1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 41 42 static struct vfsmount *shm_mnt; 43 44 #ifdef CONFIG_SHMEM 45 /* 46 * This virtual memory filesystem is heavily based on the ramfs. It 47 * extends ramfs by the ability to use swap and honor resource limits 48 * which makes it a completely usable filesystem. 49 */ 50 51 #include <linux/xattr.h> 52 #include <linux/exportfs.h> 53 #include <linux/posix_acl.h> 54 #include <linux/posix_acl_xattr.h> 55 #include <linux/mman.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/backing-dev.h> 59 #include <linux/shmem_fs.h> 60 #include <linux/writeback.h> 61 #include <linux/blkdev.h> 62 #include <linux/pagevec.h> 63 #include <linux/percpu_counter.h> 64 #include <linux/falloc.h> 65 #include <linux/splice.h> 66 #include <linux/security.h> 67 #include <linux/swapops.h> 68 #include <linux/mempolicy.h> 69 #include <linux/namei.h> 70 #include <linux/ctype.h> 71 #include <linux/migrate.h> 72 #include <linux/highmem.h> 73 #include <linux/seq_file.h> 74 #include <linux/magic.h> 75 #include <linux/syscalls.h> 76 #include <linux/fcntl.h> 77 #include <uapi/linux/memfd.h> 78 #include <linux/userfaultfd_k.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 82 #include <linux/uaccess.h> 83 #include <asm/pgtable.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_mutex making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 122 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 123 struct shmem_inode_info *info, pgoff_t index); 124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 125 struct page **pagep, enum sgp_type sgp, 126 gfp_t gfp, struct vm_area_struct *vma, 127 struct vm_fault *vmf, vm_fault_t *fault_type); 128 129 int shmem_getpage(struct inode *inode, pgoff_t index, 130 struct page **pagep, enum sgp_type sgp) 131 { 132 return shmem_getpage_gfp(inode, index, pagep, sgp, 133 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 134 } 135 136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 137 { 138 return sb->s_fs_info; 139 } 140 141 /* 142 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 143 * for shared memory and for shared anonymous (/dev/zero) mappings 144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 145 * consistent with the pre-accounting of private mappings ... 146 */ 147 static inline int shmem_acct_size(unsigned long flags, loff_t size) 148 { 149 return (flags & VM_NORESERVE) ? 150 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 151 } 152 153 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 154 { 155 if (!(flags & VM_NORESERVE)) 156 vm_unacct_memory(VM_ACCT(size)); 157 } 158 159 static inline int shmem_reacct_size(unsigned long flags, 160 loff_t oldsize, loff_t newsize) 161 { 162 if (!(flags & VM_NORESERVE)) { 163 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 164 return security_vm_enough_memory_mm(current->mm, 165 VM_ACCT(newsize) - VM_ACCT(oldsize)); 166 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 167 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 168 } 169 return 0; 170 } 171 172 /* 173 * ... whereas tmpfs objects are accounted incrementally as 174 * pages are allocated, in order to allow large sparse files. 175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 177 */ 178 static inline int shmem_acct_block(unsigned long flags, long pages) 179 { 180 if (!(flags & VM_NORESERVE)) 181 return 0; 182 183 return security_vm_enough_memory_mm(current->mm, 184 pages * VM_ACCT(PAGE_SIZE)); 185 } 186 187 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 188 { 189 if (flags & VM_NORESERVE) 190 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 191 } 192 193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 194 { 195 struct shmem_inode_info *info = SHMEM_I(inode); 196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 197 198 if (shmem_acct_block(info->flags, pages)) 199 return false; 200 201 if (sbinfo->max_blocks) { 202 if (percpu_counter_compare(&sbinfo->used_blocks, 203 sbinfo->max_blocks - pages) > 0) 204 goto unacct; 205 percpu_counter_add(&sbinfo->used_blocks, pages); 206 } 207 208 return true; 209 210 unacct: 211 shmem_unacct_blocks(info->flags, pages); 212 return false; 213 } 214 215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 216 { 217 struct shmem_inode_info *info = SHMEM_I(inode); 218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 219 220 if (sbinfo->max_blocks) 221 percpu_counter_sub(&sbinfo->used_blocks, pages); 222 shmem_unacct_blocks(info->flags, pages); 223 } 224 225 static const struct super_operations shmem_ops; 226 static const struct address_space_operations shmem_aops; 227 static const struct file_operations shmem_file_operations; 228 static const struct inode_operations shmem_inode_operations; 229 static const struct inode_operations shmem_dir_inode_operations; 230 static const struct inode_operations shmem_special_inode_operations; 231 static const struct vm_operations_struct shmem_vm_ops; 232 static struct file_system_type shmem_fs_type; 233 234 bool vma_is_shmem(struct vm_area_struct *vma) 235 { 236 return vma->vm_ops == &shmem_vm_ops; 237 } 238 239 static LIST_HEAD(shmem_swaplist); 240 static DEFINE_MUTEX(shmem_swaplist_mutex); 241 242 static int shmem_reserve_inode(struct super_block *sb) 243 { 244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 245 if (sbinfo->max_inodes) { 246 spin_lock(&sbinfo->stat_lock); 247 if (!sbinfo->free_inodes) { 248 spin_unlock(&sbinfo->stat_lock); 249 return -ENOSPC; 250 } 251 sbinfo->free_inodes--; 252 spin_unlock(&sbinfo->stat_lock); 253 } 254 return 0; 255 } 256 257 static void shmem_free_inode(struct super_block *sb) 258 { 259 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 260 if (sbinfo->max_inodes) { 261 spin_lock(&sbinfo->stat_lock); 262 sbinfo->free_inodes++; 263 spin_unlock(&sbinfo->stat_lock); 264 } 265 } 266 267 /** 268 * shmem_recalc_inode - recalculate the block usage of an inode 269 * @inode: inode to recalc 270 * 271 * We have to calculate the free blocks since the mm can drop 272 * undirtied hole pages behind our back. 273 * 274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 276 * 277 * It has to be called with the spinlock held. 278 */ 279 static void shmem_recalc_inode(struct inode *inode) 280 { 281 struct shmem_inode_info *info = SHMEM_I(inode); 282 long freed; 283 284 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 285 if (freed > 0) { 286 info->alloced -= freed; 287 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 288 shmem_inode_unacct_blocks(inode, freed); 289 } 290 } 291 292 bool shmem_charge(struct inode *inode, long pages) 293 { 294 struct shmem_inode_info *info = SHMEM_I(inode); 295 unsigned long flags; 296 297 if (!shmem_inode_acct_block(inode, pages)) 298 return false; 299 300 spin_lock_irqsave(&info->lock, flags); 301 info->alloced += pages; 302 inode->i_blocks += pages * BLOCKS_PER_PAGE; 303 shmem_recalc_inode(inode); 304 spin_unlock_irqrestore(&info->lock, flags); 305 inode->i_mapping->nrpages += pages; 306 307 return true; 308 } 309 310 void shmem_uncharge(struct inode *inode, long pages) 311 { 312 struct shmem_inode_info *info = SHMEM_I(inode); 313 unsigned long flags; 314 315 spin_lock_irqsave(&info->lock, flags); 316 info->alloced -= pages; 317 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 318 shmem_recalc_inode(inode); 319 spin_unlock_irqrestore(&info->lock, flags); 320 321 shmem_inode_unacct_blocks(inode, pages); 322 } 323 324 /* 325 * Replace item expected in xarray by a new item, while holding xa_lock. 326 */ 327 static int shmem_replace_entry(struct address_space *mapping, 328 pgoff_t index, void *expected, void *replacement) 329 { 330 XA_STATE(xas, &mapping->i_pages, index); 331 void *item; 332 333 VM_BUG_ON(!expected); 334 VM_BUG_ON(!replacement); 335 item = xas_load(&xas); 336 if (item != expected) 337 return -ENOENT; 338 xas_store(&xas, replacement); 339 return 0; 340 } 341 342 /* 343 * Sometimes, before we decide whether to proceed or to fail, we must check 344 * that an entry was not already brought back from swap by a racing thread. 345 * 346 * Checking page is not enough: by the time a SwapCache page is locked, it 347 * might be reused, and again be SwapCache, using the same swap as before. 348 */ 349 static bool shmem_confirm_swap(struct address_space *mapping, 350 pgoff_t index, swp_entry_t swap) 351 { 352 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 353 } 354 355 /* 356 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 357 * 358 * SHMEM_HUGE_NEVER: 359 * disables huge pages for the mount; 360 * SHMEM_HUGE_ALWAYS: 361 * enables huge pages for the mount; 362 * SHMEM_HUGE_WITHIN_SIZE: 363 * only allocate huge pages if the page will be fully within i_size, 364 * also respect fadvise()/madvise() hints; 365 * SHMEM_HUGE_ADVISE: 366 * only allocate huge pages if requested with fadvise()/madvise(); 367 */ 368 369 #define SHMEM_HUGE_NEVER 0 370 #define SHMEM_HUGE_ALWAYS 1 371 #define SHMEM_HUGE_WITHIN_SIZE 2 372 #define SHMEM_HUGE_ADVISE 3 373 374 /* 375 * Special values. 376 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 377 * 378 * SHMEM_HUGE_DENY: 379 * disables huge on shm_mnt and all mounts, for emergency use; 380 * SHMEM_HUGE_FORCE: 381 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 382 * 383 */ 384 #define SHMEM_HUGE_DENY (-1) 385 #define SHMEM_HUGE_FORCE (-2) 386 387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 388 /* ifdef here to avoid bloating shmem.o when not necessary */ 389 390 static int shmem_huge __read_mostly; 391 392 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 393 static int shmem_parse_huge(const char *str) 394 { 395 if (!strcmp(str, "never")) 396 return SHMEM_HUGE_NEVER; 397 if (!strcmp(str, "always")) 398 return SHMEM_HUGE_ALWAYS; 399 if (!strcmp(str, "within_size")) 400 return SHMEM_HUGE_WITHIN_SIZE; 401 if (!strcmp(str, "advise")) 402 return SHMEM_HUGE_ADVISE; 403 if (!strcmp(str, "deny")) 404 return SHMEM_HUGE_DENY; 405 if (!strcmp(str, "force")) 406 return SHMEM_HUGE_FORCE; 407 return -EINVAL; 408 } 409 410 static const char *shmem_format_huge(int huge) 411 { 412 switch (huge) { 413 case SHMEM_HUGE_NEVER: 414 return "never"; 415 case SHMEM_HUGE_ALWAYS: 416 return "always"; 417 case SHMEM_HUGE_WITHIN_SIZE: 418 return "within_size"; 419 case SHMEM_HUGE_ADVISE: 420 return "advise"; 421 case SHMEM_HUGE_DENY: 422 return "deny"; 423 case SHMEM_HUGE_FORCE: 424 return "force"; 425 default: 426 VM_BUG_ON(1); 427 return "bad_val"; 428 } 429 } 430 #endif 431 432 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 433 struct shrink_control *sc, unsigned long nr_to_split) 434 { 435 LIST_HEAD(list), *pos, *next; 436 LIST_HEAD(to_remove); 437 struct inode *inode; 438 struct shmem_inode_info *info; 439 struct page *page; 440 unsigned long batch = sc ? sc->nr_to_scan : 128; 441 int removed = 0, split = 0; 442 443 if (list_empty(&sbinfo->shrinklist)) 444 return SHRINK_STOP; 445 446 spin_lock(&sbinfo->shrinklist_lock); 447 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 448 info = list_entry(pos, struct shmem_inode_info, shrinklist); 449 450 /* pin the inode */ 451 inode = igrab(&info->vfs_inode); 452 453 /* inode is about to be evicted */ 454 if (!inode) { 455 list_del_init(&info->shrinklist); 456 removed++; 457 goto next; 458 } 459 460 /* Check if there's anything to gain */ 461 if (round_up(inode->i_size, PAGE_SIZE) == 462 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 463 list_move(&info->shrinklist, &to_remove); 464 removed++; 465 goto next; 466 } 467 468 list_move(&info->shrinklist, &list); 469 next: 470 if (!--batch) 471 break; 472 } 473 spin_unlock(&sbinfo->shrinklist_lock); 474 475 list_for_each_safe(pos, next, &to_remove) { 476 info = list_entry(pos, struct shmem_inode_info, shrinklist); 477 inode = &info->vfs_inode; 478 list_del_init(&info->shrinklist); 479 iput(inode); 480 } 481 482 list_for_each_safe(pos, next, &list) { 483 int ret; 484 485 info = list_entry(pos, struct shmem_inode_info, shrinklist); 486 inode = &info->vfs_inode; 487 488 if (nr_to_split && split >= nr_to_split) 489 goto leave; 490 491 page = find_get_page(inode->i_mapping, 492 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 493 if (!page) 494 goto drop; 495 496 /* No huge page at the end of the file: nothing to split */ 497 if (!PageTransHuge(page)) { 498 put_page(page); 499 goto drop; 500 } 501 502 /* 503 * Leave the inode on the list if we failed to lock 504 * the page at this time. 505 * 506 * Waiting for the lock may lead to deadlock in the 507 * reclaim path. 508 */ 509 if (!trylock_page(page)) { 510 put_page(page); 511 goto leave; 512 } 513 514 ret = split_huge_page(page); 515 unlock_page(page); 516 put_page(page); 517 518 /* If split failed leave the inode on the list */ 519 if (ret) 520 goto leave; 521 522 split++; 523 drop: 524 list_del_init(&info->shrinklist); 525 removed++; 526 leave: 527 iput(inode); 528 } 529 530 spin_lock(&sbinfo->shrinklist_lock); 531 list_splice_tail(&list, &sbinfo->shrinklist); 532 sbinfo->shrinklist_len -= removed; 533 spin_unlock(&sbinfo->shrinklist_lock); 534 535 return split; 536 } 537 538 static long shmem_unused_huge_scan(struct super_block *sb, 539 struct shrink_control *sc) 540 { 541 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 542 543 if (!READ_ONCE(sbinfo->shrinklist_len)) 544 return SHRINK_STOP; 545 546 return shmem_unused_huge_shrink(sbinfo, sc, 0); 547 } 548 549 static long shmem_unused_huge_count(struct super_block *sb, 550 struct shrink_control *sc) 551 { 552 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 553 return READ_ONCE(sbinfo->shrinklist_len); 554 } 555 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 556 557 #define shmem_huge SHMEM_HUGE_DENY 558 559 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 560 struct shrink_control *sc, unsigned long nr_to_split) 561 { 562 return 0; 563 } 564 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 565 566 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 567 { 568 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 569 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 570 shmem_huge != SHMEM_HUGE_DENY) 571 return true; 572 return false; 573 } 574 575 /* 576 * Like add_to_page_cache_locked, but error if expected item has gone. 577 */ 578 static int shmem_add_to_page_cache(struct page *page, 579 struct address_space *mapping, 580 pgoff_t index, void *expected, gfp_t gfp) 581 { 582 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 583 unsigned long i = 0; 584 unsigned long nr = 1UL << compound_order(page); 585 586 VM_BUG_ON_PAGE(PageTail(page), page); 587 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 588 VM_BUG_ON_PAGE(!PageLocked(page), page); 589 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 590 VM_BUG_ON(expected && PageTransHuge(page)); 591 592 page_ref_add(page, nr); 593 page->mapping = mapping; 594 page->index = index; 595 596 do { 597 void *entry; 598 xas_lock_irq(&xas); 599 entry = xas_find_conflict(&xas); 600 if (entry != expected) 601 xas_set_err(&xas, -EEXIST); 602 xas_create_range(&xas); 603 if (xas_error(&xas)) 604 goto unlock; 605 next: 606 xas_store(&xas, page + i); 607 if (++i < nr) { 608 xas_next(&xas); 609 goto next; 610 } 611 if (PageTransHuge(page)) { 612 count_vm_event(THP_FILE_ALLOC); 613 __inc_node_page_state(page, NR_SHMEM_THPS); 614 } 615 mapping->nrpages += nr; 616 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 617 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 618 unlock: 619 xas_unlock_irq(&xas); 620 } while (xas_nomem(&xas, gfp)); 621 622 if (xas_error(&xas)) { 623 page->mapping = NULL; 624 page_ref_sub(page, nr); 625 return xas_error(&xas); 626 } 627 628 return 0; 629 } 630 631 /* 632 * Like delete_from_page_cache, but substitutes swap for page. 633 */ 634 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 635 { 636 struct address_space *mapping = page->mapping; 637 int error; 638 639 VM_BUG_ON_PAGE(PageCompound(page), page); 640 641 xa_lock_irq(&mapping->i_pages); 642 error = shmem_replace_entry(mapping, page->index, page, radswap); 643 page->mapping = NULL; 644 mapping->nrpages--; 645 __dec_node_page_state(page, NR_FILE_PAGES); 646 __dec_node_page_state(page, NR_SHMEM); 647 xa_unlock_irq(&mapping->i_pages); 648 put_page(page); 649 BUG_ON(error); 650 } 651 652 /* 653 * Remove swap entry from page cache, free the swap and its page cache. 654 */ 655 static int shmem_free_swap(struct address_space *mapping, 656 pgoff_t index, void *radswap) 657 { 658 void *old; 659 660 xa_lock_irq(&mapping->i_pages); 661 old = __xa_cmpxchg(&mapping->i_pages, index, radswap, NULL, 0); 662 xa_unlock_irq(&mapping->i_pages); 663 if (old != radswap) 664 return -ENOENT; 665 free_swap_and_cache(radix_to_swp_entry(radswap)); 666 return 0; 667 } 668 669 /* 670 * Determine (in bytes) how many of the shmem object's pages mapped by the 671 * given offsets are swapped out. 672 * 673 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 674 * as long as the inode doesn't go away and racy results are not a problem. 675 */ 676 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 677 pgoff_t start, pgoff_t end) 678 { 679 XA_STATE(xas, &mapping->i_pages, start); 680 struct page *page; 681 unsigned long swapped = 0; 682 683 rcu_read_lock(); 684 xas_for_each(&xas, page, end - 1) { 685 if (xas_retry(&xas, page)) 686 continue; 687 if (xa_is_value(page)) 688 swapped++; 689 690 if (need_resched()) { 691 xas_pause(&xas); 692 cond_resched_rcu(); 693 } 694 } 695 696 rcu_read_unlock(); 697 698 return swapped << PAGE_SHIFT; 699 } 700 701 /* 702 * Determine (in bytes) how many of the shmem object's pages mapped by the 703 * given vma is swapped out. 704 * 705 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 706 * as long as the inode doesn't go away and racy results are not a problem. 707 */ 708 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 709 { 710 struct inode *inode = file_inode(vma->vm_file); 711 struct shmem_inode_info *info = SHMEM_I(inode); 712 struct address_space *mapping = inode->i_mapping; 713 unsigned long swapped; 714 715 /* Be careful as we don't hold info->lock */ 716 swapped = READ_ONCE(info->swapped); 717 718 /* 719 * The easier cases are when the shmem object has nothing in swap, or 720 * the vma maps it whole. Then we can simply use the stats that we 721 * already track. 722 */ 723 if (!swapped) 724 return 0; 725 726 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 727 return swapped << PAGE_SHIFT; 728 729 /* Here comes the more involved part */ 730 return shmem_partial_swap_usage(mapping, 731 linear_page_index(vma, vma->vm_start), 732 linear_page_index(vma, vma->vm_end)); 733 } 734 735 /* 736 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 737 */ 738 void shmem_unlock_mapping(struct address_space *mapping) 739 { 740 struct pagevec pvec; 741 pgoff_t indices[PAGEVEC_SIZE]; 742 pgoff_t index = 0; 743 744 pagevec_init(&pvec); 745 /* 746 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 747 */ 748 while (!mapping_unevictable(mapping)) { 749 /* 750 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 751 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 752 */ 753 pvec.nr = find_get_entries(mapping, index, 754 PAGEVEC_SIZE, pvec.pages, indices); 755 if (!pvec.nr) 756 break; 757 index = indices[pvec.nr - 1] + 1; 758 pagevec_remove_exceptionals(&pvec); 759 check_move_unevictable_pages(pvec.pages, pvec.nr); 760 pagevec_release(&pvec); 761 cond_resched(); 762 } 763 } 764 765 /* 766 * Remove range of pages and swap entries from page cache, and free them. 767 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 768 */ 769 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 770 bool unfalloc) 771 { 772 struct address_space *mapping = inode->i_mapping; 773 struct shmem_inode_info *info = SHMEM_I(inode); 774 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 775 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 776 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 777 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 778 struct pagevec pvec; 779 pgoff_t indices[PAGEVEC_SIZE]; 780 long nr_swaps_freed = 0; 781 pgoff_t index; 782 int i; 783 784 if (lend == -1) 785 end = -1; /* unsigned, so actually very big */ 786 787 pagevec_init(&pvec); 788 index = start; 789 while (index < end) { 790 pvec.nr = find_get_entries(mapping, index, 791 min(end - index, (pgoff_t)PAGEVEC_SIZE), 792 pvec.pages, indices); 793 if (!pvec.nr) 794 break; 795 for (i = 0; i < pagevec_count(&pvec); i++) { 796 struct page *page = pvec.pages[i]; 797 798 index = indices[i]; 799 if (index >= end) 800 break; 801 802 if (xa_is_value(page)) { 803 if (unfalloc) 804 continue; 805 nr_swaps_freed += !shmem_free_swap(mapping, 806 index, page); 807 continue; 808 } 809 810 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 811 812 if (!trylock_page(page)) 813 continue; 814 815 if (PageTransTail(page)) { 816 /* Middle of THP: zero out the page */ 817 clear_highpage(page); 818 unlock_page(page); 819 continue; 820 } else if (PageTransHuge(page)) { 821 if (index == round_down(end, HPAGE_PMD_NR)) { 822 /* 823 * Range ends in the middle of THP: 824 * zero out the page 825 */ 826 clear_highpage(page); 827 unlock_page(page); 828 continue; 829 } 830 index += HPAGE_PMD_NR - 1; 831 i += HPAGE_PMD_NR - 1; 832 } 833 834 if (!unfalloc || !PageUptodate(page)) { 835 VM_BUG_ON_PAGE(PageTail(page), page); 836 if (page_mapping(page) == mapping) { 837 VM_BUG_ON_PAGE(PageWriteback(page), page); 838 truncate_inode_page(mapping, page); 839 } 840 } 841 unlock_page(page); 842 } 843 pagevec_remove_exceptionals(&pvec); 844 pagevec_release(&pvec); 845 cond_resched(); 846 index++; 847 } 848 849 if (partial_start) { 850 struct page *page = NULL; 851 shmem_getpage(inode, start - 1, &page, SGP_READ); 852 if (page) { 853 unsigned int top = PAGE_SIZE; 854 if (start > end) { 855 top = partial_end; 856 partial_end = 0; 857 } 858 zero_user_segment(page, partial_start, top); 859 set_page_dirty(page); 860 unlock_page(page); 861 put_page(page); 862 } 863 } 864 if (partial_end) { 865 struct page *page = NULL; 866 shmem_getpage(inode, end, &page, SGP_READ); 867 if (page) { 868 zero_user_segment(page, 0, partial_end); 869 set_page_dirty(page); 870 unlock_page(page); 871 put_page(page); 872 } 873 } 874 if (start >= end) 875 return; 876 877 index = start; 878 while (index < end) { 879 cond_resched(); 880 881 pvec.nr = find_get_entries(mapping, index, 882 min(end - index, (pgoff_t)PAGEVEC_SIZE), 883 pvec.pages, indices); 884 if (!pvec.nr) { 885 /* If all gone or hole-punch or unfalloc, we're done */ 886 if (index == start || end != -1) 887 break; 888 /* But if truncating, restart to make sure all gone */ 889 index = start; 890 continue; 891 } 892 for (i = 0; i < pagevec_count(&pvec); i++) { 893 struct page *page = pvec.pages[i]; 894 895 index = indices[i]; 896 if (index >= end) 897 break; 898 899 if (xa_is_value(page)) { 900 if (unfalloc) 901 continue; 902 if (shmem_free_swap(mapping, index, page)) { 903 /* Swap was replaced by page: retry */ 904 index--; 905 break; 906 } 907 nr_swaps_freed++; 908 continue; 909 } 910 911 lock_page(page); 912 913 if (PageTransTail(page)) { 914 /* Middle of THP: zero out the page */ 915 clear_highpage(page); 916 unlock_page(page); 917 /* 918 * Partial thp truncate due 'start' in middle 919 * of THP: don't need to look on these pages 920 * again on !pvec.nr restart. 921 */ 922 if (index != round_down(end, HPAGE_PMD_NR)) 923 start++; 924 continue; 925 } else if (PageTransHuge(page)) { 926 if (index == round_down(end, HPAGE_PMD_NR)) { 927 /* 928 * Range ends in the middle of THP: 929 * zero out the page 930 */ 931 clear_highpage(page); 932 unlock_page(page); 933 continue; 934 } 935 index += HPAGE_PMD_NR - 1; 936 i += HPAGE_PMD_NR - 1; 937 } 938 939 if (!unfalloc || !PageUptodate(page)) { 940 VM_BUG_ON_PAGE(PageTail(page), page); 941 if (page_mapping(page) == mapping) { 942 VM_BUG_ON_PAGE(PageWriteback(page), page); 943 truncate_inode_page(mapping, page); 944 } else { 945 /* Page was replaced by swap: retry */ 946 unlock_page(page); 947 index--; 948 break; 949 } 950 } 951 unlock_page(page); 952 } 953 pagevec_remove_exceptionals(&pvec); 954 pagevec_release(&pvec); 955 index++; 956 } 957 958 spin_lock_irq(&info->lock); 959 info->swapped -= nr_swaps_freed; 960 shmem_recalc_inode(inode); 961 spin_unlock_irq(&info->lock); 962 } 963 964 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 965 { 966 shmem_undo_range(inode, lstart, lend, false); 967 inode->i_ctime = inode->i_mtime = current_time(inode); 968 } 969 EXPORT_SYMBOL_GPL(shmem_truncate_range); 970 971 static int shmem_getattr(const struct path *path, struct kstat *stat, 972 u32 request_mask, unsigned int query_flags) 973 { 974 struct inode *inode = path->dentry->d_inode; 975 struct shmem_inode_info *info = SHMEM_I(inode); 976 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 977 978 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 979 spin_lock_irq(&info->lock); 980 shmem_recalc_inode(inode); 981 spin_unlock_irq(&info->lock); 982 } 983 generic_fillattr(inode, stat); 984 985 if (is_huge_enabled(sb_info)) 986 stat->blksize = HPAGE_PMD_SIZE; 987 988 return 0; 989 } 990 991 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 992 { 993 struct inode *inode = d_inode(dentry); 994 struct shmem_inode_info *info = SHMEM_I(inode); 995 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 996 int error; 997 998 error = setattr_prepare(dentry, attr); 999 if (error) 1000 return error; 1001 1002 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1003 loff_t oldsize = inode->i_size; 1004 loff_t newsize = attr->ia_size; 1005 1006 /* protected by i_mutex */ 1007 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1008 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1009 return -EPERM; 1010 1011 if (newsize != oldsize) { 1012 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1013 oldsize, newsize); 1014 if (error) 1015 return error; 1016 i_size_write(inode, newsize); 1017 inode->i_ctime = inode->i_mtime = current_time(inode); 1018 } 1019 if (newsize <= oldsize) { 1020 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1021 if (oldsize > holebegin) 1022 unmap_mapping_range(inode->i_mapping, 1023 holebegin, 0, 1); 1024 if (info->alloced) 1025 shmem_truncate_range(inode, 1026 newsize, (loff_t)-1); 1027 /* unmap again to remove racily COWed private pages */ 1028 if (oldsize > holebegin) 1029 unmap_mapping_range(inode->i_mapping, 1030 holebegin, 0, 1); 1031 1032 /* 1033 * Part of the huge page can be beyond i_size: subject 1034 * to shrink under memory pressure. 1035 */ 1036 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1037 spin_lock(&sbinfo->shrinklist_lock); 1038 /* 1039 * _careful to defend against unlocked access to 1040 * ->shrink_list in shmem_unused_huge_shrink() 1041 */ 1042 if (list_empty_careful(&info->shrinklist)) { 1043 list_add_tail(&info->shrinklist, 1044 &sbinfo->shrinklist); 1045 sbinfo->shrinklist_len++; 1046 } 1047 spin_unlock(&sbinfo->shrinklist_lock); 1048 } 1049 } 1050 } 1051 1052 setattr_copy(inode, attr); 1053 if (attr->ia_valid & ATTR_MODE) 1054 error = posix_acl_chmod(inode, inode->i_mode); 1055 return error; 1056 } 1057 1058 static void shmem_evict_inode(struct inode *inode) 1059 { 1060 struct shmem_inode_info *info = SHMEM_I(inode); 1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1062 1063 if (inode->i_mapping->a_ops == &shmem_aops) { 1064 shmem_unacct_size(info->flags, inode->i_size); 1065 inode->i_size = 0; 1066 shmem_truncate_range(inode, 0, (loff_t)-1); 1067 if (!list_empty(&info->shrinklist)) { 1068 spin_lock(&sbinfo->shrinklist_lock); 1069 if (!list_empty(&info->shrinklist)) { 1070 list_del_init(&info->shrinklist); 1071 sbinfo->shrinklist_len--; 1072 } 1073 spin_unlock(&sbinfo->shrinklist_lock); 1074 } 1075 if (!list_empty(&info->swaplist)) { 1076 mutex_lock(&shmem_swaplist_mutex); 1077 list_del_init(&info->swaplist); 1078 mutex_unlock(&shmem_swaplist_mutex); 1079 } 1080 } 1081 1082 simple_xattrs_free(&info->xattrs); 1083 WARN_ON(inode->i_blocks); 1084 shmem_free_inode(inode->i_sb); 1085 clear_inode(inode); 1086 } 1087 1088 static unsigned long find_swap_entry(struct xarray *xa, void *item) 1089 { 1090 XA_STATE(xas, xa, 0); 1091 unsigned int checked = 0; 1092 void *entry; 1093 1094 rcu_read_lock(); 1095 xas_for_each(&xas, entry, ULONG_MAX) { 1096 if (xas_retry(&xas, entry)) 1097 continue; 1098 if (entry == item) 1099 break; 1100 checked++; 1101 if ((checked % XA_CHECK_SCHED) != 0) 1102 continue; 1103 xas_pause(&xas); 1104 cond_resched_rcu(); 1105 } 1106 rcu_read_unlock(); 1107 1108 return entry ? xas.xa_index : -1; 1109 } 1110 1111 /* 1112 * If swap found in inode, free it and move page from swapcache to filecache. 1113 */ 1114 static int shmem_unuse_inode(struct shmem_inode_info *info, 1115 swp_entry_t swap, struct page **pagep) 1116 { 1117 struct address_space *mapping = info->vfs_inode.i_mapping; 1118 void *radswap; 1119 pgoff_t index; 1120 gfp_t gfp; 1121 int error = 0; 1122 1123 radswap = swp_to_radix_entry(swap); 1124 index = find_swap_entry(&mapping->i_pages, radswap); 1125 if (index == -1) 1126 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1127 1128 /* 1129 * Move _head_ to start search for next from here. 1130 * But be careful: shmem_evict_inode checks list_empty without taking 1131 * mutex, and there's an instant in list_move_tail when info->swaplist 1132 * would appear empty, if it were the only one on shmem_swaplist. 1133 */ 1134 if (shmem_swaplist.next != &info->swaplist) 1135 list_move_tail(&shmem_swaplist, &info->swaplist); 1136 1137 gfp = mapping_gfp_mask(mapping); 1138 if (shmem_should_replace_page(*pagep, gfp)) { 1139 mutex_unlock(&shmem_swaplist_mutex); 1140 error = shmem_replace_page(pagep, gfp, info, index); 1141 mutex_lock(&shmem_swaplist_mutex); 1142 /* 1143 * We needed to drop mutex to make that restrictive page 1144 * allocation, but the inode might have been freed while we 1145 * dropped it: although a racing shmem_evict_inode() cannot 1146 * complete without emptying the page cache, our page lock 1147 * on this swapcache page is not enough to prevent that - 1148 * free_swap_and_cache() of our swap entry will only 1149 * trylock_page(), removing swap from page cache whatever. 1150 * 1151 * We must not proceed to shmem_add_to_page_cache() if the 1152 * inode has been freed, but of course we cannot rely on 1153 * inode or mapping or info to check that. However, we can 1154 * safely check if our swap entry is still in use (and here 1155 * it can't have got reused for another page): if it's still 1156 * in use, then the inode cannot have been freed yet, and we 1157 * can safely proceed (if it's no longer in use, that tells 1158 * nothing about the inode, but we don't need to unuse swap). 1159 */ 1160 if (!page_swapcount(*pagep)) 1161 error = -ENOENT; 1162 } 1163 1164 /* 1165 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1166 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1167 * beneath us (pagelock doesn't help until the page is in pagecache). 1168 */ 1169 if (!error) 1170 error = shmem_add_to_page_cache(*pagep, mapping, index, 1171 radswap, gfp); 1172 if (error != -ENOMEM) { 1173 /* 1174 * Truncation and eviction use free_swap_and_cache(), which 1175 * only does trylock page: if we raced, best clean up here. 1176 */ 1177 delete_from_swap_cache(*pagep); 1178 set_page_dirty(*pagep); 1179 if (!error) { 1180 spin_lock_irq(&info->lock); 1181 info->swapped--; 1182 spin_unlock_irq(&info->lock); 1183 swap_free(swap); 1184 } 1185 } 1186 return error; 1187 } 1188 1189 /* 1190 * Search through swapped inodes to find and replace swap by page. 1191 */ 1192 int shmem_unuse(swp_entry_t swap, struct page *page) 1193 { 1194 struct list_head *this, *next; 1195 struct shmem_inode_info *info; 1196 struct mem_cgroup *memcg; 1197 int error = 0; 1198 1199 /* 1200 * There's a faint possibility that swap page was replaced before 1201 * caller locked it: caller will come back later with the right page. 1202 */ 1203 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1204 goto out; 1205 1206 /* 1207 * Charge page using GFP_KERNEL while we can wait, before taking 1208 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1209 * Charged back to the user (not to caller) when swap account is used. 1210 */ 1211 error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL, 1212 &memcg, false); 1213 if (error) 1214 goto out; 1215 /* No memory allocation: swap entry occupies the slot for the page */ 1216 error = -EAGAIN; 1217 1218 mutex_lock(&shmem_swaplist_mutex); 1219 list_for_each_safe(this, next, &shmem_swaplist) { 1220 info = list_entry(this, struct shmem_inode_info, swaplist); 1221 if (info->swapped) 1222 error = shmem_unuse_inode(info, swap, &page); 1223 else 1224 list_del_init(&info->swaplist); 1225 cond_resched(); 1226 if (error != -EAGAIN) 1227 break; 1228 /* found nothing in this: move on to search the next */ 1229 } 1230 mutex_unlock(&shmem_swaplist_mutex); 1231 1232 if (error) { 1233 if (error != -ENOMEM) 1234 error = 0; 1235 mem_cgroup_cancel_charge(page, memcg, false); 1236 } else 1237 mem_cgroup_commit_charge(page, memcg, true, false); 1238 out: 1239 unlock_page(page); 1240 put_page(page); 1241 return error; 1242 } 1243 1244 /* 1245 * Move the page from the page cache to the swap cache. 1246 */ 1247 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1248 { 1249 struct shmem_inode_info *info; 1250 struct address_space *mapping; 1251 struct inode *inode; 1252 swp_entry_t swap; 1253 pgoff_t index; 1254 1255 VM_BUG_ON_PAGE(PageCompound(page), page); 1256 BUG_ON(!PageLocked(page)); 1257 mapping = page->mapping; 1258 index = page->index; 1259 inode = mapping->host; 1260 info = SHMEM_I(inode); 1261 if (info->flags & VM_LOCKED) 1262 goto redirty; 1263 if (!total_swap_pages) 1264 goto redirty; 1265 1266 /* 1267 * Our capabilities prevent regular writeback or sync from ever calling 1268 * shmem_writepage; but a stacking filesystem might use ->writepage of 1269 * its underlying filesystem, in which case tmpfs should write out to 1270 * swap only in response to memory pressure, and not for the writeback 1271 * threads or sync. 1272 */ 1273 if (!wbc->for_reclaim) { 1274 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1275 goto redirty; 1276 } 1277 1278 /* 1279 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1280 * value into swapfile.c, the only way we can correctly account for a 1281 * fallocated page arriving here is now to initialize it and write it. 1282 * 1283 * That's okay for a page already fallocated earlier, but if we have 1284 * not yet completed the fallocation, then (a) we want to keep track 1285 * of this page in case we have to undo it, and (b) it may not be a 1286 * good idea to continue anyway, once we're pushing into swap. So 1287 * reactivate the page, and let shmem_fallocate() quit when too many. 1288 */ 1289 if (!PageUptodate(page)) { 1290 if (inode->i_private) { 1291 struct shmem_falloc *shmem_falloc; 1292 spin_lock(&inode->i_lock); 1293 shmem_falloc = inode->i_private; 1294 if (shmem_falloc && 1295 !shmem_falloc->waitq && 1296 index >= shmem_falloc->start && 1297 index < shmem_falloc->next) 1298 shmem_falloc->nr_unswapped++; 1299 else 1300 shmem_falloc = NULL; 1301 spin_unlock(&inode->i_lock); 1302 if (shmem_falloc) 1303 goto redirty; 1304 } 1305 clear_highpage(page); 1306 flush_dcache_page(page); 1307 SetPageUptodate(page); 1308 } 1309 1310 swap = get_swap_page(page); 1311 if (!swap.val) 1312 goto redirty; 1313 1314 /* 1315 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1316 * if it's not already there. Do it now before the page is 1317 * moved to swap cache, when its pagelock no longer protects 1318 * the inode from eviction. But don't unlock the mutex until 1319 * we've incremented swapped, because shmem_unuse_inode() will 1320 * prune a !swapped inode from the swaplist under this mutex. 1321 */ 1322 mutex_lock(&shmem_swaplist_mutex); 1323 if (list_empty(&info->swaplist)) 1324 list_add_tail(&info->swaplist, &shmem_swaplist); 1325 1326 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1327 spin_lock_irq(&info->lock); 1328 shmem_recalc_inode(inode); 1329 info->swapped++; 1330 spin_unlock_irq(&info->lock); 1331 1332 swap_shmem_alloc(swap); 1333 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1334 1335 mutex_unlock(&shmem_swaplist_mutex); 1336 BUG_ON(page_mapped(page)); 1337 swap_writepage(page, wbc); 1338 return 0; 1339 } 1340 1341 mutex_unlock(&shmem_swaplist_mutex); 1342 put_swap_page(page, swap); 1343 redirty: 1344 set_page_dirty(page); 1345 if (wbc->for_reclaim) 1346 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1347 unlock_page(page); 1348 return 0; 1349 } 1350 1351 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1352 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1353 { 1354 char buffer[64]; 1355 1356 if (!mpol || mpol->mode == MPOL_DEFAULT) 1357 return; /* show nothing */ 1358 1359 mpol_to_str(buffer, sizeof(buffer), mpol); 1360 1361 seq_printf(seq, ",mpol=%s", buffer); 1362 } 1363 1364 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1365 { 1366 struct mempolicy *mpol = NULL; 1367 if (sbinfo->mpol) { 1368 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1369 mpol = sbinfo->mpol; 1370 mpol_get(mpol); 1371 spin_unlock(&sbinfo->stat_lock); 1372 } 1373 return mpol; 1374 } 1375 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1376 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1377 { 1378 } 1379 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1380 { 1381 return NULL; 1382 } 1383 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1384 #ifndef CONFIG_NUMA 1385 #define vm_policy vm_private_data 1386 #endif 1387 1388 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1389 struct shmem_inode_info *info, pgoff_t index) 1390 { 1391 /* Create a pseudo vma that just contains the policy */ 1392 vma_init(vma, NULL); 1393 /* Bias interleave by inode number to distribute better across nodes */ 1394 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1395 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1396 } 1397 1398 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1399 { 1400 /* Drop reference taken by mpol_shared_policy_lookup() */ 1401 mpol_cond_put(vma->vm_policy); 1402 } 1403 1404 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1405 struct shmem_inode_info *info, pgoff_t index) 1406 { 1407 struct vm_area_struct pvma; 1408 struct page *page; 1409 struct vm_fault vmf; 1410 1411 shmem_pseudo_vma_init(&pvma, info, index); 1412 vmf.vma = &pvma; 1413 vmf.address = 0; 1414 page = swap_cluster_readahead(swap, gfp, &vmf); 1415 shmem_pseudo_vma_destroy(&pvma); 1416 1417 return page; 1418 } 1419 1420 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1421 struct shmem_inode_info *info, pgoff_t index) 1422 { 1423 struct vm_area_struct pvma; 1424 struct address_space *mapping = info->vfs_inode.i_mapping; 1425 pgoff_t hindex; 1426 struct page *page; 1427 1428 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1429 return NULL; 1430 1431 hindex = round_down(index, HPAGE_PMD_NR); 1432 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1433 XA_PRESENT)) 1434 return NULL; 1435 1436 shmem_pseudo_vma_init(&pvma, info, hindex); 1437 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1438 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id()); 1439 shmem_pseudo_vma_destroy(&pvma); 1440 if (page) 1441 prep_transhuge_page(page); 1442 return page; 1443 } 1444 1445 static struct page *shmem_alloc_page(gfp_t gfp, 1446 struct shmem_inode_info *info, pgoff_t index) 1447 { 1448 struct vm_area_struct pvma; 1449 struct page *page; 1450 1451 shmem_pseudo_vma_init(&pvma, info, index); 1452 page = alloc_page_vma(gfp, &pvma, 0); 1453 shmem_pseudo_vma_destroy(&pvma); 1454 1455 return page; 1456 } 1457 1458 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1459 struct inode *inode, 1460 pgoff_t index, bool huge) 1461 { 1462 struct shmem_inode_info *info = SHMEM_I(inode); 1463 struct page *page; 1464 int nr; 1465 int err = -ENOSPC; 1466 1467 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1468 huge = false; 1469 nr = huge ? HPAGE_PMD_NR : 1; 1470 1471 if (!shmem_inode_acct_block(inode, nr)) 1472 goto failed; 1473 1474 if (huge) 1475 page = shmem_alloc_hugepage(gfp, info, index); 1476 else 1477 page = shmem_alloc_page(gfp, info, index); 1478 if (page) { 1479 __SetPageLocked(page); 1480 __SetPageSwapBacked(page); 1481 return page; 1482 } 1483 1484 err = -ENOMEM; 1485 shmem_inode_unacct_blocks(inode, nr); 1486 failed: 1487 return ERR_PTR(err); 1488 } 1489 1490 /* 1491 * When a page is moved from swapcache to shmem filecache (either by the 1492 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1493 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1494 * ignorance of the mapping it belongs to. If that mapping has special 1495 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1496 * we may need to copy to a suitable page before moving to filecache. 1497 * 1498 * In a future release, this may well be extended to respect cpuset and 1499 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1500 * but for now it is a simple matter of zone. 1501 */ 1502 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1503 { 1504 return page_zonenum(page) > gfp_zone(gfp); 1505 } 1506 1507 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1508 struct shmem_inode_info *info, pgoff_t index) 1509 { 1510 struct page *oldpage, *newpage; 1511 struct address_space *swap_mapping; 1512 pgoff_t swap_index; 1513 int error; 1514 1515 oldpage = *pagep; 1516 swap_index = page_private(oldpage); 1517 swap_mapping = page_mapping(oldpage); 1518 1519 /* 1520 * We have arrived here because our zones are constrained, so don't 1521 * limit chance of success by further cpuset and node constraints. 1522 */ 1523 gfp &= ~GFP_CONSTRAINT_MASK; 1524 newpage = shmem_alloc_page(gfp, info, index); 1525 if (!newpage) 1526 return -ENOMEM; 1527 1528 get_page(newpage); 1529 copy_highpage(newpage, oldpage); 1530 flush_dcache_page(newpage); 1531 1532 __SetPageLocked(newpage); 1533 __SetPageSwapBacked(newpage); 1534 SetPageUptodate(newpage); 1535 set_page_private(newpage, swap_index); 1536 SetPageSwapCache(newpage); 1537 1538 /* 1539 * Our caller will very soon move newpage out of swapcache, but it's 1540 * a nice clean interface for us to replace oldpage by newpage there. 1541 */ 1542 xa_lock_irq(&swap_mapping->i_pages); 1543 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1544 if (!error) { 1545 __inc_node_page_state(newpage, NR_FILE_PAGES); 1546 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1547 } 1548 xa_unlock_irq(&swap_mapping->i_pages); 1549 1550 if (unlikely(error)) { 1551 /* 1552 * Is this possible? I think not, now that our callers check 1553 * both PageSwapCache and page_private after getting page lock; 1554 * but be defensive. Reverse old to newpage for clear and free. 1555 */ 1556 oldpage = newpage; 1557 } else { 1558 mem_cgroup_migrate(oldpage, newpage); 1559 lru_cache_add_anon(newpage); 1560 *pagep = newpage; 1561 } 1562 1563 ClearPageSwapCache(oldpage); 1564 set_page_private(oldpage, 0); 1565 1566 unlock_page(oldpage); 1567 put_page(oldpage); 1568 put_page(oldpage); 1569 return error; 1570 } 1571 1572 /* 1573 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1574 * 1575 * If we allocate a new one we do not mark it dirty. That's up to the 1576 * vm. If we swap it in we mark it dirty since we also free the swap 1577 * entry since a page cannot live in both the swap and page cache. 1578 * 1579 * fault_mm and fault_type are only supplied by shmem_fault: 1580 * otherwise they are NULL. 1581 */ 1582 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1583 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1584 struct vm_area_struct *vma, struct vm_fault *vmf, 1585 vm_fault_t *fault_type) 1586 { 1587 struct address_space *mapping = inode->i_mapping; 1588 struct shmem_inode_info *info = SHMEM_I(inode); 1589 struct shmem_sb_info *sbinfo; 1590 struct mm_struct *charge_mm; 1591 struct mem_cgroup *memcg; 1592 struct page *page; 1593 swp_entry_t swap; 1594 enum sgp_type sgp_huge = sgp; 1595 pgoff_t hindex = index; 1596 int error; 1597 int once = 0; 1598 int alloced = 0; 1599 1600 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1601 return -EFBIG; 1602 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1603 sgp = SGP_CACHE; 1604 repeat: 1605 swap.val = 0; 1606 page = find_lock_entry(mapping, index); 1607 if (xa_is_value(page)) { 1608 swap = radix_to_swp_entry(page); 1609 page = NULL; 1610 } 1611 1612 if (sgp <= SGP_CACHE && 1613 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1614 error = -EINVAL; 1615 goto unlock; 1616 } 1617 1618 if (page && sgp == SGP_WRITE) 1619 mark_page_accessed(page); 1620 1621 /* fallocated page? */ 1622 if (page && !PageUptodate(page)) { 1623 if (sgp != SGP_READ) 1624 goto clear; 1625 unlock_page(page); 1626 put_page(page); 1627 page = NULL; 1628 } 1629 if (page || (sgp == SGP_READ && !swap.val)) { 1630 *pagep = page; 1631 return 0; 1632 } 1633 1634 /* 1635 * Fast cache lookup did not find it: 1636 * bring it back from swap or allocate. 1637 */ 1638 sbinfo = SHMEM_SB(inode->i_sb); 1639 charge_mm = vma ? vma->vm_mm : current->mm; 1640 1641 if (swap.val) { 1642 /* Look it up and read it in.. */ 1643 page = lookup_swap_cache(swap, NULL, 0); 1644 if (!page) { 1645 /* Or update major stats only when swapin succeeds?? */ 1646 if (fault_type) { 1647 *fault_type |= VM_FAULT_MAJOR; 1648 count_vm_event(PGMAJFAULT); 1649 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1650 } 1651 /* Here we actually start the io */ 1652 page = shmem_swapin(swap, gfp, info, index); 1653 if (!page) { 1654 error = -ENOMEM; 1655 goto failed; 1656 } 1657 } 1658 1659 /* We have to do this with page locked to prevent races */ 1660 lock_page(page); 1661 if (!PageSwapCache(page) || page_private(page) != swap.val || 1662 !shmem_confirm_swap(mapping, index, swap)) { 1663 error = -EEXIST; /* try again */ 1664 goto unlock; 1665 } 1666 if (!PageUptodate(page)) { 1667 error = -EIO; 1668 goto failed; 1669 } 1670 wait_on_page_writeback(page); 1671 1672 if (shmem_should_replace_page(page, gfp)) { 1673 error = shmem_replace_page(&page, gfp, info, index); 1674 if (error) 1675 goto failed; 1676 } 1677 1678 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1679 false); 1680 if (!error) { 1681 error = shmem_add_to_page_cache(page, mapping, index, 1682 swp_to_radix_entry(swap), gfp); 1683 /* 1684 * We already confirmed swap under page lock, and make 1685 * no memory allocation here, so usually no possibility 1686 * of error; but free_swap_and_cache() only trylocks a 1687 * page, so it is just possible that the entry has been 1688 * truncated or holepunched since swap was confirmed. 1689 * shmem_undo_range() will have done some of the 1690 * unaccounting, now delete_from_swap_cache() will do 1691 * the rest. 1692 * Reset swap.val? No, leave it so "failed" goes back to 1693 * "repeat": reading a hole and writing should succeed. 1694 */ 1695 if (error) { 1696 mem_cgroup_cancel_charge(page, memcg, false); 1697 delete_from_swap_cache(page); 1698 } 1699 } 1700 if (error) 1701 goto failed; 1702 1703 mem_cgroup_commit_charge(page, memcg, true, false); 1704 1705 spin_lock_irq(&info->lock); 1706 info->swapped--; 1707 shmem_recalc_inode(inode); 1708 spin_unlock_irq(&info->lock); 1709 1710 if (sgp == SGP_WRITE) 1711 mark_page_accessed(page); 1712 1713 delete_from_swap_cache(page); 1714 set_page_dirty(page); 1715 swap_free(swap); 1716 1717 } else { 1718 if (vma && userfaultfd_missing(vma)) { 1719 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1720 return 0; 1721 } 1722 1723 /* shmem_symlink() */ 1724 if (mapping->a_ops != &shmem_aops) 1725 goto alloc_nohuge; 1726 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1727 goto alloc_nohuge; 1728 if (shmem_huge == SHMEM_HUGE_FORCE) 1729 goto alloc_huge; 1730 switch (sbinfo->huge) { 1731 loff_t i_size; 1732 pgoff_t off; 1733 case SHMEM_HUGE_NEVER: 1734 goto alloc_nohuge; 1735 case SHMEM_HUGE_WITHIN_SIZE: 1736 off = round_up(index, HPAGE_PMD_NR); 1737 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1738 if (i_size >= HPAGE_PMD_SIZE && 1739 i_size >> PAGE_SHIFT >= off) 1740 goto alloc_huge; 1741 /* fallthrough */ 1742 case SHMEM_HUGE_ADVISE: 1743 if (sgp_huge == SGP_HUGE) 1744 goto alloc_huge; 1745 /* TODO: implement fadvise() hints */ 1746 goto alloc_nohuge; 1747 } 1748 1749 alloc_huge: 1750 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1751 if (IS_ERR(page)) { 1752 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, 1753 index, false); 1754 } 1755 if (IS_ERR(page)) { 1756 int retry = 5; 1757 error = PTR_ERR(page); 1758 page = NULL; 1759 if (error != -ENOSPC) 1760 goto failed; 1761 /* 1762 * Try to reclaim some spece by splitting a huge page 1763 * beyond i_size on the filesystem. 1764 */ 1765 while (retry--) { 1766 int ret; 1767 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1768 if (ret == SHRINK_STOP) 1769 break; 1770 if (ret) 1771 goto alloc_nohuge; 1772 } 1773 goto failed; 1774 } 1775 1776 if (PageTransHuge(page)) 1777 hindex = round_down(index, HPAGE_PMD_NR); 1778 else 1779 hindex = index; 1780 1781 if (sgp == SGP_WRITE) 1782 __SetPageReferenced(page); 1783 1784 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1785 PageTransHuge(page)); 1786 if (error) 1787 goto unacct; 1788 error = shmem_add_to_page_cache(page, mapping, hindex, 1789 NULL, gfp & GFP_RECLAIM_MASK); 1790 if (error) { 1791 mem_cgroup_cancel_charge(page, memcg, 1792 PageTransHuge(page)); 1793 goto unacct; 1794 } 1795 mem_cgroup_commit_charge(page, memcg, false, 1796 PageTransHuge(page)); 1797 lru_cache_add_anon(page); 1798 1799 spin_lock_irq(&info->lock); 1800 info->alloced += 1 << compound_order(page); 1801 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1802 shmem_recalc_inode(inode); 1803 spin_unlock_irq(&info->lock); 1804 alloced = true; 1805 1806 if (PageTransHuge(page) && 1807 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1808 hindex + HPAGE_PMD_NR - 1) { 1809 /* 1810 * Part of the huge page is beyond i_size: subject 1811 * to shrink under memory pressure. 1812 */ 1813 spin_lock(&sbinfo->shrinklist_lock); 1814 /* 1815 * _careful to defend against unlocked access to 1816 * ->shrink_list in shmem_unused_huge_shrink() 1817 */ 1818 if (list_empty_careful(&info->shrinklist)) { 1819 list_add_tail(&info->shrinklist, 1820 &sbinfo->shrinklist); 1821 sbinfo->shrinklist_len++; 1822 } 1823 spin_unlock(&sbinfo->shrinklist_lock); 1824 } 1825 1826 /* 1827 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1828 */ 1829 if (sgp == SGP_FALLOC) 1830 sgp = SGP_WRITE; 1831 clear: 1832 /* 1833 * Let SGP_WRITE caller clear ends if write does not fill page; 1834 * but SGP_FALLOC on a page fallocated earlier must initialize 1835 * it now, lest undo on failure cancel our earlier guarantee. 1836 */ 1837 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1838 struct page *head = compound_head(page); 1839 int i; 1840 1841 for (i = 0; i < (1 << compound_order(head)); i++) { 1842 clear_highpage(head + i); 1843 flush_dcache_page(head + i); 1844 } 1845 SetPageUptodate(head); 1846 } 1847 } 1848 1849 /* Perhaps the file has been truncated since we checked */ 1850 if (sgp <= SGP_CACHE && 1851 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1852 if (alloced) { 1853 ClearPageDirty(page); 1854 delete_from_page_cache(page); 1855 spin_lock_irq(&info->lock); 1856 shmem_recalc_inode(inode); 1857 spin_unlock_irq(&info->lock); 1858 } 1859 error = -EINVAL; 1860 goto unlock; 1861 } 1862 *pagep = page + index - hindex; 1863 return 0; 1864 1865 /* 1866 * Error recovery. 1867 */ 1868 unacct: 1869 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1870 1871 if (PageTransHuge(page)) { 1872 unlock_page(page); 1873 put_page(page); 1874 goto alloc_nohuge; 1875 } 1876 failed: 1877 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1878 error = -EEXIST; 1879 unlock: 1880 if (page) { 1881 unlock_page(page); 1882 put_page(page); 1883 } 1884 if (error == -ENOSPC && !once++) { 1885 spin_lock_irq(&info->lock); 1886 shmem_recalc_inode(inode); 1887 spin_unlock_irq(&info->lock); 1888 goto repeat; 1889 } 1890 if (error == -EEXIST) 1891 goto repeat; 1892 return error; 1893 } 1894 1895 /* 1896 * This is like autoremove_wake_function, but it removes the wait queue 1897 * entry unconditionally - even if something else had already woken the 1898 * target. 1899 */ 1900 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1901 { 1902 int ret = default_wake_function(wait, mode, sync, key); 1903 list_del_init(&wait->entry); 1904 return ret; 1905 } 1906 1907 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1908 { 1909 struct vm_area_struct *vma = vmf->vma; 1910 struct inode *inode = file_inode(vma->vm_file); 1911 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1912 enum sgp_type sgp; 1913 int err; 1914 vm_fault_t ret = VM_FAULT_LOCKED; 1915 1916 /* 1917 * Trinity finds that probing a hole which tmpfs is punching can 1918 * prevent the hole-punch from ever completing: which in turn 1919 * locks writers out with its hold on i_mutex. So refrain from 1920 * faulting pages into the hole while it's being punched. Although 1921 * shmem_undo_range() does remove the additions, it may be unable to 1922 * keep up, as each new page needs its own unmap_mapping_range() call, 1923 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1924 * 1925 * It does not matter if we sometimes reach this check just before the 1926 * hole-punch begins, so that one fault then races with the punch: 1927 * we just need to make racing faults a rare case. 1928 * 1929 * The implementation below would be much simpler if we just used a 1930 * standard mutex or completion: but we cannot take i_mutex in fault, 1931 * and bloating every shmem inode for this unlikely case would be sad. 1932 */ 1933 if (unlikely(inode->i_private)) { 1934 struct shmem_falloc *shmem_falloc; 1935 1936 spin_lock(&inode->i_lock); 1937 shmem_falloc = inode->i_private; 1938 if (shmem_falloc && 1939 shmem_falloc->waitq && 1940 vmf->pgoff >= shmem_falloc->start && 1941 vmf->pgoff < shmem_falloc->next) { 1942 wait_queue_head_t *shmem_falloc_waitq; 1943 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1944 1945 ret = VM_FAULT_NOPAGE; 1946 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1947 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1948 /* It's polite to up mmap_sem if we can */ 1949 up_read(&vma->vm_mm->mmap_sem); 1950 ret = VM_FAULT_RETRY; 1951 } 1952 1953 shmem_falloc_waitq = shmem_falloc->waitq; 1954 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1955 TASK_UNINTERRUPTIBLE); 1956 spin_unlock(&inode->i_lock); 1957 schedule(); 1958 1959 /* 1960 * shmem_falloc_waitq points into the shmem_fallocate() 1961 * stack of the hole-punching task: shmem_falloc_waitq 1962 * is usually invalid by the time we reach here, but 1963 * finish_wait() does not dereference it in that case; 1964 * though i_lock needed lest racing with wake_up_all(). 1965 */ 1966 spin_lock(&inode->i_lock); 1967 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1968 spin_unlock(&inode->i_lock); 1969 return ret; 1970 } 1971 spin_unlock(&inode->i_lock); 1972 } 1973 1974 sgp = SGP_CACHE; 1975 1976 if ((vma->vm_flags & VM_NOHUGEPAGE) || 1977 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 1978 sgp = SGP_NOHUGE; 1979 else if (vma->vm_flags & VM_HUGEPAGE) 1980 sgp = SGP_HUGE; 1981 1982 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1983 gfp, vma, vmf, &ret); 1984 if (err) 1985 return vmf_error(err); 1986 return ret; 1987 } 1988 1989 unsigned long shmem_get_unmapped_area(struct file *file, 1990 unsigned long uaddr, unsigned long len, 1991 unsigned long pgoff, unsigned long flags) 1992 { 1993 unsigned long (*get_area)(struct file *, 1994 unsigned long, unsigned long, unsigned long, unsigned long); 1995 unsigned long addr; 1996 unsigned long offset; 1997 unsigned long inflated_len; 1998 unsigned long inflated_addr; 1999 unsigned long inflated_offset; 2000 2001 if (len > TASK_SIZE) 2002 return -ENOMEM; 2003 2004 get_area = current->mm->get_unmapped_area; 2005 addr = get_area(file, uaddr, len, pgoff, flags); 2006 2007 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2008 return addr; 2009 if (IS_ERR_VALUE(addr)) 2010 return addr; 2011 if (addr & ~PAGE_MASK) 2012 return addr; 2013 if (addr > TASK_SIZE - len) 2014 return addr; 2015 2016 if (shmem_huge == SHMEM_HUGE_DENY) 2017 return addr; 2018 if (len < HPAGE_PMD_SIZE) 2019 return addr; 2020 if (flags & MAP_FIXED) 2021 return addr; 2022 /* 2023 * Our priority is to support MAP_SHARED mapped hugely; 2024 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2025 * But if caller specified an address hint, respect that as before. 2026 */ 2027 if (uaddr) 2028 return addr; 2029 2030 if (shmem_huge != SHMEM_HUGE_FORCE) { 2031 struct super_block *sb; 2032 2033 if (file) { 2034 VM_BUG_ON(file->f_op != &shmem_file_operations); 2035 sb = file_inode(file)->i_sb; 2036 } else { 2037 /* 2038 * Called directly from mm/mmap.c, or drivers/char/mem.c 2039 * for "/dev/zero", to create a shared anonymous object. 2040 */ 2041 if (IS_ERR(shm_mnt)) 2042 return addr; 2043 sb = shm_mnt->mnt_sb; 2044 } 2045 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2046 return addr; 2047 } 2048 2049 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2050 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2051 return addr; 2052 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2053 return addr; 2054 2055 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2056 if (inflated_len > TASK_SIZE) 2057 return addr; 2058 if (inflated_len < len) 2059 return addr; 2060 2061 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2062 if (IS_ERR_VALUE(inflated_addr)) 2063 return addr; 2064 if (inflated_addr & ~PAGE_MASK) 2065 return addr; 2066 2067 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2068 inflated_addr += offset - inflated_offset; 2069 if (inflated_offset > offset) 2070 inflated_addr += HPAGE_PMD_SIZE; 2071 2072 if (inflated_addr > TASK_SIZE - len) 2073 return addr; 2074 return inflated_addr; 2075 } 2076 2077 #ifdef CONFIG_NUMA 2078 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2079 { 2080 struct inode *inode = file_inode(vma->vm_file); 2081 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2082 } 2083 2084 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2085 unsigned long addr) 2086 { 2087 struct inode *inode = file_inode(vma->vm_file); 2088 pgoff_t index; 2089 2090 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2091 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2092 } 2093 #endif 2094 2095 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2096 { 2097 struct inode *inode = file_inode(file); 2098 struct shmem_inode_info *info = SHMEM_I(inode); 2099 int retval = -ENOMEM; 2100 2101 spin_lock_irq(&info->lock); 2102 if (lock && !(info->flags & VM_LOCKED)) { 2103 if (!user_shm_lock(inode->i_size, user)) 2104 goto out_nomem; 2105 info->flags |= VM_LOCKED; 2106 mapping_set_unevictable(file->f_mapping); 2107 } 2108 if (!lock && (info->flags & VM_LOCKED) && user) { 2109 user_shm_unlock(inode->i_size, user); 2110 info->flags &= ~VM_LOCKED; 2111 mapping_clear_unevictable(file->f_mapping); 2112 } 2113 retval = 0; 2114 2115 out_nomem: 2116 spin_unlock_irq(&info->lock); 2117 return retval; 2118 } 2119 2120 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2121 { 2122 file_accessed(file); 2123 vma->vm_ops = &shmem_vm_ops; 2124 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2125 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2126 (vma->vm_end & HPAGE_PMD_MASK)) { 2127 khugepaged_enter(vma, vma->vm_flags); 2128 } 2129 return 0; 2130 } 2131 2132 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2133 umode_t mode, dev_t dev, unsigned long flags) 2134 { 2135 struct inode *inode; 2136 struct shmem_inode_info *info; 2137 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2138 2139 if (shmem_reserve_inode(sb)) 2140 return NULL; 2141 2142 inode = new_inode(sb); 2143 if (inode) { 2144 inode->i_ino = get_next_ino(); 2145 inode_init_owner(inode, dir, mode); 2146 inode->i_blocks = 0; 2147 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2148 inode->i_generation = prandom_u32(); 2149 info = SHMEM_I(inode); 2150 memset(info, 0, (char *)inode - (char *)info); 2151 spin_lock_init(&info->lock); 2152 info->seals = F_SEAL_SEAL; 2153 info->flags = flags & VM_NORESERVE; 2154 INIT_LIST_HEAD(&info->shrinklist); 2155 INIT_LIST_HEAD(&info->swaplist); 2156 simple_xattrs_init(&info->xattrs); 2157 cache_no_acl(inode); 2158 2159 switch (mode & S_IFMT) { 2160 default: 2161 inode->i_op = &shmem_special_inode_operations; 2162 init_special_inode(inode, mode, dev); 2163 break; 2164 case S_IFREG: 2165 inode->i_mapping->a_ops = &shmem_aops; 2166 inode->i_op = &shmem_inode_operations; 2167 inode->i_fop = &shmem_file_operations; 2168 mpol_shared_policy_init(&info->policy, 2169 shmem_get_sbmpol(sbinfo)); 2170 break; 2171 case S_IFDIR: 2172 inc_nlink(inode); 2173 /* Some things misbehave if size == 0 on a directory */ 2174 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2175 inode->i_op = &shmem_dir_inode_operations; 2176 inode->i_fop = &simple_dir_operations; 2177 break; 2178 case S_IFLNK: 2179 /* 2180 * Must not load anything in the rbtree, 2181 * mpol_free_shared_policy will not be called. 2182 */ 2183 mpol_shared_policy_init(&info->policy, NULL); 2184 break; 2185 } 2186 2187 lockdep_annotate_inode_mutex_key(inode); 2188 } else 2189 shmem_free_inode(sb); 2190 return inode; 2191 } 2192 2193 bool shmem_mapping(struct address_space *mapping) 2194 { 2195 return mapping->a_ops == &shmem_aops; 2196 } 2197 2198 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2199 pmd_t *dst_pmd, 2200 struct vm_area_struct *dst_vma, 2201 unsigned long dst_addr, 2202 unsigned long src_addr, 2203 bool zeropage, 2204 struct page **pagep) 2205 { 2206 struct inode *inode = file_inode(dst_vma->vm_file); 2207 struct shmem_inode_info *info = SHMEM_I(inode); 2208 struct address_space *mapping = inode->i_mapping; 2209 gfp_t gfp = mapping_gfp_mask(mapping); 2210 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2211 struct mem_cgroup *memcg; 2212 spinlock_t *ptl; 2213 void *page_kaddr; 2214 struct page *page; 2215 pte_t _dst_pte, *dst_pte; 2216 int ret; 2217 2218 ret = -ENOMEM; 2219 if (!shmem_inode_acct_block(inode, 1)) 2220 goto out; 2221 2222 if (!*pagep) { 2223 page = shmem_alloc_page(gfp, info, pgoff); 2224 if (!page) 2225 goto out_unacct_blocks; 2226 2227 if (!zeropage) { /* mcopy_atomic */ 2228 page_kaddr = kmap_atomic(page); 2229 ret = copy_from_user(page_kaddr, 2230 (const void __user *)src_addr, 2231 PAGE_SIZE); 2232 kunmap_atomic(page_kaddr); 2233 2234 /* fallback to copy_from_user outside mmap_sem */ 2235 if (unlikely(ret)) { 2236 *pagep = page; 2237 shmem_inode_unacct_blocks(inode, 1); 2238 /* don't free the page */ 2239 return -EFAULT; 2240 } 2241 } else { /* mfill_zeropage_atomic */ 2242 clear_highpage(page); 2243 } 2244 } else { 2245 page = *pagep; 2246 *pagep = NULL; 2247 } 2248 2249 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2250 __SetPageLocked(page); 2251 __SetPageSwapBacked(page); 2252 __SetPageUptodate(page); 2253 2254 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2255 if (ret) 2256 goto out_release; 2257 2258 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2259 gfp & GFP_RECLAIM_MASK); 2260 if (ret) 2261 goto out_release_uncharge; 2262 2263 mem_cgroup_commit_charge(page, memcg, false, false); 2264 2265 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2266 if (dst_vma->vm_flags & VM_WRITE) 2267 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2268 2269 ret = -EEXIST; 2270 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2271 if (!pte_none(*dst_pte)) 2272 goto out_release_uncharge_unlock; 2273 2274 lru_cache_add_anon(page); 2275 2276 spin_lock(&info->lock); 2277 info->alloced++; 2278 inode->i_blocks += BLOCKS_PER_PAGE; 2279 shmem_recalc_inode(inode); 2280 spin_unlock(&info->lock); 2281 2282 inc_mm_counter(dst_mm, mm_counter_file(page)); 2283 page_add_file_rmap(page, false); 2284 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2285 2286 /* No need to invalidate - it was non-present before */ 2287 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2288 unlock_page(page); 2289 pte_unmap_unlock(dst_pte, ptl); 2290 ret = 0; 2291 out: 2292 return ret; 2293 out_release_uncharge_unlock: 2294 pte_unmap_unlock(dst_pte, ptl); 2295 out_release_uncharge: 2296 mem_cgroup_cancel_charge(page, memcg, false); 2297 out_release: 2298 unlock_page(page); 2299 put_page(page); 2300 out_unacct_blocks: 2301 shmem_inode_unacct_blocks(inode, 1); 2302 goto out; 2303 } 2304 2305 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2306 pmd_t *dst_pmd, 2307 struct vm_area_struct *dst_vma, 2308 unsigned long dst_addr, 2309 unsigned long src_addr, 2310 struct page **pagep) 2311 { 2312 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2313 dst_addr, src_addr, false, pagep); 2314 } 2315 2316 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2317 pmd_t *dst_pmd, 2318 struct vm_area_struct *dst_vma, 2319 unsigned long dst_addr) 2320 { 2321 struct page *page = NULL; 2322 2323 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2324 dst_addr, 0, true, &page); 2325 } 2326 2327 #ifdef CONFIG_TMPFS 2328 static const struct inode_operations shmem_symlink_inode_operations; 2329 static const struct inode_operations shmem_short_symlink_operations; 2330 2331 #ifdef CONFIG_TMPFS_XATTR 2332 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2333 #else 2334 #define shmem_initxattrs NULL 2335 #endif 2336 2337 static int 2338 shmem_write_begin(struct file *file, struct address_space *mapping, 2339 loff_t pos, unsigned len, unsigned flags, 2340 struct page **pagep, void **fsdata) 2341 { 2342 struct inode *inode = mapping->host; 2343 struct shmem_inode_info *info = SHMEM_I(inode); 2344 pgoff_t index = pos >> PAGE_SHIFT; 2345 2346 /* i_mutex is held by caller */ 2347 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2348 if (info->seals & F_SEAL_WRITE) 2349 return -EPERM; 2350 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2351 return -EPERM; 2352 } 2353 2354 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2355 } 2356 2357 static int 2358 shmem_write_end(struct file *file, struct address_space *mapping, 2359 loff_t pos, unsigned len, unsigned copied, 2360 struct page *page, void *fsdata) 2361 { 2362 struct inode *inode = mapping->host; 2363 2364 if (pos + copied > inode->i_size) 2365 i_size_write(inode, pos + copied); 2366 2367 if (!PageUptodate(page)) { 2368 struct page *head = compound_head(page); 2369 if (PageTransCompound(page)) { 2370 int i; 2371 2372 for (i = 0; i < HPAGE_PMD_NR; i++) { 2373 if (head + i == page) 2374 continue; 2375 clear_highpage(head + i); 2376 flush_dcache_page(head + i); 2377 } 2378 } 2379 if (copied < PAGE_SIZE) { 2380 unsigned from = pos & (PAGE_SIZE - 1); 2381 zero_user_segments(page, 0, from, 2382 from + copied, PAGE_SIZE); 2383 } 2384 SetPageUptodate(head); 2385 } 2386 set_page_dirty(page); 2387 unlock_page(page); 2388 put_page(page); 2389 2390 return copied; 2391 } 2392 2393 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2394 { 2395 struct file *file = iocb->ki_filp; 2396 struct inode *inode = file_inode(file); 2397 struct address_space *mapping = inode->i_mapping; 2398 pgoff_t index; 2399 unsigned long offset; 2400 enum sgp_type sgp = SGP_READ; 2401 int error = 0; 2402 ssize_t retval = 0; 2403 loff_t *ppos = &iocb->ki_pos; 2404 2405 /* 2406 * Might this read be for a stacking filesystem? Then when reading 2407 * holes of a sparse file, we actually need to allocate those pages, 2408 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2409 */ 2410 if (!iter_is_iovec(to)) 2411 sgp = SGP_CACHE; 2412 2413 index = *ppos >> PAGE_SHIFT; 2414 offset = *ppos & ~PAGE_MASK; 2415 2416 for (;;) { 2417 struct page *page = NULL; 2418 pgoff_t end_index; 2419 unsigned long nr, ret; 2420 loff_t i_size = i_size_read(inode); 2421 2422 end_index = i_size >> PAGE_SHIFT; 2423 if (index > end_index) 2424 break; 2425 if (index == end_index) { 2426 nr = i_size & ~PAGE_MASK; 2427 if (nr <= offset) 2428 break; 2429 } 2430 2431 error = shmem_getpage(inode, index, &page, sgp); 2432 if (error) { 2433 if (error == -EINVAL) 2434 error = 0; 2435 break; 2436 } 2437 if (page) { 2438 if (sgp == SGP_CACHE) 2439 set_page_dirty(page); 2440 unlock_page(page); 2441 } 2442 2443 /* 2444 * We must evaluate after, since reads (unlike writes) 2445 * are called without i_mutex protection against truncate 2446 */ 2447 nr = PAGE_SIZE; 2448 i_size = i_size_read(inode); 2449 end_index = i_size >> PAGE_SHIFT; 2450 if (index == end_index) { 2451 nr = i_size & ~PAGE_MASK; 2452 if (nr <= offset) { 2453 if (page) 2454 put_page(page); 2455 break; 2456 } 2457 } 2458 nr -= offset; 2459 2460 if (page) { 2461 /* 2462 * If users can be writing to this page using arbitrary 2463 * virtual addresses, take care about potential aliasing 2464 * before reading the page on the kernel side. 2465 */ 2466 if (mapping_writably_mapped(mapping)) 2467 flush_dcache_page(page); 2468 /* 2469 * Mark the page accessed if we read the beginning. 2470 */ 2471 if (!offset) 2472 mark_page_accessed(page); 2473 } else { 2474 page = ZERO_PAGE(0); 2475 get_page(page); 2476 } 2477 2478 /* 2479 * Ok, we have the page, and it's up-to-date, so 2480 * now we can copy it to user space... 2481 */ 2482 ret = copy_page_to_iter(page, offset, nr, to); 2483 retval += ret; 2484 offset += ret; 2485 index += offset >> PAGE_SHIFT; 2486 offset &= ~PAGE_MASK; 2487 2488 put_page(page); 2489 if (!iov_iter_count(to)) 2490 break; 2491 if (ret < nr) { 2492 error = -EFAULT; 2493 break; 2494 } 2495 cond_resched(); 2496 } 2497 2498 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2499 file_accessed(file); 2500 return retval ? retval : error; 2501 } 2502 2503 /* 2504 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2505 */ 2506 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2507 pgoff_t index, pgoff_t end, int whence) 2508 { 2509 struct page *page; 2510 struct pagevec pvec; 2511 pgoff_t indices[PAGEVEC_SIZE]; 2512 bool done = false; 2513 int i; 2514 2515 pagevec_init(&pvec); 2516 pvec.nr = 1; /* start small: we may be there already */ 2517 while (!done) { 2518 pvec.nr = find_get_entries(mapping, index, 2519 pvec.nr, pvec.pages, indices); 2520 if (!pvec.nr) { 2521 if (whence == SEEK_DATA) 2522 index = end; 2523 break; 2524 } 2525 for (i = 0; i < pvec.nr; i++, index++) { 2526 if (index < indices[i]) { 2527 if (whence == SEEK_HOLE) { 2528 done = true; 2529 break; 2530 } 2531 index = indices[i]; 2532 } 2533 page = pvec.pages[i]; 2534 if (page && !xa_is_value(page)) { 2535 if (!PageUptodate(page)) 2536 page = NULL; 2537 } 2538 if (index >= end || 2539 (page && whence == SEEK_DATA) || 2540 (!page && whence == SEEK_HOLE)) { 2541 done = true; 2542 break; 2543 } 2544 } 2545 pagevec_remove_exceptionals(&pvec); 2546 pagevec_release(&pvec); 2547 pvec.nr = PAGEVEC_SIZE; 2548 cond_resched(); 2549 } 2550 return index; 2551 } 2552 2553 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2554 { 2555 struct address_space *mapping = file->f_mapping; 2556 struct inode *inode = mapping->host; 2557 pgoff_t start, end; 2558 loff_t new_offset; 2559 2560 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2561 return generic_file_llseek_size(file, offset, whence, 2562 MAX_LFS_FILESIZE, i_size_read(inode)); 2563 inode_lock(inode); 2564 /* We're holding i_mutex so we can access i_size directly */ 2565 2566 if (offset < 0 || offset >= inode->i_size) 2567 offset = -ENXIO; 2568 else { 2569 start = offset >> PAGE_SHIFT; 2570 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2571 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2572 new_offset <<= PAGE_SHIFT; 2573 if (new_offset > offset) { 2574 if (new_offset < inode->i_size) 2575 offset = new_offset; 2576 else if (whence == SEEK_DATA) 2577 offset = -ENXIO; 2578 else 2579 offset = inode->i_size; 2580 } 2581 } 2582 2583 if (offset >= 0) 2584 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2585 inode_unlock(inode); 2586 return offset; 2587 } 2588 2589 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2590 loff_t len) 2591 { 2592 struct inode *inode = file_inode(file); 2593 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2594 struct shmem_inode_info *info = SHMEM_I(inode); 2595 struct shmem_falloc shmem_falloc; 2596 pgoff_t start, index, end; 2597 int error; 2598 2599 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2600 return -EOPNOTSUPP; 2601 2602 inode_lock(inode); 2603 2604 if (mode & FALLOC_FL_PUNCH_HOLE) { 2605 struct address_space *mapping = file->f_mapping; 2606 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2607 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2608 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2609 2610 /* protected by i_mutex */ 2611 if (info->seals & F_SEAL_WRITE) { 2612 error = -EPERM; 2613 goto out; 2614 } 2615 2616 shmem_falloc.waitq = &shmem_falloc_waitq; 2617 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2618 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2619 spin_lock(&inode->i_lock); 2620 inode->i_private = &shmem_falloc; 2621 spin_unlock(&inode->i_lock); 2622 2623 if ((u64)unmap_end > (u64)unmap_start) 2624 unmap_mapping_range(mapping, unmap_start, 2625 1 + unmap_end - unmap_start, 0); 2626 shmem_truncate_range(inode, offset, offset + len - 1); 2627 /* No need to unmap again: hole-punching leaves COWed pages */ 2628 2629 spin_lock(&inode->i_lock); 2630 inode->i_private = NULL; 2631 wake_up_all(&shmem_falloc_waitq); 2632 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2633 spin_unlock(&inode->i_lock); 2634 error = 0; 2635 goto out; 2636 } 2637 2638 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2639 error = inode_newsize_ok(inode, offset + len); 2640 if (error) 2641 goto out; 2642 2643 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2644 error = -EPERM; 2645 goto out; 2646 } 2647 2648 start = offset >> PAGE_SHIFT; 2649 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2650 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2651 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2652 error = -ENOSPC; 2653 goto out; 2654 } 2655 2656 shmem_falloc.waitq = NULL; 2657 shmem_falloc.start = start; 2658 shmem_falloc.next = start; 2659 shmem_falloc.nr_falloced = 0; 2660 shmem_falloc.nr_unswapped = 0; 2661 spin_lock(&inode->i_lock); 2662 inode->i_private = &shmem_falloc; 2663 spin_unlock(&inode->i_lock); 2664 2665 for (index = start; index < end; index++) { 2666 struct page *page; 2667 2668 /* 2669 * Good, the fallocate(2) manpage permits EINTR: we may have 2670 * been interrupted because we are using up too much memory. 2671 */ 2672 if (signal_pending(current)) 2673 error = -EINTR; 2674 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2675 error = -ENOMEM; 2676 else 2677 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2678 if (error) { 2679 /* Remove the !PageUptodate pages we added */ 2680 if (index > start) { 2681 shmem_undo_range(inode, 2682 (loff_t)start << PAGE_SHIFT, 2683 ((loff_t)index << PAGE_SHIFT) - 1, true); 2684 } 2685 goto undone; 2686 } 2687 2688 /* 2689 * Inform shmem_writepage() how far we have reached. 2690 * No need for lock or barrier: we have the page lock. 2691 */ 2692 shmem_falloc.next++; 2693 if (!PageUptodate(page)) 2694 shmem_falloc.nr_falloced++; 2695 2696 /* 2697 * If !PageUptodate, leave it that way so that freeable pages 2698 * can be recognized if we need to rollback on error later. 2699 * But set_page_dirty so that memory pressure will swap rather 2700 * than free the pages we are allocating (and SGP_CACHE pages 2701 * might still be clean: we now need to mark those dirty too). 2702 */ 2703 set_page_dirty(page); 2704 unlock_page(page); 2705 put_page(page); 2706 cond_resched(); 2707 } 2708 2709 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2710 i_size_write(inode, offset + len); 2711 inode->i_ctime = current_time(inode); 2712 undone: 2713 spin_lock(&inode->i_lock); 2714 inode->i_private = NULL; 2715 spin_unlock(&inode->i_lock); 2716 out: 2717 inode_unlock(inode); 2718 return error; 2719 } 2720 2721 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2722 { 2723 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2724 2725 buf->f_type = TMPFS_MAGIC; 2726 buf->f_bsize = PAGE_SIZE; 2727 buf->f_namelen = NAME_MAX; 2728 if (sbinfo->max_blocks) { 2729 buf->f_blocks = sbinfo->max_blocks; 2730 buf->f_bavail = 2731 buf->f_bfree = sbinfo->max_blocks - 2732 percpu_counter_sum(&sbinfo->used_blocks); 2733 } 2734 if (sbinfo->max_inodes) { 2735 buf->f_files = sbinfo->max_inodes; 2736 buf->f_ffree = sbinfo->free_inodes; 2737 } 2738 /* else leave those fields 0 like simple_statfs */ 2739 return 0; 2740 } 2741 2742 /* 2743 * File creation. Allocate an inode, and we're done.. 2744 */ 2745 static int 2746 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2747 { 2748 struct inode *inode; 2749 int error = -ENOSPC; 2750 2751 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2752 if (inode) { 2753 error = simple_acl_create(dir, inode); 2754 if (error) 2755 goto out_iput; 2756 error = security_inode_init_security(inode, dir, 2757 &dentry->d_name, 2758 shmem_initxattrs, NULL); 2759 if (error && error != -EOPNOTSUPP) 2760 goto out_iput; 2761 2762 error = 0; 2763 dir->i_size += BOGO_DIRENT_SIZE; 2764 dir->i_ctime = dir->i_mtime = current_time(dir); 2765 d_instantiate(dentry, inode); 2766 dget(dentry); /* Extra count - pin the dentry in core */ 2767 } 2768 return error; 2769 out_iput: 2770 iput(inode); 2771 return error; 2772 } 2773 2774 static int 2775 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2776 { 2777 struct inode *inode; 2778 int error = -ENOSPC; 2779 2780 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2781 if (inode) { 2782 error = security_inode_init_security(inode, dir, 2783 NULL, 2784 shmem_initxattrs, NULL); 2785 if (error && error != -EOPNOTSUPP) 2786 goto out_iput; 2787 error = simple_acl_create(dir, inode); 2788 if (error) 2789 goto out_iput; 2790 d_tmpfile(dentry, inode); 2791 } 2792 return error; 2793 out_iput: 2794 iput(inode); 2795 return error; 2796 } 2797 2798 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2799 { 2800 int error; 2801 2802 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2803 return error; 2804 inc_nlink(dir); 2805 return 0; 2806 } 2807 2808 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2809 bool excl) 2810 { 2811 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2812 } 2813 2814 /* 2815 * Link a file.. 2816 */ 2817 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2818 { 2819 struct inode *inode = d_inode(old_dentry); 2820 int ret; 2821 2822 /* 2823 * No ordinary (disk based) filesystem counts links as inodes; 2824 * but each new link needs a new dentry, pinning lowmem, and 2825 * tmpfs dentries cannot be pruned until they are unlinked. 2826 */ 2827 ret = shmem_reserve_inode(inode->i_sb); 2828 if (ret) 2829 goto out; 2830 2831 dir->i_size += BOGO_DIRENT_SIZE; 2832 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2833 inc_nlink(inode); 2834 ihold(inode); /* New dentry reference */ 2835 dget(dentry); /* Extra pinning count for the created dentry */ 2836 d_instantiate(dentry, inode); 2837 out: 2838 return ret; 2839 } 2840 2841 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2842 { 2843 struct inode *inode = d_inode(dentry); 2844 2845 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2846 shmem_free_inode(inode->i_sb); 2847 2848 dir->i_size -= BOGO_DIRENT_SIZE; 2849 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2850 drop_nlink(inode); 2851 dput(dentry); /* Undo the count from "create" - this does all the work */ 2852 return 0; 2853 } 2854 2855 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2856 { 2857 if (!simple_empty(dentry)) 2858 return -ENOTEMPTY; 2859 2860 drop_nlink(d_inode(dentry)); 2861 drop_nlink(dir); 2862 return shmem_unlink(dir, dentry); 2863 } 2864 2865 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2866 { 2867 bool old_is_dir = d_is_dir(old_dentry); 2868 bool new_is_dir = d_is_dir(new_dentry); 2869 2870 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2871 if (old_is_dir) { 2872 drop_nlink(old_dir); 2873 inc_nlink(new_dir); 2874 } else { 2875 drop_nlink(new_dir); 2876 inc_nlink(old_dir); 2877 } 2878 } 2879 old_dir->i_ctime = old_dir->i_mtime = 2880 new_dir->i_ctime = new_dir->i_mtime = 2881 d_inode(old_dentry)->i_ctime = 2882 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2883 2884 return 0; 2885 } 2886 2887 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2888 { 2889 struct dentry *whiteout; 2890 int error; 2891 2892 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2893 if (!whiteout) 2894 return -ENOMEM; 2895 2896 error = shmem_mknod(old_dir, whiteout, 2897 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2898 dput(whiteout); 2899 if (error) 2900 return error; 2901 2902 /* 2903 * Cheat and hash the whiteout while the old dentry is still in 2904 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2905 * 2906 * d_lookup() will consistently find one of them at this point, 2907 * not sure which one, but that isn't even important. 2908 */ 2909 d_rehash(whiteout); 2910 return 0; 2911 } 2912 2913 /* 2914 * The VFS layer already does all the dentry stuff for rename, 2915 * we just have to decrement the usage count for the target if 2916 * it exists so that the VFS layer correctly free's it when it 2917 * gets overwritten. 2918 */ 2919 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2920 { 2921 struct inode *inode = d_inode(old_dentry); 2922 int they_are_dirs = S_ISDIR(inode->i_mode); 2923 2924 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2925 return -EINVAL; 2926 2927 if (flags & RENAME_EXCHANGE) 2928 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2929 2930 if (!simple_empty(new_dentry)) 2931 return -ENOTEMPTY; 2932 2933 if (flags & RENAME_WHITEOUT) { 2934 int error; 2935 2936 error = shmem_whiteout(old_dir, old_dentry); 2937 if (error) 2938 return error; 2939 } 2940 2941 if (d_really_is_positive(new_dentry)) { 2942 (void) shmem_unlink(new_dir, new_dentry); 2943 if (they_are_dirs) { 2944 drop_nlink(d_inode(new_dentry)); 2945 drop_nlink(old_dir); 2946 } 2947 } else if (they_are_dirs) { 2948 drop_nlink(old_dir); 2949 inc_nlink(new_dir); 2950 } 2951 2952 old_dir->i_size -= BOGO_DIRENT_SIZE; 2953 new_dir->i_size += BOGO_DIRENT_SIZE; 2954 old_dir->i_ctime = old_dir->i_mtime = 2955 new_dir->i_ctime = new_dir->i_mtime = 2956 inode->i_ctime = current_time(old_dir); 2957 return 0; 2958 } 2959 2960 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2961 { 2962 int error; 2963 int len; 2964 struct inode *inode; 2965 struct page *page; 2966 2967 len = strlen(symname) + 1; 2968 if (len > PAGE_SIZE) 2969 return -ENAMETOOLONG; 2970 2971 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 2972 VM_NORESERVE); 2973 if (!inode) 2974 return -ENOSPC; 2975 2976 error = security_inode_init_security(inode, dir, &dentry->d_name, 2977 shmem_initxattrs, NULL); 2978 if (error) { 2979 if (error != -EOPNOTSUPP) { 2980 iput(inode); 2981 return error; 2982 } 2983 error = 0; 2984 } 2985 2986 inode->i_size = len-1; 2987 if (len <= SHORT_SYMLINK_LEN) { 2988 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 2989 if (!inode->i_link) { 2990 iput(inode); 2991 return -ENOMEM; 2992 } 2993 inode->i_op = &shmem_short_symlink_operations; 2994 } else { 2995 inode_nohighmem(inode); 2996 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 2997 if (error) { 2998 iput(inode); 2999 return error; 3000 } 3001 inode->i_mapping->a_ops = &shmem_aops; 3002 inode->i_op = &shmem_symlink_inode_operations; 3003 memcpy(page_address(page), symname, len); 3004 SetPageUptodate(page); 3005 set_page_dirty(page); 3006 unlock_page(page); 3007 put_page(page); 3008 } 3009 dir->i_size += BOGO_DIRENT_SIZE; 3010 dir->i_ctime = dir->i_mtime = current_time(dir); 3011 d_instantiate(dentry, inode); 3012 dget(dentry); 3013 return 0; 3014 } 3015 3016 static void shmem_put_link(void *arg) 3017 { 3018 mark_page_accessed(arg); 3019 put_page(arg); 3020 } 3021 3022 static const char *shmem_get_link(struct dentry *dentry, 3023 struct inode *inode, 3024 struct delayed_call *done) 3025 { 3026 struct page *page = NULL; 3027 int error; 3028 if (!dentry) { 3029 page = find_get_page(inode->i_mapping, 0); 3030 if (!page) 3031 return ERR_PTR(-ECHILD); 3032 if (!PageUptodate(page)) { 3033 put_page(page); 3034 return ERR_PTR(-ECHILD); 3035 } 3036 } else { 3037 error = shmem_getpage(inode, 0, &page, SGP_READ); 3038 if (error) 3039 return ERR_PTR(error); 3040 unlock_page(page); 3041 } 3042 set_delayed_call(done, shmem_put_link, page); 3043 return page_address(page); 3044 } 3045 3046 #ifdef CONFIG_TMPFS_XATTR 3047 /* 3048 * Superblocks without xattr inode operations may get some security.* xattr 3049 * support from the LSM "for free". As soon as we have any other xattrs 3050 * like ACLs, we also need to implement the security.* handlers at 3051 * filesystem level, though. 3052 */ 3053 3054 /* 3055 * Callback for security_inode_init_security() for acquiring xattrs. 3056 */ 3057 static int shmem_initxattrs(struct inode *inode, 3058 const struct xattr *xattr_array, 3059 void *fs_info) 3060 { 3061 struct shmem_inode_info *info = SHMEM_I(inode); 3062 const struct xattr *xattr; 3063 struct simple_xattr *new_xattr; 3064 size_t len; 3065 3066 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3067 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3068 if (!new_xattr) 3069 return -ENOMEM; 3070 3071 len = strlen(xattr->name) + 1; 3072 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3073 GFP_KERNEL); 3074 if (!new_xattr->name) { 3075 kfree(new_xattr); 3076 return -ENOMEM; 3077 } 3078 3079 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3080 XATTR_SECURITY_PREFIX_LEN); 3081 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3082 xattr->name, len); 3083 3084 simple_xattr_list_add(&info->xattrs, new_xattr); 3085 } 3086 3087 return 0; 3088 } 3089 3090 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3091 struct dentry *unused, struct inode *inode, 3092 const char *name, void *buffer, size_t size) 3093 { 3094 struct shmem_inode_info *info = SHMEM_I(inode); 3095 3096 name = xattr_full_name(handler, name); 3097 return simple_xattr_get(&info->xattrs, name, buffer, size); 3098 } 3099 3100 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3101 struct dentry *unused, struct inode *inode, 3102 const char *name, const void *value, 3103 size_t size, int flags) 3104 { 3105 struct shmem_inode_info *info = SHMEM_I(inode); 3106 3107 name = xattr_full_name(handler, name); 3108 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3109 } 3110 3111 static const struct xattr_handler shmem_security_xattr_handler = { 3112 .prefix = XATTR_SECURITY_PREFIX, 3113 .get = shmem_xattr_handler_get, 3114 .set = shmem_xattr_handler_set, 3115 }; 3116 3117 static const struct xattr_handler shmem_trusted_xattr_handler = { 3118 .prefix = XATTR_TRUSTED_PREFIX, 3119 .get = shmem_xattr_handler_get, 3120 .set = shmem_xattr_handler_set, 3121 }; 3122 3123 static const struct xattr_handler *shmem_xattr_handlers[] = { 3124 #ifdef CONFIG_TMPFS_POSIX_ACL 3125 &posix_acl_access_xattr_handler, 3126 &posix_acl_default_xattr_handler, 3127 #endif 3128 &shmem_security_xattr_handler, 3129 &shmem_trusted_xattr_handler, 3130 NULL 3131 }; 3132 3133 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3134 { 3135 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3136 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3137 } 3138 #endif /* CONFIG_TMPFS_XATTR */ 3139 3140 static const struct inode_operations shmem_short_symlink_operations = { 3141 .get_link = simple_get_link, 3142 #ifdef CONFIG_TMPFS_XATTR 3143 .listxattr = shmem_listxattr, 3144 #endif 3145 }; 3146 3147 static const struct inode_operations shmem_symlink_inode_operations = { 3148 .get_link = shmem_get_link, 3149 #ifdef CONFIG_TMPFS_XATTR 3150 .listxattr = shmem_listxattr, 3151 #endif 3152 }; 3153 3154 static struct dentry *shmem_get_parent(struct dentry *child) 3155 { 3156 return ERR_PTR(-ESTALE); 3157 } 3158 3159 static int shmem_match(struct inode *ino, void *vfh) 3160 { 3161 __u32 *fh = vfh; 3162 __u64 inum = fh[2]; 3163 inum = (inum << 32) | fh[1]; 3164 return ino->i_ino == inum && fh[0] == ino->i_generation; 3165 } 3166 3167 /* Find any alias of inode, but prefer a hashed alias */ 3168 static struct dentry *shmem_find_alias(struct inode *inode) 3169 { 3170 struct dentry *alias = d_find_alias(inode); 3171 3172 return alias ?: d_find_any_alias(inode); 3173 } 3174 3175 3176 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3177 struct fid *fid, int fh_len, int fh_type) 3178 { 3179 struct inode *inode; 3180 struct dentry *dentry = NULL; 3181 u64 inum; 3182 3183 if (fh_len < 3) 3184 return NULL; 3185 3186 inum = fid->raw[2]; 3187 inum = (inum << 32) | fid->raw[1]; 3188 3189 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3190 shmem_match, fid->raw); 3191 if (inode) { 3192 dentry = shmem_find_alias(inode); 3193 iput(inode); 3194 } 3195 3196 return dentry; 3197 } 3198 3199 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3200 struct inode *parent) 3201 { 3202 if (*len < 3) { 3203 *len = 3; 3204 return FILEID_INVALID; 3205 } 3206 3207 if (inode_unhashed(inode)) { 3208 /* Unfortunately insert_inode_hash is not idempotent, 3209 * so as we hash inodes here rather than at creation 3210 * time, we need a lock to ensure we only try 3211 * to do it once 3212 */ 3213 static DEFINE_SPINLOCK(lock); 3214 spin_lock(&lock); 3215 if (inode_unhashed(inode)) 3216 __insert_inode_hash(inode, 3217 inode->i_ino + inode->i_generation); 3218 spin_unlock(&lock); 3219 } 3220 3221 fh[0] = inode->i_generation; 3222 fh[1] = inode->i_ino; 3223 fh[2] = ((__u64)inode->i_ino) >> 32; 3224 3225 *len = 3; 3226 return 1; 3227 } 3228 3229 static const struct export_operations shmem_export_ops = { 3230 .get_parent = shmem_get_parent, 3231 .encode_fh = shmem_encode_fh, 3232 .fh_to_dentry = shmem_fh_to_dentry, 3233 }; 3234 3235 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3236 bool remount) 3237 { 3238 char *this_char, *value, *rest; 3239 struct mempolicy *mpol = NULL; 3240 uid_t uid; 3241 gid_t gid; 3242 3243 while (options != NULL) { 3244 this_char = options; 3245 for (;;) { 3246 /* 3247 * NUL-terminate this option: unfortunately, 3248 * mount options form a comma-separated list, 3249 * but mpol's nodelist may also contain commas. 3250 */ 3251 options = strchr(options, ','); 3252 if (options == NULL) 3253 break; 3254 options++; 3255 if (!isdigit(*options)) { 3256 options[-1] = '\0'; 3257 break; 3258 } 3259 } 3260 if (!*this_char) 3261 continue; 3262 if ((value = strchr(this_char,'=')) != NULL) { 3263 *value++ = 0; 3264 } else { 3265 pr_err("tmpfs: No value for mount option '%s'\n", 3266 this_char); 3267 goto error; 3268 } 3269 3270 if (!strcmp(this_char,"size")) { 3271 unsigned long long size; 3272 size = memparse(value,&rest); 3273 if (*rest == '%') { 3274 size <<= PAGE_SHIFT; 3275 size *= totalram_pages; 3276 do_div(size, 100); 3277 rest++; 3278 } 3279 if (*rest) 3280 goto bad_val; 3281 sbinfo->max_blocks = 3282 DIV_ROUND_UP(size, PAGE_SIZE); 3283 } else if (!strcmp(this_char,"nr_blocks")) { 3284 sbinfo->max_blocks = memparse(value, &rest); 3285 if (*rest) 3286 goto bad_val; 3287 } else if (!strcmp(this_char,"nr_inodes")) { 3288 sbinfo->max_inodes = memparse(value, &rest); 3289 if (*rest) 3290 goto bad_val; 3291 } else if (!strcmp(this_char,"mode")) { 3292 if (remount) 3293 continue; 3294 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3295 if (*rest) 3296 goto bad_val; 3297 } else if (!strcmp(this_char,"uid")) { 3298 if (remount) 3299 continue; 3300 uid = simple_strtoul(value, &rest, 0); 3301 if (*rest) 3302 goto bad_val; 3303 sbinfo->uid = make_kuid(current_user_ns(), uid); 3304 if (!uid_valid(sbinfo->uid)) 3305 goto bad_val; 3306 } else if (!strcmp(this_char,"gid")) { 3307 if (remount) 3308 continue; 3309 gid = simple_strtoul(value, &rest, 0); 3310 if (*rest) 3311 goto bad_val; 3312 sbinfo->gid = make_kgid(current_user_ns(), gid); 3313 if (!gid_valid(sbinfo->gid)) 3314 goto bad_val; 3315 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3316 } else if (!strcmp(this_char, "huge")) { 3317 int huge; 3318 huge = shmem_parse_huge(value); 3319 if (huge < 0) 3320 goto bad_val; 3321 if (!has_transparent_hugepage() && 3322 huge != SHMEM_HUGE_NEVER) 3323 goto bad_val; 3324 sbinfo->huge = huge; 3325 #endif 3326 #ifdef CONFIG_NUMA 3327 } else if (!strcmp(this_char,"mpol")) { 3328 mpol_put(mpol); 3329 mpol = NULL; 3330 if (mpol_parse_str(value, &mpol)) 3331 goto bad_val; 3332 #endif 3333 } else { 3334 pr_err("tmpfs: Bad mount option %s\n", this_char); 3335 goto error; 3336 } 3337 } 3338 sbinfo->mpol = mpol; 3339 return 0; 3340 3341 bad_val: 3342 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3343 value, this_char); 3344 error: 3345 mpol_put(mpol); 3346 return 1; 3347 3348 } 3349 3350 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3351 { 3352 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3353 struct shmem_sb_info config = *sbinfo; 3354 unsigned long inodes; 3355 int error = -EINVAL; 3356 3357 config.mpol = NULL; 3358 if (shmem_parse_options(data, &config, true)) 3359 return error; 3360 3361 spin_lock(&sbinfo->stat_lock); 3362 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3363 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3364 goto out; 3365 if (config.max_inodes < inodes) 3366 goto out; 3367 /* 3368 * Those tests disallow limited->unlimited while any are in use; 3369 * but we must separately disallow unlimited->limited, because 3370 * in that case we have no record of how much is already in use. 3371 */ 3372 if (config.max_blocks && !sbinfo->max_blocks) 3373 goto out; 3374 if (config.max_inodes && !sbinfo->max_inodes) 3375 goto out; 3376 3377 error = 0; 3378 sbinfo->huge = config.huge; 3379 sbinfo->max_blocks = config.max_blocks; 3380 sbinfo->max_inodes = config.max_inodes; 3381 sbinfo->free_inodes = config.max_inodes - inodes; 3382 3383 /* 3384 * Preserve previous mempolicy unless mpol remount option was specified. 3385 */ 3386 if (config.mpol) { 3387 mpol_put(sbinfo->mpol); 3388 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3389 } 3390 out: 3391 spin_unlock(&sbinfo->stat_lock); 3392 return error; 3393 } 3394 3395 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3396 { 3397 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3398 3399 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3400 seq_printf(seq, ",size=%luk", 3401 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3402 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3403 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3404 if (sbinfo->mode != (0777 | S_ISVTX)) 3405 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3406 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3407 seq_printf(seq, ",uid=%u", 3408 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3409 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3410 seq_printf(seq, ",gid=%u", 3411 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3412 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3413 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3414 if (sbinfo->huge) 3415 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3416 #endif 3417 shmem_show_mpol(seq, sbinfo->mpol); 3418 return 0; 3419 } 3420 3421 #endif /* CONFIG_TMPFS */ 3422 3423 static void shmem_put_super(struct super_block *sb) 3424 { 3425 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3426 3427 percpu_counter_destroy(&sbinfo->used_blocks); 3428 mpol_put(sbinfo->mpol); 3429 kfree(sbinfo); 3430 sb->s_fs_info = NULL; 3431 } 3432 3433 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3434 { 3435 struct inode *inode; 3436 struct shmem_sb_info *sbinfo; 3437 int err = -ENOMEM; 3438 3439 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3440 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3441 L1_CACHE_BYTES), GFP_KERNEL); 3442 if (!sbinfo) 3443 return -ENOMEM; 3444 3445 sbinfo->mode = 0777 | S_ISVTX; 3446 sbinfo->uid = current_fsuid(); 3447 sbinfo->gid = current_fsgid(); 3448 sb->s_fs_info = sbinfo; 3449 3450 #ifdef CONFIG_TMPFS 3451 /* 3452 * Per default we only allow half of the physical ram per 3453 * tmpfs instance, limiting inodes to one per page of lowmem; 3454 * but the internal instance is left unlimited. 3455 */ 3456 if (!(sb->s_flags & SB_KERNMOUNT)) { 3457 sbinfo->max_blocks = shmem_default_max_blocks(); 3458 sbinfo->max_inodes = shmem_default_max_inodes(); 3459 if (shmem_parse_options(data, sbinfo, false)) { 3460 err = -EINVAL; 3461 goto failed; 3462 } 3463 } else { 3464 sb->s_flags |= SB_NOUSER; 3465 } 3466 sb->s_export_op = &shmem_export_ops; 3467 sb->s_flags |= SB_NOSEC; 3468 #else 3469 sb->s_flags |= SB_NOUSER; 3470 #endif 3471 3472 spin_lock_init(&sbinfo->stat_lock); 3473 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3474 goto failed; 3475 sbinfo->free_inodes = sbinfo->max_inodes; 3476 spin_lock_init(&sbinfo->shrinklist_lock); 3477 INIT_LIST_HEAD(&sbinfo->shrinklist); 3478 3479 sb->s_maxbytes = MAX_LFS_FILESIZE; 3480 sb->s_blocksize = PAGE_SIZE; 3481 sb->s_blocksize_bits = PAGE_SHIFT; 3482 sb->s_magic = TMPFS_MAGIC; 3483 sb->s_op = &shmem_ops; 3484 sb->s_time_gran = 1; 3485 #ifdef CONFIG_TMPFS_XATTR 3486 sb->s_xattr = shmem_xattr_handlers; 3487 #endif 3488 #ifdef CONFIG_TMPFS_POSIX_ACL 3489 sb->s_flags |= SB_POSIXACL; 3490 #endif 3491 uuid_gen(&sb->s_uuid); 3492 3493 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3494 if (!inode) 3495 goto failed; 3496 inode->i_uid = sbinfo->uid; 3497 inode->i_gid = sbinfo->gid; 3498 sb->s_root = d_make_root(inode); 3499 if (!sb->s_root) 3500 goto failed; 3501 return 0; 3502 3503 failed: 3504 shmem_put_super(sb); 3505 return err; 3506 } 3507 3508 static struct kmem_cache *shmem_inode_cachep; 3509 3510 static struct inode *shmem_alloc_inode(struct super_block *sb) 3511 { 3512 struct shmem_inode_info *info; 3513 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3514 if (!info) 3515 return NULL; 3516 return &info->vfs_inode; 3517 } 3518 3519 static void shmem_destroy_callback(struct rcu_head *head) 3520 { 3521 struct inode *inode = container_of(head, struct inode, i_rcu); 3522 if (S_ISLNK(inode->i_mode)) 3523 kfree(inode->i_link); 3524 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3525 } 3526 3527 static void shmem_destroy_inode(struct inode *inode) 3528 { 3529 if (S_ISREG(inode->i_mode)) 3530 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3531 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3532 } 3533 3534 static void shmem_init_inode(void *foo) 3535 { 3536 struct shmem_inode_info *info = foo; 3537 inode_init_once(&info->vfs_inode); 3538 } 3539 3540 static void shmem_init_inodecache(void) 3541 { 3542 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3543 sizeof(struct shmem_inode_info), 3544 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3545 } 3546 3547 static void shmem_destroy_inodecache(void) 3548 { 3549 kmem_cache_destroy(shmem_inode_cachep); 3550 } 3551 3552 static const struct address_space_operations shmem_aops = { 3553 .writepage = shmem_writepage, 3554 .set_page_dirty = __set_page_dirty_no_writeback, 3555 #ifdef CONFIG_TMPFS 3556 .write_begin = shmem_write_begin, 3557 .write_end = shmem_write_end, 3558 #endif 3559 #ifdef CONFIG_MIGRATION 3560 .migratepage = migrate_page, 3561 #endif 3562 .error_remove_page = generic_error_remove_page, 3563 }; 3564 3565 static const struct file_operations shmem_file_operations = { 3566 .mmap = shmem_mmap, 3567 .get_unmapped_area = shmem_get_unmapped_area, 3568 #ifdef CONFIG_TMPFS 3569 .llseek = shmem_file_llseek, 3570 .read_iter = shmem_file_read_iter, 3571 .write_iter = generic_file_write_iter, 3572 .fsync = noop_fsync, 3573 .splice_read = generic_file_splice_read, 3574 .splice_write = iter_file_splice_write, 3575 .fallocate = shmem_fallocate, 3576 #endif 3577 }; 3578 3579 static const struct inode_operations shmem_inode_operations = { 3580 .getattr = shmem_getattr, 3581 .setattr = shmem_setattr, 3582 #ifdef CONFIG_TMPFS_XATTR 3583 .listxattr = shmem_listxattr, 3584 .set_acl = simple_set_acl, 3585 #endif 3586 }; 3587 3588 static const struct inode_operations shmem_dir_inode_operations = { 3589 #ifdef CONFIG_TMPFS 3590 .create = shmem_create, 3591 .lookup = simple_lookup, 3592 .link = shmem_link, 3593 .unlink = shmem_unlink, 3594 .symlink = shmem_symlink, 3595 .mkdir = shmem_mkdir, 3596 .rmdir = shmem_rmdir, 3597 .mknod = shmem_mknod, 3598 .rename = shmem_rename2, 3599 .tmpfile = shmem_tmpfile, 3600 #endif 3601 #ifdef CONFIG_TMPFS_XATTR 3602 .listxattr = shmem_listxattr, 3603 #endif 3604 #ifdef CONFIG_TMPFS_POSIX_ACL 3605 .setattr = shmem_setattr, 3606 .set_acl = simple_set_acl, 3607 #endif 3608 }; 3609 3610 static const struct inode_operations shmem_special_inode_operations = { 3611 #ifdef CONFIG_TMPFS_XATTR 3612 .listxattr = shmem_listxattr, 3613 #endif 3614 #ifdef CONFIG_TMPFS_POSIX_ACL 3615 .setattr = shmem_setattr, 3616 .set_acl = simple_set_acl, 3617 #endif 3618 }; 3619 3620 static const struct super_operations shmem_ops = { 3621 .alloc_inode = shmem_alloc_inode, 3622 .destroy_inode = shmem_destroy_inode, 3623 #ifdef CONFIG_TMPFS 3624 .statfs = shmem_statfs, 3625 .remount_fs = shmem_remount_fs, 3626 .show_options = shmem_show_options, 3627 #endif 3628 .evict_inode = shmem_evict_inode, 3629 .drop_inode = generic_delete_inode, 3630 .put_super = shmem_put_super, 3631 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3632 .nr_cached_objects = shmem_unused_huge_count, 3633 .free_cached_objects = shmem_unused_huge_scan, 3634 #endif 3635 }; 3636 3637 static const struct vm_operations_struct shmem_vm_ops = { 3638 .fault = shmem_fault, 3639 .map_pages = filemap_map_pages, 3640 #ifdef CONFIG_NUMA 3641 .set_policy = shmem_set_policy, 3642 .get_policy = shmem_get_policy, 3643 #endif 3644 }; 3645 3646 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3647 int flags, const char *dev_name, void *data) 3648 { 3649 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3650 } 3651 3652 static struct file_system_type shmem_fs_type = { 3653 .owner = THIS_MODULE, 3654 .name = "tmpfs", 3655 .mount = shmem_mount, 3656 .kill_sb = kill_litter_super, 3657 .fs_flags = FS_USERNS_MOUNT, 3658 }; 3659 3660 int __init shmem_init(void) 3661 { 3662 int error; 3663 3664 /* If rootfs called this, don't re-init */ 3665 if (shmem_inode_cachep) 3666 return 0; 3667 3668 shmem_init_inodecache(); 3669 3670 error = register_filesystem(&shmem_fs_type); 3671 if (error) { 3672 pr_err("Could not register tmpfs\n"); 3673 goto out2; 3674 } 3675 3676 shm_mnt = kern_mount(&shmem_fs_type); 3677 if (IS_ERR(shm_mnt)) { 3678 error = PTR_ERR(shm_mnt); 3679 pr_err("Could not kern_mount tmpfs\n"); 3680 goto out1; 3681 } 3682 3683 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3684 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3685 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3686 else 3687 shmem_huge = 0; /* just in case it was patched */ 3688 #endif 3689 return 0; 3690 3691 out1: 3692 unregister_filesystem(&shmem_fs_type); 3693 out2: 3694 shmem_destroy_inodecache(); 3695 shm_mnt = ERR_PTR(error); 3696 return error; 3697 } 3698 3699 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3700 static ssize_t shmem_enabled_show(struct kobject *kobj, 3701 struct kobj_attribute *attr, char *buf) 3702 { 3703 int values[] = { 3704 SHMEM_HUGE_ALWAYS, 3705 SHMEM_HUGE_WITHIN_SIZE, 3706 SHMEM_HUGE_ADVISE, 3707 SHMEM_HUGE_NEVER, 3708 SHMEM_HUGE_DENY, 3709 SHMEM_HUGE_FORCE, 3710 }; 3711 int i, count; 3712 3713 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3714 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3715 3716 count += sprintf(buf + count, fmt, 3717 shmem_format_huge(values[i])); 3718 } 3719 buf[count - 1] = '\n'; 3720 return count; 3721 } 3722 3723 static ssize_t shmem_enabled_store(struct kobject *kobj, 3724 struct kobj_attribute *attr, const char *buf, size_t count) 3725 { 3726 char tmp[16]; 3727 int huge; 3728 3729 if (count + 1 > sizeof(tmp)) 3730 return -EINVAL; 3731 memcpy(tmp, buf, count); 3732 tmp[count] = '\0'; 3733 if (count && tmp[count - 1] == '\n') 3734 tmp[count - 1] = '\0'; 3735 3736 huge = shmem_parse_huge(tmp); 3737 if (huge == -EINVAL) 3738 return -EINVAL; 3739 if (!has_transparent_hugepage() && 3740 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3741 return -EINVAL; 3742 3743 shmem_huge = huge; 3744 if (shmem_huge > SHMEM_HUGE_DENY) 3745 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3746 return count; 3747 } 3748 3749 struct kobj_attribute shmem_enabled_attr = 3750 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3751 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3752 3753 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3754 bool shmem_huge_enabled(struct vm_area_struct *vma) 3755 { 3756 struct inode *inode = file_inode(vma->vm_file); 3757 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3758 loff_t i_size; 3759 pgoff_t off; 3760 3761 if (shmem_huge == SHMEM_HUGE_FORCE) 3762 return true; 3763 if (shmem_huge == SHMEM_HUGE_DENY) 3764 return false; 3765 switch (sbinfo->huge) { 3766 case SHMEM_HUGE_NEVER: 3767 return false; 3768 case SHMEM_HUGE_ALWAYS: 3769 return true; 3770 case SHMEM_HUGE_WITHIN_SIZE: 3771 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3772 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3773 if (i_size >= HPAGE_PMD_SIZE && 3774 i_size >> PAGE_SHIFT >= off) 3775 return true; 3776 /* fall through */ 3777 case SHMEM_HUGE_ADVISE: 3778 /* TODO: implement fadvise() hints */ 3779 return (vma->vm_flags & VM_HUGEPAGE); 3780 default: 3781 VM_BUG_ON(1); 3782 return false; 3783 } 3784 } 3785 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3786 3787 #else /* !CONFIG_SHMEM */ 3788 3789 /* 3790 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3791 * 3792 * This is intended for small system where the benefits of the full 3793 * shmem code (swap-backed and resource-limited) are outweighed by 3794 * their complexity. On systems without swap this code should be 3795 * effectively equivalent, but much lighter weight. 3796 */ 3797 3798 static struct file_system_type shmem_fs_type = { 3799 .name = "tmpfs", 3800 .mount = ramfs_mount, 3801 .kill_sb = kill_litter_super, 3802 .fs_flags = FS_USERNS_MOUNT, 3803 }; 3804 3805 int __init shmem_init(void) 3806 { 3807 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3808 3809 shm_mnt = kern_mount(&shmem_fs_type); 3810 BUG_ON(IS_ERR(shm_mnt)); 3811 3812 return 0; 3813 } 3814 3815 int shmem_unuse(swp_entry_t swap, struct page *page) 3816 { 3817 return 0; 3818 } 3819 3820 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3821 { 3822 return 0; 3823 } 3824 3825 void shmem_unlock_mapping(struct address_space *mapping) 3826 { 3827 } 3828 3829 #ifdef CONFIG_MMU 3830 unsigned long shmem_get_unmapped_area(struct file *file, 3831 unsigned long addr, unsigned long len, 3832 unsigned long pgoff, unsigned long flags) 3833 { 3834 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3835 } 3836 #endif 3837 3838 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3839 { 3840 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3841 } 3842 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3843 3844 #define shmem_vm_ops generic_file_vm_ops 3845 #define shmem_file_operations ramfs_file_operations 3846 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3847 #define shmem_acct_size(flags, size) 0 3848 #define shmem_unacct_size(flags, size) do {} while (0) 3849 3850 #endif /* CONFIG_SHMEM */ 3851 3852 /* common code */ 3853 3854 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 3855 unsigned long flags, unsigned int i_flags) 3856 { 3857 struct inode *inode; 3858 struct file *res; 3859 3860 if (IS_ERR(mnt)) 3861 return ERR_CAST(mnt); 3862 3863 if (size < 0 || size > MAX_LFS_FILESIZE) 3864 return ERR_PTR(-EINVAL); 3865 3866 if (shmem_acct_size(flags, size)) 3867 return ERR_PTR(-ENOMEM); 3868 3869 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 3870 flags); 3871 if (unlikely(!inode)) { 3872 shmem_unacct_size(flags, size); 3873 return ERR_PTR(-ENOSPC); 3874 } 3875 inode->i_flags |= i_flags; 3876 inode->i_size = size; 3877 clear_nlink(inode); /* It is unlinked */ 3878 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3879 if (!IS_ERR(res)) 3880 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 3881 &shmem_file_operations); 3882 if (IS_ERR(res)) 3883 iput(inode); 3884 return res; 3885 } 3886 3887 /** 3888 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3889 * kernel internal. There will be NO LSM permission checks against the 3890 * underlying inode. So users of this interface must do LSM checks at a 3891 * higher layer. The users are the big_key and shm implementations. LSM 3892 * checks are provided at the key or shm level rather than the inode. 3893 * @name: name for dentry (to be seen in /proc/<pid>/maps 3894 * @size: size to be set for the file 3895 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3896 */ 3897 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3898 { 3899 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 3900 } 3901 3902 /** 3903 * shmem_file_setup - get an unlinked file living in tmpfs 3904 * @name: name for dentry (to be seen in /proc/<pid>/maps 3905 * @size: size to be set for the file 3906 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3907 */ 3908 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3909 { 3910 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 3911 } 3912 EXPORT_SYMBOL_GPL(shmem_file_setup); 3913 3914 /** 3915 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 3916 * @mnt: the tmpfs mount where the file will be created 3917 * @name: name for dentry (to be seen in /proc/<pid>/maps 3918 * @size: size to be set for the file 3919 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3920 */ 3921 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 3922 loff_t size, unsigned long flags) 3923 { 3924 return __shmem_file_setup(mnt, name, size, flags, 0); 3925 } 3926 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 3927 3928 /** 3929 * shmem_zero_setup - setup a shared anonymous mapping 3930 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3931 */ 3932 int shmem_zero_setup(struct vm_area_struct *vma) 3933 { 3934 struct file *file; 3935 loff_t size = vma->vm_end - vma->vm_start; 3936 3937 /* 3938 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3939 * between XFS directory reading and selinux: since this file is only 3940 * accessible to the user through its mapping, use S_PRIVATE flag to 3941 * bypass file security, in the same way as shmem_kernel_file_setup(). 3942 */ 3943 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 3944 if (IS_ERR(file)) 3945 return PTR_ERR(file); 3946 3947 if (vma->vm_file) 3948 fput(vma->vm_file); 3949 vma->vm_file = file; 3950 vma->vm_ops = &shmem_vm_ops; 3951 3952 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 3953 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 3954 (vma->vm_end & HPAGE_PMD_MASK)) { 3955 khugepaged_enter(vma, vma->vm_flags); 3956 } 3957 3958 return 0; 3959 } 3960 3961 /** 3962 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3963 * @mapping: the page's address_space 3964 * @index: the page index 3965 * @gfp: the page allocator flags to use if allocating 3966 * 3967 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3968 * with any new page allocations done using the specified allocation flags. 3969 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3970 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3971 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3972 * 3973 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3974 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3975 */ 3976 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3977 pgoff_t index, gfp_t gfp) 3978 { 3979 #ifdef CONFIG_SHMEM 3980 struct inode *inode = mapping->host; 3981 struct page *page; 3982 int error; 3983 3984 BUG_ON(mapping->a_ops != &shmem_aops); 3985 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 3986 gfp, NULL, NULL, NULL); 3987 if (error) 3988 page = ERR_PTR(error); 3989 else 3990 unlock_page(page); 3991 return page; 3992 #else 3993 /* 3994 * The tiny !SHMEM case uses ramfs without swap 3995 */ 3996 return read_cache_page_gfp(mapping, index, gfp); 3997 #endif 3998 } 3999 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4000