1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * tiny-shmem: 18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 19 * 20 * This file is released under the GPL. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/swap.h> 32 #include <linux/ima.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/generic_acl.h> 46 #include <linux/mman.h> 47 #include <linux/string.h> 48 #include <linux/slab.h> 49 #include <linux/backing-dev.h> 50 #include <linux/shmem_fs.h> 51 #include <linux/writeback.h> 52 #include <linux/vfs.h> 53 #include <linux/blkdev.h> 54 #include <linux/security.h> 55 #include <linux/swapops.h> 56 #include <linux/mempolicy.h> 57 #include <linux/namei.h> 58 #include <linux/ctype.h> 59 #include <linux/migrate.h> 60 #include <linux/highmem.h> 61 #include <linux/seq_file.h> 62 #include <linux/magic.h> 63 64 #include <asm/uaccess.h> 65 #include <asm/div64.h> 66 #include <asm/pgtable.h> 67 68 /* 69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of 70 * its triple-indirect swap vector - see illustration at shmem_swp_entry(). 71 * 72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel, 73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum 74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel, 75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout. 76 * 77 * We use / and * instead of shifts in the definitions below, so that the swap 78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE. 79 */ 80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 82 83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT) 85 86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE) 87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT)) 88 89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 93 #define SHMEM_PAGEIN VM_READ 94 #define SHMEM_TRUNCATE VM_WRITE 95 96 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 97 #define LATENCY_LIMIT 64 98 99 /* Pretend that each entry is of this size in directory's i_size */ 100 #define BOGO_DIRENT_SIZE 20 101 102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 103 enum sgp_type { 104 SGP_READ, /* don't exceed i_size, don't allocate page */ 105 SGP_CACHE, /* don't exceed i_size, may allocate page */ 106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 107 SGP_WRITE, /* may exceed i_size, may allocate page */ 108 }; 109 110 #ifdef CONFIG_TMPFS 111 static unsigned long shmem_default_max_blocks(void) 112 { 113 return totalram_pages / 2; 114 } 115 116 static unsigned long shmem_default_max_inodes(void) 117 { 118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 119 } 120 #endif 121 122 static int shmem_getpage(struct inode *inode, unsigned long idx, 123 struct page **pagep, enum sgp_type sgp, int *type); 124 125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 126 { 127 /* 128 * The above definition of ENTRIES_PER_PAGE, and the use of 129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 130 * might be reconsidered if it ever diverges from PAGE_SIZE. 131 * 132 * Mobility flags are masked out as swap vectors cannot move 133 */ 134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, 135 PAGE_CACHE_SHIFT-PAGE_SHIFT); 136 } 137 138 static inline void shmem_dir_free(struct page *page) 139 { 140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 141 } 142 143 static struct page **shmem_dir_map(struct page *page) 144 { 145 return (struct page **)kmap_atomic(page, KM_USER0); 146 } 147 148 static inline void shmem_dir_unmap(struct page **dir) 149 { 150 kunmap_atomic(dir, KM_USER0); 151 } 152 153 static swp_entry_t *shmem_swp_map(struct page *page) 154 { 155 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 156 } 157 158 static inline void shmem_swp_balance_unmap(void) 159 { 160 /* 161 * When passing a pointer to an i_direct entry, to code which 162 * also handles indirect entries and so will shmem_swp_unmap, 163 * we must arrange for the preempt count to remain in balance. 164 * What kmap_atomic of a lowmem page does depends on config 165 * and architecture, so pretend to kmap_atomic some lowmem page. 166 */ 167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 168 } 169 170 static inline void shmem_swp_unmap(swp_entry_t *entry) 171 { 172 kunmap_atomic(entry, KM_USER1); 173 } 174 175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 176 { 177 return sb->s_fs_info; 178 } 179 180 /* 181 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 182 * for shared memory and for shared anonymous (/dev/zero) mappings 183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 184 * consistent with the pre-accounting of private mappings ... 185 */ 186 static inline int shmem_acct_size(unsigned long flags, loff_t size) 187 { 188 return (flags & VM_NORESERVE) ? 189 0 : security_vm_enough_memory_kern(VM_ACCT(size)); 190 } 191 192 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 193 { 194 if (!(flags & VM_NORESERVE)) 195 vm_unacct_memory(VM_ACCT(size)); 196 } 197 198 /* 199 * ... whereas tmpfs objects are accounted incrementally as 200 * pages are allocated, in order to allow huge sparse files. 201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 203 */ 204 static inline int shmem_acct_block(unsigned long flags) 205 { 206 return (flags & VM_NORESERVE) ? 207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0; 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 214 } 215 216 static const struct super_operations shmem_ops; 217 static const struct address_space_operations shmem_aops; 218 static const struct file_operations shmem_file_operations; 219 static const struct inode_operations shmem_inode_operations; 220 static const struct inode_operations shmem_dir_inode_operations; 221 static const struct inode_operations shmem_special_inode_operations; 222 static struct vm_operations_struct shmem_vm_ops; 223 224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 225 .ra_pages = 0, /* No readahead */ 226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 227 .unplug_io_fn = default_unplug_io_fn, 228 }; 229 230 static LIST_HEAD(shmem_swaplist); 231 static DEFINE_MUTEX(shmem_swaplist_mutex); 232 233 static void shmem_free_blocks(struct inode *inode, long pages) 234 { 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 if (sbinfo->max_blocks) { 237 spin_lock(&sbinfo->stat_lock); 238 sbinfo->free_blocks += pages; 239 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 240 spin_unlock(&sbinfo->stat_lock); 241 } 242 } 243 244 static int shmem_reserve_inode(struct super_block *sb) 245 { 246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 247 if (sbinfo->max_inodes) { 248 spin_lock(&sbinfo->stat_lock); 249 if (!sbinfo->free_inodes) { 250 spin_unlock(&sbinfo->stat_lock); 251 return -ENOSPC; 252 } 253 sbinfo->free_inodes--; 254 spin_unlock(&sbinfo->stat_lock); 255 } 256 return 0; 257 } 258 259 static void shmem_free_inode(struct super_block *sb) 260 { 261 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 262 if (sbinfo->max_inodes) { 263 spin_lock(&sbinfo->stat_lock); 264 sbinfo->free_inodes++; 265 spin_unlock(&sbinfo->stat_lock); 266 } 267 } 268 269 /** 270 * shmem_recalc_inode - recalculate the size of an inode 271 * @inode: inode to recalc 272 * 273 * We have to calculate the free blocks since the mm can drop 274 * undirtied hole pages behind our back. 275 * 276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 278 * 279 * It has to be called with the spinlock held. 280 */ 281 static void shmem_recalc_inode(struct inode *inode) 282 { 283 struct shmem_inode_info *info = SHMEM_I(inode); 284 long freed; 285 286 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 287 if (freed > 0) { 288 info->alloced -= freed; 289 shmem_unacct_blocks(info->flags, freed); 290 shmem_free_blocks(inode, freed); 291 } 292 } 293 294 /** 295 * shmem_swp_entry - find the swap vector position in the info structure 296 * @info: info structure for the inode 297 * @index: index of the page to find 298 * @page: optional page to add to the structure. Has to be preset to 299 * all zeros 300 * 301 * If there is no space allocated yet it will return NULL when 302 * page is NULL, else it will use the page for the needed block, 303 * setting it to NULL on return to indicate that it has been used. 304 * 305 * The swap vector is organized the following way: 306 * 307 * There are SHMEM_NR_DIRECT entries directly stored in the 308 * shmem_inode_info structure. So small files do not need an addional 309 * allocation. 310 * 311 * For pages with index > SHMEM_NR_DIRECT there is the pointer 312 * i_indirect which points to a page which holds in the first half 313 * doubly indirect blocks, in the second half triple indirect blocks: 314 * 315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 316 * following layout (for SHMEM_NR_DIRECT == 16): 317 * 318 * i_indirect -> dir --> 16-19 319 * | +-> 20-23 320 * | 321 * +-->dir2 --> 24-27 322 * | +-> 28-31 323 * | +-> 32-35 324 * | +-> 36-39 325 * | 326 * +-->dir3 --> 40-43 327 * +-> 44-47 328 * +-> 48-51 329 * +-> 52-55 330 */ 331 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 332 { 333 unsigned long offset; 334 struct page **dir; 335 struct page *subdir; 336 337 if (index < SHMEM_NR_DIRECT) { 338 shmem_swp_balance_unmap(); 339 return info->i_direct+index; 340 } 341 if (!info->i_indirect) { 342 if (page) { 343 info->i_indirect = *page; 344 *page = NULL; 345 } 346 return NULL; /* need another page */ 347 } 348 349 index -= SHMEM_NR_DIRECT; 350 offset = index % ENTRIES_PER_PAGE; 351 index /= ENTRIES_PER_PAGE; 352 dir = shmem_dir_map(info->i_indirect); 353 354 if (index >= ENTRIES_PER_PAGE/2) { 355 index -= ENTRIES_PER_PAGE/2; 356 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 357 index %= ENTRIES_PER_PAGE; 358 subdir = *dir; 359 if (!subdir) { 360 if (page) { 361 *dir = *page; 362 *page = NULL; 363 } 364 shmem_dir_unmap(dir); 365 return NULL; /* need another page */ 366 } 367 shmem_dir_unmap(dir); 368 dir = shmem_dir_map(subdir); 369 } 370 371 dir += index; 372 subdir = *dir; 373 if (!subdir) { 374 if (!page || !(subdir = *page)) { 375 shmem_dir_unmap(dir); 376 return NULL; /* need a page */ 377 } 378 *dir = subdir; 379 *page = NULL; 380 } 381 shmem_dir_unmap(dir); 382 return shmem_swp_map(subdir) + offset; 383 } 384 385 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 386 { 387 long incdec = value? 1: -1; 388 389 entry->val = value; 390 info->swapped += incdec; 391 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 392 struct page *page = kmap_atomic_to_page(entry); 393 set_page_private(page, page_private(page) + incdec); 394 } 395 } 396 397 /** 398 * shmem_swp_alloc - get the position of the swap entry for the page. 399 * @info: info structure for the inode 400 * @index: index of the page to find 401 * @sgp: check and recheck i_size? skip allocation? 402 * 403 * If the entry does not exist, allocate it. 404 */ 405 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 406 { 407 struct inode *inode = &info->vfs_inode; 408 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 409 struct page *page = NULL; 410 swp_entry_t *entry; 411 412 if (sgp != SGP_WRITE && 413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 414 return ERR_PTR(-EINVAL); 415 416 while (!(entry = shmem_swp_entry(info, index, &page))) { 417 if (sgp == SGP_READ) 418 return shmem_swp_map(ZERO_PAGE(0)); 419 /* 420 * Test free_blocks against 1 not 0, since we have 1 data 421 * page (and perhaps indirect index pages) yet to allocate: 422 * a waste to allocate index if we cannot allocate data. 423 */ 424 if (sbinfo->max_blocks) { 425 spin_lock(&sbinfo->stat_lock); 426 if (sbinfo->free_blocks <= 1) { 427 spin_unlock(&sbinfo->stat_lock); 428 return ERR_PTR(-ENOSPC); 429 } 430 sbinfo->free_blocks--; 431 inode->i_blocks += BLOCKS_PER_PAGE; 432 spin_unlock(&sbinfo->stat_lock); 433 } 434 435 spin_unlock(&info->lock); 436 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 437 if (page) 438 set_page_private(page, 0); 439 spin_lock(&info->lock); 440 441 if (!page) { 442 shmem_free_blocks(inode, 1); 443 return ERR_PTR(-ENOMEM); 444 } 445 if (sgp != SGP_WRITE && 446 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 447 entry = ERR_PTR(-EINVAL); 448 break; 449 } 450 if (info->next_index <= index) 451 info->next_index = index + 1; 452 } 453 if (page) { 454 /* another task gave its page, or truncated the file */ 455 shmem_free_blocks(inode, 1); 456 shmem_dir_free(page); 457 } 458 if (info->next_index <= index && !IS_ERR(entry)) 459 info->next_index = index + 1; 460 return entry; 461 } 462 463 /** 464 * shmem_free_swp - free some swap entries in a directory 465 * @dir: pointer to the directory 466 * @edir: pointer after last entry of the directory 467 * @punch_lock: pointer to spinlock when needed for the holepunch case 468 */ 469 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 470 spinlock_t *punch_lock) 471 { 472 spinlock_t *punch_unlock = NULL; 473 swp_entry_t *ptr; 474 int freed = 0; 475 476 for (ptr = dir; ptr < edir; ptr++) { 477 if (ptr->val) { 478 if (unlikely(punch_lock)) { 479 punch_unlock = punch_lock; 480 punch_lock = NULL; 481 spin_lock(punch_unlock); 482 if (!ptr->val) 483 continue; 484 } 485 free_swap_and_cache(*ptr); 486 *ptr = (swp_entry_t){0}; 487 freed++; 488 } 489 } 490 if (punch_unlock) 491 spin_unlock(punch_unlock); 492 return freed; 493 } 494 495 static int shmem_map_and_free_swp(struct page *subdir, int offset, 496 int limit, struct page ***dir, spinlock_t *punch_lock) 497 { 498 swp_entry_t *ptr; 499 int freed = 0; 500 501 ptr = shmem_swp_map(subdir); 502 for (; offset < limit; offset += LATENCY_LIMIT) { 503 int size = limit - offset; 504 if (size > LATENCY_LIMIT) 505 size = LATENCY_LIMIT; 506 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 507 punch_lock); 508 if (need_resched()) { 509 shmem_swp_unmap(ptr); 510 if (*dir) { 511 shmem_dir_unmap(*dir); 512 *dir = NULL; 513 } 514 cond_resched(); 515 ptr = shmem_swp_map(subdir); 516 } 517 } 518 shmem_swp_unmap(ptr); 519 return freed; 520 } 521 522 static void shmem_free_pages(struct list_head *next) 523 { 524 struct page *page; 525 int freed = 0; 526 527 do { 528 page = container_of(next, struct page, lru); 529 next = next->next; 530 shmem_dir_free(page); 531 freed++; 532 if (freed >= LATENCY_LIMIT) { 533 cond_resched(); 534 freed = 0; 535 } 536 } while (next); 537 } 538 539 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 540 { 541 struct shmem_inode_info *info = SHMEM_I(inode); 542 unsigned long idx; 543 unsigned long size; 544 unsigned long limit; 545 unsigned long stage; 546 unsigned long diroff; 547 struct page **dir; 548 struct page *topdir; 549 struct page *middir; 550 struct page *subdir; 551 swp_entry_t *ptr; 552 LIST_HEAD(pages_to_free); 553 long nr_pages_to_free = 0; 554 long nr_swaps_freed = 0; 555 int offset; 556 int freed; 557 int punch_hole; 558 spinlock_t *needs_lock; 559 spinlock_t *punch_lock; 560 unsigned long upper_limit; 561 562 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 563 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 564 if (idx >= info->next_index) 565 return; 566 567 spin_lock(&info->lock); 568 info->flags |= SHMEM_TRUNCATE; 569 if (likely(end == (loff_t) -1)) { 570 limit = info->next_index; 571 upper_limit = SHMEM_MAX_INDEX; 572 info->next_index = idx; 573 needs_lock = NULL; 574 punch_hole = 0; 575 } else { 576 if (end + 1 >= inode->i_size) { /* we may free a little more */ 577 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 578 PAGE_CACHE_SHIFT; 579 upper_limit = SHMEM_MAX_INDEX; 580 } else { 581 limit = (end + 1) >> PAGE_CACHE_SHIFT; 582 upper_limit = limit; 583 } 584 needs_lock = &info->lock; 585 punch_hole = 1; 586 } 587 588 topdir = info->i_indirect; 589 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 590 info->i_indirect = NULL; 591 nr_pages_to_free++; 592 list_add(&topdir->lru, &pages_to_free); 593 } 594 spin_unlock(&info->lock); 595 596 if (info->swapped && idx < SHMEM_NR_DIRECT) { 597 ptr = info->i_direct; 598 size = limit; 599 if (size > SHMEM_NR_DIRECT) 600 size = SHMEM_NR_DIRECT; 601 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 602 } 603 604 /* 605 * If there are no indirect blocks or we are punching a hole 606 * below indirect blocks, nothing to be done. 607 */ 608 if (!topdir || limit <= SHMEM_NR_DIRECT) 609 goto done2; 610 611 /* 612 * The truncation case has already dropped info->lock, and we're safe 613 * because i_size and next_index have already been lowered, preventing 614 * access beyond. But in the punch_hole case, we still need to take 615 * the lock when updating the swap directory, because there might be 616 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 617 * shmem_writepage. However, whenever we find we can remove a whole 618 * directory page (not at the misaligned start or end of the range), 619 * we first NULLify its pointer in the level above, and then have no 620 * need to take the lock when updating its contents: needs_lock and 621 * punch_lock (either pointing to info->lock or NULL) manage this. 622 */ 623 624 upper_limit -= SHMEM_NR_DIRECT; 625 limit -= SHMEM_NR_DIRECT; 626 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 627 offset = idx % ENTRIES_PER_PAGE; 628 idx -= offset; 629 630 dir = shmem_dir_map(topdir); 631 stage = ENTRIES_PER_PAGEPAGE/2; 632 if (idx < ENTRIES_PER_PAGEPAGE/2) { 633 middir = topdir; 634 diroff = idx/ENTRIES_PER_PAGE; 635 } else { 636 dir += ENTRIES_PER_PAGE/2; 637 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 638 while (stage <= idx) 639 stage += ENTRIES_PER_PAGEPAGE; 640 middir = *dir; 641 if (*dir) { 642 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 643 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 644 if (!diroff && !offset && upper_limit >= stage) { 645 if (needs_lock) { 646 spin_lock(needs_lock); 647 *dir = NULL; 648 spin_unlock(needs_lock); 649 needs_lock = NULL; 650 } else 651 *dir = NULL; 652 nr_pages_to_free++; 653 list_add(&middir->lru, &pages_to_free); 654 } 655 shmem_dir_unmap(dir); 656 dir = shmem_dir_map(middir); 657 } else { 658 diroff = 0; 659 offset = 0; 660 idx = stage; 661 } 662 } 663 664 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 665 if (unlikely(idx == stage)) { 666 shmem_dir_unmap(dir); 667 dir = shmem_dir_map(topdir) + 668 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 669 while (!*dir) { 670 dir++; 671 idx += ENTRIES_PER_PAGEPAGE; 672 if (idx >= limit) 673 goto done1; 674 } 675 stage = idx + ENTRIES_PER_PAGEPAGE; 676 middir = *dir; 677 if (punch_hole) 678 needs_lock = &info->lock; 679 if (upper_limit >= stage) { 680 if (needs_lock) { 681 spin_lock(needs_lock); 682 *dir = NULL; 683 spin_unlock(needs_lock); 684 needs_lock = NULL; 685 } else 686 *dir = NULL; 687 nr_pages_to_free++; 688 list_add(&middir->lru, &pages_to_free); 689 } 690 shmem_dir_unmap(dir); 691 cond_resched(); 692 dir = shmem_dir_map(middir); 693 diroff = 0; 694 } 695 punch_lock = needs_lock; 696 subdir = dir[diroff]; 697 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 698 if (needs_lock) { 699 spin_lock(needs_lock); 700 dir[diroff] = NULL; 701 spin_unlock(needs_lock); 702 punch_lock = NULL; 703 } else 704 dir[diroff] = NULL; 705 nr_pages_to_free++; 706 list_add(&subdir->lru, &pages_to_free); 707 } 708 if (subdir && page_private(subdir) /* has swap entries */) { 709 size = limit - idx; 710 if (size > ENTRIES_PER_PAGE) 711 size = ENTRIES_PER_PAGE; 712 freed = shmem_map_and_free_swp(subdir, 713 offset, size, &dir, punch_lock); 714 if (!dir) 715 dir = shmem_dir_map(middir); 716 nr_swaps_freed += freed; 717 if (offset || punch_lock) { 718 spin_lock(&info->lock); 719 set_page_private(subdir, 720 page_private(subdir) - freed); 721 spin_unlock(&info->lock); 722 } else 723 BUG_ON(page_private(subdir) != freed); 724 } 725 offset = 0; 726 } 727 done1: 728 shmem_dir_unmap(dir); 729 done2: 730 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 731 /* 732 * Call truncate_inode_pages again: racing shmem_unuse_inode 733 * may have swizzled a page in from swap since vmtruncate or 734 * generic_delete_inode did it, before we lowered next_index. 735 * Also, though shmem_getpage checks i_size before adding to 736 * cache, no recheck after: so fix the narrow window there too. 737 * 738 * Recalling truncate_inode_pages_range and unmap_mapping_range 739 * every time for punch_hole (which never got a chance to clear 740 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 741 * yet hardly ever necessary: try to optimize them out later. 742 */ 743 truncate_inode_pages_range(inode->i_mapping, start, end); 744 if (punch_hole) 745 unmap_mapping_range(inode->i_mapping, start, 746 end - start, 1); 747 } 748 749 spin_lock(&info->lock); 750 info->flags &= ~SHMEM_TRUNCATE; 751 info->swapped -= nr_swaps_freed; 752 if (nr_pages_to_free) 753 shmem_free_blocks(inode, nr_pages_to_free); 754 shmem_recalc_inode(inode); 755 spin_unlock(&info->lock); 756 757 /* 758 * Empty swap vector directory pages to be freed? 759 */ 760 if (!list_empty(&pages_to_free)) { 761 pages_to_free.prev->next = NULL; 762 shmem_free_pages(pages_to_free.next); 763 } 764 } 765 766 static void shmem_truncate(struct inode *inode) 767 { 768 shmem_truncate_range(inode, inode->i_size, (loff_t)-1); 769 } 770 771 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 772 { 773 struct inode *inode = dentry->d_inode; 774 struct page *page = NULL; 775 int error; 776 777 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 778 if (attr->ia_size < inode->i_size) { 779 /* 780 * If truncating down to a partial page, then 781 * if that page is already allocated, hold it 782 * in memory until the truncation is over, so 783 * truncate_partial_page cannnot miss it were 784 * it assigned to swap. 785 */ 786 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) { 787 (void) shmem_getpage(inode, 788 attr->ia_size>>PAGE_CACHE_SHIFT, 789 &page, SGP_READ, NULL); 790 if (page) 791 unlock_page(page); 792 } 793 /* 794 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 795 * detect if any pages might have been added to cache 796 * after truncate_inode_pages. But we needn't bother 797 * if it's being fully truncated to zero-length: the 798 * nrpages check is efficient enough in that case. 799 */ 800 if (attr->ia_size) { 801 struct shmem_inode_info *info = SHMEM_I(inode); 802 spin_lock(&info->lock); 803 info->flags &= ~SHMEM_PAGEIN; 804 spin_unlock(&info->lock); 805 } 806 } 807 } 808 809 error = inode_change_ok(inode, attr); 810 if (!error) 811 error = inode_setattr(inode, attr); 812 #ifdef CONFIG_TMPFS_POSIX_ACL 813 if (!error && (attr->ia_valid & ATTR_MODE)) 814 error = generic_acl_chmod(inode, &shmem_acl_ops); 815 #endif 816 if (page) 817 page_cache_release(page); 818 return error; 819 } 820 821 static void shmem_delete_inode(struct inode *inode) 822 { 823 struct shmem_inode_info *info = SHMEM_I(inode); 824 825 if (inode->i_op->truncate == shmem_truncate) { 826 truncate_inode_pages(inode->i_mapping, 0); 827 shmem_unacct_size(info->flags, inode->i_size); 828 inode->i_size = 0; 829 shmem_truncate(inode); 830 if (!list_empty(&info->swaplist)) { 831 mutex_lock(&shmem_swaplist_mutex); 832 list_del_init(&info->swaplist); 833 mutex_unlock(&shmem_swaplist_mutex); 834 } 835 } 836 BUG_ON(inode->i_blocks); 837 shmem_free_inode(inode->i_sb); 838 clear_inode(inode); 839 } 840 841 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 842 { 843 swp_entry_t *ptr; 844 845 for (ptr = dir; ptr < edir; ptr++) { 846 if (ptr->val == entry.val) 847 return ptr - dir; 848 } 849 return -1; 850 } 851 852 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 853 { 854 struct inode *inode; 855 unsigned long idx; 856 unsigned long size; 857 unsigned long limit; 858 unsigned long stage; 859 struct page **dir; 860 struct page *subdir; 861 swp_entry_t *ptr; 862 int offset; 863 int error; 864 865 idx = 0; 866 ptr = info->i_direct; 867 spin_lock(&info->lock); 868 if (!info->swapped) { 869 list_del_init(&info->swaplist); 870 goto lost2; 871 } 872 limit = info->next_index; 873 size = limit; 874 if (size > SHMEM_NR_DIRECT) 875 size = SHMEM_NR_DIRECT; 876 offset = shmem_find_swp(entry, ptr, ptr+size); 877 if (offset >= 0) 878 goto found; 879 if (!info->i_indirect) 880 goto lost2; 881 882 dir = shmem_dir_map(info->i_indirect); 883 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 884 885 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 886 if (unlikely(idx == stage)) { 887 shmem_dir_unmap(dir-1); 888 if (cond_resched_lock(&info->lock)) { 889 /* check it has not been truncated */ 890 if (limit > info->next_index) { 891 limit = info->next_index; 892 if (idx >= limit) 893 goto lost2; 894 } 895 } 896 dir = shmem_dir_map(info->i_indirect) + 897 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 898 while (!*dir) { 899 dir++; 900 idx += ENTRIES_PER_PAGEPAGE; 901 if (idx >= limit) 902 goto lost1; 903 } 904 stage = idx + ENTRIES_PER_PAGEPAGE; 905 subdir = *dir; 906 shmem_dir_unmap(dir); 907 dir = shmem_dir_map(subdir); 908 } 909 subdir = *dir; 910 if (subdir && page_private(subdir)) { 911 ptr = shmem_swp_map(subdir); 912 size = limit - idx; 913 if (size > ENTRIES_PER_PAGE) 914 size = ENTRIES_PER_PAGE; 915 offset = shmem_find_swp(entry, ptr, ptr+size); 916 shmem_swp_unmap(ptr); 917 if (offset >= 0) { 918 shmem_dir_unmap(dir); 919 goto found; 920 } 921 } 922 } 923 lost1: 924 shmem_dir_unmap(dir-1); 925 lost2: 926 spin_unlock(&info->lock); 927 return 0; 928 found: 929 idx += offset; 930 inode = igrab(&info->vfs_inode); 931 spin_unlock(&info->lock); 932 933 /* 934 * Move _head_ to start search for next from here. 935 * But be careful: shmem_delete_inode checks list_empty without taking 936 * mutex, and there's an instant in list_move_tail when info->swaplist 937 * would appear empty, if it were the only one on shmem_swaplist. We 938 * could avoid doing it if inode NULL; or use this minor optimization. 939 */ 940 if (shmem_swaplist.next != &info->swaplist) 941 list_move_tail(&shmem_swaplist, &info->swaplist); 942 mutex_unlock(&shmem_swaplist_mutex); 943 944 error = 1; 945 if (!inode) 946 goto out; 947 /* 948 * Charge page using GFP_KERNEL while we can wait. 949 * Charged back to the user(not to caller) when swap account is used. 950 * add_to_page_cache() will be called with GFP_NOWAIT. 951 */ 952 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 953 if (error) 954 goto out; 955 error = radix_tree_preload(GFP_KERNEL); 956 if (error) { 957 mem_cgroup_uncharge_cache_page(page); 958 goto out; 959 } 960 error = 1; 961 962 spin_lock(&info->lock); 963 ptr = shmem_swp_entry(info, idx, NULL); 964 if (ptr && ptr->val == entry.val) { 965 error = add_to_page_cache_locked(page, inode->i_mapping, 966 idx, GFP_NOWAIT); 967 /* does mem_cgroup_uncharge_cache_page on error */ 968 } else /* we must compensate for our precharge above */ 969 mem_cgroup_uncharge_cache_page(page); 970 971 if (error == -EEXIST) { 972 struct page *filepage = find_get_page(inode->i_mapping, idx); 973 error = 1; 974 if (filepage) { 975 /* 976 * There might be a more uptodate page coming down 977 * from a stacked writepage: forget our swappage if so. 978 */ 979 if (PageUptodate(filepage)) 980 error = 0; 981 page_cache_release(filepage); 982 } 983 } 984 if (!error) { 985 delete_from_swap_cache(page); 986 set_page_dirty(page); 987 info->flags |= SHMEM_PAGEIN; 988 shmem_swp_set(info, ptr, 0); 989 swap_free(entry); 990 error = 1; /* not an error, but entry was found */ 991 } 992 if (ptr) 993 shmem_swp_unmap(ptr); 994 spin_unlock(&info->lock); 995 radix_tree_preload_end(); 996 out: 997 unlock_page(page); 998 page_cache_release(page); 999 iput(inode); /* allows for NULL */ 1000 return error; 1001 } 1002 1003 /* 1004 * shmem_unuse() search for an eventually swapped out shmem page. 1005 */ 1006 int shmem_unuse(swp_entry_t entry, struct page *page) 1007 { 1008 struct list_head *p, *next; 1009 struct shmem_inode_info *info; 1010 int found = 0; 1011 1012 mutex_lock(&shmem_swaplist_mutex); 1013 list_for_each_safe(p, next, &shmem_swaplist) { 1014 info = list_entry(p, struct shmem_inode_info, swaplist); 1015 found = shmem_unuse_inode(info, entry, page); 1016 cond_resched(); 1017 if (found) 1018 goto out; 1019 } 1020 mutex_unlock(&shmem_swaplist_mutex); 1021 out: return found; /* 0 or 1 or -ENOMEM */ 1022 } 1023 1024 /* 1025 * Move the page from the page cache to the swap cache. 1026 */ 1027 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1028 { 1029 struct shmem_inode_info *info; 1030 swp_entry_t *entry, swap; 1031 struct address_space *mapping; 1032 unsigned long index; 1033 struct inode *inode; 1034 1035 BUG_ON(!PageLocked(page)); 1036 mapping = page->mapping; 1037 index = page->index; 1038 inode = mapping->host; 1039 info = SHMEM_I(inode); 1040 if (info->flags & VM_LOCKED) 1041 goto redirty; 1042 if (!total_swap_pages) 1043 goto redirty; 1044 1045 /* 1046 * shmem_backing_dev_info's capabilities prevent regular writeback or 1047 * sync from ever calling shmem_writepage; but a stacking filesystem 1048 * may use the ->writepage of its underlying filesystem, in which case 1049 * tmpfs should write out to swap only in response to memory pressure, 1050 * and not for pdflush or sync. However, in those cases, we do still 1051 * want to check if there's a redundant swappage to be discarded. 1052 */ 1053 if (wbc->for_reclaim) 1054 swap = get_swap_page(); 1055 else 1056 swap.val = 0; 1057 1058 spin_lock(&info->lock); 1059 if (index >= info->next_index) { 1060 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 1061 goto unlock; 1062 } 1063 entry = shmem_swp_entry(info, index, NULL); 1064 if (entry->val) { 1065 /* 1066 * The more uptodate page coming down from a stacked 1067 * writepage should replace our old swappage. 1068 */ 1069 free_swap_and_cache(*entry); 1070 shmem_swp_set(info, entry, 0); 1071 } 1072 shmem_recalc_inode(inode); 1073 1074 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1075 remove_from_page_cache(page); 1076 shmem_swp_set(info, entry, swap.val); 1077 shmem_swp_unmap(entry); 1078 if (list_empty(&info->swaplist)) 1079 inode = igrab(inode); 1080 else 1081 inode = NULL; 1082 spin_unlock(&info->lock); 1083 swap_duplicate(swap); 1084 BUG_ON(page_mapped(page)); 1085 page_cache_release(page); /* pagecache ref */ 1086 swap_writepage(page, wbc); 1087 if (inode) { 1088 mutex_lock(&shmem_swaplist_mutex); 1089 /* move instead of add in case we're racing */ 1090 list_move_tail(&info->swaplist, &shmem_swaplist); 1091 mutex_unlock(&shmem_swaplist_mutex); 1092 iput(inode); 1093 } 1094 return 0; 1095 } 1096 1097 shmem_swp_unmap(entry); 1098 unlock: 1099 spin_unlock(&info->lock); 1100 swap_free(swap); 1101 redirty: 1102 set_page_dirty(page); 1103 if (wbc->for_reclaim) 1104 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1105 unlock_page(page); 1106 return 0; 1107 } 1108 1109 #ifdef CONFIG_NUMA 1110 #ifdef CONFIG_TMPFS 1111 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1112 { 1113 char buffer[64]; 1114 1115 if (!mpol || mpol->mode == MPOL_DEFAULT) 1116 return; /* show nothing */ 1117 1118 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 1119 1120 seq_printf(seq, ",mpol=%s", buffer); 1121 } 1122 1123 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1124 { 1125 struct mempolicy *mpol = NULL; 1126 if (sbinfo->mpol) { 1127 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1128 mpol = sbinfo->mpol; 1129 mpol_get(mpol); 1130 spin_unlock(&sbinfo->stat_lock); 1131 } 1132 return mpol; 1133 } 1134 #endif /* CONFIG_TMPFS */ 1135 1136 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1137 struct shmem_inode_info *info, unsigned long idx) 1138 { 1139 struct mempolicy mpol, *spol; 1140 struct vm_area_struct pvma; 1141 struct page *page; 1142 1143 spol = mpol_cond_copy(&mpol, 1144 mpol_shared_policy_lookup(&info->policy, idx)); 1145 1146 /* Create a pseudo vma that just contains the policy */ 1147 pvma.vm_start = 0; 1148 pvma.vm_pgoff = idx; 1149 pvma.vm_ops = NULL; 1150 pvma.vm_policy = spol; 1151 page = swapin_readahead(entry, gfp, &pvma, 0); 1152 return page; 1153 } 1154 1155 static struct page *shmem_alloc_page(gfp_t gfp, 1156 struct shmem_inode_info *info, unsigned long idx) 1157 { 1158 struct vm_area_struct pvma; 1159 1160 /* Create a pseudo vma that just contains the policy */ 1161 pvma.vm_start = 0; 1162 pvma.vm_pgoff = idx; 1163 pvma.vm_ops = NULL; 1164 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1165 1166 /* 1167 * alloc_page_vma() will drop the shared policy reference 1168 */ 1169 return alloc_page_vma(gfp, &pvma, 0); 1170 } 1171 #else /* !CONFIG_NUMA */ 1172 #ifdef CONFIG_TMPFS 1173 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) 1174 { 1175 } 1176 #endif /* CONFIG_TMPFS */ 1177 1178 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1179 struct shmem_inode_info *info, unsigned long idx) 1180 { 1181 return swapin_readahead(entry, gfp, NULL, 0); 1182 } 1183 1184 static inline struct page *shmem_alloc_page(gfp_t gfp, 1185 struct shmem_inode_info *info, unsigned long idx) 1186 { 1187 return alloc_page(gfp); 1188 } 1189 #endif /* CONFIG_NUMA */ 1190 1191 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1192 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1193 { 1194 return NULL; 1195 } 1196 #endif 1197 1198 /* 1199 * shmem_getpage - either get the page from swap or allocate a new one 1200 * 1201 * If we allocate a new one we do not mark it dirty. That's up to the 1202 * vm. If we swap it in we mark it dirty since we also free the swap 1203 * entry since a page cannot live in both the swap and page cache 1204 */ 1205 static int shmem_getpage(struct inode *inode, unsigned long idx, 1206 struct page **pagep, enum sgp_type sgp, int *type) 1207 { 1208 struct address_space *mapping = inode->i_mapping; 1209 struct shmem_inode_info *info = SHMEM_I(inode); 1210 struct shmem_sb_info *sbinfo; 1211 struct page *filepage = *pagep; 1212 struct page *swappage; 1213 swp_entry_t *entry; 1214 swp_entry_t swap; 1215 gfp_t gfp; 1216 int error; 1217 1218 if (idx >= SHMEM_MAX_INDEX) 1219 return -EFBIG; 1220 1221 if (type) 1222 *type = 0; 1223 1224 /* 1225 * Normally, filepage is NULL on entry, and either found 1226 * uptodate immediately, or allocated and zeroed, or read 1227 * in under swappage, which is then assigned to filepage. 1228 * But shmem_readpage (required for splice) passes in a locked 1229 * filepage, which may be found not uptodate by other callers 1230 * too, and may need to be copied from the swappage read in. 1231 */ 1232 repeat: 1233 if (!filepage) 1234 filepage = find_lock_page(mapping, idx); 1235 if (filepage && PageUptodate(filepage)) 1236 goto done; 1237 error = 0; 1238 gfp = mapping_gfp_mask(mapping); 1239 if (!filepage) { 1240 /* 1241 * Try to preload while we can wait, to not make a habit of 1242 * draining atomic reserves; but don't latch on to this cpu. 1243 */ 1244 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); 1245 if (error) 1246 goto failed; 1247 radix_tree_preload_end(); 1248 } 1249 1250 spin_lock(&info->lock); 1251 shmem_recalc_inode(inode); 1252 entry = shmem_swp_alloc(info, idx, sgp); 1253 if (IS_ERR(entry)) { 1254 spin_unlock(&info->lock); 1255 error = PTR_ERR(entry); 1256 goto failed; 1257 } 1258 swap = *entry; 1259 1260 if (swap.val) { 1261 /* Look it up and read it in.. */ 1262 swappage = lookup_swap_cache(swap); 1263 if (!swappage) { 1264 shmem_swp_unmap(entry); 1265 /* here we actually do the io */ 1266 if (type && !(*type & VM_FAULT_MAJOR)) { 1267 __count_vm_event(PGMAJFAULT); 1268 *type |= VM_FAULT_MAJOR; 1269 } 1270 spin_unlock(&info->lock); 1271 swappage = shmem_swapin(swap, gfp, info, idx); 1272 if (!swappage) { 1273 spin_lock(&info->lock); 1274 entry = shmem_swp_alloc(info, idx, sgp); 1275 if (IS_ERR(entry)) 1276 error = PTR_ERR(entry); 1277 else { 1278 if (entry->val == swap.val) 1279 error = -ENOMEM; 1280 shmem_swp_unmap(entry); 1281 } 1282 spin_unlock(&info->lock); 1283 if (error) 1284 goto failed; 1285 goto repeat; 1286 } 1287 wait_on_page_locked(swappage); 1288 page_cache_release(swappage); 1289 goto repeat; 1290 } 1291 1292 /* We have to do this with page locked to prevent races */ 1293 if (!trylock_page(swappage)) { 1294 shmem_swp_unmap(entry); 1295 spin_unlock(&info->lock); 1296 wait_on_page_locked(swappage); 1297 page_cache_release(swappage); 1298 goto repeat; 1299 } 1300 if (PageWriteback(swappage)) { 1301 shmem_swp_unmap(entry); 1302 spin_unlock(&info->lock); 1303 wait_on_page_writeback(swappage); 1304 unlock_page(swappage); 1305 page_cache_release(swappage); 1306 goto repeat; 1307 } 1308 if (!PageUptodate(swappage)) { 1309 shmem_swp_unmap(entry); 1310 spin_unlock(&info->lock); 1311 unlock_page(swappage); 1312 page_cache_release(swappage); 1313 error = -EIO; 1314 goto failed; 1315 } 1316 1317 if (filepage) { 1318 shmem_swp_set(info, entry, 0); 1319 shmem_swp_unmap(entry); 1320 delete_from_swap_cache(swappage); 1321 spin_unlock(&info->lock); 1322 copy_highpage(filepage, swappage); 1323 unlock_page(swappage); 1324 page_cache_release(swappage); 1325 flush_dcache_page(filepage); 1326 SetPageUptodate(filepage); 1327 set_page_dirty(filepage); 1328 swap_free(swap); 1329 } else if (!(error = add_to_page_cache_locked(swappage, mapping, 1330 idx, GFP_NOWAIT))) { 1331 info->flags |= SHMEM_PAGEIN; 1332 shmem_swp_set(info, entry, 0); 1333 shmem_swp_unmap(entry); 1334 delete_from_swap_cache(swappage); 1335 spin_unlock(&info->lock); 1336 filepage = swappage; 1337 set_page_dirty(filepage); 1338 swap_free(swap); 1339 } else { 1340 shmem_swp_unmap(entry); 1341 spin_unlock(&info->lock); 1342 if (error == -ENOMEM) { 1343 /* 1344 * reclaim from proper memory cgroup and 1345 * call memcg's OOM if needed. 1346 */ 1347 error = mem_cgroup_shmem_charge_fallback( 1348 swappage, 1349 current->mm, 1350 gfp); 1351 if (error) { 1352 unlock_page(swappage); 1353 page_cache_release(swappage); 1354 goto failed; 1355 } 1356 } 1357 unlock_page(swappage); 1358 page_cache_release(swappage); 1359 goto repeat; 1360 } 1361 } else if (sgp == SGP_READ && !filepage) { 1362 shmem_swp_unmap(entry); 1363 filepage = find_get_page(mapping, idx); 1364 if (filepage && 1365 (!PageUptodate(filepage) || !trylock_page(filepage))) { 1366 spin_unlock(&info->lock); 1367 wait_on_page_locked(filepage); 1368 page_cache_release(filepage); 1369 filepage = NULL; 1370 goto repeat; 1371 } 1372 spin_unlock(&info->lock); 1373 } else { 1374 shmem_swp_unmap(entry); 1375 sbinfo = SHMEM_SB(inode->i_sb); 1376 if (sbinfo->max_blocks) { 1377 spin_lock(&sbinfo->stat_lock); 1378 if (sbinfo->free_blocks == 0 || 1379 shmem_acct_block(info->flags)) { 1380 spin_unlock(&sbinfo->stat_lock); 1381 spin_unlock(&info->lock); 1382 error = -ENOSPC; 1383 goto failed; 1384 } 1385 sbinfo->free_blocks--; 1386 inode->i_blocks += BLOCKS_PER_PAGE; 1387 spin_unlock(&sbinfo->stat_lock); 1388 } else if (shmem_acct_block(info->flags)) { 1389 spin_unlock(&info->lock); 1390 error = -ENOSPC; 1391 goto failed; 1392 } 1393 1394 if (!filepage) { 1395 int ret; 1396 1397 spin_unlock(&info->lock); 1398 filepage = shmem_alloc_page(gfp, info, idx); 1399 if (!filepage) { 1400 shmem_unacct_blocks(info->flags, 1); 1401 shmem_free_blocks(inode, 1); 1402 error = -ENOMEM; 1403 goto failed; 1404 } 1405 SetPageSwapBacked(filepage); 1406 1407 /* Precharge page while we can wait, compensate after */ 1408 error = mem_cgroup_cache_charge(filepage, current->mm, 1409 GFP_KERNEL); 1410 if (error) { 1411 page_cache_release(filepage); 1412 shmem_unacct_blocks(info->flags, 1); 1413 shmem_free_blocks(inode, 1); 1414 filepage = NULL; 1415 goto failed; 1416 } 1417 1418 spin_lock(&info->lock); 1419 entry = shmem_swp_alloc(info, idx, sgp); 1420 if (IS_ERR(entry)) 1421 error = PTR_ERR(entry); 1422 else { 1423 swap = *entry; 1424 shmem_swp_unmap(entry); 1425 } 1426 ret = error || swap.val; 1427 if (ret) 1428 mem_cgroup_uncharge_cache_page(filepage); 1429 else 1430 ret = add_to_page_cache_lru(filepage, mapping, 1431 idx, GFP_NOWAIT); 1432 /* 1433 * At add_to_page_cache_lru() failure, uncharge will 1434 * be done automatically. 1435 */ 1436 if (ret) { 1437 spin_unlock(&info->lock); 1438 page_cache_release(filepage); 1439 shmem_unacct_blocks(info->flags, 1); 1440 shmem_free_blocks(inode, 1); 1441 filepage = NULL; 1442 if (error) 1443 goto failed; 1444 goto repeat; 1445 } 1446 info->flags |= SHMEM_PAGEIN; 1447 } 1448 1449 info->alloced++; 1450 spin_unlock(&info->lock); 1451 clear_highpage(filepage); 1452 flush_dcache_page(filepage); 1453 SetPageUptodate(filepage); 1454 if (sgp == SGP_DIRTY) 1455 set_page_dirty(filepage); 1456 } 1457 done: 1458 *pagep = filepage; 1459 return 0; 1460 1461 failed: 1462 if (*pagep != filepage) { 1463 unlock_page(filepage); 1464 page_cache_release(filepage); 1465 } 1466 return error; 1467 } 1468 1469 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1470 { 1471 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1472 int error; 1473 int ret; 1474 1475 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1476 return VM_FAULT_SIGBUS; 1477 1478 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1479 if (error) 1480 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1481 1482 return ret | VM_FAULT_LOCKED; 1483 } 1484 1485 #ifdef CONFIG_NUMA 1486 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1487 { 1488 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1489 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1490 } 1491 1492 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1493 unsigned long addr) 1494 { 1495 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1496 unsigned long idx; 1497 1498 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1499 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1500 } 1501 #endif 1502 1503 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1504 { 1505 struct inode *inode = file->f_path.dentry->d_inode; 1506 struct shmem_inode_info *info = SHMEM_I(inode); 1507 int retval = -ENOMEM; 1508 1509 spin_lock(&info->lock); 1510 if (lock && !(info->flags & VM_LOCKED)) { 1511 if (!user_shm_lock(inode->i_size, user)) 1512 goto out_nomem; 1513 info->flags |= VM_LOCKED; 1514 mapping_set_unevictable(file->f_mapping); 1515 } 1516 if (!lock && (info->flags & VM_LOCKED) && user) { 1517 user_shm_unlock(inode->i_size, user); 1518 info->flags &= ~VM_LOCKED; 1519 mapping_clear_unevictable(file->f_mapping); 1520 scan_mapping_unevictable_pages(file->f_mapping); 1521 } 1522 retval = 0; 1523 1524 out_nomem: 1525 spin_unlock(&info->lock); 1526 return retval; 1527 } 1528 1529 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1530 { 1531 file_accessed(file); 1532 vma->vm_ops = &shmem_vm_ops; 1533 vma->vm_flags |= VM_CAN_NONLINEAR; 1534 return 0; 1535 } 1536 1537 static struct inode *shmem_get_inode(struct super_block *sb, int mode, 1538 dev_t dev, unsigned long flags) 1539 { 1540 struct inode *inode; 1541 struct shmem_inode_info *info; 1542 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1543 1544 if (shmem_reserve_inode(sb)) 1545 return NULL; 1546 1547 inode = new_inode(sb); 1548 if (inode) { 1549 inode->i_mode = mode; 1550 inode->i_uid = current_fsuid(); 1551 inode->i_gid = current_fsgid(); 1552 inode->i_blocks = 0; 1553 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1554 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1555 inode->i_generation = get_seconds(); 1556 info = SHMEM_I(inode); 1557 memset(info, 0, (char *)inode - (char *)info); 1558 spin_lock_init(&info->lock); 1559 info->flags = flags & VM_NORESERVE; 1560 INIT_LIST_HEAD(&info->swaplist); 1561 1562 switch (mode & S_IFMT) { 1563 default: 1564 inode->i_op = &shmem_special_inode_operations; 1565 init_special_inode(inode, mode, dev); 1566 break; 1567 case S_IFREG: 1568 inode->i_mapping->a_ops = &shmem_aops; 1569 inode->i_op = &shmem_inode_operations; 1570 inode->i_fop = &shmem_file_operations; 1571 mpol_shared_policy_init(&info->policy, 1572 shmem_get_sbmpol(sbinfo)); 1573 break; 1574 case S_IFDIR: 1575 inc_nlink(inode); 1576 /* Some things misbehave if size == 0 on a directory */ 1577 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1578 inode->i_op = &shmem_dir_inode_operations; 1579 inode->i_fop = &simple_dir_operations; 1580 break; 1581 case S_IFLNK: 1582 /* 1583 * Must not load anything in the rbtree, 1584 * mpol_free_shared_policy will not be called. 1585 */ 1586 mpol_shared_policy_init(&info->policy, NULL); 1587 break; 1588 } 1589 } else 1590 shmem_free_inode(sb); 1591 return inode; 1592 } 1593 1594 #ifdef CONFIG_TMPFS 1595 static const struct inode_operations shmem_symlink_inode_operations; 1596 static const struct inode_operations shmem_symlink_inline_operations; 1597 1598 /* 1599 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; 1600 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1601 * below the loop driver, in the generic fashion that many filesystems support. 1602 */ 1603 static int shmem_readpage(struct file *file, struct page *page) 1604 { 1605 struct inode *inode = page->mapping->host; 1606 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1607 unlock_page(page); 1608 return error; 1609 } 1610 1611 static int 1612 shmem_write_begin(struct file *file, struct address_space *mapping, 1613 loff_t pos, unsigned len, unsigned flags, 1614 struct page **pagep, void **fsdata) 1615 { 1616 struct inode *inode = mapping->host; 1617 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1618 *pagep = NULL; 1619 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1620 } 1621 1622 static int 1623 shmem_write_end(struct file *file, struct address_space *mapping, 1624 loff_t pos, unsigned len, unsigned copied, 1625 struct page *page, void *fsdata) 1626 { 1627 struct inode *inode = mapping->host; 1628 1629 if (pos + copied > inode->i_size) 1630 i_size_write(inode, pos + copied); 1631 1632 unlock_page(page); 1633 set_page_dirty(page); 1634 page_cache_release(page); 1635 1636 return copied; 1637 } 1638 1639 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1640 { 1641 struct inode *inode = filp->f_path.dentry->d_inode; 1642 struct address_space *mapping = inode->i_mapping; 1643 unsigned long index, offset; 1644 enum sgp_type sgp = SGP_READ; 1645 1646 /* 1647 * Might this read be for a stacking filesystem? Then when reading 1648 * holes of a sparse file, we actually need to allocate those pages, 1649 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1650 */ 1651 if (segment_eq(get_fs(), KERNEL_DS)) 1652 sgp = SGP_DIRTY; 1653 1654 index = *ppos >> PAGE_CACHE_SHIFT; 1655 offset = *ppos & ~PAGE_CACHE_MASK; 1656 1657 for (;;) { 1658 struct page *page = NULL; 1659 unsigned long end_index, nr, ret; 1660 loff_t i_size = i_size_read(inode); 1661 1662 end_index = i_size >> PAGE_CACHE_SHIFT; 1663 if (index > end_index) 1664 break; 1665 if (index == end_index) { 1666 nr = i_size & ~PAGE_CACHE_MASK; 1667 if (nr <= offset) 1668 break; 1669 } 1670 1671 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1672 if (desc->error) { 1673 if (desc->error == -EINVAL) 1674 desc->error = 0; 1675 break; 1676 } 1677 if (page) 1678 unlock_page(page); 1679 1680 /* 1681 * We must evaluate after, since reads (unlike writes) 1682 * are called without i_mutex protection against truncate 1683 */ 1684 nr = PAGE_CACHE_SIZE; 1685 i_size = i_size_read(inode); 1686 end_index = i_size >> PAGE_CACHE_SHIFT; 1687 if (index == end_index) { 1688 nr = i_size & ~PAGE_CACHE_MASK; 1689 if (nr <= offset) { 1690 if (page) 1691 page_cache_release(page); 1692 break; 1693 } 1694 } 1695 nr -= offset; 1696 1697 if (page) { 1698 /* 1699 * If users can be writing to this page using arbitrary 1700 * virtual addresses, take care about potential aliasing 1701 * before reading the page on the kernel side. 1702 */ 1703 if (mapping_writably_mapped(mapping)) 1704 flush_dcache_page(page); 1705 /* 1706 * Mark the page accessed if we read the beginning. 1707 */ 1708 if (!offset) 1709 mark_page_accessed(page); 1710 } else { 1711 page = ZERO_PAGE(0); 1712 page_cache_get(page); 1713 } 1714 1715 /* 1716 * Ok, we have the page, and it's up-to-date, so 1717 * now we can copy it to user space... 1718 * 1719 * The actor routine returns how many bytes were actually used.. 1720 * NOTE! This may not be the same as how much of a user buffer 1721 * we filled up (we may be padding etc), so we can only update 1722 * "pos" here (the actor routine has to update the user buffer 1723 * pointers and the remaining count). 1724 */ 1725 ret = actor(desc, page, offset, nr); 1726 offset += ret; 1727 index += offset >> PAGE_CACHE_SHIFT; 1728 offset &= ~PAGE_CACHE_MASK; 1729 1730 page_cache_release(page); 1731 if (ret != nr || !desc->count) 1732 break; 1733 1734 cond_resched(); 1735 } 1736 1737 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1738 file_accessed(filp); 1739 } 1740 1741 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1742 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1743 { 1744 struct file *filp = iocb->ki_filp; 1745 ssize_t retval; 1746 unsigned long seg; 1747 size_t count; 1748 loff_t *ppos = &iocb->ki_pos; 1749 1750 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1751 if (retval) 1752 return retval; 1753 1754 for (seg = 0; seg < nr_segs; seg++) { 1755 read_descriptor_t desc; 1756 1757 desc.written = 0; 1758 desc.arg.buf = iov[seg].iov_base; 1759 desc.count = iov[seg].iov_len; 1760 if (desc.count == 0) 1761 continue; 1762 desc.error = 0; 1763 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1764 retval += desc.written; 1765 if (desc.error) { 1766 retval = retval ?: desc.error; 1767 break; 1768 } 1769 if (desc.count > 0) 1770 break; 1771 } 1772 return retval; 1773 } 1774 1775 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1776 { 1777 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1778 1779 buf->f_type = TMPFS_MAGIC; 1780 buf->f_bsize = PAGE_CACHE_SIZE; 1781 buf->f_namelen = NAME_MAX; 1782 spin_lock(&sbinfo->stat_lock); 1783 if (sbinfo->max_blocks) { 1784 buf->f_blocks = sbinfo->max_blocks; 1785 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; 1786 } 1787 if (sbinfo->max_inodes) { 1788 buf->f_files = sbinfo->max_inodes; 1789 buf->f_ffree = sbinfo->free_inodes; 1790 } 1791 /* else leave those fields 0 like simple_statfs */ 1792 spin_unlock(&sbinfo->stat_lock); 1793 return 0; 1794 } 1795 1796 /* 1797 * File creation. Allocate an inode, and we're done.. 1798 */ 1799 static int 1800 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1801 { 1802 struct inode *inode; 1803 int error = -ENOSPC; 1804 1805 inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE); 1806 if (inode) { 1807 error = security_inode_init_security(inode, dir, NULL, NULL, 1808 NULL); 1809 if (error) { 1810 if (error != -EOPNOTSUPP) { 1811 iput(inode); 1812 return error; 1813 } 1814 } 1815 error = shmem_acl_init(inode, dir); 1816 if (error) { 1817 iput(inode); 1818 return error; 1819 } 1820 if (dir->i_mode & S_ISGID) { 1821 inode->i_gid = dir->i_gid; 1822 if (S_ISDIR(mode)) 1823 inode->i_mode |= S_ISGID; 1824 } 1825 dir->i_size += BOGO_DIRENT_SIZE; 1826 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1827 d_instantiate(dentry, inode); 1828 dget(dentry); /* Extra count - pin the dentry in core */ 1829 } 1830 return error; 1831 } 1832 1833 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1834 { 1835 int error; 1836 1837 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1838 return error; 1839 inc_nlink(dir); 1840 return 0; 1841 } 1842 1843 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1844 struct nameidata *nd) 1845 { 1846 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1847 } 1848 1849 /* 1850 * Link a file.. 1851 */ 1852 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1853 { 1854 struct inode *inode = old_dentry->d_inode; 1855 int ret; 1856 1857 /* 1858 * No ordinary (disk based) filesystem counts links as inodes; 1859 * but each new link needs a new dentry, pinning lowmem, and 1860 * tmpfs dentries cannot be pruned until they are unlinked. 1861 */ 1862 ret = shmem_reserve_inode(inode->i_sb); 1863 if (ret) 1864 goto out; 1865 1866 dir->i_size += BOGO_DIRENT_SIZE; 1867 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1868 inc_nlink(inode); 1869 atomic_inc(&inode->i_count); /* New dentry reference */ 1870 dget(dentry); /* Extra pinning count for the created dentry */ 1871 d_instantiate(dentry, inode); 1872 out: 1873 return ret; 1874 } 1875 1876 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1877 { 1878 struct inode *inode = dentry->d_inode; 1879 1880 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1881 shmem_free_inode(inode->i_sb); 1882 1883 dir->i_size -= BOGO_DIRENT_SIZE; 1884 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1885 drop_nlink(inode); 1886 dput(dentry); /* Undo the count from "create" - this does all the work */ 1887 return 0; 1888 } 1889 1890 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1891 { 1892 if (!simple_empty(dentry)) 1893 return -ENOTEMPTY; 1894 1895 drop_nlink(dentry->d_inode); 1896 drop_nlink(dir); 1897 return shmem_unlink(dir, dentry); 1898 } 1899 1900 /* 1901 * The VFS layer already does all the dentry stuff for rename, 1902 * we just have to decrement the usage count for the target if 1903 * it exists so that the VFS layer correctly free's it when it 1904 * gets overwritten. 1905 */ 1906 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1907 { 1908 struct inode *inode = old_dentry->d_inode; 1909 int they_are_dirs = S_ISDIR(inode->i_mode); 1910 1911 if (!simple_empty(new_dentry)) 1912 return -ENOTEMPTY; 1913 1914 if (new_dentry->d_inode) { 1915 (void) shmem_unlink(new_dir, new_dentry); 1916 if (they_are_dirs) 1917 drop_nlink(old_dir); 1918 } else if (they_are_dirs) { 1919 drop_nlink(old_dir); 1920 inc_nlink(new_dir); 1921 } 1922 1923 old_dir->i_size -= BOGO_DIRENT_SIZE; 1924 new_dir->i_size += BOGO_DIRENT_SIZE; 1925 old_dir->i_ctime = old_dir->i_mtime = 1926 new_dir->i_ctime = new_dir->i_mtime = 1927 inode->i_ctime = CURRENT_TIME; 1928 return 0; 1929 } 1930 1931 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1932 { 1933 int error; 1934 int len; 1935 struct inode *inode; 1936 struct page *page = NULL; 1937 char *kaddr; 1938 struct shmem_inode_info *info; 1939 1940 len = strlen(symname) + 1; 1941 if (len > PAGE_CACHE_SIZE) 1942 return -ENAMETOOLONG; 1943 1944 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1945 if (!inode) 1946 return -ENOSPC; 1947 1948 error = security_inode_init_security(inode, dir, NULL, NULL, 1949 NULL); 1950 if (error) { 1951 if (error != -EOPNOTSUPP) { 1952 iput(inode); 1953 return error; 1954 } 1955 error = 0; 1956 } 1957 1958 info = SHMEM_I(inode); 1959 inode->i_size = len-1; 1960 if (len <= (char *)inode - (char *)info) { 1961 /* do it inline */ 1962 memcpy(info, symname, len); 1963 inode->i_op = &shmem_symlink_inline_operations; 1964 } else { 1965 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1966 if (error) { 1967 iput(inode); 1968 return error; 1969 } 1970 unlock_page(page); 1971 inode->i_mapping->a_ops = &shmem_aops; 1972 inode->i_op = &shmem_symlink_inode_operations; 1973 kaddr = kmap_atomic(page, KM_USER0); 1974 memcpy(kaddr, symname, len); 1975 kunmap_atomic(kaddr, KM_USER0); 1976 set_page_dirty(page); 1977 page_cache_release(page); 1978 } 1979 if (dir->i_mode & S_ISGID) 1980 inode->i_gid = dir->i_gid; 1981 dir->i_size += BOGO_DIRENT_SIZE; 1982 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1983 d_instantiate(dentry, inode); 1984 dget(dentry); 1985 return 0; 1986 } 1987 1988 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 1989 { 1990 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 1991 return NULL; 1992 } 1993 1994 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 1995 { 1996 struct page *page = NULL; 1997 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 1998 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 1999 if (page) 2000 unlock_page(page); 2001 return page; 2002 } 2003 2004 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2005 { 2006 if (!IS_ERR(nd_get_link(nd))) { 2007 struct page *page = cookie; 2008 kunmap(page); 2009 mark_page_accessed(page); 2010 page_cache_release(page); 2011 } 2012 } 2013 2014 static const struct inode_operations shmem_symlink_inline_operations = { 2015 .readlink = generic_readlink, 2016 .follow_link = shmem_follow_link_inline, 2017 }; 2018 2019 static const struct inode_operations shmem_symlink_inode_operations = { 2020 .truncate = shmem_truncate, 2021 .readlink = generic_readlink, 2022 .follow_link = shmem_follow_link, 2023 .put_link = shmem_put_link, 2024 }; 2025 2026 #ifdef CONFIG_TMPFS_POSIX_ACL 2027 /* 2028 * Superblocks without xattr inode operations will get security.* xattr 2029 * support from the VFS "for free". As soon as we have any other xattrs 2030 * like ACLs, we also need to implement the security.* handlers at 2031 * filesystem level, though. 2032 */ 2033 2034 static size_t shmem_xattr_security_list(struct inode *inode, char *list, 2035 size_t list_len, const char *name, 2036 size_t name_len) 2037 { 2038 return security_inode_listsecurity(inode, list, list_len); 2039 } 2040 2041 static int shmem_xattr_security_get(struct inode *inode, const char *name, 2042 void *buffer, size_t size) 2043 { 2044 if (strcmp(name, "") == 0) 2045 return -EINVAL; 2046 return xattr_getsecurity(inode, name, buffer, size); 2047 } 2048 2049 static int shmem_xattr_security_set(struct inode *inode, const char *name, 2050 const void *value, size_t size, int flags) 2051 { 2052 if (strcmp(name, "") == 0) 2053 return -EINVAL; 2054 return security_inode_setsecurity(inode, name, value, size, flags); 2055 } 2056 2057 static struct xattr_handler shmem_xattr_security_handler = { 2058 .prefix = XATTR_SECURITY_PREFIX, 2059 .list = shmem_xattr_security_list, 2060 .get = shmem_xattr_security_get, 2061 .set = shmem_xattr_security_set, 2062 }; 2063 2064 static struct xattr_handler *shmem_xattr_handlers[] = { 2065 &shmem_xattr_acl_access_handler, 2066 &shmem_xattr_acl_default_handler, 2067 &shmem_xattr_security_handler, 2068 NULL 2069 }; 2070 #endif 2071 2072 static struct dentry *shmem_get_parent(struct dentry *child) 2073 { 2074 return ERR_PTR(-ESTALE); 2075 } 2076 2077 static int shmem_match(struct inode *ino, void *vfh) 2078 { 2079 __u32 *fh = vfh; 2080 __u64 inum = fh[2]; 2081 inum = (inum << 32) | fh[1]; 2082 return ino->i_ino == inum && fh[0] == ino->i_generation; 2083 } 2084 2085 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2086 struct fid *fid, int fh_len, int fh_type) 2087 { 2088 struct inode *inode; 2089 struct dentry *dentry = NULL; 2090 u64 inum = fid->raw[2]; 2091 inum = (inum << 32) | fid->raw[1]; 2092 2093 if (fh_len < 3) 2094 return NULL; 2095 2096 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2097 shmem_match, fid->raw); 2098 if (inode) { 2099 dentry = d_find_alias(inode); 2100 iput(inode); 2101 } 2102 2103 return dentry; 2104 } 2105 2106 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2107 int connectable) 2108 { 2109 struct inode *inode = dentry->d_inode; 2110 2111 if (*len < 3) 2112 return 255; 2113 2114 if (hlist_unhashed(&inode->i_hash)) { 2115 /* Unfortunately insert_inode_hash is not idempotent, 2116 * so as we hash inodes here rather than at creation 2117 * time, we need a lock to ensure we only try 2118 * to do it once 2119 */ 2120 static DEFINE_SPINLOCK(lock); 2121 spin_lock(&lock); 2122 if (hlist_unhashed(&inode->i_hash)) 2123 __insert_inode_hash(inode, 2124 inode->i_ino + inode->i_generation); 2125 spin_unlock(&lock); 2126 } 2127 2128 fh[0] = inode->i_generation; 2129 fh[1] = inode->i_ino; 2130 fh[2] = ((__u64)inode->i_ino) >> 32; 2131 2132 *len = 3; 2133 return 1; 2134 } 2135 2136 static const struct export_operations shmem_export_ops = { 2137 .get_parent = shmem_get_parent, 2138 .encode_fh = shmem_encode_fh, 2139 .fh_to_dentry = shmem_fh_to_dentry, 2140 }; 2141 2142 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2143 bool remount) 2144 { 2145 char *this_char, *value, *rest; 2146 2147 while (options != NULL) { 2148 this_char = options; 2149 for (;;) { 2150 /* 2151 * NUL-terminate this option: unfortunately, 2152 * mount options form a comma-separated list, 2153 * but mpol's nodelist may also contain commas. 2154 */ 2155 options = strchr(options, ','); 2156 if (options == NULL) 2157 break; 2158 options++; 2159 if (!isdigit(*options)) { 2160 options[-1] = '\0'; 2161 break; 2162 } 2163 } 2164 if (!*this_char) 2165 continue; 2166 if ((value = strchr(this_char,'=')) != NULL) { 2167 *value++ = 0; 2168 } else { 2169 printk(KERN_ERR 2170 "tmpfs: No value for mount option '%s'\n", 2171 this_char); 2172 return 1; 2173 } 2174 2175 if (!strcmp(this_char,"size")) { 2176 unsigned long long size; 2177 size = memparse(value,&rest); 2178 if (*rest == '%') { 2179 size <<= PAGE_SHIFT; 2180 size *= totalram_pages; 2181 do_div(size, 100); 2182 rest++; 2183 } 2184 if (*rest) 2185 goto bad_val; 2186 sbinfo->max_blocks = 2187 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2188 } else if (!strcmp(this_char,"nr_blocks")) { 2189 sbinfo->max_blocks = memparse(value, &rest); 2190 if (*rest) 2191 goto bad_val; 2192 } else if (!strcmp(this_char,"nr_inodes")) { 2193 sbinfo->max_inodes = memparse(value, &rest); 2194 if (*rest) 2195 goto bad_val; 2196 } else if (!strcmp(this_char,"mode")) { 2197 if (remount) 2198 continue; 2199 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2200 if (*rest) 2201 goto bad_val; 2202 } else if (!strcmp(this_char,"uid")) { 2203 if (remount) 2204 continue; 2205 sbinfo->uid = simple_strtoul(value, &rest, 0); 2206 if (*rest) 2207 goto bad_val; 2208 } else if (!strcmp(this_char,"gid")) { 2209 if (remount) 2210 continue; 2211 sbinfo->gid = simple_strtoul(value, &rest, 0); 2212 if (*rest) 2213 goto bad_val; 2214 } else if (!strcmp(this_char,"mpol")) { 2215 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2216 goto bad_val; 2217 } else { 2218 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2219 this_char); 2220 return 1; 2221 } 2222 } 2223 return 0; 2224 2225 bad_val: 2226 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2227 value, this_char); 2228 return 1; 2229 2230 } 2231 2232 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2233 { 2234 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2235 struct shmem_sb_info config = *sbinfo; 2236 unsigned long blocks; 2237 unsigned long inodes; 2238 int error = -EINVAL; 2239 2240 if (shmem_parse_options(data, &config, true)) 2241 return error; 2242 2243 spin_lock(&sbinfo->stat_lock); 2244 blocks = sbinfo->max_blocks - sbinfo->free_blocks; 2245 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2246 if (config.max_blocks < blocks) 2247 goto out; 2248 if (config.max_inodes < inodes) 2249 goto out; 2250 /* 2251 * Those tests also disallow limited->unlimited while any are in 2252 * use, so i_blocks will always be zero when max_blocks is zero; 2253 * but we must separately disallow unlimited->limited, because 2254 * in that case we have no record of how much is already in use. 2255 */ 2256 if (config.max_blocks && !sbinfo->max_blocks) 2257 goto out; 2258 if (config.max_inodes && !sbinfo->max_inodes) 2259 goto out; 2260 2261 error = 0; 2262 sbinfo->max_blocks = config.max_blocks; 2263 sbinfo->free_blocks = config.max_blocks - blocks; 2264 sbinfo->max_inodes = config.max_inodes; 2265 sbinfo->free_inodes = config.max_inodes - inodes; 2266 2267 mpol_put(sbinfo->mpol); 2268 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2269 out: 2270 spin_unlock(&sbinfo->stat_lock); 2271 return error; 2272 } 2273 2274 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) 2275 { 2276 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); 2277 2278 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2279 seq_printf(seq, ",size=%luk", 2280 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2281 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2282 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2283 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2284 seq_printf(seq, ",mode=%03o", sbinfo->mode); 2285 if (sbinfo->uid != 0) 2286 seq_printf(seq, ",uid=%u", sbinfo->uid); 2287 if (sbinfo->gid != 0) 2288 seq_printf(seq, ",gid=%u", sbinfo->gid); 2289 shmem_show_mpol(seq, sbinfo->mpol); 2290 return 0; 2291 } 2292 #endif /* CONFIG_TMPFS */ 2293 2294 static void shmem_put_super(struct super_block *sb) 2295 { 2296 kfree(sb->s_fs_info); 2297 sb->s_fs_info = NULL; 2298 } 2299 2300 static int shmem_fill_super(struct super_block *sb, 2301 void *data, int silent) 2302 { 2303 struct inode *inode; 2304 struct dentry *root; 2305 struct shmem_sb_info *sbinfo; 2306 int err = -ENOMEM; 2307 2308 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2309 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info), 2310 L1_CACHE_BYTES), GFP_KERNEL); 2311 if (!sbinfo) 2312 return -ENOMEM; 2313 2314 sbinfo->max_blocks = 0; 2315 sbinfo->max_inodes = 0; 2316 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2317 sbinfo->uid = current_fsuid(); 2318 sbinfo->gid = current_fsgid(); 2319 sbinfo->mpol = NULL; 2320 sb->s_fs_info = sbinfo; 2321 2322 #ifdef CONFIG_TMPFS 2323 /* 2324 * Per default we only allow half of the physical ram per 2325 * tmpfs instance, limiting inodes to one per page of lowmem; 2326 * but the internal instance is left unlimited. 2327 */ 2328 if (!(sb->s_flags & MS_NOUSER)) { 2329 sbinfo->max_blocks = shmem_default_max_blocks(); 2330 sbinfo->max_inodes = shmem_default_max_inodes(); 2331 if (shmem_parse_options(data, sbinfo, false)) { 2332 err = -EINVAL; 2333 goto failed; 2334 } 2335 } 2336 sb->s_export_op = &shmem_export_ops; 2337 #else 2338 sb->s_flags |= MS_NOUSER; 2339 #endif 2340 2341 spin_lock_init(&sbinfo->stat_lock); 2342 sbinfo->free_blocks = sbinfo->max_blocks; 2343 sbinfo->free_inodes = sbinfo->max_inodes; 2344 2345 sb->s_maxbytes = SHMEM_MAX_BYTES; 2346 sb->s_blocksize = PAGE_CACHE_SIZE; 2347 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2348 sb->s_magic = TMPFS_MAGIC; 2349 sb->s_op = &shmem_ops; 2350 sb->s_time_gran = 1; 2351 #ifdef CONFIG_TMPFS_POSIX_ACL 2352 sb->s_xattr = shmem_xattr_handlers; 2353 sb->s_flags |= MS_POSIXACL; 2354 #endif 2355 2356 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2357 if (!inode) 2358 goto failed; 2359 inode->i_uid = sbinfo->uid; 2360 inode->i_gid = sbinfo->gid; 2361 root = d_alloc_root(inode); 2362 if (!root) 2363 goto failed_iput; 2364 sb->s_root = root; 2365 return 0; 2366 2367 failed_iput: 2368 iput(inode); 2369 failed: 2370 shmem_put_super(sb); 2371 return err; 2372 } 2373 2374 static struct kmem_cache *shmem_inode_cachep; 2375 2376 static struct inode *shmem_alloc_inode(struct super_block *sb) 2377 { 2378 struct shmem_inode_info *p; 2379 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2380 if (!p) 2381 return NULL; 2382 return &p->vfs_inode; 2383 } 2384 2385 static void shmem_destroy_inode(struct inode *inode) 2386 { 2387 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2388 /* only struct inode is valid if it's an inline symlink */ 2389 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2390 } 2391 shmem_acl_destroy_inode(inode); 2392 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2393 } 2394 2395 static void init_once(void *foo) 2396 { 2397 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2398 2399 inode_init_once(&p->vfs_inode); 2400 #ifdef CONFIG_TMPFS_POSIX_ACL 2401 p->i_acl = NULL; 2402 p->i_default_acl = NULL; 2403 #endif 2404 } 2405 2406 static int init_inodecache(void) 2407 { 2408 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2409 sizeof(struct shmem_inode_info), 2410 0, SLAB_PANIC, init_once); 2411 return 0; 2412 } 2413 2414 static void destroy_inodecache(void) 2415 { 2416 kmem_cache_destroy(shmem_inode_cachep); 2417 } 2418 2419 static const struct address_space_operations shmem_aops = { 2420 .writepage = shmem_writepage, 2421 .set_page_dirty = __set_page_dirty_no_writeback, 2422 #ifdef CONFIG_TMPFS 2423 .readpage = shmem_readpage, 2424 .write_begin = shmem_write_begin, 2425 .write_end = shmem_write_end, 2426 #endif 2427 .migratepage = migrate_page, 2428 }; 2429 2430 static const struct file_operations shmem_file_operations = { 2431 .mmap = shmem_mmap, 2432 #ifdef CONFIG_TMPFS 2433 .llseek = generic_file_llseek, 2434 .read = do_sync_read, 2435 .write = do_sync_write, 2436 .aio_read = shmem_file_aio_read, 2437 .aio_write = generic_file_aio_write, 2438 .fsync = simple_sync_file, 2439 .splice_read = generic_file_splice_read, 2440 .splice_write = generic_file_splice_write, 2441 #endif 2442 }; 2443 2444 static const struct inode_operations shmem_inode_operations = { 2445 .truncate = shmem_truncate, 2446 .setattr = shmem_notify_change, 2447 .truncate_range = shmem_truncate_range, 2448 #ifdef CONFIG_TMPFS_POSIX_ACL 2449 .setxattr = generic_setxattr, 2450 .getxattr = generic_getxattr, 2451 .listxattr = generic_listxattr, 2452 .removexattr = generic_removexattr, 2453 .permission = shmem_permission, 2454 #endif 2455 2456 }; 2457 2458 static const struct inode_operations shmem_dir_inode_operations = { 2459 #ifdef CONFIG_TMPFS 2460 .create = shmem_create, 2461 .lookup = simple_lookup, 2462 .link = shmem_link, 2463 .unlink = shmem_unlink, 2464 .symlink = shmem_symlink, 2465 .mkdir = shmem_mkdir, 2466 .rmdir = shmem_rmdir, 2467 .mknod = shmem_mknod, 2468 .rename = shmem_rename, 2469 #endif 2470 #ifdef CONFIG_TMPFS_POSIX_ACL 2471 .setattr = shmem_notify_change, 2472 .setxattr = generic_setxattr, 2473 .getxattr = generic_getxattr, 2474 .listxattr = generic_listxattr, 2475 .removexattr = generic_removexattr, 2476 .permission = shmem_permission, 2477 #endif 2478 }; 2479 2480 static const struct inode_operations shmem_special_inode_operations = { 2481 #ifdef CONFIG_TMPFS_POSIX_ACL 2482 .setattr = shmem_notify_change, 2483 .setxattr = generic_setxattr, 2484 .getxattr = generic_getxattr, 2485 .listxattr = generic_listxattr, 2486 .removexattr = generic_removexattr, 2487 .permission = shmem_permission, 2488 #endif 2489 }; 2490 2491 static const struct super_operations shmem_ops = { 2492 .alloc_inode = shmem_alloc_inode, 2493 .destroy_inode = shmem_destroy_inode, 2494 #ifdef CONFIG_TMPFS 2495 .statfs = shmem_statfs, 2496 .remount_fs = shmem_remount_fs, 2497 .show_options = shmem_show_options, 2498 #endif 2499 .delete_inode = shmem_delete_inode, 2500 .drop_inode = generic_delete_inode, 2501 .put_super = shmem_put_super, 2502 }; 2503 2504 static struct vm_operations_struct shmem_vm_ops = { 2505 .fault = shmem_fault, 2506 #ifdef CONFIG_NUMA 2507 .set_policy = shmem_set_policy, 2508 .get_policy = shmem_get_policy, 2509 #endif 2510 }; 2511 2512 2513 static int shmem_get_sb(struct file_system_type *fs_type, 2514 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2515 { 2516 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); 2517 } 2518 2519 static struct file_system_type tmpfs_fs_type = { 2520 .owner = THIS_MODULE, 2521 .name = "tmpfs", 2522 .get_sb = shmem_get_sb, 2523 .kill_sb = kill_litter_super, 2524 }; 2525 2526 static int __init init_tmpfs(void) 2527 { 2528 int error; 2529 2530 error = bdi_init(&shmem_backing_dev_info); 2531 if (error) 2532 goto out4; 2533 2534 error = init_inodecache(); 2535 if (error) 2536 goto out3; 2537 2538 error = register_filesystem(&tmpfs_fs_type); 2539 if (error) { 2540 printk(KERN_ERR "Could not register tmpfs\n"); 2541 goto out2; 2542 } 2543 2544 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2545 tmpfs_fs_type.name, NULL); 2546 if (IS_ERR(shm_mnt)) { 2547 error = PTR_ERR(shm_mnt); 2548 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2549 goto out1; 2550 } 2551 return 0; 2552 2553 out1: 2554 unregister_filesystem(&tmpfs_fs_type); 2555 out2: 2556 destroy_inodecache(); 2557 out3: 2558 bdi_destroy(&shmem_backing_dev_info); 2559 out4: 2560 shm_mnt = ERR_PTR(error); 2561 return error; 2562 } 2563 2564 #else /* !CONFIG_SHMEM */ 2565 2566 /* 2567 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2568 * 2569 * This is intended for small system where the benefits of the full 2570 * shmem code (swap-backed and resource-limited) are outweighed by 2571 * their complexity. On systems without swap this code should be 2572 * effectively equivalent, but much lighter weight. 2573 */ 2574 2575 #include <linux/ramfs.h> 2576 2577 static struct file_system_type tmpfs_fs_type = { 2578 .name = "tmpfs", 2579 .get_sb = ramfs_get_sb, 2580 .kill_sb = kill_litter_super, 2581 }; 2582 2583 static int __init init_tmpfs(void) 2584 { 2585 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0); 2586 2587 shm_mnt = kern_mount(&tmpfs_fs_type); 2588 BUG_ON(IS_ERR(shm_mnt)); 2589 2590 return 0; 2591 } 2592 2593 int shmem_unuse(swp_entry_t entry, struct page *page) 2594 { 2595 return 0; 2596 } 2597 2598 #define shmem_vm_ops generic_file_vm_ops 2599 #define shmem_file_operations ramfs_file_operations 2600 #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev) 2601 #define shmem_acct_size(flags, size) 0 2602 #define shmem_unacct_size(flags, size) do {} while (0) 2603 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE 2604 2605 #endif /* CONFIG_SHMEM */ 2606 2607 /* common code */ 2608 2609 /** 2610 * shmem_file_setup - get an unlinked file living in tmpfs 2611 * @name: name for dentry (to be seen in /proc/<pid>/maps 2612 * @size: size to be set for the file 2613 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2614 */ 2615 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags) 2616 { 2617 int error; 2618 struct file *file; 2619 struct inode *inode; 2620 struct dentry *dentry, *root; 2621 struct qstr this; 2622 2623 if (IS_ERR(shm_mnt)) 2624 return (void *)shm_mnt; 2625 2626 if (size < 0 || size > SHMEM_MAX_BYTES) 2627 return ERR_PTR(-EINVAL); 2628 2629 if (shmem_acct_size(flags, size)) 2630 return ERR_PTR(-ENOMEM); 2631 2632 error = -ENOMEM; 2633 this.name = name; 2634 this.len = strlen(name); 2635 this.hash = 0; /* will go */ 2636 root = shm_mnt->mnt_root; 2637 dentry = d_alloc(root, &this); 2638 if (!dentry) 2639 goto put_memory; 2640 2641 error = -ENFILE; 2642 file = get_empty_filp(); 2643 if (!file) 2644 goto put_dentry; 2645 2646 error = -ENOSPC; 2647 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags); 2648 if (!inode) 2649 goto close_file; 2650 2651 d_instantiate(dentry, inode); 2652 inode->i_size = size; 2653 inode->i_nlink = 0; /* It is unlinked */ 2654 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ, 2655 &shmem_file_operations); 2656 2657 #ifndef CONFIG_MMU 2658 error = ramfs_nommu_expand_for_mapping(inode, size); 2659 if (error) 2660 goto close_file; 2661 #endif 2662 ima_counts_get(file); 2663 return file; 2664 2665 close_file: 2666 put_filp(file); 2667 put_dentry: 2668 dput(dentry); 2669 put_memory: 2670 shmem_unacct_size(flags, size); 2671 return ERR_PTR(error); 2672 } 2673 EXPORT_SYMBOL_GPL(shmem_file_setup); 2674 2675 /** 2676 * shmem_zero_setup - setup a shared anonymous mapping 2677 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2678 */ 2679 int shmem_zero_setup(struct vm_area_struct *vma) 2680 { 2681 struct file *file; 2682 loff_t size = vma->vm_end - vma->vm_start; 2683 2684 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2685 if (IS_ERR(file)) 2686 return PTR_ERR(file); 2687 2688 if (vma->vm_file) 2689 fput(vma->vm_file); 2690 vma->vm_file = file; 2691 vma->vm_ops = &shmem_vm_ops; 2692 return 0; 2693 } 2694 2695 module_init(init_tmpfs) 2696