181 	return security_vm_enough_memory_mm(current->mm,
182 			pages * VM_ACCT(PAGE_SIZE));
183 }
184 
185 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
186 {
187 	if (flags & VM_NORESERVE)
188 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
189 }
190 
191 static const struct super_operations shmem_ops;
192 static const struct address_space_operations shmem_aops;
193 static const struct file_operations shmem_file_operations;
194 static const struct inode_operations shmem_inode_operations;
195 static const struct inode_operations shmem_dir_inode_operations;
196 static const struct inode_operations shmem_special_inode_operations;
197 static const struct vm_operations_struct shmem_vm_ops;
198 static struct file_system_type shmem_fs_type;
199 
200 bool vma_is_shmem(struct vm_area_struct *vma)
201 {
202 	return vma->vm_ops == &shmem_vm_ops;
203 }
204 
205 static LIST_HEAD(shmem_swaplist);
206 static DEFINE_MUTEX(shmem_swaplist_mutex);
207 
208 static int shmem_reserve_inode(struct super_block *sb)
209 {
210 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 	if (sbinfo->max_inodes) {
212 		spin_lock(&sbinfo->stat_lock);
213 		if (!sbinfo->free_inodes) {
214 			spin_unlock(&sbinfo->stat_lock);
215 			return -ENOSPC;
216 		}
217 		sbinfo->free_inodes--;
218 		spin_unlock(&sbinfo->stat_lock);
219 	}
220 	return 0;
221 }
222 
223 static void shmem_free_inode(struct super_block *sb)
224 {
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 	if (sbinfo->max_inodes) {
227 		spin_lock(&sbinfo->stat_lock);
228 		sbinfo->free_inodes++;
229 		spin_unlock(&sbinfo->stat_lock);
230 	}
231 }
232 
233 /**
234  * shmem_recalc_inode - recalculate the block usage of an inode
235  * @inode: inode to recalc
236  *
237  * We have to calculate the free blocks since the mm can drop
238  * undirtied hole pages behind our back.
239  *
240  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
241  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242  *
243  * It has to be called with the spinlock held.
244  */
245 static void shmem_recalc_inode(struct inode *inode)
246 {
247 	struct shmem_inode_info *info = SHMEM_I(inode);
248 	long freed;
249 
250 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
251 	if (freed > 0) {
252 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 		if (sbinfo->max_blocks)
254 			percpu_counter_add(&sbinfo->used_blocks, -freed);
255 		info->alloced -= freed;
256 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
257 		shmem_unacct_blocks(info->flags, freed);
258 	}
259 }
260 
261 bool shmem_charge(struct inode *inode, long pages)
262 {
263 	struct shmem_inode_info *info = SHMEM_I(inode);
264 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
265 	unsigned long flags;
266 
267 	if (shmem_acct_block(info->flags, pages))
268 		return false;
269 	spin_lock_irqsave(&info->lock, flags);
270 	info->alloced += pages;
271 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
272 	shmem_recalc_inode(inode);
273 	spin_unlock_irqrestore(&info->lock, flags);
274 	inode->i_mapping->nrpages += pages;
275 
276 	if (!sbinfo->max_blocks)
277 		return true;
278 	if (percpu_counter_compare(&sbinfo->used_blocks,
279 				sbinfo->max_blocks - pages) > 0) {
280 		inode->i_mapping->nrpages -= pages;
281 		spin_lock_irqsave(&info->lock, flags);
282 		info->alloced -= pages;
283 		shmem_recalc_inode(inode);
284 		spin_unlock_irqrestore(&info->lock, flags);
285 		shmem_unacct_blocks(info->flags, pages);
286 		return false;
287 	}
288 	percpu_counter_add(&sbinfo->used_blocks, pages);
289 	return true;
290 }
291 
292 void shmem_uncharge(struct inode *inode, long pages)
293 {
294 	struct shmem_inode_info *info = SHMEM_I(inode);
295 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&info->lock, flags);
299 	info->alloced -= pages;
300 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
301 	shmem_recalc_inode(inode);
302 	spin_unlock_irqrestore(&info->lock, flags);
303 
304 	if (sbinfo->max_blocks)
305 		percpu_counter_sub(&sbinfo->used_blocks, pages);
306 	shmem_unacct_blocks(info->flags, pages);
307 }
308 
309 /*
310  * Replace item expected in radix tree by a new item, while holding tree lock.
311  */
312 static int shmem_radix_tree_replace(struct address_space *mapping,
313 			pgoff_t index, void *expected, void *replacement)
314 {
315 	struct radix_tree_node *node;
316 	void **pslot;
317 	void *item;
318 
319 	VM_BUG_ON(!expected);
320 	VM_BUG_ON(!replacement);
321 	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
322 	if (!item)
323 		return -ENOENT;
324 	if (item != expected)
325 		return -ENOENT;
326 	__radix_tree_replace(&mapping->page_tree, node, pslot,
327 			     replacement, NULL, NULL);
328 	return 0;
329 }
330 
331 /*
332  * Sometimes, before we decide whether to proceed or to fail, we must check
333  * that an entry was not already brought back from swap by a racing thread.
334  *
335  * Checking page is not enough: by the time a SwapCache page is locked, it
336  * might be reused, and again be SwapCache, using the same swap as before.
337  */
338 static bool shmem_confirm_swap(struct address_space *mapping,
339 			       pgoff_t index, swp_entry_t swap)
340 {
341 	void *item;
342 
343 	rcu_read_lock();
344 	item = radix_tree_lookup(&mapping->page_tree, index);
345 	rcu_read_unlock();
346 	return item == swp_to_radix_entry(swap);
347 }
348 
349 /*
350  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
351  *
352  * SHMEM_HUGE_NEVER:
353  *	disables huge pages for the mount;
354  * SHMEM_HUGE_ALWAYS:
355  *	enables huge pages for the mount;
356  * SHMEM_HUGE_WITHIN_SIZE:
357  *	only allocate huge pages if the page will be fully within i_size,
358  *	also respect fadvise()/madvise() hints;
359  * SHMEM_HUGE_ADVISE:
360  *	only allocate huge pages if requested with fadvise()/madvise();
361  */
362 
363 #define SHMEM_HUGE_NEVER	0
364 #define SHMEM_HUGE_ALWAYS	1
365 #define SHMEM_HUGE_WITHIN_SIZE	2
366 #define SHMEM_HUGE_ADVISE	3
367 
368 /*
369  * Special values.
370  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
371  *
372  * SHMEM_HUGE_DENY:
373  *	disables huge on shm_mnt and all mounts, for emergency use;
374  * SHMEM_HUGE_FORCE:
375  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
376  *
377  */
378 #define SHMEM_HUGE_DENY		(-1)
379 #define SHMEM_HUGE_FORCE	(-2)
380 
381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
382 /* ifdef here to avoid bloating shmem.o when not necessary */
383 
384 int shmem_huge __read_mostly;
385 
386 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
387 static int shmem_parse_huge(const char *str)
388 {
389 	if (!strcmp(str, "never"))
390 		return SHMEM_HUGE_NEVER;
391 	if (!strcmp(str, "always"))
392 		return SHMEM_HUGE_ALWAYS;
393 	if (!strcmp(str, "within_size"))
394 		return SHMEM_HUGE_WITHIN_SIZE;
395 	if (!strcmp(str, "advise"))
396 		return SHMEM_HUGE_ADVISE;
397 	if (!strcmp(str, "deny"))
398 		return SHMEM_HUGE_DENY;
399 	if (!strcmp(str, "force"))
400 		return SHMEM_HUGE_FORCE;
401 	return -EINVAL;
402 }
403 
404 static const char *shmem_format_huge(int huge)
405 {
406 	switch (huge) {
407 	case SHMEM_HUGE_NEVER:
408 		return "never";
409 	case SHMEM_HUGE_ALWAYS:
410 		return "always";
411 	case SHMEM_HUGE_WITHIN_SIZE:
412 		return "within_size";
413 	case SHMEM_HUGE_ADVISE:
414 		return "advise";
415 	case SHMEM_HUGE_DENY:
416 		return "deny";
417 	case SHMEM_HUGE_FORCE:
418 		return "force";
419 	default:
420 		VM_BUG_ON(1);
421 		return "bad_val";
422 	}
423 }
424 #endif
425 
426 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
427 		struct shrink_control *sc, unsigned long nr_to_split)
428 {
429 	LIST_HEAD(list), *pos, *next;
430 	LIST_HEAD(to_remove);
431 	struct inode *inode;
432 	struct shmem_inode_info *info;
433 	struct page *page;
434 	unsigned long batch = sc ? sc->nr_to_scan : 128;
435 	int removed = 0, split = 0;
436 
437 	if (list_empty(&sbinfo->shrinklist))
438 		return SHRINK_STOP;
439 
440 	spin_lock(&sbinfo->shrinklist_lock);
441 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
442 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
443 
444 		/* pin the inode */
445 		inode = igrab(&info->vfs_inode);
446 
447 		/* inode is about to be evicted */
448 		if (!inode) {
449 			list_del_init(&info->shrinklist);
450 			removed++;
451 			goto next;
452 		}
453 
454 		/* Check if there's anything to gain */
455 		if (round_up(inode->i_size, PAGE_SIZE) ==
456 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
457 			list_move(&info->shrinklist, &to_remove);
458 			removed++;
459 			goto next;
460 		}
461 
462 		list_move(&info->shrinklist, &list);
463 next:
464 		if (!--batch)
465 			break;
466 	}
467 	spin_unlock(&sbinfo->shrinklist_lock);
468 
469 	list_for_each_safe(pos, next, &to_remove) {
470 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
471 		inode = &info->vfs_inode;
472 		list_del_init(&info->shrinklist);
473 		iput(inode);
474 	}
475 
476 	list_for_each_safe(pos, next, &list) {
477 		int ret;
478 
479 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
480 		inode = &info->vfs_inode;
481 
482 		if (nr_to_split && split >= nr_to_split) {
483 			iput(inode);
484 			continue;
485 		}
486 
487 		page = find_lock_page(inode->i_mapping,
488 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
489 		if (!page)
490 			goto drop;
491 
492 		if (!PageTransHuge(page)) {
493 			unlock_page(page);
494 			put_page(page);
495 			goto drop;
496 		}
497 
498 		ret = split_huge_page(page);
499 		unlock_page(page);
500 		put_page(page);
501 
502 		if (ret) {
503 			/* split failed: leave it on the list */
504 			iput(inode);
505 			continue;
506 		}
507 
508 		split++;
509 drop:
510 		list_del_init(&info->shrinklist);
511 		removed++;
512 		iput(inode);
513 	}
514 
515 	spin_lock(&sbinfo->shrinklist_lock);
516 	list_splice_tail(&list, &sbinfo->shrinklist);
517 	sbinfo->shrinklist_len -= removed;
518 	spin_unlock(&sbinfo->shrinklist_lock);
519 
520 	return split;
521 }
522 
523 static long shmem_unused_huge_scan(struct super_block *sb,
524 		struct shrink_control *sc)
525 {
526 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
527 
528 	if (!READ_ONCE(sbinfo->shrinklist_len))
529 		return SHRINK_STOP;
530 
531 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
532 }
533 
534 static long shmem_unused_huge_count(struct super_block *sb,
535 		struct shrink_control *sc)
536 {
537 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
538 	return READ_ONCE(sbinfo->shrinklist_len);
539 }
540 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
541 
542 #define shmem_huge SHMEM_HUGE_DENY
543 
544 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
545 		struct shrink_control *sc, unsigned long nr_to_split)
546 {
547 	return 0;
548 }
549 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
550 
551 /*
552  * Like add_to_page_cache_locked, but error if expected item has gone.
553  */
554 static int shmem_add_to_page_cache(struct page *page,
555 				   struct address_space *mapping,
556 				   pgoff_t index, void *expected)
557 {
558 	int error, nr = hpage_nr_pages(page);
559 
560 	VM_BUG_ON_PAGE(PageTail(page), page);
561 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
562 	VM_BUG_ON_PAGE(!PageLocked(page), page);
563 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
564 	VM_BUG_ON(expected && PageTransHuge(page));
565 
566 	page_ref_add(page, nr);
567 	page->mapping = mapping;
568 	page->index = index;
569 
570 	spin_lock_irq(&mapping->tree_lock);
571 	if (PageTransHuge(page)) {
572 		void __rcu **results;
573 		pgoff_t idx;
574 		int i;
575 
576 		error = 0;
577 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
578 					&results, &idx, index, 1) &&
579 				idx < index + HPAGE_PMD_NR) {
580 			error = -EEXIST;
581 		}
582 
583 		if (!error) {
584 			for (i = 0; i < HPAGE_PMD_NR; i++) {
585 				error = radix_tree_insert(&mapping->page_tree,
586 						index + i, page + i);
587 				VM_BUG_ON(error);
588 			}
589 			count_vm_event(THP_FILE_ALLOC);
590 		}
591 	} else if (!expected) {
592 		error = radix_tree_insert(&mapping->page_tree, index, page);
593 	} else {
594 		error = shmem_radix_tree_replace(mapping, index, expected,
595 								 page);
596 	}
597 
598 	if (!error) {
599 		mapping->nrpages += nr;
600 		if (PageTransHuge(page))
601 			__inc_node_page_state(page, NR_SHMEM_THPS);
602 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
603 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
604 		spin_unlock_irq(&mapping->tree_lock);
605 	} else {
606 		page->mapping = NULL;
607 		spin_unlock_irq(&mapping->tree_lock);
608 		page_ref_sub(page, nr);
609 	}
610 	return error;
611 }
612 
613 /*
614  * Like delete_from_page_cache, but substitutes swap for page.
615  */
616 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
617 {
618 	struct address_space *mapping = page->mapping;
619 	int error;
620 
621 	VM_BUG_ON_PAGE(PageCompound(page), page);
622 
623 	spin_lock_irq(&mapping->tree_lock);
624 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
625 	page->mapping = NULL;
626 	mapping->nrpages--;
627 	__dec_node_page_state(page, NR_FILE_PAGES);
628 	__dec_node_page_state(page, NR_SHMEM);
629 	spin_unlock_irq(&mapping->tree_lock);
630 	put_page(page);
631 	BUG_ON(error);
632 }
633 
634 /*
635  * Remove swap entry from radix tree, free the swap and its page cache.
636  */
637 static int shmem_free_swap(struct address_space *mapping,
638 			   pgoff_t index, void *radswap)
639 {
640 	void *old;
641 
642 	spin_lock_irq(&mapping->tree_lock);
643 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
644 	spin_unlock_irq(&mapping->tree_lock);
645 	if (old != radswap)
646 		return -ENOENT;
647 	free_swap_and_cache(radix_to_swp_entry(radswap));
648 	return 0;
649 }
650 
651 /*
652  * Determine (in bytes) how many of the shmem object's pages mapped by the
653  * given offsets are swapped out.
654  *
655  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
656  * as long as the inode doesn't go away and racy results are not a problem.
657  */
658 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
659 						pgoff_t start, pgoff_t end)
660 {
661 	struct radix_tree_iter iter;
662 	void **slot;
663 	struct page *page;
664 	unsigned long swapped = 0;
665 
666 	rcu_read_lock();
667 
668 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
669 		if (iter.index >= end)
670 			break;
671 
672 		page = radix_tree_deref_slot(slot);
673 
674 		if (radix_tree_deref_retry(page)) {
675 			slot = radix_tree_iter_retry(&iter);
676 			continue;
677 		}
678 
679 		if (radix_tree_exceptional_entry(page))
680 			swapped++;
681 
682 		if (need_resched()) {
683 			slot = radix_tree_iter_resume(slot, &iter);
684 			cond_resched_rcu();
685 		}
686 	}
687 
688 	rcu_read_unlock();
689 
690 	return swapped << PAGE_SHIFT;
691 }
692 
693 /*
694  * Determine (in bytes) how many of the shmem object's pages mapped by the
695  * given vma is swapped out.
696  *
697  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
698  * as long as the inode doesn't go away and racy results are not a problem.
699  */
700 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
701 {
702 	struct inode *inode = file_inode(vma->vm_file);
703 	struct shmem_inode_info *info = SHMEM_I(inode);
704 	struct address_space *mapping = inode->i_mapping;
705 	unsigned long swapped;
706 
707 	/* Be careful as we don't hold info->lock */
708 	swapped = READ_ONCE(info->swapped);
709 
710 	/*
711 	 * The easier cases are when the shmem object has nothing in swap, or
712 	 * the vma maps it whole. Then we can simply use the stats that we
713 	 * already track.
714 	 */
715 	if (!swapped)
716 		return 0;
717 
718 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
719 		return swapped << PAGE_SHIFT;
720 
721 	/* Here comes the more involved part */
722 	return shmem_partial_swap_usage(mapping,
723 			linear_page_index(vma, vma->vm_start),
724 			linear_page_index(vma, vma->vm_end));
725 }
726 
727 /*
728  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
729  */
730 void shmem_unlock_mapping(struct address_space *mapping)
731 {
732 	struct pagevec pvec;
733 	pgoff_t indices[PAGEVEC_SIZE];
734 	pgoff_t index = 0;
735 
736 	pagevec_init(&pvec, 0);
737 	/*
738 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
739 	 */
740 	while (!mapping_unevictable(mapping)) {
741 		/*
742 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
743 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
744 		 */
745 		pvec.nr = find_get_entries(mapping, index,
746 					   PAGEVEC_SIZE, pvec.pages, indices);
747 		if (!pvec.nr)
748 			break;
749 		index = indices[pvec.nr - 1] + 1;
750 		pagevec_remove_exceptionals(&pvec);
751 		check_move_unevictable_pages(pvec.pages, pvec.nr);
752 		pagevec_release(&pvec);
753 		cond_resched();
754 	}
755 }
756 
757 /*
758  * Remove range of pages and swap entries from radix tree, and free them.
759  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
760  */
761 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
762 								 bool unfalloc)
763 {
764 	struct address_space *mapping = inode->i_mapping;
765 	struct shmem_inode_info *info = SHMEM_I(inode);
766 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
767 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
768 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
769 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
770 	struct pagevec pvec;
771 	pgoff_t indices[PAGEVEC_SIZE];
772 	long nr_swaps_freed = 0;
773 	pgoff_t index;
774 	int i;
775 
776 	if (lend == -1)
777 		end = -1;	/* unsigned, so actually very big */
778 
779 	pagevec_init(&pvec, 0);
780 	index = start;
781 	while (index < end) {
782 		pvec.nr = find_get_entries(mapping, index,
783 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
784 			pvec.pages, indices);
785 		if (!pvec.nr)
786 			break;
787 		for (i = 0; i < pagevec_count(&pvec); i++) {
788 			struct page *page = pvec.pages[i];
789 
790 			index = indices[i];
791 			if (index >= end)
792 				break;
793 
794 			if (radix_tree_exceptional_entry(page)) {
795 				if (unfalloc)
796 					continue;
797 				nr_swaps_freed += !shmem_free_swap(mapping,
798 								index, page);
799 				continue;
800 			}
801 
802 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
803 
804 			if (!trylock_page(page))
805 				continue;
806 
807 			if (PageTransTail(page)) {
808 				/* Middle of THP: zero out the page */
809 				clear_highpage(page);
810 				unlock_page(page);
811 				continue;
812 			} else if (PageTransHuge(page)) {
813 				if (index == round_down(end, HPAGE_PMD_NR)) {
814 					/*
815 					 * Range ends in the middle of THP:
816 					 * zero out the page
817 					 */
818 					clear_highpage(page);
819 					unlock_page(page);
820 					continue;
821 				}
822 				index += HPAGE_PMD_NR - 1;
823 				i += HPAGE_PMD_NR - 1;
824 			}
825 
826 			if (!unfalloc || !PageUptodate(page)) {
827 				VM_BUG_ON_PAGE(PageTail(page), page);
828 				if (page_mapping(page) == mapping) {
829 					VM_BUG_ON_PAGE(PageWriteback(page), page);
830 					truncate_inode_page(mapping, page);
831 				}
832 			}
833 			unlock_page(page);
834 		}
835 		pagevec_remove_exceptionals(&pvec);
836 		pagevec_release(&pvec);
837 		cond_resched();
838 		index++;
839 	}
840 
841 	if (partial_start) {
842 		struct page *page = NULL;
843 		shmem_getpage(inode, start - 1, &page, SGP_READ);
844 		if (page) {
845 			unsigned int top = PAGE_SIZE;
846 			if (start > end) {
847 				top = partial_end;
848 				partial_end = 0;
849 			}
850 			zero_user_segment(page, partial_start, top);
851 			set_page_dirty(page);
852 			unlock_page(page);
853 			put_page(page);
854 		}
855 	}
856 	if (partial_end) {
857 		struct page *page = NULL;
858 		shmem_getpage(inode, end, &page, SGP_READ);
859 		if (page) {
860 			zero_user_segment(page, 0, partial_end);
861 			set_page_dirty(page);
862 			unlock_page(page);
863 			put_page(page);
864 		}
865 	}
866 	if (start >= end)
867 		return;
868 
869 	index = start;
870 	while (index < end) {
871 		cond_resched();
872 
873 		pvec.nr = find_get_entries(mapping, index,
874 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
875 				pvec.pages, indices);
876 		if (!pvec.nr) {
877 			/* If all gone or hole-punch or unfalloc, we're done */
878 			if (index == start || end != -1)
879 				break;
880 			/* But if truncating, restart to make sure all gone */
881 			index = start;
882 			continue;
883 		}
884 		for (i = 0; i < pagevec_count(&pvec); i++) {
885 			struct page *page = pvec.pages[i];
886 
887 			index = indices[i];
888 			if (index >= end)
889 				break;
890 
891 			if (radix_tree_exceptional_entry(page)) {
892 				if (unfalloc)
893 					continue;
894 				if (shmem_free_swap(mapping, index, page)) {
895 					/* Swap was replaced by page: retry */
896 					index--;
897 					break;
898 				}
899 				nr_swaps_freed++;
900 				continue;
901 			}
902 
903 			lock_page(page);
904 
905 			if (PageTransTail(page)) {
906 				/* Middle of THP: zero out the page */
907 				clear_highpage(page);
908 				unlock_page(page);
909 				/*
910 				 * Partial thp truncate due 'start' in middle
911 				 * of THP: don't need to look on these pages
912 				 * again on !pvec.nr restart.
913 				 */
914 				if (index != round_down(end, HPAGE_PMD_NR))
915 					start++;
916 				continue;
917 			} else if (PageTransHuge(page)) {
918 				if (index == round_down(end, HPAGE_PMD_NR)) {
919 					/*
920 					 * Range ends in the middle of THP:
921 					 * zero out the page
922 					 */
923 					clear_highpage(page);
924 					unlock_page(page);
925 					continue;
926 				}
927 				index += HPAGE_PMD_NR - 1;
928 				i += HPAGE_PMD_NR - 1;
929 			}
930 
931 			if (!unfalloc || !PageUptodate(page)) {
932 				VM_BUG_ON_PAGE(PageTail(page), page);
933 				if (page_mapping(page) == mapping) {
934 					VM_BUG_ON_PAGE(PageWriteback(page), page);
935 					truncate_inode_page(mapping, page);
936 				} else {
937 					/* Page was replaced by swap: retry */
938 					unlock_page(page);
939 					index--;
940 					break;
941 				}
942 			}
943 			unlock_page(page);
944 		}
945 		pagevec_remove_exceptionals(&pvec);
946 		pagevec_release(&pvec);
947 		index++;
948 	}
949 
950 	spin_lock_irq(&info->lock);
951 	info->swapped -= nr_swaps_freed;
952 	shmem_recalc_inode(inode);
953 	spin_unlock_irq(&info->lock);
954 }
955 
956 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
957 {
958 	shmem_undo_range(inode, lstart, lend, false);
959 	inode->i_ctime = inode->i_mtime = current_time(inode);
960 }
961 EXPORT_SYMBOL_GPL(shmem_truncate_range);
962 
963 static int shmem_getattr(const struct path *path, struct kstat *stat,
964 			 u32 request_mask, unsigned int query_flags)
965 {
966 	struct inode *inode = path->dentry->d_inode;
967 	struct shmem_inode_info *info = SHMEM_I(inode);
968 
969 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
970 		spin_lock_irq(&info->lock);
971 		shmem_recalc_inode(inode);
972 		spin_unlock_irq(&info->lock);
973 	}
974 	generic_fillattr(inode, stat);
975 	return 0;
976 }
977 
978 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
979 {
980 	struct inode *inode = d_inode(dentry);
981 	struct shmem_inode_info *info = SHMEM_I(inode);
982 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
983 	int error;
984 
985 	error = setattr_prepare(dentry, attr);
986 	if (error)
987 		return error;
988 
989 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
990 		loff_t oldsize = inode->i_size;
991 		loff_t newsize = attr->ia_size;
992 
993 		/* protected by i_mutex */
994 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
995 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
996 			return -EPERM;
997 
998 		if (newsize != oldsize) {
999 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1000 					oldsize, newsize);
1001 			if (error)
1002 				return error;
1003 			i_size_write(inode, newsize);
1004 			inode->i_ctime = inode->i_mtime = current_time(inode);
1005 		}
1006 		if (newsize <= oldsize) {
1007 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1008 			if (oldsize > holebegin)
1009 				unmap_mapping_range(inode->i_mapping,
1010 							holebegin, 0, 1);
1011 			if (info->alloced)
1012 				shmem_truncate_range(inode,
1013 							newsize, (loff_t)-1);
1014 			/* unmap again to remove racily COWed private pages */
1015 			if (oldsize > holebegin)
1016 				unmap_mapping_range(inode->i_mapping,
1017 							holebegin, 0, 1);
1018 
1019 			/*
1020 			 * Part of the huge page can be beyond i_size: subject
1021 			 * to shrink under memory pressure.
1022 			 */
1023 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1024 				spin_lock(&sbinfo->shrinklist_lock);
1025 				/*
1026 				 * _careful to defend against unlocked access to
1027 				 * ->shrink_list in shmem_unused_huge_shrink()
1028 				 */
1029 				if (list_empty_careful(&info->shrinklist)) {
1030 					list_add_tail(&info->shrinklist,
1031 							&sbinfo->shrinklist);
1032 					sbinfo->shrinklist_len++;
1033 				}
1034 				spin_unlock(&sbinfo->shrinklist_lock);
1035 			}
1036 		}
1037 	}
1038 
1039 	setattr_copy(inode, attr);
1040 	if (attr->ia_valid & ATTR_MODE)
1041 		error = posix_acl_chmod(inode, inode->i_mode);
1042 	return error;
1043 }
1044 
1045 static void shmem_evict_inode(struct inode *inode)
1046 {
1047 	struct shmem_inode_info *info = SHMEM_I(inode);
1048 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1049 
1050 	if (inode->i_mapping->a_ops == &shmem_aops) {
1051 		shmem_unacct_size(info->flags, inode->i_size);
1052 		inode->i_size = 0;
1053 		shmem_truncate_range(inode, 0, (loff_t)-1);
1054 		if (!list_empty(&info->shrinklist)) {
1055 			spin_lock(&sbinfo->shrinklist_lock);
1056 			if (!list_empty(&info->shrinklist)) {
1057 				list_del_init(&info->shrinklist);
1058 				sbinfo->shrinklist_len--;
1059 			}
1060 			spin_unlock(&sbinfo->shrinklist_lock);
1061 		}
1062 		if (!list_empty(&info->swaplist)) {
1063 			mutex_lock(&shmem_swaplist_mutex);
1064 			list_del_init(&info->swaplist);
1065 			mutex_unlock(&shmem_swaplist_mutex);
1066 		}
1067 	}
1068 
1069 	simple_xattrs_free(&info->xattrs);
1070 	WARN_ON(inode->i_blocks);
1071 	shmem_free_inode(inode->i_sb);
1072 	clear_inode(inode);
1073 }
1074 
1075 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1076 {
1077 	struct radix_tree_iter iter;
1078 	void **slot;
1079 	unsigned long found = -1;
1080 	unsigned int checked = 0;
1081 
1082 	rcu_read_lock();
1083 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1084 		if (*slot == item) {
1085 			found = iter.index;
1086 			break;
1087 		}
1088 		checked++;
1089 		if ((checked % 4096) != 0)
1090 			continue;
1091 		slot = radix_tree_iter_resume(slot, &iter);
1092 		cond_resched_rcu();
1093 	}
1094 
1095 	rcu_read_unlock();
1096 	return found;
1097 }
1098 
1099 /*
1100  * If swap found in inode, free it and move page from swapcache to filecache.
1101  */
1102 static int shmem_unuse_inode(struct shmem_inode_info *info,
1103 			     swp_entry_t swap, struct page **pagep)
1104 {
1105 	struct address_space *mapping = info->vfs_inode.i_mapping;
1106 	void *radswap;
1107 	pgoff_t index;
1108 	gfp_t gfp;
1109 	int error = 0;
1110 
1111 	radswap = swp_to_radix_entry(swap);
1112 	index = find_swap_entry(&mapping->page_tree, radswap);
1113 	if (index == -1)
1114 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1115 
1116 	/*
1117 	 * Move _head_ to start search for next from here.
1118 	 * But be careful: shmem_evict_inode checks list_empty without taking
1119 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1120 	 * would appear empty, if it were the only one on shmem_swaplist.
1121 	 */
1122 	if (shmem_swaplist.next != &info->swaplist)
1123 		list_move_tail(&shmem_swaplist, &info->swaplist);
1124 
1125 	gfp = mapping_gfp_mask(mapping);
1126 	if (shmem_should_replace_page(*pagep, gfp)) {
1127 		mutex_unlock(&shmem_swaplist_mutex);
1128 		error = shmem_replace_page(pagep, gfp, info, index);
1129 		mutex_lock(&shmem_swaplist_mutex);
1130 		/*
1131 		 * We needed to drop mutex to make that restrictive page
1132 		 * allocation, but the inode might have been freed while we
1133 		 * dropped it: although a racing shmem_evict_inode() cannot
1134 		 * complete without emptying the radix_tree, our page lock
1135 		 * on this swapcache page is not enough to prevent that -
1136 		 * free_swap_and_cache() of our swap entry will only
1137 		 * trylock_page(), removing swap from radix_tree whatever.
1138 		 *
1139 		 * We must not proceed to shmem_add_to_page_cache() if the
1140 		 * inode has been freed, but of course we cannot rely on
1141 		 * inode or mapping or info to check that.  However, we can
1142 		 * safely check if our swap entry is still in use (and here
1143 		 * it can't have got reused for another page): if it's still
1144 		 * in use, then the inode cannot have been freed yet, and we
1145 		 * can safely proceed (if it's no longer in use, that tells
1146 		 * nothing about the inode, but we don't need to unuse swap).
1147 		 */
1148 		if (!page_swapcount(*pagep))
1149 			error = -ENOENT;
1150 	}
1151 
1152 	/*
1153 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1154 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1155 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1156 	 */
1157 	if (!error)
1158 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1159 						radswap);
1160 	if (error != -ENOMEM) {
1161 		/*
1162 		 * Truncation and eviction use free_swap_and_cache(), which
1163 		 * only does trylock page: if we raced, best clean up here.
1164 		 */
1165 		delete_from_swap_cache(*pagep);
1166 		set_page_dirty(*pagep);
1167 		if (!error) {
1168 			spin_lock_irq(&info->lock);
1169 			info->swapped--;
1170 			spin_unlock_irq(&info->lock);
1171 			swap_free(swap);
1172 		}
1173 	}
1174 	return error;
1175 }
1176 
1177 /*
1178  * Search through swapped inodes to find and replace swap by page.
1179  */
1180 int shmem_unuse(swp_entry_t swap, struct page *page)
1181 {
1182 	struct list_head *this, *next;
1183 	struct shmem_inode_info *info;
1184 	struct mem_cgroup *memcg;
1185 	int error = 0;
1186 
1187 	/*
1188 	 * There's a faint possibility that swap page was replaced before
1189 	 * caller locked it: caller will come back later with the right page.
1190 	 */
1191 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1192 		goto out;
1193 
1194 	/*
1195 	 * Charge page using GFP_KERNEL while we can wait, before taking
1196 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1197 	 * Charged back to the user (not to caller) when swap account is used.
1198 	 */
1199 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1200 			false);
1201 	if (error)
1202 		goto out;
1203 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1204 	error = -EAGAIN;
1205 
1206 	mutex_lock(&shmem_swaplist_mutex);
1207 	list_for_each_safe(this, next, &shmem_swaplist) {
1208 		info = list_entry(this, struct shmem_inode_info, swaplist);
1209 		if (info->swapped)
1210 			error = shmem_unuse_inode(info, swap, &page);
1211 		else
1212 			list_del_init(&info->swaplist);
1213 		cond_resched();
1214 		if (error != -EAGAIN)
1215 			break;
1216 		/* found nothing in this: move on to search the next */
1217 	}
1218 	mutex_unlock(&shmem_swaplist_mutex);
1219 
1220 	if (error) {
1221 		if (error != -ENOMEM)
1222 			error = 0;
1223 		mem_cgroup_cancel_charge(page, memcg, false);
1224 	} else
1225 		mem_cgroup_commit_charge(page, memcg, true, false);
1226 out:
1227 	unlock_page(page);
1228 	put_page(page);
1229 	return error;
1230 }
1231 
1232 /*
1233  * Move the page from the page cache to the swap cache.
1234  */
1235 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1236 {
1237 	struct shmem_inode_info *info;
1238 	struct address_space *mapping;
1239 	struct inode *inode;
1240 	swp_entry_t swap;
1241 	pgoff_t index;
1242 
1243 	VM_BUG_ON_PAGE(PageCompound(page), page);
1244 	BUG_ON(!PageLocked(page));
1245 	mapping = page->mapping;
1246 	index = page->index;
1247 	inode = mapping->host;
1248 	info = SHMEM_I(inode);
1249 	if (info->flags & VM_LOCKED)
1250 		goto redirty;
1251 	if (!total_swap_pages)
1252 		goto redirty;
1253 
1254 	/*
1255 	 * Our capabilities prevent regular writeback or sync from ever calling
1256 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1257 	 * its underlying filesystem, in which case tmpfs should write out to
1258 	 * swap only in response to memory pressure, and not for the writeback
1259 	 * threads or sync.
1260 	 */
1261 	if (!wbc->for_reclaim) {
1262 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1263 		goto redirty;
1264 	}
1265 
1266 	/*
1267 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1268 	 * value into swapfile.c, the only way we can correctly account for a
1269 	 * fallocated page arriving here is now to initialize it and write it.
1270 	 *
1271 	 * That's okay for a page already fallocated earlier, but if we have
1272 	 * not yet completed the fallocation, then (a) we want to keep track
1273 	 * of this page in case we have to undo it, and (b) it may not be a
1274 	 * good idea to continue anyway, once we're pushing into swap.  So
1275 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1276 	 */
1277 	if (!PageUptodate(page)) {
1278 		if (inode->i_private) {
1279 			struct shmem_falloc *shmem_falloc;
1280 			spin_lock(&inode->i_lock);
1281 			shmem_falloc = inode->i_private;
1282 			if (shmem_falloc &&
1283 			    !shmem_falloc->waitq &&
1284 			    index >= shmem_falloc->start &&
1285 			    index < shmem_falloc->next)
1286 				shmem_falloc->nr_unswapped++;
1287 			else
1288 				shmem_falloc = NULL;
1289 			spin_unlock(&inode->i_lock);
1290 			if (shmem_falloc)
1291 				goto redirty;
1292 		}
1293 		clear_highpage(page);
1294 		flush_dcache_page(page);
1295 		SetPageUptodate(page);
1296 	}
1297 
1298 	swap = get_swap_page(page);
1299 	if (!swap.val)
1300 		goto redirty;
1301 
1302 	if (mem_cgroup_try_charge_swap(page, swap))
1303 		goto free_swap;
1304 
1305 	/*
1306 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1307 	 * if it's not already there.  Do it now before the page is
1308 	 * moved to swap cache, when its pagelock no longer protects
1309 	 * the inode from eviction.  But don't unlock the mutex until
1310 	 * we've incremented swapped, because shmem_unuse_inode() will
1311 	 * prune a !swapped inode from the swaplist under this mutex.
1312 	 */
1313 	mutex_lock(&shmem_swaplist_mutex);
1314 	if (list_empty(&info->swaplist))
1315 		list_add_tail(&info->swaplist, &shmem_swaplist);
1316 
1317 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1318 		spin_lock_irq(&info->lock);
1319 		shmem_recalc_inode(inode);
1320 		info->swapped++;
1321 		spin_unlock_irq(&info->lock);
1322 
1323 		swap_shmem_alloc(swap);
1324 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1325 
1326 		mutex_unlock(&shmem_swaplist_mutex);
1327 		BUG_ON(page_mapped(page));
1328 		swap_writepage(page, wbc);
1329 		return 0;
1330 	}
1331 
1332 	mutex_unlock(&shmem_swaplist_mutex);
1333 free_swap:
1334 	put_swap_page(page, swap);
1335 redirty:
1336 	set_page_dirty(page);
1337 	if (wbc->for_reclaim)
1338 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1339 	unlock_page(page);
1340 	return 0;
1341 }
1342 
1343 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1344 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1345 {
1346 	char buffer[64];
1347 
1348 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1349 		return;		/* show nothing */
1350 
1351 	mpol_to_str(buffer, sizeof(buffer), mpol);
1352 
1353 	seq_printf(seq, ",mpol=%s", buffer);
1354 }
1355 
1356 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1357 {
1358 	struct mempolicy *mpol = NULL;
1359 	if (sbinfo->mpol) {
1360 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1361 		mpol = sbinfo->mpol;
1362 		mpol_get(mpol);
1363 		spin_unlock(&sbinfo->stat_lock);
1364 	}
1365 	return mpol;
1366 }
1367 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1368 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1369 {
1370 }
1371 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1372 {
1373 	return NULL;
1374 }
1375 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1376 #ifndef CONFIG_NUMA
1377 #define vm_policy vm_private_data
1378 #endif
1379 
1380 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1381 		struct shmem_inode_info *info, pgoff_t index)
1382 {
1383 	/* Create a pseudo vma that just contains the policy */
1384 	vma->vm_start = 0;
1385 	/* Bias interleave by inode number to distribute better across nodes */
1386 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1387 	vma->vm_ops = NULL;
1388 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1389 }
1390 
1391 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1392 {
1393 	/* Drop reference taken by mpol_shared_policy_lookup() */
1394 	mpol_cond_put(vma->vm_policy);
1395 }
1396 
1397 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1398 			struct shmem_inode_info *info, pgoff_t index)
1399 {
1400 	struct vm_area_struct pvma;
1401 	struct page *page;
1402 
1403 	shmem_pseudo_vma_init(&pvma, info, index);
1404 	page = swapin_readahead(swap, gfp, &pvma, 0);
1405 	shmem_pseudo_vma_destroy(&pvma);
1406 
1407 	return page;
1408 }
1409 
1410 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1411 		struct shmem_inode_info *info, pgoff_t index)
1412 {
1413 	struct vm_area_struct pvma;
1414 	struct inode *inode = &info->vfs_inode;
1415 	struct address_space *mapping = inode->i_mapping;
1416 	pgoff_t idx, hindex;
1417 	void __rcu **results;
1418 	struct page *page;
1419 
1420 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1421 		return NULL;
1422 
1423 	hindex = round_down(index, HPAGE_PMD_NR);
1424 	rcu_read_lock();
1425 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1426 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1427 		rcu_read_unlock();
1428 		return NULL;
1429 	}
1430 	rcu_read_unlock();
1431 
1432 	shmem_pseudo_vma_init(&pvma, info, hindex);
1433 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1434 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1435 	shmem_pseudo_vma_destroy(&pvma);
1436 	if (page)
1437 		prep_transhuge_page(page);
1438 	return page;
1439 }
1440 
1441 static struct page *shmem_alloc_page(gfp_t gfp,
1442 			struct shmem_inode_info *info, pgoff_t index)
1443 {
1444 	struct vm_area_struct pvma;
1445 	struct page *page;
1446 
1447 	shmem_pseudo_vma_init(&pvma, info, index);
1448 	page = alloc_page_vma(gfp, &pvma, 0);
1449 	shmem_pseudo_vma_destroy(&pvma);
1450 
1451 	return page;
1452 }
1453 
1454 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1455 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1456 		pgoff_t index, bool huge)
1457 {
1458 	struct page *page;
1459 	int nr;
1460 	int err = -ENOSPC;
1461 
1462 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463 		huge = false;
1464 	nr = huge ? HPAGE_PMD_NR : 1;
1465 
1466 	if (shmem_acct_block(info->flags, nr))
1467 		goto failed;
1468 	if (sbinfo->max_blocks) {
1469 		if (percpu_counter_compare(&sbinfo->used_blocks,
1470 					sbinfo->max_blocks - nr) > 0)
1471 			goto unacct;
1472 		percpu_counter_add(&sbinfo->used_blocks, nr);
1473 	}
1474 
1475 	if (huge)
1476 		page = shmem_alloc_hugepage(gfp, info, index);
1477 	else
1478 		page = shmem_alloc_page(gfp, info, index);
1479 	if (page) {
1480 		__SetPageLocked(page);
1481 		__SetPageSwapBacked(page);
1482 		return page;
1483 	}
1484 
1485 	err = -ENOMEM;
1486 	if (sbinfo->max_blocks)
1487 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1488 unacct:
1489 	shmem_unacct_blocks(info->flags, nr);
1490 failed:
1491 	return ERR_PTR(err);
1492 }
1493 
1494 /*
1495  * When a page is moved from swapcache to shmem filecache (either by the
1496  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1497  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1498  * ignorance of the mapping it belongs to.  If that mapping has special
1499  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1500  * we may need to copy to a suitable page before moving to filecache.
1501  *
1502  * In a future release, this may well be extended to respect cpuset and
1503  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1504  * but for now it is a simple matter of zone.
1505  */
1506 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1507 {
1508 	return page_zonenum(page) > gfp_zone(gfp);
1509 }
1510 
1511 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1512 				struct shmem_inode_info *info, pgoff_t index)
1513 {
1514 	struct page *oldpage, *newpage;
1515 	struct address_space *swap_mapping;
1516 	pgoff_t swap_index;
1517 	int error;
1518 
1519 	oldpage = *pagep;
1520 	swap_index = page_private(oldpage);
1521 	swap_mapping = page_mapping(oldpage);
1522 
1523 	/*
1524 	 * We have arrived here because our zones are constrained, so don't
1525 	 * limit chance of success by further cpuset and node constraints.
1526 	 */
1527 	gfp &= ~GFP_CONSTRAINT_MASK;
1528 	newpage = shmem_alloc_page(gfp, info, index);
1529 	if (!newpage)
1530 		return -ENOMEM;
1531 
1532 	get_page(newpage);
1533 	copy_highpage(newpage, oldpage);
1534 	flush_dcache_page(newpage);
1535 
1536 	__SetPageLocked(newpage);
1537 	__SetPageSwapBacked(newpage);
1538 	SetPageUptodate(newpage);
1539 	set_page_private(newpage, swap_index);
1540 	SetPageSwapCache(newpage);
1541 
1542 	/*
1543 	 * Our caller will very soon move newpage out of swapcache, but it's
1544 	 * a nice clean interface for us to replace oldpage by newpage there.
1545 	 */
1546 	spin_lock_irq(&swap_mapping->tree_lock);
1547 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1548 								   newpage);
1549 	if (!error) {
1550 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1551 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1552 	}
1553 	spin_unlock_irq(&swap_mapping->tree_lock);
1554 
1555 	if (unlikely(error)) {
1556 		/*
1557 		 * Is this possible?  I think not, now that our callers check
1558 		 * both PageSwapCache and page_private after getting page lock;
1559 		 * but be defensive.  Reverse old to newpage for clear and free.
1560 		 */
1561 		oldpage = newpage;
1562 	} else {
1563 		mem_cgroup_migrate(oldpage, newpage);
1564 		lru_cache_add_anon(newpage);
1565 		*pagep = newpage;
1566 	}
1567 
1568 	ClearPageSwapCache(oldpage);
1569 	set_page_private(oldpage, 0);
1570 
1571 	unlock_page(oldpage);
1572 	put_page(oldpage);
1573 	put_page(oldpage);
1574 	return error;
1575 }
1576 
1577 /*
1578  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1579  *
1580  * If we allocate a new one we do not mark it dirty. That's up to the
1581  * vm. If we swap it in we mark it dirty since we also free the swap
1582  * entry since a page cannot live in both the swap and page cache.
1583  *
1584  * fault_mm and fault_type are only supplied by shmem_fault:
1585  * otherwise they are NULL.
1586  */
1587 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1588 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1589 	struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1590 {
1591 	struct address_space *mapping = inode->i_mapping;
1592 	struct shmem_inode_info *info = SHMEM_I(inode);
1593 	struct shmem_sb_info *sbinfo;
1594 	struct mm_struct *charge_mm;
1595 	struct mem_cgroup *memcg;
1596 	struct page *page;
1597 	swp_entry_t swap;
1598 	enum sgp_type sgp_huge = sgp;
1599 	pgoff_t hindex = index;
1600 	int error;
1601 	int once = 0;
1602 	int alloced = 0;
1603 
1604 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1605 		return -EFBIG;
1606 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1607 		sgp = SGP_CACHE;
1608 repeat:
1609 	swap.val = 0;
1610 	page = find_lock_entry(mapping, index);
1611 	if (radix_tree_exceptional_entry(page)) {
1612 		swap = radix_to_swp_entry(page);
1613 		page = NULL;
1614 	}
1615 
1616 	if (sgp <= SGP_CACHE &&
1617 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1618 		error = -EINVAL;
1619 		goto unlock;
1620 	}
1621 
1622 	if (page && sgp == SGP_WRITE)
1623 		mark_page_accessed(page);
1624 
1625 	/* fallocated page? */
1626 	if (page && !PageUptodate(page)) {
1627 		if (sgp != SGP_READ)
1628 			goto clear;
1629 		unlock_page(page);
1630 		put_page(page);
1631 		page = NULL;
1632 	}
1633 	if (page || (sgp == SGP_READ && !swap.val)) {
1634 		*pagep = page;
1635 		return 0;
1636 	}
1637 
1638 	/*
1639 	 * Fast cache lookup did not find it:
1640 	 * bring it back from swap or allocate.
1641 	 */
1642 	sbinfo = SHMEM_SB(inode->i_sb);
1643 	charge_mm = vma ? vma->vm_mm : current->mm;
1644 
1645 	if (swap.val) {
1646 		/* Look it up and read it in.. */
1647 		page = lookup_swap_cache(swap);
1648 		if (!page) {
1649 			/* Or update major stats only when swapin succeeds?? */
1650 			if (fault_type) {
1651 				*fault_type |= VM_FAULT_MAJOR;
1652 				count_vm_event(PGMAJFAULT);
1653 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1654 			}
1655 			/* Here we actually start the io */
1656 			page = shmem_swapin(swap, gfp, info, index);
1657 			if (!page) {
1658 				error = -ENOMEM;
1659 				goto failed;
1660 			}
1661 		}
1662 
1663 		/* We have to do this with page locked to prevent races */
1664 		lock_page(page);
1665 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1666 		    !shmem_confirm_swap(mapping, index, swap)) {
1667 			error = -EEXIST;	/* try again */
1668 			goto unlock;
1669 		}
1670 		if (!PageUptodate(page)) {
1671 			error = -EIO;
1672 			goto failed;
1673 		}
1674 		wait_on_page_writeback(page);
1675 
1676 		if (shmem_should_replace_page(page, gfp)) {
1677 			error = shmem_replace_page(&page, gfp, info, index);
1678 			if (error)
1679 				goto failed;
1680 		}
1681 
1682 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1683 				false);
1684 		if (!error) {
1685 			error = shmem_add_to_page_cache(page, mapping, index,
1686 						swp_to_radix_entry(swap));
1687 			/*
1688 			 * We already confirmed swap under page lock, and make
1689 			 * no memory allocation here, so usually no possibility
1690 			 * of error; but free_swap_and_cache() only trylocks a
1691 			 * page, so it is just possible that the entry has been
1692 			 * truncated or holepunched since swap was confirmed.
1693 			 * shmem_undo_range() will have done some of the
1694 			 * unaccounting, now delete_from_swap_cache() will do
1695 			 * the rest.
1696 			 * Reset swap.val? No, leave it so "failed" goes back to
1697 			 * "repeat": reading a hole and writing should succeed.
1698 			 */
1699 			if (error) {
1700 				mem_cgroup_cancel_charge(page, memcg, false);
1701 				delete_from_swap_cache(page);
1702 			}
1703 		}
1704 		if (error)
1705 			goto failed;
1706 
1707 		mem_cgroup_commit_charge(page, memcg, true, false);
1708 
1709 		spin_lock_irq(&info->lock);
1710 		info->swapped--;
1711 		shmem_recalc_inode(inode);
1712 		spin_unlock_irq(&info->lock);
1713 
1714 		if (sgp == SGP_WRITE)
1715 			mark_page_accessed(page);
1716 
1717 		delete_from_swap_cache(page);
1718 		set_page_dirty(page);
1719 		swap_free(swap);
1720 
1721 	} else {
1722 		if (vma && userfaultfd_missing(vma)) {
1723 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1724 			return 0;
1725 		}
1726 
1727 		/* shmem_symlink() */
1728 		if (mapping->a_ops != &shmem_aops)
1729 			goto alloc_nohuge;
1730 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1731 			goto alloc_nohuge;
1732 		if (shmem_huge == SHMEM_HUGE_FORCE)
1733 			goto alloc_huge;
1734 		switch (sbinfo->huge) {
1735 			loff_t i_size;
1736 			pgoff_t off;
1737 		case SHMEM_HUGE_NEVER:
1738 			goto alloc_nohuge;
1739 		case SHMEM_HUGE_WITHIN_SIZE:
1740 			off = round_up(index, HPAGE_PMD_NR);
1741 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1742 			if (i_size >= HPAGE_PMD_SIZE &&
1743 					i_size >> PAGE_SHIFT >= off)
1744 				goto alloc_huge;
1745 			/* fallthrough */
1746 		case SHMEM_HUGE_ADVISE:
1747 			if (sgp_huge == SGP_HUGE)
1748 				goto alloc_huge;
1749 			/* TODO: implement fadvise() hints */
1750 			goto alloc_nohuge;
1751 		}
1752 
1753 alloc_huge:
1754 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1755 				index, true);
1756 		if (IS_ERR(page)) {
1757 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1758 					index, false);
1759 		}
1760 		if (IS_ERR(page)) {
1761 			int retry = 5;
1762 			error = PTR_ERR(page);
1763 			page = NULL;
1764 			if (error != -ENOSPC)
1765 				goto failed;
1766 			/*
1767 			 * Try to reclaim some spece by splitting a huge page
1768 			 * beyond i_size on the filesystem.
1769 			 */
1770 			while (retry--) {
1771 				int ret;
1772 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1773 				if (ret == SHRINK_STOP)
1774 					break;
1775 				if (ret)
1776 					goto alloc_nohuge;
1777 			}
1778 			goto failed;
1779 		}
1780 
1781 		if (PageTransHuge(page))
1782 			hindex = round_down(index, HPAGE_PMD_NR);
1783 		else
1784 			hindex = index;
1785 
1786 		if (sgp == SGP_WRITE)
1787 			__SetPageReferenced(page);
1788 
1789 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1790 				PageTransHuge(page));
1791 		if (error)
1792 			goto unacct;
1793 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1794 				compound_order(page));
1795 		if (!error) {
1796 			error = shmem_add_to_page_cache(page, mapping, hindex,
1797 							NULL);
1798 			radix_tree_preload_end();
1799 		}
1800 		if (error) {
1801 			mem_cgroup_cancel_charge(page, memcg,
1802 					PageTransHuge(page));
1803 			goto unacct;
1804 		}
1805 		mem_cgroup_commit_charge(page, memcg, false,
1806 				PageTransHuge(page));
1807 		lru_cache_add_anon(page);
1808 
1809 		spin_lock_irq(&info->lock);
1810 		info->alloced += 1 << compound_order(page);
1811 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1812 		shmem_recalc_inode(inode);
1813 		spin_unlock_irq(&info->lock);
1814 		alloced = true;
1815 
1816 		if (PageTransHuge(page) &&
1817 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1818 				hindex + HPAGE_PMD_NR - 1) {
1819 			/*
1820 			 * Part of the huge page is beyond i_size: subject
1821 			 * to shrink under memory pressure.
1822 			 */
1823 			spin_lock(&sbinfo->shrinklist_lock);
1824 			/*
1825 			 * _careful to defend against unlocked access to
1826 			 * ->shrink_list in shmem_unused_huge_shrink()
1827 			 */
1828 			if (list_empty_careful(&info->shrinklist)) {
1829 				list_add_tail(&info->shrinklist,
1830 						&sbinfo->shrinklist);
1831 				sbinfo->shrinklist_len++;
1832 			}
1833 			spin_unlock(&sbinfo->shrinklist_lock);
1834 		}
1835 
1836 		/*
1837 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1838 		 */
1839 		if (sgp == SGP_FALLOC)
1840 			sgp = SGP_WRITE;
1841 clear:
1842 		/*
1843 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1844 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1845 		 * it now, lest undo on failure cancel our earlier guarantee.
1846 		 */
1847 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1848 			struct page *head = compound_head(page);
1849 			int i;
1850 
1851 			for (i = 0; i < (1 << compound_order(head)); i++) {
1852 				clear_highpage(head + i);
1853 				flush_dcache_page(head + i);
1854 			}
1855 			SetPageUptodate(head);
1856 		}
1857 	}
1858 
1859 	/* Perhaps the file has been truncated since we checked */
1860 	if (sgp <= SGP_CACHE &&
1861 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1862 		if (alloced) {
1863 			ClearPageDirty(page);
1864 			delete_from_page_cache(page);
1865 			spin_lock_irq(&info->lock);
1866 			shmem_recalc_inode(inode);
1867 			spin_unlock_irq(&info->lock);
1868 		}
1869 		error = -EINVAL;
1870 		goto unlock;
1871 	}
1872 	*pagep = page + index - hindex;
1873 	return 0;
1874 
1875 	/*
1876 	 * Error recovery.
1877 	 */
1878 unacct:
1879 	if (sbinfo->max_blocks)
1880 		percpu_counter_sub(&sbinfo->used_blocks,
1881 				1 << compound_order(page));
1882 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1883 
1884 	if (PageTransHuge(page)) {
1885 		unlock_page(page);
1886 		put_page(page);
1887 		goto alloc_nohuge;
1888 	}
1889 failed:
1890 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1891 		error = -EEXIST;
1892 unlock:
1893 	if (page) {
1894 		unlock_page(page);
1895 		put_page(page);
1896 	}
1897 	if (error == -ENOSPC && !once++) {
1898 		spin_lock_irq(&info->lock);
1899 		shmem_recalc_inode(inode);
1900 		spin_unlock_irq(&info->lock);
1901 		goto repeat;
1902 	}
1903 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1904 		goto repeat;
1905 	return error;
1906 }
1907 
1908 /*
1909  * This is like autoremove_wake_function, but it removes the wait queue
1910  * entry unconditionally - even if something else had already woken the
1911  * target.
1912  */
1913 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1914 {
1915 	int ret = default_wake_function(wait, mode, sync, key);
1916 	list_del_init(&wait->entry);
1917 	return ret;
1918 }
1919 
1920 static int shmem_fault(struct vm_fault *vmf)
1921 {
1922 	struct vm_area_struct *vma = vmf->vma;
1923 	struct inode *inode = file_inode(vma->vm_file);
1924 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1925 	enum sgp_type sgp;
1926 	int error;
1927 	int ret = VM_FAULT_LOCKED;
1928 
1929 	/*
1930 	 * Trinity finds that probing a hole which tmpfs is punching can
1931 	 * prevent the hole-punch from ever completing: which in turn
1932 	 * locks writers out with its hold on i_mutex.  So refrain from
1933 	 * faulting pages into the hole while it's being punched.  Although
1934 	 * shmem_undo_range() does remove the additions, it may be unable to
1935 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1936 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1937 	 *
1938 	 * It does not matter if we sometimes reach this check just before the
1939 	 * hole-punch begins, so that one fault then races with the punch:
1940 	 * we just need to make racing faults a rare case.
1941 	 *
1942 	 * The implementation below would be much simpler if we just used a
1943 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1944 	 * and bloating every shmem inode for this unlikely case would be sad.
1945 	 */
1946 	if (unlikely(inode->i_private)) {
1947 		struct shmem_falloc *shmem_falloc;
1948 
1949 		spin_lock(&inode->i_lock);
1950 		shmem_falloc = inode->i_private;
1951 		if (shmem_falloc &&
1952 		    shmem_falloc->waitq &&
1953 		    vmf->pgoff >= shmem_falloc->start &&
1954 		    vmf->pgoff < shmem_falloc->next) {
1955 			wait_queue_head_t *shmem_falloc_waitq;
1956 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1957 
1958 			ret = VM_FAULT_NOPAGE;
1959 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1960 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1961 				/* It's polite to up mmap_sem if we can */
1962 				up_read(&vma->vm_mm->mmap_sem);
1963 				ret = VM_FAULT_RETRY;
1964 			}
1965 
1966 			shmem_falloc_waitq = shmem_falloc->waitq;
1967 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1968 					TASK_UNINTERRUPTIBLE);
1969 			spin_unlock(&inode->i_lock);
1970 			schedule();
1971 
1972 			/*
1973 			 * shmem_falloc_waitq points into the shmem_fallocate()
1974 			 * stack of the hole-punching task: shmem_falloc_waitq
1975 			 * is usually invalid by the time we reach here, but
1976 			 * finish_wait() does not dereference it in that case;
1977 			 * though i_lock needed lest racing with wake_up_all().
1978 			 */
1979 			spin_lock(&inode->i_lock);
1980 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1981 			spin_unlock(&inode->i_lock);
1982 			return ret;
1983 		}
1984 		spin_unlock(&inode->i_lock);
1985 	}
1986 
1987 	sgp = SGP_CACHE;
1988 
1989 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1990 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1991 		sgp = SGP_NOHUGE;
1992 	else if (vma->vm_flags & VM_HUGEPAGE)
1993 		sgp = SGP_HUGE;
1994 
1995 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1996 				  gfp, vma, vmf, &ret);
1997 	if (error)
1998 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1999 	return ret;
2000 }
2001 
2002 unsigned long shmem_get_unmapped_area(struct file *file,
2003 				      unsigned long uaddr, unsigned long len,
2004 				      unsigned long pgoff, unsigned long flags)
2005 {
2006 	unsigned long (*get_area)(struct file *,
2007 		unsigned long, unsigned long, unsigned long, unsigned long);
2008 	unsigned long addr;
2009 	unsigned long offset;
2010 	unsigned long inflated_len;
2011 	unsigned long inflated_addr;
2012 	unsigned long inflated_offset;
2013 
2014 	if (len > TASK_SIZE)
2015 		return -ENOMEM;
2016 
2017 	get_area = current->mm->get_unmapped_area;
2018 	addr = get_area(file, uaddr, len, pgoff, flags);
2019 
2020 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2021 		return addr;
2022 	if (IS_ERR_VALUE(addr))
2023 		return addr;
2024 	if (addr & ~PAGE_MASK)
2025 		return addr;
2026 	if (addr > TASK_SIZE - len)
2027 		return addr;
2028 
2029 	if (shmem_huge == SHMEM_HUGE_DENY)
2030 		return addr;
2031 	if (len < HPAGE_PMD_SIZE)
2032 		return addr;
2033 	if (flags & MAP_FIXED)
2034 		return addr;
2035 	/*
2036 	 * Our priority is to support MAP_SHARED mapped hugely;
2037 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2038 	 * But if caller specified an address hint, respect that as before.
2039 	 */
2040 	if (uaddr)
2041 		return addr;
2042 
2043 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2044 		struct super_block *sb;
2045 
2046 		if (file) {
2047 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2048 			sb = file_inode(file)->i_sb;
2049 		} else {
2050 			/*
2051 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2052 			 * for "/dev/zero", to create a shared anonymous object.
2053 			 */
2054 			if (IS_ERR(shm_mnt))
2055 				return addr;
2056 			sb = shm_mnt->mnt_sb;
2057 		}
2058 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2059 			return addr;
2060 	}
2061 
2062 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2063 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2064 		return addr;
2065 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2066 		return addr;
2067 
2068 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2069 	if (inflated_len > TASK_SIZE)
2070 		return addr;
2071 	if (inflated_len < len)
2072 		return addr;
2073 
2074 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2075 	if (IS_ERR_VALUE(inflated_addr))
2076 		return addr;
2077 	if (inflated_addr & ~PAGE_MASK)
2078 		return addr;
2079 
2080 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2081 	inflated_addr += offset - inflated_offset;
2082 	if (inflated_offset > offset)
2083 		inflated_addr += HPAGE_PMD_SIZE;
2084 
2085 	if (inflated_addr > TASK_SIZE - len)
2086 		return addr;
2087 	return inflated_addr;
2088 }
2089 
2090 #ifdef CONFIG_NUMA
2091 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2092 {
2093 	struct inode *inode = file_inode(vma->vm_file);
2094 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2095 }
2096 
2097 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2098 					  unsigned long addr)
2099 {
2100 	struct inode *inode = file_inode(vma->vm_file);
2101 	pgoff_t index;
2102 
2103 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2104 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2105 }
2106 #endif
2107 
2108 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2109 {
2110 	struct inode *inode = file_inode(file);
2111 	struct shmem_inode_info *info = SHMEM_I(inode);
2112 	int retval = -ENOMEM;
2113 
2114 	spin_lock_irq(&info->lock);
2115 	if (lock && !(info->flags & VM_LOCKED)) {
2116 		if (!user_shm_lock(inode->i_size, user))
2117 			goto out_nomem;
2118 		info->flags |= VM_LOCKED;
2119 		mapping_set_unevictable(file->f_mapping);
2120 	}
2121 	if (!lock && (info->flags & VM_LOCKED) && user) {
2122 		user_shm_unlock(inode->i_size, user);
2123 		info->flags &= ~VM_LOCKED;
2124 		mapping_clear_unevictable(file->f_mapping);
2125 	}
2126 	retval = 0;
2127 
2128 out_nomem:
2129 	spin_unlock_irq(&info->lock);
2130 	return retval;
2131 }
2132 
2133 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2134 {
2135 	file_accessed(file);
2136 	vma->vm_ops = &shmem_vm_ops;
2137 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2138 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2139 			(vma->vm_end & HPAGE_PMD_MASK)) {
2140 		khugepaged_enter(vma, vma->vm_flags);
2141 	}
2142 	return 0;
2143 }
2144 
2145 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2146 				     umode_t mode, dev_t dev, unsigned long flags)
2147 {
2148 	struct inode *inode;
2149 	struct shmem_inode_info *info;
2150 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2151 
2152 	if (shmem_reserve_inode(sb))
2153 		return NULL;
2154 
2155 	inode = new_inode(sb);
2156 	if (inode) {
2157 		inode->i_ino = get_next_ino();
2158 		inode_init_owner(inode, dir, mode);
2159 		inode->i_blocks = 0;
2160 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2161 		inode->i_generation = get_seconds();
2162 		info = SHMEM_I(inode);
2163 		memset(info, 0, (char *)inode - (char *)info);
2164 		spin_lock_init(&info->lock);
2165 		info->seals = F_SEAL_SEAL;
2166 		info->flags = flags & VM_NORESERVE;
2167 		INIT_LIST_HEAD(&info->shrinklist);
2168 		INIT_LIST_HEAD(&info->swaplist);
2169 		simple_xattrs_init(&info->xattrs);
2170 		cache_no_acl(inode);
2171 
2172 		switch (mode & S_IFMT) {
2173 		default:
2174 			inode->i_op = &shmem_special_inode_operations;
2175 			init_special_inode(inode, mode, dev);
2176 			break;
2177 		case S_IFREG:
2178 			inode->i_mapping->a_ops = &shmem_aops;
2179 			inode->i_op = &shmem_inode_operations;
2180 			inode->i_fop = &shmem_file_operations;
2181 			mpol_shared_policy_init(&info->policy,
2182 						 shmem_get_sbmpol(sbinfo));
2183 			break;
2184 		case S_IFDIR:
2185 			inc_nlink(inode);
2186 			/* Some things misbehave if size == 0 on a directory */
2187 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2188 			inode->i_op = &shmem_dir_inode_operations;
2189 			inode->i_fop = &simple_dir_operations;
2190 			break;
2191 		case S_IFLNK:
2192 			/*
2193 			 * Must not load anything in the rbtree,
2194 			 * mpol_free_shared_policy will not be called.
2195 			 */
2196 			mpol_shared_policy_init(&info->policy, NULL);
2197 			break;
2198 		}
2199 	} else
2200 		shmem_free_inode(sb);
2201 	return inode;
2202 }
2203 
2204 bool shmem_mapping(struct address_space *mapping)
2205 {
2206 	return mapping->a_ops == &shmem_aops;
2207 }
2208 
2209 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2210 			   pmd_t *dst_pmd,
2211 			   struct vm_area_struct *dst_vma,
2212 			   unsigned long dst_addr,
2213 			   unsigned long src_addr,
2214 			   struct page **pagep)
2215 {
2216 	struct inode *inode = file_inode(dst_vma->vm_file);
2217 	struct shmem_inode_info *info = SHMEM_I(inode);
2218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2219 	struct address_space *mapping = inode->i_mapping;
2220 	gfp_t gfp = mapping_gfp_mask(mapping);
2221 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2222 	struct mem_cgroup *memcg;
2223 	spinlock_t *ptl;
2224 	void *page_kaddr;
2225 	struct page *page;
2226 	pte_t _dst_pte, *dst_pte;
2227 	int ret;
2228 
2229 	ret = -ENOMEM;
2230 	if (shmem_acct_block(info->flags, 1))
2231 		goto out;
2232 	if (sbinfo->max_blocks) {
2233 		if (percpu_counter_compare(&sbinfo->used_blocks,
2234 					   sbinfo->max_blocks) >= 0)
2235 			goto out_unacct_blocks;
2236 		percpu_counter_inc(&sbinfo->used_blocks);
2237 	}
2238 
2239 	if (!*pagep) {
2240 		page = shmem_alloc_page(gfp, info, pgoff);
2241 		if (!page)
2242 			goto out_dec_used_blocks;
2243 
2244 		page_kaddr = kmap_atomic(page);
2245 		ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2246 				     PAGE_SIZE);
2247 		kunmap_atomic(page_kaddr);
2248 
2249 		/* fallback to copy_from_user outside mmap_sem */
2250 		if (unlikely(ret)) {
2251 			*pagep = page;
2252 			if (sbinfo->max_blocks)
2253 				percpu_counter_add(&sbinfo->used_blocks, -1);
2254 			shmem_unacct_blocks(info->flags, 1);
2255 			/* don't free the page */
2256 			return -EFAULT;
2257 		}
2258 	} else {
2259 		page = *pagep;
2260 		*pagep = NULL;
2261 	}
2262 
2263 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2264 	__SetPageLocked(page);
2265 	__SetPageSwapBacked(page);
2266 	__SetPageUptodate(page);
2267 
2268 	ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2269 	if (ret)
2270 		goto out_release;
2271 
2272 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2273 	if (!ret) {
2274 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2275 		radix_tree_preload_end();
2276 	}
2277 	if (ret)
2278 		goto out_release_uncharge;
2279 
2280 	mem_cgroup_commit_charge(page, memcg, false, false);
2281 
2282 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2283 	if (dst_vma->vm_flags & VM_WRITE)
2284 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2285 
2286 	ret = -EEXIST;
2287 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2288 	if (!pte_none(*dst_pte))
2289 		goto out_release_uncharge_unlock;
2290 
2291 	lru_cache_add_anon(page);
2292 
2293 	spin_lock(&info->lock);
2294 	info->alloced++;
2295 	inode->i_blocks += BLOCKS_PER_PAGE;
2296 	shmem_recalc_inode(inode);
2297 	spin_unlock(&info->lock);
2298 
2299 	inc_mm_counter(dst_mm, mm_counter_file(page));
2300 	page_add_file_rmap(page, false);
2301 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2302 
2303 	/* No need to invalidate - it was non-present before */
2304 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2305 	unlock_page(page);
2306 	pte_unmap_unlock(dst_pte, ptl);
2307 	ret = 0;
2308 out:
2309 	return ret;
2310 out_release_uncharge_unlock:
2311 	pte_unmap_unlock(dst_pte, ptl);
2312 out_release_uncharge:
2313 	mem_cgroup_cancel_charge(page, memcg, false);
2314 out_release:
2315 	unlock_page(page);
2316 	put_page(page);
2317 out_dec_used_blocks:
2318 	if (sbinfo->max_blocks)
2319 		percpu_counter_add(&sbinfo->used_blocks, -1);
2320 out_unacct_blocks:
2321 	shmem_unacct_blocks(info->flags, 1);
2322 	goto out;
2323 }
2324 
2325 #ifdef CONFIG_TMPFS
2326 static const struct inode_operations shmem_symlink_inode_operations;
2327 static const struct inode_operations shmem_short_symlink_operations;
2328 
2329 #ifdef CONFIG_TMPFS_XATTR
2330 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2331 #else
2332 #define shmem_initxattrs NULL
2333 #endif
2334 
2335 static int
2336 shmem_write_begin(struct file *file, struct address_space *mapping,
2337 			loff_t pos, unsigned len, unsigned flags,
2338 			struct page **pagep, void **fsdata)
2339 {
2340 	struct inode *inode = mapping->host;
2341 	struct shmem_inode_info *info = SHMEM_I(inode);
2342 	pgoff_t index = pos >> PAGE_SHIFT;
2343 
2344 	/* i_mutex is held by caller */
2345 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2346 		if (info->seals & F_SEAL_WRITE)
2347 			return -EPERM;
2348 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2349 			return -EPERM;
2350 	}
2351 
2352 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2353 }
2354 
2355 static int
2356 shmem_write_end(struct file *file, struct address_space *mapping,
2357 			loff_t pos, unsigned len, unsigned copied,
2358 			struct page *page, void *fsdata)
2359 {
2360 	struct inode *inode = mapping->host;
2361 
2362 	if (pos + copied > inode->i_size)
2363 		i_size_write(inode, pos + copied);
2364 
2365 	if (!PageUptodate(page)) {
2366 		struct page *head = compound_head(page);
2367 		if (PageTransCompound(page)) {
2368 			int i;
2369 
2370 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2371 				if (head + i == page)
2372 					continue;
2373 				clear_highpage(head + i);
2374 				flush_dcache_page(head + i);
2375 			}
2376 		}
2377 		if (copied < PAGE_SIZE) {
2378 			unsigned from = pos & (PAGE_SIZE - 1);
2379 			zero_user_segments(page, 0, from,
2380 					from + copied, PAGE_SIZE);
2381 		}
2382 		SetPageUptodate(head);
2383 	}
2384 	set_page_dirty(page);
2385 	unlock_page(page);
2386 	put_page(page);
2387 
2388 	return copied;
2389 }
2390 
2391 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2392 {
2393 	struct file *file = iocb->ki_filp;
2394 	struct inode *inode = file_inode(file);
2395 	struct address_space *mapping = inode->i_mapping;
2396 	pgoff_t index;
2397 	unsigned long offset;
2398 	enum sgp_type sgp = SGP_READ;
2399 	int error = 0;
2400 	ssize_t retval = 0;
2401 	loff_t *ppos = &iocb->ki_pos;
2402 
2403 	/*
2404 	 * Might this read be for a stacking filesystem?  Then when reading
2405 	 * holes of a sparse file, we actually need to allocate those pages,
2406 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2407 	 */
2408 	if (!iter_is_iovec(to))
2409 		sgp = SGP_CACHE;
2410 
2411 	index = *ppos >> PAGE_SHIFT;
2412 	offset = *ppos & ~PAGE_MASK;
2413 
2414 	for (;;) {
2415 		struct page *page = NULL;
2416 		pgoff_t end_index;
2417 		unsigned long nr, ret;
2418 		loff_t i_size = i_size_read(inode);
2419 
2420 		end_index = i_size >> PAGE_SHIFT;
2421 		if (index > end_index)
2422 			break;
2423 		if (index == end_index) {
2424 			nr = i_size & ~PAGE_MASK;
2425 			if (nr <= offset)
2426 				break;
2427 		}
2428 
2429 		error = shmem_getpage(inode, index, &page, sgp);
2430 		if (error) {
2431 			if (error == -EINVAL)
2432 				error = 0;
2433 			break;
2434 		}
2435 		if (page) {
2436 			if (sgp == SGP_CACHE)
2437 				set_page_dirty(page);
2438 			unlock_page(page);
2439 		}
2440 
2441 		/*
2442 		 * We must evaluate after, since reads (unlike writes)
2443 		 * are called without i_mutex protection against truncate
2444 		 */
2445 		nr = PAGE_SIZE;
2446 		i_size = i_size_read(inode);
2447 		end_index = i_size >> PAGE_SHIFT;
2448 		if (index == end_index) {
2449 			nr = i_size & ~PAGE_MASK;
2450 			if (nr <= offset) {
2451 				if (page)
2452 					put_page(page);
2453 				break;
2454 			}
2455 		}
2456 		nr -= offset;
2457 
2458 		if (page) {
2459 			/*
2460 			 * If users can be writing to this page using arbitrary
2461 			 * virtual addresses, take care about potential aliasing
2462 			 * before reading the page on the kernel side.
2463 			 */
2464 			if (mapping_writably_mapped(mapping))
2465 				flush_dcache_page(page);
2466 			/*
2467 			 * Mark the page accessed if we read the beginning.
2468 			 */
2469 			if (!offset)
2470 				mark_page_accessed(page);
2471 		} else {
2472 			page = ZERO_PAGE(0);
2473 			get_page(page);
2474 		}
2475 
2476 		/*
2477 		 * Ok, we have the page, and it's up-to-date, so
2478 		 * now we can copy it to user space...
2479 		 */
2480 		ret = copy_page_to_iter(page, offset, nr, to);
2481 		retval += ret;
2482 		offset += ret;
2483 		index += offset >> PAGE_SHIFT;
2484 		offset &= ~PAGE_MASK;
2485 
2486 		put_page(page);
2487 		if (!iov_iter_count(to))
2488 			break;
2489 		if (ret < nr) {
2490 			error = -EFAULT;
2491 			break;
2492 		}
2493 		cond_resched();
2494 	}
2495 
2496 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2497 	file_accessed(file);
2498 	return retval ? retval : error;
2499 }
2500 
2501 /*
2502  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2503  */
2504 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2505 				    pgoff_t index, pgoff_t end, int whence)
2506 {
2507 	struct page *page;
2508 	struct pagevec pvec;
2509 	pgoff_t indices[PAGEVEC_SIZE];
2510 	bool done = false;
2511 	int i;
2512 
2513 	pagevec_init(&pvec, 0);
2514 	pvec.nr = 1;		/* start small: we may be there already */
2515 	while (!done) {
2516 		pvec.nr = find_get_entries(mapping, index,
2517 					pvec.nr, pvec.pages, indices);
2518 		if (!pvec.nr) {
2519 			if (whence == SEEK_DATA)
2520 				index = end;
2521 			break;
2522 		}
2523 		for (i = 0; i < pvec.nr; i++, index++) {
2524 			if (index < indices[i]) {
2525 				if (whence == SEEK_HOLE) {
2526 					done = true;
2527 					break;
2528 				}
2529 				index = indices[i];
2530 			}
2531 			page = pvec.pages[i];
2532 			if (page && !radix_tree_exceptional_entry(page)) {
2533 				if (!PageUptodate(page))
2534 					page = NULL;
2535 			}
2536 			if (index >= end ||
2537 			    (page && whence == SEEK_DATA) ||
2538 			    (!page && whence == SEEK_HOLE)) {
2539 				done = true;
2540 				break;
2541 			}
2542 		}
2543 		pagevec_remove_exceptionals(&pvec);
2544 		pagevec_release(&pvec);
2545 		pvec.nr = PAGEVEC_SIZE;
2546 		cond_resched();
2547 	}
2548 	return index;
2549 }
2550 
2551 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2552 {
2553 	struct address_space *mapping = file->f_mapping;
2554 	struct inode *inode = mapping->host;
2555 	pgoff_t start, end;
2556 	loff_t new_offset;
2557 
2558 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2559 		return generic_file_llseek_size(file, offset, whence,
2560 					MAX_LFS_FILESIZE, i_size_read(inode));
2561 	inode_lock(inode);
2562 	/* We're holding i_mutex so we can access i_size directly */
2563 
2564 	if (offset < 0)
2565 		offset = -EINVAL;
2566 	else if (offset >= inode->i_size)
2567 		offset = -ENXIO;
2568 	else {
2569 		start = offset >> PAGE_SHIFT;
2570 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2571 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2572 		new_offset <<= PAGE_SHIFT;
2573 		if (new_offset > offset) {
2574 			if (new_offset < inode->i_size)
2575 				offset = new_offset;
2576 			else if (whence == SEEK_DATA)
2577 				offset = -ENXIO;
2578 			else
2579 				offset = inode->i_size;
2580 		}
2581 	}
2582 
2583 	if (offset >= 0)
2584 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2585 	inode_unlock(inode);
2586 	return offset;
2587 }
2588 
2589 /*
2590  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2591  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2592  */
2593 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2594 #define LAST_SCAN               4       /* about 150ms max */
2595 
2596 static void shmem_tag_pins(struct address_space *mapping)
2597 {
2598 	struct radix_tree_iter iter;
2599 	void **slot;
2600 	pgoff_t start;
2601 	struct page *page;
2602 
2603 	lru_add_drain();
2604 	start = 0;
2605 	rcu_read_lock();
2606 
2607 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2608 		page = radix_tree_deref_slot(slot);
2609 		if (!page || radix_tree_exception(page)) {
2610 			if (radix_tree_deref_retry(page)) {
2611 				slot = radix_tree_iter_retry(&iter);
2612 				continue;
2613 			}
2614 		} else if (page_count(page) - page_mapcount(page) > 1) {
2615 			spin_lock_irq(&mapping->tree_lock);
2616 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2617 					   SHMEM_TAG_PINNED);
2618 			spin_unlock_irq(&mapping->tree_lock);
2619 		}
2620 
2621 		if (need_resched()) {
2622 			slot = radix_tree_iter_resume(slot, &iter);
2623 			cond_resched_rcu();
2624 		}
2625 	}
2626 	rcu_read_unlock();
2627 }
2628 
2629 /*
2630  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2631  * via get_user_pages(), drivers might have some pending I/O without any active
2632  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2633  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2634  * them to be dropped.
2635  * The caller must guarantee that no new user will acquire writable references
2636  * to those pages to avoid races.
2637  */
2638 static int shmem_wait_for_pins(struct address_space *mapping)
2639 {
2640 	struct radix_tree_iter iter;
2641 	void **slot;
2642 	pgoff_t start;
2643 	struct page *page;
2644 	int error, scan;
2645 
2646 	shmem_tag_pins(mapping);
2647 
2648 	error = 0;
2649 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2650 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2651 			break;
2652 
2653 		if (!scan)
2654 			lru_add_drain_all();
2655 		else if (schedule_timeout_killable((HZ << scan) / 200))
2656 			scan = LAST_SCAN;
2657 
2658 		start = 0;
2659 		rcu_read_lock();
2660 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2661 					   start, SHMEM_TAG_PINNED) {
2662 
2663 			page = radix_tree_deref_slot(slot);
2664 			if (radix_tree_exception(page)) {
2665 				if (radix_tree_deref_retry(page)) {
2666 					slot = radix_tree_iter_retry(&iter);
2667 					continue;
2668 				}
2669 
2670 				page = NULL;
2671 			}
2672 
2673 			if (page &&
2674 			    page_count(page) - page_mapcount(page) != 1) {
2675 				if (scan < LAST_SCAN)
2676 					goto continue_resched;
2677 
2678 				/*
2679 				 * On the last scan, we clean up all those tags
2680 				 * we inserted; but make a note that we still
2681 				 * found pages pinned.
2682 				 */
2683 				error = -EBUSY;
2684 			}
2685 
2686 			spin_lock_irq(&mapping->tree_lock);
2687 			radix_tree_tag_clear(&mapping->page_tree,
2688 					     iter.index, SHMEM_TAG_PINNED);
2689 			spin_unlock_irq(&mapping->tree_lock);
2690 continue_resched:
2691 			if (need_resched()) {
2692 				slot = radix_tree_iter_resume(slot, &iter);
2693 				cond_resched_rcu();
2694 			}
2695 		}
2696 		rcu_read_unlock();
2697 	}
2698 
2699 	return error;
2700 }
2701 
2702 #define F_ALL_SEALS (F_SEAL_SEAL | \
2703 		     F_SEAL_SHRINK | \
2704 		     F_SEAL_GROW | \
2705 		     F_SEAL_WRITE)
2706 
2707 int shmem_add_seals(struct file *file, unsigned int seals)
2708 {
2709 	struct inode *inode = file_inode(file);
2710 	struct shmem_inode_info *info = SHMEM_I(inode);
2711 	int error;
2712 
2713 	/*
2714 	 * SEALING
2715 	 * Sealing allows multiple parties to share a shmem-file but restrict
2716 	 * access to a specific subset of file operations. Seals can only be
2717 	 * added, but never removed. This way, mutually untrusted parties can
2718 	 * share common memory regions with a well-defined policy. A malicious
2719 	 * peer can thus never perform unwanted operations on a shared object.
2720 	 *
2721 	 * Seals are only supported on special shmem-files and always affect
2722 	 * the whole underlying inode. Once a seal is set, it may prevent some
2723 	 * kinds of access to the file. Currently, the following seals are
2724 	 * defined:
2725 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2726 	 *   SEAL_SHRINK: Prevent the file from shrinking
2727 	 *   SEAL_GROW: Prevent the file from growing
2728 	 *   SEAL_WRITE: Prevent write access to the file
2729 	 *
2730 	 * As we don't require any trust relationship between two parties, we
2731 	 * must prevent seals from being removed. Therefore, sealing a file
2732 	 * only adds a given set of seals to the file, it never touches
2733 	 * existing seals. Furthermore, the "setting seals"-operation can be
2734 	 * sealed itself, which basically prevents any further seal from being
2735 	 * added.
2736 	 *
2737 	 * Semantics of sealing are only defined on volatile files. Only
2738 	 * anonymous shmem files support sealing. More importantly, seals are
2739 	 * never written to disk. Therefore, there's no plan to support it on
2740 	 * other file types.
2741 	 */
2742 
2743 	if (file->f_op != &shmem_file_operations)
2744 		return -EINVAL;
2745 	if (!(file->f_mode & FMODE_WRITE))
2746 		return -EPERM;
2747 	if (seals & ~(unsigned int)F_ALL_SEALS)
2748 		return -EINVAL;
2749 
2750 	inode_lock(inode);
2751 
2752 	if (info->seals & F_SEAL_SEAL) {
2753 		error = -EPERM;
2754 		goto unlock;
2755 	}
2756 
2757 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2758 		error = mapping_deny_writable(file->f_mapping);
2759 		if (error)
2760 			goto unlock;
2761 
2762 		error = shmem_wait_for_pins(file->f_mapping);
2763 		if (error) {
2764 			mapping_allow_writable(file->f_mapping);
2765 			goto unlock;
2766 		}
2767 	}
2768 
2769 	info->seals |= seals;
2770 	error = 0;
2771 
2772 unlock:
2773 	inode_unlock(inode);
2774 	return error;
2775 }
2776 EXPORT_SYMBOL_GPL(shmem_add_seals);
2777 
2778 int shmem_get_seals(struct file *file)
2779 {
2780 	if (file->f_op != &shmem_file_operations)
2781 		return -EINVAL;
2782 
2783 	return SHMEM_I(file_inode(file))->seals;
2784 }
2785 EXPORT_SYMBOL_GPL(shmem_get_seals);
2786 
2787 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2788 {
2789 	long error;
2790 
2791 	switch (cmd) {
2792 	case F_ADD_SEALS:
2793 		/* disallow upper 32bit */
2794 		if (arg > UINT_MAX)
2795 			return -EINVAL;
2796 
2797 		error = shmem_add_seals(file, arg);
2798 		break;
2799 	case F_GET_SEALS:
2800 		error = shmem_get_seals(file);
2801 		break;
2802 	default:
2803 		error = -EINVAL;
2804 		break;
2805 	}
2806 
2807 	return error;
2808 }
2809 
2810 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2811 							 loff_t len)
2812 {
2813 	struct inode *inode = file_inode(file);
2814 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2815 	struct shmem_inode_info *info = SHMEM_I(inode);
2816 	struct shmem_falloc shmem_falloc;
2817 	pgoff_t start, index, end;
2818 	int error;
2819 
2820 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2821 		return -EOPNOTSUPP;
2822 
2823 	inode_lock(inode);
2824 
2825 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2826 		struct address_space *mapping = file->f_mapping;
2827 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2828 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2829 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2830 
2831 		/* protected by i_mutex */
2832 		if (info->seals & F_SEAL_WRITE) {
2833 			error = -EPERM;
2834 			goto out;
2835 		}
2836 
2837 		shmem_falloc.waitq = &shmem_falloc_waitq;
2838 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2839 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2840 		spin_lock(&inode->i_lock);
2841 		inode->i_private = &shmem_falloc;
2842 		spin_unlock(&inode->i_lock);
2843 
2844 		if ((u64)unmap_end > (u64)unmap_start)
2845 			unmap_mapping_range(mapping, unmap_start,
2846 					    1 + unmap_end - unmap_start, 0);
2847 		shmem_truncate_range(inode, offset, offset + len - 1);
2848 		/* No need to unmap again: hole-punching leaves COWed pages */
2849 
2850 		spin_lock(&inode->i_lock);
2851 		inode->i_private = NULL;
2852 		wake_up_all(&shmem_falloc_waitq);
2853 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2854 		spin_unlock(&inode->i_lock);
2855 		error = 0;
2856 		goto out;
2857 	}
2858 
2859 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2860 	error = inode_newsize_ok(inode, offset + len);
2861 	if (error)
2862 		goto out;
2863 
2864 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2865 		error = -EPERM;
2866 		goto out;
2867 	}
2868 
2869 	start = offset >> PAGE_SHIFT;
2870 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2871 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2872 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2873 		error = -ENOSPC;
2874 		goto out;
2875 	}
2876 
2877 	shmem_falloc.waitq = NULL;
2878 	shmem_falloc.start = start;
2879 	shmem_falloc.next  = start;
2880 	shmem_falloc.nr_falloced = 0;
2881 	shmem_falloc.nr_unswapped = 0;
2882 	spin_lock(&inode->i_lock);
2883 	inode->i_private = &shmem_falloc;
2884 	spin_unlock(&inode->i_lock);
2885 
2886 	for (index = start; index < end; index++) {
2887 		struct page *page;
2888 
2889 		/*
2890 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2891 		 * been interrupted because we are using up too much memory.
2892 		 */
2893 		if (signal_pending(current))
2894 			error = -EINTR;
2895 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2896 			error = -ENOMEM;
2897 		else
2898 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2899 		if (error) {
2900 			/* Remove the !PageUptodate pages we added */
2901 			if (index > start) {
2902 				shmem_undo_range(inode,
2903 				    (loff_t)start << PAGE_SHIFT,
2904 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2905 			}
2906 			goto undone;
2907 		}
2908 
2909 		/*
2910 		 * Inform shmem_writepage() how far we have reached.
2911 		 * No need for lock or barrier: we have the page lock.
2912 		 */
2913 		shmem_falloc.next++;
2914 		if (!PageUptodate(page))
2915 			shmem_falloc.nr_falloced++;
2916 
2917 		/*
2918 		 * If !PageUptodate, leave it that way so that freeable pages
2919 		 * can be recognized if we need to rollback on error later.
2920 		 * But set_page_dirty so that memory pressure will swap rather
2921 		 * than free the pages we are allocating (and SGP_CACHE pages
2922 		 * might still be clean: we now need to mark those dirty too).
2923 		 */
2924 		set_page_dirty(page);
2925 		unlock_page(page);
2926 		put_page(page);
2927 		cond_resched();
2928 	}
2929 
2930 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2931 		i_size_write(inode, offset + len);
2932 	inode->i_ctime = current_time(inode);
2933 undone:
2934 	spin_lock(&inode->i_lock);
2935 	inode->i_private = NULL;
2936 	spin_unlock(&inode->i_lock);
2937 out:
2938 	inode_unlock(inode);
2939 	return error;
2940 }
2941 
2942 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2943 {
2944 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2945 
2946 	buf->f_type = TMPFS_MAGIC;
2947 	buf->f_bsize = PAGE_SIZE;
2948 	buf->f_namelen = NAME_MAX;
2949 	if (sbinfo->max_blocks) {
2950 		buf->f_blocks = sbinfo->max_blocks;
2951 		buf->f_bavail =
2952 		buf->f_bfree  = sbinfo->max_blocks -
2953 				percpu_counter_sum(&sbinfo->used_blocks);
2954 	}
2955 	if (sbinfo->max_inodes) {
2956 		buf->f_files = sbinfo->max_inodes;
2957 		buf->f_ffree = sbinfo->free_inodes;
2958 	}
2959 	/* else leave those fields 0 like simple_statfs */
2960 	return 0;
2961 }
2962 
2963 /*
2964  * File creation. Allocate an inode, and we're done..
2965  */
2966 static int
2967 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2968 {
2969 	struct inode *inode;
2970 	int error = -ENOSPC;
2971 
2972 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2973 	if (inode) {
2974 		error = simple_acl_create(dir, inode);
2975 		if (error)
2976 			goto out_iput;
2977 		error = security_inode_init_security(inode, dir,
2978 						     &dentry->d_name,
2979 						     shmem_initxattrs, NULL);
2980 		if (error && error != -EOPNOTSUPP)
2981 			goto out_iput;
2982 
2983 		error = 0;
2984 		dir->i_size += BOGO_DIRENT_SIZE;
2985 		dir->i_ctime = dir->i_mtime = current_time(dir);
2986 		d_instantiate(dentry, inode);
2987 		dget(dentry); /* Extra count - pin the dentry in core */
2988 	}
2989 	return error;
2990 out_iput:
2991 	iput(inode);
2992 	return error;
2993 }
2994 
2995 static int
2996 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2997 {
2998 	struct inode *inode;
2999 	int error = -ENOSPC;
3000 
3001 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3002 	if (inode) {
3003 		error = security_inode_init_security(inode, dir,
3004 						     NULL,
3005 						     shmem_initxattrs, NULL);
3006 		if (error && error != -EOPNOTSUPP)
3007 			goto out_iput;
3008 		error = simple_acl_create(dir, inode);
3009 		if (error)
3010 			goto out_iput;
3011 		d_tmpfile(dentry, inode);
3012 	}
3013 	return error;
3014 out_iput:
3015 	iput(inode);
3016 	return error;
3017 }
3018 
3019 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3020 {
3021 	int error;
3022 
3023 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3024 		return error;
3025 	inc_nlink(dir);
3026 	return 0;
3027 }
3028 
3029 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3030 		bool excl)
3031 {
3032 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3033 }
3034 
3035 /*
3036  * Link a file..
3037  */
3038 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3039 {
3040 	struct inode *inode = d_inode(old_dentry);
3041 	int ret;
3042 
3043 	/*
3044 	 * No ordinary (disk based) filesystem counts links as inodes;
3045 	 * but each new link needs a new dentry, pinning lowmem, and
3046 	 * tmpfs dentries cannot be pruned until they are unlinked.
3047 	 */
3048 	ret = shmem_reserve_inode(inode->i_sb);
3049 	if (ret)
3050 		goto out;
3051 
3052 	dir->i_size += BOGO_DIRENT_SIZE;
3053 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3054 	inc_nlink(inode);
3055 	ihold(inode);	/* New dentry reference */
3056 	dget(dentry);		/* Extra pinning count for the created dentry */
3057 	d_instantiate(dentry, inode);
3058 out:
3059 	return ret;
3060 }
3061 
3062 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3063 {
3064 	struct inode *inode = d_inode(dentry);
3065 
3066 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3067 		shmem_free_inode(inode->i_sb);
3068 
3069 	dir->i_size -= BOGO_DIRENT_SIZE;
3070 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3071 	drop_nlink(inode);
3072 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3073 	return 0;
3074 }
3075 
3076 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3077 {
3078 	if (!simple_empty(dentry))
3079 		return -ENOTEMPTY;
3080 
3081 	drop_nlink(d_inode(dentry));
3082 	drop_nlink(dir);
3083 	return shmem_unlink(dir, dentry);
3084 }
3085 
3086 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3087 {
3088 	bool old_is_dir = d_is_dir(old_dentry);
3089 	bool new_is_dir = d_is_dir(new_dentry);
3090 
3091 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3092 		if (old_is_dir) {
3093 			drop_nlink(old_dir);
3094 			inc_nlink(new_dir);
3095 		} else {
3096 			drop_nlink(new_dir);
3097 			inc_nlink(old_dir);
3098 		}
3099 	}
3100 	old_dir->i_ctime = old_dir->i_mtime =
3101 	new_dir->i_ctime = new_dir->i_mtime =
3102 	d_inode(old_dentry)->i_ctime =
3103 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3104 
3105 	return 0;
3106 }
3107 
3108 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3109 {
3110 	struct dentry *whiteout;
3111 	int error;
3112 
3113 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3114 	if (!whiteout)
3115 		return -ENOMEM;
3116 
3117 	error = shmem_mknod(old_dir, whiteout,
3118 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3119 	dput(whiteout);
3120 	if (error)
3121 		return error;
3122 
3123 	/*
3124 	 * Cheat and hash the whiteout while the old dentry is still in
3125 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3126 	 *
3127 	 * d_lookup() will consistently find one of them at this point,
3128 	 * not sure which one, but that isn't even important.
3129 	 */
3130 	d_rehash(whiteout);
3131 	return 0;
3132 }
3133 
3134 /*
3135  * The VFS layer already does all the dentry stuff for rename,
3136  * we just have to decrement the usage count for the target if
3137  * it exists so that the VFS layer correctly free's it when it
3138  * gets overwritten.
3139  */
3140 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3141 {
3142 	struct inode *inode = d_inode(old_dentry);
3143 	int they_are_dirs = S_ISDIR(inode->i_mode);
3144 
3145 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3146 		return -EINVAL;
3147 
3148 	if (flags & RENAME_EXCHANGE)
3149 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3150 
3151 	if (!simple_empty(new_dentry))
3152 		return -ENOTEMPTY;
3153 
3154 	if (flags & RENAME_WHITEOUT) {
3155 		int error;
3156 
3157 		error = shmem_whiteout(old_dir, old_dentry);
3158 		if (error)
3159 			return error;
3160 	}
3161 
3162 	if (d_really_is_positive(new_dentry)) {
3163 		(void) shmem_unlink(new_dir, new_dentry);
3164 		if (they_are_dirs) {
3165 			drop_nlink(d_inode(new_dentry));
3166 			drop_nlink(old_dir);
3167 		}
3168 	} else if (they_are_dirs) {
3169 		drop_nlink(old_dir);
3170 		inc_nlink(new_dir);
3171 	}
3172 
3173 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3174 	new_dir->i_size += BOGO_DIRENT_SIZE;
3175 	old_dir->i_ctime = old_dir->i_mtime =
3176 	new_dir->i_ctime = new_dir->i_mtime =
3177 	inode->i_ctime = current_time(old_dir);
3178 	return 0;
3179 }
3180 
3181 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3182 {
3183 	int error;
3184 	int len;
3185 	struct inode *inode;
3186 	struct page *page;
3187 	struct shmem_inode_info *info;
3188 
3189 	len = strlen(symname) + 1;
3190 	if (len > PAGE_SIZE)
3191 		return -ENAMETOOLONG;
3192 
3193 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3194 	if (!inode)
3195 		return -ENOSPC;
3196 
3197 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3198 					     shmem_initxattrs, NULL);
3199 	if (error) {
3200 		if (error != -EOPNOTSUPP) {
3201 			iput(inode);
3202 			return error;
3203 		}
3204 		error = 0;
3205 	}
3206 
3207 	info = SHMEM_I(inode);
3208 	inode->i_size = len-1;
3209 	if (len <= SHORT_SYMLINK_LEN) {
3210 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3211 		if (!inode->i_link) {
3212 			iput(inode);
3213 			return -ENOMEM;
3214 		}
3215 		inode->i_op = &shmem_short_symlink_operations;
3216 	} else {
3217 		inode_nohighmem(inode);
3218 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3219 		if (error) {
3220 			iput(inode);
3221 			return error;
3222 		}
3223 		inode->i_mapping->a_ops = &shmem_aops;
3224 		inode->i_op = &shmem_symlink_inode_operations;
3225 		memcpy(page_address(page), symname, len);
3226 		SetPageUptodate(page);
3227 		set_page_dirty(page);
3228 		unlock_page(page);
3229 		put_page(page);
3230 	}
3231 	dir->i_size += BOGO_DIRENT_SIZE;
3232 	dir->i_ctime = dir->i_mtime = current_time(dir);
3233 	d_instantiate(dentry, inode);
3234 	dget(dentry);
3235 	return 0;
3236 }
3237 
3238 static void shmem_put_link(void *arg)
3239 {
3240 	mark_page_accessed(arg);
3241 	put_page(arg);
3242 }
3243 
3244 static const char *shmem_get_link(struct dentry *dentry,
3245 				  struct inode *inode,
3246 				  struct delayed_call *done)
3247 {
3248 	struct page *page = NULL;
3249 	int error;
3250 	if (!dentry) {
3251 		page = find_get_page(inode->i_mapping, 0);
3252 		if (!page)
3253 			return ERR_PTR(-ECHILD);
3254 		if (!PageUptodate(page)) {
3255 			put_page(page);
3256 			return ERR_PTR(-ECHILD);
3257 		}
3258 	} else {
3259 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3260 		if (error)
3261 			return ERR_PTR(error);
3262 		unlock_page(page);
3263 	}
3264 	set_delayed_call(done, shmem_put_link, page);
3265 	return page_address(page);
3266 }
3267 
3268 #ifdef CONFIG_TMPFS_XATTR
3269 /*
3270  * Superblocks without xattr inode operations may get some security.* xattr
3271  * support from the LSM "for free". As soon as we have any other xattrs
3272  * like ACLs, we also need to implement the security.* handlers at
3273  * filesystem level, though.
3274  */
3275 
3276 /*
3277  * Callback for security_inode_init_security() for acquiring xattrs.
3278  */
3279 static int shmem_initxattrs(struct inode *inode,
3280 			    const struct xattr *xattr_array,
3281 			    void *fs_info)
3282 {
3283 	struct shmem_inode_info *info = SHMEM_I(inode);
3284 	const struct xattr *xattr;
3285 	struct simple_xattr *new_xattr;
3286 	size_t len;
3287 
3288 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3289 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3290 		if (!new_xattr)
3291 			return -ENOMEM;
3292 
3293 		len = strlen(xattr->name) + 1;
3294 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3295 					  GFP_KERNEL);
3296 		if (!new_xattr->name) {
3297 			kfree(new_xattr);
3298 			return -ENOMEM;
3299 		}
3300 
3301 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3302 		       XATTR_SECURITY_PREFIX_LEN);
3303 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3304 		       xattr->name, len);
3305 
3306 		simple_xattr_list_add(&info->xattrs, new_xattr);
3307 	}
3308 
3309 	return 0;
3310 }
3311 
3312 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3313 				   struct dentry *unused, struct inode *inode,
3314 				   const char *name, void *buffer, size_t size)
3315 {
3316 	struct shmem_inode_info *info = SHMEM_I(inode);
3317 
3318 	name = xattr_full_name(handler, name);
3319 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3320 }
3321 
3322 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3323 				   struct dentry *unused, struct inode *inode,
3324 				   const char *name, const void *value,
3325 				   size_t size, int flags)
3326 {
3327 	struct shmem_inode_info *info = SHMEM_I(inode);
3328 
3329 	name = xattr_full_name(handler, name);
3330 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3331 }
3332 
3333 static const struct xattr_handler shmem_security_xattr_handler = {
3334 	.prefix = XATTR_SECURITY_PREFIX,
3335 	.get = shmem_xattr_handler_get,
3336 	.set = shmem_xattr_handler_set,
3337 };
3338 
3339 static const struct xattr_handler shmem_trusted_xattr_handler = {
3340 	.prefix = XATTR_TRUSTED_PREFIX,
3341 	.get = shmem_xattr_handler_get,
3342 	.set = shmem_xattr_handler_set,
3343 };
3344 
3345 static const struct xattr_handler *shmem_xattr_handlers[] = {
3346 #ifdef CONFIG_TMPFS_POSIX_ACL
3347 	&posix_acl_access_xattr_handler,
3348 	&posix_acl_default_xattr_handler,
3349 #endif
3350 	&shmem_security_xattr_handler,
3351 	&shmem_trusted_xattr_handler,
3352 	NULL
3353 };
3354 
3355 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3356 {
3357 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3358 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3359 }
3360 #endif /* CONFIG_TMPFS_XATTR */
3361 
3362 static const struct inode_operations shmem_short_symlink_operations = {
3363 	.get_link	= simple_get_link,
3364 #ifdef CONFIG_TMPFS_XATTR
3365 	.listxattr	= shmem_listxattr,
3366 #endif
3367 };
3368 
3369 static const struct inode_operations shmem_symlink_inode_operations = {
3370 	.get_link	= shmem_get_link,
3371 #ifdef CONFIG_TMPFS_XATTR
3372 	.listxattr	= shmem_listxattr,
3373 #endif
3374 };
3375 
3376 static struct dentry *shmem_get_parent(struct dentry *child)
3377 {
3378 	return ERR_PTR(-ESTALE);
3379 }
3380 
3381 static int shmem_match(struct inode *ino, void *vfh)
3382 {
3383 	__u32 *fh = vfh;
3384 	__u64 inum = fh[2];
3385 	inum = (inum << 32) | fh[1];
3386 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3387 }
3388 
3389 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3390 		struct fid *fid, int fh_len, int fh_type)
3391 {
3392 	struct inode *inode;
3393 	struct dentry *dentry = NULL;
3394 	u64 inum;
3395 
3396 	if (fh_len < 3)
3397 		return NULL;
3398 
3399 	inum = fid->raw[2];
3400 	inum = (inum << 32) | fid->raw[1];
3401 
3402 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3403 			shmem_match, fid->raw);
3404 	if (inode) {
3405 		dentry = d_find_alias(inode);
3406 		iput(inode);
3407 	}
3408 
3409 	return dentry;
3410 }
3411 
3412 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3413 				struct inode *parent)
3414 {
3415 	if (*len < 3) {
3416 		*len = 3;
3417 		return FILEID_INVALID;
3418 	}
3419 
3420 	if (inode_unhashed(inode)) {
3421 		/* Unfortunately insert_inode_hash is not idempotent,
3422 		 * so as we hash inodes here rather than at creation
3423 		 * time, we need a lock to ensure we only try
3424 		 * to do it once
3425 		 */
3426 		static DEFINE_SPINLOCK(lock);
3427 		spin_lock(&lock);
3428 		if (inode_unhashed(inode))
3429 			__insert_inode_hash(inode,
3430 					    inode->i_ino + inode->i_generation);
3431 		spin_unlock(&lock);
3432 	}
3433 
3434 	fh[0] = inode->i_generation;
3435 	fh[1] = inode->i_ino;
3436 	fh[2] = ((__u64)inode->i_ino) >> 32;
3437 
3438 	*len = 3;
3439 	return 1;
3440 }
3441 
3442 static const struct export_operations shmem_export_ops = {
3443 	.get_parent     = shmem_get_parent,
3444 	.encode_fh      = shmem_encode_fh,
3445 	.fh_to_dentry	= shmem_fh_to_dentry,
3446 };
3447 
3448 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3449 			       bool remount)
3450 {
3451 	char *this_char, *value, *rest;
3452 	struct mempolicy *mpol = NULL;
3453 	uid_t uid;
3454 	gid_t gid;
3455 
3456 	while (options != NULL) {
3457 		this_char = options;
3458 		for (;;) {
3459 			/*
3460 			 * NUL-terminate this option: unfortunately,
3461 			 * mount options form a comma-separated list,
3462 			 * but mpol's nodelist may also contain commas.
3463 			 */
3464 			options = strchr(options, ',');
3465 			if (options == NULL)
3466 				break;
3467 			options++;
3468 			if (!isdigit(*options)) {
3469 				options[-1] = '\0';
3470 				break;
3471 			}
3472 		}
3473 		if (!*this_char)
3474 			continue;
3475 		if ((value = strchr(this_char,'=')) != NULL) {
3476 			*value++ = 0;
3477 		} else {
3478 			pr_err("tmpfs: No value for mount option '%s'\n",
3479 			       this_char);
3480 			goto error;
3481 		}
3482 
3483 		if (!strcmp(this_char,"size")) {
3484 			unsigned long long size;
3485 			size = memparse(value,&rest);
3486 			if (*rest == '%') {
3487 				size <<= PAGE_SHIFT;
3488 				size *= totalram_pages;
3489 				do_div(size, 100);
3490 				rest++;
3491 			}
3492 			if (*rest)
3493 				goto bad_val;
3494 			sbinfo->max_blocks =
3495 				DIV_ROUND_UP(size, PAGE_SIZE);
3496 		} else if (!strcmp(this_char,"nr_blocks")) {
3497 			sbinfo->max_blocks = memparse(value, &rest);
3498 			if (*rest)
3499 				goto bad_val;
3500 		} else if (!strcmp(this_char,"nr_inodes")) {
3501 			sbinfo->max_inodes = memparse(value, &rest);
3502 			if (*rest)
3503 				goto bad_val;
3504 		} else if (!strcmp(this_char,"mode")) {
3505 			if (remount)
3506 				continue;
3507 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3508 			if (*rest)
3509 				goto bad_val;
3510 		} else if (!strcmp(this_char,"uid")) {
3511 			if (remount)
3512 				continue;
3513 			uid = simple_strtoul(value, &rest, 0);
3514 			if (*rest)
3515 				goto bad_val;
3516 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3517 			if (!uid_valid(sbinfo->uid))
3518 				goto bad_val;
3519 		} else if (!strcmp(this_char,"gid")) {
3520 			if (remount)
3521 				continue;
3522 			gid = simple_strtoul(value, &rest, 0);
3523 			if (*rest)
3524 				goto bad_val;
3525 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3526 			if (!gid_valid(sbinfo->gid))
3527 				goto bad_val;
3528 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3529 		} else if (!strcmp(this_char, "huge")) {
3530 			int huge;
3531 			huge = shmem_parse_huge(value);
3532 			if (huge < 0)
3533 				goto bad_val;
3534 			if (!has_transparent_hugepage() &&
3535 					huge != SHMEM_HUGE_NEVER)
3536 				goto bad_val;
3537 			sbinfo->huge = huge;
3538 #endif
3539 #ifdef CONFIG_NUMA
3540 		} else if (!strcmp(this_char,"mpol")) {
3541 			mpol_put(mpol);
3542 			mpol = NULL;
3543 			if (mpol_parse_str(value, &mpol))
3544 				goto bad_val;
3545 #endif
3546 		} else {
3547 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3548 			goto error;
3549 		}
3550 	}
3551 	sbinfo->mpol = mpol;
3552 	return 0;
3553 
3554 bad_val:
3555 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3556 	       value, this_char);
3557 error:
3558 	mpol_put(mpol);
3559 	return 1;
3560 
3561 }
3562 
3563 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3564 {
3565 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3566 	struct shmem_sb_info config = *sbinfo;
3567 	unsigned long inodes;
3568 	int error = -EINVAL;
3569 
3570 	config.mpol = NULL;
3571 	if (shmem_parse_options(data, &config, true))
3572 		return error;
3573 
3574 	spin_lock(&sbinfo->stat_lock);
3575 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3576 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3577 		goto out;
3578 	if (config.max_inodes < inodes)
3579 		goto out;
3580 	/*
3581 	 * Those tests disallow limited->unlimited while any are in use;
3582 	 * but we must separately disallow unlimited->limited, because
3583 	 * in that case we have no record of how much is already in use.
3584 	 */
3585 	if (config.max_blocks && !sbinfo->max_blocks)
3586 		goto out;
3587 	if (config.max_inodes && !sbinfo->max_inodes)
3588 		goto out;
3589 
3590 	error = 0;
3591 	sbinfo->huge = config.huge;
3592 	sbinfo->max_blocks  = config.max_blocks;
3593 	sbinfo->max_inodes  = config.max_inodes;
3594 	sbinfo->free_inodes = config.max_inodes - inodes;
3595 
3596 	/*
3597 	 * Preserve previous mempolicy unless mpol remount option was specified.
3598 	 */
3599 	if (config.mpol) {
3600 		mpol_put(sbinfo->mpol);
3601 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3602 	}
3603 out:
3604 	spin_unlock(&sbinfo->stat_lock);
3605 	return error;
3606 }
3607 
3608 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3609 {
3610 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3611 
3612 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3613 		seq_printf(seq, ",size=%luk",
3614 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3615 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3616 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3617 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3618 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3619 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3620 		seq_printf(seq, ",uid=%u",
3621 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3622 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3623 		seq_printf(seq, ",gid=%u",
3624 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3625 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3626 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3627 	if (sbinfo->huge)
3628 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3629 #endif
3630 	shmem_show_mpol(seq, sbinfo->mpol);
3631 	return 0;
3632 }
3633 
3634 #define MFD_NAME_PREFIX "memfd:"
3635 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3636 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3637 
3638 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3639 
3640 SYSCALL_DEFINE2(memfd_create,
3641 		const char __user *, uname,
3642 		unsigned int, flags)
3643 {
3644 	struct shmem_inode_info *info;
3645 	struct file *file;
3646 	int fd, error;
3647 	char *name;
3648 	long len;
3649 
3650 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3651 		return -EINVAL;
3652 
3653 	/* length includes terminating zero */
3654 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3655 	if (len <= 0)
3656 		return -EFAULT;
3657 	if (len > MFD_NAME_MAX_LEN + 1)
3658 		return -EINVAL;
3659 
3660 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3661 	if (!name)
3662 		return -ENOMEM;
3663 
3664 	strcpy(name, MFD_NAME_PREFIX);
3665 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3666 		error = -EFAULT;
3667 		goto err_name;
3668 	}
3669 
3670 	/* terminating-zero may have changed after strnlen_user() returned */
3671 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3672 		error = -EFAULT;
3673 		goto err_name;
3674 	}
3675 
3676 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3677 	if (fd < 0) {
3678 		error = fd;
3679 		goto err_name;
3680 	}
3681 
3682 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3683 	if (IS_ERR(file)) {
3684 		error = PTR_ERR(file);
3685 		goto err_fd;
3686 	}
3687 	info = SHMEM_I(file_inode(file));
3688 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3689 	file->f_flags |= O_RDWR | O_LARGEFILE;
3690 	if (flags & MFD_ALLOW_SEALING)
3691 		info->seals &= ~F_SEAL_SEAL;
3692 
3693 	fd_install(fd, file);
3694 	kfree(name);
3695 	return fd;
3696 
3697 err_fd:
3698 	put_unused_fd(fd);
3699 err_name:
3700 	kfree(name);
3701 	return error;
3702 }
3703 
3704 #endif /* CONFIG_TMPFS */
3705 
3706 static void shmem_put_super(struct super_block *sb)
3707 {
3708 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3709 
3710 	percpu_counter_destroy(&sbinfo->used_blocks);
3711 	mpol_put(sbinfo->mpol);
3712 	kfree(sbinfo);
3713 	sb->s_fs_info = NULL;
3714 }
3715 
3716 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3717 {
3718 	struct inode *inode;
3719 	struct shmem_sb_info *sbinfo;
3720 	int err = -ENOMEM;
3721 
3722 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3723 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3724 				L1_CACHE_BYTES), GFP_KERNEL);
3725 	if (!sbinfo)
3726 		return -ENOMEM;
3727 
3728 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3729 	sbinfo->uid = current_fsuid();
3730 	sbinfo->gid = current_fsgid();
3731 	sb->s_fs_info = sbinfo;
3732 
3733 #ifdef CONFIG_TMPFS
3734 	/*
3735 	 * Per default we only allow half of the physical ram per
3736 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3737 	 * but the internal instance is left unlimited.
3738 	 */
3739 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3740 		sbinfo->max_blocks = shmem_default_max_blocks();
3741 		sbinfo->max_inodes = shmem_default_max_inodes();
3742 		if (shmem_parse_options(data, sbinfo, false)) {
3743 			err = -EINVAL;
3744 			goto failed;
3745 		}
3746 	} else {
3747 		sb->s_flags |= MS_NOUSER;
3748 	}
3749 	sb->s_export_op = &shmem_export_ops;
3750 	sb->s_flags |= MS_NOSEC;
3751 #else
3752 	sb->s_flags |= MS_NOUSER;
3753 #endif
3754 
3755 	spin_lock_init(&sbinfo->stat_lock);
3756 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3757 		goto failed;
3758 	sbinfo->free_inodes = sbinfo->max_inodes;
3759 	spin_lock_init(&sbinfo->shrinklist_lock);
3760 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3761 
3762 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3763 	sb->s_blocksize = PAGE_SIZE;
3764 	sb->s_blocksize_bits = PAGE_SHIFT;
3765 	sb->s_magic = TMPFS_MAGIC;
3766 	sb->s_op = &shmem_ops;
3767 	sb->s_time_gran = 1;
3768 #ifdef CONFIG_TMPFS_XATTR
3769 	sb->s_xattr = shmem_xattr_handlers;
3770 #endif
3771 #ifdef CONFIG_TMPFS_POSIX_ACL
3772 	sb->s_flags |= MS_POSIXACL;
3773 #endif
3774 	uuid_gen(&sb->s_uuid);
3775 
3776 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777 	if (!inode)
3778 		goto failed;
3779 	inode->i_uid = sbinfo->uid;
3780 	inode->i_gid = sbinfo->gid;
3781 	sb->s_root = d_make_root(inode);
3782 	if (!sb->s_root)
3783 		goto failed;
3784 	return 0;
3785 
3786 failed:
3787 	shmem_put_super(sb);
3788 	return err;
3789 }
3790 
3791 static struct kmem_cache *shmem_inode_cachep;
3792 
3793 static struct inode *shmem_alloc_inode(struct super_block *sb)
3794 {
3795 	struct shmem_inode_info *info;
3796 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3797 	if (!info)
3798 		return NULL;
3799 	return &info->vfs_inode;
3800 }
3801 
3802 static void shmem_destroy_callback(struct rcu_head *head)
3803 {
3804 	struct inode *inode = container_of(head, struct inode, i_rcu);
3805 	if (S_ISLNK(inode->i_mode))
3806 		kfree(inode->i_link);
3807 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3808 }
3809 
3810 static void shmem_destroy_inode(struct inode *inode)
3811 {
3812 	if (S_ISREG(inode->i_mode))
3813 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3814 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3815 }
3816 
3817 static void shmem_init_inode(void *foo)
3818 {
3819 	struct shmem_inode_info *info = foo;
3820 	inode_init_once(&info->vfs_inode);
3821 }
3822 
3823 static int shmem_init_inodecache(void)
3824 {
3825 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3826 				sizeof(struct shmem_inode_info),
3827 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3828 	return 0;
3829 }
3830 
3831 static void shmem_destroy_inodecache(void)
3832 {
3833 	kmem_cache_destroy(shmem_inode_cachep);
3834 }
3835 
3836 static const struct address_space_operations shmem_aops = {
3837 	.writepage	= shmem_writepage,
3838 	.set_page_dirty	= __set_page_dirty_no_writeback,
3839 #ifdef CONFIG_TMPFS
3840 	.write_begin	= shmem_write_begin,
3841 	.write_end	= shmem_write_end,
3842 #endif
3843 #ifdef CONFIG_MIGRATION
3844 	.migratepage	= migrate_page,
3845 #endif
3846 	.error_remove_page = generic_error_remove_page,
3847 };
3848 
3849 static const struct file_operations shmem_file_operations = {
3850 	.mmap		= shmem_mmap,
3851 	.get_unmapped_area = shmem_get_unmapped_area,
3852 #ifdef CONFIG_TMPFS
3853 	.llseek		= shmem_file_llseek,
3854 	.read_iter	= shmem_file_read_iter,
3855 	.write_iter	= generic_file_write_iter,
3856 	.fsync		= noop_fsync,
3857 	.splice_read	= generic_file_splice_read,
3858 	.splice_write	= iter_file_splice_write,
3859 	.fallocate	= shmem_fallocate,
3860 #endif
3861 };
3862 
3863 static const struct inode_operations shmem_inode_operations = {
3864 	.getattr	= shmem_getattr,
3865 	.setattr	= shmem_setattr,
3866 #ifdef CONFIG_TMPFS_XATTR
3867 	.listxattr	= shmem_listxattr,
3868 	.set_acl	= simple_set_acl,
3869 #endif
3870 };
3871 
3872 static const struct inode_operations shmem_dir_inode_operations = {
3873 #ifdef CONFIG_TMPFS
3874 	.create		= shmem_create,
3875 	.lookup		= simple_lookup,
3876 	.link		= shmem_link,
3877 	.unlink		= shmem_unlink,
3878 	.symlink	= shmem_symlink,
3879 	.mkdir		= shmem_mkdir,
3880 	.rmdir		= shmem_rmdir,
3881 	.mknod		= shmem_mknod,
3882 	.rename		= shmem_rename2,
3883 	.tmpfile	= shmem_tmpfile,
3884 #endif
3885 #ifdef CONFIG_TMPFS_XATTR
3886 	.listxattr	= shmem_listxattr,
3887 #endif
3888 #ifdef CONFIG_TMPFS_POSIX_ACL
3889 	.setattr	= shmem_setattr,
3890 	.set_acl	= simple_set_acl,
3891 #endif
3892 };
3893 
3894 static const struct inode_operations shmem_special_inode_operations = {
3895 #ifdef CONFIG_TMPFS_XATTR
3896 	.listxattr	= shmem_listxattr,
3897 #endif
3898 #ifdef CONFIG_TMPFS_POSIX_ACL
3899 	.setattr	= shmem_setattr,
3900 	.set_acl	= simple_set_acl,
3901 #endif
3902 };
3903 
3904 static const struct super_operations shmem_ops = {
3905 	.alloc_inode	= shmem_alloc_inode,
3906 	.destroy_inode	= shmem_destroy_inode,
3907 #ifdef CONFIG_TMPFS
3908 	.statfs		= shmem_statfs,
3909 	.remount_fs	= shmem_remount_fs,
3910 	.show_options	= shmem_show_options,
3911 #endif
3912 	.evict_inode	= shmem_evict_inode,
3913 	.drop_inode	= generic_delete_inode,
3914 	.put_super	= shmem_put_super,
3915 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3916 	.nr_cached_objects	= shmem_unused_huge_count,
3917 	.free_cached_objects	= shmem_unused_huge_scan,
3918 #endif
3919 };
3920 
3921 static const struct vm_operations_struct shmem_vm_ops = {
3922 	.fault		= shmem_fault,
3923 	.map_pages	= filemap_map_pages,
3924 #ifdef CONFIG_NUMA
3925 	.set_policy     = shmem_set_policy,
3926 	.get_policy     = shmem_get_policy,
3927 #endif
3928 };
3929 
3930 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3931 	int flags, const char *dev_name, void *data)
3932 {
3933 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3934 }
3935 
3936 static struct file_system_type shmem_fs_type = {
3937 	.owner		= THIS_MODULE,
3938 	.name		= "tmpfs",
3939 	.mount		= shmem_mount,
3940 	.kill_sb	= kill_litter_super,
3941 	.fs_flags	= FS_USERNS_MOUNT,
3942 };
3943 
3944 int __init shmem_init(void)
3945 {
3946 	int error;
3947 
3948 	/* If rootfs called this, don't re-init */
3949 	if (shmem_inode_cachep)
3950 		return 0;
3951 
3952 	error = shmem_init_inodecache();
3953 	if (error)
3954 		goto out3;
3955 
3956 	error = register_filesystem(&shmem_fs_type);
3957 	if (error) {
3958 		pr_err("Could not register tmpfs\n");
3959 		goto out2;
3960 	}
3961 
3962 	shm_mnt = kern_mount(&shmem_fs_type);
3963 	if (IS_ERR(shm_mnt)) {
3964 		error = PTR_ERR(shm_mnt);
3965 		pr_err("Could not kern_mount tmpfs\n");
3966 		goto out1;
3967 	}
3968 
3969 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3970 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3971 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972 	else
3973 		shmem_huge = 0; /* just in case it was patched */
3974 #endif
3975 	return 0;
3976 
3977 out1:
3978 	unregister_filesystem(&shmem_fs_type);
3979 out2:
3980 	shmem_destroy_inodecache();
3981 out3:
3982 	shm_mnt = ERR_PTR(error);
3983 	return error;
3984 }
3985 
3986 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3987 static ssize_t shmem_enabled_show(struct kobject *kobj,
3988 		struct kobj_attribute *attr, char *buf)
3989 {
3990 	int values[] = {
3991 		SHMEM_HUGE_ALWAYS,
3992 		SHMEM_HUGE_WITHIN_SIZE,
3993 		SHMEM_HUGE_ADVISE,
3994 		SHMEM_HUGE_NEVER,
3995 		SHMEM_HUGE_DENY,
3996 		SHMEM_HUGE_FORCE,
3997 	};
3998 	int i, count;
3999 
4000 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4001 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4002 
4003 		count += sprintf(buf + count, fmt,
4004 				shmem_format_huge(values[i]));
4005 	}
4006 	buf[count - 1] = '\n';
4007 	return count;
4008 }
4009 
4010 static ssize_t shmem_enabled_store(struct kobject *kobj,
4011 		struct kobj_attribute *attr, const char *buf, size_t count)
4012 {
4013 	char tmp[16];
4014 	int huge;
4015 
4016 	if (count + 1 > sizeof(tmp))
4017 		return -EINVAL;
4018 	memcpy(tmp, buf, count);
4019 	tmp[count] = '\0';
4020 	if (count && tmp[count - 1] == '\n')
4021 		tmp[count - 1] = '\0';
4022 
4023 	huge = shmem_parse_huge(tmp);
4024 	if (huge == -EINVAL)
4025 		return -EINVAL;
4026 	if (!has_transparent_hugepage() &&
4027 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4028 		return -EINVAL;
4029 
4030 	shmem_huge = huge;
4031 	if (shmem_huge > SHMEM_HUGE_DENY)
4032 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4033 	return count;
4034 }
4035 
4036 struct kobj_attribute shmem_enabled_attr =
4037 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4038 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4039 
4040 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4041 bool shmem_huge_enabled(struct vm_area_struct *vma)
4042 {
4043 	struct inode *inode = file_inode(vma->vm_file);
4044 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4045 	loff_t i_size;
4046 	pgoff_t off;
4047 
4048 	if (shmem_huge == SHMEM_HUGE_FORCE)
4049 		return true;
4050 	if (shmem_huge == SHMEM_HUGE_DENY)
4051 		return false;
4052 	switch (sbinfo->huge) {
4053 		case SHMEM_HUGE_NEVER:
4054 			return false;
4055 		case SHMEM_HUGE_ALWAYS:
4056 			return true;
4057 		case SHMEM_HUGE_WITHIN_SIZE:
4058 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4059 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4060 			if (i_size >= HPAGE_PMD_SIZE &&
4061 					i_size >> PAGE_SHIFT >= off)
4062 				return true;
4063 		case SHMEM_HUGE_ADVISE:
4064 			/* TODO: implement fadvise() hints */
4065 			return (vma->vm_flags & VM_HUGEPAGE);
4066 		default:
4067 			VM_BUG_ON(1);
4068 			return false;
4069 	}
4070 }
4071 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4072 
4073 #else /* !CONFIG_SHMEM */
4074 
4075 /*
4076  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4077  *
4078  * This is intended for small system where the benefits of the full
4079  * shmem code (swap-backed and resource-limited) are outweighed by
4080  * their complexity. On systems without swap this code should be
4081  * effectively equivalent, but much lighter weight.
4082  */
4083 
4084 static struct file_system_type shmem_fs_type = {
4085 	.name		= "tmpfs",
4086 	.mount		= ramfs_mount,
4087 	.kill_sb	= kill_litter_super,
4088 	.fs_flags	= FS_USERNS_MOUNT,
4089 };
4090 
4091 int __init shmem_init(void)
4092 {
4093 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4094 
4095 	shm_mnt = kern_mount(&shmem_fs_type);
4096 	BUG_ON(IS_ERR(shm_mnt));
4097 
4098 	return 0;
4099 }
4100 
4101 int shmem_unuse(swp_entry_t swap, struct page *page)
4102 {
4103 	return 0;
4104 }
4105 
4106 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4107 {
4108 	return 0;
4109 }
4110 
4111 void shmem_unlock_mapping(struct address_space *mapping)
4112 {
4113 }
4114 
4115 #ifdef CONFIG_MMU
4116 unsigned long shmem_get_unmapped_area(struct file *file,
4117 				      unsigned long addr, unsigned long len,
4118 				      unsigned long pgoff, unsigned long flags)
4119 {
4120 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4121 }
4122 #endif
4123 
4124 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4125 {
4126 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4127 }
4128 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4129 
4130 #define shmem_vm_ops				generic_file_vm_ops
4131 #define shmem_file_operations			ramfs_file_operations
4132 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4133 #define shmem_acct_size(flags, size)		0
4134 #define shmem_unacct_size(flags, size)		do {} while (0)
4135 
4136 #endif /* CONFIG_SHMEM */
4137 
4138 /* common code */
4139 
4140 static const struct dentry_operations anon_ops = {
4141 	.d_dname = simple_dname
4142 };
4143 
4144 static struct file *__shmem_file_setup(const char *name, loff_t size,
4145 				       unsigned long flags, unsigned int i_flags)
4146 {
4147 	struct file *res;
4148 	struct inode *inode;
4149 	struct path path;
4150 	struct super_block *sb;
4151 	struct qstr this;
4152 
4153 	if (IS_ERR(shm_mnt))
4154 		return ERR_CAST(shm_mnt);
4155 
4156 	if (size < 0 || size > MAX_LFS_FILESIZE)
4157 		return ERR_PTR(-EINVAL);
4158 
4159 	if (shmem_acct_size(flags, size))
4160 		return ERR_PTR(-ENOMEM);
4161 
4162 	res = ERR_PTR(-ENOMEM);
4163 	this.name = name;
4164 	this.len = strlen(name);
4165 	this.hash = 0; /* will go */
4166 	sb = shm_mnt->mnt_sb;
4167 	path.mnt = mntget(shm_mnt);
4168 	path.dentry = d_alloc_pseudo(sb, &this);
4169 	if (!path.dentry)
4170 		goto put_memory;
4171 	d_set_d_op(path.dentry, &anon_ops);
4172 
4173 	res = ERR_PTR(-ENOSPC);
4174 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4175 	if (!inode)
4176 		goto put_memory;
4177 
4178 	inode->i_flags |= i_flags;
4179 	d_instantiate(path.dentry, inode);
4180 	inode->i_size = size;
4181 	clear_nlink(inode);	/* It is unlinked */
4182 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4183 	if (IS_ERR(res))
4184 		goto put_path;
4185 
4186 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4187 		  &shmem_file_operations);
4188 	if (IS_ERR(res))
4189 		goto put_path;
4190 
4191 	return res;
4192 
4193 put_memory:
4194 	shmem_unacct_size(flags, size);
4195 put_path:
4196 	path_put(&path);
4197 	return res;
4198 }
4199 
4200 /**
4201  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4202  * 	kernel internal.  There will be NO LSM permission checks against the
4203  * 	underlying inode.  So users of this interface must do LSM checks at a
4204  *	higher layer.  The users are the big_key and shm implementations.  LSM
4205  *	checks are provided at the key or shm level rather than the inode.
4206  * @name: name for dentry (to be seen in /proc/<pid>/maps
4207  * @size: size to be set for the file
4208  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4209  */
4210 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4211 {
4212 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4213 }
4214 
4215 /**
4216  * shmem_file_setup - get an unlinked file living in tmpfs
4217  * @name: name for dentry (to be seen in /proc/<pid>/maps
4218  * @size: size to be set for the file
4219  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4220  */
4221 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4222 {
4223 	return __shmem_file_setup(name, size, flags, 0);
4224 }
4225 EXPORT_SYMBOL_GPL(shmem_file_setup);
4226 
4227 /**
4228  * shmem_zero_setup - setup a shared anonymous mapping
4229  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4230  */
4231 int shmem_zero_setup(struct vm_area_struct *vma)
4232 {
4233 	struct file *file;
4234 	loff_t size = vma->vm_end - vma->vm_start;
4235 
4236 	/*
4237 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4238 	 * between XFS directory reading and selinux: since this file is only
4239 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4240 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4241 	 */
4242 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4243 	if (IS_ERR(file))
4244 		return PTR_ERR(file);
4245 
4246 	if (vma->vm_file)
4247 		fput(vma->vm_file);
4248 	vma->vm_file = file;
4249 	vma->vm_ops = &shmem_vm_ops;
4250 
4251 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4252 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4253 			(vma->vm_end & HPAGE_PMD_MASK)) {
4254 		khugepaged_enter(vma, vma->vm_flags);
4255 	}
4256 
4257 	return 0;
4258 }
4259 
4260 /**
4261  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4262  * @mapping:	the page's address_space
4263  * @index:	the page index
4264  * @gfp:	the page allocator flags to use if allocating
4265  *
4266  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4267  * with any new page allocations done using the specified allocation flags.
4268  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4269  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4270  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4271  *
4272  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4273  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4274  */
4275 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4276 					 pgoff_t index, gfp_t gfp)
4277 {
4278 #ifdef CONFIG_SHMEM
4279 	struct inode *inode = mapping->host;
4280 	struct page *page;
4281 	int error;
4282 
4283 	BUG_ON(mapping->a_ops != &shmem_aops);
4284 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4285 				  gfp, NULL, NULL, NULL);
4286 	if (error)
4287 		page = ERR_PTR(error);
4288 	else
4289 		unlock_page(page);
4290 	return page;
4291 #else
4292 	/*
4293 	 * The tiny !SHMEM case uses ramfs without swap
4294 	 */
4295 	return read_cache_page_gfp(mapping, index, gfp);
4296 #endif
4297 }
4298 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4299