1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 42 static struct vfsmount *shm_mnt; 43 44 #ifdef CONFIG_SHMEM 45 /* 46 * This virtual memory filesystem is heavily based on the ramfs. It 47 * extends ramfs by the ability to use swap and honor resource limits 48 * which makes it a completely usable filesystem. 49 */ 50 51 #include <linux/xattr.h> 52 #include <linux/exportfs.h> 53 #include <linux/posix_acl.h> 54 #include <linux/posix_acl_xattr.h> 55 #include <linux/mman.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/backing-dev.h> 59 #include <linux/shmem_fs.h> 60 #include <linux/writeback.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 83 #include "internal.h" 84 85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 87 88 /* Pretend that each entry is of this size in directory's i_size */ 89 #define BOGO_DIRENT_SIZE 20 90 91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 92 #define SHORT_SYMLINK_LEN 128 93 94 /* 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 96 * inode->i_private (with i_rwsem making sure that it has only one user at 97 * a time): we would prefer not to enlarge the shmem inode just for that. 98 */ 99 struct shmem_falloc { 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 101 pgoff_t start; /* start of range currently being fallocated */ 102 pgoff_t next; /* the next page offset to be fallocated */ 103 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 105 }; 106 107 struct shmem_options { 108 unsigned long long blocks; 109 unsigned long long inodes; 110 struct mempolicy *mpol; 111 kuid_t uid; 112 kgid_t gid; 113 umode_t mode; 114 bool full_inums; 115 int huge; 116 int seen; 117 #define SHMEM_SEEN_BLOCKS 1 118 #define SHMEM_SEEN_INODES 2 119 #define SHMEM_SEEN_HUGE 4 120 #define SHMEM_SEEN_INUMS 8 121 }; 122 123 #ifdef CONFIG_TMPFS 124 static unsigned long shmem_default_max_blocks(void) 125 { 126 return totalram_pages() / 2; 127 } 128 129 static unsigned long shmem_default_max_inodes(void) 130 { 131 unsigned long nr_pages = totalram_pages(); 132 133 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 134 } 135 #endif 136 137 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 138 struct page **pagep, enum sgp_type sgp, 139 gfp_t gfp, struct vm_area_struct *vma, 140 vm_fault_t *fault_type); 141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 142 struct page **pagep, enum sgp_type sgp, 143 gfp_t gfp, struct vm_area_struct *vma, 144 struct vm_fault *vmf, vm_fault_t *fault_type); 145 146 int shmem_getpage(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp) 148 { 149 return shmem_getpage_gfp(inode, index, pagep, sgp, 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 151 } 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 215 if (shmem_acct_block(info->flags, pages)) 216 return false; 217 218 if (sbinfo->max_blocks) { 219 if (percpu_counter_compare(&sbinfo->used_blocks, 220 sbinfo->max_blocks - pages) > 0) 221 goto unacct; 222 percpu_counter_add(&sbinfo->used_blocks, pages); 223 } 224 225 return true; 226 227 unacct: 228 shmem_unacct_blocks(info->flags, pages); 229 return false; 230 } 231 232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 233 { 234 struct shmem_inode_info *info = SHMEM_I(inode); 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 237 if (sbinfo->max_blocks) 238 percpu_counter_sub(&sbinfo->used_blocks, pages); 239 shmem_unacct_blocks(info->flags, pages); 240 } 241 242 static const struct super_operations shmem_ops; 243 const struct address_space_operations shmem_aops; 244 static const struct file_operations shmem_file_operations; 245 static const struct inode_operations shmem_inode_operations; 246 static const struct inode_operations shmem_dir_inode_operations; 247 static const struct inode_operations shmem_special_inode_operations; 248 static const struct vm_operations_struct shmem_vm_ops; 249 static struct file_system_type shmem_fs_type; 250 251 bool vma_is_shmem(struct vm_area_struct *vma) 252 { 253 return vma->vm_ops == &shmem_vm_ops; 254 } 255 256 static LIST_HEAD(shmem_swaplist); 257 static DEFINE_MUTEX(shmem_swaplist_mutex); 258 259 /* 260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 261 * produces a novel ino for the newly allocated inode. 262 * 263 * It may also be called when making a hard link to permit the space needed by 264 * each dentry. However, in that case, no new inode number is needed since that 265 * internally draws from another pool of inode numbers (currently global 266 * get_next_ino()). This case is indicated by passing NULL as inop. 267 */ 268 #define SHMEM_INO_BATCH 1024 269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 270 { 271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 272 ino_t ino; 273 274 if (!(sb->s_flags & SB_KERNMOUNT)) { 275 raw_spin_lock(&sbinfo->stat_lock); 276 if (sbinfo->max_inodes) { 277 if (!sbinfo->free_inodes) { 278 raw_spin_unlock(&sbinfo->stat_lock); 279 return -ENOSPC; 280 } 281 sbinfo->free_inodes--; 282 } 283 if (inop) { 284 ino = sbinfo->next_ino++; 285 if (unlikely(is_zero_ino(ino))) 286 ino = sbinfo->next_ino++; 287 if (unlikely(!sbinfo->full_inums && 288 ino > UINT_MAX)) { 289 /* 290 * Emulate get_next_ino uint wraparound for 291 * compatibility 292 */ 293 if (IS_ENABLED(CONFIG_64BIT)) 294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 295 __func__, MINOR(sb->s_dev)); 296 sbinfo->next_ino = 1; 297 ino = sbinfo->next_ino++; 298 } 299 *inop = ino; 300 } 301 raw_spin_unlock(&sbinfo->stat_lock); 302 } else if (inop) { 303 /* 304 * __shmem_file_setup, one of our callers, is lock-free: it 305 * doesn't hold stat_lock in shmem_reserve_inode since 306 * max_inodes is always 0, and is called from potentially 307 * unknown contexts. As such, use a per-cpu batched allocator 308 * which doesn't require the per-sb stat_lock unless we are at 309 * the batch boundary. 310 * 311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 312 * shmem mounts are not exposed to userspace, so we don't need 313 * to worry about things like glibc compatibility. 314 */ 315 ino_t *next_ino; 316 317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 318 ino = *next_ino; 319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 320 raw_spin_lock(&sbinfo->stat_lock); 321 ino = sbinfo->next_ino; 322 sbinfo->next_ino += SHMEM_INO_BATCH; 323 raw_spin_unlock(&sbinfo->stat_lock); 324 if (unlikely(is_zero_ino(ino))) 325 ino++; 326 } 327 *inop = ino; 328 *next_ino = ++ino; 329 put_cpu(); 330 } 331 332 return 0; 333 } 334 335 static void shmem_free_inode(struct super_block *sb) 336 { 337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 338 if (sbinfo->max_inodes) { 339 raw_spin_lock(&sbinfo->stat_lock); 340 sbinfo->free_inodes++; 341 raw_spin_unlock(&sbinfo->stat_lock); 342 } 343 } 344 345 /** 346 * shmem_recalc_inode - recalculate the block usage of an inode 347 * @inode: inode to recalc 348 * 349 * We have to calculate the free blocks since the mm can drop 350 * undirtied hole pages behind our back. 351 * 352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 354 * 355 * It has to be called with the spinlock held. 356 */ 357 static void shmem_recalc_inode(struct inode *inode) 358 { 359 struct shmem_inode_info *info = SHMEM_I(inode); 360 long freed; 361 362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 363 if (freed > 0) { 364 info->alloced -= freed; 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 366 shmem_inode_unacct_blocks(inode, freed); 367 } 368 } 369 370 bool shmem_charge(struct inode *inode, long pages) 371 { 372 struct shmem_inode_info *info = SHMEM_I(inode); 373 unsigned long flags; 374 375 if (!shmem_inode_acct_block(inode, pages)) 376 return false; 377 378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 379 inode->i_mapping->nrpages += pages; 380 381 spin_lock_irqsave(&info->lock, flags); 382 info->alloced += pages; 383 inode->i_blocks += pages * BLOCKS_PER_PAGE; 384 shmem_recalc_inode(inode); 385 spin_unlock_irqrestore(&info->lock, flags); 386 387 return true; 388 } 389 390 void shmem_uncharge(struct inode *inode, long pages) 391 { 392 struct shmem_inode_info *info = SHMEM_I(inode); 393 unsigned long flags; 394 395 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 396 397 spin_lock_irqsave(&info->lock, flags); 398 info->alloced -= pages; 399 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 400 shmem_recalc_inode(inode); 401 spin_unlock_irqrestore(&info->lock, flags); 402 403 shmem_inode_unacct_blocks(inode, pages); 404 } 405 406 /* 407 * Replace item expected in xarray by a new item, while holding xa_lock. 408 */ 409 static int shmem_replace_entry(struct address_space *mapping, 410 pgoff_t index, void *expected, void *replacement) 411 { 412 XA_STATE(xas, &mapping->i_pages, index); 413 void *item; 414 415 VM_BUG_ON(!expected); 416 VM_BUG_ON(!replacement); 417 item = xas_load(&xas); 418 if (item != expected) 419 return -ENOENT; 420 xas_store(&xas, replacement); 421 return 0; 422 } 423 424 /* 425 * Sometimes, before we decide whether to proceed or to fail, we must check 426 * that an entry was not already brought back from swap by a racing thread. 427 * 428 * Checking page is not enough: by the time a SwapCache page is locked, it 429 * might be reused, and again be SwapCache, using the same swap as before. 430 */ 431 static bool shmem_confirm_swap(struct address_space *mapping, 432 pgoff_t index, swp_entry_t swap) 433 { 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 435 } 436 437 /* 438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 439 * 440 * SHMEM_HUGE_NEVER: 441 * disables huge pages for the mount; 442 * SHMEM_HUGE_ALWAYS: 443 * enables huge pages for the mount; 444 * SHMEM_HUGE_WITHIN_SIZE: 445 * only allocate huge pages if the page will be fully within i_size, 446 * also respect fadvise()/madvise() hints; 447 * SHMEM_HUGE_ADVISE: 448 * only allocate huge pages if requested with fadvise()/madvise(); 449 */ 450 451 #define SHMEM_HUGE_NEVER 0 452 #define SHMEM_HUGE_ALWAYS 1 453 #define SHMEM_HUGE_WITHIN_SIZE 2 454 #define SHMEM_HUGE_ADVISE 3 455 456 /* 457 * Special values. 458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 459 * 460 * SHMEM_HUGE_DENY: 461 * disables huge on shm_mnt and all mounts, for emergency use; 462 * SHMEM_HUGE_FORCE: 463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 464 * 465 */ 466 #define SHMEM_HUGE_DENY (-1) 467 #define SHMEM_HUGE_FORCE (-2) 468 469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 470 /* ifdef here to avoid bloating shmem.o when not necessary */ 471 472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 473 474 bool shmem_is_huge(struct vm_area_struct *vma, 475 struct inode *inode, pgoff_t index) 476 { 477 loff_t i_size; 478 479 if (shmem_huge == SHMEM_HUGE_DENY) 480 return false; 481 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 482 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 483 return false; 484 if (shmem_huge == SHMEM_HUGE_FORCE) 485 return true; 486 487 switch (SHMEM_SB(inode->i_sb)->huge) { 488 case SHMEM_HUGE_ALWAYS: 489 return true; 490 case SHMEM_HUGE_WITHIN_SIZE: 491 index = round_up(index + 1, HPAGE_PMD_NR); 492 i_size = round_up(i_size_read(inode), PAGE_SIZE); 493 if (i_size >> PAGE_SHIFT >= index) 494 return true; 495 fallthrough; 496 case SHMEM_HUGE_ADVISE: 497 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 498 return true; 499 fallthrough; 500 default: 501 return false; 502 } 503 } 504 505 #if defined(CONFIG_SYSFS) 506 static int shmem_parse_huge(const char *str) 507 { 508 if (!strcmp(str, "never")) 509 return SHMEM_HUGE_NEVER; 510 if (!strcmp(str, "always")) 511 return SHMEM_HUGE_ALWAYS; 512 if (!strcmp(str, "within_size")) 513 return SHMEM_HUGE_WITHIN_SIZE; 514 if (!strcmp(str, "advise")) 515 return SHMEM_HUGE_ADVISE; 516 if (!strcmp(str, "deny")) 517 return SHMEM_HUGE_DENY; 518 if (!strcmp(str, "force")) 519 return SHMEM_HUGE_FORCE; 520 return -EINVAL; 521 } 522 #endif 523 524 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 525 static const char *shmem_format_huge(int huge) 526 { 527 switch (huge) { 528 case SHMEM_HUGE_NEVER: 529 return "never"; 530 case SHMEM_HUGE_ALWAYS: 531 return "always"; 532 case SHMEM_HUGE_WITHIN_SIZE: 533 return "within_size"; 534 case SHMEM_HUGE_ADVISE: 535 return "advise"; 536 case SHMEM_HUGE_DENY: 537 return "deny"; 538 case SHMEM_HUGE_FORCE: 539 return "force"; 540 default: 541 VM_BUG_ON(1); 542 return "bad_val"; 543 } 544 } 545 #endif 546 547 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 548 struct shrink_control *sc, unsigned long nr_to_split) 549 { 550 LIST_HEAD(list), *pos, *next; 551 LIST_HEAD(to_remove); 552 struct inode *inode; 553 struct shmem_inode_info *info; 554 struct page *page; 555 unsigned long batch = sc ? sc->nr_to_scan : 128; 556 int split = 0; 557 558 if (list_empty(&sbinfo->shrinklist)) 559 return SHRINK_STOP; 560 561 spin_lock(&sbinfo->shrinklist_lock); 562 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 563 info = list_entry(pos, struct shmem_inode_info, shrinklist); 564 565 /* pin the inode */ 566 inode = igrab(&info->vfs_inode); 567 568 /* inode is about to be evicted */ 569 if (!inode) { 570 list_del_init(&info->shrinklist); 571 goto next; 572 } 573 574 /* Check if there's anything to gain */ 575 if (round_up(inode->i_size, PAGE_SIZE) == 576 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 577 list_move(&info->shrinklist, &to_remove); 578 goto next; 579 } 580 581 list_move(&info->shrinklist, &list); 582 next: 583 sbinfo->shrinklist_len--; 584 if (!--batch) 585 break; 586 } 587 spin_unlock(&sbinfo->shrinklist_lock); 588 589 list_for_each_safe(pos, next, &to_remove) { 590 info = list_entry(pos, struct shmem_inode_info, shrinklist); 591 inode = &info->vfs_inode; 592 list_del_init(&info->shrinklist); 593 iput(inode); 594 } 595 596 list_for_each_safe(pos, next, &list) { 597 int ret; 598 599 info = list_entry(pos, struct shmem_inode_info, shrinklist); 600 inode = &info->vfs_inode; 601 602 if (nr_to_split && split >= nr_to_split) 603 goto move_back; 604 605 page = find_get_page(inode->i_mapping, 606 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 607 if (!page) 608 goto drop; 609 610 /* No huge page at the end of the file: nothing to split */ 611 if (!PageTransHuge(page)) { 612 put_page(page); 613 goto drop; 614 } 615 616 /* 617 * Move the inode on the list back to shrinklist if we failed 618 * to lock the page at this time. 619 * 620 * Waiting for the lock may lead to deadlock in the 621 * reclaim path. 622 */ 623 if (!trylock_page(page)) { 624 put_page(page); 625 goto move_back; 626 } 627 628 ret = split_huge_page(page); 629 unlock_page(page); 630 put_page(page); 631 632 /* If split failed move the inode on the list back to shrinklist */ 633 if (ret) 634 goto move_back; 635 636 split++; 637 drop: 638 list_del_init(&info->shrinklist); 639 goto put; 640 move_back: 641 /* 642 * Make sure the inode is either on the global list or deleted 643 * from any local list before iput() since it could be deleted 644 * in another thread once we put the inode (then the local list 645 * is corrupted). 646 */ 647 spin_lock(&sbinfo->shrinklist_lock); 648 list_move(&info->shrinklist, &sbinfo->shrinklist); 649 sbinfo->shrinklist_len++; 650 spin_unlock(&sbinfo->shrinklist_lock); 651 put: 652 iput(inode); 653 } 654 655 return split; 656 } 657 658 static long shmem_unused_huge_scan(struct super_block *sb, 659 struct shrink_control *sc) 660 { 661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 662 663 if (!READ_ONCE(sbinfo->shrinklist_len)) 664 return SHRINK_STOP; 665 666 return shmem_unused_huge_shrink(sbinfo, sc, 0); 667 } 668 669 static long shmem_unused_huge_count(struct super_block *sb, 670 struct shrink_control *sc) 671 { 672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 673 return READ_ONCE(sbinfo->shrinklist_len); 674 } 675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 676 677 #define shmem_huge SHMEM_HUGE_DENY 678 679 bool shmem_is_huge(struct vm_area_struct *vma, 680 struct inode *inode, pgoff_t index) 681 { 682 return false; 683 } 684 685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 686 struct shrink_control *sc, unsigned long nr_to_split) 687 { 688 return 0; 689 } 690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 691 692 /* 693 * Like add_to_page_cache_locked, but error if expected item has gone. 694 */ 695 static int shmem_add_to_page_cache(struct page *page, 696 struct address_space *mapping, 697 pgoff_t index, void *expected, gfp_t gfp, 698 struct mm_struct *charge_mm) 699 { 700 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 701 unsigned long nr = compound_nr(page); 702 int error; 703 704 VM_BUG_ON_PAGE(PageTail(page), page); 705 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 706 VM_BUG_ON_PAGE(!PageLocked(page), page); 707 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 708 VM_BUG_ON(expected && PageTransHuge(page)); 709 710 page_ref_add(page, nr); 711 page->mapping = mapping; 712 page->index = index; 713 714 if (!PageSwapCache(page)) { 715 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp); 716 if (error) { 717 if (PageTransHuge(page)) { 718 count_vm_event(THP_FILE_FALLBACK); 719 count_vm_event(THP_FILE_FALLBACK_CHARGE); 720 } 721 goto error; 722 } 723 } 724 cgroup_throttle_swaprate(page, gfp); 725 726 do { 727 xas_lock_irq(&xas); 728 if (expected != xas_find_conflict(&xas)) { 729 xas_set_err(&xas, -EEXIST); 730 goto unlock; 731 } 732 if (expected && xas_find_conflict(&xas)) { 733 xas_set_err(&xas, -EEXIST); 734 goto unlock; 735 } 736 xas_store(&xas, page); 737 if (xas_error(&xas)) 738 goto unlock; 739 if (PageTransHuge(page)) { 740 count_vm_event(THP_FILE_ALLOC); 741 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 742 } 743 mapping->nrpages += nr; 744 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 745 __mod_lruvec_page_state(page, NR_SHMEM, nr); 746 unlock: 747 xas_unlock_irq(&xas); 748 } while (xas_nomem(&xas, gfp)); 749 750 if (xas_error(&xas)) { 751 error = xas_error(&xas); 752 goto error; 753 } 754 755 return 0; 756 error: 757 page->mapping = NULL; 758 page_ref_sub(page, nr); 759 return error; 760 } 761 762 /* 763 * Like delete_from_page_cache, but substitutes swap for page. 764 */ 765 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 766 { 767 struct address_space *mapping = page->mapping; 768 int error; 769 770 VM_BUG_ON_PAGE(PageCompound(page), page); 771 772 xa_lock_irq(&mapping->i_pages); 773 error = shmem_replace_entry(mapping, page->index, page, radswap); 774 page->mapping = NULL; 775 mapping->nrpages--; 776 __dec_lruvec_page_state(page, NR_FILE_PAGES); 777 __dec_lruvec_page_state(page, NR_SHMEM); 778 xa_unlock_irq(&mapping->i_pages); 779 put_page(page); 780 BUG_ON(error); 781 } 782 783 /* 784 * Remove swap entry from page cache, free the swap and its page cache. 785 */ 786 static int shmem_free_swap(struct address_space *mapping, 787 pgoff_t index, void *radswap) 788 { 789 void *old; 790 791 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 792 if (old != radswap) 793 return -ENOENT; 794 free_swap_and_cache(radix_to_swp_entry(radswap)); 795 return 0; 796 } 797 798 /* 799 * Determine (in bytes) how many of the shmem object's pages mapped by the 800 * given offsets are swapped out. 801 * 802 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 803 * as long as the inode doesn't go away and racy results are not a problem. 804 */ 805 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 806 pgoff_t start, pgoff_t end) 807 { 808 XA_STATE(xas, &mapping->i_pages, start); 809 struct page *page; 810 unsigned long swapped = 0; 811 812 rcu_read_lock(); 813 xas_for_each(&xas, page, end - 1) { 814 if (xas_retry(&xas, page)) 815 continue; 816 if (xa_is_value(page)) 817 swapped++; 818 819 if (need_resched()) { 820 xas_pause(&xas); 821 cond_resched_rcu(); 822 } 823 } 824 825 rcu_read_unlock(); 826 827 return swapped << PAGE_SHIFT; 828 } 829 830 /* 831 * Determine (in bytes) how many of the shmem object's pages mapped by the 832 * given vma is swapped out. 833 * 834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 835 * as long as the inode doesn't go away and racy results are not a problem. 836 */ 837 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 838 { 839 struct inode *inode = file_inode(vma->vm_file); 840 struct shmem_inode_info *info = SHMEM_I(inode); 841 struct address_space *mapping = inode->i_mapping; 842 unsigned long swapped; 843 844 /* Be careful as we don't hold info->lock */ 845 swapped = READ_ONCE(info->swapped); 846 847 /* 848 * The easier cases are when the shmem object has nothing in swap, or 849 * the vma maps it whole. Then we can simply use the stats that we 850 * already track. 851 */ 852 if (!swapped) 853 return 0; 854 855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 856 return swapped << PAGE_SHIFT; 857 858 /* Here comes the more involved part */ 859 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 860 vma->vm_pgoff + vma_pages(vma)); 861 } 862 863 /* 864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 865 */ 866 void shmem_unlock_mapping(struct address_space *mapping) 867 { 868 struct pagevec pvec; 869 pgoff_t index = 0; 870 871 pagevec_init(&pvec); 872 /* 873 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 874 */ 875 while (!mapping_unevictable(mapping)) { 876 if (!pagevec_lookup(&pvec, mapping, &index)) 877 break; 878 check_move_unevictable_pages(&pvec); 879 pagevec_release(&pvec); 880 cond_resched(); 881 } 882 } 883 884 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 885 { 886 struct folio *folio; 887 struct page *page; 888 889 /* 890 * At first avoid shmem_getpage(,,,SGP_READ): that fails 891 * beyond i_size, and reports fallocated pages as holes. 892 */ 893 folio = __filemap_get_folio(inode->i_mapping, index, 894 FGP_ENTRY | FGP_LOCK, 0); 895 if (!xa_is_value(folio)) 896 return folio; 897 /* 898 * But read a page back from swap if any of it is within i_size 899 * (although in some cases this is just a waste of time). 900 */ 901 page = NULL; 902 shmem_getpage(inode, index, &page, SGP_READ); 903 return page ? page_folio(page) : NULL; 904 } 905 906 /* 907 * Remove range of pages and swap entries from page cache, and free them. 908 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 909 */ 910 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 911 bool unfalloc) 912 { 913 struct address_space *mapping = inode->i_mapping; 914 struct shmem_inode_info *info = SHMEM_I(inode); 915 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 916 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 917 struct folio_batch fbatch; 918 pgoff_t indices[PAGEVEC_SIZE]; 919 struct folio *folio; 920 bool same_folio; 921 long nr_swaps_freed = 0; 922 pgoff_t index; 923 int i; 924 925 if (lend == -1) 926 end = -1; /* unsigned, so actually very big */ 927 928 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 929 info->fallocend = start; 930 931 folio_batch_init(&fbatch); 932 index = start; 933 while (index < end && find_lock_entries(mapping, index, end - 1, 934 &fbatch, indices)) { 935 for (i = 0; i < folio_batch_count(&fbatch); i++) { 936 folio = fbatch.folios[i]; 937 938 index = indices[i]; 939 940 if (xa_is_value(folio)) { 941 if (unfalloc) 942 continue; 943 nr_swaps_freed += !shmem_free_swap(mapping, 944 index, folio); 945 continue; 946 } 947 index += folio_nr_pages(folio) - 1; 948 949 if (!unfalloc || !folio_test_uptodate(folio)) 950 truncate_inode_folio(mapping, folio); 951 folio_unlock(folio); 952 } 953 folio_batch_remove_exceptionals(&fbatch); 954 folio_batch_release(&fbatch); 955 cond_resched(); 956 index++; 957 } 958 959 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 960 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 961 if (folio) { 962 same_folio = lend < folio_pos(folio) + folio_size(folio); 963 folio_mark_dirty(folio); 964 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 965 start = folio->index + folio_nr_pages(folio); 966 if (same_folio) 967 end = folio->index; 968 } 969 folio_unlock(folio); 970 folio_put(folio); 971 folio = NULL; 972 } 973 974 if (!same_folio) 975 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 976 if (folio) { 977 folio_mark_dirty(folio); 978 if (!truncate_inode_partial_folio(folio, lstart, lend)) 979 end = folio->index; 980 folio_unlock(folio); 981 folio_put(folio); 982 } 983 984 index = start; 985 while (index < end) { 986 cond_resched(); 987 988 if (!find_get_entries(mapping, index, end - 1, &fbatch, 989 indices)) { 990 /* If all gone or hole-punch or unfalloc, we're done */ 991 if (index == start || end != -1) 992 break; 993 /* But if truncating, restart to make sure all gone */ 994 index = start; 995 continue; 996 } 997 for (i = 0; i < folio_batch_count(&fbatch); i++) { 998 folio = fbatch.folios[i]; 999 1000 index = indices[i]; 1001 if (xa_is_value(folio)) { 1002 if (unfalloc) 1003 continue; 1004 if (shmem_free_swap(mapping, index, folio)) { 1005 /* Swap was replaced by page: retry */ 1006 index--; 1007 break; 1008 } 1009 nr_swaps_freed++; 1010 continue; 1011 } 1012 1013 folio_lock(folio); 1014 1015 if (!unfalloc || !folio_test_uptodate(folio)) { 1016 if (folio_mapping(folio) != mapping) { 1017 /* Page was replaced by swap: retry */ 1018 folio_unlock(folio); 1019 index--; 1020 break; 1021 } 1022 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1023 folio); 1024 truncate_inode_folio(mapping, folio); 1025 } 1026 index = folio->index + folio_nr_pages(folio) - 1; 1027 folio_unlock(folio); 1028 } 1029 folio_batch_remove_exceptionals(&fbatch); 1030 folio_batch_release(&fbatch); 1031 index++; 1032 } 1033 1034 spin_lock_irq(&info->lock); 1035 info->swapped -= nr_swaps_freed; 1036 shmem_recalc_inode(inode); 1037 spin_unlock_irq(&info->lock); 1038 } 1039 1040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1041 { 1042 shmem_undo_range(inode, lstart, lend, false); 1043 inode->i_ctime = inode->i_mtime = current_time(inode); 1044 } 1045 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1046 1047 static int shmem_getattr(struct user_namespace *mnt_userns, 1048 const struct path *path, struct kstat *stat, 1049 u32 request_mask, unsigned int query_flags) 1050 { 1051 struct inode *inode = path->dentry->d_inode; 1052 struct shmem_inode_info *info = SHMEM_I(inode); 1053 1054 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1055 spin_lock_irq(&info->lock); 1056 shmem_recalc_inode(inode); 1057 spin_unlock_irq(&info->lock); 1058 } 1059 generic_fillattr(&init_user_ns, inode, stat); 1060 1061 if (shmem_is_huge(NULL, inode, 0)) 1062 stat->blksize = HPAGE_PMD_SIZE; 1063 1064 return 0; 1065 } 1066 1067 static int shmem_setattr(struct user_namespace *mnt_userns, 1068 struct dentry *dentry, struct iattr *attr) 1069 { 1070 struct inode *inode = d_inode(dentry); 1071 struct shmem_inode_info *info = SHMEM_I(inode); 1072 int error; 1073 1074 error = setattr_prepare(&init_user_ns, dentry, attr); 1075 if (error) 1076 return error; 1077 1078 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1079 loff_t oldsize = inode->i_size; 1080 loff_t newsize = attr->ia_size; 1081 1082 /* protected by i_rwsem */ 1083 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1084 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1085 return -EPERM; 1086 1087 if (newsize != oldsize) { 1088 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1089 oldsize, newsize); 1090 if (error) 1091 return error; 1092 i_size_write(inode, newsize); 1093 inode->i_ctime = inode->i_mtime = current_time(inode); 1094 } 1095 if (newsize <= oldsize) { 1096 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1097 if (oldsize > holebegin) 1098 unmap_mapping_range(inode->i_mapping, 1099 holebegin, 0, 1); 1100 if (info->alloced) 1101 shmem_truncate_range(inode, 1102 newsize, (loff_t)-1); 1103 /* unmap again to remove racily COWed private pages */ 1104 if (oldsize > holebegin) 1105 unmap_mapping_range(inode->i_mapping, 1106 holebegin, 0, 1); 1107 } 1108 } 1109 1110 setattr_copy(&init_user_ns, inode, attr); 1111 if (attr->ia_valid & ATTR_MODE) 1112 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1113 return error; 1114 } 1115 1116 static void shmem_evict_inode(struct inode *inode) 1117 { 1118 struct shmem_inode_info *info = SHMEM_I(inode); 1119 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1120 1121 if (shmem_mapping(inode->i_mapping)) { 1122 shmem_unacct_size(info->flags, inode->i_size); 1123 inode->i_size = 0; 1124 shmem_truncate_range(inode, 0, (loff_t)-1); 1125 if (!list_empty(&info->shrinklist)) { 1126 spin_lock(&sbinfo->shrinklist_lock); 1127 if (!list_empty(&info->shrinklist)) { 1128 list_del_init(&info->shrinklist); 1129 sbinfo->shrinklist_len--; 1130 } 1131 spin_unlock(&sbinfo->shrinklist_lock); 1132 } 1133 while (!list_empty(&info->swaplist)) { 1134 /* Wait while shmem_unuse() is scanning this inode... */ 1135 wait_var_event(&info->stop_eviction, 1136 !atomic_read(&info->stop_eviction)); 1137 mutex_lock(&shmem_swaplist_mutex); 1138 /* ...but beware of the race if we peeked too early */ 1139 if (!atomic_read(&info->stop_eviction)) 1140 list_del_init(&info->swaplist); 1141 mutex_unlock(&shmem_swaplist_mutex); 1142 } 1143 } 1144 1145 simple_xattrs_free(&info->xattrs); 1146 WARN_ON(inode->i_blocks); 1147 shmem_free_inode(inode->i_sb); 1148 clear_inode(inode); 1149 } 1150 1151 static int shmem_find_swap_entries(struct address_space *mapping, 1152 pgoff_t start, unsigned int nr_entries, 1153 struct page **entries, pgoff_t *indices, 1154 unsigned int type) 1155 { 1156 XA_STATE(xas, &mapping->i_pages, start); 1157 struct page *page; 1158 swp_entry_t entry; 1159 unsigned int ret = 0; 1160 1161 if (!nr_entries) 1162 return 0; 1163 1164 rcu_read_lock(); 1165 xas_for_each(&xas, page, ULONG_MAX) { 1166 if (xas_retry(&xas, page)) 1167 continue; 1168 1169 if (!xa_is_value(page)) 1170 continue; 1171 1172 entry = radix_to_swp_entry(page); 1173 if (swp_type(entry) != type) 1174 continue; 1175 1176 indices[ret] = xas.xa_index; 1177 entries[ret] = page; 1178 1179 if (need_resched()) { 1180 xas_pause(&xas); 1181 cond_resched_rcu(); 1182 } 1183 if (++ret == nr_entries) 1184 break; 1185 } 1186 rcu_read_unlock(); 1187 1188 return ret; 1189 } 1190 1191 /* 1192 * Move the swapped pages for an inode to page cache. Returns the count 1193 * of pages swapped in, or the error in case of failure. 1194 */ 1195 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1196 pgoff_t *indices) 1197 { 1198 int i = 0; 1199 int ret = 0; 1200 int error = 0; 1201 struct address_space *mapping = inode->i_mapping; 1202 1203 for (i = 0; i < pvec.nr; i++) { 1204 struct page *page = pvec.pages[i]; 1205 1206 if (!xa_is_value(page)) 1207 continue; 1208 error = shmem_swapin_page(inode, indices[i], 1209 &page, SGP_CACHE, 1210 mapping_gfp_mask(mapping), 1211 NULL, NULL); 1212 if (error == 0) { 1213 unlock_page(page); 1214 put_page(page); 1215 ret++; 1216 } 1217 if (error == -ENOMEM) 1218 break; 1219 error = 0; 1220 } 1221 return error ? error : ret; 1222 } 1223 1224 /* 1225 * If swap found in inode, free it and move page from swapcache to filecache. 1226 */ 1227 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1228 { 1229 struct address_space *mapping = inode->i_mapping; 1230 pgoff_t start = 0; 1231 struct pagevec pvec; 1232 pgoff_t indices[PAGEVEC_SIZE]; 1233 int ret = 0; 1234 1235 pagevec_init(&pvec); 1236 do { 1237 unsigned int nr_entries = PAGEVEC_SIZE; 1238 1239 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1240 pvec.pages, indices, type); 1241 if (pvec.nr == 0) { 1242 ret = 0; 1243 break; 1244 } 1245 1246 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1247 if (ret < 0) 1248 break; 1249 1250 start = indices[pvec.nr - 1]; 1251 } while (true); 1252 1253 return ret; 1254 } 1255 1256 /* 1257 * Read all the shared memory data that resides in the swap 1258 * device 'type' back into memory, so the swap device can be 1259 * unused. 1260 */ 1261 int shmem_unuse(unsigned int type) 1262 { 1263 struct shmem_inode_info *info, *next; 1264 int error = 0; 1265 1266 if (list_empty(&shmem_swaplist)) 1267 return 0; 1268 1269 mutex_lock(&shmem_swaplist_mutex); 1270 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1271 if (!info->swapped) { 1272 list_del_init(&info->swaplist); 1273 continue; 1274 } 1275 /* 1276 * Drop the swaplist mutex while searching the inode for swap; 1277 * but before doing so, make sure shmem_evict_inode() will not 1278 * remove placeholder inode from swaplist, nor let it be freed 1279 * (igrab() would protect from unlink, but not from unmount). 1280 */ 1281 atomic_inc(&info->stop_eviction); 1282 mutex_unlock(&shmem_swaplist_mutex); 1283 1284 error = shmem_unuse_inode(&info->vfs_inode, type); 1285 cond_resched(); 1286 1287 mutex_lock(&shmem_swaplist_mutex); 1288 next = list_next_entry(info, swaplist); 1289 if (!info->swapped) 1290 list_del_init(&info->swaplist); 1291 if (atomic_dec_and_test(&info->stop_eviction)) 1292 wake_up_var(&info->stop_eviction); 1293 if (error) 1294 break; 1295 } 1296 mutex_unlock(&shmem_swaplist_mutex); 1297 1298 return error; 1299 } 1300 1301 /* 1302 * Move the page from the page cache to the swap cache. 1303 */ 1304 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1305 { 1306 struct shmem_inode_info *info; 1307 struct address_space *mapping; 1308 struct inode *inode; 1309 swp_entry_t swap; 1310 pgoff_t index; 1311 1312 /* 1313 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1314 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1315 * and its shmem_writeback() needs them to be split when swapping. 1316 */ 1317 if (PageTransCompound(page)) { 1318 /* Ensure the subpages are still dirty */ 1319 SetPageDirty(page); 1320 if (split_huge_page(page) < 0) 1321 goto redirty; 1322 ClearPageDirty(page); 1323 } 1324 1325 BUG_ON(!PageLocked(page)); 1326 mapping = page->mapping; 1327 index = page->index; 1328 inode = mapping->host; 1329 info = SHMEM_I(inode); 1330 if (info->flags & VM_LOCKED) 1331 goto redirty; 1332 if (!total_swap_pages) 1333 goto redirty; 1334 1335 /* 1336 * Our capabilities prevent regular writeback or sync from ever calling 1337 * shmem_writepage; but a stacking filesystem might use ->writepage of 1338 * its underlying filesystem, in which case tmpfs should write out to 1339 * swap only in response to memory pressure, and not for the writeback 1340 * threads or sync. 1341 */ 1342 if (!wbc->for_reclaim) { 1343 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1344 goto redirty; 1345 } 1346 1347 /* 1348 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1349 * value into swapfile.c, the only way we can correctly account for a 1350 * fallocated page arriving here is now to initialize it and write it. 1351 * 1352 * That's okay for a page already fallocated earlier, but if we have 1353 * not yet completed the fallocation, then (a) we want to keep track 1354 * of this page in case we have to undo it, and (b) it may not be a 1355 * good idea to continue anyway, once we're pushing into swap. So 1356 * reactivate the page, and let shmem_fallocate() quit when too many. 1357 */ 1358 if (!PageUptodate(page)) { 1359 if (inode->i_private) { 1360 struct shmem_falloc *shmem_falloc; 1361 spin_lock(&inode->i_lock); 1362 shmem_falloc = inode->i_private; 1363 if (shmem_falloc && 1364 !shmem_falloc->waitq && 1365 index >= shmem_falloc->start && 1366 index < shmem_falloc->next) 1367 shmem_falloc->nr_unswapped++; 1368 else 1369 shmem_falloc = NULL; 1370 spin_unlock(&inode->i_lock); 1371 if (shmem_falloc) 1372 goto redirty; 1373 } 1374 clear_highpage(page); 1375 flush_dcache_page(page); 1376 SetPageUptodate(page); 1377 } 1378 1379 swap = get_swap_page(page); 1380 if (!swap.val) 1381 goto redirty; 1382 1383 /* 1384 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1385 * if it's not already there. Do it now before the page is 1386 * moved to swap cache, when its pagelock no longer protects 1387 * the inode from eviction. But don't unlock the mutex until 1388 * we've incremented swapped, because shmem_unuse_inode() will 1389 * prune a !swapped inode from the swaplist under this mutex. 1390 */ 1391 mutex_lock(&shmem_swaplist_mutex); 1392 if (list_empty(&info->swaplist)) 1393 list_add(&info->swaplist, &shmem_swaplist); 1394 1395 if (add_to_swap_cache(page, swap, 1396 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1397 NULL) == 0) { 1398 spin_lock_irq(&info->lock); 1399 shmem_recalc_inode(inode); 1400 info->swapped++; 1401 spin_unlock_irq(&info->lock); 1402 1403 swap_shmem_alloc(swap); 1404 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1405 1406 mutex_unlock(&shmem_swaplist_mutex); 1407 BUG_ON(page_mapped(page)); 1408 swap_writepage(page, wbc); 1409 return 0; 1410 } 1411 1412 mutex_unlock(&shmem_swaplist_mutex); 1413 put_swap_page(page, swap); 1414 redirty: 1415 set_page_dirty(page); 1416 if (wbc->for_reclaim) 1417 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1418 unlock_page(page); 1419 return 0; 1420 } 1421 1422 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1423 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1424 { 1425 char buffer[64]; 1426 1427 if (!mpol || mpol->mode == MPOL_DEFAULT) 1428 return; /* show nothing */ 1429 1430 mpol_to_str(buffer, sizeof(buffer), mpol); 1431 1432 seq_printf(seq, ",mpol=%s", buffer); 1433 } 1434 1435 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1436 { 1437 struct mempolicy *mpol = NULL; 1438 if (sbinfo->mpol) { 1439 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1440 mpol = sbinfo->mpol; 1441 mpol_get(mpol); 1442 raw_spin_unlock(&sbinfo->stat_lock); 1443 } 1444 return mpol; 1445 } 1446 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1447 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1448 { 1449 } 1450 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1451 { 1452 return NULL; 1453 } 1454 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1455 #ifndef CONFIG_NUMA 1456 #define vm_policy vm_private_data 1457 #endif 1458 1459 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1460 struct shmem_inode_info *info, pgoff_t index) 1461 { 1462 /* Create a pseudo vma that just contains the policy */ 1463 vma_init(vma, NULL); 1464 /* Bias interleave by inode number to distribute better across nodes */ 1465 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1466 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1467 } 1468 1469 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1470 { 1471 /* Drop reference taken by mpol_shared_policy_lookup() */ 1472 mpol_cond_put(vma->vm_policy); 1473 } 1474 1475 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1476 struct shmem_inode_info *info, pgoff_t index) 1477 { 1478 struct vm_area_struct pvma; 1479 struct page *page; 1480 struct vm_fault vmf = { 1481 .vma = &pvma, 1482 }; 1483 1484 shmem_pseudo_vma_init(&pvma, info, index); 1485 page = swap_cluster_readahead(swap, gfp, &vmf); 1486 shmem_pseudo_vma_destroy(&pvma); 1487 1488 return page; 1489 } 1490 1491 /* 1492 * Make sure huge_gfp is always more limited than limit_gfp. 1493 * Some of the flags set permissions, while others set limitations. 1494 */ 1495 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1496 { 1497 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1498 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1499 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1500 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1501 1502 /* Allow allocations only from the originally specified zones. */ 1503 result |= zoneflags; 1504 1505 /* 1506 * Minimize the result gfp by taking the union with the deny flags, 1507 * and the intersection of the allow flags. 1508 */ 1509 result |= (limit_gfp & denyflags); 1510 result |= (huge_gfp & limit_gfp) & allowflags; 1511 1512 return result; 1513 } 1514 1515 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1516 struct shmem_inode_info *info, pgoff_t index) 1517 { 1518 struct vm_area_struct pvma; 1519 struct address_space *mapping = info->vfs_inode.i_mapping; 1520 pgoff_t hindex; 1521 struct page *page; 1522 1523 hindex = round_down(index, HPAGE_PMD_NR); 1524 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1525 XA_PRESENT)) 1526 return NULL; 1527 1528 shmem_pseudo_vma_init(&pvma, info, hindex); 1529 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1530 shmem_pseudo_vma_destroy(&pvma); 1531 if (page) 1532 prep_transhuge_page(page); 1533 else 1534 count_vm_event(THP_FILE_FALLBACK); 1535 return page; 1536 } 1537 1538 static struct page *shmem_alloc_page(gfp_t gfp, 1539 struct shmem_inode_info *info, pgoff_t index) 1540 { 1541 struct vm_area_struct pvma; 1542 struct page *page; 1543 1544 shmem_pseudo_vma_init(&pvma, info, index); 1545 page = alloc_page_vma(gfp, &pvma, 0); 1546 shmem_pseudo_vma_destroy(&pvma); 1547 1548 return page; 1549 } 1550 1551 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1552 struct inode *inode, 1553 pgoff_t index, bool huge) 1554 { 1555 struct shmem_inode_info *info = SHMEM_I(inode); 1556 struct page *page; 1557 int nr; 1558 int err = -ENOSPC; 1559 1560 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1561 huge = false; 1562 nr = huge ? HPAGE_PMD_NR : 1; 1563 1564 if (!shmem_inode_acct_block(inode, nr)) 1565 goto failed; 1566 1567 if (huge) 1568 page = shmem_alloc_hugepage(gfp, info, index); 1569 else 1570 page = shmem_alloc_page(gfp, info, index); 1571 if (page) { 1572 __SetPageLocked(page); 1573 __SetPageSwapBacked(page); 1574 return page; 1575 } 1576 1577 err = -ENOMEM; 1578 shmem_inode_unacct_blocks(inode, nr); 1579 failed: 1580 return ERR_PTR(err); 1581 } 1582 1583 /* 1584 * When a page is moved from swapcache to shmem filecache (either by the 1585 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1586 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1587 * ignorance of the mapping it belongs to. If that mapping has special 1588 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1589 * we may need to copy to a suitable page before moving to filecache. 1590 * 1591 * In a future release, this may well be extended to respect cpuset and 1592 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1593 * but for now it is a simple matter of zone. 1594 */ 1595 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1596 { 1597 return page_zonenum(page) > gfp_zone(gfp); 1598 } 1599 1600 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1601 struct shmem_inode_info *info, pgoff_t index) 1602 { 1603 struct page *oldpage, *newpage; 1604 struct folio *old, *new; 1605 struct address_space *swap_mapping; 1606 swp_entry_t entry; 1607 pgoff_t swap_index; 1608 int error; 1609 1610 oldpage = *pagep; 1611 entry.val = page_private(oldpage); 1612 swap_index = swp_offset(entry); 1613 swap_mapping = page_mapping(oldpage); 1614 1615 /* 1616 * We have arrived here because our zones are constrained, so don't 1617 * limit chance of success by further cpuset and node constraints. 1618 */ 1619 gfp &= ~GFP_CONSTRAINT_MASK; 1620 newpage = shmem_alloc_page(gfp, info, index); 1621 if (!newpage) 1622 return -ENOMEM; 1623 1624 get_page(newpage); 1625 copy_highpage(newpage, oldpage); 1626 flush_dcache_page(newpage); 1627 1628 __SetPageLocked(newpage); 1629 __SetPageSwapBacked(newpage); 1630 SetPageUptodate(newpage); 1631 set_page_private(newpage, entry.val); 1632 SetPageSwapCache(newpage); 1633 1634 /* 1635 * Our caller will very soon move newpage out of swapcache, but it's 1636 * a nice clean interface for us to replace oldpage by newpage there. 1637 */ 1638 xa_lock_irq(&swap_mapping->i_pages); 1639 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1640 if (!error) { 1641 old = page_folio(oldpage); 1642 new = page_folio(newpage); 1643 mem_cgroup_migrate(old, new); 1644 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1645 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1646 } 1647 xa_unlock_irq(&swap_mapping->i_pages); 1648 1649 if (unlikely(error)) { 1650 /* 1651 * Is this possible? I think not, now that our callers check 1652 * both PageSwapCache and page_private after getting page lock; 1653 * but be defensive. Reverse old to newpage for clear and free. 1654 */ 1655 oldpage = newpage; 1656 } else { 1657 lru_cache_add(newpage); 1658 *pagep = newpage; 1659 } 1660 1661 ClearPageSwapCache(oldpage); 1662 set_page_private(oldpage, 0); 1663 1664 unlock_page(oldpage); 1665 put_page(oldpage); 1666 put_page(oldpage); 1667 return error; 1668 } 1669 1670 /* 1671 * Swap in the page pointed to by *pagep. 1672 * Caller has to make sure that *pagep contains a valid swapped page. 1673 * Returns 0 and the page in pagep if success. On failure, returns the 1674 * error code and NULL in *pagep. 1675 */ 1676 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1677 struct page **pagep, enum sgp_type sgp, 1678 gfp_t gfp, struct vm_area_struct *vma, 1679 vm_fault_t *fault_type) 1680 { 1681 struct address_space *mapping = inode->i_mapping; 1682 struct shmem_inode_info *info = SHMEM_I(inode); 1683 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1684 struct page *page; 1685 swp_entry_t swap; 1686 int error; 1687 1688 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1689 swap = radix_to_swp_entry(*pagep); 1690 *pagep = NULL; 1691 1692 /* Look it up and read it in.. */ 1693 page = lookup_swap_cache(swap, NULL, 0); 1694 if (!page) { 1695 /* Or update major stats only when swapin succeeds?? */ 1696 if (fault_type) { 1697 *fault_type |= VM_FAULT_MAJOR; 1698 count_vm_event(PGMAJFAULT); 1699 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1700 } 1701 /* Here we actually start the io */ 1702 page = shmem_swapin(swap, gfp, info, index); 1703 if (!page) { 1704 error = -ENOMEM; 1705 goto failed; 1706 } 1707 } 1708 1709 /* We have to do this with page locked to prevent races */ 1710 lock_page(page); 1711 if (!PageSwapCache(page) || page_private(page) != swap.val || 1712 !shmem_confirm_swap(mapping, index, swap)) { 1713 error = -EEXIST; 1714 goto unlock; 1715 } 1716 if (!PageUptodate(page)) { 1717 error = -EIO; 1718 goto failed; 1719 } 1720 wait_on_page_writeback(page); 1721 1722 /* 1723 * Some architectures may have to restore extra metadata to the 1724 * physical page after reading from swap. 1725 */ 1726 arch_swap_restore(swap, page); 1727 1728 if (shmem_should_replace_page(page, gfp)) { 1729 error = shmem_replace_page(&page, gfp, info, index); 1730 if (error) 1731 goto failed; 1732 } 1733 1734 error = shmem_add_to_page_cache(page, mapping, index, 1735 swp_to_radix_entry(swap), gfp, 1736 charge_mm); 1737 if (error) 1738 goto failed; 1739 1740 spin_lock_irq(&info->lock); 1741 info->swapped--; 1742 shmem_recalc_inode(inode); 1743 spin_unlock_irq(&info->lock); 1744 1745 if (sgp == SGP_WRITE) 1746 mark_page_accessed(page); 1747 1748 delete_from_swap_cache(page); 1749 set_page_dirty(page); 1750 swap_free(swap); 1751 1752 *pagep = page; 1753 return 0; 1754 failed: 1755 if (!shmem_confirm_swap(mapping, index, swap)) 1756 error = -EEXIST; 1757 unlock: 1758 if (page) { 1759 unlock_page(page); 1760 put_page(page); 1761 } 1762 1763 return error; 1764 } 1765 1766 /* 1767 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1768 * 1769 * If we allocate a new one we do not mark it dirty. That's up to the 1770 * vm. If we swap it in we mark it dirty since we also free the swap 1771 * entry since a page cannot live in both the swap and page cache. 1772 * 1773 * vma, vmf, and fault_type are only supplied by shmem_fault: 1774 * otherwise they are NULL. 1775 */ 1776 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1777 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1778 struct vm_area_struct *vma, struct vm_fault *vmf, 1779 vm_fault_t *fault_type) 1780 { 1781 struct address_space *mapping = inode->i_mapping; 1782 struct shmem_inode_info *info = SHMEM_I(inode); 1783 struct shmem_sb_info *sbinfo; 1784 struct mm_struct *charge_mm; 1785 struct page *page; 1786 pgoff_t hindex = index; 1787 gfp_t huge_gfp; 1788 int error; 1789 int once = 0; 1790 int alloced = 0; 1791 1792 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1793 return -EFBIG; 1794 repeat: 1795 if (sgp <= SGP_CACHE && 1796 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1797 return -EINVAL; 1798 } 1799 1800 sbinfo = SHMEM_SB(inode->i_sb); 1801 charge_mm = vma ? vma->vm_mm : NULL; 1802 1803 page = pagecache_get_page(mapping, index, 1804 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1805 1806 if (page && vma && userfaultfd_minor(vma)) { 1807 if (!xa_is_value(page)) { 1808 unlock_page(page); 1809 put_page(page); 1810 } 1811 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1812 return 0; 1813 } 1814 1815 if (xa_is_value(page)) { 1816 error = shmem_swapin_page(inode, index, &page, 1817 sgp, gfp, vma, fault_type); 1818 if (error == -EEXIST) 1819 goto repeat; 1820 1821 *pagep = page; 1822 return error; 1823 } 1824 1825 if (page) { 1826 hindex = page->index; 1827 if (sgp == SGP_WRITE) 1828 mark_page_accessed(page); 1829 if (PageUptodate(page)) 1830 goto out; 1831 /* fallocated page */ 1832 if (sgp != SGP_READ) 1833 goto clear; 1834 unlock_page(page); 1835 put_page(page); 1836 } 1837 1838 /* 1839 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1840 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1841 */ 1842 *pagep = NULL; 1843 if (sgp == SGP_READ) 1844 return 0; 1845 if (sgp == SGP_NOALLOC) 1846 return -ENOENT; 1847 1848 /* 1849 * Fast cache lookup and swap lookup did not find it: allocate. 1850 */ 1851 1852 if (vma && userfaultfd_missing(vma)) { 1853 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1854 return 0; 1855 } 1856 1857 /* Never use a huge page for shmem_symlink() */ 1858 if (S_ISLNK(inode->i_mode)) 1859 goto alloc_nohuge; 1860 if (!shmem_is_huge(vma, inode, index)) 1861 goto alloc_nohuge; 1862 1863 huge_gfp = vma_thp_gfp_mask(vma); 1864 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1865 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1866 if (IS_ERR(page)) { 1867 alloc_nohuge: 1868 page = shmem_alloc_and_acct_page(gfp, inode, 1869 index, false); 1870 } 1871 if (IS_ERR(page)) { 1872 int retry = 5; 1873 1874 error = PTR_ERR(page); 1875 page = NULL; 1876 if (error != -ENOSPC) 1877 goto unlock; 1878 /* 1879 * Try to reclaim some space by splitting a huge page 1880 * beyond i_size on the filesystem. 1881 */ 1882 while (retry--) { 1883 int ret; 1884 1885 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1886 if (ret == SHRINK_STOP) 1887 break; 1888 if (ret) 1889 goto alloc_nohuge; 1890 } 1891 goto unlock; 1892 } 1893 1894 if (PageTransHuge(page)) 1895 hindex = round_down(index, HPAGE_PMD_NR); 1896 else 1897 hindex = index; 1898 1899 if (sgp == SGP_WRITE) 1900 __SetPageReferenced(page); 1901 1902 error = shmem_add_to_page_cache(page, mapping, hindex, 1903 NULL, gfp & GFP_RECLAIM_MASK, 1904 charge_mm); 1905 if (error) 1906 goto unacct; 1907 lru_cache_add(page); 1908 1909 spin_lock_irq(&info->lock); 1910 info->alloced += compound_nr(page); 1911 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1912 shmem_recalc_inode(inode); 1913 spin_unlock_irq(&info->lock); 1914 alloced = true; 1915 1916 if (PageTransHuge(page) && 1917 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1918 hindex + HPAGE_PMD_NR - 1) { 1919 /* 1920 * Part of the huge page is beyond i_size: subject 1921 * to shrink under memory pressure. 1922 */ 1923 spin_lock(&sbinfo->shrinklist_lock); 1924 /* 1925 * _careful to defend against unlocked access to 1926 * ->shrink_list in shmem_unused_huge_shrink() 1927 */ 1928 if (list_empty_careful(&info->shrinklist)) { 1929 list_add_tail(&info->shrinklist, 1930 &sbinfo->shrinklist); 1931 sbinfo->shrinklist_len++; 1932 } 1933 spin_unlock(&sbinfo->shrinklist_lock); 1934 } 1935 1936 /* 1937 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1938 */ 1939 if (sgp == SGP_FALLOC) 1940 sgp = SGP_WRITE; 1941 clear: 1942 /* 1943 * Let SGP_WRITE caller clear ends if write does not fill page; 1944 * but SGP_FALLOC on a page fallocated earlier must initialize 1945 * it now, lest undo on failure cancel our earlier guarantee. 1946 */ 1947 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1948 int i; 1949 1950 for (i = 0; i < compound_nr(page); i++) { 1951 clear_highpage(page + i); 1952 flush_dcache_page(page + i); 1953 } 1954 SetPageUptodate(page); 1955 } 1956 1957 /* Perhaps the file has been truncated since we checked */ 1958 if (sgp <= SGP_CACHE && 1959 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1960 if (alloced) { 1961 ClearPageDirty(page); 1962 delete_from_page_cache(page); 1963 spin_lock_irq(&info->lock); 1964 shmem_recalc_inode(inode); 1965 spin_unlock_irq(&info->lock); 1966 } 1967 error = -EINVAL; 1968 goto unlock; 1969 } 1970 out: 1971 *pagep = page + index - hindex; 1972 return 0; 1973 1974 /* 1975 * Error recovery. 1976 */ 1977 unacct: 1978 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1979 1980 if (PageTransHuge(page)) { 1981 unlock_page(page); 1982 put_page(page); 1983 goto alloc_nohuge; 1984 } 1985 unlock: 1986 if (page) { 1987 unlock_page(page); 1988 put_page(page); 1989 } 1990 if (error == -ENOSPC && !once++) { 1991 spin_lock_irq(&info->lock); 1992 shmem_recalc_inode(inode); 1993 spin_unlock_irq(&info->lock); 1994 goto repeat; 1995 } 1996 if (error == -EEXIST) 1997 goto repeat; 1998 return error; 1999 } 2000 2001 /* 2002 * This is like autoremove_wake_function, but it removes the wait queue 2003 * entry unconditionally - even if something else had already woken the 2004 * target. 2005 */ 2006 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2007 { 2008 int ret = default_wake_function(wait, mode, sync, key); 2009 list_del_init(&wait->entry); 2010 return ret; 2011 } 2012 2013 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2014 { 2015 struct vm_area_struct *vma = vmf->vma; 2016 struct inode *inode = file_inode(vma->vm_file); 2017 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2018 int err; 2019 vm_fault_t ret = VM_FAULT_LOCKED; 2020 2021 /* 2022 * Trinity finds that probing a hole which tmpfs is punching can 2023 * prevent the hole-punch from ever completing: which in turn 2024 * locks writers out with its hold on i_rwsem. So refrain from 2025 * faulting pages into the hole while it's being punched. Although 2026 * shmem_undo_range() does remove the additions, it may be unable to 2027 * keep up, as each new page needs its own unmap_mapping_range() call, 2028 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2029 * 2030 * It does not matter if we sometimes reach this check just before the 2031 * hole-punch begins, so that one fault then races with the punch: 2032 * we just need to make racing faults a rare case. 2033 * 2034 * The implementation below would be much simpler if we just used a 2035 * standard mutex or completion: but we cannot take i_rwsem in fault, 2036 * and bloating every shmem inode for this unlikely case would be sad. 2037 */ 2038 if (unlikely(inode->i_private)) { 2039 struct shmem_falloc *shmem_falloc; 2040 2041 spin_lock(&inode->i_lock); 2042 shmem_falloc = inode->i_private; 2043 if (shmem_falloc && 2044 shmem_falloc->waitq && 2045 vmf->pgoff >= shmem_falloc->start && 2046 vmf->pgoff < shmem_falloc->next) { 2047 struct file *fpin; 2048 wait_queue_head_t *shmem_falloc_waitq; 2049 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2050 2051 ret = VM_FAULT_NOPAGE; 2052 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2053 if (fpin) 2054 ret = VM_FAULT_RETRY; 2055 2056 shmem_falloc_waitq = shmem_falloc->waitq; 2057 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2058 TASK_UNINTERRUPTIBLE); 2059 spin_unlock(&inode->i_lock); 2060 schedule(); 2061 2062 /* 2063 * shmem_falloc_waitq points into the shmem_fallocate() 2064 * stack of the hole-punching task: shmem_falloc_waitq 2065 * is usually invalid by the time we reach here, but 2066 * finish_wait() does not dereference it in that case; 2067 * though i_lock needed lest racing with wake_up_all(). 2068 */ 2069 spin_lock(&inode->i_lock); 2070 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2071 spin_unlock(&inode->i_lock); 2072 2073 if (fpin) 2074 fput(fpin); 2075 return ret; 2076 } 2077 spin_unlock(&inode->i_lock); 2078 } 2079 2080 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2081 gfp, vma, vmf, &ret); 2082 if (err) 2083 return vmf_error(err); 2084 return ret; 2085 } 2086 2087 unsigned long shmem_get_unmapped_area(struct file *file, 2088 unsigned long uaddr, unsigned long len, 2089 unsigned long pgoff, unsigned long flags) 2090 { 2091 unsigned long (*get_area)(struct file *, 2092 unsigned long, unsigned long, unsigned long, unsigned long); 2093 unsigned long addr; 2094 unsigned long offset; 2095 unsigned long inflated_len; 2096 unsigned long inflated_addr; 2097 unsigned long inflated_offset; 2098 2099 if (len > TASK_SIZE) 2100 return -ENOMEM; 2101 2102 get_area = current->mm->get_unmapped_area; 2103 addr = get_area(file, uaddr, len, pgoff, flags); 2104 2105 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2106 return addr; 2107 if (IS_ERR_VALUE(addr)) 2108 return addr; 2109 if (addr & ~PAGE_MASK) 2110 return addr; 2111 if (addr > TASK_SIZE - len) 2112 return addr; 2113 2114 if (shmem_huge == SHMEM_HUGE_DENY) 2115 return addr; 2116 if (len < HPAGE_PMD_SIZE) 2117 return addr; 2118 if (flags & MAP_FIXED) 2119 return addr; 2120 /* 2121 * Our priority is to support MAP_SHARED mapped hugely; 2122 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2123 * But if caller specified an address hint and we allocated area there 2124 * successfully, respect that as before. 2125 */ 2126 if (uaddr == addr) 2127 return addr; 2128 2129 if (shmem_huge != SHMEM_HUGE_FORCE) { 2130 struct super_block *sb; 2131 2132 if (file) { 2133 VM_BUG_ON(file->f_op != &shmem_file_operations); 2134 sb = file_inode(file)->i_sb; 2135 } else { 2136 /* 2137 * Called directly from mm/mmap.c, or drivers/char/mem.c 2138 * for "/dev/zero", to create a shared anonymous object. 2139 */ 2140 if (IS_ERR(shm_mnt)) 2141 return addr; 2142 sb = shm_mnt->mnt_sb; 2143 } 2144 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2145 return addr; 2146 } 2147 2148 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2149 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2150 return addr; 2151 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2152 return addr; 2153 2154 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2155 if (inflated_len > TASK_SIZE) 2156 return addr; 2157 if (inflated_len < len) 2158 return addr; 2159 2160 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2161 if (IS_ERR_VALUE(inflated_addr)) 2162 return addr; 2163 if (inflated_addr & ~PAGE_MASK) 2164 return addr; 2165 2166 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2167 inflated_addr += offset - inflated_offset; 2168 if (inflated_offset > offset) 2169 inflated_addr += HPAGE_PMD_SIZE; 2170 2171 if (inflated_addr > TASK_SIZE - len) 2172 return addr; 2173 return inflated_addr; 2174 } 2175 2176 #ifdef CONFIG_NUMA 2177 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2178 { 2179 struct inode *inode = file_inode(vma->vm_file); 2180 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2181 } 2182 2183 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2184 unsigned long addr) 2185 { 2186 struct inode *inode = file_inode(vma->vm_file); 2187 pgoff_t index; 2188 2189 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2190 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2191 } 2192 #endif 2193 2194 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2195 { 2196 struct inode *inode = file_inode(file); 2197 struct shmem_inode_info *info = SHMEM_I(inode); 2198 int retval = -ENOMEM; 2199 2200 /* 2201 * What serializes the accesses to info->flags? 2202 * ipc_lock_object() when called from shmctl_do_lock(), 2203 * no serialization needed when called from shm_destroy(). 2204 */ 2205 if (lock && !(info->flags & VM_LOCKED)) { 2206 if (!user_shm_lock(inode->i_size, ucounts)) 2207 goto out_nomem; 2208 info->flags |= VM_LOCKED; 2209 mapping_set_unevictable(file->f_mapping); 2210 } 2211 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2212 user_shm_unlock(inode->i_size, ucounts); 2213 info->flags &= ~VM_LOCKED; 2214 mapping_clear_unevictable(file->f_mapping); 2215 } 2216 retval = 0; 2217 2218 out_nomem: 2219 return retval; 2220 } 2221 2222 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2223 { 2224 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2225 int ret; 2226 2227 ret = seal_check_future_write(info->seals, vma); 2228 if (ret) 2229 return ret; 2230 2231 /* arm64 - allow memory tagging on RAM-based files */ 2232 vma->vm_flags |= VM_MTE_ALLOWED; 2233 2234 file_accessed(file); 2235 vma->vm_ops = &shmem_vm_ops; 2236 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2237 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2238 (vma->vm_end & HPAGE_PMD_MASK)) { 2239 khugepaged_enter(vma, vma->vm_flags); 2240 } 2241 return 0; 2242 } 2243 2244 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2245 umode_t mode, dev_t dev, unsigned long flags) 2246 { 2247 struct inode *inode; 2248 struct shmem_inode_info *info; 2249 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2250 ino_t ino; 2251 2252 if (shmem_reserve_inode(sb, &ino)) 2253 return NULL; 2254 2255 inode = new_inode(sb); 2256 if (inode) { 2257 inode->i_ino = ino; 2258 inode_init_owner(&init_user_ns, inode, dir, mode); 2259 inode->i_blocks = 0; 2260 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2261 inode->i_generation = prandom_u32(); 2262 info = SHMEM_I(inode); 2263 memset(info, 0, (char *)inode - (char *)info); 2264 spin_lock_init(&info->lock); 2265 atomic_set(&info->stop_eviction, 0); 2266 info->seals = F_SEAL_SEAL; 2267 info->flags = flags & VM_NORESERVE; 2268 INIT_LIST_HEAD(&info->shrinklist); 2269 INIT_LIST_HEAD(&info->swaplist); 2270 simple_xattrs_init(&info->xattrs); 2271 cache_no_acl(inode); 2272 mapping_set_large_folios(inode->i_mapping); 2273 2274 switch (mode & S_IFMT) { 2275 default: 2276 inode->i_op = &shmem_special_inode_operations; 2277 init_special_inode(inode, mode, dev); 2278 break; 2279 case S_IFREG: 2280 inode->i_mapping->a_ops = &shmem_aops; 2281 inode->i_op = &shmem_inode_operations; 2282 inode->i_fop = &shmem_file_operations; 2283 mpol_shared_policy_init(&info->policy, 2284 shmem_get_sbmpol(sbinfo)); 2285 break; 2286 case S_IFDIR: 2287 inc_nlink(inode); 2288 /* Some things misbehave if size == 0 on a directory */ 2289 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2290 inode->i_op = &shmem_dir_inode_operations; 2291 inode->i_fop = &simple_dir_operations; 2292 break; 2293 case S_IFLNK: 2294 /* 2295 * Must not load anything in the rbtree, 2296 * mpol_free_shared_policy will not be called. 2297 */ 2298 mpol_shared_policy_init(&info->policy, NULL); 2299 break; 2300 } 2301 2302 lockdep_annotate_inode_mutex_key(inode); 2303 } else 2304 shmem_free_inode(sb); 2305 return inode; 2306 } 2307 2308 #ifdef CONFIG_USERFAULTFD 2309 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2310 pmd_t *dst_pmd, 2311 struct vm_area_struct *dst_vma, 2312 unsigned long dst_addr, 2313 unsigned long src_addr, 2314 bool zeropage, 2315 struct page **pagep) 2316 { 2317 struct inode *inode = file_inode(dst_vma->vm_file); 2318 struct shmem_inode_info *info = SHMEM_I(inode); 2319 struct address_space *mapping = inode->i_mapping; 2320 gfp_t gfp = mapping_gfp_mask(mapping); 2321 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2322 void *page_kaddr; 2323 struct page *page; 2324 int ret; 2325 pgoff_t max_off; 2326 2327 if (!shmem_inode_acct_block(inode, 1)) { 2328 /* 2329 * We may have got a page, returned -ENOENT triggering a retry, 2330 * and now we find ourselves with -ENOMEM. Release the page, to 2331 * avoid a BUG_ON in our caller. 2332 */ 2333 if (unlikely(*pagep)) { 2334 put_page(*pagep); 2335 *pagep = NULL; 2336 } 2337 return -ENOMEM; 2338 } 2339 2340 if (!*pagep) { 2341 ret = -ENOMEM; 2342 page = shmem_alloc_page(gfp, info, pgoff); 2343 if (!page) 2344 goto out_unacct_blocks; 2345 2346 if (!zeropage) { /* COPY */ 2347 page_kaddr = kmap_atomic(page); 2348 ret = copy_from_user(page_kaddr, 2349 (const void __user *)src_addr, 2350 PAGE_SIZE); 2351 kunmap_atomic(page_kaddr); 2352 2353 /* fallback to copy_from_user outside mmap_lock */ 2354 if (unlikely(ret)) { 2355 *pagep = page; 2356 ret = -ENOENT; 2357 /* don't free the page */ 2358 goto out_unacct_blocks; 2359 } 2360 } else { /* ZEROPAGE */ 2361 clear_highpage(page); 2362 } 2363 } else { 2364 page = *pagep; 2365 *pagep = NULL; 2366 } 2367 2368 VM_BUG_ON(PageLocked(page)); 2369 VM_BUG_ON(PageSwapBacked(page)); 2370 __SetPageLocked(page); 2371 __SetPageSwapBacked(page); 2372 __SetPageUptodate(page); 2373 2374 ret = -EFAULT; 2375 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2376 if (unlikely(pgoff >= max_off)) 2377 goto out_release; 2378 2379 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2380 gfp & GFP_RECLAIM_MASK, dst_mm); 2381 if (ret) 2382 goto out_release; 2383 2384 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2385 page, true, false); 2386 if (ret) 2387 goto out_delete_from_cache; 2388 2389 spin_lock_irq(&info->lock); 2390 info->alloced++; 2391 inode->i_blocks += BLOCKS_PER_PAGE; 2392 shmem_recalc_inode(inode); 2393 spin_unlock_irq(&info->lock); 2394 2395 unlock_page(page); 2396 return 0; 2397 out_delete_from_cache: 2398 delete_from_page_cache(page); 2399 out_release: 2400 unlock_page(page); 2401 put_page(page); 2402 out_unacct_blocks: 2403 shmem_inode_unacct_blocks(inode, 1); 2404 return ret; 2405 } 2406 #endif /* CONFIG_USERFAULTFD */ 2407 2408 #ifdef CONFIG_TMPFS 2409 static const struct inode_operations shmem_symlink_inode_operations; 2410 static const struct inode_operations shmem_short_symlink_operations; 2411 2412 #ifdef CONFIG_TMPFS_XATTR 2413 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2414 #else 2415 #define shmem_initxattrs NULL 2416 #endif 2417 2418 static int 2419 shmem_write_begin(struct file *file, struct address_space *mapping, 2420 loff_t pos, unsigned len, unsigned flags, 2421 struct page **pagep, void **fsdata) 2422 { 2423 struct inode *inode = mapping->host; 2424 struct shmem_inode_info *info = SHMEM_I(inode); 2425 pgoff_t index = pos >> PAGE_SHIFT; 2426 int ret = 0; 2427 2428 /* i_rwsem is held by caller */ 2429 if (unlikely(info->seals & (F_SEAL_GROW | 2430 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2431 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2432 return -EPERM; 2433 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2434 return -EPERM; 2435 } 2436 2437 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2438 2439 if (ret) 2440 return ret; 2441 2442 if (PageHWPoison(*pagep)) { 2443 unlock_page(*pagep); 2444 put_page(*pagep); 2445 *pagep = NULL; 2446 return -EIO; 2447 } 2448 2449 return 0; 2450 } 2451 2452 static int 2453 shmem_write_end(struct file *file, struct address_space *mapping, 2454 loff_t pos, unsigned len, unsigned copied, 2455 struct page *page, void *fsdata) 2456 { 2457 struct inode *inode = mapping->host; 2458 2459 if (pos + copied > inode->i_size) 2460 i_size_write(inode, pos + copied); 2461 2462 if (!PageUptodate(page)) { 2463 struct page *head = compound_head(page); 2464 if (PageTransCompound(page)) { 2465 int i; 2466 2467 for (i = 0; i < HPAGE_PMD_NR; i++) { 2468 if (head + i == page) 2469 continue; 2470 clear_highpage(head + i); 2471 flush_dcache_page(head + i); 2472 } 2473 } 2474 if (copied < PAGE_SIZE) { 2475 unsigned from = pos & (PAGE_SIZE - 1); 2476 zero_user_segments(page, 0, from, 2477 from + copied, PAGE_SIZE); 2478 } 2479 SetPageUptodate(head); 2480 } 2481 set_page_dirty(page); 2482 unlock_page(page); 2483 put_page(page); 2484 2485 return copied; 2486 } 2487 2488 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2489 { 2490 struct file *file = iocb->ki_filp; 2491 struct inode *inode = file_inode(file); 2492 struct address_space *mapping = inode->i_mapping; 2493 pgoff_t index; 2494 unsigned long offset; 2495 enum sgp_type sgp = SGP_READ; 2496 int error = 0; 2497 ssize_t retval = 0; 2498 loff_t *ppos = &iocb->ki_pos; 2499 2500 /* 2501 * Might this read be for a stacking filesystem? Then when reading 2502 * holes of a sparse file, we actually need to allocate those pages, 2503 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2504 */ 2505 if (!iter_is_iovec(to)) 2506 sgp = SGP_CACHE; 2507 2508 index = *ppos >> PAGE_SHIFT; 2509 offset = *ppos & ~PAGE_MASK; 2510 2511 for (;;) { 2512 struct page *page = NULL; 2513 pgoff_t end_index; 2514 unsigned long nr, ret; 2515 loff_t i_size = i_size_read(inode); 2516 2517 end_index = i_size >> PAGE_SHIFT; 2518 if (index > end_index) 2519 break; 2520 if (index == end_index) { 2521 nr = i_size & ~PAGE_MASK; 2522 if (nr <= offset) 2523 break; 2524 } 2525 2526 error = shmem_getpage(inode, index, &page, sgp); 2527 if (error) { 2528 if (error == -EINVAL) 2529 error = 0; 2530 break; 2531 } 2532 if (page) { 2533 if (sgp == SGP_CACHE) 2534 set_page_dirty(page); 2535 unlock_page(page); 2536 2537 if (PageHWPoison(page)) { 2538 put_page(page); 2539 error = -EIO; 2540 break; 2541 } 2542 } 2543 2544 /* 2545 * We must evaluate after, since reads (unlike writes) 2546 * are called without i_rwsem protection against truncate 2547 */ 2548 nr = PAGE_SIZE; 2549 i_size = i_size_read(inode); 2550 end_index = i_size >> PAGE_SHIFT; 2551 if (index == end_index) { 2552 nr = i_size & ~PAGE_MASK; 2553 if (nr <= offset) { 2554 if (page) 2555 put_page(page); 2556 break; 2557 } 2558 } 2559 nr -= offset; 2560 2561 if (page) { 2562 /* 2563 * If users can be writing to this page using arbitrary 2564 * virtual addresses, take care about potential aliasing 2565 * before reading the page on the kernel side. 2566 */ 2567 if (mapping_writably_mapped(mapping)) 2568 flush_dcache_page(page); 2569 /* 2570 * Mark the page accessed if we read the beginning. 2571 */ 2572 if (!offset) 2573 mark_page_accessed(page); 2574 } else { 2575 page = ZERO_PAGE(0); 2576 get_page(page); 2577 } 2578 2579 /* 2580 * Ok, we have the page, and it's up-to-date, so 2581 * now we can copy it to user space... 2582 */ 2583 ret = copy_page_to_iter(page, offset, nr, to); 2584 retval += ret; 2585 offset += ret; 2586 index += offset >> PAGE_SHIFT; 2587 offset &= ~PAGE_MASK; 2588 2589 put_page(page); 2590 if (!iov_iter_count(to)) 2591 break; 2592 if (ret < nr) { 2593 error = -EFAULT; 2594 break; 2595 } 2596 cond_resched(); 2597 } 2598 2599 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2600 file_accessed(file); 2601 return retval ? retval : error; 2602 } 2603 2604 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2605 { 2606 struct address_space *mapping = file->f_mapping; 2607 struct inode *inode = mapping->host; 2608 2609 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2610 return generic_file_llseek_size(file, offset, whence, 2611 MAX_LFS_FILESIZE, i_size_read(inode)); 2612 if (offset < 0) 2613 return -ENXIO; 2614 2615 inode_lock(inode); 2616 /* We're holding i_rwsem so we can access i_size directly */ 2617 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2618 if (offset >= 0) 2619 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2620 inode_unlock(inode); 2621 return offset; 2622 } 2623 2624 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2625 loff_t len) 2626 { 2627 struct inode *inode = file_inode(file); 2628 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2629 struct shmem_inode_info *info = SHMEM_I(inode); 2630 struct shmem_falloc shmem_falloc; 2631 pgoff_t start, index, end, undo_fallocend; 2632 int error; 2633 2634 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2635 return -EOPNOTSUPP; 2636 2637 inode_lock(inode); 2638 2639 if (mode & FALLOC_FL_PUNCH_HOLE) { 2640 struct address_space *mapping = file->f_mapping; 2641 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2642 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2643 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2644 2645 /* protected by i_rwsem */ 2646 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2647 error = -EPERM; 2648 goto out; 2649 } 2650 2651 shmem_falloc.waitq = &shmem_falloc_waitq; 2652 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2653 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2654 spin_lock(&inode->i_lock); 2655 inode->i_private = &shmem_falloc; 2656 spin_unlock(&inode->i_lock); 2657 2658 if ((u64)unmap_end > (u64)unmap_start) 2659 unmap_mapping_range(mapping, unmap_start, 2660 1 + unmap_end - unmap_start, 0); 2661 shmem_truncate_range(inode, offset, offset + len - 1); 2662 /* No need to unmap again: hole-punching leaves COWed pages */ 2663 2664 spin_lock(&inode->i_lock); 2665 inode->i_private = NULL; 2666 wake_up_all(&shmem_falloc_waitq); 2667 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2668 spin_unlock(&inode->i_lock); 2669 error = 0; 2670 goto out; 2671 } 2672 2673 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2674 error = inode_newsize_ok(inode, offset + len); 2675 if (error) 2676 goto out; 2677 2678 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2679 error = -EPERM; 2680 goto out; 2681 } 2682 2683 start = offset >> PAGE_SHIFT; 2684 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2685 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2686 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2687 error = -ENOSPC; 2688 goto out; 2689 } 2690 2691 shmem_falloc.waitq = NULL; 2692 shmem_falloc.start = start; 2693 shmem_falloc.next = start; 2694 shmem_falloc.nr_falloced = 0; 2695 shmem_falloc.nr_unswapped = 0; 2696 spin_lock(&inode->i_lock); 2697 inode->i_private = &shmem_falloc; 2698 spin_unlock(&inode->i_lock); 2699 2700 /* 2701 * info->fallocend is only relevant when huge pages might be 2702 * involved: to prevent split_huge_page() freeing fallocated 2703 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2704 */ 2705 undo_fallocend = info->fallocend; 2706 if (info->fallocend < end) 2707 info->fallocend = end; 2708 2709 for (index = start; index < end; ) { 2710 struct page *page; 2711 2712 /* 2713 * Good, the fallocate(2) manpage permits EINTR: we may have 2714 * been interrupted because we are using up too much memory. 2715 */ 2716 if (signal_pending(current)) 2717 error = -EINTR; 2718 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2719 error = -ENOMEM; 2720 else 2721 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2722 if (error) { 2723 info->fallocend = undo_fallocend; 2724 /* Remove the !PageUptodate pages we added */ 2725 if (index > start) { 2726 shmem_undo_range(inode, 2727 (loff_t)start << PAGE_SHIFT, 2728 ((loff_t)index << PAGE_SHIFT) - 1, true); 2729 } 2730 goto undone; 2731 } 2732 2733 index++; 2734 /* 2735 * Here is a more important optimization than it appears: 2736 * a second SGP_FALLOC on the same huge page will clear it, 2737 * making it PageUptodate and un-undoable if we fail later. 2738 */ 2739 if (PageTransCompound(page)) { 2740 index = round_up(index, HPAGE_PMD_NR); 2741 /* Beware 32-bit wraparound */ 2742 if (!index) 2743 index--; 2744 } 2745 2746 /* 2747 * Inform shmem_writepage() how far we have reached. 2748 * No need for lock or barrier: we have the page lock. 2749 */ 2750 if (!PageUptodate(page)) 2751 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2752 shmem_falloc.next = index; 2753 2754 /* 2755 * If !PageUptodate, leave it that way so that freeable pages 2756 * can be recognized if we need to rollback on error later. 2757 * But set_page_dirty so that memory pressure will swap rather 2758 * than free the pages we are allocating (and SGP_CACHE pages 2759 * might still be clean: we now need to mark those dirty too). 2760 */ 2761 set_page_dirty(page); 2762 unlock_page(page); 2763 put_page(page); 2764 cond_resched(); 2765 } 2766 2767 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2768 i_size_write(inode, offset + len); 2769 inode->i_ctime = current_time(inode); 2770 undone: 2771 spin_lock(&inode->i_lock); 2772 inode->i_private = NULL; 2773 spin_unlock(&inode->i_lock); 2774 out: 2775 inode_unlock(inode); 2776 return error; 2777 } 2778 2779 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2780 { 2781 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2782 2783 buf->f_type = TMPFS_MAGIC; 2784 buf->f_bsize = PAGE_SIZE; 2785 buf->f_namelen = NAME_MAX; 2786 if (sbinfo->max_blocks) { 2787 buf->f_blocks = sbinfo->max_blocks; 2788 buf->f_bavail = 2789 buf->f_bfree = sbinfo->max_blocks - 2790 percpu_counter_sum(&sbinfo->used_blocks); 2791 } 2792 if (sbinfo->max_inodes) { 2793 buf->f_files = sbinfo->max_inodes; 2794 buf->f_ffree = sbinfo->free_inodes; 2795 } 2796 /* else leave those fields 0 like simple_statfs */ 2797 2798 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2799 2800 return 0; 2801 } 2802 2803 /* 2804 * File creation. Allocate an inode, and we're done.. 2805 */ 2806 static int 2807 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2808 struct dentry *dentry, umode_t mode, dev_t dev) 2809 { 2810 struct inode *inode; 2811 int error = -ENOSPC; 2812 2813 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2814 if (inode) { 2815 error = simple_acl_create(dir, inode); 2816 if (error) 2817 goto out_iput; 2818 error = security_inode_init_security(inode, dir, 2819 &dentry->d_name, 2820 shmem_initxattrs, NULL); 2821 if (error && error != -EOPNOTSUPP) 2822 goto out_iput; 2823 2824 error = 0; 2825 dir->i_size += BOGO_DIRENT_SIZE; 2826 dir->i_ctime = dir->i_mtime = current_time(dir); 2827 d_instantiate(dentry, inode); 2828 dget(dentry); /* Extra count - pin the dentry in core */ 2829 } 2830 return error; 2831 out_iput: 2832 iput(inode); 2833 return error; 2834 } 2835 2836 static int 2837 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2838 struct dentry *dentry, umode_t mode) 2839 { 2840 struct inode *inode; 2841 int error = -ENOSPC; 2842 2843 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2844 if (inode) { 2845 error = security_inode_init_security(inode, dir, 2846 NULL, 2847 shmem_initxattrs, NULL); 2848 if (error && error != -EOPNOTSUPP) 2849 goto out_iput; 2850 error = simple_acl_create(dir, inode); 2851 if (error) 2852 goto out_iput; 2853 d_tmpfile(dentry, inode); 2854 } 2855 return error; 2856 out_iput: 2857 iput(inode); 2858 return error; 2859 } 2860 2861 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2862 struct dentry *dentry, umode_t mode) 2863 { 2864 int error; 2865 2866 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2867 mode | S_IFDIR, 0))) 2868 return error; 2869 inc_nlink(dir); 2870 return 0; 2871 } 2872 2873 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2874 struct dentry *dentry, umode_t mode, bool excl) 2875 { 2876 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2877 } 2878 2879 /* 2880 * Link a file.. 2881 */ 2882 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2883 { 2884 struct inode *inode = d_inode(old_dentry); 2885 int ret = 0; 2886 2887 /* 2888 * No ordinary (disk based) filesystem counts links as inodes; 2889 * but each new link needs a new dentry, pinning lowmem, and 2890 * tmpfs dentries cannot be pruned until they are unlinked. 2891 * But if an O_TMPFILE file is linked into the tmpfs, the 2892 * first link must skip that, to get the accounting right. 2893 */ 2894 if (inode->i_nlink) { 2895 ret = shmem_reserve_inode(inode->i_sb, NULL); 2896 if (ret) 2897 goto out; 2898 } 2899 2900 dir->i_size += BOGO_DIRENT_SIZE; 2901 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2902 inc_nlink(inode); 2903 ihold(inode); /* New dentry reference */ 2904 dget(dentry); /* Extra pinning count for the created dentry */ 2905 d_instantiate(dentry, inode); 2906 out: 2907 return ret; 2908 } 2909 2910 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2911 { 2912 struct inode *inode = d_inode(dentry); 2913 2914 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2915 shmem_free_inode(inode->i_sb); 2916 2917 dir->i_size -= BOGO_DIRENT_SIZE; 2918 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2919 drop_nlink(inode); 2920 dput(dentry); /* Undo the count from "create" - this does all the work */ 2921 return 0; 2922 } 2923 2924 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2925 { 2926 if (!simple_empty(dentry)) 2927 return -ENOTEMPTY; 2928 2929 drop_nlink(d_inode(dentry)); 2930 drop_nlink(dir); 2931 return shmem_unlink(dir, dentry); 2932 } 2933 2934 static int shmem_whiteout(struct user_namespace *mnt_userns, 2935 struct inode *old_dir, struct dentry *old_dentry) 2936 { 2937 struct dentry *whiteout; 2938 int error; 2939 2940 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2941 if (!whiteout) 2942 return -ENOMEM; 2943 2944 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2945 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2946 dput(whiteout); 2947 if (error) 2948 return error; 2949 2950 /* 2951 * Cheat and hash the whiteout while the old dentry is still in 2952 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2953 * 2954 * d_lookup() will consistently find one of them at this point, 2955 * not sure which one, but that isn't even important. 2956 */ 2957 d_rehash(whiteout); 2958 return 0; 2959 } 2960 2961 /* 2962 * The VFS layer already does all the dentry stuff for rename, 2963 * we just have to decrement the usage count for the target if 2964 * it exists so that the VFS layer correctly free's it when it 2965 * gets overwritten. 2966 */ 2967 static int shmem_rename2(struct user_namespace *mnt_userns, 2968 struct inode *old_dir, struct dentry *old_dentry, 2969 struct inode *new_dir, struct dentry *new_dentry, 2970 unsigned int flags) 2971 { 2972 struct inode *inode = d_inode(old_dentry); 2973 int they_are_dirs = S_ISDIR(inode->i_mode); 2974 2975 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2976 return -EINVAL; 2977 2978 if (flags & RENAME_EXCHANGE) 2979 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 2980 2981 if (!simple_empty(new_dentry)) 2982 return -ENOTEMPTY; 2983 2984 if (flags & RENAME_WHITEOUT) { 2985 int error; 2986 2987 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 2988 if (error) 2989 return error; 2990 } 2991 2992 if (d_really_is_positive(new_dentry)) { 2993 (void) shmem_unlink(new_dir, new_dentry); 2994 if (they_are_dirs) { 2995 drop_nlink(d_inode(new_dentry)); 2996 drop_nlink(old_dir); 2997 } 2998 } else if (they_are_dirs) { 2999 drop_nlink(old_dir); 3000 inc_nlink(new_dir); 3001 } 3002 3003 old_dir->i_size -= BOGO_DIRENT_SIZE; 3004 new_dir->i_size += BOGO_DIRENT_SIZE; 3005 old_dir->i_ctime = old_dir->i_mtime = 3006 new_dir->i_ctime = new_dir->i_mtime = 3007 inode->i_ctime = current_time(old_dir); 3008 return 0; 3009 } 3010 3011 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3012 struct dentry *dentry, const char *symname) 3013 { 3014 int error; 3015 int len; 3016 struct inode *inode; 3017 struct page *page; 3018 3019 len = strlen(symname) + 1; 3020 if (len > PAGE_SIZE) 3021 return -ENAMETOOLONG; 3022 3023 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3024 VM_NORESERVE); 3025 if (!inode) 3026 return -ENOSPC; 3027 3028 error = security_inode_init_security(inode, dir, &dentry->d_name, 3029 shmem_initxattrs, NULL); 3030 if (error && error != -EOPNOTSUPP) { 3031 iput(inode); 3032 return error; 3033 } 3034 3035 inode->i_size = len-1; 3036 if (len <= SHORT_SYMLINK_LEN) { 3037 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3038 if (!inode->i_link) { 3039 iput(inode); 3040 return -ENOMEM; 3041 } 3042 inode->i_op = &shmem_short_symlink_operations; 3043 } else { 3044 inode_nohighmem(inode); 3045 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3046 if (error) { 3047 iput(inode); 3048 return error; 3049 } 3050 inode->i_mapping->a_ops = &shmem_aops; 3051 inode->i_op = &shmem_symlink_inode_operations; 3052 memcpy(page_address(page), symname, len); 3053 SetPageUptodate(page); 3054 set_page_dirty(page); 3055 unlock_page(page); 3056 put_page(page); 3057 } 3058 dir->i_size += BOGO_DIRENT_SIZE; 3059 dir->i_ctime = dir->i_mtime = current_time(dir); 3060 d_instantiate(dentry, inode); 3061 dget(dentry); 3062 return 0; 3063 } 3064 3065 static void shmem_put_link(void *arg) 3066 { 3067 mark_page_accessed(arg); 3068 put_page(arg); 3069 } 3070 3071 static const char *shmem_get_link(struct dentry *dentry, 3072 struct inode *inode, 3073 struct delayed_call *done) 3074 { 3075 struct page *page = NULL; 3076 int error; 3077 if (!dentry) { 3078 page = find_get_page(inode->i_mapping, 0); 3079 if (!page) 3080 return ERR_PTR(-ECHILD); 3081 if (PageHWPoison(page) || 3082 !PageUptodate(page)) { 3083 put_page(page); 3084 return ERR_PTR(-ECHILD); 3085 } 3086 } else { 3087 error = shmem_getpage(inode, 0, &page, SGP_READ); 3088 if (error) 3089 return ERR_PTR(error); 3090 if (!page) 3091 return ERR_PTR(-ECHILD); 3092 if (PageHWPoison(page)) { 3093 unlock_page(page); 3094 put_page(page); 3095 return ERR_PTR(-ECHILD); 3096 } 3097 unlock_page(page); 3098 } 3099 set_delayed_call(done, shmem_put_link, page); 3100 return page_address(page); 3101 } 3102 3103 #ifdef CONFIG_TMPFS_XATTR 3104 /* 3105 * Superblocks without xattr inode operations may get some security.* xattr 3106 * support from the LSM "for free". As soon as we have any other xattrs 3107 * like ACLs, we also need to implement the security.* handlers at 3108 * filesystem level, though. 3109 */ 3110 3111 /* 3112 * Callback for security_inode_init_security() for acquiring xattrs. 3113 */ 3114 static int shmem_initxattrs(struct inode *inode, 3115 const struct xattr *xattr_array, 3116 void *fs_info) 3117 { 3118 struct shmem_inode_info *info = SHMEM_I(inode); 3119 const struct xattr *xattr; 3120 struct simple_xattr *new_xattr; 3121 size_t len; 3122 3123 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3124 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3125 if (!new_xattr) 3126 return -ENOMEM; 3127 3128 len = strlen(xattr->name) + 1; 3129 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3130 GFP_KERNEL); 3131 if (!new_xattr->name) { 3132 kvfree(new_xattr); 3133 return -ENOMEM; 3134 } 3135 3136 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3137 XATTR_SECURITY_PREFIX_LEN); 3138 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3139 xattr->name, len); 3140 3141 simple_xattr_list_add(&info->xattrs, new_xattr); 3142 } 3143 3144 return 0; 3145 } 3146 3147 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3148 struct dentry *unused, struct inode *inode, 3149 const char *name, void *buffer, size_t size) 3150 { 3151 struct shmem_inode_info *info = SHMEM_I(inode); 3152 3153 name = xattr_full_name(handler, name); 3154 return simple_xattr_get(&info->xattrs, name, buffer, size); 3155 } 3156 3157 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3158 struct user_namespace *mnt_userns, 3159 struct dentry *unused, struct inode *inode, 3160 const char *name, const void *value, 3161 size_t size, int flags) 3162 { 3163 struct shmem_inode_info *info = SHMEM_I(inode); 3164 3165 name = xattr_full_name(handler, name); 3166 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3167 } 3168 3169 static const struct xattr_handler shmem_security_xattr_handler = { 3170 .prefix = XATTR_SECURITY_PREFIX, 3171 .get = shmem_xattr_handler_get, 3172 .set = shmem_xattr_handler_set, 3173 }; 3174 3175 static const struct xattr_handler shmem_trusted_xattr_handler = { 3176 .prefix = XATTR_TRUSTED_PREFIX, 3177 .get = shmem_xattr_handler_get, 3178 .set = shmem_xattr_handler_set, 3179 }; 3180 3181 static const struct xattr_handler *shmem_xattr_handlers[] = { 3182 #ifdef CONFIG_TMPFS_POSIX_ACL 3183 &posix_acl_access_xattr_handler, 3184 &posix_acl_default_xattr_handler, 3185 #endif 3186 &shmem_security_xattr_handler, 3187 &shmem_trusted_xattr_handler, 3188 NULL 3189 }; 3190 3191 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3192 { 3193 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3194 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3195 } 3196 #endif /* CONFIG_TMPFS_XATTR */ 3197 3198 static const struct inode_operations shmem_short_symlink_operations = { 3199 .get_link = simple_get_link, 3200 #ifdef CONFIG_TMPFS_XATTR 3201 .listxattr = shmem_listxattr, 3202 #endif 3203 }; 3204 3205 static const struct inode_operations shmem_symlink_inode_operations = { 3206 .get_link = shmem_get_link, 3207 #ifdef CONFIG_TMPFS_XATTR 3208 .listxattr = shmem_listxattr, 3209 #endif 3210 }; 3211 3212 static struct dentry *shmem_get_parent(struct dentry *child) 3213 { 3214 return ERR_PTR(-ESTALE); 3215 } 3216 3217 static int shmem_match(struct inode *ino, void *vfh) 3218 { 3219 __u32 *fh = vfh; 3220 __u64 inum = fh[2]; 3221 inum = (inum << 32) | fh[1]; 3222 return ino->i_ino == inum && fh[0] == ino->i_generation; 3223 } 3224 3225 /* Find any alias of inode, but prefer a hashed alias */ 3226 static struct dentry *shmem_find_alias(struct inode *inode) 3227 { 3228 struct dentry *alias = d_find_alias(inode); 3229 3230 return alias ?: d_find_any_alias(inode); 3231 } 3232 3233 3234 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3235 struct fid *fid, int fh_len, int fh_type) 3236 { 3237 struct inode *inode; 3238 struct dentry *dentry = NULL; 3239 u64 inum; 3240 3241 if (fh_len < 3) 3242 return NULL; 3243 3244 inum = fid->raw[2]; 3245 inum = (inum << 32) | fid->raw[1]; 3246 3247 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3248 shmem_match, fid->raw); 3249 if (inode) { 3250 dentry = shmem_find_alias(inode); 3251 iput(inode); 3252 } 3253 3254 return dentry; 3255 } 3256 3257 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3258 struct inode *parent) 3259 { 3260 if (*len < 3) { 3261 *len = 3; 3262 return FILEID_INVALID; 3263 } 3264 3265 if (inode_unhashed(inode)) { 3266 /* Unfortunately insert_inode_hash is not idempotent, 3267 * so as we hash inodes here rather than at creation 3268 * time, we need a lock to ensure we only try 3269 * to do it once 3270 */ 3271 static DEFINE_SPINLOCK(lock); 3272 spin_lock(&lock); 3273 if (inode_unhashed(inode)) 3274 __insert_inode_hash(inode, 3275 inode->i_ino + inode->i_generation); 3276 spin_unlock(&lock); 3277 } 3278 3279 fh[0] = inode->i_generation; 3280 fh[1] = inode->i_ino; 3281 fh[2] = ((__u64)inode->i_ino) >> 32; 3282 3283 *len = 3; 3284 return 1; 3285 } 3286 3287 static const struct export_operations shmem_export_ops = { 3288 .get_parent = shmem_get_parent, 3289 .encode_fh = shmem_encode_fh, 3290 .fh_to_dentry = shmem_fh_to_dentry, 3291 }; 3292 3293 enum shmem_param { 3294 Opt_gid, 3295 Opt_huge, 3296 Opt_mode, 3297 Opt_mpol, 3298 Opt_nr_blocks, 3299 Opt_nr_inodes, 3300 Opt_size, 3301 Opt_uid, 3302 Opt_inode32, 3303 Opt_inode64, 3304 }; 3305 3306 static const struct constant_table shmem_param_enums_huge[] = { 3307 {"never", SHMEM_HUGE_NEVER }, 3308 {"always", SHMEM_HUGE_ALWAYS }, 3309 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3310 {"advise", SHMEM_HUGE_ADVISE }, 3311 {} 3312 }; 3313 3314 const struct fs_parameter_spec shmem_fs_parameters[] = { 3315 fsparam_u32 ("gid", Opt_gid), 3316 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3317 fsparam_u32oct("mode", Opt_mode), 3318 fsparam_string("mpol", Opt_mpol), 3319 fsparam_string("nr_blocks", Opt_nr_blocks), 3320 fsparam_string("nr_inodes", Opt_nr_inodes), 3321 fsparam_string("size", Opt_size), 3322 fsparam_u32 ("uid", Opt_uid), 3323 fsparam_flag ("inode32", Opt_inode32), 3324 fsparam_flag ("inode64", Opt_inode64), 3325 {} 3326 }; 3327 3328 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3329 { 3330 struct shmem_options *ctx = fc->fs_private; 3331 struct fs_parse_result result; 3332 unsigned long long size; 3333 char *rest; 3334 int opt; 3335 3336 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3337 if (opt < 0) 3338 return opt; 3339 3340 switch (opt) { 3341 case Opt_size: 3342 size = memparse(param->string, &rest); 3343 if (*rest == '%') { 3344 size <<= PAGE_SHIFT; 3345 size *= totalram_pages(); 3346 do_div(size, 100); 3347 rest++; 3348 } 3349 if (*rest) 3350 goto bad_value; 3351 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3352 ctx->seen |= SHMEM_SEEN_BLOCKS; 3353 break; 3354 case Opt_nr_blocks: 3355 ctx->blocks = memparse(param->string, &rest); 3356 if (*rest) 3357 goto bad_value; 3358 ctx->seen |= SHMEM_SEEN_BLOCKS; 3359 break; 3360 case Opt_nr_inodes: 3361 ctx->inodes = memparse(param->string, &rest); 3362 if (*rest) 3363 goto bad_value; 3364 ctx->seen |= SHMEM_SEEN_INODES; 3365 break; 3366 case Opt_mode: 3367 ctx->mode = result.uint_32 & 07777; 3368 break; 3369 case Opt_uid: 3370 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3371 if (!uid_valid(ctx->uid)) 3372 goto bad_value; 3373 break; 3374 case Opt_gid: 3375 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3376 if (!gid_valid(ctx->gid)) 3377 goto bad_value; 3378 break; 3379 case Opt_huge: 3380 ctx->huge = result.uint_32; 3381 if (ctx->huge != SHMEM_HUGE_NEVER && 3382 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3383 has_transparent_hugepage())) 3384 goto unsupported_parameter; 3385 ctx->seen |= SHMEM_SEEN_HUGE; 3386 break; 3387 case Opt_mpol: 3388 if (IS_ENABLED(CONFIG_NUMA)) { 3389 mpol_put(ctx->mpol); 3390 ctx->mpol = NULL; 3391 if (mpol_parse_str(param->string, &ctx->mpol)) 3392 goto bad_value; 3393 break; 3394 } 3395 goto unsupported_parameter; 3396 case Opt_inode32: 3397 ctx->full_inums = false; 3398 ctx->seen |= SHMEM_SEEN_INUMS; 3399 break; 3400 case Opt_inode64: 3401 if (sizeof(ino_t) < 8) { 3402 return invalfc(fc, 3403 "Cannot use inode64 with <64bit inums in kernel\n"); 3404 } 3405 ctx->full_inums = true; 3406 ctx->seen |= SHMEM_SEEN_INUMS; 3407 break; 3408 } 3409 return 0; 3410 3411 unsupported_parameter: 3412 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3413 bad_value: 3414 return invalfc(fc, "Bad value for '%s'", param->key); 3415 } 3416 3417 static int shmem_parse_options(struct fs_context *fc, void *data) 3418 { 3419 char *options = data; 3420 3421 if (options) { 3422 int err = security_sb_eat_lsm_opts(options, &fc->security); 3423 if (err) 3424 return err; 3425 } 3426 3427 while (options != NULL) { 3428 char *this_char = options; 3429 for (;;) { 3430 /* 3431 * NUL-terminate this option: unfortunately, 3432 * mount options form a comma-separated list, 3433 * but mpol's nodelist may also contain commas. 3434 */ 3435 options = strchr(options, ','); 3436 if (options == NULL) 3437 break; 3438 options++; 3439 if (!isdigit(*options)) { 3440 options[-1] = '\0'; 3441 break; 3442 } 3443 } 3444 if (*this_char) { 3445 char *value = strchr(this_char, '='); 3446 size_t len = 0; 3447 int err; 3448 3449 if (value) { 3450 *value++ = '\0'; 3451 len = strlen(value); 3452 } 3453 err = vfs_parse_fs_string(fc, this_char, value, len); 3454 if (err < 0) 3455 return err; 3456 } 3457 } 3458 return 0; 3459 } 3460 3461 /* 3462 * Reconfigure a shmem filesystem. 3463 * 3464 * Note that we disallow change from limited->unlimited blocks/inodes while any 3465 * are in use; but we must separately disallow unlimited->limited, because in 3466 * that case we have no record of how much is already in use. 3467 */ 3468 static int shmem_reconfigure(struct fs_context *fc) 3469 { 3470 struct shmem_options *ctx = fc->fs_private; 3471 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3472 unsigned long inodes; 3473 struct mempolicy *mpol = NULL; 3474 const char *err; 3475 3476 raw_spin_lock(&sbinfo->stat_lock); 3477 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3478 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3479 if (!sbinfo->max_blocks) { 3480 err = "Cannot retroactively limit size"; 3481 goto out; 3482 } 3483 if (percpu_counter_compare(&sbinfo->used_blocks, 3484 ctx->blocks) > 0) { 3485 err = "Too small a size for current use"; 3486 goto out; 3487 } 3488 } 3489 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3490 if (!sbinfo->max_inodes) { 3491 err = "Cannot retroactively limit inodes"; 3492 goto out; 3493 } 3494 if (ctx->inodes < inodes) { 3495 err = "Too few inodes for current use"; 3496 goto out; 3497 } 3498 } 3499 3500 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3501 sbinfo->next_ino > UINT_MAX) { 3502 err = "Current inum too high to switch to 32-bit inums"; 3503 goto out; 3504 } 3505 3506 if (ctx->seen & SHMEM_SEEN_HUGE) 3507 sbinfo->huge = ctx->huge; 3508 if (ctx->seen & SHMEM_SEEN_INUMS) 3509 sbinfo->full_inums = ctx->full_inums; 3510 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3511 sbinfo->max_blocks = ctx->blocks; 3512 if (ctx->seen & SHMEM_SEEN_INODES) { 3513 sbinfo->max_inodes = ctx->inodes; 3514 sbinfo->free_inodes = ctx->inodes - inodes; 3515 } 3516 3517 /* 3518 * Preserve previous mempolicy unless mpol remount option was specified. 3519 */ 3520 if (ctx->mpol) { 3521 mpol = sbinfo->mpol; 3522 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3523 ctx->mpol = NULL; 3524 } 3525 raw_spin_unlock(&sbinfo->stat_lock); 3526 mpol_put(mpol); 3527 return 0; 3528 out: 3529 raw_spin_unlock(&sbinfo->stat_lock); 3530 return invalfc(fc, "%s", err); 3531 } 3532 3533 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3534 { 3535 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3536 3537 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3538 seq_printf(seq, ",size=%luk", 3539 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3540 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3541 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3542 if (sbinfo->mode != (0777 | S_ISVTX)) 3543 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3544 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3545 seq_printf(seq, ",uid=%u", 3546 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3547 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3548 seq_printf(seq, ",gid=%u", 3549 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3550 3551 /* 3552 * Showing inode{64,32} might be useful even if it's the system default, 3553 * since then people don't have to resort to checking both here and 3554 * /proc/config.gz to confirm 64-bit inums were successfully applied 3555 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3556 * 3557 * We hide it when inode64 isn't the default and we are using 32-bit 3558 * inodes, since that probably just means the feature isn't even under 3559 * consideration. 3560 * 3561 * As such: 3562 * 3563 * +-----------------+-----------------+ 3564 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3565 * +------------------+-----------------+-----------------+ 3566 * | full_inums=true | show | show | 3567 * | full_inums=false | show | hide | 3568 * +------------------+-----------------+-----------------+ 3569 * 3570 */ 3571 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3572 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3574 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3575 if (sbinfo->huge) 3576 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3577 #endif 3578 shmem_show_mpol(seq, sbinfo->mpol); 3579 return 0; 3580 } 3581 3582 #endif /* CONFIG_TMPFS */ 3583 3584 static void shmem_put_super(struct super_block *sb) 3585 { 3586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3587 3588 free_percpu(sbinfo->ino_batch); 3589 percpu_counter_destroy(&sbinfo->used_blocks); 3590 mpol_put(sbinfo->mpol); 3591 kfree(sbinfo); 3592 sb->s_fs_info = NULL; 3593 } 3594 3595 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3596 { 3597 struct shmem_options *ctx = fc->fs_private; 3598 struct inode *inode; 3599 struct shmem_sb_info *sbinfo; 3600 3601 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3602 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3603 L1_CACHE_BYTES), GFP_KERNEL); 3604 if (!sbinfo) 3605 return -ENOMEM; 3606 3607 sb->s_fs_info = sbinfo; 3608 3609 #ifdef CONFIG_TMPFS 3610 /* 3611 * Per default we only allow half of the physical ram per 3612 * tmpfs instance, limiting inodes to one per page of lowmem; 3613 * but the internal instance is left unlimited. 3614 */ 3615 if (!(sb->s_flags & SB_KERNMOUNT)) { 3616 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3617 ctx->blocks = shmem_default_max_blocks(); 3618 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3619 ctx->inodes = shmem_default_max_inodes(); 3620 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3621 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3622 } else { 3623 sb->s_flags |= SB_NOUSER; 3624 } 3625 sb->s_export_op = &shmem_export_ops; 3626 sb->s_flags |= SB_NOSEC; 3627 #else 3628 sb->s_flags |= SB_NOUSER; 3629 #endif 3630 sbinfo->max_blocks = ctx->blocks; 3631 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3632 if (sb->s_flags & SB_KERNMOUNT) { 3633 sbinfo->ino_batch = alloc_percpu(ino_t); 3634 if (!sbinfo->ino_batch) 3635 goto failed; 3636 } 3637 sbinfo->uid = ctx->uid; 3638 sbinfo->gid = ctx->gid; 3639 sbinfo->full_inums = ctx->full_inums; 3640 sbinfo->mode = ctx->mode; 3641 sbinfo->huge = ctx->huge; 3642 sbinfo->mpol = ctx->mpol; 3643 ctx->mpol = NULL; 3644 3645 raw_spin_lock_init(&sbinfo->stat_lock); 3646 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3647 goto failed; 3648 spin_lock_init(&sbinfo->shrinklist_lock); 3649 INIT_LIST_HEAD(&sbinfo->shrinklist); 3650 3651 sb->s_maxbytes = MAX_LFS_FILESIZE; 3652 sb->s_blocksize = PAGE_SIZE; 3653 sb->s_blocksize_bits = PAGE_SHIFT; 3654 sb->s_magic = TMPFS_MAGIC; 3655 sb->s_op = &shmem_ops; 3656 sb->s_time_gran = 1; 3657 #ifdef CONFIG_TMPFS_XATTR 3658 sb->s_xattr = shmem_xattr_handlers; 3659 #endif 3660 #ifdef CONFIG_TMPFS_POSIX_ACL 3661 sb->s_flags |= SB_POSIXACL; 3662 #endif 3663 uuid_gen(&sb->s_uuid); 3664 3665 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3666 if (!inode) 3667 goto failed; 3668 inode->i_uid = sbinfo->uid; 3669 inode->i_gid = sbinfo->gid; 3670 sb->s_root = d_make_root(inode); 3671 if (!sb->s_root) 3672 goto failed; 3673 return 0; 3674 3675 failed: 3676 shmem_put_super(sb); 3677 return -ENOMEM; 3678 } 3679 3680 static int shmem_get_tree(struct fs_context *fc) 3681 { 3682 return get_tree_nodev(fc, shmem_fill_super); 3683 } 3684 3685 static void shmem_free_fc(struct fs_context *fc) 3686 { 3687 struct shmem_options *ctx = fc->fs_private; 3688 3689 if (ctx) { 3690 mpol_put(ctx->mpol); 3691 kfree(ctx); 3692 } 3693 } 3694 3695 static const struct fs_context_operations shmem_fs_context_ops = { 3696 .free = shmem_free_fc, 3697 .get_tree = shmem_get_tree, 3698 #ifdef CONFIG_TMPFS 3699 .parse_monolithic = shmem_parse_options, 3700 .parse_param = shmem_parse_one, 3701 .reconfigure = shmem_reconfigure, 3702 #endif 3703 }; 3704 3705 static struct kmem_cache *shmem_inode_cachep; 3706 3707 static struct inode *shmem_alloc_inode(struct super_block *sb) 3708 { 3709 struct shmem_inode_info *info; 3710 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3711 if (!info) 3712 return NULL; 3713 return &info->vfs_inode; 3714 } 3715 3716 static void shmem_free_in_core_inode(struct inode *inode) 3717 { 3718 if (S_ISLNK(inode->i_mode)) 3719 kfree(inode->i_link); 3720 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3721 } 3722 3723 static void shmem_destroy_inode(struct inode *inode) 3724 { 3725 if (S_ISREG(inode->i_mode)) 3726 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3727 } 3728 3729 static void shmem_init_inode(void *foo) 3730 { 3731 struct shmem_inode_info *info = foo; 3732 inode_init_once(&info->vfs_inode); 3733 } 3734 3735 static void shmem_init_inodecache(void) 3736 { 3737 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3738 sizeof(struct shmem_inode_info), 3739 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3740 } 3741 3742 static void shmem_destroy_inodecache(void) 3743 { 3744 kmem_cache_destroy(shmem_inode_cachep); 3745 } 3746 3747 /* Keep the page in page cache instead of truncating it */ 3748 static int shmem_error_remove_page(struct address_space *mapping, 3749 struct page *page) 3750 { 3751 return 0; 3752 } 3753 3754 const struct address_space_operations shmem_aops = { 3755 .writepage = shmem_writepage, 3756 .set_page_dirty = __set_page_dirty_no_writeback, 3757 #ifdef CONFIG_TMPFS 3758 .write_begin = shmem_write_begin, 3759 .write_end = shmem_write_end, 3760 #endif 3761 #ifdef CONFIG_MIGRATION 3762 .migratepage = migrate_page, 3763 #endif 3764 .error_remove_page = shmem_error_remove_page, 3765 }; 3766 EXPORT_SYMBOL(shmem_aops); 3767 3768 static const struct file_operations shmem_file_operations = { 3769 .mmap = shmem_mmap, 3770 .get_unmapped_area = shmem_get_unmapped_area, 3771 #ifdef CONFIG_TMPFS 3772 .llseek = shmem_file_llseek, 3773 .read_iter = shmem_file_read_iter, 3774 .write_iter = generic_file_write_iter, 3775 .fsync = noop_fsync, 3776 .splice_read = generic_file_splice_read, 3777 .splice_write = iter_file_splice_write, 3778 .fallocate = shmem_fallocate, 3779 #endif 3780 }; 3781 3782 static const struct inode_operations shmem_inode_operations = { 3783 .getattr = shmem_getattr, 3784 .setattr = shmem_setattr, 3785 #ifdef CONFIG_TMPFS_XATTR 3786 .listxattr = shmem_listxattr, 3787 .set_acl = simple_set_acl, 3788 #endif 3789 }; 3790 3791 static const struct inode_operations shmem_dir_inode_operations = { 3792 #ifdef CONFIG_TMPFS 3793 .create = shmem_create, 3794 .lookup = simple_lookup, 3795 .link = shmem_link, 3796 .unlink = shmem_unlink, 3797 .symlink = shmem_symlink, 3798 .mkdir = shmem_mkdir, 3799 .rmdir = shmem_rmdir, 3800 .mknod = shmem_mknod, 3801 .rename = shmem_rename2, 3802 .tmpfile = shmem_tmpfile, 3803 #endif 3804 #ifdef CONFIG_TMPFS_XATTR 3805 .listxattr = shmem_listxattr, 3806 #endif 3807 #ifdef CONFIG_TMPFS_POSIX_ACL 3808 .setattr = shmem_setattr, 3809 .set_acl = simple_set_acl, 3810 #endif 3811 }; 3812 3813 static const struct inode_operations shmem_special_inode_operations = { 3814 #ifdef CONFIG_TMPFS_XATTR 3815 .listxattr = shmem_listxattr, 3816 #endif 3817 #ifdef CONFIG_TMPFS_POSIX_ACL 3818 .setattr = shmem_setattr, 3819 .set_acl = simple_set_acl, 3820 #endif 3821 }; 3822 3823 static const struct super_operations shmem_ops = { 3824 .alloc_inode = shmem_alloc_inode, 3825 .free_inode = shmem_free_in_core_inode, 3826 .destroy_inode = shmem_destroy_inode, 3827 #ifdef CONFIG_TMPFS 3828 .statfs = shmem_statfs, 3829 .show_options = shmem_show_options, 3830 #endif 3831 .evict_inode = shmem_evict_inode, 3832 .drop_inode = generic_delete_inode, 3833 .put_super = shmem_put_super, 3834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3835 .nr_cached_objects = shmem_unused_huge_count, 3836 .free_cached_objects = shmem_unused_huge_scan, 3837 #endif 3838 }; 3839 3840 static const struct vm_operations_struct shmem_vm_ops = { 3841 .fault = shmem_fault, 3842 .map_pages = filemap_map_pages, 3843 #ifdef CONFIG_NUMA 3844 .set_policy = shmem_set_policy, 3845 .get_policy = shmem_get_policy, 3846 #endif 3847 }; 3848 3849 int shmem_init_fs_context(struct fs_context *fc) 3850 { 3851 struct shmem_options *ctx; 3852 3853 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3854 if (!ctx) 3855 return -ENOMEM; 3856 3857 ctx->mode = 0777 | S_ISVTX; 3858 ctx->uid = current_fsuid(); 3859 ctx->gid = current_fsgid(); 3860 3861 fc->fs_private = ctx; 3862 fc->ops = &shmem_fs_context_ops; 3863 return 0; 3864 } 3865 3866 static struct file_system_type shmem_fs_type = { 3867 .owner = THIS_MODULE, 3868 .name = "tmpfs", 3869 .init_fs_context = shmem_init_fs_context, 3870 #ifdef CONFIG_TMPFS 3871 .parameters = shmem_fs_parameters, 3872 #endif 3873 .kill_sb = kill_litter_super, 3874 .fs_flags = FS_USERNS_MOUNT, 3875 }; 3876 3877 int __init shmem_init(void) 3878 { 3879 int error; 3880 3881 shmem_init_inodecache(); 3882 3883 error = register_filesystem(&shmem_fs_type); 3884 if (error) { 3885 pr_err("Could not register tmpfs\n"); 3886 goto out2; 3887 } 3888 3889 shm_mnt = kern_mount(&shmem_fs_type); 3890 if (IS_ERR(shm_mnt)) { 3891 error = PTR_ERR(shm_mnt); 3892 pr_err("Could not kern_mount tmpfs\n"); 3893 goto out1; 3894 } 3895 3896 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3897 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3898 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3899 else 3900 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3901 #endif 3902 return 0; 3903 3904 out1: 3905 unregister_filesystem(&shmem_fs_type); 3906 out2: 3907 shmem_destroy_inodecache(); 3908 shm_mnt = ERR_PTR(error); 3909 return error; 3910 } 3911 3912 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3913 static ssize_t shmem_enabled_show(struct kobject *kobj, 3914 struct kobj_attribute *attr, char *buf) 3915 { 3916 static const int values[] = { 3917 SHMEM_HUGE_ALWAYS, 3918 SHMEM_HUGE_WITHIN_SIZE, 3919 SHMEM_HUGE_ADVISE, 3920 SHMEM_HUGE_NEVER, 3921 SHMEM_HUGE_DENY, 3922 SHMEM_HUGE_FORCE, 3923 }; 3924 int len = 0; 3925 int i; 3926 3927 for (i = 0; i < ARRAY_SIZE(values); i++) { 3928 len += sysfs_emit_at(buf, len, 3929 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3930 i ? " " : "", 3931 shmem_format_huge(values[i])); 3932 } 3933 3934 len += sysfs_emit_at(buf, len, "\n"); 3935 3936 return len; 3937 } 3938 3939 static ssize_t shmem_enabled_store(struct kobject *kobj, 3940 struct kobj_attribute *attr, const char *buf, size_t count) 3941 { 3942 char tmp[16]; 3943 int huge; 3944 3945 if (count + 1 > sizeof(tmp)) 3946 return -EINVAL; 3947 memcpy(tmp, buf, count); 3948 tmp[count] = '\0'; 3949 if (count && tmp[count - 1] == '\n') 3950 tmp[count - 1] = '\0'; 3951 3952 huge = shmem_parse_huge(tmp); 3953 if (huge == -EINVAL) 3954 return -EINVAL; 3955 if (!has_transparent_hugepage() && 3956 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3957 return -EINVAL; 3958 3959 shmem_huge = huge; 3960 if (shmem_huge > SHMEM_HUGE_DENY) 3961 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3962 return count; 3963 } 3964 3965 struct kobj_attribute shmem_enabled_attr = 3966 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3968 3969 #else /* !CONFIG_SHMEM */ 3970 3971 /* 3972 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3973 * 3974 * This is intended for small system where the benefits of the full 3975 * shmem code (swap-backed and resource-limited) are outweighed by 3976 * their complexity. On systems without swap this code should be 3977 * effectively equivalent, but much lighter weight. 3978 */ 3979 3980 static struct file_system_type shmem_fs_type = { 3981 .name = "tmpfs", 3982 .init_fs_context = ramfs_init_fs_context, 3983 .parameters = ramfs_fs_parameters, 3984 .kill_sb = kill_litter_super, 3985 .fs_flags = FS_USERNS_MOUNT, 3986 }; 3987 3988 int __init shmem_init(void) 3989 { 3990 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3991 3992 shm_mnt = kern_mount(&shmem_fs_type); 3993 BUG_ON(IS_ERR(shm_mnt)); 3994 3995 return 0; 3996 } 3997 3998 int shmem_unuse(unsigned int type) 3999 { 4000 return 0; 4001 } 4002 4003 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4004 { 4005 return 0; 4006 } 4007 4008 void shmem_unlock_mapping(struct address_space *mapping) 4009 { 4010 } 4011 4012 #ifdef CONFIG_MMU 4013 unsigned long shmem_get_unmapped_area(struct file *file, 4014 unsigned long addr, unsigned long len, 4015 unsigned long pgoff, unsigned long flags) 4016 { 4017 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4018 } 4019 #endif 4020 4021 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4022 { 4023 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4024 } 4025 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4026 4027 #define shmem_vm_ops generic_file_vm_ops 4028 #define shmem_file_operations ramfs_file_operations 4029 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4030 #define shmem_acct_size(flags, size) 0 4031 #define shmem_unacct_size(flags, size) do {} while (0) 4032 4033 #endif /* CONFIG_SHMEM */ 4034 4035 /* common code */ 4036 4037 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4038 unsigned long flags, unsigned int i_flags) 4039 { 4040 struct inode *inode; 4041 struct file *res; 4042 4043 if (IS_ERR(mnt)) 4044 return ERR_CAST(mnt); 4045 4046 if (size < 0 || size > MAX_LFS_FILESIZE) 4047 return ERR_PTR(-EINVAL); 4048 4049 if (shmem_acct_size(flags, size)) 4050 return ERR_PTR(-ENOMEM); 4051 4052 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4053 flags); 4054 if (unlikely(!inode)) { 4055 shmem_unacct_size(flags, size); 4056 return ERR_PTR(-ENOSPC); 4057 } 4058 inode->i_flags |= i_flags; 4059 inode->i_size = size; 4060 clear_nlink(inode); /* It is unlinked */ 4061 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4062 if (!IS_ERR(res)) 4063 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4064 &shmem_file_operations); 4065 if (IS_ERR(res)) 4066 iput(inode); 4067 return res; 4068 } 4069 4070 /** 4071 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4072 * kernel internal. There will be NO LSM permission checks against the 4073 * underlying inode. So users of this interface must do LSM checks at a 4074 * higher layer. The users are the big_key and shm implementations. LSM 4075 * checks are provided at the key or shm level rather than the inode. 4076 * @name: name for dentry (to be seen in /proc/<pid>/maps 4077 * @size: size to be set for the file 4078 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4079 */ 4080 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4081 { 4082 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4083 } 4084 4085 /** 4086 * shmem_file_setup - get an unlinked file living in tmpfs 4087 * @name: name for dentry (to be seen in /proc/<pid>/maps 4088 * @size: size to be set for the file 4089 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4090 */ 4091 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4092 { 4093 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4094 } 4095 EXPORT_SYMBOL_GPL(shmem_file_setup); 4096 4097 /** 4098 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4099 * @mnt: the tmpfs mount where the file will be created 4100 * @name: name for dentry (to be seen in /proc/<pid>/maps 4101 * @size: size to be set for the file 4102 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4103 */ 4104 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4105 loff_t size, unsigned long flags) 4106 { 4107 return __shmem_file_setup(mnt, name, size, flags, 0); 4108 } 4109 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4110 4111 /** 4112 * shmem_zero_setup - setup a shared anonymous mapping 4113 * @vma: the vma to be mmapped is prepared by do_mmap 4114 */ 4115 int shmem_zero_setup(struct vm_area_struct *vma) 4116 { 4117 struct file *file; 4118 loff_t size = vma->vm_end - vma->vm_start; 4119 4120 /* 4121 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4122 * between XFS directory reading and selinux: since this file is only 4123 * accessible to the user through its mapping, use S_PRIVATE flag to 4124 * bypass file security, in the same way as shmem_kernel_file_setup(). 4125 */ 4126 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4127 if (IS_ERR(file)) 4128 return PTR_ERR(file); 4129 4130 if (vma->vm_file) 4131 fput(vma->vm_file); 4132 vma->vm_file = file; 4133 vma->vm_ops = &shmem_vm_ops; 4134 4135 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4136 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4137 (vma->vm_end & HPAGE_PMD_MASK)) { 4138 khugepaged_enter(vma, vma->vm_flags); 4139 } 4140 4141 return 0; 4142 } 4143 4144 /** 4145 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4146 * @mapping: the page's address_space 4147 * @index: the page index 4148 * @gfp: the page allocator flags to use if allocating 4149 * 4150 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4151 * with any new page allocations done using the specified allocation flags. 4152 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4153 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4154 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4155 * 4156 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4157 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4158 */ 4159 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4160 pgoff_t index, gfp_t gfp) 4161 { 4162 #ifdef CONFIG_SHMEM 4163 struct inode *inode = mapping->host; 4164 struct page *page; 4165 int error; 4166 4167 BUG_ON(!shmem_mapping(mapping)); 4168 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4169 gfp, NULL, NULL, NULL); 4170 if (error) 4171 return ERR_PTR(error); 4172 4173 unlock_page(page); 4174 if (PageHWPoison(page)) { 4175 put_page(page); 4176 return ERR_PTR(-EIO); 4177 } 4178 4179 return page; 4180 #else 4181 /* 4182 * The tiny !SHMEM case uses ramfs without swap 4183 */ 4184 return read_cache_page_gfp(mapping, index, gfp); 4185 #endif 4186 } 4187 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4188