xref: /openbmc/linux/mm/shmem.c (revision 6e10e219)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 			     struct page **pagep, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 		struct page **pagep, enum sgp_type sgp,
144 		gfp_t gfp, struct vm_area_struct *vma,
145 		struct vm_fault *vmf, vm_fault_t *fault_type);
146 
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp)
149 {
150 	return shmem_getpage_gfp(inode, index, pagep, sgp,
151 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153 
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 	return sb->s_fs_info;
157 }
158 
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 	return (flags & VM_NORESERVE) ?
168 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170 
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 	if (!(flags & VM_NORESERVE))
174 		vm_unacct_memory(VM_ACCT(size));
175 }
176 
177 static inline int shmem_reacct_size(unsigned long flags,
178 		loff_t oldsize, loff_t newsize)
179 {
180 	if (!(flags & VM_NORESERVE)) {
181 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 			return security_vm_enough_memory_mm(current->mm,
183 					VM_ACCT(newsize) - VM_ACCT(oldsize));
184 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 	}
187 	return 0;
188 }
189 
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 	if (!(flags & VM_NORESERVE))
199 		return 0;
200 
201 	return security_vm_enough_memory_mm(current->mm,
202 			pages * VM_ACCT(PAGE_SIZE));
203 }
204 
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 	if (flags & VM_NORESERVE)
208 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 	struct shmem_inode_info *info = SHMEM_I(inode);
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return false;
218 
219 	if (sbinfo->max_blocks) {
220 		if (percpu_counter_compare(&sbinfo->used_blocks,
221 					   sbinfo->max_blocks - pages) > 0)
222 			goto unacct;
223 		percpu_counter_add(&sbinfo->used_blocks, pages);
224 	}
225 
226 	return true;
227 
228 unacct:
229 	shmem_unacct_blocks(info->flags, pages);
230 	return false;
231 }
232 
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 
238 	if (sbinfo->max_blocks)
239 		percpu_counter_sub(&sbinfo->used_blocks, pages);
240 	shmem_unacct_blocks(info->flags, pages);
241 }
242 
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251 
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 	return vma->vm_ops == &shmem_vm_ops;
255 }
256 
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259 
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 	ino_t ino;
274 
275 	if (!(sb->s_flags & SB_KERNMOUNT)) {
276 		raw_spin_lock(&sbinfo->stat_lock);
277 		if (sbinfo->max_inodes) {
278 			if (!sbinfo->free_inodes) {
279 				raw_spin_unlock(&sbinfo->stat_lock);
280 				return -ENOSPC;
281 			}
282 			sbinfo->free_inodes--;
283 		}
284 		if (inop) {
285 			ino = sbinfo->next_ino++;
286 			if (unlikely(is_zero_ino(ino)))
287 				ino = sbinfo->next_ino++;
288 			if (unlikely(!sbinfo->full_inums &&
289 				     ino > UINT_MAX)) {
290 				/*
291 				 * Emulate get_next_ino uint wraparound for
292 				 * compatibility
293 				 */
294 				if (IS_ENABLED(CONFIG_64BIT))
295 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 						__func__, MINOR(sb->s_dev));
297 				sbinfo->next_ino = 1;
298 				ino = sbinfo->next_ino++;
299 			}
300 			*inop = ino;
301 		}
302 		raw_spin_unlock(&sbinfo->stat_lock);
303 	} else if (inop) {
304 		/*
305 		 * __shmem_file_setup, one of our callers, is lock-free: it
306 		 * doesn't hold stat_lock in shmem_reserve_inode since
307 		 * max_inodes is always 0, and is called from potentially
308 		 * unknown contexts. As such, use a per-cpu batched allocator
309 		 * which doesn't require the per-sb stat_lock unless we are at
310 		 * the batch boundary.
311 		 *
312 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 		 * shmem mounts are not exposed to userspace, so we don't need
314 		 * to worry about things like glibc compatibility.
315 		 */
316 		ino_t *next_ino;
317 
318 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 		ino = *next_ino;
320 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 			raw_spin_lock(&sbinfo->stat_lock);
322 			ino = sbinfo->next_ino;
323 			sbinfo->next_ino += SHMEM_INO_BATCH;
324 			raw_spin_unlock(&sbinfo->stat_lock);
325 			if (unlikely(is_zero_ino(ino)))
326 				ino++;
327 		}
328 		*inop = ino;
329 		*next_ino = ++ino;
330 		put_cpu();
331 	}
332 
333 	return 0;
334 }
335 
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	if (sbinfo->max_inodes) {
340 		raw_spin_lock(&sbinfo->stat_lock);
341 		sbinfo->free_inodes++;
342 		raw_spin_unlock(&sbinfo->stat_lock);
343 	}
344 }
345 
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 	struct shmem_inode_info *info = SHMEM_I(inode);
361 	long freed;
362 
363 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 	if (freed > 0) {
365 		info->alloced -= freed;
366 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 		shmem_inode_unacct_blocks(inode, freed);
368 	}
369 }
370 
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 	struct shmem_inode_info *info = SHMEM_I(inode);
374 	unsigned long flags;
375 
376 	if (!shmem_inode_acct_block(inode, pages))
377 		return false;
378 
379 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 	inode->i_mapping->nrpages += pages;
381 
382 	spin_lock_irqsave(&info->lock, flags);
383 	info->alloced += pages;
384 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 	shmem_recalc_inode(inode);
386 	spin_unlock_irqrestore(&info->lock, flags);
387 
388 	return true;
389 }
390 
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 	struct shmem_inode_info *info = SHMEM_I(inode);
394 	unsigned long flags;
395 
396 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
397 
398 	spin_lock_irqsave(&info->lock, flags);
399 	info->alloced -= pages;
400 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 	shmem_recalc_inode(inode);
402 	spin_unlock_irqrestore(&info->lock, flags);
403 
404 	shmem_inode_unacct_blocks(inode, pages);
405 }
406 
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411 			pgoff_t index, void *expected, void *replacement)
412 {
413 	XA_STATE(xas, &mapping->i_pages, index);
414 	void *item;
415 
416 	VM_BUG_ON(!expected);
417 	VM_BUG_ON(!replacement);
418 	item = xas_load(&xas);
419 	if (item != expected)
420 		return -ENOENT;
421 	xas_store(&xas, replacement);
422 	return 0;
423 }
424 
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 			       pgoff_t index, swp_entry_t swap)
434 {
435 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437 
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *	disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *	enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *	only allocate huge pages if the page will be fully within i_size,
447  *	also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *	only allocate huge pages if requested with fadvise()/madvise();
450  */
451 
452 #define SHMEM_HUGE_NEVER	0
453 #define SHMEM_HUGE_ALWAYS	1
454 #define SHMEM_HUGE_WITHIN_SIZE	2
455 #define SHMEM_HUGE_ADVISE	3
456 
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *	disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY		(-1)
468 #define SHMEM_HUGE_FORCE	(-2)
469 
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472 
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 		   struct inode *inode, pgoff_t index)
477 {
478 	loff_t i_size;
479 
480 	if (shmem_huge == SHMEM_HUGE_DENY)
481 		return false;
482 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484 		return false;
485 	if (shmem_huge == SHMEM_HUGE_FORCE)
486 		return true;
487 
488 	switch (SHMEM_SB(inode->i_sb)->huge) {
489 	case SHMEM_HUGE_ALWAYS:
490 		return true;
491 	case SHMEM_HUGE_WITHIN_SIZE:
492 		index = round_up(index + 1, HPAGE_PMD_NR);
493 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 		if (i_size >> PAGE_SHIFT >= index)
495 			return true;
496 		fallthrough;
497 	case SHMEM_HUGE_ADVISE:
498 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 			return true;
500 		fallthrough;
501 	default:
502 		return false;
503 	}
504 }
505 
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509 	if (!strcmp(str, "never"))
510 		return SHMEM_HUGE_NEVER;
511 	if (!strcmp(str, "always"))
512 		return SHMEM_HUGE_ALWAYS;
513 	if (!strcmp(str, "within_size"))
514 		return SHMEM_HUGE_WITHIN_SIZE;
515 	if (!strcmp(str, "advise"))
516 		return SHMEM_HUGE_ADVISE;
517 	if (!strcmp(str, "deny"))
518 		return SHMEM_HUGE_DENY;
519 	if (!strcmp(str, "force"))
520 		return SHMEM_HUGE_FORCE;
521 	return -EINVAL;
522 }
523 #endif
524 
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528 	switch (huge) {
529 	case SHMEM_HUGE_NEVER:
530 		return "never";
531 	case SHMEM_HUGE_ALWAYS:
532 		return "always";
533 	case SHMEM_HUGE_WITHIN_SIZE:
534 		return "within_size";
535 	case SHMEM_HUGE_ADVISE:
536 		return "advise";
537 	case SHMEM_HUGE_DENY:
538 		return "deny";
539 	case SHMEM_HUGE_FORCE:
540 		return "force";
541 	default:
542 		VM_BUG_ON(1);
543 		return "bad_val";
544 	}
545 }
546 #endif
547 
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 		struct shrink_control *sc, unsigned long nr_to_split)
550 {
551 	LIST_HEAD(list), *pos, *next;
552 	LIST_HEAD(to_remove);
553 	struct inode *inode;
554 	struct shmem_inode_info *info;
555 	struct page *page;
556 	unsigned long batch = sc ? sc->nr_to_scan : 128;
557 	int split = 0;
558 
559 	if (list_empty(&sbinfo->shrinklist))
560 		return SHRINK_STOP;
561 
562 	spin_lock(&sbinfo->shrinklist_lock);
563 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 
566 		/* pin the inode */
567 		inode = igrab(&info->vfs_inode);
568 
569 		/* inode is about to be evicted */
570 		if (!inode) {
571 			list_del_init(&info->shrinklist);
572 			goto next;
573 		}
574 
575 		/* Check if there's anything to gain */
576 		if (round_up(inode->i_size, PAGE_SIZE) ==
577 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
578 			list_move(&info->shrinklist, &to_remove);
579 			goto next;
580 		}
581 
582 		list_move(&info->shrinklist, &list);
583 next:
584 		sbinfo->shrinklist_len--;
585 		if (!--batch)
586 			break;
587 	}
588 	spin_unlock(&sbinfo->shrinklist_lock);
589 
590 	list_for_each_safe(pos, next, &to_remove) {
591 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
592 		inode = &info->vfs_inode;
593 		list_del_init(&info->shrinklist);
594 		iput(inode);
595 	}
596 
597 	list_for_each_safe(pos, next, &list) {
598 		int ret;
599 
600 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
601 		inode = &info->vfs_inode;
602 
603 		if (nr_to_split && split >= nr_to_split)
604 			goto move_back;
605 
606 		page = find_get_page(inode->i_mapping,
607 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
608 		if (!page)
609 			goto drop;
610 
611 		/* No huge page at the end of the file: nothing to split */
612 		if (!PageTransHuge(page)) {
613 			put_page(page);
614 			goto drop;
615 		}
616 
617 		/*
618 		 * Move the inode on the list back to shrinklist if we failed
619 		 * to lock the page at this time.
620 		 *
621 		 * Waiting for the lock may lead to deadlock in the
622 		 * reclaim path.
623 		 */
624 		if (!trylock_page(page)) {
625 			put_page(page);
626 			goto move_back;
627 		}
628 
629 		ret = split_huge_page(page);
630 		unlock_page(page);
631 		put_page(page);
632 
633 		/* If split failed move the inode on the list back to shrinklist */
634 		if (ret)
635 			goto move_back;
636 
637 		split++;
638 drop:
639 		list_del_init(&info->shrinklist);
640 		goto put;
641 move_back:
642 		/*
643 		 * Make sure the inode is either on the global list or deleted
644 		 * from any local list before iput() since it could be deleted
645 		 * in another thread once we put the inode (then the local list
646 		 * is corrupted).
647 		 */
648 		spin_lock(&sbinfo->shrinklist_lock);
649 		list_move(&info->shrinklist, &sbinfo->shrinklist);
650 		sbinfo->shrinklist_len++;
651 		spin_unlock(&sbinfo->shrinklist_lock);
652 put:
653 		iput(inode);
654 	}
655 
656 	return split;
657 }
658 
659 static long shmem_unused_huge_scan(struct super_block *sb,
660 		struct shrink_control *sc)
661 {
662 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663 
664 	if (!READ_ONCE(sbinfo->shrinklist_len))
665 		return SHRINK_STOP;
666 
667 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
668 }
669 
670 static long shmem_unused_huge_count(struct super_block *sb,
671 		struct shrink_control *sc)
672 {
673 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
674 	return READ_ONCE(sbinfo->shrinklist_len);
675 }
676 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
677 
678 #define shmem_huge SHMEM_HUGE_DENY
679 
680 bool shmem_is_huge(struct vm_area_struct *vma,
681 		   struct inode *inode, pgoff_t index)
682 {
683 	return false;
684 }
685 
686 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
687 		struct shrink_control *sc, unsigned long nr_to_split)
688 {
689 	return 0;
690 }
691 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
692 
693 /*
694  * Like add_to_page_cache_locked, but error if expected item has gone.
695  */
696 static int shmem_add_to_page_cache(struct page *page,
697 				   struct address_space *mapping,
698 				   pgoff_t index, void *expected, gfp_t gfp,
699 				   struct mm_struct *charge_mm)
700 {
701 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
702 	unsigned long nr = compound_nr(page);
703 	int error;
704 
705 	VM_BUG_ON_PAGE(PageTail(page), page);
706 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
707 	VM_BUG_ON_PAGE(!PageLocked(page), page);
708 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
709 	VM_BUG_ON(expected && PageTransHuge(page));
710 
711 	page_ref_add(page, nr);
712 	page->mapping = mapping;
713 	page->index = index;
714 
715 	if (!PageSwapCache(page)) {
716 		error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
717 		if (error) {
718 			if (PageTransHuge(page)) {
719 				count_vm_event(THP_FILE_FALLBACK);
720 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
721 			}
722 			goto error;
723 		}
724 	}
725 	cgroup_throttle_swaprate(page, gfp);
726 
727 	do {
728 		xas_lock_irq(&xas);
729 		if (expected != xas_find_conflict(&xas)) {
730 			xas_set_err(&xas, -EEXIST);
731 			goto unlock;
732 		}
733 		if (expected && xas_find_conflict(&xas)) {
734 			xas_set_err(&xas, -EEXIST);
735 			goto unlock;
736 		}
737 		xas_store(&xas, page);
738 		if (xas_error(&xas))
739 			goto unlock;
740 		if (PageTransHuge(page)) {
741 			count_vm_event(THP_FILE_ALLOC);
742 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
743 		}
744 		mapping->nrpages += nr;
745 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
746 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
747 unlock:
748 		xas_unlock_irq(&xas);
749 	} while (xas_nomem(&xas, gfp));
750 
751 	if (xas_error(&xas)) {
752 		error = xas_error(&xas);
753 		goto error;
754 	}
755 
756 	return 0;
757 error:
758 	page->mapping = NULL;
759 	page_ref_sub(page, nr);
760 	return error;
761 }
762 
763 /*
764  * Like delete_from_page_cache, but substitutes swap for page.
765  */
766 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
767 {
768 	struct address_space *mapping = page->mapping;
769 	int error;
770 
771 	VM_BUG_ON_PAGE(PageCompound(page), page);
772 
773 	xa_lock_irq(&mapping->i_pages);
774 	error = shmem_replace_entry(mapping, page->index, page, radswap);
775 	page->mapping = NULL;
776 	mapping->nrpages--;
777 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
778 	__dec_lruvec_page_state(page, NR_SHMEM);
779 	xa_unlock_irq(&mapping->i_pages);
780 	put_page(page);
781 	BUG_ON(error);
782 }
783 
784 /*
785  * Remove swap entry from page cache, free the swap and its page cache.
786  */
787 static int shmem_free_swap(struct address_space *mapping,
788 			   pgoff_t index, void *radswap)
789 {
790 	void *old;
791 
792 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
793 	if (old != radswap)
794 		return -ENOENT;
795 	free_swap_and_cache(radix_to_swp_entry(radswap));
796 	return 0;
797 }
798 
799 /*
800  * Determine (in bytes) how many of the shmem object's pages mapped by the
801  * given offsets are swapped out.
802  *
803  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
804  * as long as the inode doesn't go away and racy results are not a problem.
805  */
806 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
807 						pgoff_t start, pgoff_t end)
808 {
809 	XA_STATE(xas, &mapping->i_pages, start);
810 	struct page *page;
811 	unsigned long swapped = 0;
812 
813 	rcu_read_lock();
814 	xas_for_each(&xas, page, end - 1) {
815 		if (xas_retry(&xas, page))
816 			continue;
817 		if (xa_is_value(page))
818 			swapped++;
819 
820 		if (need_resched()) {
821 			xas_pause(&xas);
822 			cond_resched_rcu();
823 		}
824 	}
825 
826 	rcu_read_unlock();
827 
828 	return swapped << PAGE_SHIFT;
829 }
830 
831 /*
832  * Determine (in bytes) how many of the shmem object's pages mapped by the
833  * given vma is swapped out.
834  *
835  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
836  * as long as the inode doesn't go away and racy results are not a problem.
837  */
838 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
839 {
840 	struct inode *inode = file_inode(vma->vm_file);
841 	struct shmem_inode_info *info = SHMEM_I(inode);
842 	struct address_space *mapping = inode->i_mapping;
843 	unsigned long swapped;
844 
845 	/* Be careful as we don't hold info->lock */
846 	swapped = READ_ONCE(info->swapped);
847 
848 	/*
849 	 * The easier cases are when the shmem object has nothing in swap, or
850 	 * the vma maps it whole. Then we can simply use the stats that we
851 	 * already track.
852 	 */
853 	if (!swapped)
854 		return 0;
855 
856 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
857 		return swapped << PAGE_SHIFT;
858 
859 	/* Here comes the more involved part */
860 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
861 					vma->vm_pgoff + vma_pages(vma));
862 }
863 
864 /*
865  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
866  */
867 void shmem_unlock_mapping(struct address_space *mapping)
868 {
869 	struct pagevec pvec;
870 	pgoff_t index = 0;
871 
872 	pagevec_init(&pvec);
873 	/*
874 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
875 	 */
876 	while (!mapping_unevictable(mapping)) {
877 		if (!pagevec_lookup(&pvec, mapping, &index))
878 			break;
879 		check_move_unevictable_pages(&pvec);
880 		pagevec_release(&pvec);
881 		cond_resched();
882 	}
883 }
884 
885 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
886 {
887 	struct folio *folio;
888 	struct page *page;
889 
890 	/*
891 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
892 	 * beyond i_size, and reports fallocated pages as holes.
893 	 */
894 	folio = __filemap_get_folio(inode->i_mapping, index,
895 					FGP_ENTRY | FGP_LOCK, 0);
896 	if (!xa_is_value(folio))
897 		return folio;
898 	/*
899 	 * But read a page back from swap if any of it is within i_size
900 	 * (although in some cases this is just a waste of time).
901 	 */
902 	page = NULL;
903 	shmem_getpage(inode, index, &page, SGP_READ);
904 	return page ? page_folio(page) : NULL;
905 }
906 
907 /*
908  * Remove range of pages and swap entries from page cache, and free them.
909  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
910  */
911 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
912 								 bool unfalloc)
913 {
914 	struct address_space *mapping = inode->i_mapping;
915 	struct shmem_inode_info *info = SHMEM_I(inode);
916 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
917 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
918 	struct folio_batch fbatch;
919 	pgoff_t indices[PAGEVEC_SIZE];
920 	struct folio *folio;
921 	bool same_folio;
922 	long nr_swaps_freed = 0;
923 	pgoff_t index;
924 	int i;
925 
926 	if (lend == -1)
927 		end = -1;	/* unsigned, so actually very big */
928 
929 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
930 		info->fallocend = start;
931 
932 	folio_batch_init(&fbatch);
933 	index = start;
934 	while (index < end && find_lock_entries(mapping, index, end - 1,
935 			&fbatch, indices)) {
936 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
937 			folio = fbatch.folios[i];
938 
939 			index = indices[i];
940 
941 			if (xa_is_value(folio)) {
942 				if (unfalloc)
943 					continue;
944 				nr_swaps_freed += !shmem_free_swap(mapping,
945 								index, folio);
946 				continue;
947 			}
948 			index += folio_nr_pages(folio) - 1;
949 
950 			if (!unfalloc || !folio_test_uptodate(folio))
951 				truncate_inode_folio(mapping, folio);
952 			folio_unlock(folio);
953 		}
954 		folio_batch_remove_exceptionals(&fbatch);
955 		folio_batch_release(&fbatch);
956 		cond_resched();
957 		index++;
958 	}
959 
960 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
961 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
962 	if (folio) {
963 		same_folio = lend < folio_pos(folio) + folio_size(folio);
964 		folio_mark_dirty(folio);
965 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
966 			start = folio->index + folio_nr_pages(folio);
967 			if (same_folio)
968 				end = folio->index;
969 		}
970 		folio_unlock(folio);
971 		folio_put(folio);
972 		folio = NULL;
973 	}
974 
975 	if (!same_folio)
976 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
977 	if (folio) {
978 		folio_mark_dirty(folio);
979 		if (!truncate_inode_partial_folio(folio, lstart, lend))
980 			end = folio->index;
981 		folio_unlock(folio);
982 		folio_put(folio);
983 	}
984 
985 	index = start;
986 	while (index < end) {
987 		cond_resched();
988 
989 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
990 				indices)) {
991 			/* If all gone or hole-punch or unfalloc, we're done */
992 			if (index == start || end != -1)
993 				break;
994 			/* But if truncating, restart to make sure all gone */
995 			index = start;
996 			continue;
997 		}
998 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
999 			folio = fbatch.folios[i];
1000 
1001 			index = indices[i];
1002 			if (xa_is_value(folio)) {
1003 				if (unfalloc)
1004 					continue;
1005 				if (shmem_free_swap(mapping, index, folio)) {
1006 					/* Swap was replaced by page: retry */
1007 					index--;
1008 					break;
1009 				}
1010 				nr_swaps_freed++;
1011 				continue;
1012 			}
1013 
1014 			folio_lock(folio);
1015 
1016 			if (!unfalloc || !folio_test_uptodate(folio)) {
1017 				if (folio_mapping(folio) != mapping) {
1018 					/* Page was replaced by swap: retry */
1019 					folio_unlock(folio);
1020 					index--;
1021 					break;
1022 				}
1023 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1024 						folio);
1025 				truncate_inode_folio(mapping, folio);
1026 			}
1027 			index = folio->index + folio_nr_pages(folio) - 1;
1028 			folio_unlock(folio);
1029 		}
1030 		folio_batch_remove_exceptionals(&fbatch);
1031 		folio_batch_release(&fbatch);
1032 		index++;
1033 	}
1034 
1035 	spin_lock_irq(&info->lock);
1036 	info->swapped -= nr_swaps_freed;
1037 	shmem_recalc_inode(inode);
1038 	spin_unlock_irq(&info->lock);
1039 }
1040 
1041 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1042 {
1043 	shmem_undo_range(inode, lstart, lend, false);
1044 	inode->i_ctime = inode->i_mtime = current_time(inode);
1045 }
1046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047 
1048 static int shmem_getattr(struct user_namespace *mnt_userns,
1049 			 const struct path *path, struct kstat *stat,
1050 			 u32 request_mask, unsigned int query_flags)
1051 {
1052 	struct inode *inode = path->dentry->d_inode;
1053 	struct shmem_inode_info *info = SHMEM_I(inode);
1054 
1055 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056 		spin_lock_irq(&info->lock);
1057 		shmem_recalc_inode(inode);
1058 		spin_unlock_irq(&info->lock);
1059 	}
1060 	generic_fillattr(&init_user_ns, inode, stat);
1061 
1062 	if (shmem_is_huge(NULL, inode, 0))
1063 		stat->blksize = HPAGE_PMD_SIZE;
1064 
1065 	return 0;
1066 }
1067 
1068 static int shmem_setattr(struct user_namespace *mnt_userns,
1069 			 struct dentry *dentry, struct iattr *attr)
1070 {
1071 	struct inode *inode = d_inode(dentry);
1072 	struct shmem_inode_info *info = SHMEM_I(inode);
1073 	int error;
1074 
1075 	error = setattr_prepare(&init_user_ns, dentry, attr);
1076 	if (error)
1077 		return error;
1078 
1079 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1080 		loff_t oldsize = inode->i_size;
1081 		loff_t newsize = attr->ia_size;
1082 
1083 		/* protected by i_rwsem */
1084 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1085 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1086 			return -EPERM;
1087 
1088 		if (newsize != oldsize) {
1089 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1090 					oldsize, newsize);
1091 			if (error)
1092 				return error;
1093 			i_size_write(inode, newsize);
1094 			inode->i_ctime = inode->i_mtime = current_time(inode);
1095 		}
1096 		if (newsize <= oldsize) {
1097 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1098 			if (oldsize > holebegin)
1099 				unmap_mapping_range(inode->i_mapping,
1100 							holebegin, 0, 1);
1101 			if (info->alloced)
1102 				shmem_truncate_range(inode,
1103 							newsize, (loff_t)-1);
1104 			/* unmap again to remove racily COWed private pages */
1105 			if (oldsize > holebegin)
1106 				unmap_mapping_range(inode->i_mapping,
1107 							holebegin, 0, 1);
1108 		}
1109 	}
1110 
1111 	setattr_copy(&init_user_ns, inode, attr);
1112 	if (attr->ia_valid & ATTR_MODE)
1113 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1114 	return error;
1115 }
1116 
1117 static void shmem_evict_inode(struct inode *inode)
1118 {
1119 	struct shmem_inode_info *info = SHMEM_I(inode);
1120 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1121 
1122 	if (shmem_mapping(inode->i_mapping)) {
1123 		shmem_unacct_size(info->flags, inode->i_size);
1124 		inode->i_size = 0;
1125 		shmem_truncate_range(inode, 0, (loff_t)-1);
1126 		if (!list_empty(&info->shrinklist)) {
1127 			spin_lock(&sbinfo->shrinklist_lock);
1128 			if (!list_empty(&info->shrinklist)) {
1129 				list_del_init(&info->shrinklist);
1130 				sbinfo->shrinklist_len--;
1131 			}
1132 			spin_unlock(&sbinfo->shrinklist_lock);
1133 		}
1134 		while (!list_empty(&info->swaplist)) {
1135 			/* Wait while shmem_unuse() is scanning this inode... */
1136 			wait_var_event(&info->stop_eviction,
1137 				       !atomic_read(&info->stop_eviction));
1138 			mutex_lock(&shmem_swaplist_mutex);
1139 			/* ...but beware of the race if we peeked too early */
1140 			if (!atomic_read(&info->stop_eviction))
1141 				list_del_init(&info->swaplist);
1142 			mutex_unlock(&shmem_swaplist_mutex);
1143 		}
1144 	}
1145 
1146 	simple_xattrs_free(&info->xattrs);
1147 	WARN_ON(inode->i_blocks);
1148 	shmem_free_inode(inode->i_sb);
1149 	clear_inode(inode);
1150 }
1151 
1152 static int shmem_find_swap_entries(struct address_space *mapping,
1153 				   pgoff_t start, unsigned int nr_entries,
1154 				   struct page **entries, pgoff_t *indices,
1155 				   unsigned int type, bool frontswap)
1156 {
1157 	XA_STATE(xas, &mapping->i_pages, start);
1158 	struct page *page;
1159 	swp_entry_t entry;
1160 	unsigned int ret = 0;
1161 
1162 	if (!nr_entries)
1163 		return 0;
1164 
1165 	rcu_read_lock();
1166 	xas_for_each(&xas, page, ULONG_MAX) {
1167 		if (xas_retry(&xas, page))
1168 			continue;
1169 
1170 		if (!xa_is_value(page))
1171 			continue;
1172 
1173 		entry = radix_to_swp_entry(page);
1174 		if (swp_type(entry) != type)
1175 			continue;
1176 		if (frontswap &&
1177 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1178 			continue;
1179 
1180 		indices[ret] = xas.xa_index;
1181 		entries[ret] = page;
1182 
1183 		if (need_resched()) {
1184 			xas_pause(&xas);
1185 			cond_resched_rcu();
1186 		}
1187 		if (++ret == nr_entries)
1188 			break;
1189 	}
1190 	rcu_read_unlock();
1191 
1192 	return ret;
1193 }
1194 
1195 /*
1196  * Move the swapped pages for an inode to page cache. Returns the count
1197  * of pages swapped in, or the error in case of failure.
1198  */
1199 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1200 				    pgoff_t *indices)
1201 {
1202 	int i = 0;
1203 	int ret = 0;
1204 	int error = 0;
1205 	struct address_space *mapping = inode->i_mapping;
1206 
1207 	for (i = 0; i < pvec.nr; i++) {
1208 		struct page *page = pvec.pages[i];
1209 
1210 		if (!xa_is_value(page))
1211 			continue;
1212 		error = shmem_swapin_page(inode, indices[i],
1213 					  &page, SGP_CACHE,
1214 					  mapping_gfp_mask(mapping),
1215 					  NULL, NULL);
1216 		if (error == 0) {
1217 			unlock_page(page);
1218 			put_page(page);
1219 			ret++;
1220 		}
1221 		if (error == -ENOMEM)
1222 			break;
1223 		error = 0;
1224 	}
1225 	return error ? error : ret;
1226 }
1227 
1228 /*
1229  * If swap found in inode, free it and move page from swapcache to filecache.
1230  */
1231 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1232 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1233 {
1234 	struct address_space *mapping = inode->i_mapping;
1235 	pgoff_t start = 0;
1236 	struct pagevec pvec;
1237 	pgoff_t indices[PAGEVEC_SIZE];
1238 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1239 	int ret = 0;
1240 
1241 	pagevec_init(&pvec);
1242 	do {
1243 		unsigned int nr_entries = PAGEVEC_SIZE;
1244 
1245 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1246 			nr_entries = *fs_pages_to_unuse;
1247 
1248 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1249 						  pvec.pages, indices,
1250 						  type, frontswap);
1251 		if (pvec.nr == 0) {
1252 			ret = 0;
1253 			break;
1254 		}
1255 
1256 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1257 		if (ret < 0)
1258 			break;
1259 
1260 		if (frontswap_partial) {
1261 			*fs_pages_to_unuse -= ret;
1262 			if (*fs_pages_to_unuse == 0) {
1263 				ret = FRONTSWAP_PAGES_UNUSED;
1264 				break;
1265 			}
1266 		}
1267 
1268 		start = indices[pvec.nr - 1];
1269 	} while (true);
1270 
1271 	return ret;
1272 }
1273 
1274 /*
1275  * Read all the shared memory data that resides in the swap
1276  * device 'type' back into memory, so the swap device can be
1277  * unused.
1278  */
1279 int shmem_unuse(unsigned int type, bool frontswap,
1280 		unsigned long *fs_pages_to_unuse)
1281 {
1282 	struct shmem_inode_info *info, *next;
1283 	int error = 0;
1284 
1285 	if (list_empty(&shmem_swaplist))
1286 		return 0;
1287 
1288 	mutex_lock(&shmem_swaplist_mutex);
1289 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1290 		if (!info->swapped) {
1291 			list_del_init(&info->swaplist);
1292 			continue;
1293 		}
1294 		/*
1295 		 * Drop the swaplist mutex while searching the inode for swap;
1296 		 * but before doing so, make sure shmem_evict_inode() will not
1297 		 * remove placeholder inode from swaplist, nor let it be freed
1298 		 * (igrab() would protect from unlink, but not from unmount).
1299 		 */
1300 		atomic_inc(&info->stop_eviction);
1301 		mutex_unlock(&shmem_swaplist_mutex);
1302 
1303 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1304 					  fs_pages_to_unuse);
1305 		cond_resched();
1306 
1307 		mutex_lock(&shmem_swaplist_mutex);
1308 		next = list_next_entry(info, swaplist);
1309 		if (!info->swapped)
1310 			list_del_init(&info->swaplist);
1311 		if (atomic_dec_and_test(&info->stop_eviction))
1312 			wake_up_var(&info->stop_eviction);
1313 		if (error)
1314 			break;
1315 	}
1316 	mutex_unlock(&shmem_swaplist_mutex);
1317 
1318 	return error;
1319 }
1320 
1321 /*
1322  * Move the page from the page cache to the swap cache.
1323  */
1324 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1325 {
1326 	struct shmem_inode_info *info;
1327 	struct address_space *mapping;
1328 	struct inode *inode;
1329 	swp_entry_t swap;
1330 	pgoff_t index;
1331 
1332 	/*
1333 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1334 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1335 	 * and its shmem_writeback() needs them to be split when swapping.
1336 	 */
1337 	if (PageTransCompound(page)) {
1338 		/* Ensure the subpages are still dirty */
1339 		SetPageDirty(page);
1340 		if (split_huge_page(page) < 0)
1341 			goto redirty;
1342 		ClearPageDirty(page);
1343 	}
1344 
1345 	BUG_ON(!PageLocked(page));
1346 	mapping = page->mapping;
1347 	index = page->index;
1348 	inode = mapping->host;
1349 	info = SHMEM_I(inode);
1350 	if (info->flags & VM_LOCKED)
1351 		goto redirty;
1352 	if (!total_swap_pages)
1353 		goto redirty;
1354 
1355 	/*
1356 	 * Our capabilities prevent regular writeback or sync from ever calling
1357 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1358 	 * its underlying filesystem, in which case tmpfs should write out to
1359 	 * swap only in response to memory pressure, and not for the writeback
1360 	 * threads or sync.
1361 	 */
1362 	if (!wbc->for_reclaim) {
1363 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1364 		goto redirty;
1365 	}
1366 
1367 	/*
1368 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1369 	 * value into swapfile.c, the only way we can correctly account for a
1370 	 * fallocated page arriving here is now to initialize it and write it.
1371 	 *
1372 	 * That's okay for a page already fallocated earlier, but if we have
1373 	 * not yet completed the fallocation, then (a) we want to keep track
1374 	 * of this page in case we have to undo it, and (b) it may not be a
1375 	 * good idea to continue anyway, once we're pushing into swap.  So
1376 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1377 	 */
1378 	if (!PageUptodate(page)) {
1379 		if (inode->i_private) {
1380 			struct shmem_falloc *shmem_falloc;
1381 			spin_lock(&inode->i_lock);
1382 			shmem_falloc = inode->i_private;
1383 			if (shmem_falloc &&
1384 			    !shmem_falloc->waitq &&
1385 			    index >= shmem_falloc->start &&
1386 			    index < shmem_falloc->next)
1387 				shmem_falloc->nr_unswapped++;
1388 			else
1389 				shmem_falloc = NULL;
1390 			spin_unlock(&inode->i_lock);
1391 			if (shmem_falloc)
1392 				goto redirty;
1393 		}
1394 		clear_highpage(page);
1395 		flush_dcache_page(page);
1396 		SetPageUptodate(page);
1397 	}
1398 
1399 	swap = get_swap_page(page);
1400 	if (!swap.val)
1401 		goto redirty;
1402 
1403 	/*
1404 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1405 	 * if it's not already there.  Do it now before the page is
1406 	 * moved to swap cache, when its pagelock no longer protects
1407 	 * the inode from eviction.  But don't unlock the mutex until
1408 	 * we've incremented swapped, because shmem_unuse_inode() will
1409 	 * prune a !swapped inode from the swaplist under this mutex.
1410 	 */
1411 	mutex_lock(&shmem_swaplist_mutex);
1412 	if (list_empty(&info->swaplist))
1413 		list_add(&info->swaplist, &shmem_swaplist);
1414 
1415 	if (add_to_swap_cache(page, swap,
1416 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1417 			NULL) == 0) {
1418 		spin_lock_irq(&info->lock);
1419 		shmem_recalc_inode(inode);
1420 		info->swapped++;
1421 		spin_unlock_irq(&info->lock);
1422 
1423 		swap_shmem_alloc(swap);
1424 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1425 
1426 		mutex_unlock(&shmem_swaplist_mutex);
1427 		BUG_ON(page_mapped(page));
1428 		swap_writepage(page, wbc);
1429 		return 0;
1430 	}
1431 
1432 	mutex_unlock(&shmem_swaplist_mutex);
1433 	put_swap_page(page, swap);
1434 redirty:
1435 	set_page_dirty(page);
1436 	if (wbc->for_reclaim)
1437 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1438 	unlock_page(page);
1439 	return 0;
1440 }
1441 
1442 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1443 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1444 {
1445 	char buffer[64];
1446 
1447 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1448 		return;		/* show nothing */
1449 
1450 	mpol_to_str(buffer, sizeof(buffer), mpol);
1451 
1452 	seq_printf(seq, ",mpol=%s", buffer);
1453 }
1454 
1455 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1456 {
1457 	struct mempolicy *mpol = NULL;
1458 	if (sbinfo->mpol) {
1459 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1460 		mpol = sbinfo->mpol;
1461 		mpol_get(mpol);
1462 		raw_spin_unlock(&sbinfo->stat_lock);
1463 	}
1464 	return mpol;
1465 }
1466 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1467 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1468 {
1469 }
1470 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1471 {
1472 	return NULL;
1473 }
1474 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1475 #ifndef CONFIG_NUMA
1476 #define vm_policy vm_private_data
1477 #endif
1478 
1479 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1480 		struct shmem_inode_info *info, pgoff_t index)
1481 {
1482 	/* Create a pseudo vma that just contains the policy */
1483 	vma_init(vma, NULL);
1484 	/* Bias interleave by inode number to distribute better across nodes */
1485 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1486 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1487 }
1488 
1489 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1490 {
1491 	/* Drop reference taken by mpol_shared_policy_lookup() */
1492 	mpol_cond_put(vma->vm_policy);
1493 }
1494 
1495 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1496 			struct shmem_inode_info *info, pgoff_t index)
1497 {
1498 	struct vm_area_struct pvma;
1499 	struct page *page;
1500 	struct vm_fault vmf = {
1501 		.vma = &pvma,
1502 	};
1503 
1504 	shmem_pseudo_vma_init(&pvma, info, index);
1505 	page = swap_cluster_readahead(swap, gfp, &vmf);
1506 	shmem_pseudo_vma_destroy(&pvma);
1507 
1508 	return page;
1509 }
1510 
1511 /*
1512  * Make sure huge_gfp is always more limited than limit_gfp.
1513  * Some of the flags set permissions, while others set limitations.
1514  */
1515 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1516 {
1517 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1518 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1519 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1520 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1521 
1522 	/* Allow allocations only from the originally specified zones. */
1523 	result |= zoneflags;
1524 
1525 	/*
1526 	 * Minimize the result gfp by taking the union with the deny flags,
1527 	 * and the intersection of the allow flags.
1528 	 */
1529 	result |= (limit_gfp & denyflags);
1530 	result |= (huge_gfp & limit_gfp) & allowflags;
1531 
1532 	return result;
1533 }
1534 
1535 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1536 		struct shmem_inode_info *info, pgoff_t index)
1537 {
1538 	struct vm_area_struct pvma;
1539 	struct address_space *mapping = info->vfs_inode.i_mapping;
1540 	pgoff_t hindex;
1541 	struct page *page;
1542 
1543 	hindex = round_down(index, HPAGE_PMD_NR);
1544 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1545 								XA_PRESENT))
1546 		return NULL;
1547 
1548 	shmem_pseudo_vma_init(&pvma, info, hindex);
1549 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1550 	shmem_pseudo_vma_destroy(&pvma);
1551 	if (page)
1552 		prep_transhuge_page(page);
1553 	else
1554 		count_vm_event(THP_FILE_FALLBACK);
1555 	return page;
1556 }
1557 
1558 static struct page *shmem_alloc_page(gfp_t gfp,
1559 			struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 	struct vm_area_struct pvma;
1562 	struct page *page;
1563 
1564 	shmem_pseudo_vma_init(&pvma, info, index);
1565 	page = alloc_page_vma(gfp, &pvma, 0);
1566 	shmem_pseudo_vma_destroy(&pvma);
1567 
1568 	return page;
1569 }
1570 
1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572 		struct inode *inode,
1573 		pgoff_t index, bool huge)
1574 {
1575 	struct shmem_inode_info *info = SHMEM_I(inode);
1576 	struct page *page;
1577 	int nr;
1578 	int err = -ENOSPC;
1579 
1580 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581 		huge = false;
1582 	nr = huge ? HPAGE_PMD_NR : 1;
1583 
1584 	if (!shmem_inode_acct_block(inode, nr))
1585 		goto failed;
1586 
1587 	if (huge)
1588 		page = shmem_alloc_hugepage(gfp, info, index);
1589 	else
1590 		page = shmem_alloc_page(gfp, info, index);
1591 	if (page) {
1592 		__SetPageLocked(page);
1593 		__SetPageSwapBacked(page);
1594 		return page;
1595 	}
1596 
1597 	err = -ENOMEM;
1598 	shmem_inode_unacct_blocks(inode, nr);
1599 failed:
1600 	return ERR_PTR(err);
1601 }
1602 
1603 /*
1604  * When a page is moved from swapcache to shmem filecache (either by the
1605  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607  * ignorance of the mapping it belongs to.  If that mapping has special
1608  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609  * we may need to copy to a suitable page before moving to filecache.
1610  *
1611  * In a future release, this may well be extended to respect cpuset and
1612  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613  * but for now it is a simple matter of zone.
1614  */
1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616 {
1617 	return page_zonenum(page) > gfp_zone(gfp);
1618 }
1619 
1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621 				struct shmem_inode_info *info, pgoff_t index)
1622 {
1623 	struct page *oldpage, *newpage;
1624 	struct folio *old, *new;
1625 	struct address_space *swap_mapping;
1626 	swp_entry_t entry;
1627 	pgoff_t swap_index;
1628 	int error;
1629 
1630 	oldpage = *pagep;
1631 	entry.val = page_private(oldpage);
1632 	swap_index = swp_offset(entry);
1633 	swap_mapping = page_mapping(oldpage);
1634 
1635 	/*
1636 	 * We have arrived here because our zones are constrained, so don't
1637 	 * limit chance of success by further cpuset and node constraints.
1638 	 */
1639 	gfp &= ~GFP_CONSTRAINT_MASK;
1640 	newpage = shmem_alloc_page(gfp, info, index);
1641 	if (!newpage)
1642 		return -ENOMEM;
1643 
1644 	get_page(newpage);
1645 	copy_highpage(newpage, oldpage);
1646 	flush_dcache_page(newpage);
1647 
1648 	__SetPageLocked(newpage);
1649 	__SetPageSwapBacked(newpage);
1650 	SetPageUptodate(newpage);
1651 	set_page_private(newpage, entry.val);
1652 	SetPageSwapCache(newpage);
1653 
1654 	/*
1655 	 * Our caller will very soon move newpage out of swapcache, but it's
1656 	 * a nice clean interface for us to replace oldpage by newpage there.
1657 	 */
1658 	xa_lock_irq(&swap_mapping->i_pages);
1659 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1660 	if (!error) {
1661 		old = page_folio(oldpage);
1662 		new = page_folio(newpage);
1663 		mem_cgroup_migrate(old, new);
1664 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1665 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1666 	}
1667 	xa_unlock_irq(&swap_mapping->i_pages);
1668 
1669 	if (unlikely(error)) {
1670 		/*
1671 		 * Is this possible?  I think not, now that our callers check
1672 		 * both PageSwapCache and page_private after getting page lock;
1673 		 * but be defensive.  Reverse old to newpage for clear and free.
1674 		 */
1675 		oldpage = newpage;
1676 	} else {
1677 		lru_cache_add(newpage);
1678 		*pagep = newpage;
1679 	}
1680 
1681 	ClearPageSwapCache(oldpage);
1682 	set_page_private(oldpage, 0);
1683 
1684 	unlock_page(oldpage);
1685 	put_page(oldpage);
1686 	put_page(oldpage);
1687 	return error;
1688 }
1689 
1690 /*
1691  * Swap in the page pointed to by *pagep.
1692  * Caller has to make sure that *pagep contains a valid swapped page.
1693  * Returns 0 and the page in pagep if success. On failure, returns the
1694  * error code and NULL in *pagep.
1695  */
1696 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1697 			     struct page **pagep, enum sgp_type sgp,
1698 			     gfp_t gfp, struct vm_area_struct *vma,
1699 			     vm_fault_t *fault_type)
1700 {
1701 	struct address_space *mapping = inode->i_mapping;
1702 	struct shmem_inode_info *info = SHMEM_I(inode);
1703 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1704 	struct page *page;
1705 	swp_entry_t swap;
1706 	int error;
1707 
1708 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1709 	swap = radix_to_swp_entry(*pagep);
1710 	*pagep = NULL;
1711 
1712 	/* Look it up and read it in.. */
1713 	page = lookup_swap_cache(swap, NULL, 0);
1714 	if (!page) {
1715 		/* Or update major stats only when swapin succeeds?? */
1716 		if (fault_type) {
1717 			*fault_type |= VM_FAULT_MAJOR;
1718 			count_vm_event(PGMAJFAULT);
1719 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1720 		}
1721 		/* Here we actually start the io */
1722 		page = shmem_swapin(swap, gfp, info, index);
1723 		if (!page) {
1724 			error = -ENOMEM;
1725 			goto failed;
1726 		}
1727 	}
1728 
1729 	/* We have to do this with page locked to prevent races */
1730 	lock_page(page);
1731 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1732 	    !shmem_confirm_swap(mapping, index, swap)) {
1733 		error = -EEXIST;
1734 		goto unlock;
1735 	}
1736 	if (!PageUptodate(page)) {
1737 		error = -EIO;
1738 		goto failed;
1739 	}
1740 	wait_on_page_writeback(page);
1741 
1742 	/*
1743 	 * Some architectures may have to restore extra metadata to the
1744 	 * physical page after reading from swap.
1745 	 */
1746 	arch_swap_restore(swap, page);
1747 
1748 	if (shmem_should_replace_page(page, gfp)) {
1749 		error = shmem_replace_page(&page, gfp, info, index);
1750 		if (error)
1751 			goto failed;
1752 	}
1753 
1754 	error = shmem_add_to_page_cache(page, mapping, index,
1755 					swp_to_radix_entry(swap), gfp,
1756 					charge_mm);
1757 	if (error)
1758 		goto failed;
1759 
1760 	spin_lock_irq(&info->lock);
1761 	info->swapped--;
1762 	shmem_recalc_inode(inode);
1763 	spin_unlock_irq(&info->lock);
1764 
1765 	if (sgp == SGP_WRITE)
1766 		mark_page_accessed(page);
1767 
1768 	delete_from_swap_cache(page);
1769 	set_page_dirty(page);
1770 	swap_free(swap);
1771 
1772 	*pagep = page;
1773 	return 0;
1774 failed:
1775 	if (!shmem_confirm_swap(mapping, index, swap))
1776 		error = -EEXIST;
1777 unlock:
1778 	if (page) {
1779 		unlock_page(page);
1780 		put_page(page);
1781 	}
1782 
1783 	return error;
1784 }
1785 
1786 /*
1787  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1788  *
1789  * If we allocate a new one we do not mark it dirty. That's up to the
1790  * vm. If we swap it in we mark it dirty since we also free the swap
1791  * entry since a page cannot live in both the swap and page cache.
1792  *
1793  * vma, vmf, and fault_type are only supplied by shmem_fault:
1794  * otherwise they are NULL.
1795  */
1796 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1797 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1798 	struct vm_area_struct *vma, struct vm_fault *vmf,
1799 			vm_fault_t *fault_type)
1800 {
1801 	struct address_space *mapping = inode->i_mapping;
1802 	struct shmem_inode_info *info = SHMEM_I(inode);
1803 	struct shmem_sb_info *sbinfo;
1804 	struct mm_struct *charge_mm;
1805 	struct page *page;
1806 	pgoff_t hindex = index;
1807 	gfp_t huge_gfp;
1808 	int error;
1809 	int once = 0;
1810 	int alloced = 0;
1811 
1812 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1813 		return -EFBIG;
1814 repeat:
1815 	if (sgp <= SGP_CACHE &&
1816 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1817 		return -EINVAL;
1818 	}
1819 
1820 	sbinfo = SHMEM_SB(inode->i_sb);
1821 	charge_mm = vma ? vma->vm_mm : NULL;
1822 
1823 	page = pagecache_get_page(mapping, index,
1824 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1825 
1826 	if (page && vma && userfaultfd_minor(vma)) {
1827 		if (!xa_is_value(page)) {
1828 			unlock_page(page);
1829 			put_page(page);
1830 		}
1831 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1832 		return 0;
1833 	}
1834 
1835 	if (xa_is_value(page)) {
1836 		error = shmem_swapin_page(inode, index, &page,
1837 					  sgp, gfp, vma, fault_type);
1838 		if (error == -EEXIST)
1839 			goto repeat;
1840 
1841 		*pagep = page;
1842 		return error;
1843 	}
1844 
1845 	if (page) {
1846 		hindex = page->index;
1847 		if (sgp == SGP_WRITE)
1848 			mark_page_accessed(page);
1849 		if (PageUptodate(page))
1850 			goto out;
1851 		/* fallocated page */
1852 		if (sgp != SGP_READ)
1853 			goto clear;
1854 		unlock_page(page);
1855 		put_page(page);
1856 	}
1857 
1858 	/*
1859 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1860 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1861 	 */
1862 	*pagep = NULL;
1863 	if (sgp == SGP_READ)
1864 		return 0;
1865 	if (sgp == SGP_NOALLOC)
1866 		return -ENOENT;
1867 
1868 	/*
1869 	 * Fast cache lookup and swap lookup did not find it: allocate.
1870 	 */
1871 
1872 	if (vma && userfaultfd_missing(vma)) {
1873 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1874 		return 0;
1875 	}
1876 
1877 	/* Never use a huge page for shmem_symlink() */
1878 	if (S_ISLNK(inode->i_mode))
1879 		goto alloc_nohuge;
1880 	if (!shmem_is_huge(vma, inode, index))
1881 		goto alloc_nohuge;
1882 
1883 	huge_gfp = vma_thp_gfp_mask(vma);
1884 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1885 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1886 	if (IS_ERR(page)) {
1887 alloc_nohuge:
1888 		page = shmem_alloc_and_acct_page(gfp, inode,
1889 						 index, false);
1890 	}
1891 	if (IS_ERR(page)) {
1892 		int retry = 5;
1893 
1894 		error = PTR_ERR(page);
1895 		page = NULL;
1896 		if (error != -ENOSPC)
1897 			goto unlock;
1898 		/*
1899 		 * Try to reclaim some space by splitting a huge page
1900 		 * beyond i_size on the filesystem.
1901 		 */
1902 		while (retry--) {
1903 			int ret;
1904 
1905 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1906 			if (ret == SHRINK_STOP)
1907 				break;
1908 			if (ret)
1909 				goto alloc_nohuge;
1910 		}
1911 		goto unlock;
1912 	}
1913 
1914 	if (PageTransHuge(page))
1915 		hindex = round_down(index, HPAGE_PMD_NR);
1916 	else
1917 		hindex = index;
1918 
1919 	if (sgp == SGP_WRITE)
1920 		__SetPageReferenced(page);
1921 
1922 	error = shmem_add_to_page_cache(page, mapping, hindex,
1923 					NULL, gfp & GFP_RECLAIM_MASK,
1924 					charge_mm);
1925 	if (error)
1926 		goto unacct;
1927 	lru_cache_add(page);
1928 
1929 	spin_lock_irq(&info->lock);
1930 	info->alloced += compound_nr(page);
1931 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1932 	shmem_recalc_inode(inode);
1933 	spin_unlock_irq(&info->lock);
1934 	alloced = true;
1935 
1936 	if (PageTransHuge(page) &&
1937 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1938 			hindex + HPAGE_PMD_NR - 1) {
1939 		/*
1940 		 * Part of the huge page is beyond i_size: subject
1941 		 * to shrink under memory pressure.
1942 		 */
1943 		spin_lock(&sbinfo->shrinklist_lock);
1944 		/*
1945 		 * _careful to defend against unlocked access to
1946 		 * ->shrink_list in shmem_unused_huge_shrink()
1947 		 */
1948 		if (list_empty_careful(&info->shrinklist)) {
1949 			list_add_tail(&info->shrinklist,
1950 				      &sbinfo->shrinklist);
1951 			sbinfo->shrinklist_len++;
1952 		}
1953 		spin_unlock(&sbinfo->shrinklist_lock);
1954 	}
1955 
1956 	/*
1957 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1958 	 */
1959 	if (sgp == SGP_FALLOC)
1960 		sgp = SGP_WRITE;
1961 clear:
1962 	/*
1963 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1964 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1965 	 * it now, lest undo on failure cancel our earlier guarantee.
1966 	 */
1967 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1968 		int i;
1969 
1970 		for (i = 0; i < compound_nr(page); i++) {
1971 			clear_highpage(page + i);
1972 			flush_dcache_page(page + i);
1973 		}
1974 		SetPageUptodate(page);
1975 	}
1976 
1977 	/* Perhaps the file has been truncated since we checked */
1978 	if (sgp <= SGP_CACHE &&
1979 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1980 		if (alloced) {
1981 			ClearPageDirty(page);
1982 			delete_from_page_cache(page);
1983 			spin_lock_irq(&info->lock);
1984 			shmem_recalc_inode(inode);
1985 			spin_unlock_irq(&info->lock);
1986 		}
1987 		error = -EINVAL;
1988 		goto unlock;
1989 	}
1990 out:
1991 	*pagep = page + index - hindex;
1992 	return 0;
1993 
1994 	/*
1995 	 * Error recovery.
1996 	 */
1997 unacct:
1998 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1999 
2000 	if (PageTransHuge(page)) {
2001 		unlock_page(page);
2002 		put_page(page);
2003 		goto alloc_nohuge;
2004 	}
2005 unlock:
2006 	if (page) {
2007 		unlock_page(page);
2008 		put_page(page);
2009 	}
2010 	if (error == -ENOSPC && !once++) {
2011 		spin_lock_irq(&info->lock);
2012 		shmem_recalc_inode(inode);
2013 		spin_unlock_irq(&info->lock);
2014 		goto repeat;
2015 	}
2016 	if (error == -EEXIST)
2017 		goto repeat;
2018 	return error;
2019 }
2020 
2021 /*
2022  * This is like autoremove_wake_function, but it removes the wait queue
2023  * entry unconditionally - even if something else had already woken the
2024  * target.
2025  */
2026 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2027 {
2028 	int ret = default_wake_function(wait, mode, sync, key);
2029 	list_del_init(&wait->entry);
2030 	return ret;
2031 }
2032 
2033 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2034 {
2035 	struct vm_area_struct *vma = vmf->vma;
2036 	struct inode *inode = file_inode(vma->vm_file);
2037 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2038 	int err;
2039 	vm_fault_t ret = VM_FAULT_LOCKED;
2040 
2041 	/*
2042 	 * Trinity finds that probing a hole which tmpfs is punching can
2043 	 * prevent the hole-punch from ever completing: which in turn
2044 	 * locks writers out with its hold on i_rwsem.  So refrain from
2045 	 * faulting pages into the hole while it's being punched.  Although
2046 	 * shmem_undo_range() does remove the additions, it may be unable to
2047 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2048 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2049 	 *
2050 	 * It does not matter if we sometimes reach this check just before the
2051 	 * hole-punch begins, so that one fault then races with the punch:
2052 	 * we just need to make racing faults a rare case.
2053 	 *
2054 	 * The implementation below would be much simpler if we just used a
2055 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2056 	 * and bloating every shmem inode for this unlikely case would be sad.
2057 	 */
2058 	if (unlikely(inode->i_private)) {
2059 		struct shmem_falloc *shmem_falloc;
2060 
2061 		spin_lock(&inode->i_lock);
2062 		shmem_falloc = inode->i_private;
2063 		if (shmem_falloc &&
2064 		    shmem_falloc->waitq &&
2065 		    vmf->pgoff >= shmem_falloc->start &&
2066 		    vmf->pgoff < shmem_falloc->next) {
2067 			struct file *fpin;
2068 			wait_queue_head_t *shmem_falloc_waitq;
2069 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2070 
2071 			ret = VM_FAULT_NOPAGE;
2072 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2073 			if (fpin)
2074 				ret = VM_FAULT_RETRY;
2075 
2076 			shmem_falloc_waitq = shmem_falloc->waitq;
2077 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2078 					TASK_UNINTERRUPTIBLE);
2079 			spin_unlock(&inode->i_lock);
2080 			schedule();
2081 
2082 			/*
2083 			 * shmem_falloc_waitq points into the shmem_fallocate()
2084 			 * stack of the hole-punching task: shmem_falloc_waitq
2085 			 * is usually invalid by the time we reach here, but
2086 			 * finish_wait() does not dereference it in that case;
2087 			 * though i_lock needed lest racing with wake_up_all().
2088 			 */
2089 			spin_lock(&inode->i_lock);
2090 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2091 			spin_unlock(&inode->i_lock);
2092 
2093 			if (fpin)
2094 				fput(fpin);
2095 			return ret;
2096 		}
2097 		spin_unlock(&inode->i_lock);
2098 	}
2099 
2100 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2101 				  gfp, vma, vmf, &ret);
2102 	if (err)
2103 		return vmf_error(err);
2104 	return ret;
2105 }
2106 
2107 unsigned long shmem_get_unmapped_area(struct file *file,
2108 				      unsigned long uaddr, unsigned long len,
2109 				      unsigned long pgoff, unsigned long flags)
2110 {
2111 	unsigned long (*get_area)(struct file *,
2112 		unsigned long, unsigned long, unsigned long, unsigned long);
2113 	unsigned long addr;
2114 	unsigned long offset;
2115 	unsigned long inflated_len;
2116 	unsigned long inflated_addr;
2117 	unsigned long inflated_offset;
2118 
2119 	if (len > TASK_SIZE)
2120 		return -ENOMEM;
2121 
2122 	get_area = current->mm->get_unmapped_area;
2123 	addr = get_area(file, uaddr, len, pgoff, flags);
2124 
2125 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2126 		return addr;
2127 	if (IS_ERR_VALUE(addr))
2128 		return addr;
2129 	if (addr & ~PAGE_MASK)
2130 		return addr;
2131 	if (addr > TASK_SIZE - len)
2132 		return addr;
2133 
2134 	if (shmem_huge == SHMEM_HUGE_DENY)
2135 		return addr;
2136 	if (len < HPAGE_PMD_SIZE)
2137 		return addr;
2138 	if (flags & MAP_FIXED)
2139 		return addr;
2140 	/*
2141 	 * Our priority is to support MAP_SHARED mapped hugely;
2142 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2143 	 * But if caller specified an address hint and we allocated area there
2144 	 * successfully, respect that as before.
2145 	 */
2146 	if (uaddr == addr)
2147 		return addr;
2148 
2149 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2150 		struct super_block *sb;
2151 
2152 		if (file) {
2153 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2154 			sb = file_inode(file)->i_sb;
2155 		} else {
2156 			/*
2157 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2158 			 * for "/dev/zero", to create a shared anonymous object.
2159 			 */
2160 			if (IS_ERR(shm_mnt))
2161 				return addr;
2162 			sb = shm_mnt->mnt_sb;
2163 		}
2164 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2165 			return addr;
2166 	}
2167 
2168 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2169 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2170 		return addr;
2171 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2172 		return addr;
2173 
2174 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2175 	if (inflated_len > TASK_SIZE)
2176 		return addr;
2177 	if (inflated_len < len)
2178 		return addr;
2179 
2180 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2181 	if (IS_ERR_VALUE(inflated_addr))
2182 		return addr;
2183 	if (inflated_addr & ~PAGE_MASK)
2184 		return addr;
2185 
2186 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2187 	inflated_addr += offset - inflated_offset;
2188 	if (inflated_offset > offset)
2189 		inflated_addr += HPAGE_PMD_SIZE;
2190 
2191 	if (inflated_addr > TASK_SIZE - len)
2192 		return addr;
2193 	return inflated_addr;
2194 }
2195 
2196 #ifdef CONFIG_NUMA
2197 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2198 {
2199 	struct inode *inode = file_inode(vma->vm_file);
2200 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2201 }
2202 
2203 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2204 					  unsigned long addr)
2205 {
2206 	struct inode *inode = file_inode(vma->vm_file);
2207 	pgoff_t index;
2208 
2209 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2210 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2211 }
2212 #endif
2213 
2214 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2215 {
2216 	struct inode *inode = file_inode(file);
2217 	struct shmem_inode_info *info = SHMEM_I(inode);
2218 	int retval = -ENOMEM;
2219 
2220 	/*
2221 	 * What serializes the accesses to info->flags?
2222 	 * ipc_lock_object() when called from shmctl_do_lock(),
2223 	 * no serialization needed when called from shm_destroy().
2224 	 */
2225 	if (lock && !(info->flags & VM_LOCKED)) {
2226 		if (!user_shm_lock(inode->i_size, ucounts))
2227 			goto out_nomem;
2228 		info->flags |= VM_LOCKED;
2229 		mapping_set_unevictable(file->f_mapping);
2230 	}
2231 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2232 		user_shm_unlock(inode->i_size, ucounts);
2233 		info->flags &= ~VM_LOCKED;
2234 		mapping_clear_unevictable(file->f_mapping);
2235 	}
2236 	retval = 0;
2237 
2238 out_nomem:
2239 	return retval;
2240 }
2241 
2242 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2243 {
2244 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2245 	int ret;
2246 
2247 	ret = seal_check_future_write(info->seals, vma);
2248 	if (ret)
2249 		return ret;
2250 
2251 	/* arm64 - allow memory tagging on RAM-based files */
2252 	vma->vm_flags |= VM_MTE_ALLOWED;
2253 
2254 	file_accessed(file);
2255 	vma->vm_ops = &shmem_vm_ops;
2256 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2257 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2258 			(vma->vm_end & HPAGE_PMD_MASK)) {
2259 		khugepaged_enter(vma, vma->vm_flags);
2260 	}
2261 	return 0;
2262 }
2263 
2264 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2265 				     umode_t mode, dev_t dev, unsigned long flags)
2266 {
2267 	struct inode *inode;
2268 	struct shmem_inode_info *info;
2269 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2270 	ino_t ino;
2271 
2272 	if (shmem_reserve_inode(sb, &ino))
2273 		return NULL;
2274 
2275 	inode = new_inode(sb);
2276 	if (inode) {
2277 		inode->i_ino = ino;
2278 		inode_init_owner(&init_user_ns, inode, dir, mode);
2279 		inode->i_blocks = 0;
2280 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2281 		inode->i_generation = prandom_u32();
2282 		info = SHMEM_I(inode);
2283 		memset(info, 0, (char *)inode - (char *)info);
2284 		spin_lock_init(&info->lock);
2285 		atomic_set(&info->stop_eviction, 0);
2286 		info->seals = F_SEAL_SEAL;
2287 		info->flags = flags & VM_NORESERVE;
2288 		INIT_LIST_HEAD(&info->shrinklist);
2289 		INIT_LIST_HEAD(&info->swaplist);
2290 		simple_xattrs_init(&info->xattrs);
2291 		cache_no_acl(inode);
2292 		mapping_set_large_folios(inode->i_mapping);
2293 
2294 		switch (mode & S_IFMT) {
2295 		default:
2296 			inode->i_op = &shmem_special_inode_operations;
2297 			init_special_inode(inode, mode, dev);
2298 			break;
2299 		case S_IFREG:
2300 			inode->i_mapping->a_ops = &shmem_aops;
2301 			inode->i_op = &shmem_inode_operations;
2302 			inode->i_fop = &shmem_file_operations;
2303 			mpol_shared_policy_init(&info->policy,
2304 						 shmem_get_sbmpol(sbinfo));
2305 			break;
2306 		case S_IFDIR:
2307 			inc_nlink(inode);
2308 			/* Some things misbehave if size == 0 on a directory */
2309 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2310 			inode->i_op = &shmem_dir_inode_operations;
2311 			inode->i_fop = &simple_dir_operations;
2312 			break;
2313 		case S_IFLNK:
2314 			/*
2315 			 * Must not load anything in the rbtree,
2316 			 * mpol_free_shared_policy will not be called.
2317 			 */
2318 			mpol_shared_policy_init(&info->policy, NULL);
2319 			break;
2320 		}
2321 
2322 		lockdep_annotate_inode_mutex_key(inode);
2323 	} else
2324 		shmem_free_inode(sb);
2325 	return inode;
2326 }
2327 
2328 #ifdef CONFIG_USERFAULTFD
2329 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2330 			   pmd_t *dst_pmd,
2331 			   struct vm_area_struct *dst_vma,
2332 			   unsigned long dst_addr,
2333 			   unsigned long src_addr,
2334 			   bool zeropage,
2335 			   struct page **pagep)
2336 {
2337 	struct inode *inode = file_inode(dst_vma->vm_file);
2338 	struct shmem_inode_info *info = SHMEM_I(inode);
2339 	struct address_space *mapping = inode->i_mapping;
2340 	gfp_t gfp = mapping_gfp_mask(mapping);
2341 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2342 	void *page_kaddr;
2343 	struct page *page;
2344 	int ret;
2345 	pgoff_t max_off;
2346 
2347 	if (!shmem_inode_acct_block(inode, 1)) {
2348 		/*
2349 		 * We may have got a page, returned -ENOENT triggering a retry,
2350 		 * and now we find ourselves with -ENOMEM. Release the page, to
2351 		 * avoid a BUG_ON in our caller.
2352 		 */
2353 		if (unlikely(*pagep)) {
2354 			put_page(*pagep);
2355 			*pagep = NULL;
2356 		}
2357 		return -ENOMEM;
2358 	}
2359 
2360 	if (!*pagep) {
2361 		ret = -ENOMEM;
2362 		page = shmem_alloc_page(gfp, info, pgoff);
2363 		if (!page)
2364 			goto out_unacct_blocks;
2365 
2366 		if (!zeropage) {	/* COPY */
2367 			page_kaddr = kmap_atomic(page);
2368 			ret = copy_from_user(page_kaddr,
2369 					     (const void __user *)src_addr,
2370 					     PAGE_SIZE);
2371 			kunmap_atomic(page_kaddr);
2372 
2373 			/* fallback to copy_from_user outside mmap_lock */
2374 			if (unlikely(ret)) {
2375 				*pagep = page;
2376 				ret = -ENOENT;
2377 				/* don't free the page */
2378 				goto out_unacct_blocks;
2379 			}
2380 		} else {		/* ZEROPAGE */
2381 			clear_highpage(page);
2382 		}
2383 	} else {
2384 		page = *pagep;
2385 		*pagep = NULL;
2386 	}
2387 
2388 	VM_BUG_ON(PageLocked(page));
2389 	VM_BUG_ON(PageSwapBacked(page));
2390 	__SetPageLocked(page);
2391 	__SetPageSwapBacked(page);
2392 	__SetPageUptodate(page);
2393 
2394 	ret = -EFAULT;
2395 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2396 	if (unlikely(pgoff >= max_off))
2397 		goto out_release;
2398 
2399 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2400 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2401 	if (ret)
2402 		goto out_release;
2403 
2404 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2405 				       page, true, false);
2406 	if (ret)
2407 		goto out_delete_from_cache;
2408 
2409 	spin_lock_irq(&info->lock);
2410 	info->alloced++;
2411 	inode->i_blocks += BLOCKS_PER_PAGE;
2412 	shmem_recalc_inode(inode);
2413 	spin_unlock_irq(&info->lock);
2414 
2415 	unlock_page(page);
2416 	return 0;
2417 out_delete_from_cache:
2418 	delete_from_page_cache(page);
2419 out_release:
2420 	unlock_page(page);
2421 	put_page(page);
2422 out_unacct_blocks:
2423 	shmem_inode_unacct_blocks(inode, 1);
2424 	return ret;
2425 }
2426 #endif /* CONFIG_USERFAULTFD */
2427 
2428 #ifdef CONFIG_TMPFS
2429 static const struct inode_operations shmem_symlink_inode_operations;
2430 static const struct inode_operations shmem_short_symlink_operations;
2431 
2432 #ifdef CONFIG_TMPFS_XATTR
2433 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2434 #else
2435 #define shmem_initxattrs NULL
2436 #endif
2437 
2438 static int
2439 shmem_write_begin(struct file *file, struct address_space *mapping,
2440 			loff_t pos, unsigned len, unsigned flags,
2441 			struct page **pagep, void **fsdata)
2442 {
2443 	struct inode *inode = mapping->host;
2444 	struct shmem_inode_info *info = SHMEM_I(inode);
2445 	pgoff_t index = pos >> PAGE_SHIFT;
2446 	int ret = 0;
2447 
2448 	/* i_rwsem is held by caller */
2449 	if (unlikely(info->seals & (F_SEAL_GROW |
2450 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2451 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2452 			return -EPERM;
2453 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2454 			return -EPERM;
2455 	}
2456 
2457 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2458 
2459 	if (ret)
2460 		return ret;
2461 
2462 	if (PageHWPoison(*pagep)) {
2463 		unlock_page(*pagep);
2464 		put_page(*pagep);
2465 		*pagep = NULL;
2466 		return -EIO;
2467 	}
2468 
2469 	return 0;
2470 }
2471 
2472 static int
2473 shmem_write_end(struct file *file, struct address_space *mapping,
2474 			loff_t pos, unsigned len, unsigned copied,
2475 			struct page *page, void *fsdata)
2476 {
2477 	struct inode *inode = mapping->host;
2478 
2479 	if (pos + copied > inode->i_size)
2480 		i_size_write(inode, pos + copied);
2481 
2482 	if (!PageUptodate(page)) {
2483 		struct page *head = compound_head(page);
2484 		if (PageTransCompound(page)) {
2485 			int i;
2486 
2487 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2488 				if (head + i == page)
2489 					continue;
2490 				clear_highpage(head + i);
2491 				flush_dcache_page(head + i);
2492 			}
2493 		}
2494 		if (copied < PAGE_SIZE) {
2495 			unsigned from = pos & (PAGE_SIZE - 1);
2496 			zero_user_segments(page, 0, from,
2497 					from + copied, PAGE_SIZE);
2498 		}
2499 		SetPageUptodate(head);
2500 	}
2501 	set_page_dirty(page);
2502 	unlock_page(page);
2503 	put_page(page);
2504 
2505 	return copied;
2506 }
2507 
2508 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2509 {
2510 	struct file *file = iocb->ki_filp;
2511 	struct inode *inode = file_inode(file);
2512 	struct address_space *mapping = inode->i_mapping;
2513 	pgoff_t index;
2514 	unsigned long offset;
2515 	enum sgp_type sgp = SGP_READ;
2516 	int error = 0;
2517 	ssize_t retval = 0;
2518 	loff_t *ppos = &iocb->ki_pos;
2519 
2520 	/*
2521 	 * Might this read be for a stacking filesystem?  Then when reading
2522 	 * holes of a sparse file, we actually need to allocate those pages,
2523 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2524 	 */
2525 	if (!iter_is_iovec(to))
2526 		sgp = SGP_CACHE;
2527 
2528 	index = *ppos >> PAGE_SHIFT;
2529 	offset = *ppos & ~PAGE_MASK;
2530 
2531 	for (;;) {
2532 		struct page *page = NULL;
2533 		pgoff_t end_index;
2534 		unsigned long nr, ret;
2535 		loff_t i_size = i_size_read(inode);
2536 
2537 		end_index = i_size >> PAGE_SHIFT;
2538 		if (index > end_index)
2539 			break;
2540 		if (index == end_index) {
2541 			nr = i_size & ~PAGE_MASK;
2542 			if (nr <= offset)
2543 				break;
2544 		}
2545 
2546 		error = shmem_getpage(inode, index, &page, sgp);
2547 		if (error) {
2548 			if (error == -EINVAL)
2549 				error = 0;
2550 			break;
2551 		}
2552 		if (page) {
2553 			if (sgp == SGP_CACHE)
2554 				set_page_dirty(page);
2555 			unlock_page(page);
2556 
2557 			if (PageHWPoison(page)) {
2558 				put_page(page);
2559 				error = -EIO;
2560 				break;
2561 			}
2562 		}
2563 
2564 		/*
2565 		 * We must evaluate after, since reads (unlike writes)
2566 		 * are called without i_rwsem protection against truncate
2567 		 */
2568 		nr = PAGE_SIZE;
2569 		i_size = i_size_read(inode);
2570 		end_index = i_size >> PAGE_SHIFT;
2571 		if (index == end_index) {
2572 			nr = i_size & ~PAGE_MASK;
2573 			if (nr <= offset) {
2574 				if (page)
2575 					put_page(page);
2576 				break;
2577 			}
2578 		}
2579 		nr -= offset;
2580 
2581 		if (page) {
2582 			/*
2583 			 * If users can be writing to this page using arbitrary
2584 			 * virtual addresses, take care about potential aliasing
2585 			 * before reading the page on the kernel side.
2586 			 */
2587 			if (mapping_writably_mapped(mapping))
2588 				flush_dcache_page(page);
2589 			/*
2590 			 * Mark the page accessed if we read the beginning.
2591 			 */
2592 			if (!offset)
2593 				mark_page_accessed(page);
2594 		} else {
2595 			page = ZERO_PAGE(0);
2596 			get_page(page);
2597 		}
2598 
2599 		/*
2600 		 * Ok, we have the page, and it's up-to-date, so
2601 		 * now we can copy it to user space...
2602 		 */
2603 		ret = copy_page_to_iter(page, offset, nr, to);
2604 		retval += ret;
2605 		offset += ret;
2606 		index += offset >> PAGE_SHIFT;
2607 		offset &= ~PAGE_MASK;
2608 
2609 		put_page(page);
2610 		if (!iov_iter_count(to))
2611 			break;
2612 		if (ret < nr) {
2613 			error = -EFAULT;
2614 			break;
2615 		}
2616 		cond_resched();
2617 	}
2618 
2619 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2620 	file_accessed(file);
2621 	return retval ? retval : error;
2622 }
2623 
2624 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2625 {
2626 	struct address_space *mapping = file->f_mapping;
2627 	struct inode *inode = mapping->host;
2628 
2629 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2630 		return generic_file_llseek_size(file, offset, whence,
2631 					MAX_LFS_FILESIZE, i_size_read(inode));
2632 	if (offset < 0)
2633 		return -ENXIO;
2634 
2635 	inode_lock(inode);
2636 	/* We're holding i_rwsem so we can access i_size directly */
2637 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2638 	if (offset >= 0)
2639 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2640 	inode_unlock(inode);
2641 	return offset;
2642 }
2643 
2644 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2645 							 loff_t len)
2646 {
2647 	struct inode *inode = file_inode(file);
2648 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2649 	struct shmem_inode_info *info = SHMEM_I(inode);
2650 	struct shmem_falloc shmem_falloc;
2651 	pgoff_t start, index, end, undo_fallocend;
2652 	int error;
2653 
2654 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2655 		return -EOPNOTSUPP;
2656 
2657 	inode_lock(inode);
2658 
2659 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2660 		struct address_space *mapping = file->f_mapping;
2661 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2662 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2663 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2664 
2665 		/* protected by i_rwsem */
2666 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2667 			error = -EPERM;
2668 			goto out;
2669 		}
2670 
2671 		shmem_falloc.waitq = &shmem_falloc_waitq;
2672 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2673 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2674 		spin_lock(&inode->i_lock);
2675 		inode->i_private = &shmem_falloc;
2676 		spin_unlock(&inode->i_lock);
2677 
2678 		if ((u64)unmap_end > (u64)unmap_start)
2679 			unmap_mapping_range(mapping, unmap_start,
2680 					    1 + unmap_end - unmap_start, 0);
2681 		shmem_truncate_range(inode, offset, offset + len - 1);
2682 		/* No need to unmap again: hole-punching leaves COWed pages */
2683 
2684 		spin_lock(&inode->i_lock);
2685 		inode->i_private = NULL;
2686 		wake_up_all(&shmem_falloc_waitq);
2687 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2688 		spin_unlock(&inode->i_lock);
2689 		error = 0;
2690 		goto out;
2691 	}
2692 
2693 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2694 	error = inode_newsize_ok(inode, offset + len);
2695 	if (error)
2696 		goto out;
2697 
2698 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2699 		error = -EPERM;
2700 		goto out;
2701 	}
2702 
2703 	start = offset >> PAGE_SHIFT;
2704 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2706 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2707 		error = -ENOSPC;
2708 		goto out;
2709 	}
2710 
2711 	shmem_falloc.waitq = NULL;
2712 	shmem_falloc.start = start;
2713 	shmem_falloc.next  = start;
2714 	shmem_falloc.nr_falloced = 0;
2715 	shmem_falloc.nr_unswapped = 0;
2716 	spin_lock(&inode->i_lock);
2717 	inode->i_private = &shmem_falloc;
2718 	spin_unlock(&inode->i_lock);
2719 
2720 	/*
2721 	 * info->fallocend is only relevant when huge pages might be
2722 	 * involved: to prevent split_huge_page() freeing fallocated
2723 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2724 	 */
2725 	undo_fallocend = info->fallocend;
2726 	if (info->fallocend < end)
2727 		info->fallocend = end;
2728 
2729 	for (index = start; index < end; ) {
2730 		struct page *page;
2731 
2732 		/*
2733 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2734 		 * been interrupted because we are using up too much memory.
2735 		 */
2736 		if (signal_pending(current))
2737 			error = -EINTR;
2738 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2739 			error = -ENOMEM;
2740 		else
2741 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2742 		if (error) {
2743 			info->fallocend = undo_fallocend;
2744 			/* Remove the !PageUptodate pages we added */
2745 			if (index > start) {
2746 				shmem_undo_range(inode,
2747 				    (loff_t)start << PAGE_SHIFT,
2748 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2749 			}
2750 			goto undone;
2751 		}
2752 
2753 		index++;
2754 		/*
2755 		 * Here is a more important optimization than it appears:
2756 		 * a second SGP_FALLOC on the same huge page will clear it,
2757 		 * making it PageUptodate and un-undoable if we fail later.
2758 		 */
2759 		if (PageTransCompound(page)) {
2760 			index = round_up(index, HPAGE_PMD_NR);
2761 			/* Beware 32-bit wraparound */
2762 			if (!index)
2763 				index--;
2764 		}
2765 
2766 		/*
2767 		 * Inform shmem_writepage() how far we have reached.
2768 		 * No need for lock or barrier: we have the page lock.
2769 		 */
2770 		if (!PageUptodate(page))
2771 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2772 		shmem_falloc.next = index;
2773 
2774 		/*
2775 		 * If !PageUptodate, leave it that way so that freeable pages
2776 		 * can be recognized if we need to rollback on error later.
2777 		 * But set_page_dirty so that memory pressure will swap rather
2778 		 * than free the pages we are allocating (and SGP_CACHE pages
2779 		 * might still be clean: we now need to mark those dirty too).
2780 		 */
2781 		set_page_dirty(page);
2782 		unlock_page(page);
2783 		put_page(page);
2784 		cond_resched();
2785 	}
2786 
2787 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2788 		i_size_write(inode, offset + len);
2789 	inode->i_ctime = current_time(inode);
2790 undone:
2791 	spin_lock(&inode->i_lock);
2792 	inode->i_private = NULL;
2793 	spin_unlock(&inode->i_lock);
2794 out:
2795 	inode_unlock(inode);
2796 	return error;
2797 }
2798 
2799 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2800 {
2801 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2802 
2803 	buf->f_type = TMPFS_MAGIC;
2804 	buf->f_bsize = PAGE_SIZE;
2805 	buf->f_namelen = NAME_MAX;
2806 	if (sbinfo->max_blocks) {
2807 		buf->f_blocks = sbinfo->max_blocks;
2808 		buf->f_bavail =
2809 		buf->f_bfree  = sbinfo->max_blocks -
2810 				percpu_counter_sum(&sbinfo->used_blocks);
2811 	}
2812 	if (sbinfo->max_inodes) {
2813 		buf->f_files = sbinfo->max_inodes;
2814 		buf->f_ffree = sbinfo->free_inodes;
2815 	}
2816 	/* else leave those fields 0 like simple_statfs */
2817 
2818 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2819 
2820 	return 0;
2821 }
2822 
2823 /*
2824  * File creation. Allocate an inode, and we're done..
2825  */
2826 static int
2827 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2828 	    struct dentry *dentry, umode_t mode, dev_t dev)
2829 {
2830 	struct inode *inode;
2831 	int error = -ENOSPC;
2832 
2833 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2834 	if (inode) {
2835 		error = simple_acl_create(dir, inode);
2836 		if (error)
2837 			goto out_iput;
2838 		error = security_inode_init_security(inode, dir,
2839 						     &dentry->d_name,
2840 						     shmem_initxattrs, NULL);
2841 		if (error && error != -EOPNOTSUPP)
2842 			goto out_iput;
2843 
2844 		error = 0;
2845 		dir->i_size += BOGO_DIRENT_SIZE;
2846 		dir->i_ctime = dir->i_mtime = current_time(dir);
2847 		d_instantiate(dentry, inode);
2848 		dget(dentry); /* Extra count - pin the dentry in core */
2849 	}
2850 	return error;
2851 out_iput:
2852 	iput(inode);
2853 	return error;
2854 }
2855 
2856 static int
2857 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2858 	      struct dentry *dentry, umode_t mode)
2859 {
2860 	struct inode *inode;
2861 	int error = -ENOSPC;
2862 
2863 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2864 	if (inode) {
2865 		error = security_inode_init_security(inode, dir,
2866 						     NULL,
2867 						     shmem_initxattrs, NULL);
2868 		if (error && error != -EOPNOTSUPP)
2869 			goto out_iput;
2870 		error = simple_acl_create(dir, inode);
2871 		if (error)
2872 			goto out_iput;
2873 		d_tmpfile(dentry, inode);
2874 	}
2875 	return error;
2876 out_iput:
2877 	iput(inode);
2878 	return error;
2879 }
2880 
2881 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2882 		       struct dentry *dentry, umode_t mode)
2883 {
2884 	int error;
2885 
2886 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2887 				 mode | S_IFDIR, 0)))
2888 		return error;
2889 	inc_nlink(dir);
2890 	return 0;
2891 }
2892 
2893 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2894 			struct dentry *dentry, umode_t mode, bool excl)
2895 {
2896 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2897 }
2898 
2899 /*
2900  * Link a file..
2901  */
2902 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2903 {
2904 	struct inode *inode = d_inode(old_dentry);
2905 	int ret = 0;
2906 
2907 	/*
2908 	 * No ordinary (disk based) filesystem counts links as inodes;
2909 	 * but each new link needs a new dentry, pinning lowmem, and
2910 	 * tmpfs dentries cannot be pruned until they are unlinked.
2911 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2912 	 * first link must skip that, to get the accounting right.
2913 	 */
2914 	if (inode->i_nlink) {
2915 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2916 		if (ret)
2917 			goto out;
2918 	}
2919 
2920 	dir->i_size += BOGO_DIRENT_SIZE;
2921 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2922 	inc_nlink(inode);
2923 	ihold(inode);	/* New dentry reference */
2924 	dget(dentry);		/* Extra pinning count for the created dentry */
2925 	d_instantiate(dentry, inode);
2926 out:
2927 	return ret;
2928 }
2929 
2930 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2931 {
2932 	struct inode *inode = d_inode(dentry);
2933 
2934 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2935 		shmem_free_inode(inode->i_sb);
2936 
2937 	dir->i_size -= BOGO_DIRENT_SIZE;
2938 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2939 	drop_nlink(inode);
2940 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2941 	return 0;
2942 }
2943 
2944 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2945 {
2946 	if (!simple_empty(dentry))
2947 		return -ENOTEMPTY;
2948 
2949 	drop_nlink(d_inode(dentry));
2950 	drop_nlink(dir);
2951 	return shmem_unlink(dir, dentry);
2952 }
2953 
2954 static int shmem_whiteout(struct user_namespace *mnt_userns,
2955 			  struct inode *old_dir, struct dentry *old_dentry)
2956 {
2957 	struct dentry *whiteout;
2958 	int error;
2959 
2960 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2961 	if (!whiteout)
2962 		return -ENOMEM;
2963 
2964 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2965 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2966 	dput(whiteout);
2967 	if (error)
2968 		return error;
2969 
2970 	/*
2971 	 * Cheat and hash the whiteout while the old dentry is still in
2972 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2973 	 *
2974 	 * d_lookup() will consistently find one of them at this point,
2975 	 * not sure which one, but that isn't even important.
2976 	 */
2977 	d_rehash(whiteout);
2978 	return 0;
2979 }
2980 
2981 /*
2982  * The VFS layer already does all the dentry stuff for rename,
2983  * we just have to decrement the usage count for the target if
2984  * it exists so that the VFS layer correctly free's it when it
2985  * gets overwritten.
2986  */
2987 static int shmem_rename2(struct user_namespace *mnt_userns,
2988 			 struct inode *old_dir, struct dentry *old_dentry,
2989 			 struct inode *new_dir, struct dentry *new_dentry,
2990 			 unsigned int flags)
2991 {
2992 	struct inode *inode = d_inode(old_dentry);
2993 	int they_are_dirs = S_ISDIR(inode->i_mode);
2994 
2995 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2996 		return -EINVAL;
2997 
2998 	if (flags & RENAME_EXCHANGE)
2999 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3000 
3001 	if (!simple_empty(new_dentry))
3002 		return -ENOTEMPTY;
3003 
3004 	if (flags & RENAME_WHITEOUT) {
3005 		int error;
3006 
3007 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3008 		if (error)
3009 			return error;
3010 	}
3011 
3012 	if (d_really_is_positive(new_dentry)) {
3013 		(void) shmem_unlink(new_dir, new_dentry);
3014 		if (they_are_dirs) {
3015 			drop_nlink(d_inode(new_dentry));
3016 			drop_nlink(old_dir);
3017 		}
3018 	} else if (they_are_dirs) {
3019 		drop_nlink(old_dir);
3020 		inc_nlink(new_dir);
3021 	}
3022 
3023 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3024 	new_dir->i_size += BOGO_DIRENT_SIZE;
3025 	old_dir->i_ctime = old_dir->i_mtime =
3026 	new_dir->i_ctime = new_dir->i_mtime =
3027 	inode->i_ctime = current_time(old_dir);
3028 	return 0;
3029 }
3030 
3031 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3032 			 struct dentry *dentry, const char *symname)
3033 {
3034 	int error;
3035 	int len;
3036 	struct inode *inode;
3037 	struct page *page;
3038 
3039 	len = strlen(symname) + 1;
3040 	if (len > PAGE_SIZE)
3041 		return -ENAMETOOLONG;
3042 
3043 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3044 				VM_NORESERVE);
3045 	if (!inode)
3046 		return -ENOSPC;
3047 
3048 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3049 					     shmem_initxattrs, NULL);
3050 	if (error && error != -EOPNOTSUPP) {
3051 		iput(inode);
3052 		return error;
3053 	}
3054 
3055 	inode->i_size = len-1;
3056 	if (len <= SHORT_SYMLINK_LEN) {
3057 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3058 		if (!inode->i_link) {
3059 			iput(inode);
3060 			return -ENOMEM;
3061 		}
3062 		inode->i_op = &shmem_short_symlink_operations;
3063 	} else {
3064 		inode_nohighmem(inode);
3065 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3066 		if (error) {
3067 			iput(inode);
3068 			return error;
3069 		}
3070 		inode->i_mapping->a_ops = &shmem_aops;
3071 		inode->i_op = &shmem_symlink_inode_operations;
3072 		memcpy(page_address(page), symname, len);
3073 		SetPageUptodate(page);
3074 		set_page_dirty(page);
3075 		unlock_page(page);
3076 		put_page(page);
3077 	}
3078 	dir->i_size += BOGO_DIRENT_SIZE;
3079 	dir->i_ctime = dir->i_mtime = current_time(dir);
3080 	d_instantiate(dentry, inode);
3081 	dget(dentry);
3082 	return 0;
3083 }
3084 
3085 static void shmem_put_link(void *arg)
3086 {
3087 	mark_page_accessed(arg);
3088 	put_page(arg);
3089 }
3090 
3091 static const char *shmem_get_link(struct dentry *dentry,
3092 				  struct inode *inode,
3093 				  struct delayed_call *done)
3094 {
3095 	struct page *page = NULL;
3096 	int error;
3097 	if (!dentry) {
3098 		page = find_get_page(inode->i_mapping, 0);
3099 		if (!page)
3100 			return ERR_PTR(-ECHILD);
3101 		if (PageHWPoison(page) ||
3102 		    !PageUptodate(page)) {
3103 			put_page(page);
3104 			return ERR_PTR(-ECHILD);
3105 		}
3106 	} else {
3107 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3108 		if (error)
3109 			return ERR_PTR(error);
3110 		if (!page)
3111 			return ERR_PTR(-ECHILD);
3112 		if (PageHWPoison(page)) {
3113 			unlock_page(page);
3114 			put_page(page);
3115 			return ERR_PTR(-ECHILD);
3116 		}
3117 		unlock_page(page);
3118 	}
3119 	set_delayed_call(done, shmem_put_link, page);
3120 	return page_address(page);
3121 }
3122 
3123 #ifdef CONFIG_TMPFS_XATTR
3124 /*
3125  * Superblocks without xattr inode operations may get some security.* xattr
3126  * support from the LSM "for free". As soon as we have any other xattrs
3127  * like ACLs, we also need to implement the security.* handlers at
3128  * filesystem level, though.
3129  */
3130 
3131 /*
3132  * Callback for security_inode_init_security() for acquiring xattrs.
3133  */
3134 static int shmem_initxattrs(struct inode *inode,
3135 			    const struct xattr *xattr_array,
3136 			    void *fs_info)
3137 {
3138 	struct shmem_inode_info *info = SHMEM_I(inode);
3139 	const struct xattr *xattr;
3140 	struct simple_xattr *new_xattr;
3141 	size_t len;
3142 
3143 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3144 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3145 		if (!new_xattr)
3146 			return -ENOMEM;
3147 
3148 		len = strlen(xattr->name) + 1;
3149 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3150 					  GFP_KERNEL);
3151 		if (!new_xattr->name) {
3152 			kvfree(new_xattr);
3153 			return -ENOMEM;
3154 		}
3155 
3156 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3157 		       XATTR_SECURITY_PREFIX_LEN);
3158 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3159 		       xattr->name, len);
3160 
3161 		simple_xattr_list_add(&info->xattrs, new_xattr);
3162 	}
3163 
3164 	return 0;
3165 }
3166 
3167 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3168 				   struct dentry *unused, struct inode *inode,
3169 				   const char *name, void *buffer, size_t size)
3170 {
3171 	struct shmem_inode_info *info = SHMEM_I(inode);
3172 
3173 	name = xattr_full_name(handler, name);
3174 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3175 }
3176 
3177 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3178 				   struct user_namespace *mnt_userns,
3179 				   struct dentry *unused, struct inode *inode,
3180 				   const char *name, const void *value,
3181 				   size_t size, int flags)
3182 {
3183 	struct shmem_inode_info *info = SHMEM_I(inode);
3184 
3185 	name = xattr_full_name(handler, name);
3186 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3187 }
3188 
3189 static const struct xattr_handler shmem_security_xattr_handler = {
3190 	.prefix = XATTR_SECURITY_PREFIX,
3191 	.get = shmem_xattr_handler_get,
3192 	.set = shmem_xattr_handler_set,
3193 };
3194 
3195 static const struct xattr_handler shmem_trusted_xattr_handler = {
3196 	.prefix = XATTR_TRUSTED_PREFIX,
3197 	.get = shmem_xattr_handler_get,
3198 	.set = shmem_xattr_handler_set,
3199 };
3200 
3201 static const struct xattr_handler *shmem_xattr_handlers[] = {
3202 #ifdef CONFIG_TMPFS_POSIX_ACL
3203 	&posix_acl_access_xattr_handler,
3204 	&posix_acl_default_xattr_handler,
3205 #endif
3206 	&shmem_security_xattr_handler,
3207 	&shmem_trusted_xattr_handler,
3208 	NULL
3209 };
3210 
3211 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3212 {
3213 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3214 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3215 }
3216 #endif /* CONFIG_TMPFS_XATTR */
3217 
3218 static const struct inode_operations shmem_short_symlink_operations = {
3219 	.get_link	= simple_get_link,
3220 #ifdef CONFIG_TMPFS_XATTR
3221 	.listxattr	= shmem_listxattr,
3222 #endif
3223 };
3224 
3225 static const struct inode_operations shmem_symlink_inode_operations = {
3226 	.get_link	= shmem_get_link,
3227 #ifdef CONFIG_TMPFS_XATTR
3228 	.listxattr	= shmem_listxattr,
3229 #endif
3230 };
3231 
3232 static struct dentry *shmem_get_parent(struct dentry *child)
3233 {
3234 	return ERR_PTR(-ESTALE);
3235 }
3236 
3237 static int shmem_match(struct inode *ino, void *vfh)
3238 {
3239 	__u32 *fh = vfh;
3240 	__u64 inum = fh[2];
3241 	inum = (inum << 32) | fh[1];
3242 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3243 }
3244 
3245 /* Find any alias of inode, but prefer a hashed alias */
3246 static struct dentry *shmem_find_alias(struct inode *inode)
3247 {
3248 	struct dentry *alias = d_find_alias(inode);
3249 
3250 	return alias ?: d_find_any_alias(inode);
3251 }
3252 
3253 
3254 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3255 		struct fid *fid, int fh_len, int fh_type)
3256 {
3257 	struct inode *inode;
3258 	struct dentry *dentry = NULL;
3259 	u64 inum;
3260 
3261 	if (fh_len < 3)
3262 		return NULL;
3263 
3264 	inum = fid->raw[2];
3265 	inum = (inum << 32) | fid->raw[1];
3266 
3267 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3268 			shmem_match, fid->raw);
3269 	if (inode) {
3270 		dentry = shmem_find_alias(inode);
3271 		iput(inode);
3272 	}
3273 
3274 	return dentry;
3275 }
3276 
3277 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3278 				struct inode *parent)
3279 {
3280 	if (*len < 3) {
3281 		*len = 3;
3282 		return FILEID_INVALID;
3283 	}
3284 
3285 	if (inode_unhashed(inode)) {
3286 		/* Unfortunately insert_inode_hash is not idempotent,
3287 		 * so as we hash inodes here rather than at creation
3288 		 * time, we need a lock to ensure we only try
3289 		 * to do it once
3290 		 */
3291 		static DEFINE_SPINLOCK(lock);
3292 		spin_lock(&lock);
3293 		if (inode_unhashed(inode))
3294 			__insert_inode_hash(inode,
3295 					    inode->i_ino + inode->i_generation);
3296 		spin_unlock(&lock);
3297 	}
3298 
3299 	fh[0] = inode->i_generation;
3300 	fh[1] = inode->i_ino;
3301 	fh[2] = ((__u64)inode->i_ino) >> 32;
3302 
3303 	*len = 3;
3304 	return 1;
3305 }
3306 
3307 static const struct export_operations shmem_export_ops = {
3308 	.get_parent     = shmem_get_parent,
3309 	.encode_fh      = shmem_encode_fh,
3310 	.fh_to_dentry	= shmem_fh_to_dentry,
3311 };
3312 
3313 enum shmem_param {
3314 	Opt_gid,
3315 	Opt_huge,
3316 	Opt_mode,
3317 	Opt_mpol,
3318 	Opt_nr_blocks,
3319 	Opt_nr_inodes,
3320 	Opt_size,
3321 	Opt_uid,
3322 	Opt_inode32,
3323 	Opt_inode64,
3324 };
3325 
3326 static const struct constant_table shmem_param_enums_huge[] = {
3327 	{"never",	SHMEM_HUGE_NEVER },
3328 	{"always",	SHMEM_HUGE_ALWAYS },
3329 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3330 	{"advise",	SHMEM_HUGE_ADVISE },
3331 	{}
3332 };
3333 
3334 const struct fs_parameter_spec shmem_fs_parameters[] = {
3335 	fsparam_u32   ("gid",		Opt_gid),
3336 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3337 	fsparam_u32oct("mode",		Opt_mode),
3338 	fsparam_string("mpol",		Opt_mpol),
3339 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3340 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3341 	fsparam_string("size",		Opt_size),
3342 	fsparam_u32   ("uid",		Opt_uid),
3343 	fsparam_flag  ("inode32",	Opt_inode32),
3344 	fsparam_flag  ("inode64",	Opt_inode64),
3345 	{}
3346 };
3347 
3348 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3349 {
3350 	struct shmem_options *ctx = fc->fs_private;
3351 	struct fs_parse_result result;
3352 	unsigned long long size;
3353 	char *rest;
3354 	int opt;
3355 
3356 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3357 	if (opt < 0)
3358 		return opt;
3359 
3360 	switch (opt) {
3361 	case Opt_size:
3362 		size = memparse(param->string, &rest);
3363 		if (*rest == '%') {
3364 			size <<= PAGE_SHIFT;
3365 			size *= totalram_pages();
3366 			do_div(size, 100);
3367 			rest++;
3368 		}
3369 		if (*rest)
3370 			goto bad_value;
3371 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3372 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3373 		break;
3374 	case Opt_nr_blocks:
3375 		ctx->blocks = memparse(param->string, &rest);
3376 		if (*rest)
3377 			goto bad_value;
3378 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3379 		break;
3380 	case Opt_nr_inodes:
3381 		ctx->inodes = memparse(param->string, &rest);
3382 		if (*rest)
3383 			goto bad_value;
3384 		ctx->seen |= SHMEM_SEEN_INODES;
3385 		break;
3386 	case Opt_mode:
3387 		ctx->mode = result.uint_32 & 07777;
3388 		break;
3389 	case Opt_uid:
3390 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3391 		if (!uid_valid(ctx->uid))
3392 			goto bad_value;
3393 		break;
3394 	case Opt_gid:
3395 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3396 		if (!gid_valid(ctx->gid))
3397 			goto bad_value;
3398 		break;
3399 	case Opt_huge:
3400 		ctx->huge = result.uint_32;
3401 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3402 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3403 		      has_transparent_hugepage()))
3404 			goto unsupported_parameter;
3405 		ctx->seen |= SHMEM_SEEN_HUGE;
3406 		break;
3407 	case Opt_mpol:
3408 		if (IS_ENABLED(CONFIG_NUMA)) {
3409 			mpol_put(ctx->mpol);
3410 			ctx->mpol = NULL;
3411 			if (mpol_parse_str(param->string, &ctx->mpol))
3412 				goto bad_value;
3413 			break;
3414 		}
3415 		goto unsupported_parameter;
3416 	case Opt_inode32:
3417 		ctx->full_inums = false;
3418 		ctx->seen |= SHMEM_SEEN_INUMS;
3419 		break;
3420 	case Opt_inode64:
3421 		if (sizeof(ino_t) < 8) {
3422 			return invalfc(fc,
3423 				       "Cannot use inode64 with <64bit inums in kernel\n");
3424 		}
3425 		ctx->full_inums = true;
3426 		ctx->seen |= SHMEM_SEEN_INUMS;
3427 		break;
3428 	}
3429 	return 0;
3430 
3431 unsupported_parameter:
3432 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3433 bad_value:
3434 	return invalfc(fc, "Bad value for '%s'", param->key);
3435 }
3436 
3437 static int shmem_parse_options(struct fs_context *fc, void *data)
3438 {
3439 	char *options = data;
3440 
3441 	if (options) {
3442 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3443 		if (err)
3444 			return err;
3445 	}
3446 
3447 	while (options != NULL) {
3448 		char *this_char = options;
3449 		for (;;) {
3450 			/*
3451 			 * NUL-terminate this option: unfortunately,
3452 			 * mount options form a comma-separated list,
3453 			 * but mpol's nodelist may also contain commas.
3454 			 */
3455 			options = strchr(options, ',');
3456 			if (options == NULL)
3457 				break;
3458 			options++;
3459 			if (!isdigit(*options)) {
3460 				options[-1] = '\0';
3461 				break;
3462 			}
3463 		}
3464 		if (*this_char) {
3465 			char *value = strchr(this_char, '=');
3466 			size_t len = 0;
3467 			int err;
3468 
3469 			if (value) {
3470 				*value++ = '\0';
3471 				len = strlen(value);
3472 			}
3473 			err = vfs_parse_fs_string(fc, this_char, value, len);
3474 			if (err < 0)
3475 				return err;
3476 		}
3477 	}
3478 	return 0;
3479 }
3480 
3481 /*
3482  * Reconfigure a shmem filesystem.
3483  *
3484  * Note that we disallow change from limited->unlimited blocks/inodes while any
3485  * are in use; but we must separately disallow unlimited->limited, because in
3486  * that case we have no record of how much is already in use.
3487  */
3488 static int shmem_reconfigure(struct fs_context *fc)
3489 {
3490 	struct shmem_options *ctx = fc->fs_private;
3491 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3492 	unsigned long inodes;
3493 	struct mempolicy *mpol = NULL;
3494 	const char *err;
3495 
3496 	raw_spin_lock(&sbinfo->stat_lock);
3497 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3498 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3499 		if (!sbinfo->max_blocks) {
3500 			err = "Cannot retroactively limit size";
3501 			goto out;
3502 		}
3503 		if (percpu_counter_compare(&sbinfo->used_blocks,
3504 					   ctx->blocks) > 0) {
3505 			err = "Too small a size for current use";
3506 			goto out;
3507 		}
3508 	}
3509 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3510 		if (!sbinfo->max_inodes) {
3511 			err = "Cannot retroactively limit inodes";
3512 			goto out;
3513 		}
3514 		if (ctx->inodes < inodes) {
3515 			err = "Too few inodes for current use";
3516 			goto out;
3517 		}
3518 	}
3519 
3520 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3521 	    sbinfo->next_ino > UINT_MAX) {
3522 		err = "Current inum too high to switch to 32-bit inums";
3523 		goto out;
3524 	}
3525 
3526 	if (ctx->seen & SHMEM_SEEN_HUGE)
3527 		sbinfo->huge = ctx->huge;
3528 	if (ctx->seen & SHMEM_SEEN_INUMS)
3529 		sbinfo->full_inums = ctx->full_inums;
3530 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3531 		sbinfo->max_blocks  = ctx->blocks;
3532 	if (ctx->seen & SHMEM_SEEN_INODES) {
3533 		sbinfo->max_inodes  = ctx->inodes;
3534 		sbinfo->free_inodes = ctx->inodes - inodes;
3535 	}
3536 
3537 	/*
3538 	 * Preserve previous mempolicy unless mpol remount option was specified.
3539 	 */
3540 	if (ctx->mpol) {
3541 		mpol = sbinfo->mpol;
3542 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3543 		ctx->mpol = NULL;
3544 	}
3545 	raw_spin_unlock(&sbinfo->stat_lock);
3546 	mpol_put(mpol);
3547 	return 0;
3548 out:
3549 	raw_spin_unlock(&sbinfo->stat_lock);
3550 	return invalfc(fc, "%s", err);
3551 }
3552 
3553 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3554 {
3555 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3556 
3557 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3558 		seq_printf(seq, ",size=%luk",
3559 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3560 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3561 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3562 	if (sbinfo->mode != (0777 | S_ISVTX))
3563 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3564 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3565 		seq_printf(seq, ",uid=%u",
3566 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3567 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3568 		seq_printf(seq, ",gid=%u",
3569 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3570 
3571 	/*
3572 	 * Showing inode{64,32} might be useful even if it's the system default,
3573 	 * since then people don't have to resort to checking both here and
3574 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3575 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3576 	 *
3577 	 * We hide it when inode64 isn't the default and we are using 32-bit
3578 	 * inodes, since that probably just means the feature isn't even under
3579 	 * consideration.
3580 	 *
3581 	 * As such:
3582 	 *
3583 	 *                     +-----------------+-----------------+
3584 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3585 	 *  +------------------+-----------------+-----------------+
3586 	 *  | full_inums=true  | show            | show            |
3587 	 *  | full_inums=false | show            | hide            |
3588 	 *  +------------------+-----------------+-----------------+
3589 	 *
3590 	 */
3591 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3592 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3594 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3595 	if (sbinfo->huge)
3596 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3597 #endif
3598 	shmem_show_mpol(seq, sbinfo->mpol);
3599 	return 0;
3600 }
3601 
3602 #endif /* CONFIG_TMPFS */
3603 
3604 static void shmem_put_super(struct super_block *sb)
3605 {
3606 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3607 
3608 	free_percpu(sbinfo->ino_batch);
3609 	percpu_counter_destroy(&sbinfo->used_blocks);
3610 	mpol_put(sbinfo->mpol);
3611 	kfree(sbinfo);
3612 	sb->s_fs_info = NULL;
3613 }
3614 
3615 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3616 {
3617 	struct shmem_options *ctx = fc->fs_private;
3618 	struct inode *inode;
3619 	struct shmem_sb_info *sbinfo;
3620 
3621 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3622 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3623 				L1_CACHE_BYTES), GFP_KERNEL);
3624 	if (!sbinfo)
3625 		return -ENOMEM;
3626 
3627 	sb->s_fs_info = sbinfo;
3628 
3629 #ifdef CONFIG_TMPFS
3630 	/*
3631 	 * Per default we only allow half of the physical ram per
3632 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3633 	 * but the internal instance is left unlimited.
3634 	 */
3635 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3636 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3637 			ctx->blocks = shmem_default_max_blocks();
3638 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3639 			ctx->inodes = shmem_default_max_inodes();
3640 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3641 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3642 	} else {
3643 		sb->s_flags |= SB_NOUSER;
3644 	}
3645 	sb->s_export_op = &shmem_export_ops;
3646 	sb->s_flags |= SB_NOSEC;
3647 #else
3648 	sb->s_flags |= SB_NOUSER;
3649 #endif
3650 	sbinfo->max_blocks = ctx->blocks;
3651 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3652 	if (sb->s_flags & SB_KERNMOUNT) {
3653 		sbinfo->ino_batch = alloc_percpu(ino_t);
3654 		if (!sbinfo->ino_batch)
3655 			goto failed;
3656 	}
3657 	sbinfo->uid = ctx->uid;
3658 	sbinfo->gid = ctx->gid;
3659 	sbinfo->full_inums = ctx->full_inums;
3660 	sbinfo->mode = ctx->mode;
3661 	sbinfo->huge = ctx->huge;
3662 	sbinfo->mpol = ctx->mpol;
3663 	ctx->mpol = NULL;
3664 
3665 	raw_spin_lock_init(&sbinfo->stat_lock);
3666 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3667 		goto failed;
3668 	spin_lock_init(&sbinfo->shrinklist_lock);
3669 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3670 
3671 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3672 	sb->s_blocksize = PAGE_SIZE;
3673 	sb->s_blocksize_bits = PAGE_SHIFT;
3674 	sb->s_magic = TMPFS_MAGIC;
3675 	sb->s_op = &shmem_ops;
3676 	sb->s_time_gran = 1;
3677 #ifdef CONFIG_TMPFS_XATTR
3678 	sb->s_xattr = shmem_xattr_handlers;
3679 #endif
3680 #ifdef CONFIG_TMPFS_POSIX_ACL
3681 	sb->s_flags |= SB_POSIXACL;
3682 #endif
3683 	uuid_gen(&sb->s_uuid);
3684 
3685 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3686 	if (!inode)
3687 		goto failed;
3688 	inode->i_uid = sbinfo->uid;
3689 	inode->i_gid = sbinfo->gid;
3690 	sb->s_root = d_make_root(inode);
3691 	if (!sb->s_root)
3692 		goto failed;
3693 	return 0;
3694 
3695 failed:
3696 	shmem_put_super(sb);
3697 	return -ENOMEM;
3698 }
3699 
3700 static int shmem_get_tree(struct fs_context *fc)
3701 {
3702 	return get_tree_nodev(fc, shmem_fill_super);
3703 }
3704 
3705 static void shmem_free_fc(struct fs_context *fc)
3706 {
3707 	struct shmem_options *ctx = fc->fs_private;
3708 
3709 	if (ctx) {
3710 		mpol_put(ctx->mpol);
3711 		kfree(ctx);
3712 	}
3713 }
3714 
3715 static const struct fs_context_operations shmem_fs_context_ops = {
3716 	.free			= shmem_free_fc,
3717 	.get_tree		= shmem_get_tree,
3718 #ifdef CONFIG_TMPFS
3719 	.parse_monolithic	= shmem_parse_options,
3720 	.parse_param		= shmem_parse_one,
3721 	.reconfigure		= shmem_reconfigure,
3722 #endif
3723 };
3724 
3725 static struct kmem_cache *shmem_inode_cachep;
3726 
3727 static struct inode *shmem_alloc_inode(struct super_block *sb)
3728 {
3729 	struct shmem_inode_info *info;
3730 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3731 	if (!info)
3732 		return NULL;
3733 	return &info->vfs_inode;
3734 }
3735 
3736 static void shmem_free_in_core_inode(struct inode *inode)
3737 {
3738 	if (S_ISLNK(inode->i_mode))
3739 		kfree(inode->i_link);
3740 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3741 }
3742 
3743 static void shmem_destroy_inode(struct inode *inode)
3744 {
3745 	if (S_ISREG(inode->i_mode))
3746 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3747 }
3748 
3749 static void shmem_init_inode(void *foo)
3750 {
3751 	struct shmem_inode_info *info = foo;
3752 	inode_init_once(&info->vfs_inode);
3753 }
3754 
3755 static void shmem_init_inodecache(void)
3756 {
3757 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3758 				sizeof(struct shmem_inode_info),
3759 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3760 }
3761 
3762 static void shmem_destroy_inodecache(void)
3763 {
3764 	kmem_cache_destroy(shmem_inode_cachep);
3765 }
3766 
3767 /* Keep the page in page cache instead of truncating it */
3768 static int shmem_error_remove_page(struct address_space *mapping,
3769 				   struct page *page)
3770 {
3771 	return 0;
3772 }
3773 
3774 const struct address_space_operations shmem_aops = {
3775 	.writepage	= shmem_writepage,
3776 	.set_page_dirty	= __set_page_dirty_no_writeback,
3777 #ifdef CONFIG_TMPFS
3778 	.write_begin	= shmem_write_begin,
3779 	.write_end	= shmem_write_end,
3780 #endif
3781 #ifdef CONFIG_MIGRATION
3782 	.migratepage	= migrate_page,
3783 #endif
3784 	.error_remove_page = shmem_error_remove_page,
3785 };
3786 EXPORT_SYMBOL(shmem_aops);
3787 
3788 static const struct file_operations shmem_file_operations = {
3789 	.mmap		= shmem_mmap,
3790 	.get_unmapped_area = shmem_get_unmapped_area,
3791 #ifdef CONFIG_TMPFS
3792 	.llseek		= shmem_file_llseek,
3793 	.read_iter	= shmem_file_read_iter,
3794 	.write_iter	= generic_file_write_iter,
3795 	.fsync		= noop_fsync,
3796 	.splice_read	= generic_file_splice_read,
3797 	.splice_write	= iter_file_splice_write,
3798 	.fallocate	= shmem_fallocate,
3799 #endif
3800 };
3801 
3802 static const struct inode_operations shmem_inode_operations = {
3803 	.getattr	= shmem_getattr,
3804 	.setattr	= shmem_setattr,
3805 #ifdef CONFIG_TMPFS_XATTR
3806 	.listxattr	= shmem_listxattr,
3807 	.set_acl	= simple_set_acl,
3808 #endif
3809 };
3810 
3811 static const struct inode_operations shmem_dir_inode_operations = {
3812 #ifdef CONFIG_TMPFS
3813 	.create		= shmem_create,
3814 	.lookup		= simple_lookup,
3815 	.link		= shmem_link,
3816 	.unlink		= shmem_unlink,
3817 	.symlink	= shmem_symlink,
3818 	.mkdir		= shmem_mkdir,
3819 	.rmdir		= shmem_rmdir,
3820 	.mknod		= shmem_mknod,
3821 	.rename		= shmem_rename2,
3822 	.tmpfile	= shmem_tmpfile,
3823 #endif
3824 #ifdef CONFIG_TMPFS_XATTR
3825 	.listxattr	= shmem_listxattr,
3826 #endif
3827 #ifdef CONFIG_TMPFS_POSIX_ACL
3828 	.setattr	= shmem_setattr,
3829 	.set_acl	= simple_set_acl,
3830 #endif
3831 };
3832 
3833 static const struct inode_operations shmem_special_inode_operations = {
3834 #ifdef CONFIG_TMPFS_XATTR
3835 	.listxattr	= shmem_listxattr,
3836 #endif
3837 #ifdef CONFIG_TMPFS_POSIX_ACL
3838 	.setattr	= shmem_setattr,
3839 	.set_acl	= simple_set_acl,
3840 #endif
3841 };
3842 
3843 static const struct super_operations shmem_ops = {
3844 	.alloc_inode	= shmem_alloc_inode,
3845 	.free_inode	= shmem_free_in_core_inode,
3846 	.destroy_inode	= shmem_destroy_inode,
3847 #ifdef CONFIG_TMPFS
3848 	.statfs		= shmem_statfs,
3849 	.show_options	= shmem_show_options,
3850 #endif
3851 	.evict_inode	= shmem_evict_inode,
3852 	.drop_inode	= generic_delete_inode,
3853 	.put_super	= shmem_put_super,
3854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3855 	.nr_cached_objects	= shmem_unused_huge_count,
3856 	.free_cached_objects	= shmem_unused_huge_scan,
3857 #endif
3858 };
3859 
3860 static const struct vm_operations_struct shmem_vm_ops = {
3861 	.fault		= shmem_fault,
3862 	.map_pages	= filemap_map_pages,
3863 #ifdef CONFIG_NUMA
3864 	.set_policy     = shmem_set_policy,
3865 	.get_policy     = shmem_get_policy,
3866 #endif
3867 };
3868 
3869 int shmem_init_fs_context(struct fs_context *fc)
3870 {
3871 	struct shmem_options *ctx;
3872 
3873 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3874 	if (!ctx)
3875 		return -ENOMEM;
3876 
3877 	ctx->mode = 0777 | S_ISVTX;
3878 	ctx->uid = current_fsuid();
3879 	ctx->gid = current_fsgid();
3880 
3881 	fc->fs_private = ctx;
3882 	fc->ops = &shmem_fs_context_ops;
3883 	return 0;
3884 }
3885 
3886 static struct file_system_type shmem_fs_type = {
3887 	.owner		= THIS_MODULE,
3888 	.name		= "tmpfs",
3889 	.init_fs_context = shmem_init_fs_context,
3890 #ifdef CONFIG_TMPFS
3891 	.parameters	= shmem_fs_parameters,
3892 #endif
3893 	.kill_sb	= kill_litter_super,
3894 	.fs_flags	= FS_USERNS_MOUNT,
3895 };
3896 
3897 int __init shmem_init(void)
3898 {
3899 	int error;
3900 
3901 	shmem_init_inodecache();
3902 
3903 	error = register_filesystem(&shmem_fs_type);
3904 	if (error) {
3905 		pr_err("Could not register tmpfs\n");
3906 		goto out2;
3907 	}
3908 
3909 	shm_mnt = kern_mount(&shmem_fs_type);
3910 	if (IS_ERR(shm_mnt)) {
3911 		error = PTR_ERR(shm_mnt);
3912 		pr_err("Could not kern_mount tmpfs\n");
3913 		goto out1;
3914 	}
3915 
3916 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3917 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3918 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3919 	else
3920 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3921 #endif
3922 	return 0;
3923 
3924 out1:
3925 	unregister_filesystem(&shmem_fs_type);
3926 out2:
3927 	shmem_destroy_inodecache();
3928 	shm_mnt = ERR_PTR(error);
3929 	return error;
3930 }
3931 
3932 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3933 static ssize_t shmem_enabled_show(struct kobject *kobj,
3934 				  struct kobj_attribute *attr, char *buf)
3935 {
3936 	static const int values[] = {
3937 		SHMEM_HUGE_ALWAYS,
3938 		SHMEM_HUGE_WITHIN_SIZE,
3939 		SHMEM_HUGE_ADVISE,
3940 		SHMEM_HUGE_NEVER,
3941 		SHMEM_HUGE_DENY,
3942 		SHMEM_HUGE_FORCE,
3943 	};
3944 	int len = 0;
3945 	int i;
3946 
3947 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3948 		len += sysfs_emit_at(buf, len,
3949 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3950 				     i ? " " : "",
3951 				     shmem_format_huge(values[i]));
3952 	}
3953 
3954 	len += sysfs_emit_at(buf, len, "\n");
3955 
3956 	return len;
3957 }
3958 
3959 static ssize_t shmem_enabled_store(struct kobject *kobj,
3960 		struct kobj_attribute *attr, const char *buf, size_t count)
3961 {
3962 	char tmp[16];
3963 	int huge;
3964 
3965 	if (count + 1 > sizeof(tmp))
3966 		return -EINVAL;
3967 	memcpy(tmp, buf, count);
3968 	tmp[count] = '\0';
3969 	if (count && tmp[count - 1] == '\n')
3970 		tmp[count - 1] = '\0';
3971 
3972 	huge = shmem_parse_huge(tmp);
3973 	if (huge == -EINVAL)
3974 		return -EINVAL;
3975 	if (!has_transparent_hugepage() &&
3976 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3977 		return -EINVAL;
3978 
3979 	shmem_huge = huge;
3980 	if (shmem_huge > SHMEM_HUGE_DENY)
3981 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3982 	return count;
3983 }
3984 
3985 struct kobj_attribute shmem_enabled_attr =
3986 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3987 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3988 
3989 #else /* !CONFIG_SHMEM */
3990 
3991 /*
3992  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3993  *
3994  * This is intended for small system where the benefits of the full
3995  * shmem code (swap-backed and resource-limited) are outweighed by
3996  * their complexity. On systems without swap this code should be
3997  * effectively equivalent, but much lighter weight.
3998  */
3999 
4000 static struct file_system_type shmem_fs_type = {
4001 	.name		= "tmpfs",
4002 	.init_fs_context = ramfs_init_fs_context,
4003 	.parameters	= ramfs_fs_parameters,
4004 	.kill_sb	= kill_litter_super,
4005 	.fs_flags	= FS_USERNS_MOUNT,
4006 };
4007 
4008 int __init shmem_init(void)
4009 {
4010 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4011 
4012 	shm_mnt = kern_mount(&shmem_fs_type);
4013 	BUG_ON(IS_ERR(shm_mnt));
4014 
4015 	return 0;
4016 }
4017 
4018 int shmem_unuse(unsigned int type, bool frontswap,
4019 		unsigned long *fs_pages_to_unuse)
4020 {
4021 	return 0;
4022 }
4023 
4024 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4025 {
4026 	return 0;
4027 }
4028 
4029 void shmem_unlock_mapping(struct address_space *mapping)
4030 {
4031 }
4032 
4033 #ifdef CONFIG_MMU
4034 unsigned long shmem_get_unmapped_area(struct file *file,
4035 				      unsigned long addr, unsigned long len,
4036 				      unsigned long pgoff, unsigned long flags)
4037 {
4038 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4039 }
4040 #endif
4041 
4042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4043 {
4044 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4045 }
4046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4047 
4048 #define shmem_vm_ops				generic_file_vm_ops
4049 #define shmem_file_operations			ramfs_file_operations
4050 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4051 #define shmem_acct_size(flags, size)		0
4052 #define shmem_unacct_size(flags, size)		do {} while (0)
4053 
4054 #endif /* CONFIG_SHMEM */
4055 
4056 /* common code */
4057 
4058 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4059 				       unsigned long flags, unsigned int i_flags)
4060 {
4061 	struct inode *inode;
4062 	struct file *res;
4063 
4064 	if (IS_ERR(mnt))
4065 		return ERR_CAST(mnt);
4066 
4067 	if (size < 0 || size > MAX_LFS_FILESIZE)
4068 		return ERR_PTR(-EINVAL);
4069 
4070 	if (shmem_acct_size(flags, size))
4071 		return ERR_PTR(-ENOMEM);
4072 
4073 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4074 				flags);
4075 	if (unlikely(!inode)) {
4076 		shmem_unacct_size(flags, size);
4077 		return ERR_PTR(-ENOSPC);
4078 	}
4079 	inode->i_flags |= i_flags;
4080 	inode->i_size = size;
4081 	clear_nlink(inode);	/* It is unlinked */
4082 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4083 	if (!IS_ERR(res))
4084 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4085 				&shmem_file_operations);
4086 	if (IS_ERR(res))
4087 		iput(inode);
4088 	return res;
4089 }
4090 
4091 /**
4092  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4093  * 	kernel internal.  There will be NO LSM permission checks against the
4094  * 	underlying inode.  So users of this interface must do LSM checks at a
4095  *	higher layer.  The users are the big_key and shm implementations.  LSM
4096  *	checks are provided at the key or shm level rather than the inode.
4097  * @name: name for dentry (to be seen in /proc/<pid>/maps
4098  * @size: size to be set for the file
4099  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4100  */
4101 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4102 {
4103 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4104 }
4105 
4106 /**
4107  * shmem_file_setup - get an unlinked file living in tmpfs
4108  * @name: name for dentry (to be seen in /proc/<pid>/maps
4109  * @size: size to be set for the file
4110  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4111  */
4112 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4113 {
4114 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4115 }
4116 EXPORT_SYMBOL_GPL(shmem_file_setup);
4117 
4118 /**
4119  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4120  * @mnt: the tmpfs mount where the file will be created
4121  * @name: name for dentry (to be seen in /proc/<pid>/maps
4122  * @size: size to be set for the file
4123  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4124  */
4125 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4126 				       loff_t size, unsigned long flags)
4127 {
4128 	return __shmem_file_setup(mnt, name, size, flags, 0);
4129 }
4130 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4131 
4132 /**
4133  * shmem_zero_setup - setup a shared anonymous mapping
4134  * @vma: the vma to be mmapped is prepared by do_mmap
4135  */
4136 int shmem_zero_setup(struct vm_area_struct *vma)
4137 {
4138 	struct file *file;
4139 	loff_t size = vma->vm_end - vma->vm_start;
4140 
4141 	/*
4142 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4143 	 * between XFS directory reading and selinux: since this file is only
4144 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4145 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4146 	 */
4147 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4148 	if (IS_ERR(file))
4149 		return PTR_ERR(file);
4150 
4151 	if (vma->vm_file)
4152 		fput(vma->vm_file);
4153 	vma->vm_file = file;
4154 	vma->vm_ops = &shmem_vm_ops;
4155 
4156 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4157 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4158 			(vma->vm_end & HPAGE_PMD_MASK)) {
4159 		khugepaged_enter(vma, vma->vm_flags);
4160 	}
4161 
4162 	return 0;
4163 }
4164 
4165 /**
4166  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4167  * @mapping:	the page's address_space
4168  * @index:	the page index
4169  * @gfp:	the page allocator flags to use if allocating
4170  *
4171  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4172  * with any new page allocations done using the specified allocation flags.
4173  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4174  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4175  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4176  *
4177  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4178  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4179  */
4180 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4181 					 pgoff_t index, gfp_t gfp)
4182 {
4183 #ifdef CONFIG_SHMEM
4184 	struct inode *inode = mapping->host;
4185 	struct page *page;
4186 	int error;
4187 
4188 	BUG_ON(!shmem_mapping(mapping));
4189 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4190 				  gfp, NULL, NULL, NULL);
4191 	if (error)
4192 		return ERR_PTR(error);
4193 
4194 	unlock_page(page);
4195 	if (PageHWPoison(page)) {
4196 		put_page(page);
4197 		return ERR_PTR(-EIO);
4198 	}
4199 
4200 	return page;
4201 #else
4202 	/*
4203 	 * The tiny !SHMEM case uses ramfs without swap
4204 	 */
4205 	return read_cache_page_gfp(mapping, index, gfp);
4206 #endif
4207 }
4208 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4209