xref: /openbmc/linux/mm/shmem.c (revision 78c99ba1)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/ima.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/generic_acl.h>
46 #include <linux/mman.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/vfs.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63 
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67 
68 /*
69  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71  *
72  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76  *
77  * We use / and * instead of shifts in the definitions below, so that the swap
78  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79  */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82 
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85 
86 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88 
89 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN	 VM_READ
94 #define SHMEM_TRUNCATE	 VM_WRITE
95 
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT	 64
98 
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101 
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104 	SGP_READ,	/* don't exceed i_size, don't allocate page */
105 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
106 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
107 	SGP_WRITE,	/* may exceed i_size, may allocate page */
108 };
109 
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113 	return totalram_pages / 2;
114 }
115 
116 static unsigned long shmem_default_max_inodes(void)
117 {
118 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 }
120 #endif
121 
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123 			 struct page **pagep, enum sgp_type sgp, int *type);
124 
125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126 {
127 	/*
128 	 * The above definition of ENTRIES_PER_PAGE, and the use of
129 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
131 	 *
132 	 * Mobility flags are masked out as swap vectors cannot move
133 	 */
134 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
136 }
137 
138 static inline void shmem_dir_free(struct page *page)
139 {
140 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141 }
142 
143 static struct page **shmem_dir_map(struct page *page)
144 {
145 	return (struct page **)kmap_atomic(page, KM_USER0);
146 }
147 
148 static inline void shmem_dir_unmap(struct page **dir)
149 {
150 	kunmap_atomic(dir, KM_USER0);
151 }
152 
153 static swp_entry_t *shmem_swp_map(struct page *page)
154 {
155 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156 }
157 
158 static inline void shmem_swp_balance_unmap(void)
159 {
160 	/*
161 	 * When passing a pointer to an i_direct entry, to code which
162 	 * also handles indirect entries and so will shmem_swp_unmap,
163 	 * we must arrange for the preempt count to remain in balance.
164 	 * What kmap_atomic of a lowmem page does depends on config
165 	 * and architecture, so pretend to kmap_atomic some lowmem page.
166 	 */
167 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168 }
169 
170 static inline void shmem_swp_unmap(swp_entry_t *entry)
171 {
172 	kunmap_atomic(entry, KM_USER1);
173 }
174 
175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176 {
177 	return sb->s_fs_info;
178 }
179 
180 /*
181  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182  * for shared memory and for shared anonymous (/dev/zero) mappings
183  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184  * consistent with the pre-accounting of private mappings ...
185  */
186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
187 {
188 	return (flags & VM_NORESERVE) ?
189 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
190 }
191 
192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193 {
194 	if (!(flags & VM_NORESERVE))
195 		vm_unacct_memory(VM_ACCT(size));
196 }
197 
198 /*
199  * ... whereas tmpfs objects are accounted incrementally as
200  * pages are allocated, in order to allow huge sparse files.
201  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203  */
204 static inline int shmem_acct_block(unsigned long flags)
205 {
206 	return (flags & VM_NORESERVE) ?
207 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208 }
209 
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214 }
215 
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static struct vm_operations_struct shmem_vm_ops;
223 
224 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
225 	.ra_pages	= 0,	/* No readahead */
226 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227 	.unplug_io_fn	= default_unplug_io_fn,
228 };
229 
230 static LIST_HEAD(shmem_swaplist);
231 static DEFINE_MUTEX(shmem_swaplist_mutex);
232 
233 static void shmem_free_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 	if (sbinfo->max_blocks) {
237 		spin_lock(&sbinfo->stat_lock);
238 		sbinfo->free_blocks += pages;
239 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
240 		spin_unlock(&sbinfo->stat_lock);
241 	}
242 }
243 
244 static int shmem_reserve_inode(struct super_block *sb)
245 {
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247 	if (sbinfo->max_inodes) {
248 		spin_lock(&sbinfo->stat_lock);
249 		if (!sbinfo->free_inodes) {
250 			spin_unlock(&sbinfo->stat_lock);
251 			return -ENOSPC;
252 		}
253 		sbinfo->free_inodes--;
254 		spin_unlock(&sbinfo->stat_lock);
255 	}
256 	return 0;
257 }
258 
259 static void shmem_free_inode(struct super_block *sb)
260 {
261 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262 	if (sbinfo->max_inodes) {
263 		spin_lock(&sbinfo->stat_lock);
264 		sbinfo->free_inodes++;
265 		spin_unlock(&sbinfo->stat_lock);
266 	}
267 }
268 
269 /**
270  * shmem_recalc_inode - recalculate the size of an inode
271  * @inode: inode to recalc
272  *
273  * We have to calculate the free blocks since the mm can drop
274  * undirtied hole pages behind our back.
275  *
276  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
277  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278  *
279  * It has to be called with the spinlock held.
280  */
281 static void shmem_recalc_inode(struct inode *inode)
282 {
283 	struct shmem_inode_info *info = SHMEM_I(inode);
284 	long freed;
285 
286 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
287 	if (freed > 0) {
288 		info->alloced -= freed;
289 		shmem_unacct_blocks(info->flags, freed);
290 		shmem_free_blocks(inode, freed);
291 	}
292 }
293 
294 /**
295  * shmem_swp_entry - find the swap vector position in the info structure
296  * @info:  info structure for the inode
297  * @index: index of the page to find
298  * @page:  optional page to add to the structure. Has to be preset to
299  *         all zeros
300  *
301  * If there is no space allocated yet it will return NULL when
302  * page is NULL, else it will use the page for the needed block,
303  * setting it to NULL on return to indicate that it has been used.
304  *
305  * The swap vector is organized the following way:
306  *
307  * There are SHMEM_NR_DIRECT entries directly stored in the
308  * shmem_inode_info structure. So small files do not need an addional
309  * allocation.
310  *
311  * For pages with index > SHMEM_NR_DIRECT there is the pointer
312  * i_indirect which points to a page which holds in the first half
313  * doubly indirect blocks, in the second half triple indirect blocks:
314  *
315  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316  * following layout (for SHMEM_NR_DIRECT == 16):
317  *
318  * i_indirect -> dir --> 16-19
319  * 	      |	     +-> 20-23
320  * 	      |
321  * 	      +-->dir2 --> 24-27
322  * 	      |	       +-> 28-31
323  * 	      |	       +-> 32-35
324  * 	      |	       +-> 36-39
325  * 	      |
326  * 	      +-->dir3 --> 40-43
327  * 	       	       +-> 44-47
328  * 	      	       +-> 48-51
329  * 	      	       +-> 52-55
330  */
331 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332 {
333 	unsigned long offset;
334 	struct page **dir;
335 	struct page *subdir;
336 
337 	if (index < SHMEM_NR_DIRECT) {
338 		shmem_swp_balance_unmap();
339 		return info->i_direct+index;
340 	}
341 	if (!info->i_indirect) {
342 		if (page) {
343 			info->i_indirect = *page;
344 			*page = NULL;
345 		}
346 		return NULL;			/* need another page */
347 	}
348 
349 	index -= SHMEM_NR_DIRECT;
350 	offset = index % ENTRIES_PER_PAGE;
351 	index /= ENTRIES_PER_PAGE;
352 	dir = shmem_dir_map(info->i_indirect);
353 
354 	if (index >= ENTRIES_PER_PAGE/2) {
355 		index -= ENTRIES_PER_PAGE/2;
356 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
357 		index %= ENTRIES_PER_PAGE;
358 		subdir = *dir;
359 		if (!subdir) {
360 			if (page) {
361 				*dir = *page;
362 				*page = NULL;
363 			}
364 			shmem_dir_unmap(dir);
365 			return NULL;		/* need another page */
366 		}
367 		shmem_dir_unmap(dir);
368 		dir = shmem_dir_map(subdir);
369 	}
370 
371 	dir += index;
372 	subdir = *dir;
373 	if (!subdir) {
374 		if (!page || !(subdir = *page)) {
375 			shmem_dir_unmap(dir);
376 			return NULL;		/* need a page */
377 		}
378 		*dir = subdir;
379 		*page = NULL;
380 	}
381 	shmem_dir_unmap(dir);
382 	return shmem_swp_map(subdir) + offset;
383 }
384 
385 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386 {
387 	long incdec = value? 1: -1;
388 
389 	entry->val = value;
390 	info->swapped += incdec;
391 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
392 		struct page *page = kmap_atomic_to_page(entry);
393 		set_page_private(page, page_private(page) + incdec);
394 	}
395 }
396 
397 /**
398  * shmem_swp_alloc - get the position of the swap entry for the page.
399  * @info:	info structure for the inode
400  * @index:	index of the page to find
401  * @sgp:	check and recheck i_size? skip allocation?
402  *
403  * If the entry does not exist, allocate it.
404  */
405 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406 {
407 	struct inode *inode = &info->vfs_inode;
408 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
409 	struct page *page = NULL;
410 	swp_entry_t *entry;
411 
412 	if (sgp != SGP_WRITE &&
413 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
414 		return ERR_PTR(-EINVAL);
415 
416 	while (!(entry = shmem_swp_entry(info, index, &page))) {
417 		if (sgp == SGP_READ)
418 			return shmem_swp_map(ZERO_PAGE(0));
419 		/*
420 		 * Test free_blocks against 1 not 0, since we have 1 data
421 		 * page (and perhaps indirect index pages) yet to allocate:
422 		 * a waste to allocate index if we cannot allocate data.
423 		 */
424 		if (sbinfo->max_blocks) {
425 			spin_lock(&sbinfo->stat_lock);
426 			if (sbinfo->free_blocks <= 1) {
427 				spin_unlock(&sbinfo->stat_lock);
428 				return ERR_PTR(-ENOSPC);
429 			}
430 			sbinfo->free_blocks--;
431 			inode->i_blocks += BLOCKS_PER_PAGE;
432 			spin_unlock(&sbinfo->stat_lock);
433 		}
434 
435 		spin_unlock(&info->lock);
436 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
437 		if (page)
438 			set_page_private(page, 0);
439 		spin_lock(&info->lock);
440 
441 		if (!page) {
442 			shmem_free_blocks(inode, 1);
443 			return ERR_PTR(-ENOMEM);
444 		}
445 		if (sgp != SGP_WRITE &&
446 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
447 			entry = ERR_PTR(-EINVAL);
448 			break;
449 		}
450 		if (info->next_index <= index)
451 			info->next_index = index + 1;
452 	}
453 	if (page) {
454 		/* another task gave its page, or truncated the file */
455 		shmem_free_blocks(inode, 1);
456 		shmem_dir_free(page);
457 	}
458 	if (info->next_index <= index && !IS_ERR(entry))
459 		info->next_index = index + 1;
460 	return entry;
461 }
462 
463 /**
464  * shmem_free_swp - free some swap entries in a directory
465  * @dir:        pointer to the directory
466  * @edir:       pointer after last entry of the directory
467  * @punch_lock: pointer to spinlock when needed for the holepunch case
468  */
469 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
470 						spinlock_t *punch_lock)
471 {
472 	spinlock_t *punch_unlock = NULL;
473 	swp_entry_t *ptr;
474 	int freed = 0;
475 
476 	for (ptr = dir; ptr < edir; ptr++) {
477 		if (ptr->val) {
478 			if (unlikely(punch_lock)) {
479 				punch_unlock = punch_lock;
480 				punch_lock = NULL;
481 				spin_lock(punch_unlock);
482 				if (!ptr->val)
483 					continue;
484 			}
485 			free_swap_and_cache(*ptr);
486 			*ptr = (swp_entry_t){0};
487 			freed++;
488 		}
489 	}
490 	if (punch_unlock)
491 		spin_unlock(punch_unlock);
492 	return freed;
493 }
494 
495 static int shmem_map_and_free_swp(struct page *subdir, int offset,
496 		int limit, struct page ***dir, spinlock_t *punch_lock)
497 {
498 	swp_entry_t *ptr;
499 	int freed = 0;
500 
501 	ptr = shmem_swp_map(subdir);
502 	for (; offset < limit; offset += LATENCY_LIMIT) {
503 		int size = limit - offset;
504 		if (size > LATENCY_LIMIT)
505 			size = LATENCY_LIMIT;
506 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
507 							punch_lock);
508 		if (need_resched()) {
509 			shmem_swp_unmap(ptr);
510 			if (*dir) {
511 				shmem_dir_unmap(*dir);
512 				*dir = NULL;
513 			}
514 			cond_resched();
515 			ptr = shmem_swp_map(subdir);
516 		}
517 	}
518 	shmem_swp_unmap(ptr);
519 	return freed;
520 }
521 
522 static void shmem_free_pages(struct list_head *next)
523 {
524 	struct page *page;
525 	int freed = 0;
526 
527 	do {
528 		page = container_of(next, struct page, lru);
529 		next = next->next;
530 		shmem_dir_free(page);
531 		freed++;
532 		if (freed >= LATENCY_LIMIT) {
533 			cond_resched();
534 			freed = 0;
535 		}
536 	} while (next);
537 }
538 
539 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
540 {
541 	struct shmem_inode_info *info = SHMEM_I(inode);
542 	unsigned long idx;
543 	unsigned long size;
544 	unsigned long limit;
545 	unsigned long stage;
546 	unsigned long diroff;
547 	struct page **dir;
548 	struct page *topdir;
549 	struct page *middir;
550 	struct page *subdir;
551 	swp_entry_t *ptr;
552 	LIST_HEAD(pages_to_free);
553 	long nr_pages_to_free = 0;
554 	long nr_swaps_freed = 0;
555 	int offset;
556 	int freed;
557 	int punch_hole;
558 	spinlock_t *needs_lock;
559 	spinlock_t *punch_lock;
560 	unsigned long upper_limit;
561 
562 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
563 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
564 	if (idx >= info->next_index)
565 		return;
566 
567 	spin_lock(&info->lock);
568 	info->flags |= SHMEM_TRUNCATE;
569 	if (likely(end == (loff_t) -1)) {
570 		limit = info->next_index;
571 		upper_limit = SHMEM_MAX_INDEX;
572 		info->next_index = idx;
573 		needs_lock = NULL;
574 		punch_hole = 0;
575 	} else {
576 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
577 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
578 							PAGE_CACHE_SHIFT;
579 			upper_limit = SHMEM_MAX_INDEX;
580 		} else {
581 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
582 			upper_limit = limit;
583 		}
584 		needs_lock = &info->lock;
585 		punch_hole = 1;
586 	}
587 
588 	topdir = info->i_indirect;
589 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
590 		info->i_indirect = NULL;
591 		nr_pages_to_free++;
592 		list_add(&topdir->lru, &pages_to_free);
593 	}
594 	spin_unlock(&info->lock);
595 
596 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
597 		ptr = info->i_direct;
598 		size = limit;
599 		if (size > SHMEM_NR_DIRECT)
600 			size = SHMEM_NR_DIRECT;
601 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
602 	}
603 
604 	/*
605 	 * If there are no indirect blocks or we are punching a hole
606 	 * below indirect blocks, nothing to be done.
607 	 */
608 	if (!topdir || limit <= SHMEM_NR_DIRECT)
609 		goto done2;
610 
611 	/*
612 	 * The truncation case has already dropped info->lock, and we're safe
613 	 * because i_size and next_index have already been lowered, preventing
614 	 * access beyond.  But in the punch_hole case, we still need to take
615 	 * the lock when updating the swap directory, because there might be
616 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
617 	 * shmem_writepage.  However, whenever we find we can remove a whole
618 	 * directory page (not at the misaligned start or end of the range),
619 	 * we first NULLify its pointer in the level above, and then have no
620 	 * need to take the lock when updating its contents: needs_lock and
621 	 * punch_lock (either pointing to info->lock or NULL) manage this.
622 	 */
623 
624 	upper_limit -= SHMEM_NR_DIRECT;
625 	limit -= SHMEM_NR_DIRECT;
626 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
627 	offset = idx % ENTRIES_PER_PAGE;
628 	idx -= offset;
629 
630 	dir = shmem_dir_map(topdir);
631 	stage = ENTRIES_PER_PAGEPAGE/2;
632 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
633 		middir = topdir;
634 		diroff = idx/ENTRIES_PER_PAGE;
635 	} else {
636 		dir += ENTRIES_PER_PAGE/2;
637 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
638 		while (stage <= idx)
639 			stage += ENTRIES_PER_PAGEPAGE;
640 		middir = *dir;
641 		if (*dir) {
642 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
643 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
644 			if (!diroff && !offset && upper_limit >= stage) {
645 				if (needs_lock) {
646 					spin_lock(needs_lock);
647 					*dir = NULL;
648 					spin_unlock(needs_lock);
649 					needs_lock = NULL;
650 				} else
651 					*dir = NULL;
652 				nr_pages_to_free++;
653 				list_add(&middir->lru, &pages_to_free);
654 			}
655 			shmem_dir_unmap(dir);
656 			dir = shmem_dir_map(middir);
657 		} else {
658 			diroff = 0;
659 			offset = 0;
660 			idx = stage;
661 		}
662 	}
663 
664 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
665 		if (unlikely(idx == stage)) {
666 			shmem_dir_unmap(dir);
667 			dir = shmem_dir_map(topdir) +
668 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
669 			while (!*dir) {
670 				dir++;
671 				idx += ENTRIES_PER_PAGEPAGE;
672 				if (idx >= limit)
673 					goto done1;
674 			}
675 			stage = idx + ENTRIES_PER_PAGEPAGE;
676 			middir = *dir;
677 			if (punch_hole)
678 				needs_lock = &info->lock;
679 			if (upper_limit >= stage) {
680 				if (needs_lock) {
681 					spin_lock(needs_lock);
682 					*dir = NULL;
683 					spin_unlock(needs_lock);
684 					needs_lock = NULL;
685 				} else
686 					*dir = NULL;
687 				nr_pages_to_free++;
688 				list_add(&middir->lru, &pages_to_free);
689 			}
690 			shmem_dir_unmap(dir);
691 			cond_resched();
692 			dir = shmem_dir_map(middir);
693 			diroff = 0;
694 		}
695 		punch_lock = needs_lock;
696 		subdir = dir[diroff];
697 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
698 			if (needs_lock) {
699 				spin_lock(needs_lock);
700 				dir[diroff] = NULL;
701 				spin_unlock(needs_lock);
702 				punch_lock = NULL;
703 			} else
704 				dir[diroff] = NULL;
705 			nr_pages_to_free++;
706 			list_add(&subdir->lru, &pages_to_free);
707 		}
708 		if (subdir && page_private(subdir) /* has swap entries */) {
709 			size = limit - idx;
710 			if (size > ENTRIES_PER_PAGE)
711 				size = ENTRIES_PER_PAGE;
712 			freed = shmem_map_and_free_swp(subdir,
713 					offset, size, &dir, punch_lock);
714 			if (!dir)
715 				dir = shmem_dir_map(middir);
716 			nr_swaps_freed += freed;
717 			if (offset || punch_lock) {
718 				spin_lock(&info->lock);
719 				set_page_private(subdir,
720 					page_private(subdir) - freed);
721 				spin_unlock(&info->lock);
722 			} else
723 				BUG_ON(page_private(subdir) != freed);
724 		}
725 		offset = 0;
726 	}
727 done1:
728 	shmem_dir_unmap(dir);
729 done2:
730 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
731 		/*
732 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
733 		 * may have swizzled a page in from swap since vmtruncate or
734 		 * generic_delete_inode did it, before we lowered next_index.
735 		 * Also, though shmem_getpage checks i_size before adding to
736 		 * cache, no recheck after: so fix the narrow window there too.
737 		 *
738 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
739 		 * every time for punch_hole (which never got a chance to clear
740 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
741 		 * yet hardly ever necessary: try to optimize them out later.
742 		 */
743 		truncate_inode_pages_range(inode->i_mapping, start, end);
744 		if (punch_hole)
745 			unmap_mapping_range(inode->i_mapping, start,
746 							end - start, 1);
747 	}
748 
749 	spin_lock(&info->lock);
750 	info->flags &= ~SHMEM_TRUNCATE;
751 	info->swapped -= nr_swaps_freed;
752 	if (nr_pages_to_free)
753 		shmem_free_blocks(inode, nr_pages_to_free);
754 	shmem_recalc_inode(inode);
755 	spin_unlock(&info->lock);
756 
757 	/*
758 	 * Empty swap vector directory pages to be freed?
759 	 */
760 	if (!list_empty(&pages_to_free)) {
761 		pages_to_free.prev->next = NULL;
762 		shmem_free_pages(pages_to_free.next);
763 	}
764 }
765 
766 static void shmem_truncate(struct inode *inode)
767 {
768 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
769 }
770 
771 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
772 {
773 	struct inode *inode = dentry->d_inode;
774 	struct page *page = NULL;
775 	int error;
776 
777 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
778 		if (attr->ia_size < inode->i_size) {
779 			/*
780 			 * If truncating down to a partial page, then
781 			 * if that page is already allocated, hold it
782 			 * in memory until the truncation is over, so
783 			 * truncate_partial_page cannnot miss it were
784 			 * it assigned to swap.
785 			 */
786 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
787 				(void) shmem_getpage(inode,
788 					attr->ia_size>>PAGE_CACHE_SHIFT,
789 						&page, SGP_READ, NULL);
790 				if (page)
791 					unlock_page(page);
792 			}
793 			/*
794 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
795 			 * detect if any pages might have been added to cache
796 			 * after truncate_inode_pages.  But we needn't bother
797 			 * if it's being fully truncated to zero-length: the
798 			 * nrpages check is efficient enough in that case.
799 			 */
800 			if (attr->ia_size) {
801 				struct shmem_inode_info *info = SHMEM_I(inode);
802 				spin_lock(&info->lock);
803 				info->flags &= ~SHMEM_PAGEIN;
804 				spin_unlock(&info->lock);
805 			}
806 		}
807 	}
808 
809 	error = inode_change_ok(inode, attr);
810 	if (!error)
811 		error = inode_setattr(inode, attr);
812 #ifdef CONFIG_TMPFS_POSIX_ACL
813 	if (!error && (attr->ia_valid & ATTR_MODE))
814 		error = generic_acl_chmod(inode, &shmem_acl_ops);
815 #endif
816 	if (page)
817 		page_cache_release(page);
818 	return error;
819 }
820 
821 static void shmem_delete_inode(struct inode *inode)
822 {
823 	struct shmem_inode_info *info = SHMEM_I(inode);
824 
825 	if (inode->i_op->truncate == shmem_truncate) {
826 		truncate_inode_pages(inode->i_mapping, 0);
827 		shmem_unacct_size(info->flags, inode->i_size);
828 		inode->i_size = 0;
829 		shmem_truncate(inode);
830 		if (!list_empty(&info->swaplist)) {
831 			mutex_lock(&shmem_swaplist_mutex);
832 			list_del_init(&info->swaplist);
833 			mutex_unlock(&shmem_swaplist_mutex);
834 		}
835 	}
836 	BUG_ON(inode->i_blocks);
837 	shmem_free_inode(inode->i_sb);
838 	clear_inode(inode);
839 }
840 
841 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
842 {
843 	swp_entry_t *ptr;
844 
845 	for (ptr = dir; ptr < edir; ptr++) {
846 		if (ptr->val == entry.val)
847 			return ptr - dir;
848 	}
849 	return -1;
850 }
851 
852 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
853 {
854 	struct inode *inode;
855 	unsigned long idx;
856 	unsigned long size;
857 	unsigned long limit;
858 	unsigned long stage;
859 	struct page **dir;
860 	struct page *subdir;
861 	swp_entry_t *ptr;
862 	int offset;
863 	int error;
864 
865 	idx = 0;
866 	ptr = info->i_direct;
867 	spin_lock(&info->lock);
868 	if (!info->swapped) {
869 		list_del_init(&info->swaplist);
870 		goto lost2;
871 	}
872 	limit = info->next_index;
873 	size = limit;
874 	if (size > SHMEM_NR_DIRECT)
875 		size = SHMEM_NR_DIRECT;
876 	offset = shmem_find_swp(entry, ptr, ptr+size);
877 	if (offset >= 0)
878 		goto found;
879 	if (!info->i_indirect)
880 		goto lost2;
881 
882 	dir = shmem_dir_map(info->i_indirect);
883 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
884 
885 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
886 		if (unlikely(idx == stage)) {
887 			shmem_dir_unmap(dir-1);
888 			if (cond_resched_lock(&info->lock)) {
889 				/* check it has not been truncated */
890 				if (limit > info->next_index) {
891 					limit = info->next_index;
892 					if (idx >= limit)
893 						goto lost2;
894 				}
895 			}
896 			dir = shmem_dir_map(info->i_indirect) +
897 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
898 			while (!*dir) {
899 				dir++;
900 				idx += ENTRIES_PER_PAGEPAGE;
901 				if (idx >= limit)
902 					goto lost1;
903 			}
904 			stage = idx + ENTRIES_PER_PAGEPAGE;
905 			subdir = *dir;
906 			shmem_dir_unmap(dir);
907 			dir = shmem_dir_map(subdir);
908 		}
909 		subdir = *dir;
910 		if (subdir && page_private(subdir)) {
911 			ptr = shmem_swp_map(subdir);
912 			size = limit - idx;
913 			if (size > ENTRIES_PER_PAGE)
914 				size = ENTRIES_PER_PAGE;
915 			offset = shmem_find_swp(entry, ptr, ptr+size);
916 			shmem_swp_unmap(ptr);
917 			if (offset >= 0) {
918 				shmem_dir_unmap(dir);
919 				goto found;
920 			}
921 		}
922 	}
923 lost1:
924 	shmem_dir_unmap(dir-1);
925 lost2:
926 	spin_unlock(&info->lock);
927 	return 0;
928 found:
929 	idx += offset;
930 	inode = igrab(&info->vfs_inode);
931 	spin_unlock(&info->lock);
932 
933 	/*
934 	 * Move _head_ to start search for next from here.
935 	 * But be careful: shmem_delete_inode checks list_empty without taking
936 	 * mutex, and there's an instant in list_move_tail when info->swaplist
937 	 * would appear empty, if it were the only one on shmem_swaplist.  We
938 	 * could avoid doing it if inode NULL; or use this minor optimization.
939 	 */
940 	if (shmem_swaplist.next != &info->swaplist)
941 		list_move_tail(&shmem_swaplist, &info->swaplist);
942 	mutex_unlock(&shmem_swaplist_mutex);
943 
944 	error = 1;
945 	if (!inode)
946 		goto out;
947 	/*
948 	 * Charge page using GFP_KERNEL while we can wait.
949 	 * Charged back to the user(not to caller) when swap account is used.
950 	 * add_to_page_cache() will be called with GFP_NOWAIT.
951 	 */
952 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
953 	if (error)
954 		goto out;
955 	error = radix_tree_preload(GFP_KERNEL);
956 	if (error) {
957 		mem_cgroup_uncharge_cache_page(page);
958 		goto out;
959 	}
960 	error = 1;
961 
962 	spin_lock(&info->lock);
963 	ptr = shmem_swp_entry(info, idx, NULL);
964 	if (ptr && ptr->val == entry.val) {
965 		error = add_to_page_cache_locked(page, inode->i_mapping,
966 						idx, GFP_NOWAIT);
967 		/* does mem_cgroup_uncharge_cache_page on error */
968 	} else	/* we must compensate for our precharge above */
969 		mem_cgroup_uncharge_cache_page(page);
970 
971 	if (error == -EEXIST) {
972 		struct page *filepage = find_get_page(inode->i_mapping, idx);
973 		error = 1;
974 		if (filepage) {
975 			/*
976 			 * There might be a more uptodate page coming down
977 			 * from a stacked writepage: forget our swappage if so.
978 			 */
979 			if (PageUptodate(filepage))
980 				error = 0;
981 			page_cache_release(filepage);
982 		}
983 	}
984 	if (!error) {
985 		delete_from_swap_cache(page);
986 		set_page_dirty(page);
987 		info->flags |= SHMEM_PAGEIN;
988 		shmem_swp_set(info, ptr, 0);
989 		swap_free(entry);
990 		error = 1;	/* not an error, but entry was found */
991 	}
992 	if (ptr)
993 		shmem_swp_unmap(ptr);
994 	spin_unlock(&info->lock);
995 	radix_tree_preload_end();
996 out:
997 	unlock_page(page);
998 	page_cache_release(page);
999 	iput(inode);		/* allows for NULL */
1000 	return error;
1001 }
1002 
1003 /*
1004  * shmem_unuse() search for an eventually swapped out shmem page.
1005  */
1006 int shmem_unuse(swp_entry_t entry, struct page *page)
1007 {
1008 	struct list_head *p, *next;
1009 	struct shmem_inode_info *info;
1010 	int found = 0;
1011 
1012 	mutex_lock(&shmem_swaplist_mutex);
1013 	list_for_each_safe(p, next, &shmem_swaplist) {
1014 		info = list_entry(p, struct shmem_inode_info, swaplist);
1015 		found = shmem_unuse_inode(info, entry, page);
1016 		cond_resched();
1017 		if (found)
1018 			goto out;
1019 	}
1020 	mutex_unlock(&shmem_swaplist_mutex);
1021 out:	return found;	/* 0 or 1 or -ENOMEM */
1022 }
1023 
1024 /*
1025  * Move the page from the page cache to the swap cache.
1026  */
1027 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1028 {
1029 	struct shmem_inode_info *info;
1030 	swp_entry_t *entry, swap;
1031 	struct address_space *mapping;
1032 	unsigned long index;
1033 	struct inode *inode;
1034 
1035 	BUG_ON(!PageLocked(page));
1036 	mapping = page->mapping;
1037 	index = page->index;
1038 	inode = mapping->host;
1039 	info = SHMEM_I(inode);
1040 	if (info->flags & VM_LOCKED)
1041 		goto redirty;
1042 	if (!total_swap_pages)
1043 		goto redirty;
1044 
1045 	/*
1046 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1047 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1048 	 * may use the ->writepage of its underlying filesystem, in which case
1049 	 * tmpfs should write out to swap only in response to memory pressure,
1050 	 * and not for pdflush or sync.  However, in those cases, we do still
1051 	 * want to check if there's a redundant swappage to be discarded.
1052 	 */
1053 	if (wbc->for_reclaim)
1054 		swap = get_swap_page();
1055 	else
1056 		swap.val = 0;
1057 
1058 	spin_lock(&info->lock);
1059 	if (index >= info->next_index) {
1060 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1061 		goto unlock;
1062 	}
1063 	entry = shmem_swp_entry(info, index, NULL);
1064 	if (entry->val) {
1065 		/*
1066 		 * The more uptodate page coming down from a stacked
1067 		 * writepage should replace our old swappage.
1068 		 */
1069 		free_swap_and_cache(*entry);
1070 		shmem_swp_set(info, entry, 0);
1071 	}
1072 	shmem_recalc_inode(inode);
1073 
1074 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1075 		remove_from_page_cache(page);
1076 		shmem_swp_set(info, entry, swap.val);
1077 		shmem_swp_unmap(entry);
1078 		if (list_empty(&info->swaplist))
1079 			inode = igrab(inode);
1080 		else
1081 			inode = NULL;
1082 		spin_unlock(&info->lock);
1083 		swap_duplicate(swap);
1084 		BUG_ON(page_mapped(page));
1085 		page_cache_release(page);	/* pagecache ref */
1086 		swap_writepage(page, wbc);
1087 		if (inode) {
1088 			mutex_lock(&shmem_swaplist_mutex);
1089 			/* move instead of add in case we're racing */
1090 			list_move_tail(&info->swaplist, &shmem_swaplist);
1091 			mutex_unlock(&shmem_swaplist_mutex);
1092 			iput(inode);
1093 		}
1094 		return 0;
1095 	}
1096 
1097 	shmem_swp_unmap(entry);
1098 unlock:
1099 	spin_unlock(&info->lock);
1100 	swap_free(swap);
1101 redirty:
1102 	set_page_dirty(page);
1103 	if (wbc->for_reclaim)
1104 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1105 	unlock_page(page);
1106 	return 0;
1107 }
1108 
1109 #ifdef CONFIG_NUMA
1110 #ifdef CONFIG_TMPFS
1111 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1112 {
1113 	char buffer[64];
1114 
1115 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1116 		return;		/* show nothing */
1117 
1118 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1119 
1120 	seq_printf(seq, ",mpol=%s", buffer);
1121 }
1122 
1123 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1124 {
1125 	struct mempolicy *mpol = NULL;
1126 	if (sbinfo->mpol) {
1127 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1128 		mpol = sbinfo->mpol;
1129 		mpol_get(mpol);
1130 		spin_unlock(&sbinfo->stat_lock);
1131 	}
1132 	return mpol;
1133 }
1134 #endif /* CONFIG_TMPFS */
1135 
1136 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1137 			struct shmem_inode_info *info, unsigned long idx)
1138 {
1139 	struct mempolicy mpol, *spol;
1140 	struct vm_area_struct pvma;
1141 	struct page *page;
1142 
1143 	spol = mpol_cond_copy(&mpol,
1144 				mpol_shared_policy_lookup(&info->policy, idx));
1145 
1146 	/* Create a pseudo vma that just contains the policy */
1147 	pvma.vm_start = 0;
1148 	pvma.vm_pgoff = idx;
1149 	pvma.vm_ops = NULL;
1150 	pvma.vm_policy = spol;
1151 	page = swapin_readahead(entry, gfp, &pvma, 0);
1152 	return page;
1153 }
1154 
1155 static struct page *shmem_alloc_page(gfp_t gfp,
1156 			struct shmem_inode_info *info, unsigned long idx)
1157 {
1158 	struct vm_area_struct pvma;
1159 
1160 	/* Create a pseudo vma that just contains the policy */
1161 	pvma.vm_start = 0;
1162 	pvma.vm_pgoff = idx;
1163 	pvma.vm_ops = NULL;
1164 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1165 
1166 	/*
1167 	 * alloc_page_vma() will drop the shared policy reference
1168 	 */
1169 	return alloc_page_vma(gfp, &pvma, 0);
1170 }
1171 #else /* !CONFIG_NUMA */
1172 #ifdef CONFIG_TMPFS
1173 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1174 {
1175 }
1176 #endif /* CONFIG_TMPFS */
1177 
1178 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1179 			struct shmem_inode_info *info, unsigned long idx)
1180 {
1181 	return swapin_readahead(entry, gfp, NULL, 0);
1182 }
1183 
1184 static inline struct page *shmem_alloc_page(gfp_t gfp,
1185 			struct shmem_inode_info *info, unsigned long idx)
1186 {
1187 	return alloc_page(gfp);
1188 }
1189 #endif /* CONFIG_NUMA */
1190 
1191 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1192 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1193 {
1194 	return NULL;
1195 }
1196 #endif
1197 
1198 /*
1199  * shmem_getpage - either get the page from swap or allocate a new one
1200  *
1201  * If we allocate a new one we do not mark it dirty. That's up to the
1202  * vm. If we swap it in we mark it dirty since we also free the swap
1203  * entry since a page cannot live in both the swap and page cache
1204  */
1205 static int shmem_getpage(struct inode *inode, unsigned long idx,
1206 			struct page **pagep, enum sgp_type sgp, int *type)
1207 {
1208 	struct address_space *mapping = inode->i_mapping;
1209 	struct shmem_inode_info *info = SHMEM_I(inode);
1210 	struct shmem_sb_info *sbinfo;
1211 	struct page *filepage = *pagep;
1212 	struct page *swappage;
1213 	swp_entry_t *entry;
1214 	swp_entry_t swap;
1215 	gfp_t gfp;
1216 	int error;
1217 
1218 	if (idx >= SHMEM_MAX_INDEX)
1219 		return -EFBIG;
1220 
1221 	if (type)
1222 		*type = 0;
1223 
1224 	/*
1225 	 * Normally, filepage is NULL on entry, and either found
1226 	 * uptodate immediately, or allocated and zeroed, or read
1227 	 * in under swappage, which is then assigned to filepage.
1228 	 * But shmem_readpage (required for splice) passes in a locked
1229 	 * filepage, which may be found not uptodate by other callers
1230 	 * too, and may need to be copied from the swappage read in.
1231 	 */
1232 repeat:
1233 	if (!filepage)
1234 		filepage = find_lock_page(mapping, idx);
1235 	if (filepage && PageUptodate(filepage))
1236 		goto done;
1237 	error = 0;
1238 	gfp = mapping_gfp_mask(mapping);
1239 	if (!filepage) {
1240 		/*
1241 		 * Try to preload while we can wait, to not make a habit of
1242 		 * draining atomic reserves; but don't latch on to this cpu.
1243 		 */
1244 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1245 		if (error)
1246 			goto failed;
1247 		radix_tree_preload_end();
1248 	}
1249 
1250 	spin_lock(&info->lock);
1251 	shmem_recalc_inode(inode);
1252 	entry = shmem_swp_alloc(info, idx, sgp);
1253 	if (IS_ERR(entry)) {
1254 		spin_unlock(&info->lock);
1255 		error = PTR_ERR(entry);
1256 		goto failed;
1257 	}
1258 	swap = *entry;
1259 
1260 	if (swap.val) {
1261 		/* Look it up and read it in.. */
1262 		swappage = lookup_swap_cache(swap);
1263 		if (!swappage) {
1264 			shmem_swp_unmap(entry);
1265 			/* here we actually do the io */
1266 			if (type && !(*type & VM_FAULT_MAJOR)) {
1267 				__count_vm_event(PGMAJFAULT);
1268 				*type |= VM_FAULT_MAJOR;
1269 			}
1270 			spin_unlock(&info->lock);
1271 			swappage = shmem_swapin(swap, gfp, info, idx);
1272 			if (!swappage) {
1273 				spin_lock(&info->lock);
1274 				entry = shmem_swp_alloc(info, idx, sgp);
1275 				if (IS_ERR(entry))
1276 					error = PTR_ERR(entry);
1277 				else {
1278 					if (entry->val == swap.val)
1279 						error = -ENOMEM;
1280 					shmem_swp_unmap(entry);
1281 				}
1282 				spin_unlock(&info->lock);
1283 				if (error)
1284 					goto failed;
1285 				goto repeat;
1286 			}
1287 			wait_on_page_locked(swappage);
1288 			page_cache_release(swappage);
1289 			goto repeat;
1290 		}
1291 
1292 		/* We have to do this with page locked to prevent races */
1293 		if (!trylock_page(swappage)) {
1294 			shmem_swp_unmap(entry);
1295 			spin_unlock(&info->lock);
1296 			wait_on_page_locked(swappage);
1297 			page_cache_release(swappage);
1298 			goto repeat;
1299 		}
1300 		if (PageWriteback(swappage)) {
1301 			shmem_swp_unmap(entry);
1302 			spin_unlock(&info->lock);
1303 			wait_on_page_writeback(swappage);
1304 			unlock_page(swappage);
1305 			page_cache_release(swappage);
1306 			goto repeat;
1307 		}
1308 		if (!PageUptodate(swappage)) {
1309 			shmem_swp_unmap(entry);
1310 			spin_unlock(&info->lock);
1311 			unlock_page(swappage);
1312 			page_cache_release(swappage);
1313 			error = -EIO;
1314 			goto failed;
1315 		}
1316 
1317 		if (filepage) {
1318 			shmem_swp_set(info, entry, 0);
1319 			shmem_swp_unmap(entry);
1320 			delete_from_swap_cache(swappage);
1321 			spin_unlock(&info->lock);
1322 			copy_highpage(filepage, swappage);
1323 			unlock_page(swappage);
1324 			page_cache_release(swappage);
1325 			flush_dcache_page(filepage);
1326 			SetPageUptodate(filepage);
1327 			set_page_dirty(filepage);
1328 			swap_free(swap);
1329 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1330 					idx, GFP_NOWAIT))) {
1331 			info->flags |= SHMEM_PAGEIN;
1332 			shmem_swp_set(info, entry, 0);
1333 			shmem_swp_unmap(entry);
1334 			delete_from_swap_cache(swappage);
1335 			spin_unlock(&info->lock);
1336 			filepage = swappage;
1337 			set_page_dirty(filepage);
1338 			swap_free(swap);
1339 		} else {
1340 			shmem_swp_unmap(entry);
1341 			spin_unlock(&info->lock);
1342 			if (error == -ENOMEM) {
1343 				/*
1344 				 * reclaim from proper memory cgroup and
1345 				 * call memcg's OOM if needed.
1346 				 */
1347 				error = mem_cgroup_shmem_charge_fallback(
1348 								swappage,
1349 								current->mm,
1350 								gfp);
1351 				if (error) {
1352 					unlock_page(swappage);
1353 					page_cache_release(swappage);
1354 					goto failed;
1355 				}
1356 			}
1357 			unlock_page(swappage);
1358 			page_cache_release(swappage);
1359 			goto repeat;
1360 		}
1361 	} else if (sgp == SGP_READ && !filepage) {
1362 		shmem_swp_unmap(entry);
1363 		filepage = find_get_page(mapping, idx);
1364 		if (filepage &&
1365 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1366 			spin_unlock(&info->lock);
1367 			wait_on_page_locked(filepage);
1368 			page_cache_release(filepage);
1369 			filepage = NULL;
1370 			goto repeat;
1371 		}
1372 		spin_unlock(&info->lock);
1373 	} else {
1374 		shmem_swp_unmap(entry);
1375 		sbinfo = SHMEM_SB(inode->i_sb);
1376 		if (sbinfo->max_blocks) {
1377 			spin_lock(&sbinfo->stat_lock);
1378 			if (sbinfo->free_blocks == 0 ||
1379 			    shmem_acct_block(info->flags)) {
1380 				spin_unlock(&sbinfo->stat_lock);
1381 				spin_unlock(&info->lock);
1382 				error = -ENOSPC;
1383 				goto failed;
1384 			}
1385 			sbinfo->free_blocks--;
1386 			inode->i_blocks += BLOCKS_PER_PAGE;
1387 			spin_unlock(&sbinfo->stat_lock);
1388 		} else if (shmem_acct_block(info->flags)) {
1389 			spin_unlock(&info->lock);
1390 			error = -ENOSPC;
1391 			goto failed;
1392 		}
1393 
1394 		if (!filepage) {
1395 			int ret;
1396 
1397 			spin_unlock(&info->lock);
1398 			filepage = shmem_alloc_page(gfp, info, idx);
1399 			if (!filepage) {
1400 				shmem_unacct_blocks(info->flags, 1);
1401 				shmem_free_blocks(inode, 1);
1402 				error = -ENOMEM;
1403 				goto failed;
1404 			}
1405 			SetPageSwapBacked(filepage);
1406 
1407 			/* Precharge page while we can wait, compensate after */
1408 			error = mem_cgroup_cache_charge(filepage, current->mm,
1409 					GFP_KERNEL);
1410 			if (error) {
1411 				page_cache_release(filepage);
1412 				shmem_unacct_blocks(info->flags, 1);
1413 				shmem_free_blocks(inode, 1);
1414 				filepage = NULL;
1415 				goto failed;
1416 			}
1417 
1418 			spin_lock(&info->lock);
1419 			entry = shmem_swp_alloc(info, idx, sgp);
1420 			if (IS_ERR(entry))
1421 				error = PTR_ERR(entry);
1422 			else {
1423 				swap = *entry;
1424 				shmem_swp_unmap(entry);
1425 			}
1426 			ret = error || swap.val;
1427 			if (ret)
1428 				mem_cgroup_uncharge_cache_page(filepage);
1429 			else
1430 				ret = add_to_page_cache_lru(filepage, mapping,
1431 						idx, GFP_NOWAIT);
1432 			/*
1433 			 * At add_to_page_cache_lru() failure, uncharge will
1434 			 * be done automatically.
1435 			 */
1436 			if (ret) {
1437 				spin_unlock(&info->lock);
1438 				page_cache_release(filepage);
1439 				shmem_unacct_blocks(info->flags, 1);
1440 				shmem_free_blocks(inode, 1);
1441 				filepage = NULL;
1442 				if (error)
1443 					goto failed;
1444 				goto repeat;
1445 			}
1446 			info->flags |= SHMEM_PAGEIN;
1447 		}
1448 
1449 		info->alloced++;
1450 		spin_unlock(&info->lock);
1451 		clear_highpage(filepage);
1452 		flush_dcache_page(filepage);
1453 		SetPageUptodate(filepage);
1454 		if (sgp == SGP_DIRTY)
1455 			set_page_dirty(filepage);
1456 	}
1457 done:
1458 	*pagep = filepage;
1459 	return 0;
1460 
1461 failed:
1462 	if (*pagep != filepage) {
1463 		unlock_page(filepage);
1464 		page_cache_release(filepage);
1465 	}
1466 	return error;
1467 }
1468 
1469 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1470 {
1471 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1472 	int error;
1473 	int ret;
1474 
1475 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1476 		return VM_FAULT_SIGBUS;
1477 
1478 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1479 	if (error)
1480 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1481 
1482 	return ret | VM_FAULT_LOCKED;
1483 }
1484 
1485 #ifdef CONFIG_NUMA
1486 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1487 {
1488 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1489 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1490 }
1491 
1492 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1493 					  unsigned long addr)
1494 {
1495 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1496 	unsigned long idx;
1497 
1498 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1499 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1500 }
1501 #endif
1502 
1503 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1504 {
1505 	struct inode *inode = file->f_path.dentry->d_inode;
1506 	struct shmem_inode_info *info = SHMEM_I(inode);
1507 	int retval = -ENOMEM;
1508 
1509 	spin_lock(&info->lock);
1510 	if (lock && !(info->flags & VM_LOCKED)) {
1511 		if (!user_shm_lock(inode->i_size, user))
1512 			goto out_nomem;
1513 		info->flags |= VM_LOCKED;
1514 		mapping_set_unevictable(file->f_mapping);
1515 	}
1516 	if (!lock && (info->flags & VM_LOCKED) && user) {
1517 		user_shm_unlock(inode->i_size, user);
1518 		info->flags &= ~VM_LOCKED;
1519 		mapping_clear_unevictable(file->f_mapping);
1520 		scan_mapping_unevictable_pages(file->f_mapping);
1521 	}
1522 	retval = 0;
1523 
1524 out_nomem:
1525 	spin_unlock(&info->lock);
1526 	return retval;
1527 }
1528 
1529 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1530 {
1531 	file_accessed(file);
1532 	vma->vm_ops = &shmem_vm_ops;
1533 	vma->vm_flags |= VM_CAN_NONLINEAR;
1534 	return 0;
1535 }
1536 
1537 static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1538 					dev_t dev, unsigned long flags)
1539 {
1540 	struct inode *inode;
1541 	struct shmem_inode_info *info;
1542 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1543 
1544 	if (shmem_reserve_inode(sb))
1545 		return NULL;
1546 
1547 	inode = new_inode(sb);
1548 	if (inode) {
1549 		inode->i_mode = mode;
1550 		inode->i_uid = current_fsuid();
1551 		inode->i_gid = current_fsgid();
1552 		inode->i_blocks = 0;
1553 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1554 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1555 		inode->i_generation = get_seconds();
1556 		info = SHMEM_I(inode);
1557 		memset(info, 0, (char *)inode - (char *)info);
1558 		spin_lock_init(&info->lock);
1559 		info->flags = flags & VM_NORESERVE;
1560 		INIT_LIST_HEAD(&info->swaplist);
1561 
1562 		switch (mode & S_IFMT) {
1563 		default:
1564 			inode->i_op = &shmem_special_inode_operations;
1565 			init_special_inode(inode, mode, dev);
1566 			break;
1567 		case S_IFREG:
1568 			inode->i_mapping->a_ops = &shmem_aops;
1569 			inode->i_op = &shmem_inode_operations;
1570 			inode->i_fop = &shmem_file_operations;
1571 			mpol_shared_policy_init(&info->policy,
1572 						 shmem_get_sbmpol(sbinfo));
1573 			break;
1574 		case S_IFDIR:
1575 			inc_nlink(inode);
1576 			/* Some things misbehave if size == 0 on a directory */
1577 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1578 			inode->i_op = &shmem_dir_inode_operations;
1579 			inode->i_fop = &simple_dir_operations;
1580 			break;
1581 		case S_IFLNK:
1582 			/*
1583 			 * Must not load anything in the rbtree,
1584 			 * mpol_free_shared_policy will not be called.
1585 			 */
1586 			mpol_shared_policy_init(&info->policy, NULL);
1587 			break;
1588 		}
1589 	} else
1590 		shmem_free_inode(sb);
1591 	return inode;
1592 }
1593 
1594 #ifdef CONFIG_TMPFS
1595 static const struct inode_operations shmem_symlink_inode_operations;
1596 static const struct inode_operations shmem_symlink_inline_operations;
1597 
1598 /*
1599  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1600  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1601  * below the loop driver, in the generic fashion that many filesystems support.
1602  */
1603 static int shmem_readpage(struct file *file, struct page *page)
1604 {
1605 	struct inode *inode = page->mapping->host;
1606 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1607 	unlock_page(page);
1608 	return error;
1609 }
1610 
1611 static int
1612 shmem_write_begin(struct file *file, struct address_space *mapping,
1613 			loff_t pos, unsigned len, unsigned flags,
1614 			struct page **pagep, void **fsdata)
1615 {
1616 	struct inode *inode = mapping->host;
1617 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1618 	*pagep = NULL;
1619 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1620 }
1621 
1622 static int
1623 shmem_write_end(struct file *file, struct address_space *mapping,
1624 			loff_t pos, unsigned len, unsigned copied,
1625 			struct page *page, void *fsdata)
1626 {
1627 	struct inode *inode = mapping->host;
1628 
1629 	if (pos + copied > inode->i_size)
1630 		i_size_write(inode, pos + copied);
1631 
1632 	unlock_page(page);
1633 	set_page_dirty(page);
1634 	page_cache_release(page);
1635 
1636 	return copied;
1637 }
1638 
1639 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1640 {
1641 	struct inode *inode = filp->f_path.dentry->d_inode;
1642 	struct address_space *mapping = inode->i_mapping;
1643 	unsigned long index, offset;
1644 	enum sgp_type sgp = SGP_READ;
1645 
1646 	/*
1647 	 * Might this read be for a stacking filesystem?  Then when reading
1648 	 * holes of a sparse file, we actually need to allocate those pages,
1649 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1650 	 */
1651 	if (segment_eq(get_fs(), KERNEL_DS))
1652 		sgp = SGP_DIRTY;
1653 
1654 	index = *ppos >> PAGE_CACHE_SHIFT;
1655 	offset = *ppos & ~PAGE_CACHE_MASK;
1656 
1657 	for (;;) {
1658 		struct page *page = NULL;
1659 		unsigned long end_index, nr, ret;
1660 		loff_t i_size = i_size_read(inode);
1661 
1662 		end_index = i_size >> PAGE_CACHE_SHIFT;
1663 		if (index > end_index)
1664 			break;
1665 		if (index == end_index) {
1666 			nr = i_size & ~PAGE_CACHE_MASK;
1667 			if (nr <= offset)
1668 				break;
1669 		}
1670 
1671 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1672 		if (desc->error) {
1673 			if (desc->error == -EINVAL)
1674 				desc->error = 0;
1675 			break;
1676 		}
1677 		if (page)
1678 			unlock_page(page);
1679 
1680 		/*
1681 		 * We must evaluate after, since reads (unlike writes)
1682 		 * are called without i_mutex protection against truncate
1683 		 */
1684 		nr = PAGE_CACHE_SIZE;
1685 		i_size = i_size_read(inode);
1686 		end_index = i_size >> PAGE_CACHE_SHIFT;
1687 		if (index == end_index) {
1688 			nr = i_size & ~PAGE_CACHE_MASK;
1689 			if (nr <= offset) {
1690 				if (page)
1691 					page_cache_release(page);
1692 				break;
1693 			}
1694 		}
1695 		nr -= offset;
1696 
1697 		if (page) {
1698 			/*
1699 			 * If users can be writing to this page using arbitrary
1700 			 * virtual addresses, take care about potential aliasing
1701 			 * before reading the page on the kernel side.
1702 			 */
1703 			if (mapping_writably_mapped(mapping))
1704 				flush_dcache_page(page);
1705 			/*
1706 			 * Mark the page accessed if we read the beginning.
1707 			 */
1708 			if (!offset)
1709 				mark_page_accessed(page);
1710 		} else {
1711 			page = ZERO_PAGE(0);
1712 			page_cache_get(page);
1713 		}
1714 
1715 		/*
1716 		 * Ok, we have the page, and it's up-to-date, so
1717 		 * now we can copy it to user space...
1718 		 *
1719 		 * The actor routine returns how many bytes were actually used..
1720 		 * NOTE! This may not be the same as how much of a user buffer
1721 		 * we filled up (we may be padding etc), so we can only update
1722 		 * "pos" here (the actor routine has to update the user buffer
1723 		 * pointers and the remaining count).
1724 		 */
1725 		ret = actor(desc, page, offset, nr);
1726 		offset += ret;
1727 		index += offset >> PAGE_CACHE_SHIFT;
1728 		offset &= ~PAGE_CACHE_MASK;
1729 
1730 		page_cache_release(page);
1731 		if (ret != nr || !desc->count)
1732 			break;
1733 
1734 		cond_resched();
1735 	}
1736 
1737 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1738 	file_accessed(filp);
1739 }
1740 
1741 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1742 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1743 {
1744 	struct file *filp = iocb->ki_filp;
1745 	ssize_t retval;
1746 	unsigned long seg;
1747 	size_t count;
1748 	loff_t *ppos = &iocb->ki_pos;
1749 
1750 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1751 	if (retval)
1752 		return retval;
1753 
1754 	for (seg = 0; seg < nr_segs; seg++) {
1755 		read_descriptor_t desc;
1756 
1757 		desc.written = 0;
1758 		desc.arg.buf = iov[seg].iov_base;
1759 		desc.count = iov[seg].iov_len;
1760 		if (desc.count == 0)
1761 			continue;
1762 		desc.error = 0;
1763 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1764 		retval += desc.written;
1765 		if (desc.error) {
1766 			retval = retval ?: desc.error;
1767 			break;
1768 		}
1769 		if (desc.count > 0)
1770 			break;
1771 	}
1772 	return retval;
1773 }
1774 
1775 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1776 {
1777 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1778 
1779 	buf->f_type = TMPFS_MAGIC;
1780 	buf->f_bsize = PAGE_CACHE_SIZE;
1781 	buf->f_namelen = NAME_MAX;
1782 	spin_lock(&sbinfo->stat_lock);
1783 	if (sbinfo->max_blocks) {
1784 		buf->f_blocks = sbinfo->max_blocks;
1785 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1786 	}
1787 	if (sbinfo->max_inodes) {
1788 		buf->f_files = sbinfo->max_inodes;
1789 		buf->f_ffree = sbinfo->free_inodes;
1790 	}
1791 	/* else leave those fields 0 like simple_statfs */
1792 	spin_unlock(&sbinfo->stat_lock);
1793 	return 0;
1794 }
1795 
1796 /*
1797  * File creation. Allocate an inode, and we're done..
1798  */
1799 static int
1800 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1801 {
1802 	struct inode *inode;
1803 	int error = -ENOSPC;
1804 
1805 	inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1806 	if (inode) {
1807 		error = security_inode_init_security(inode, dir, NULL, NULL,
1808 						     NULL);
1809 		if (error) {
1810 			if (error != -EOPNOTSUPP) {
1811 				iput(inode);
1812 				return error;
1813 			}
1814 		}
1815 		error = shmem_acl_init(inode, dir);
1816 		if (error) {
1817 			iput(inode);
1818 			return error;
1819 		}
1820 		if (dir->i_mode & S_ISGID) {
1821 			inode->i_gid = dir->i_gid;
1822 			if (S_ISDIR(mode))
1823 				inode->i_mode |= S_ISGID;
1824 		}
1825 		dir->i_size += BOGO_DIRENT_SIZE;
1826 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1827 		d_instantiate(dentry, inode);
1828 		dget(dentry); /* Extra count - pin the dentry in core */
1829 	}
1830 	return error;
1831 }
1832 
1833 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1834 {
1835 	int error;
1836 
1837 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1838 		return error;
1839 	inc_nlink(dir);
1840 	return 0;
1841 }
1842 
1843 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1844 		struct nameidata *nd)
1845 {
1846 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1847 }
1848 
1849 /*
1850  * Link a file..
1851  */
1852 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1853 {
1854 	struct inode *inode = old_dentry->d_inode;
1855 	int ret;
1856 
1857 	/*
1858 	 * No ordinary (disk based) filesystem counts links as inodes;
1859 	 * but each new link needs a new dentry, pinning lowmem, and
1860 	 * tmpfs dentries cannot be pruned until they are unlinked.
1861 	 */
1862 	ret = shmem_reserve_inode(inode->i_sb);
1863 	if (ret)
1864 		goto out;
1865 
1866 	dir->i_size += BOGO_DIRENT_SIZE;
1867 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1868 	inc_nlink(inode);
1869 	atomic_inc(&inode->i_count);	/* New dentry reference */
1870 	dget(dentry);		/* Extra pinning count for the created dentry */
1871 	d_instantiate(dentry, inode);
1872 out:
1873 	return ret;
1874 }
1875 
1876 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1877 {
1878 	struct inode *inode = dentry->d_inode;
1879 
1880 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1881 		shmem_free_inode(inode->i_sb);
1882 
1883 	dir->i_size -= BOGO_DIRENT_SIZE;
1884 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1885 	drop_nlink(inode);
1886 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1887 	return 0;
1888 }
1889 
1890 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1891 {
1892 	if (!simple_empty(dentry))
1893 		return -ENOTEMPTY;
1894 
1895 	drop_nlink(dentry->d_inode);
1896 	drop_nlink(dir);
1897 	return shmem_unlink(dir, dentry);
1898 }
1899 
1900 /*
1901  * The VFS layer already does all the dentry stuff for rename,
1902  * we just have to decrement the usage count for the target if
1903  * it exists so that the VFS layer correctly free's it when it
1904  * gets overwritten.
1905  */
1906 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1907 {
1908 	struct inode *inode = old_dentry->d_inode;
1909 	int they_are_dirs = S_ISDIR(inode->i_mode);
1910 
1911 	if (!simple_empty(new_dentry))
1912 		return -ENOTEMPTY;
1913 
1914 	if (new_dentry->d_inode) {
1915 		(void) shmem_unlink(new_dir, new_dentry);
1916 		if (they_are_dirs)
1917 			drop_nlink(old_dir);
1918 	} else if (they_are_dirs) {
1919 		drop_nlink(old_dir);
1920 		inc_nlink(new_dir);
1921 	}
1922 
1923 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1924 	new_dir->i_size += BOGO_DIRENT_SIZE;
1925 	old_dir->i_ctime = old_dir->i_mtime =
1926 	new_dir->i_ctime = new_dir->i_mtime =
1927 	inode->i_ctime = CURRENT_TIME;
1928 	return 0;
1929 }
1930 
1931 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1932 {
1933 	int error;
1934 	int len;
1935 	struct inode *inode;
1936 	struct page *page = NULL;
1937 	char *kaddr;
1938 	struct shmem_inode_info *info;
1939 
1940 	len = strlen(symname) + 1;
1941 	if (len > PAGE_CACHE_SIZE)
1942 		return -ENAMETOOLONG;
1943 
1944 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1945 	if (!inode)
1946 		return -ENOSPC;
1947 
1948 	error = security_inode_init_security(inode, dir, NULL, NULL,
1949 					     NULL);
1950 	if (error) {
1951 		if (error != -EOPNOTSUPP) {
1952 			iput(inode);
1953 			return error;
1954 		}
1955 		error = 0;
1956 	}
1957 
1958 	info = SHMEM_I(inode);
1959 	inode->i_size = len-1;
1960 	if (len <= (char *)inode - (char *)info) {
1961 		/* do it inline */
1962 		memcpy(info, symname, len);
1963 		inode->i_op = &shmem_symlink_inline_operations;
1964 	} else {
1965 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1966 		if (error) {
1967 			iput(inode);
1968 			return error;
1969 		}
1970 		unlock_page(page);
1971 		inode->i_mapping->a_ops = &shmem_aops;
1972 		inode->i_op = &shmem_symlink_inode_operations;
1973 		kaddr = kmap_atomic(page, KM_USER0);
1974 		memcpy(kaddr, symname, len);
1975 		kunmap_atomic(kaddr, KM_USER0);
1976 		set_page_dirty(page);
1977 		page_cache_release(page);
1978 	}
1979 	if (dir->i_mode & S_ISGID)
1980 		inode->i_gid = dir->i_gid;
1981 	dir->i_size += BOGO_DIRENT_SIZE;
1982 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1983 	d_instantiate(dentry, inode);
1984 	dget(dentry);
1985 	return 0;
1986 }
1987 
1988 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1989 {
1990 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1991 	return NULL;
1992 }
1993 
1994 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1995 {
1996 	struct page *page = NULL;
1997 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1998 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1999 	if (page)
2000 		unlock_page(page);
2001 	return page;
2002 }
2003 
2004 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2005 {
2006 	if (!IS_ERR(nd_get_link(nd))) {
2007 		struct page *page = cookie;
2008 		kunmap(page);
2009 		mark_page_accessed(page);
2010 		page_cache_release(page);
2011 	}
2012 }
2013 
2014 static const struct inode_operations shmem_symlink_inline_operations = {
2015 	.readlink	= generic_readlink,
2016 	.follow_link	= shmem_follow_link_inline,
2017 };
2018 
2019 static const struct inode_operations shmem_symlink_inode_operations = {
2020 	.truncate	= shmem_truncate,
2021 	.readlink	= generic_readlink,
2022 	.follow_link	= shmem_follow_link,
2023 	.put_link	= shmem_put_link,
2024 };
2025 
2026 #ifdef CONFIG_TMPFS_POSIX_ACL
2027 /*
2028  * Superblocks without xattr inode operations will get security.* xattr
2029  * support from the VFS "for free". As soon as we have any other xattrs
2030  * like ACLs, we also need to implement the security.* handlers at
2031  * filesystem level, though.
2032  */
2033 
2034 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2035 					size_t list_len, const char *name,
2036 					size_t name_len)
2037 {
2038 	return security_inode_listsecurity(inode, list, list_len);
2039 }
2040 
2041 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2042 				    void *buffer, size_t size)
2043 {
2044 	if (strcmp(name, "") == 0)
2045 		return -EINVAL;
2046 	return xattr_getsecurity(inode, name, buffer, size);
2047 }
2048 
2049 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2050 				    const void *value, size_t size, int flags)
2051 {
2052 	if (strcmp(name, "") == 0)
2053 		return -EINVAL;
2054 	return security_inode_setsecurity(inode, name, value, size, flags);
2055 }
2056 
2057 static struct xattr_handler shmem_xattr_security_handler = {
2058 	.prefix = XATTR_SECURITY_PREFIX,
2059 	.list   = shmem_xattr_security_list,
2060 	.get    = shmem_xattr_security_get,
2061 	.set    = shmem_xattr_security_set,
2062 };
2063 
2064 static struct xattr_handler *shmem_xattr_handlers[] = {
2065 	&shmem_xattr_acl_access_handler,
2066 	&shmem_xattr_acl_default_handler,
2067 	&shmem_xattr_security_handler,
2068 	NULL
2069 };
2070 #endif
2071 
2072 static struct dentry *shmem_get_parent(struct dentry *child)
2073 {
2074 	return ERR_PTR(-ESTALE);
2075 }
2076 
2077 static int shmem_match(struct inode *ino, void *vfh)
2078 {
2079 	__u32 *fh = vfh;
2080 	__u64 inum = fh[2];
2081 	inum = (inum << 32) | fh[1];
2082 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2083 }
2084 
2085 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2086 		struct fid *fid, int fh_len, int fh_type)
2087 {
2088 	struct inode *inode;
2089 	struct dentry *dentry = NULL;
2090 	u64 inum = fid->raw[2];
2091 	inum = (inum << 32) | fid->raw[1];
2092 
2093 	if (fh_len < 3)
2094 		return NULL;
2095 
2096 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2097 			shmem_match, fid->raw);
2098 	if (inode) {
2099 		dentry = d_find_alias(inode);
2100 		iput(inode);
2101 	}
2102 
2103 	return dentry;
2104 }
2105 
2106 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2107 				int connectable)
2108 {
2109 	struct inode *inode = dentry->d_inode;
2110 
2111 	if (*len < 3)
2112 		return 255;
2113 
2114 	if (hlist_unhashed(&inode->i_hash)) {
2115 		/* Unfortunately insert_inode_hash is not idempotent,
2116 		 * so as we hash inodes here rather than at creation
2117 		 * time, we need a lock to ensure we only try
2118 		 * to do it once
2119 		 */
2120 		static DEFINE_SPINLOCK(lock);
2121 		spin_lock(&lock);
2122 		if (hlist_unhashed(&inode->i_hash))
2123 			__insert_inode_hash(inode,
2124 					    inode->i_ino + inode->i_generation);
2125 		spin_unlock(&lock);
2126 	}
2127 
2128 	fh[0] = inode->i_generation;
2129 	fh[1] = inode->i_ino;
2130 	fh[2] = ((__u64)inode->i_ino) >> 32;
2131 
2132 	*len = 3;
2133 	return 1;
2134 }
2135 
2136 static const struct export_operations shmem_export_ops = {
2137 	.get_parent     = shmem_get_parent,
2138 	.encode_fh      = shmem_encode_fh,
2139 	.fh_to_dentry	= shmem_fh_to_dentry,
2140 };
2141 
2142 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2143 			       bool remount)
2144 {
2145 	char *this_char, *value, *rest;
2146 
2147 	while (options != NULL) {
2148 		this_char = options;
2149 		for (;;) {
2150 			/*
2151 			 * NUL-terminate this option: unfortunately,
2152 			 * mount options form a comma-separated list,
2153 			 * but mpol's nodelist may also contain commas.
2154 			 */
2155 			options = strchr(options, ',');
2156 			if (options == NULL)
2157 				break;
2158 			options++;
2159 			if (!isdigit(*options)) {
2160 				options[-1] = '\0';
2161 				break;
2162 			}
2163 		}
2164 		if (!*this_char)
2165 			continue;
2166 		if ((value = strchr(this_char,'=')) != NULL) {
2167 			*value++ = 0;
2168 		} else {
2169 			printk(KERN_ERR
2170 			    "tmpfs: No value for mount option '%s'\n",
2171 			    this_char);
2172 			return 1;
2173 		}
2174 
2175 		if (!strcmp(this_char,"size")) {
2176 			unsigned long long size;
2177 			size = memparse(value,&rest);
2178 			if (*rest == '%') {
2179 				size <<= PAGE_SHIFT;
2180 				size *= totalram_pages;
2181 				do_div(size, 100);
2182 				rest++;
2183 			}
2184 			if (*rest)
2185 				goto bad_val;
2186 			sbinfo->max_blocks =
2187 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2188 		} else if (!strcmp(this_char,"nr_blocks")) {
2189 			sbinfo->max_blocks = memparse(value, &rest);
2190 			if (*rest)
2191 				goto bad_val;
2192 		} else if (!strcmp(this_char,"nr_inodes")) {
2193 			sbinfo->max_inodes = memparse(value, &rest);
2194 			if (*rest)
2195 				goto bad_val;
2196 		} else if (!strcmp(this_char,"mode")) {
2197 			if (remount)
2198 				continue;
2199 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2200 			if (*rest)
2201 				goto bad_val;
2202 		} else if (!strcmp(this_char,"uid")) {
2203 			if (remount)
2204 				continue;
2205 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2206 			if (*rest)
2207 				goto bad_val;
2208 		} else if (!strcmp(this_char,"gid")) {
2209 			if (remount)
2210 				continue;
2211 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2212 			if (*rest)
2213 				goto bad_val;
2214 		} else if (!strcmp(this_char,"mpol")) {
2215 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2216 				goto bad_val;
2217 		} else {
2218 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2219 			       this_char);
2220 			return 1;
2221 		}
2222 	}
2223 	return 0;
2224 
2225 bad_val:
2226 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2227 	       value, this_char);
2228 	return 1;
2229 
2230 }
2231 
2232 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2233 {
2234 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2235 	struct shmem_sb_info config = *sbinfo;
2236 	unsigned long blocks;
2237 	unsigned long inodes;
2238 	int error = -EINVAL;
2239 
2240 	if (shmem_parse_options(data, &config, true))
2241 		return error;
2242 
2243 	spin_lock(&sbinfo->stat_lock);
2244 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2245 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2246 	if (config.max_blocks < blocks)
2247 		goto out;
2248 	if (config.max_inodes < inodes)
2249 		goto out;
2250 	/*
2251 	 * Those tests also disallow limited->unlimited while any are in
2252 	 * use, so i_blocks will always be zero when max_blocks is zero;
2253 	 * but we must separately disallow unlimited->limited, because
2254 	 * in that case we have no record of how much is already in use.
2255 	 */
2256 	if (config.max_blocks && !sbinfo->max_blocks)
2257 		goto out;
2258 	if (config.max_inodes && !sbinfo->max_inodes)
2259 		goto out;
2260 
2261 	error = 0;
2262 	sbinfo->max_blocks  = config.max_blocks;
2263 	sbinfo->free_blocks = config.max_blocks - blocks;
2264 	sbinfo->max_inodes  = config.max_inodes;
2265 	sbinfo->free_inodes = config.max_inodes - inodes;
2266 
2267 	mpol_put(sbinfo->mpol);
2268 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2269 out:
2270 	spin_unlock(&sbinfo->stat_lock);
2271 	return error;
2272 }
2273 
2274 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2275 {
2276 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2277 
2278 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2279 		seq_printf(seq, ",size=%luk",
2280 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2281 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2282 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2283 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2284 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2285 	if (sbinfo->uid != 0)
2286 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2287 	if (sbinfo->gid != 0)
2288 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2289 	shmem_show_mpol(seq, sbinfo->mpol);
2290 	return 0;
2291 }
2292 #endif /* CONFIG_TMPFS */
2293 
2294 static void shmem_put_super(struct super_block *sb)
2295 {
2296 	kfree(sb->s_fs_info);
2297 	sb->s_fs_info = NULL;
2298 }
2299 
2300 static int shmem_fill_super(struct super_block *sb,
2301 			    void *data, int silent)
2302 {
2303 	struct inode *inode;
2304 	struct dentry *root;
2305 	struct shmem_sb_info *sbinfo;
2306 	int err = -ENOMEM;
2307 
2308 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2309 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2310 				L1_CACHE_BYTES), GFP_KERNEL);
2311 	if (!sbinfo)
2312 		return -ENOMEM;
2313 
2314 	sbinfo->max_blocks = 0;
2315 	sbinfo->max_inodes = 0;
2316 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2317 	sbinfo->uid = current_fsuid();
2318 	sbinfo->gid = current_fsgid();
2319 	sbinfo->mpol = NULL;
2320 	sb->s_fs_info = sbinfo;
2321 
2322 #ifdef CONFIG_TMPFS
2323 	/*
2324 	 * Per default we only allow half of the physical ram per
2325 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2326 	 * but the internal instance is left unlimited.
2327 	 */
2328 	if (!(sb->s_flags & MS_NOUSER)) {
2329 		sbinfo->max_blocks = shmem_default_max_blocks();
2330 		sbinfo->max_inodes = shmem_default_max_inodes();
2331 		if (shmem_parse_options(data, sbinfo, false)) {
2332 			err = -EINVAL;
2333 			goto failed;
2334 		}
2335 	}
2336 	sb->s_export_op = &shmem_export_ops;
2337 #else
2338 	sb->s_flags |= MS_NOUSER;
2339 #endif
2340 
2341 	spin_lock_init(&sbinfo->stat_lock);
2342 	sbinfo->free_blocks = sbinfo->max_blocks;
2343 	sbinfo->free_inodes = sbinfo->max_inodes;
2344 
2345 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2346 	sb->s_blocksize = PAGE_CACHE_SIZE;
2347 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2348 	sb->s_magic = TMPFS_MAGIC;
2349 	sb->s_op = &shmem_ops;
2350 	sb->s_time_gran = 1;
2351 #ifdef CONFIG_TMPFS_POSIX_ACL
2352 	sb->s_xattr = shmem_xattr_handlers;
2353 	sb->s_flags |= MS_POSIXACL;
2354 #endif
2355 
2356 	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2357 	if (!inode)
2358 		goto failed;
2359 	inode->i_uid = sbinfo->uid;
2360 	inode->i_gid = sbinfo->gid;
2361 	root = d_alloc_root(inode);
2362 	if (!root)
2363 		goto failed_iput;
2364 	sb->s_root = root;
2365 	return 0;
2366 
2367 failed_iput:
2368 	iput(inode);
2369 failed:
2370 	shmem_put_super(sb);
2371 	return err;
2372 }
2373 
2374 static struct kmem_cache *shmem_inode_cachep;
2375 
2376 static struct inode *shmem_alloc_inode(struct super_block *sb)
2377 {
2378 	struct shmem_inode_info *p;
2379 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2380 	if (!p)
2381 		return NULL;
2382 	return &p->vfs_inode;
2383 }
2384 
2385 static void shmem_destroy_inode(struct inode *inode)
2386 {
2387 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2388 		/* only struct inode is valid if it's an inline symlink */
2389 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2390 	}
2391 	shmem_acl_destroy_inode(inode);
2392 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2393 }
2394 
2395 static void init_once(void *foo)
2396 {
2397 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2398 
2399 	inode_init_once(&p->vfs_inode);
2400 #ifdef CONFIG_TMPFS_POSIX_ACL
2401 	p->i_acl = NULL;
2402 	p->i_default_acl = NULL;
2403 #endif
2404 }
2405 
2406 static int init_inodecache(void)
2407 {
2408 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2409 				sizeof(struct shmem_inode_info),
2410 				0, SLAB_PANIC, init_once);
2411 	return 0;
2412 }
2413 
2414 static void destroy_inodecache(void)
2415 {
2416 	kmem_cache_destroy(shmem_inode_cachep);
2417 }
2418 
2419 static const struct address_space_operations shmem_aops = {
2420 	.writepage	= shmem_writepage,
2421 	.set_page_dirty	= __set_page_dirty_no_writeback,
2422 #ifdef CONFIG_TMPFS
2423 	.readpage	= shmem_readpage,
2424 	.write_begin	= shmem_write_begin,
2425 	.write_end	= shmem_write_end,
2426 #endif
2427 	.migratepage	= migrate_page,
2428 };
2429 
2430 static const struct file_operations shmem_file_operations = {
2431 	.mmap		= shmem_mmap,
2432 #ifdef CONFIG_TMPFS
2433 	.llseek		= generic_file_llseek,
2434 	.read		= do_sync_read,
2435 	.write		= do_sync_write,
2436 	.aio_read	= shmem_file_aio_read,
2437 	.aio_write	= generic_file_aio_write,
2438 	.fsync		= simple_sync_file,
2439 	.splice_read	= generic_file_splice_read,
2440 	.splice_write	= generic_file_splice_write,
2441 #endif
2442 };
2443 
2444 static const struct inode_operations shmem_inode_operations = {
2445 	.truncate	= shmem_truncate,
2446 	.setattr	= shmem_notify_change,
2447 	.truncate_range	= shmem_truncate_range,
2448 #ifdef CONFIG_TMPFS_POSIX_ACL
2449 	.setxattr	= generic_setxattr,
2450 	.getxattr	= generic_getxattr,
2451 	.listxattr	= generic_listxattr,
2452 	.removexattr	= generic_removexattr,
2453 	.permission	= shmem_permission,
2454 #endif
2455 
2456 };
2457 
2458 static const struct inode_operations shmem_dir_inode_operations = {
2459 #ifdef CONFIG_TMPFS
2460 	.create		= shmem_create,
2461 	.lookup		= simple_lookup,
2462 	.link		= shmem_link,
2463 	.unlink		= shmem_unlink,
2464 	.symlink	= shmem_symlink,
2465 	.mkdir		= shmem_mkdir,
2466 	.rmdir		= shmem_rmdir,
2467 	.mknod		= shmem_mknod,
2468 	.rename		= shmem_rename,
2469 #endif
2470 #ifdef CONFIG_TMPFS_POSIX_ACL
2471 	.setattr	= shmem_notify_change,
2472 	.setxattr	= generic_setxattr,
2473 	.getxattr	= generic_getxattr,
2474 	.listxattr	= generic_listxattr,
2475 	.removexattr	= generic_removexattr,
2476 	.permission	= shmem_permission,
2477 #endif
2478 };
2479 
2480 static const struct inode_operations shmem_special_inode_operations = {
2481 #ifdef CONFIG_TMPFS_POSIX_ACL
2482 	.setattr	= shmem_notify_change,
2483 	.setxattr	= generic_setxattr,
2484 	.getxattr	= generic_getxattr,
2485 	.listxattr	= generic_listxattr,
2486 	.removexattr	= generic_removexattr,
2487 	.permission	= shmem_permission,
2488 #endif
2489 };
2490 
2491 static const struct super_operations shmem_ops = {
2492 	.alloc_inode	= shmem_alloc_inode,
2493 	.destroy_inode	= shmem_destroy_inode,
2494 #ifdef CONFIG_TMPFS
2495 	.statfs		= shmem_statfs,
2496 	.remount_fs	= shmem_remount_fs,
2497 	.show_options	= shmem_show_options,
2498 #endif
2499 	.delete_inode	= shmem_delete_inode,
2500 	.drop_inode	= generic_delete_inode,
2501 	.put_super	= shmem_put_super,
2502 };
2503 
2504 static struct vm_operations_struct shmem_vm_ops = {
2505 	.fault		= shmem_fault,
2506 #ifdef CONFIG_NUMA
2507 	.set_policy     = shmem_set_policy,
2508 	.get_policy     = shmem_get_policy,
2509 #endif
2510 };
2511 
2512 
2513 static int shmem_get_sb(struct file_system_type *fs_type,
2514 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2515 {
2516 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2517 }
2518 
2519 static struct file_system_type tmpfs_fs_type = {
2520 	.owner		= THIS_MODULE,
2521 	.name		= "tmpfs",
2522 	.get_sb		= shmem_get_sb,
2523 	.kill_sb	= kill_litter_super,
2524 };
2525 
2526 static int __init init_tmpfs(void)
2527 {
2528 	int error;
2529 
2530 	error = bdi_init(&shmem_backing_dev_info);
2531 	if (error)
2532 		goto out4;
2533 
2534 	error = init_inodecache();
2535 	if (error)
2536 		goto out3;
2537 
2538 	error = register_filesystem(&tmpfs_fs_type);
2539 	if (error) {
2540 		printk(KERN_ERR "Could not register tmpfs\n");
2541 		goto out2;
2542 	}
2543 
2544 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2545 				tmpfs_fs_type.name, NULL);
2546 	if (IS_ERR(shm_mnt)) {
2547 		error = PTR_ERR(shm_mnt);
2548 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2549 		goto out1;
2550 	}
2551 	return 0;
2552 
2553 out1:
2554 	unregister_filesystem(&tmpfs_fs_type);
2555 out2:
2556 	destroy_inodecache();
2557 out3:
2558 	bdi_destroy(&shmem_backing_dev_info);
2559 out4:
2560 	shm_mnt = ERR_PTR(error);
2561 	return error;
2562 }
2563 
2564 #else /* !CONFIG_SHMEM */
2565 
2566 /*
2567  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2568  *
2569  * This is intended for small system where the benefits of the full
2570  * shmem code (swap-backed and resource-limited) are outweighed by
2571  * their complexity. On systems without swap this code should be
2572  * effectively equivalent, but much lighter weight.
2573  */
2574 
2575 #include <linux/ramfs.h>
2576 
2577 static struct file_system_type tmpfs_fs_type = {
2578 	.name		= "tmpfs",
2579 	.get_sb		= ramfs_get_sb,
2580 	.kill_sb	= kill_litter_super,
2581 };
2582 
2583 static int __init init_tmpfs(void)
2584 {
2585 	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2586 
2587 	shm_mnt = kern_mount(&tmpfs_fs_type);
2588 	BUG_ON(IS_ERR(shm_mnt));
2589 
2590 	return 0;
2591 }
2592 
2593 int shmem_unuse(swp_entry_t entry, struct page *page)
2594 {
2595 	return 0;
2596 }
2597 
2598 #define shmem_vm_ops				generic_file_vm_ops
2599 #define shmem_file_operations			ramfs_file_operations
2600 #define shmem_get_inode(sb, mode, dev, flags)	ramfs_get_inode(sb, mode, dev)
2601 #define shmem_acct_size(flags, size)		0
2602 #define shmem_unacct_size(flags, size)		do {} while (0)
2603 #define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2604 
2605 #endif /* CONFIG_SHMEM */
2606 
2607 /* common code */
2608 
2609 /**
2610  * shmem_file_setup - get an unlinked file living in tmpfs
2611  * @name: name for dentry (to be seen in /proc/<pid>/maps
2612  * @size: size to be set for the file
2613  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2614  */
2615 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2616 {
2617 	int error;
2618 	struct file *file;
2619 	struct inode *inode;
2620 	struct dentry *dentry, *root;
2621 	struct qstr this;
2622 
2623 	if (IS_ERR(shm_mnt))
2624 		return (void *)shm_mnt;
2625 
2626 	if (size < 0 || size > SHMEM_MAX_BYTES)
2627 		return ERR_PTR(-EINVAL);
2628 
2629 	if (shmem_acct_size(flags, size))
2630 		return ERR_PTR(-ENOMEM);
2631 
2632 	error = -ENOMEM;
2633 	this.name = name;
2634 	this.len = strlen(name);
2635 	this.hash = 0; /* will go */
2636 	root = shm_mnt->mnt_root;
2637 	dentry = d_alloc(root, &this);
2638 	if (!dentry)
2639 		goto put_memory;
2640 
2641 	error = -ENFILE;
2642 	file = get_empty_filp();
2643 	if (!file)
2644 		goto put_dentry;
2645 
2646 	error = -ENOSPC;
2647 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2648 	if (!inode)
2649 		goto close_file;
2650 
2651 	d_instantiate(dentry, inode);
2652 	inode->i_size = size;
2653 	inode->i_nlink = 0;	/* It is unlinked */
2654 	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2655 		  &shmem_file_operations);
2656 
2657 #ifndef CONFIG_MMU
2658 	error = ramfs_nommu_expand_for_mapping(inode, size);
2659 	if (error)
2660 		goto close_file;
2661 #endif
2662 	ima_counts_get(file);
2663 	return file;
2664 
2665 close_file:
2666 	put_filp(file);
2667 put_dentry:
2668 	dput(dentry);
2669 put_memory:
2670 	shmem_unacct_size(flags, size);
2671 	return ERR_PTR(error);
2672 }
2673 EXPORT_SYMBOL_GPL(shmem_file_setup);
2674 
2675 /**
2676  * shmem_zero_setup - setup a shared anonymous mapping
2677  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2678  */
2679 int shmem_zero_setup(struct vm_area_struct *vma)
2680 {
2681 	struct file *file;
2682 	loff_t size = vma->vm_end - vma->vm_start;
2683 
2684 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2685 	if (IS_ERR(file))
2686 		return PTR_ERR(file);
2687 
2688 	if (vma->vm_file)
2689 		fput(vma->vm_file);
2690 	vma->vm_file = file;
2691 	vma->vm_ops = &shmem_vm_ops;
2692 	return 0;
2693 }
2694 
2695 module_init(init_tmpfs)
2696