xref: /openbmc/linux/mm/shmem.c (revision 6d425d7c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 			     struct page **pagep, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 		struct page **pagep, enum sgp_type sgp,
144 		gfp_t gfp, struct vm_area_struct *vma,
145 		struct vm_fault *vmf, vm_fault_t *fault_type);
146 
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp)
149 {
150 	return shmem_getpage_gfp(inode, index, pagep, sgp,
151 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153 
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 	return sb->s_fs_info;
157 }
158 
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 	return (flags & VM_NORESERVE) ?
168 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170 
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 	if (!(flags & VM_NORESERVE))
174 		vm_unacct_memory(VM_ACCT(size));
175 }
176 
177 static inline int shmem_reacct_size(unsigned long flags,
178 		loff_t oldsize, loff_t newsize)
179 {
180 	if (!(flags & VM_NORESERVE)) {
181 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 			return security_vm_enough_memory_mm(current->mm,
183 					VM_ACCT(newsize) - VM_ACCT(oldsize));
184 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 	}
187 	return 0;
188 }
189 
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 	if (!(flags & VM_NORESERVE))
199 		return 0;
200 
201 	return security_vm_enough_memory_mm(current->mm,
202 			pages * VM_ACCT(PAGE_SIZE));
203 }
204 
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 	if (flags & VM_NORESERVE)
208 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 	struct shmem_inode_info *info = SHMEM_I(inode);
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return false;
218 
219 	if (sbinfo->max_blocks) {
220 		if (percpu_counter_compare(&sbinfo->used_blocks,
221 					   sbinfo->max_blocks - pages) > 0)
222 			goto unacct;
223 		percpu_counter_add(&sbinfo->used_blocks, pages);
224 	}
225 
226 	return true;
227 
228 unacct:
229 	shmem_unacct_blocks(info->flags, pages);
230 	return false;
231 }
232 
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 
238 	if (sbinfo->max_blocks)
239 		percpu_counter_sub(&sbinfo->used_blocks, pages);
240 	shmem_unacct_blocks(info->flags, pages);
241 }
242 
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251 
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 	return vma->vm_ops == &shmem_vm_ops;
255 }
256 
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259 
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 	ino_t ino;
274 
275 	if (!(sb->s_flags & SB_KERNMOUNT)) {
276 		raw_spin_lock(&sbinfo->stat_lock);
277 		if (sbinfo->max_inodes) {
278 			if (!sbinfo->free_inodes) {
279 				raw_spin_unlock(&sbinfo->stat_lock);
280 				return -ENOSPC;
281 			}
282 			sbinfo->free_inodes--;
283 		}
284 		if (inop) {
285 			ino = sbinfo->next_ino++;
286 			if (unlikely(is_zero_ino(ino)))
287 				ino = sbinfo->next_ino++;
288 			if (unlikely(!sbinfo->full_inums &&
289 				     ino > UINT_MAX)) {
290 				/*
291 				 * Emulate get_next_ino uint wraparound for
292 				 * compatibility
293 				 */
294 				if (IS_ENABLED(CONFIG_64BIT))
295 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 						__func__, MINOR(sb->s_dev));
297 				sbinfo->next_ino = 1;
298 				ino = sbinfo->next_ino++;
299 			}
300 			*inop = ino;
301 		}
302 		raw_spin_unlock(&sbinfo->stat_lock);
303 	} else if (inop) {
304 		/*
305 		 * __shmem_file_setup, one of our callers, is lock-free: it
306 		 * doesn't hold stat_lock in shmem_reserve_inode since
307 		 * max_inodes is always 0, and is called from potentially
308 		 * unknown contexts. As such, use a per-cpu batched allocator
309 		 * which doesn't require the per-sb stat_lock unless we are at
310 		 * the batch boundary.
311 		 *
312 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 		 * shmem mounts are not exposed to userspace, so we don't need
314 		 * to worry about things like glibc compatibility.
315 		 */
316 		ino_t *next_ino;
317 
318 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 		ino = *next_ino;
320 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 			raw_spin_lock(&sbinfo->stat_lock);
322 			ino = sbinfo->next_ino;
323 			sbinfo->next_ino += SHMEM_INO_BATCH;
324 			raw_spin_unlock(&sbinfo->stat_lock);
325 			if (unlikely(is_zero_ino(ino)))
326 				ino++;
327 		}
328 		*inop = ino;
329 		*next_ino = ++ino;
330 		put_cpu();
331 	}
332 
333 	return 0;
334 }
335 
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	if (sbinfo->max_inodes) {
340 		raw_spin_lock(&sbinfo->stat_lock);
341 		sbinfo->free_inodes++;
342 		raw_spin_unlock(&sbinfo->stat_lock);
343 	}
344 }
345 
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 	struct shmem_inode_info *info = SHMEM_I(inode);
361 	long freed;
362 
363 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 	if (freed > 0) {
365 		info->alloced -= freed;
366 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 		shmem_inode_unacct_blocks(inode, freed);
368 	}
369 }
370 
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 	struct shmem_inode_info *info = SHMEM_I(inode);
374 	unsigned long flags;
375 
376 	if (!shmem_inode_acct_block(inode, pages))
377 		return false;
378 
379 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 	inode->i_mapping->nrpages += pages;
381 
382 	spin_lock_irqsave(&info->lock, flags);
383 	info->alloced += pages;
384 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 	shmem_recalc_inode(inode);
386 	spin_unlock_irqrestore(&info->lock, flags);
387 
388 	return true;
389 }
390 
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 	struct shmem_inode_info *info = SHMEM_I(inode);
394 	unsigned long flags;
395 
396 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
397 
398 	spin_lock_irqsave(&info->lock, flags);
399 	info->alloced -= pages;
400 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 	shmem_recalc_inode(inode);
402 	spin_unlock_irqrestore(&info->lock, flags);
403 
404 	shmem_inode_unacct_blocks(inode, pages);
405 }
406 
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411 			pgoff_t index, void *expected, void *replacement)
412 {
413 	XA_STATE(xas, &mapping->i_pages, index);
414 	void *item;
415 
416 	VM_BUG_ON(!expected);
417 	VM_BUG_ON(!replacement);
418 	item = xas_load(&xas);
419 	if (item != expected)
420 		return -ENOENT;
421 	xas_store(&xas, replacement);
422 	return 0;
423 }
424 
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 			       pgoff_t index, swp_entry_t swap)
434 {
435 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437 
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *	disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *	enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *	only allocate huge pages if the page will be fully within i_size,
447  *	also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *	only allocate huge pages if requested with fadvise()/madvise();
450  */
451 
452 #define SHMEM_HUGE_NEVER	0
453 #define SHMEM_HUGE_ALWAYS	1
454 #define SHMEM_HUGE_WITHIN_SIZE	2
455 #define SHMEM_HUGE_ADVISE	3
456 
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *	disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY		(-1)
468 #define SHMEM_HUGE_FORCE	(-2)
469 
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472 
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 		   struct inode *inode, pgoff_t index)
477 {
478 	loff_t i_size;
479 
480 	if (shmem_huge == SHMEM_HUGE_DENY)
481 		return false;
482 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484 		return false;
485 	if (shmem_huge == SHMEM_HUGE_FORCE)
486 		return true;
487 
488 	switch (SHMEM_SB(inode->i_sb)->huge) {
489 	case SHMEM_HUGE_ALWAYS:
490 		return true;
491 	case SHMEM_HUGE_WITHIN_SIZE:
492 		index = round_up(index + 1, HPAGE_PMD_NR);
493 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 		if (i_size >> PAGE_SHIFT >= index)
495 			return true;
496 		fallthrough;
497 	case SHMEM_HUGE_ADVISE:
498 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 			return true;
500 		fallthrough;
501 	default:
502 		return false;
503 	}
504 }
505 
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509 	if (!strcmp(str, "never"))
510 		return SHMEM_HUGE_NEVER;
511 	if (!strcmp(str, "always"))
512 		return SHMEM_HUGE_ALWAYS;
513 	if (!strcmp(str, "within_size"))
514 		return SHMEM_HUGE_WITHIN_SIZE;
515 	if (!strcmp(str, "advise"))
516 		return SHMEM_HUGE_ADVISE;
517 	if (!strcmp(str, "deny"))
518 		return SHMEM_HUGE_DENY;
519 	if (!strcmp(str, "force"))
520 		return SHMEM_HUGE_FORCE;
521 	return -EINVAL;
522 }
523 #endif
524 
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528 	switch (huge) {
529 	case SHMEM_HUGE_NEVER:
530 		return "never";
531 	case SHMEM_HUGE_ALWAYS:
532 		return "always";
533 	case SHMEM_HUGE_WITHIN_SIZE:
534 		return "within_size";
535 	case SHMEM_HUGE_ADVISE:
536 		return "advise";
537 	case SHMEM_HUGE_DENY:
538 		return "deny";
539 	case SHMEM_HUGE_FORCE:
540 		return "force";
541 	default:
542 		VM_BUG_ON(1);
543 		return "bad_val";
544 	}
545 }
546 #endif
547 
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 		struct shrink_control *sc, unsigned long nr_to_split)
550 {
551 	LIST_HEAD(list), *pos, *next;
552 	LIST_HEAD(to_remove);
553 	struct inode *inode;
554 	struct shmem_inode_info *info;
555 	struct page *page;
556 	unsigned long batch = sc ? sc->nr_to_scan : 128;
557 	int removed = 0, split = 0;
558 
559 	if (list_empty(&sbinfo->shrinklist))
560 		return SHRINK_STOP;
561 
562 	spin_lock(&sbinfo->shrinklist_lock);
563 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 
566 		/* pin the inode */
567 		inode = igrab(&info->vfs_inode);
568 
569 		/* inode is about to be evicted */
570 		if (!inode) {
571 			list_del_init(&info->shrinklist);
572 			removed++;
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			removed++;
581 			goto next;
582 		}
583 
584 		list_move(&info->shrinklist, &list);
585 next:
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 
601 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 		inode = &info->vfs_inode;
603 
604 		if (nr_to_split && split >= nr_to_split)
605 			goto leave;
606 
607 		page = find_get_page(inode->i_mapping,
608 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 		if (!page)
610 			goto drop;
611 
612 		/* No huge page at the end of the file: nothing to split */
613 		if (!PageTransHuge(page)) {
614 			put_page(page);
615 			goto drop;
616 		}
617 
618 		/*
619 		 * Leave the inode on the list if we failed to lock
620 		 * the page at this time.
621 		 *
622 		 * Waiting for the lock may lead to deadlock in the
623 		 * reclaim path.
624 		 */
625 		if (!trylock_page(page)) {
626 			put_page(page);
627 			goto leave;
628 		}
629 
630 		ret = split_huge_page(page);
631 		unlock_page(page);
632 		put_page(page);
633 
634 		/* If split failed leave the inode on the list */
635 		if (ret)
636 			goto leave;
637 
638 		split++;
639 drop:
640 		list_del_init(&info->shrinklist);
641 		removed++;
642 leave:
643 		iput(inode);
644 	}
645 
646 	spin_lock(&sbinfo->shrinklist_lock);
647 	list_splice_tail(&list, &sbinfo->shrinklist);
648 	sbinfo->shrinklist_len -= removed;
649 	spin_unlock(&sbinfo->shrinklist_lock);
650 
651 	return split;
652 }
653 
654 static long shmem_unused_huge_scan(struct super_block *sb,
655 		struct shrink_control *sc)
656 {
657 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658 
659 	if (!READ_ONCE(sbinfo->shrinklist_len))
660 		return SHRINK_STOP;
661 
662 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664 
665 static long shmem_unused_huge_count(struct super_block *sb,
666 		struct shrink_control *sc)
667 {
668 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 	return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672 
673 #define shmem_huge SHMEM_HUGE_DENY
674 
675 bool shmem_is_huge(struct vm_area_struct *vma,
676 		   struct inode *inode, pgoff_t index)
677 {
678 	return false;
679 }
680 
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 		struct shrink_control *sc, unsigned long nr_to_split)
683 {
684 	return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687 
688 /*
689  * Like add_to_page_cache_locked, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct page *page,
692 				   struct address_space *mapping,
693 				   pgoff_t index, void *expected, gfp_t gfp,
694 				   struct mm_struct *charge_mm)
695 {
696 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697 	unsigned long i = 0;
698 	unsigned long nr = compound_nr(page);
699 	int error;
700 
701 	VM_BUG_ON_PAGE(PageTail(page), page);
702 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703 	VM_BUG_ON_PAGE(!PageLocked(page), page);
704 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705 	VM_BUG_ON(expected && PageTransHuge(page));
706 
707 	page_ref_add(page, nr);
708 	page->mapping = mapping;
709 	page->index = index;
710 
711 	if (!PageSwapCache(page)) {
712 		error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
713 		if (error) {
714 			if (PageTransHuge(page)) {
715 				count_vm_event(THP_FILE_FALLBACK);
716 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
717 			}
718 			goto error;
719 		}
720 	}
721 	cgroup_throttle_swaprate(page, gfp);
722 
723 	do {
724 		void *entry;
725 		xas_lock_irq(&xas);
726 		entry = xas_find_conflict(&xas);
727 		if (entry != expected)
728 			xas_set_err(&xas, -EEXIST);
729 		xas_create_range(&xas);
730 		if (xas_error(&xas))
731 			goto unlock;
732 next:
733 		xas_store(&xas, page);
734 		if (++i < nr) {
735 			xas_next(&xas);
736 			goto next;
737 		}
738 		if (PageTransHuge(page)) {
739 			count_vm_event(THP_FILE_ALLOC);
740 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
741 		}
742 		mapping->nrpages += nr;
743 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
745 unlock:
746 		xas_unlock_irq(&xas);
747 	} while (xas_nomem(&xas, gfp));
748 
749 	if (xas_error(&xas)) {
750 		error = xas_error(&xas);
751 		goto error;
752 	}
753 
754 	return 0;
755 error:
756 	page->mapping = NULL;
757 	page_ref_sub(page, nr);
758 	return error;
759 }
760 
761 /*
762  * Like delete_from_page_cache, but substitutes swap for page.
763  */
764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765 {
766 	struct address_space *mapping = page->mapping;
767 	int error;
768 
769 	VM_BUG_ON_PAGE(PageCompound(page), page);
770 
771 	xa_lock_irq(&mapping->i_pages);
772 	error = shmem_replace_entry(mapping, page->index, page, radswap);
773 	page->mapping = NULL;
774 	mapping->nrpages--;
775 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
776 	__dec_lruvec_page_state(page, NR_SHMEM);
777 	xa_unlock_irq(&mapping->i_pages);
778 	put_page(page);
779 	BUG_ON(error);
780 }
781 
782 /*
783  * Remove swap entry from page cache, free the swap and its page cache.
784  */
785 static int shmem_free_swap(struct address_space *mapping,
786 			   pgoff_t index, void *radswap)
787 {
788 	void *old;
789 
790 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791 	if (old != radswap)
792 		return -ENOENT;
793 	free_swap_and_cache(radix_to_swp_entry(radswap));
794 	return 0;
795 }
796 
797 /*
798  * Determine (in bytes) how many of the shmem object's pages mapped by the
799  * given offsets are swapped out.
800  *
801  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802  * as long as the inode doesn't go away and racy results are not a problem.
803  */
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 						pgoff_t start, pgoff_t end)
806 {
807 	XA_STATE(xas, &mapping->i_pages, start);
808 	struct page *page;
809 	unsigned long swapped = 0;
810 
811 	rcu_read_lock();
812 	xas_for_each(&xas, page, end - 1) {
813 		if (xas_retry(&xas, page))
814 			continue;
815 		if (xa_is_value(page))
816 			swapped++;
817 
818 		if (need_resched()) {
819 			xas_pause(&xas);
820 			cond_resched_rcu();
821 		}
822 	}
823 
824 	rcu_read_unlock();
825 
826 	return swapped << PAGE_SHIFT;
827 }
828 
829 /*
830  * Determine (in bytes) how many of the shmem object's pages mapped by the
831  * given vma is swapped out.
832  *
833  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834  * as long as the inode doesn't go away and racy results are not a problem.
835  */
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838 	struct inode *inode = file_inode(vma->vm_file);
839 	struct shmem_inode_info *info = SHMEM_I(inode);
840 	struct address_space *mapping = inode->i_mapping;
841 	unsigned long swapped;
842 
843 	/* Be careful as we don't hold info->lock */
844 	swapped = READ_ONCE(info->swapped);
845 
846 	/*
847 	 * The easier cases are when the shmem object has nothing in swap, or
848 	 * the vma maps it whole. Then we can simply use the stats that we
849 	 * already track.
850 	 */
851 	if (!swapped)
852 		return 0;
853 
854 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 		return swapped << PAGE_SHIFT;
856 
857 	/* Here comes the more involved part */
858 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
859 					vma->vm_pgoff + vma_pages(vma));
860 }
861 
862 /*
863  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
864  */
865 void shmem_unlock_mapping(struct address_space *mapping)
866 {
867 	struct pagevec pvec;
868 	pgoff_t index = 0;
869 
870 	pagevec_init(&pvec);
871 	/*
872 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
873 	 */
874 	while (!mapping_unevictable(mapping)) {
875 		if (!pagevec_lookup(&pvec, mapping, &index))
876 			break;
877 		check_move_unevictable_pages(&pvec);
878 		pagevec_release(&pvec);
879 		cond_resched();
880 	}
881 }
882 
883 /*
884  * Check whether a hole-punch or truncation needs to split a huge page,
885  * returning true if no split was required, or the split has been successful.
886  *
887  * Eviction (or truncation to 0 size) should never need to split a huge page;
888  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
889  * head, and then succeeded to trylock on tail.
890  *
891  * A split can only succeed when there are no additional references on the
892  * huge page: so the split below relies upon find_get_entries() having stopped
893  * when it found a subpage of the huge page, without getting further references.
894  */
895 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
896 {
897 	if (!PageTransCompound(page))
898 		return true;
899 
900 	/* Just proceed to delete a huge page wholly within the range punched */
901 	if (PageHead(page) &&
902 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
903 		return true;
904 
905 	/* Try to split huge page, so we can truly punch the hole or truncate */
906 	return split_huge_page(page) >= 0;
907 }
908 
909 /*
910  * Remove range of pages and swap entries from page cache, and free them.
911  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
912  */
913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914 								 bool unfalloc)
915 {
916 	struct address_space *mapping = inode->i_mapping;
917 	struct shmem_inode_info *info = SHMEM_I(inode);
918 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
921 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
922 	struct pagevec pvec;
923 	pgoff_t indices[PAGEVEC_SIZE];
924 	long nr_swaps_freed = 0;
925 	pgoff_t index;
926 	int i;
927 
928 	if (lend == -1)
929 		end = -1;	/* unsigned, so actually very big */
930 
931 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 		info->fallocend = start;
933 
934 	pagevec_init(&pvec);
935 	index = start;
936 	while (index < end && find_lock_entries(mapping, index, end - 1,
937 			&pvec, indices)) {
938 		for (i = 0; i < pagevec_count(&pvec); i++) {
939 			struct page *page = pvec.pages[i];
940 
941 			index = indices[i];
942 
943 			if (xa_is_value(page)) {
944 				if (unfalloc)
945 					continue;
946 				nr_swaps_freed += !shmem_free_swap(mapping,
947 								index, page);
948 				continue;
949 			}
950 			index += thp_nr_pages(page) - 1;
951 
952 			if (!unfalloc || !PageUptodate(page))
953 				truncate_inode_page(mapping, page);
954 			unlock_page(page);
955 		}
956 		pagevec_remove_exceptionals(&pvec);
957 		pagevec_release(&pvec);
958 		cond_resched();
959 		index++;
960 	}
961 
962 	if (partial_start) {
963 		struct page *page = NULL;
964 		shmem_getpage(inode, start - 1, &page, SGP_READ);
965 		if (page) {
966 			unsigned int top = PAGE_SIZE;
967 			if (start > end) {
968 				top = partial_end;
969 				partial_end = 0;
970 			}
971 			zero_user_segment(page, partial_start, top);
972 			set_page_dirty(page);
973 			unlock_page(page);
974 			put_page(page);
975 		}
976 	}
977 	if (partial_end) {
978 		struct page *page = NULL;
979 		shmem_getpage(inode, end, &page, SGP_READ);
980 		if (page) {
981 			zero_user_segment(page, 0, partial_end);
982 			set_page_dirty(page);
983 			unlock_page(page);
984 			put_page(page);
985 		}
986 	}
987 	if (start >= end)
988 		return;
989 
990 	index = start;
991 	while (index < end) {
992 		cond_resched();
993 
994 		if (!find_get_entries(mapping, index, end - 1, &pvec,
995 				indices)) {
996 			/* If all gone or hole-punch or unfalloc, we're done */
997 			if (index == start || end != -1)
998 				break;
999 			/* But if truncating, restart to make sure all gone */
1000 			index = start;
1001 			continue;
1002 		}
1003 		for (i = 0; i < pagevec_count(&pvec); i++) {
1004 			struct page *page = pvec.pages[i];
1005 
1006 			index = indices[i];
1007 			if (xa_is_value(page)) {
1008 				if (unfalloc)
1009 					continue;
1010 				if (shmem_free_swap(mapping, index, page)) {
1011 					/* Swap was replaced by page: retry */
1012 					index--;
1013 					break;
1014 				}
1015 				nr_swaps_freed++;
1016 				continue;
1017 			}
1018 
1019 			lock_page(page);
1020 
1021 			if (!unfalloc || !PageUptodate(page)) {
1022 				if (page_mapping(page) != mapping) {
1023 					/* Page was replaced by swap: retry */
1024 					unlock_page(page);
1025 					index--;
1026 					break;
1027 				}
1028 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 				if (shmem_punch_compound(page, start, end))
1030 					truncate_inode_page(mapping, page);
1031 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032 					/* Wipe the page and don't get stuck */
1033 					clear_highpage(page);
1034 					flush_dcache_page(page);
1035 					set_page_dirty(page);
1036 					if (index <
1037 					    round_up(start, HPAGE_PMD_NR))
1038 						start = index + 1;
1039 				}
1040 			}
1041 			unlock_page(page);
1042 		}
1043 		pagevec_remove_exceptionals(&pvec);
1044 		pagevec_release(&pvec);
1045 		index++;
1046 	}
1047 
1048 	spin_lock_irq(&info->lock);
1049 	info->swapped -= nr_swaps_freed;
1050 	shmem_recalc_inode(inode);
1051 	spin_unlock_irq(&info->lock);
1052 }
1053 
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056 	shmem_undo_range(inode, lstart, lend, false);
1057 	inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060 
1061 static int shmem_getattr(struct user_namespace *mnt_userns,
1062 			 const struct path *path, struct kstat *stat,
1063 			 u32 request_mask, unsigned int query_flags)
1064 {
1065 	struct inode *inode = path->dentry->d_inode;
1066 	struct shmem_inode_info *info = SHMEM_I(inode);
1067 
1068 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069 		spin_lock_irq(&info->lock);
1070 		shmem_recalc_inode(inode);
1071 		spin_unlock_irq(&info->lock);
1072 	}
1073 	generic_fillattr(&init_user_ns, inode, stat);
1074 
1075 	if (shmem_is_huge(NULL, inode, 0))
1076 		stat->blksize = HPAGE_PMD_SIZE;
1077 
1078 	return 0;
1079 }
1080 
1081 static int shmem_setattr(struct user_namespace *mnt_userns,
1082 			 struct dentry *dentry, struct iattr *attr)
1083 {
1084 	struct inode *inode = d_inode(dentry);
1085 	struct shmem_inode_info *info = SHMEM_I(inode);
1086 	int error;
1087 
1088 	error = setattr_prepare(&init_user_ns, dentry, attr);
1089 	if (error)
1090 		return error;
1091 
1092 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 		loff_t oldsize = inode->i_size;
1094 		loff_t newsize = attr->ia_size;
1095 
1096 		/* protected by i_rwsem */
1097 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099 			return -EPERM;
1100 
1101 		if (newsize != oldsize) {
1102 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103 					oldsize, newsize);
1104 			if (error)
1105 				return error;
1106 			i_size_write(inode, newsize);
1107 			inode->i_ctime = inode->i_mtime = current_time(inode);
1108 		}
1109 		if (newsize <= oldsize) {
1110 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111 			if (oldsize > holebegin)
1112 				unmap_mapping_range(inode->i_mapping,
1113 							holebegin, 0, 1);
1114 			if (info->alloced)
1115 				shmem_truncate_range(inode,
1116 							newsize, (loff_t)-1);
1117 			/* unmap again to remove racily COWed private pages */
1118 			if (oldsize > holebegin)
1119 				unmap_mapping_range(inode->i_mapping,
1120 							holebegin, 0, 1);
1121 		}
1122 	}
1123 
1124 	setattr_copy(&init_user_ns, inode, attr);
1125 	if (attr->ia_valid & ATTR_MODE)
1126 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1127 	return error;
1128 }
1129 
1130 static void shmem_evict_inode(struct inode *inode)
1131 {
1132 	struct shmem_inode_info *info = SHMEM_I(inode);
1133 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1134 
1135 	if (shmem_mapping(inode->i_mapping)) {
1136 		shmem_unacct_size(info->flags, inode->i_size);
1137 		inode->i_size = 0;
1138 		shmem_truncate_range(inode, 0, (loff_t)-1);
1139 		if (!list_empty(&info->shrinklist)) {
1140 			spin_lock(&sbinfo->shrinklist_lock);
1141 			if (!list_empty(&info->shrinklist)) {
1142 				list_del_init(&info->shrinklist);
1143 				sbinfo->shrinklist_len--;
1144 			}
1145 			spin_unlock(&sbinfo->shrinklist_lock);
1146 		}
1147 		while (!list_empty(&info->swaplist)) {
1148 			/* Wait while shmem_unuse() is scanning this inode... */
1149 			wait_var_event(&info->stop_eviction,
1150 				       !atomic_read(&info->stop_eviction));
1151 			mutex_lock(&shmem_swaplist_mutex);
1152 			/* ...but beware of the race if we peeked too early */
1153 			if (!atomic_read(&info->stop_eviction))
1154 				list_del_init(&info->swaplist);
1155 			mutex_unlock(&shmem_swaplist_mutex);
1156 		}
1157 	}
1158 
1159 	simple_xattrs_free(&info->xattrs);
1160 	WARN_ON(inode->i_blocks);
1161 	shmem_free_inode(inode->i_sb);
1162 	clear_inode(inode);
1163 }
1164 
1165 static int shmem_find_swap_entries(struct address_space *mapping,
1166 				   pgoff_t start, unsigned int nr_entries,
1167 				   struct page **entries, pgoff_t *indices,
1168 				   unsigned int type, bool frontswap)
1169 {
1170 	XA_STATE(xas, &mapping->i_pages, start);
1171 	struct page *page;
1172 	swp_entry_t entry;
1173 	unsigned int ret = 0;
1174 
1175 	if (!nr_entries)
1176 		return 0;
1177 
1178 	rcu_read_lock();
1179 	xas_for_each(&xas, page, ULONG_MAX) {
1180 		if (xas_retry(&xas, page))
1181 			continue;
1182 
1183 		if (!xa_is_value(page))
1184 			continue;
1185 
1186 		entry = radix_to_swp_entry(page);
1187 		if (swp_type(entry) != type)
1188 			continue;
1189 		if (frontswap &&
1190 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1191 			continue;
1192 
1193 		indices[ret] = xas.xa_index;
1194 		entries[ret] = page;
1195 
1196 		if (need_resched()) {
1197 			xas_pause(&xas);
1198 			cond_resched_rcu();
1199 		}
1200 		if (++ret == nr_entries)
1201 			break;
1202 	}
1203 	rcu_read_unlock();
1204 
1205 	return ret;
1206 }
1207 
1208 /*
1209  * Move the swapped pages for an inode to page cache. Returns the count
1210  * of pages swapped in, or the error in case of failure.
1211  */
1212 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1213 				    pgoff_t *indices)
1214 {
1215 	int i = 0;
1216 	int ret = 0;
1217 	int error = 0;
1218 	struct address_space *mapping = inode->i_mapping;
1219 
1220 	for (i = 0; i < pvec.nr; i++) {
1221 		struct page *page = pvec.pages[i];
1222 
1223 		if (!xa_is_value(page))
1224 			continue;
1225 		error = shmem_swapin_page(inode, indices[i],
1226 					  &page, SGP_CACHE,
1227 					  mapping_gfp_mask(mapping),
1228 					  NULL, NULL);
1229 		if (error == 0) {
1230 			unlock_page(page);
1231 			put_page(page);
1232 			ret++;
1233 		}
1234 		if (error == -ENOMEM)
1235 			break;
1236 		error = 0;
1237 	}
1238 	return error ? error : ret;
1239 }
1240 
1241 /*
1242  * If swap found in inode, free it and move page from swapcache to filecache.
1243  */
1244 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1245 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1246 {
1247 	struct address_space *mapping = inode->i_mapping;
1248 	pgoff_t start = 0;
1249 	struct pagevec pvec;
1250 	pgoff_t indices[PAGEVEC_SIZE];
1251 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1252 	int ret = 0;
1253 
1254 	pagevec_init(&pvec);
1255 	do {
1256 		unsigned int nr_entries = PAGEVEC_SIZE;
1257 
1258 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1259 			nr_entries = *fs_pages_to_unuse;
1260 
1261 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1262 						  pvec.pages, indices,
1263 						  type, frontswap);
1264 		if (pvec.nr == 0) {
1265 			ret = 0;
1266 			break;
1267 		}
1268 
1269 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1270 		if (ret < 0)
1271 			break;
1272 
1273 		if (frontswap_partial) {
1274 			*fs_pages_to_unuse -= ret;
1275 			if (*fs_pages_to_unuse == 0) {
1276 				ret = FRONTSWAP_PAGES_UNUSED;
1277 				break;
1278 			}
1279 		}
1280 
1281 		start = indices[pvec.nr - 1];
1282 	} while (true);
1283 
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Read all the shared memory data that resides in the swap
1289  * device 'type' back into memory, so the swap device can be
1290  * unused.
1291  */
1292 int shmem_unuse(unsigned int type, bool frontswap,
1293 		unsigned long *fs_pages_to_unuse)
1294 {
1295 	struct shmem_inode_info *info, *next;
1296 	int error = 0;
1297 
1298 	if (list_empty(&shmem_swaplist))
1299 		return 0;
1300 
1301 	mutex_lock(&shmem_swaplist_mutex);
1302 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1303 		if (!info->swapped) {
1304 			list_del_init(&info->swaplist);
1305 			continue;
1306 		}
1307 		/*
1308 		 * Drop the swaplist mutex while searching the inode for swap;
1309 		 * but before doing so, make sure shmem_evict_inode() will not
1310 		 * remove placeholder inode from swaplist, nor let it be freed
1311 		 * (igrab() would protect from unlink, but not from unmount).
1312 		 */
1313 		atomic_inc(&info->stop_eviction);
1314 		mutex_unlock(&shmem_swaplist_mutex);
1315 
1316 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1317 					  fs_pages_to_unuse);
1318 		cond_resched();
1319 
1320 		mutex_lock(&shmem_swaplist_mutex);
1321 		next = list_next_entry(info, swaplist);
1322 		if (!info->swapped)
1323 			list_del_init(&info->swaplist);
1324 		if (atomic_dec_and_test(&info->stop_eviction))
1325 			wake_up_var(&info->stop_eviction);
1326 		if (error)
1327 			break;
1328 	}
1329 	mutex_unlock(&shmem_swaplist_mutex);
1330 
1331 	return error;
1332 }
1333 
1334 /*
1335  * Move the page from the page cache to the swap cache.
1336  */
1337 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1338 {
1339 	struct shmem_inode_info *info;
1340 	struct address_space *mapping;
1341 	struct inode *inode;
1342 	swp_entry_t swap;
1343 	pgoff_t index;
1344 
1345 	/*
1346 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1347 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1348 	 * and its shmem_writeback() needs them to be split when swapping.
1349 	 */
1350 	if (PageTransCompound(page)) {
1351 		/* Ensure the subpages are still dirty */
1352 		SetPageDirty(page);
1353 		if (split_huge_page(page) < 0)
1354 			goto redirty;
1355 		ClearPageDirty(page);
1356 	}
1357 
1358 	BUG_ON(!PageLocked(page));
1359 	mapping = page->mapping;
1360 	index = page->index;
1361 	inode = mapping->host;
1362 	info = SHMEM_I(inode);
1363 	if (info->flags & VM_LOCKED)
1364 		goto redirty;
1365 	if (!total_swap_pages)
1366 		goto redirty;
1367 
1368 	/*
1369 	 * Our capabilities prevent regular writeback or sync from ever calling
1370 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1371 	 * its underlying filesystem, in which case tmpfs should write out to
1372 	 * swap only in response to memory pressure, and not for the writeback
1373 	 * threads or sync.
1374 	 */
1375 	if (!wbc->for_reclaim) {
1376 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1377 		goto redirty;
1378 	}
1379 
1380 	/*
1381 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1382 	 * value into swapfile.c, the only way we can correctly account for a
1383 	 * fallocated page arriving here is now to initialize it and write it.
1384 	 *
1385 	 * That's okay for a page already fallocated earlier, but if we have
1386 	 * not yet completed the fallocation, then (a) we want to keep track
1387 	 * of this page in case we have to undo it, and (b) it may not be a
1388 	 * good idea to continue anyway, once we're pushing into swap.  So
1389 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1390 	 */
1391 	if (!PageUptodate(page)) {
1392 		if (inode->i_private) {
1393 			struct shmem_falloc *shmem_falloc;
1394 			spin_lock(&inode->i_lock);
1395 			shmem_falloc = inode->i_private;
1396 			if (shmem_falloc &&
1397 			    !shmem_falloc->waitq &&
1398 			    index >= shmem_falloc->start &&
1399 			    index < shmem_falloc->next)
1400 				shmem_falloc->nr_unswapped++;
1401 			else
1402 				shmem_falloc = NULL;
1403 			spin_unlock(&inode->i_lock);
1404 			if (shmem_falloc)
1405 				goto redirty;
1406 		}
1407 		clear_highpage(page);
1408 		flush_dcache_page(page);
1409 		SetPageUptodate(page);
1410 	}
1411 
1412 	swap = get_swap_page(page);
1413 	if (!swap.val)
1414 		goto redirty;
1415 
1416 	/*
1417 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1418 	 * if it's not already there.  Do it now before the page is
1419 	 * moved to swap cache, when its pagelock no longer protects
1420 	 * the inode from eviction.  But don't unlock the mutex until
1421 	 * we've incremented swapped, because shmem_unuse_inode() will
1422 	 * prune a !swapped inode from the swaplist under this mutex.
1423 	 */
1424 	mutex_lock(&shmem_swaplist_mutex);
1425 	if (list_empty(&info->swaplist))
1426 		list_add(&info->swaplist, &shmem_swaplist);
1427 
1428 	if (add_to_swap_cache(page, swap,
1429 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1430 			NULL) == 0) {
1431 		spin_lock_irq(&info->lock);
1432 		shmem_recalc_inode(inode);
1433 		info->swapped++;
1434 		spin_unlock_irq(&info->lock);
1435 
1436 		swap_shmem_alloc(swap);
1437 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1438 
1439 		mutex_unlock(&shmem_swaplist_mutex);
1440 		BUG_ON(page_mapped(page));
1441 		swap_writepage(page, wbc);
1442 		return 0;
1443 	}
1444 
1445 	mutex_unlock(&shmem_swaplist_mutex);
1446 	put_swap_page(page, swap);
1447 redirty:
1448 	set_page_dirty(page);
1449 	if (wbc->for_reclaim)
1450 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1451 	unlock_page(page);
1452 	return 0;
1453 }
1454 
1455 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1456 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457 {
1458 	char buffer[64];
1459 
1460 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1461 		return;		/* show nothing */
1462 
1463 	mpol_to_str(buffer, sizeof(buffer), mpol);
1464 
1465 	seq_printf(seq, ",mpol=%s", buffer);
1466 }
1467 
1468 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1469 {
1470 	struct mempolicy *mpol = NULL;
1471 	if (sbinfo->mpol) {
1472 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1473 		mpol = sbinfo->mpol;
1474 		mpol_get(mpol);
1475 		raw_spin_unlock(&sbinfo->stat_lock);
1476 	}
1477 	return mpol;
1478 }
1479 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1480 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1481 {
1482 }
1483 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1484 {
1485 	return NULL;
1486 }
1487 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1488 #ifndef CONFIG_NUMA
1489 #define vm_policy vm_private_data
1490 #endif
1491 
1492 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1493 		struct shmem_inode_info *info, pgoff_t index)
1494 {
1495 	/* Create a pseudo vma that just contains the policy */
1496 	vma_init(vma, NULL);
1497 	/* Bias interleave by inode number to distribute better across nodes */
1498 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1499 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1500 }
1501 
1502 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1503 {
1504 	/* Drop reference taken by mpol_shared_policy_lookup() */
1505 	mpol_cond_put(vma->vm_policy);
1506 }
1507 
1508 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1509 			struct shmem_inode_info *info, pgoff_t index)
1510 {
1511 	struct vm_area_struct pvma;
1512 	struct page *page;
1513 	struct vm_fault vmf = {
1514 		.vma = &pvma,
1515 	};
1516 
1517 	shmem_pseudo_vma_init(&pvma, info, index);
1518 	page = swap_cluster_readahead(swap, gfp, &vmf);
1519 	shmem_pseudo_vma_destroy(&pvma);
1520 
1521 	return page;
1522 }
1523 
1524 /*
1525  * Make sure huge_gfp is always more limited than limit_gfp.
1526  * Some of the flags set permissions, while others set limitations.
1527  */
1528 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1529 {
1530 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1531 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1532 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1533 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1534 
1535 	/* Allow allocations only from the originally specified zones. */
1536 	result |= zoneflags;
1537 
1538 	/*
1539 	 * Minimize the result gfp by taking the union with the deny flags,
1540 	 * and the intersection of the allow flags.
1541 	 */
1542 	result |= (limit_gfp & denyflags);
1543 	result |= (huge_gfp & limit_gfp) & allowflags;
1544 
1545 	return result;
1546 }
1547 
1548 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1549 		struct shmem_inode_info *info, pgoff_t index)
1550 {
1551 	struct vm_area_struct pvma;
1552 	struct address_space *mapping = info->vfs_inode.i_mapping;
1553 	pgoff_t hindex;
1554 	struct page *page;
1555 
1556 	hindex = round_down(index, HPAGE_PMD_NR);
1557 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1558 								XA_PRESENT))
1559 		return NULL;
1560 
1561 	shmem_pseudo_vma_init(&pvma, info, hindex);
1562 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1563 			       true);
1564 	shmem_pseudo_vma_destroy(&pvma);
1565 	if (page)
1566 		prep_transhuge_page(page);
1567 	else
1568 		count_vm_event(THP_FILE_FALLBACK);
1569 	return page;
1570 }
1571 
1572 static struct page *shmem_alloc_page(gfp_t gfp,
1573 			struct shmem_inode_info *info, pgoff_t index)
1574 {
1575 	struct vm_area_struct pvma;
1576 	struct page *page;
1577 
1578 	shmem_pseudo_vma_init(&pvma, info, index);
1579 	page = alloc_page_vma(gfp, &pvma, 0);
1580 	shmem_pseudo_vma_destroy(&pvma);
1581 
1582 	return page;
1583 }
1584 
1585 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1586 		struct inode *inode,
1587 		pgoff_t index, bool huge)
1588 {
1589 	struct shmem_inode_info *info = SHMEM_I(inode);
1590 	struct page *page;
1591 	int nr;
1592 	int err = -ENOSPC;
1593 
1594 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1595 		huge = false;
1596 	nr = huge ? HPAGE_PMD_NR : 1;
1597 
1598 	if (!shmem_inode_acct_block(inode, nr))
1599 		goto failed;
1600 
1601 	if (huge)
1602 		page = shmem_alloc_hugepage(gfp, info, index);
1603 	else
1604 		page = shmem_alloc_page(gfp, info, index);
1605 	if (page) {
1606 		__SetPageLocked(page);
1607 		__SetPageSwapBacked(page);
1608 		return page;
1609 	}
1610 
1611 	err = -ENOMEM;
1612 	shmem_inode_unacct_blocks(inode, nr);
1613 failed:
1614 	return ERR_PTR(err);
1615 }
1616 
1617 /*
1618  * When a page is moved from swapcache to shmem filecache (either by the
1619  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1620  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1621  * ignorance of the mapping it belongs to.  If that mapping has special
1622  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1623  * we may need to copy to a suitable page before moving to filecache.
1624  *
1625  * In a future release, this may well be extended to respect cpuset and
1626  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1627  * but for now it is a simple matter of zone.
1628  */
1629 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1630 {
1631 	return page_zonenum(page) > gfp_zone(gfp);
1632 }
1633 
1634 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1635 				struct shmem_inode_info *info, pgoff_t index)
1636 {
1637 	struct page *oldpage, *newpage;
1638 	struct folio *old, *new;
1639 	struct address_space *swap_mapping;
1640 	swp_entry_t entry;
1641 	pgoff_t swap_index;
1642 	int error;
1643 
1644 	oldpage = *pagep;
1645 	entry.val = page_private(oldpage);
1646 	swap_index = swp_offset(entry);
1647 	swap_mapping = page_mapping(oldpage);
1648 
1649 	/*
1650 	 * We have arrived here because our zones are constrained, so don't
1651 	 * limit chance of success by further cpuset and node constraints.
1652 	 */
1653 	gfp &= ~GFP_CONSTRAINT_MASK;
1654 	newpage = shmem_alloc_page(gfp, info, index);
1655 	if (!newpage)
1656 		return -ENOMEM;
1657 
1658 	get_page(newpage);
1659 	copy_highpage(newpage, oldpage);
1660 	flush_dcache_page(newpage);
1661 
1662 	__SetPageLocked(newpage);
1663 	__SetPageSwapBacked(newpage);
1664 	SetPageUptodate(newpage);
1665 	set_page_private(newpage, entry.val);
1666 	SetPageSwapCache(newpage);
1667 
1668 	/*
1669 	 * Our caller will very soon move newpage out of swapcache, but it's
1670 	 * a nice clean interface for us to replace oldpage by newpage there.
1671 	 */
1672 	xa_lock_irq(&swap_mapping->i_pages);
1673 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1674 	if (!error) {
1675 		old = page_folio(oldpage);
1676 		new = page_folio(newpage);
1677 		mem_cgroup_migrate(old, new);
1678 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1679 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1680 	}
1681 	xa_unlock_irq(&swap_mapping->i_pages);
1682 
1683 	if (unlikely(error)) {
1684 		/*
1685 		 * Is this possible?  I think not, now that our callers check
1686 		 * both PageSwapCache and page_private after getting page lock;
1687 		 * but be defensive.  Reverse old to newpage for clear and free.
1688 		 */
1689 		oldpage = newpage;
1690 	} else {
1691 		lru_cache_add(newpage);
1692 		*pagep = newpage;
1693 	}
1694 
1695 	ClearPageSwapCache(oldpage);
1696 	set_page_private(oldpage, 0);
1697 
1698 	unlock_page(oldpage);
1699 	put_page(oldpage);
1700 	put_page(oldpage);
1701 	return error;
1702 }
1703 
1704 /*
1705  * Swap in the page pointed to by *pagep.
1706  * Caller has to make sure that *pagep contains a valid swapped page.
1707  * Returns 0 and the page in pagep if success. On failure, returns the
1708  * error code and NULL in *pagep.
1709  */
1710 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1711 			     struct page **pagep, enum sgp_type sgp,
1712 			     gfp_t gfp, struct vm_area_struct *vma,
1713 			     vm_fault_t *fault_type)
1714 {
1715 	struct address_space *mapping = inode->i_mapping;
1716 	struct shmem_inode_info *info = SHMEM_I(inode);
1717 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1718 	struct page *page;
1719 	swp_entry_t swap;
1720 	int error;
1721 
1722 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1723 	swap = radix_to_swp_entry(*pagep);
1724 	*pagep = NULL;
1725 
1726 	/* Look it up and read it in.. */
1727 	page = lookup_swap_cache(swap, NULL, 0);
1728 	if (!page) {
1729 		/* Or update major stats only when swapin succeeds?? */
1730 		if (fault_type) {
1731 			*fault_type |= VM_FAULT_MAJOR;
1732 			count_vm_event(PGMAJFAULT);
1733 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1734 		}
1735 		/* Here we actually start the io */
1736 		page = shmem_swapin(swap, gfp, info, index);
1737 		if (!page) {
1738 			error = -ENOMEM;
1739 			goto failed;
1740 		}
1741 	}
1742 
1743 	/* We have to do this with page locked to prevent races */
1744 	lock_page(page);
1745 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1746 	    !shmem_confirm_swap(mapping, index, swap)) {
1747 		error = -EEXIST;
1748 		goto unlock;
1749 	}
1750 	if (!PageUptodate(page)) {
1751 		error = -EIO;
1752 		goto failed;
1753 	}
1754 	wait_on_page_writeback(page);
1755 
1756 	/*
1757 	 * Some architectures may have to restore extra metadata to the
1758 	 * physical page after reading from swap.
1759 	 */
1760 	arch_swap_restore(swap, page);
1761 
1762 	if (shmem_should_replace_page(page, gfp)) {
1763 		error = shmem_replace_page(&page, gfp, info, index);
1764 		if (error)
1765 			goto failed;
1766 	}
1767 
1768 	error = shmem_add_to_page_cache(page, mapping, index,
1769 					swp_to_radix_entry(swap), gfp,
1770 					charge_mm);
1771 	if (error)
1772 		goto failed;
1773 
1774 	spin_lock_irq(&info->lock);
1775 	info->swapped--;
1776 	shmem_recalc_inode(inode);
1777 	spin_unlock_irq(&info->lock);
1778 
1779 	if (sgp == SGP_WRITE)
1780 		mark_page_accessed(page);
1781 
1782 	delete_from_swap_cache(page);
1783 	set_page_dirty(page);
1784 	swap_free(swap);
1785 
1786 	*pagep = page;
1787 	return 0;
1788 failed:
1789 	if (!shmem_confirm_swap(mapping, index, swap))
1790 		error = -EEXIST;
1791 unlock:
1792 	if (page) {
1793 		unlock_page(page);
1794 		put_page(page);
1795 	}
1796 
1797 	return error;
1798 }
1799 
1800 /*
1801  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1802  *
1803  * If we allocate a new one we do not mark it dirty. That's up to the
1804  * vm. If we swap it in we mark it dirty since we also free the swap
1805  * entry since a page cannot live in both the swap and page cache.
1806  *
1807  * vma, vmf, and fault_type are only supplied by shmem_fault:
1808  * otherwise they are NULL.
1809  */
1810 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1811 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1812 	struct vm_area_struct *vma, struct vm_fault *vmf,
1813 			vm_fault_t *fault_type)
1814 {
1815 	struct address_space *mapping = inode->i_mapping;
1816 	struct shmem_inode_info *info = SHMEM_I(inode);
1817 	struct shmem_sb_info *sbinfo;
1818 	struct mm_struct *charge_mm;
1819 	struct page *page;
1820 	pgoff_t hindex = index;
1821 	gfp_t huge_gfp;
1822 	int error;
1823 	int once = 0;
1824 	int alloced = 0;
1825 
1826 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1827 		return -EFBIG;
1828 repeat:
1829 	if (sgp <= SGP_CACHE &&
1830 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1831 		return -EINVAL;
1832 	}
1833 
1834 	sbinfo = SHMEM_SB(inode->i_sb);
1835 	charge_mm = vma ? vma->vm_mm : NULL;
1836 
1837 	page = pagecache_get_page(mapping, index,
1838 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1839 
1840 	if (page && vma && userfaultfd_minor(vma)) {
1841 		if (!xa_is_value(page)) {
1842 			unlock_page(page);
1843 			put_page(page);
1844 		}
1845 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1846 		return 0;
1847 	}
1848 
1849 	if (xa_is_value(page)) {
1850 		error = shmem_swapin_page(inode, index, &page,
1851 					  sgp, gfp, vma, fault_type);
1852 		if (error == -EEXIST)
1853 			goto repeat;
1854 
1855 		*pagep = page;
1856 		return error;
1857 	}
1858 
1859 	if (page) {
1860 		hindex = page->index;
1861 		if (sgp == SGP_WRITE)
1862 			mark_page_accessed(page);
1863 		if (PageUptodate(page))
1864 			goto out;
1865 		/* fallocated page */
1866 		if (sgp != SGP_READ)
1867 			goto clear;
1868 		unlock_page(page);
1869 		put_page(page);
1870 	}
1871 
1872 	/*
1873 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1874 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1875 	 */
1876 	*pagep = NULL;
1877 	if (sgp == SGP_READ)
1878 		return 0;
1879 	if (sgp == SGP_NOALLOC)
1880 		return -ENOENT;
1881 
1882 	/*
1883 	 * Fast cache lookup and swap lookup did not find it: allocate.
1884 	 */
1885 
1886 	if (vma && userfaultfd_missing(vma)) {
1887 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1888 		return 0;
1889 	}
1890 
1891 	/* Never use a huge page for shmem_symlink() */
1892 	if (S_ISLNK(inode->i_mode))
1893 		goto alloc_nohuge;
1894 	if (!shmem_is_huge(vma, inode, index))
1895 		goto alloc_nohuge;
1896 
1897 	huge_gfp = vma_thp_gfp_mask(vma);
1898 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1899 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1900 	if (IS_ERR(page)) {
1901 alloc_nohuge:
1902 		page = shmem_alloc_and_acct_page(gfp, inode,
1903 						 index, false);
1904 	}
1905 	if (IS_ERR(page)) {
1906 		int retry = 5;
1907 
1908 		error = PTR_ERR(page);
1909 		page = NULL;
1910 		if (error != -ENOSPC)
1911 			goto unlock;
1912 		/*
1913 		 * Try to reclaim some space by splitting a huge page
1914 		 * beyond i_size on the filesystem.
1915 		 */
1916 		while (retry--) {
1917 			int ret;
1918 
1919 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1920 			if (ret == SHRINK_STOP)
1921 				break;
1922 			if (ret)
1923 				goto alloc_nohuge;
1924 		}
1925 		goto unlock;
1926 	}
1927 
1928 	if (PageTransHuge(page))
1929 		hindex = round_down(index, HPAGE_PMD_NR);
1930 	else
1931 		hindex = index;
1932 
1933 	if (sgp == SGP_WRITE)
1934 		__SetPageReferenced(page);
1935 
1936 	error = shmem_add_to_page_cache(page, mapping, hindex,
1937 					NULL, gfp & GFP_RECLAIM_MASK,
1938 					charge_mm);
1939 	if (error)
1940 		goto unacct;
1941 	lru_cache_add(page);
1942 
1943 	spin_lock_irq(&info->lock);
1944 	info->alloced += compound_nr(page);
1945 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1946 	shmem_recalc_inode(inode);
1947 	spin_unlock_irq(&info->lock);
1948 	alloced = true;
1949 
1950 	if (PageTransHuge(page) &&
1951 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1952 			hindex + HPAGE_PMD_NR - 1) {
1953 		/*
1954 		 * Part of the huge page is beyond i_size: subject
1955 		 * to shrink under memory pressure.
1956 		 */
1957 		spin_lock(&sbinfo->shrinklist_lock);
1958 		/*
1959 		 * _careful to defend against unlocked access to
1960 		 * ->shrink_list in shmem_unused_huge_shrink()
1961 		 */
1962 		if (list_empty_careful(&info->shrinklist)) {
1963 			list_add_tail(&info->shrinklist,
1964 				      &sbinfo->shrinklist);
1965 			sbinfo->shrinklist_len++;
1966 		}
1967 		spin_unlock(&sbinfo->shrinklist_lock);
1968 	}
1969 
1970 	/*
1971 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1972 	 */
1973 	if (sgp == SGP_FALLOC)
1974 		sgp = SGP_WRITE;
1975 clear:
1976 	/*
1977 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1978 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1979 	 * it now, lest undo on failure cancel our earlier guarantee.
1980 	 */
1981 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1982 		int i;
1983 
1984 		for (i = 0; i < compound_nr(page); i++) {
1985 			clear_highpage(page + i);
1986 			flush_dcache_page(page + i);
1987 		}
1988 		SetPageUptodate(page);
1989 	}
1990 
1991 	/* Perhaps the file has been truncated since we checked */
1992 	if (sgp <= SGP_CACHE &&
1993 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1994 		if (alloced) {
1995 			ClearPageDirty(page);
1996 			delete_from_page_cache(page);
1997 			spin_lock_irq(&info->lock);
1998 			shmem_recalc_inode(inode);
1999 			spin_unlock_irq(&info->lock);
2000 		}
2001 		error = -EINVAL;
2002 		goto unlock;
2003 	}
2004 out:
2005 	*pagep = page + index - hindex;
2006 	return 0;
2007 
2008 	/*
2009 	 * Error recovery.
2010 	 */
2011 unacct:
2012 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2013 
2014 	if (PageTransHuge(page)) {
2015 		unlock_page(page);
2016 		put_page(page);
2017 		goto alloc_nohuge;
2018 	}
2019 unlock:
2020 	if (page) {
2021 		unlock_page(page);
2022 		put_page(page);
2023 	}
2024 	if (error == -ENOSPC && !once++) {
2025 		spin_lock_irq(&info->lock);
2026 		shmem_recalc_inode(inode);
2027 		spin_unlock_irq(&info->lock);
2028 		goto repeat;
2029 	}
2030 	if (error == -EEXIST)
2031 		goto repeat;
2032 	return error;
2033 }
2034 
2035 /*
2036  * This is like autoremove_wake_function, but it removes the wait queue
2037  * entry unconditionally - even if something else had already woken the
2038  * target.
2039  */
2040 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2041 {
2042 	int ret = default_wake_function(wait, mode, sync, key);
2043 	list_del_init(&wait->entry);
2044 	return ret;
2045 }
2046 
2047 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2048 {
2049 	struct vm_area_struct *vma = vmf->vma;
2050 	struct inode *inode = file_inode(vma->vm_file);
2051 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2052 	int err;
2053 	vm_fault_t ret = VM_FAULT_LOCKED;
2054 
2055 	/*
2056 	 * Trinity finds that probing a hole which tmpfs is punching can
2057 	 * prevent the hole-punch from ever completing: which in turn
2058 	 * locks writers out with its hold on i_rwsem.  So refrain from
2059 	 * faulting pages into the hole while it's being punched.  Although
2060 	 * shmem_undo_range() does remove the additions, it may be unable to
2061 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2062 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2063 	 *
2064 	 * It does not matter if we sometimes reach this check just before the
2065 	 * hole-punch begins, so that one fault then races with the punch:
2066 	 * we just need to make racing faults a rare case.
2067 	 *
2068 	 * The implementation below would be much simpler if we just used a
2069 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2070 	 * and bloating every shmem inode for this unlikely case would be sad.
2071 	 */
2072 	if (unlikely(inode->i_private)) {
2073 		struct shmem_falloc *shmem_falloc;
2074 
2075 		spin_lock(&inode->i_lock);
2076 		shmem_falloc = inode->i_private;
2077 		if (shmem_falloc &&
2078 		    shmem_falloc->waitq &&
2079 		    vmf->pgoff >= shmem_falloc->start &&
2080 		    vmf->pgoff < shmem_falloc->next) {
2081 			struct file *fpin;
2082 			wait_queue_head_t *shmem_falloc_waitq;
2083 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2084 
2085 			ret = VM_FAULT_NOPAGE;
2086 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2087 			if (fpin)
2088 				ret = VM_FAULT_RETRY;
2089 
2090 			shmem_falloc_waitq = shmem_falloc->waitq;
2091 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2092 					TASK_UNINTERRUPTIBLE);
2093 			spin_unlock(&inode->i_lock);
2094 			schedule();
2095 
2096 			/*
2097 			 * shmem_falloc_waitq points into the shmem_fallocate()
2098 			 * stack of the hole-punching task: shmem_falloc_waitq
2099 			 * is usually invalid by the time we reach here, but
2100 			 * finish_wait() does not dereference it in that case;
2101 			 * though i_lock needed lest racing with wake_up_all().
2102 			 */
2103 			spin_lock(&inode->i_lock);
2104 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2105 			spin_unlock(&inode->i_lock);
2106 
2107 			if (fpin)
2108 				fput(fpin);
2109 			return ret;
2110 		}
2111 		spin_unlock(&inode->i_lock);
2112 	}
2113 
2114 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2115 				  gfp, vma, vmf, &ret);
2116 	if (err)
2117 		return vmf_error(err);
2118 	return ret;
2119 }
2120 
2121 unsigned long shmem_get_unmapped_area(struct file *file,
2122 				      unsigned long uaddr, unsigned long len,
2123 				      unsigned long pgoff, unsigned long flags)
2124 {
2125 	unsigned long (*get_area)(struct file *,
2126 		unsigned long, unsigned long, unsigned long, unsigned long);
2127 	unsigned long addr;
2128 	unsigned long offset;
2129 	unsigned long inflated_len;
2130 	unsigned long inflated_addr;
2131 	unsigned long inflated_offset;
2132 
2133 	if (len > TASK_SIZE)
2134 		return -ENOMEM;
2135 
2136 	get_area = current->mm->get_unmapped_area;
2137 	addr = get_area(file, uaddr, len, pgoff, flags);
2138 
2139 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2140 		return addr;
2141 	if (IS_ERR_VALUE(addr))
2142 		return addr;
2143 	if (addr & ~PAGE_MASK)
2144 		return addr;
2145 	if (addr > TASK_SIZE - len)
2146 		return addr;
2147 
2148 	if (shmem_huge == SHMEM_HUGE_DENY)
2149 		return addr;
2150 	if (len < HPAGE_PMD_SIZE)
2151 		return addr;
2152 	if (flags & MAP_FIXED)
2153 		return addr;
2154 	/*
2155 	 * Our priority is to support MAP_SHARED mapped hugely;
2156 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2157 	 * But if caller specified an address hint and we allocated area there
2158 	 * successfully, respect that as before.
2159 	 */
2160 	if (uaddr == addr)
2161 		return addr;
2162 
2163 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2164 		struct super_block *sb;
2165 
2166 		if (file) {
2167 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2168 			sb = file_inode(file)->i_sb;
2169 		} else {
2170 			/*
2171 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2172 			 * for "/dev/zero", to create a shared anonymous object.
2173 			 */
2174 			if (IS_ERR(shm_mnt))
2175 				return addr;
2176 			sb = shm_mnt->mnt_sb;
2177 		}
2178 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2179 			return addr;
2180 	}
2181 
2182 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2183 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2184 		return addr;
2185 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2186 		return addr;
2187 
2188 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2189 	if (inflated_len > TASK_SIZE)
2190 		return addr;
2191 	if (inflated_len < len)
2192 		return addr;
2193 
2194 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2195 	if (IS_ERR_VALUE(inflated_addr))
2196 		return addr;
2197 	if (inflated_addr & ~PAGE_MASK)
2198 		return addr;
2199 
2200 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2201 	inflated_addr += offset - inflated_offset;
2202 	if (inflated_offset > offset)
2203 		inflated_addr += HPAGE_PMD_SIZE;
2204 
2205 	if (inflated_addr > TASK_SIZE - len)
2206 		return addr;
2207 	return inflated_addr;
2208 }
2209 
2210 #ifdef CONFIG_NUMA
2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2212 {
2213 	struct inode *inode = file_inode(vma->vm_file);
2214 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2215 }
2216 
2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2218 					  unsigned long addr)
2219 {
2220 	struct inode *inode = file_inode(vma->vm_file);
2221 	pgoff_t index;
2222 
2223 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2225 }
2226 #endif
2227 
2228 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2229 {
2230 	struct inode *inode = file_inode(file);
2231 	struct shmem_inode_info *info = SHMEM_I(inode);
2232 	int retval = -ENOMEM;
2233 
2234 	/*
2235 	 * What serializes the accesses to info->flags?
2236 	 * ipc_lock_object() when called from shmctl_do_lock(),
2237 	 * no serialization needed when called from shm_destroy().
2238 	 */
2239 	if (lock && !(info->flags & VM_LOCKED)) {
2240 		if (!user_shm_lock(inode->i_size, ucounts))
2241 			goto out_nomem;
2242 		info->flags |= VM_LOCKED;
2243 		mapping_set_unevictable(file->f_mapping);
2244 	}
2245 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2246 		user_shm_unlock(inode->i_size, ucounts);
2247 		info->flags &= ~VM_LOCKED;
2248 		mapping_clear_unevictable(file->f_mapping);
2249 	}
2250 	retval = 0;
2251 
2252 out_nomem:
2253 	return retval;
2254 }
2255 
2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2257 {
2258 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2259 	int ret;
2260 
2261 	ret = seal_check_future_write(info->seals, vma);
2262 	if (ret)
2263 		return ret;
2264 
2265 	/* arm64 - allow memory tagging on RAM-based files */
2266 	vma->vm_flags |= VM_MTE_ALLOWED;
2267 
2268 	file_accessed(file);
2269 	vma->vm_ops = &shmem_vm_ops;
2270 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2271 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2272 			(vma->vm_end & HPAGE_PMD_MASK)) {
2273 		khugepaged_enter(vma, vma->vm_flags);
2274 	}
2275 	return 0;
2276 }
2277 
2278 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2279 				     umode_t mode, dev_t dev, unsigned long flags)
2280 {
2281 	struct inode *inode;
2282 	struct shmem_inode_info *info;
2283 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2284 	ino_t ino;
2285 
2286 	if (shmem_reserve_inode(sb, &ino))
2287 		return NULL;
2288 
2289 	inode = new_inode(sb);
2290 	if (inode) {
2291 		inode->i_ino = ino;
2292 		inode_init_owner(&init_user_ns, inode, dir, mode);
2293 		inode->i_blocks = 0;
2294 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2295 		inode->i_generation = prandom_u32();
2296 		info = SHMEM_I(inode);
2297 		memset(info, 0, (char *)inode - (char *)info);
2298 		spin_lock_init(&info->lock);
2299 		atomic_set(&info->stop_eviction, 0);
2300 		info->seals = F_SEAL_SEAL;
2301 		info->flags = flags & VM_NORESERVE;
2302 		INIT_LIST_HEAD(&info->shrinklist);
2303 		INIT_LIST_HEAD(&info->swaplist);
2304 		simple_xattrs_init(&info->xattrs);
2305 		cache_no_acl(inode);
2306 		mapping_set_large_folios(inode->i_mapping);
2307 
2308 		switch (mode & S_IFMT) {
2309 		default:
2310 			inode->i_op = &shmem_special_inode_operations;
2311 			init_special_inode(inode, mode, dev);
2312 			break;
2313 		case S_IFREG:
2314 			inode->i_mapping->a_ops = &shmem_aops;
2315 			inode->i_op = &shmem_inode_operations;
2316 			inode->i_fop = &shmem_file_operations;
2317 			mpol_shared_policy_init(&info->policy,
2318 						 shmem_get_sbmpol(sbinfo));
2319 			break;
2320 		case S_IFDIR:
2321 			inc_nlink(inode);
2322 			/* Some things misbehave if size == 0 on a directory */
2323 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 			inode->i_op = &shmem_dir_inode_operations;
2325 			inode->i_fop = &simple_dir_operations;
2326 			break;
2327 		case S_IFLNK:
2328 			/*
2329 			 * Must not load anything in the rbtree,
2330 			 * mpol_free_shared_policy will not be called.
2331 			 */
2332 			mpol_shared_policy_init(&info->policy, NULL);
2333 			break;
2334 		}
2335 
2336 		lockdep_annotate_inode_mutex_key(inode);
2337 	} else
2338 		shmem_free_inode(sb);
2339 	return inode;
2340 }
2341 
2342 #ifdef CONFIG_USERFAULTFD
2343 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 			   pmd_t *dst_pmd,
2345 			   struct vm_area_struct *dst_vma,
2346 			   unsigned long dst_addr,
2347 			   unsigned long src_addr,
2348 			   bool zeropage,
2349 			   struct page **pagep)
2350 {
2351 	struct inode *inode = file_inode(dst_vma->vm_file);
2352 	struct shmem_inode_info *info = SHMEM_I(inode);
2353 	struct address_space *mapping = inode->i_mapping;
2354 	gfp_t gfp = mapping_gfp_mask(mapping);
2355 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2356 	void *page_kaddr;
2357 	struct page *page;
2358 	int ret;
2359 	pgoff_t max_off;
2360 
2361 	if (!shmem_inode_acct_block(inode, 1)) {
2362 		/*
2363 		 * We may have got a page, returned -ENOENT triggering a retry,
2364 		 * and now we find ourselves with -ENOMEM. Release the page, to
2365 		 * avoid a BUG_ON in our caller.
2366 		 */
2367 		if (unlikely(*pagep)) {
2368 			put_page(*pagep);
2369 			*pagep = NULL;
2370 		}
2371 		return -ENOMEM;
2372 	}
2373 
2374 	if (!*pagep) {
2375 		ret = -ENOMEM;
2376 		page = shmem_alloc_page(gfp, info, pgoff);
2377 		if (!page)
2378 			goto out_unacct_blocks;
2379 
2380 		if (!zeropage) {	/* COPY */
2381 			page_kaddr = kmap_atomic(page);
2382 			ret = copy_from_user(page_kaddr,
2383 					     (const void __user *)src_addr,
2384 					     PAGE_SIZE);
2385 			kunmap_atomic(page_kaddr);
2386 
2387 			/* fallback to copy_from_user outside mmap_lock */
2388 			if (unlikely(ret)) {
2389 				*pagep = page;
2390 				ret = -ENOENT;
2391 				/* don't free the page */
2392 				goto out_unacct_blocks;
2393 			}
2394 		} else {		/* ZEROPAGE */
2395 			clear_highpage(page);
2396 		}
2397 	} else {
2398 		page = *pagep;
2399 		*pagep = NULL;
2400 	}
2401 
2402 	VM_BUG_ON(PageLocked(page));
2403 	VM_BUG_ON(PageSwapBacked(page));
2404 	__SetPageLocked(page);
2405 	__SetPageSwapBacked(page);
2406 	__SetPageUptodate(page);
2407 
2408 	ret = -EFAULT;
2409 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2410 	if (unlikely(pgoff >= max_off))
2411 		goto out_release;
2412 
2413 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2414 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2415 	if (ret)
2416 		goto out_release;
2417 
2418 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2419 				       page, true, false);
2420 	if (ret)
2421 		goto out_delete_from_cache;
2422 
2423 	spin_lock_irq(&info->lock);
2424 	info->alloced++;
2425 	inode->i_blocks += BLOCKS_PER_PAGE;
2426 	shmem_recalc_inode(inode);
2427 	spin_unlock_irq(&info->lock);
2428 
2429 	unlock_page(page);
2430 	return 0;
2431 out_delete_from_cache:
2432 	delete_from_page_cache(page);
2433 out_release:
2434 	unlock_page(page);
2435 	put_page(page);
2436 out_unacct_blocks:
2437 	shmem_inode_unacct_blocks(inode, 1);
2438 	return ret;
2439 }
2440 #endif /* CONFIG_USERFAULTFD */
2441 
2442 #ifdef CONFIG_TMPFS
2443 static const struct inode_operations shmem_symlink_inode_operations;
2444 static const struct inode_operations shmem_short_symlink_operations;
2445 
2446 #ifdef CONFIG_TMPFS_XATTR
2447 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2448 #else
2449 #define shmem_initxattrs NULL
2450 #endif
2451 
2452 static int
2453 shmem_write_begin(struct file *file, struct address_space *mapping,
2454 			loff_t pos, unsigned len, unsigned flags,
2455 			struct page **pagep, void **fsdata)
2456 {
2457 	struct inode *inode = mapping->host;
2458 	struct shmem_inode_info *info = SHMEM_I(inode);
2459 	pgoff_t index = pos >> PAGE_SHIFT;
2460 
2461 	/* i_rwsem is held by caller */
2462 	if (unlikely(info->seals & (F_SEAL_GROW |
2463 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2464 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2465 			return -EPERM;
2466 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2467 			return -EPERM;
2468 	}
2469 
2470 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2471 }
2472 
2473 static int
2474 shmem_write_end(struct file *file, struct address_space *mapping,
2475 			loff_t pos, unsigned len, unsigned copied,
2476 			struct page *page, void *fsdata)
2477 {
2478 	struct inode *inode = mapping->host;
2479 
2480 	if (pos + copied > inode->i_size)
2481 		i_size_write(inode, pos + copied);
2482 
2483 	if (!PageUptodate(page)) {
2484 		struct page *head = compound_head(page);
2485 		if (PageTransCompound(page)) {
2486 			int i;
2487 
2488 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2489 				if (head + i == page)
2490 					continue;
2491 				clear_highpage(head + i);
2492 				flush_dcache_page(head + i);
2493 			}
2494 		}
2495 		if (copied < PAGE_SIZE) {
2496 			unsigned from = pos & (PAGE_SIZE - 1);
2497 			zero_user_segments(page, 0, from,
2498 					from + copied, PAGE_SIZE);
2499 		}
2500 		SetPageUptodate(head);
2501 	}
2502 	set_page_dirty(page);
2503 	unlock_page(page);
2504 	put_page(page);
2505 
2506 	return copied;
2507 }
2508 
2509 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2510 {
2511 	struct file *file = iocb->ki_filp;
2512 	struct inode *inode = file_inode(file);
2513 	struct address_space *mapping = inode->i_mapping;
2514 	pgoff_t index;
2515 	unsigned long offset;
2516 	enum sgp_type sgp = SGP_READ;
2517 	int error = 0;
2518 	ssize_t retval = 0;
2519 	loff_t *ppos = &iocb->ki_pos;
2520 
2521 	/*
2522 	 * Might this read be for a stacking filesystem?  Then when reading
2523 	 * holes of a sparse file, we actually need to allocate those pages,
2524 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2525 	 */
2526 	if (!iter_is_iovec(to))
2527 		sgp = SGP_CACHE;
2528 
2529 	index = *ppos >> PAGE_SHIFT;
2530 	offset = *ppos & ~PAGE_MASK;
2531 
2532 	for (;;) {
2533 		struct page *page = NULL;
2534 		pgoff_t end_index;
2535 		unsigned long nr, ret;
2536 		loff_t i_size = i_size_read(inode);
2537 
2538 		end_index = i_size >> PAGE_SHIFT;
2539 		if (index > end_index)
2540 			break;
2541 		if (index == end_index) {
2542 			nr = i_size & ~PAGE_MASK;
2543 			if (nr <= offset)
2544 				break;
2545 		}
2546 
2547 		error = shmem_getpage(inode, index, &page, sgp);
2548 		if (error) {
2549 			if (error == -EINVAL)
2550 				error = 0;
2551 			break;
2552 		}
2553 		if (page) {
2554 			if (sgp == SGP_CACHE)
2555 				set_page_dirty(page);
2556 			unlock_page(page);
2557 		}
2558 
2559 		/*
2560 		 * We must evaluate after, since reads (unlike writes)
2561 		 * are called without i_rwsem protection against truncate
2562 		 */
2563 		nr = PAGE_SIZE;
2564 		i_size = i_size_read(inode);
2565 		end_index = i_size >> PAGE_SHIFT;
2566 		if (index == end_index) {
2567 			nr = i_size & ~PAGE_MASK;
2568 			if (nr <= offset) {
2569 				if (page)
2570 					put_page(page);
2571 				break;
2572 			}
2573 		}
2574 		nr -= offset;
2575 
2576 		if (page) {
2577 			/*
2578 			 * If users can be writing to this page using arbitrary
2579 			 * virtual addresses, take care about potential aliasing
2580 			 * before reading the page on the kernel side.
2581 			 */
2582 			if (mapping_writably_mapped(mapping))
2583 				flush_dcache_page(page);
2584 			/*
2585 			 * Mark the page accessed if we read the beginning.
2586 			 */
2587 			if (!offset)
2588 				mark_page_accessed(page);
2589 		} else {
2590 			page = ZERO_PAGE(0);
2591 			get_page(page);
2592 		}
2593 
2594 		/*
2595 		 * Ok, we have the page, and it's up-to-date, so
2596 		 * now we can copy it to user space...
2597 		 */
2598 		ret = copy_page_to_iter(page, offset, nr, to);
2599 		retval += ret;
2600 		offset += ret;
2601 		index += offset >> PAGE_SHIFT;
2602 		offset &= ~PAGE_MASK;
2603 
2604 		put_page(page);
2605 		if (!iov_iter_count(to))
2606 			break;
2607 		if (ret < nr) {
2608 			error = -EFAULT;
2609 			break;
2610 		}
2611 		cond_resched();
2612 	}
2613 
2614 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2615 	file_accessed(file);
2616 	return retval ? retval : error;
2617 }
2618 
2619 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2620 {
2621 	struct address_space *mapping = file->f_mapping;
2622 	struct inode *inode = mapping->host;
2623 
2624 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2625 		return generic_file_llseek_size(file, offset, whence,
2626 					MAX_LFS_FILESIZE, i_size_read(inode));
2627 	if (offset < 0)
2628 		return -ENXIO;
2629 
2630 	inode_lock(inode);
2631 	/* We're holding i_rwsem so we can access i_size directly */
2632 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2633 	if (offset >= 0)
2634 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2635 	inode_unlock(inode);
2636 	return offset;
2637 }
2638 
2639 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2640 							 loff_t len)
2641 {
2642 	struct inode *inode = file_inode(file);
2643 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2644 	struct shmem_inode_info *info = SHMEM_I(inode);
2645 	struct shmem_falloc shmem_falloc;
2646 	pgoff_t start, index, end, undo_fallocend;
2647 	int error;
2648 
2649 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2650 		return -EOPNOTSUPP;
2651 
2652 	inode_lock(inode);
2653 
2654 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2655 		struct address_space *mapping = file->f_mapping;
2656 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2657 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2658 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2659 
2660 		/* protected by i_rwsem */
2661 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2662 			error = -EPERM;
2663 			goto out;
2664 		}
2665 
2666 		shmem_falloc.waitq = &shmem_falloc_waitq;
2667 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2668 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2669 		spin_lock(&inode->i_lock);
2670 		inode->i_private = &shmem_falloc;
2671 		spin_unlock(&inode->i_lock);
2672 
2673 		if ((u64)unmap_end > (u64)unmap_start)
2674 			unmap_mapping_range(mapping, unmap_start,
2675 					    1 + unmap_end - unmap_start, 0);
2676 		shmem_truncate_range(inode, offset, offset + len - 1);
2677 		/* No need to unmap again: hole-punching leaves COWed pages */
2678 
2679 		spin_lock(&inode->i_lock);
2680 		inode->i_private = NULL;
2681 		wake_up_all(&shmem_falloc_waitq);
2682 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2683 		spin_unlock(&inode->i_lock);
2684 		error = 0;
2685 		goto out;
2686 	}
2687 
2688 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2689 	error = inode_newsize_ok(inode, offset + len);
2690 	if (error)
2691 		goto out;
2692 
2693 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2694 		error = -EPERM;
2695 		goto out;
2696 	}
2697 
2698 	start = offset >> PAGE_SHIFT;
2699 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2700 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2701 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2702 		error = -ENOSPC;
2703 		goto out;
2704 	}
2705 
2706 	shmem_falloc.waitq = NULL;
2707 	shmem_falloc.start = start;
2708 	shmem_falloc.next  = start;
2709 	shmem_falloc.nr_falloced = 0;
2710 	shmem_falloc.nr_unswapped = 0;
2711 	spin_lock(&inode->i_lock);
2712 	inode->i_private = &shmem_falloc;
2713 	spin_unlock(&inode->i_lock);
2714 
2715 	/*
2716 	 * info->fallocend is only relevant when huge pages might be
2717 	 * involved: to prevent split_huge_page() freeing fallocated
2718 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2719 	 */
2720 	undo_fallocend = info->fallocend;
2721 	if (info->fallocend < end)
2722 		info->fallocend = end;
2723 
2724 	for (index = start; index < end; ) {
2725 		struct page *page;
2726 
2727 		/*
2728 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2729 		 * been interrupted because we are using up too much memory.
2730 		 */
2731 		if (signal_pending(current))
2732 			error = -EINTR;
2733 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2734 			error = -ENOMEM;
2735 		else
2736 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2737 		if (error) {
2738 			info->fallocend = undo_fallocend;
2739 			/* Remove the !PageUptodate pages we added */
2740 			if (index > start) {
2741 				shmem_undo_range(inode,
2742 				    (loff_t)start << PAGE_SHIFT,
2743 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2744 			}
2745 			goto undone;
2746 		}
2747 
2748 		index++;
2749 		/*
2750 		 * Here is a more important optimization than it appears:
2751 		 * a second SGP_FALLOC on the same huge page will clear it,
2752 		 * making it PageUptodate and un-undoable if we fail later.
2753 		 */
2754 		if (PageTransCompound(page)) {
2755 			index = round_up(index, HPAGE_PMD_NR);
2756 			/* Beware 32-bit wraparound */
2757 			if (!index)
2758 				index--;
2759 		}
2760 
2761 		/*
2762 		 * Inform shmem_writepage() how far we have reached.
2763 		 * No need for lock or barrier: we have the page lock.
2764 		 */
2765 		if (!PageUptodate(page))
2766 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2767 		shmem_falloc.next = index;
2768 
2769 		/*
2770 		 * If !PageUptodate, leave it that way so that freeable pages
2771 		 * can be recognized if we need to rollback on error later.
2772 		 * But set_page_dirty so that memory pressure will swap rather
2773 		 * than free the pages we are allocating (and SGP_CACHE pages
2774 		 * might still be clean: we now need to mark those dirty too).
2775 		 */
2776 		set_page_dirty(page);
2777 		unlock_page(page);
2778 		put_page(page);
2779 		cond_resched();
2780 	}
2781 
2782 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2783 		i_size_write(inode, offset + len);
2784 	inode->i_ctime = current_time(inode);
2785 undone:
2786 	spin_lock(&inode->i_lock);
2787 	inode->i_private = NULL;
2788 	spin_unlock(&inode->i_lock);
2789 out:
2790 	inode_unlock(inode);
2791 	return error;
2792 }
2793 
2794 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2795 {
2796 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2797 
2798 	buf->f_type = TMPFS_MAGIC;
2799 	buf->f_bsize = PAGE_SIZE;
2800 	buf->f_namelen = NAME_MAX;
2801 	if (sbinfo->max_blocks) {
2802 		buf->f_blocks = sbinfo->max_blocks;
2803 		buf->f_bavail =
2804 		buf->f_bfree  = sbinfo->max_blocks -
2805 				percpu_counter_sum(&sbinfo->used_blocks);
2806 	}
2807 	if (sbinfo->max_inodes) {
2808 		buf->f_files = sbinfo->max_inodes;
2809 		buf->f_ffree = sbinfo->free_inodes;
2810 	}
2811 	/* else leave those fields 0 like simple_statfs */
2812 
2813 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2814 
2815 	return 0;
2816 }
2817 
2818 /*
2819  * File creation. Allocate an inode, and we're done..
2820  */
2821 static int
2822 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2823 	    struct dentry *dentry, umode_t mode, dev_t dev)
2824 {
2825 	struct inode *inode;
2826 	int error = -ENOSPC;
2827 
2828 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2829 	if (inode) {
2830 		error = simple_acl_create(dir, inode);
2831 		if (error)
2832 			goto out_iput;
2833 		error = security_inode_init_security(inode, dir,
2834 						     &dentry->d_name,
2835 						     shmem_initxattrs, NULL);
2836 		if (error && error != -EOPNOTSUPP)
2837 			goto out_iput;
2838 
2839 		error = 0;
2840 		dir->i_size += BOGO_DIRENT_SIZE;
2841 		dir->i_ctime = dir->i_mtime = current_time(dir);
2842 		d_instantiate(dentry, inode);
2843 		dget(dentry); /* Extra count - pin the dentry in core */
2844 	}
2845 	return error;
2846 out_iput:
2847 	iput(inode);
2848 	return error;
2849 }
2850 
2851 static int
2852 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2853 	      struct dentry *dentry, umode_t mode)
2854 {
2855 	struct inode *inode;
2856 	int error = -ENOSPC;
2857 
2858 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2859 	if (inode) {
2860 		error = security_inode_init_security(inode, dir,
2861 						     NULL,
2862 						     shmem_initxattrs, NULL);
2863 		if (error && error != -EOPNOTSUPP)
2864 			goto out_iput;
2865 		error = simple_acl_create(dir, inode);
2866 		if (error)
2867 			goto out_iput;
2868 		d_tmpfile(dentry, inode);
2869 	}
2870 	return error;
2871 out_iput:
2872 	iput(inode);
2873 	return error;
2874 }
2875 
2876 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2877 		       struct dentry *dentry, umode_t mode)
2878 {
2879 	int error;
2880 
2881 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2882 				 mode | S_IFDIR, 0)))
2883 		return error;
2884 	inc_nlink(dir);
2885 	return 0;
2886 }
2887 
2888 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2889 			struct dentry *dentry, umode_t mode, bool excl)
2890 {
2891 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2892 }
2893 
2894 /*
2895  * Link a file..
2896  */
2897 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2898 {
2899 	struct inode *inode = d_inode(old_dentry);
2900 	int ret = 0;
2901 
2902 	/*
2903 	 * No ordinary (disk based) filesystem counts links as inodes;
2904 	 * but each new link needs a new dentry, pinning lowmem, and
2905 	 * tmpfs dentries cannot be pruned until they are unlinked.
2906 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2907 	 * first link must skip that, to get the accounting right.
2908 	 */
2909 	if (inode->i_nlink) {
2910 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2911 		if (ret)
2912 			goto out;
2913 	}
2914 
2915 	dir->i_size += BOGO_DIRENT_SIZE;
2916 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2917 	inc_nlink(inode);
2918 	ihold(inode);	/* New dentry reference */
2919 	dget(dentry);		/* Extra pinning count for the created dentry */
2920 	d_instantiate(dentry, inode);
2921 out:
2922 	return ret;
2923 }
2924 
2925 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2926 {
2927 	struct inode *inode = d_inode(dentry);
2928 
2929 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2930 		shmem_free_inode(inode->i_sb);
2931 
2932 	dir->i_size -= BOGO_DIRENT_SIZE;
2933 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2934 	drop_nlink(inode);
2935 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2936 	return 0;
2937 }
2938 
2939 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2940 {
2941 	if (!simple_empty(dentry))
2942 		return -ENOTEMPTY;
2943 
2944 	drop_nlink(d_inode(dentry));
2945 	drop_nlink(dir);
2946 	return shmem_unlink(dir, dentry);
2947 }
2948 
2949 static int shmem_whiteout(struct user_namespace *mnt_userns,
2950 			  struct inode *old_dir, struct dentry *old_dentry)
2951 {
2952 	struct dentry *whiteout;
2953 	int error;
2954 
2955 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2956 	if (!whiteout)
2957 		return -ENOMEM;
2958 
2959 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2960 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2961 	dput(whiteout);
2962 	if (error)
2963 		return error;
2964 
2965 	/*
2966 	 * Cheat and hash the whiteout while the old dentry is still in
2967 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2968 	 *
2969 	 * d_lookup() will consistently find one of them at this point,
2970 	 * not sure which one, but that isn't even important.
2971 	 */
2972 	d_rehash(whiteout);
2973 	return 0;
2974 }
2975 
2976 /*
2977  * The VFS layer already does all the dentry stuff for rename,
2978  * we just have to decrement the usage count for the target if
2979  * it exists so that the VFS layer correctly free's it when it
2980  * gets overwritten.
2981  */
2982 static int shmem_rename2(struct user_namespace *mnt_userns,
2983 			 struct inode *old_dir, struct dentry *old_dentry,
2984 			 struct inode *new_dir, struct dentry *new_dentry,
2985 			 unsigned int flags)
2986 {
2987 	struct inode *inode = d_inode(old_dentry);
2988 	int they_are_dirs = S_ISDIR(inode->i_mode);
2989 
2990 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2991 		return -EINVAL;
2992 
2993 	if (flags & RENAME_EXCHANGE)
2994 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2995 
2996 	if (!simple_empty(new_dentry))
2997 		return -ENOTEMPTY;
2998 
2999 	if (flags & RENAME_WHITEOUT) {
3000 		int error;
3001 
3002 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3003 		if (error)
3004 			return error;
3005 	}
3006 
3007 	if (d_really_is_positive(new_dentry)) {
3008 		(void) shmem_unlink(new_dir, new_dentry);
3009 		if (they_are_dirs) {
3010 			drop_nlink(d_inode(new_dentry));
3011 			drop_nlink(old_dir);
3012 		}
3013 	} else if (they_are_dirs) {
3014 		drop_nlink(old_dir);
3015 		inc_nlink(new_dir);
3016 	}
3017 
3018 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3019 	new_dir->i_size += BOGO_DIRENT_SIZE;
3020 	old_dir->i_ctime = old_dir->i_mtime =
3021 	new_dir->i_ctime = new_dir->i_mtime =
3022 	inode->i_ctime = current_time(old_dir);
3023 	return 0;
3024 }
3025 
3026 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3027 			 struct dentry *dentry, const char *symname)
3028 {
3029 	int error;
3030 	int len;
3031 	struct inode *inode;
3032 	struct page *page;
3033 
3034 	len = strlen(symname) + 1;
3035 	if (len > PAGE_SIZE)
3036 		return -ENAMETOOLONG;
3037 
3038 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3039 				VM_NORESERVE);
3040 	if (!inode)
3041 		return -ENOSPC;
3042 
3043 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3044 					     shmem_initxattrs, NULL);
3045 	if (error && error != -EOPNOTSUPP) {
3046 		iput(inode);
3047 		return error;
3048 	}
3049 
3050 	inode->i_size = len-1;
3051 	if (len <= SHORT_SYMLINK_LEN) {
3052 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3053 		if (!inode->i_link) {
3054 			iput(inode);
3055 			return -ENOMEM;
3056 		}
3057 		inode->i_op = &shmem_short_symlink_operations;
3058 	} else {
3059 		inode_nohighmem(inode);
3060 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3061 		if (error) {
3062 			iput(inode);
3063 			return error;
3064 		}
3065 		inode->i_mapping->a_ops = &shmem_aops;
3066 		inode->i_op = &shmem_symlink_inode_operations;
3067 		memcpy(page_address(page), symname, len);
3068 		SetPageUptodate(page);
3069 		set_page_dirty(page);
3070 		unlock_page(page);
3071 		put_page(page);
3072 	}
3073 	dir->i_size += BOGO_DIRENT_SIZE;
3074 	dir->i_ctime = dir->i_mtime = current_time(dir);
3075 	d_instantiate(dentry, inode);
3076 	dget(dentry);
3077 	return 0;
3078 }
3079 
3080 static void shmem_put_link(void *arg)
3081 {
3082 	mark_page_accessed(arg);
3083 	put_page(arg);
3084 }
3085 
3086 static const char *shmem_get_link(struct dentry *dentry,
3087 				  struct inode *inode,
3088 				  struct delayed_call *done)
3089 {
3090 	struct page *page = NULL;
3091 	int error;
3092 	if (!dentry) {
3093 		page = find_get_page(inode->i_mapping, 0);
3094 		if (!page)
3095 			return ERR_PTR(-ECHILD);
3096 		if (!PageUptodate(page)) {
3097 			put_page(page);
3098 			return ERR_PTR(-ECHILD);
3099 		}
3100 	} else {
3101 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3102 		if (error)
3103 			return ERR_PTR(error);
3104 		unlock_page(page);
3105 	}
3106 	set_delayed_call(done, shmem_put_link, page);
3107 	return page_address(page);
3108 }
3109 
3110 #ifdef CONFIG_TMPFS_XATTR
3111 /*
3112  * Superblocks without xattr inode operations may get some security.* xattr
3113  * support from the LSM "for free". As soon as we have any other xattrs
3114  * like ACLs, we also need to implement the security.* handlers at
3115  * filesystem level, though.
3116  */
3117 
3118 /*
3119  * Callback for security_inode_init_security() for acquiring xattrs.
3120  */
3121 static int shmem_initxattrs(struct inode *inode,
3122 			    const struct xattr *xattr_array,
3123 			    void *fs_info)
3124 {
3125 	struct shmem_inode_info *info = SHMEM_I(inode);
3126 	const struct xattr *xattr;
3127 	struct simple_xattr *new_xattr;
3128 	size_t len;
3129 
3130 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3131 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3132 		if (!new_xattr)
3133 			return -ENOMEM;
3134 
3135 		len = strlen(xattr->name) + 1;
3136 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3137 					  GFP_KERNEL);
3138 		if (!new_xattr->name) {
3139 			kvfree(new_xattr);
3140 			return -ENOMEM;
3141 		}
3142 
3143 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3144 		       XATTR_SECURITY_PREFIX_LEN);
3145 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3146 		       xattr->name, len);
3147 
3148 		simple_xattr_list_add(&info->xattrs, new_xattr);
3149 	}
3150 
3151 	return 0;
3152 }
3153 
3154 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3155 				   struct dentry *unused, struct inode *inode,
3156 				   const char *name, void *buffer, size_t size)
3157 {
3158 	struct shmem_inode_info *info = SHMEM_I(inode);
3159 
3160 	name = xattr_full_name(handler, name);
3161 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3162 }
3163 
3164 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3165 				   struct user_namespace *mnt_userns,
3166 				   struct dentry *unused, struct inode *inode,
3167 				   const char *name, const void *value,
3168 				   size_t size, int flags)
3169 {
3170 	struct shmem_inode_info *info = SHMEM_I(inode);
3171 
3172 	name = xattr_full_name(handler, name);
3173 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3174 }
3175 
3176 static const struct xattr_handler shmem_security_xattr_handler = {
3177 	.prefix = XATTR_SECURITY_PREFIX,
3178 	.get = shmem_xattr_handler_get,
3179 	.set = shmem_xattr_handler_set,
3180 };
3181 
3182 static const struct xattr_handler shmem_trusted_xattr_handler = {
3183 	.prefix = XATTR_TRUSTED_PREFIX,
3184 	.get = shmem_xattr_handler_get,
3185 	.set = shmem_xattr_handler_set,
3186 };
3187 
3188 static const struct xattr_handler *shmem_xattr_handlers[] = {
3189 #ifdef CONFIG_TMPFS_POSIX_ACL
3190 	&posix_acl_access_xattr_handler,
3191 	&posix_acl_default_xattr_handler,
3192 #endif
3193 	&shmem_security_xattr_handler,
3194 	&shmem_trusted_xattr_handler,
3195 	NULL
3196 };
3197 
3198 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3199 {
3200 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3201 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3202 }
3203 #endif /* CONFIG_TMPFS_XATTR */
3204 
3205 static const struct inode_operations shmem_short_symlink_operations = {
3206 	.get_link	= simple_get_link,
3207 #ifdef CONFIG_TMPFS_XATTR
3208 	.listxattr	= shmem_listxattr,
3209 #endif
3210 };
3211 
3212 static const struct inode_operations shmem_symlink_inode_operations = {
3213 	.get_link	= shmem_get_link,
3214 #ifdef CONFIG_TMPFS_XATTR
3215 	.listxattr	= shmem_listxattr,
3216 #endif
3217 };
3218 
3219 static struct dentry *shmem_get_parent(struct dentry *child)
3220 {
3221 	return ERR_PTR(-ESTALE);
3222 }
3223 
3224 static int shmem_match(struct inode *ino, void *vfh)
3225 {
3226 	__u32 *fh = vfh;
3227 	__u64 inum = fh[2];
3228 	inum = (inum << 32) | fh[1];
3229 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3230 }
3231 
3232 /* Find any alias of inode, but prefer a hashed alias */
3233 static struct dentry *shmem_find_alias(struct inode *inode)
3234 {
3235 	struct dentry *alias = d_find_alias(inode);
3236 
3237 	return alias ?: d_find_any_alias(inode);
3238 }
3239 
3240 
3241 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3242 		struct fid *fid, int fh_len, int fh_type)
3243 {
3244 	struct inode *inode;
3245 	struct dentry *dentry = NULL;
3246 	u64 inum;
3247 
3248 	if (fh_len < 3)
3249 		return NULL;
3250 
3251 	inum = fid->raw[2];
3252 	inum = (inum << 32) | fid->raw[1];
3253 
3254 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3255 			shmem_match, fid->raw);
3256 	if (inode) {
3257 		dentry = shmem_find_alias(inode);
3258 		iput(inode);
3259 	}
3260 
3261 	return dentry;
3262 }
3263 
3264 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3265 				struct inode *parent)
3266 {
3267 	if (*len < 3) {
3268 		*len = 3;
3269 		return FILEID_INVALID;
3270 	}
3271 
3272 	if (inode_unhashed(inode)) {
3273 		/* Unfortunately insert_inode_hash is not idempotent,
3274 		 * so as we hash inodes here rather than at creation
3275 		 * time, we need a lock to ensure we only try
3276 		 * to do it once
3277 		 */
3278 		static DEFINE_SPINLOCK(lock);
3279 		spin_lock(&lock);
3280 		if (inode_unhashed(inode))
3281 			__insert_inode_hash(inode,
3282 					    inode->i_ino + inode->i_generation);
3283 		spin_unlock(&lock);
3284 	}
3285 
3286 	fh[0] = inode->i_generation;
3287 	fh[1] = inode->i_ino;
3288 	fh[2] = ((__u64)inode->i_ino) >> 32;
3289 
3290 	*len = 3;
3291 	return 1;
3292 }
3293 
3294 static const struct export_operations shmem_export_ops = {
3295 	.get_parent     = shmem_get_parent,
3296 	.encode_fh      = shmem_encode_fh,
3297 	.fh_to_dentry	= shmem_fh_to_dentry,
3298 };
3299 
3300 enum shmem_param {
3301 	Opt_gid,
3302 	Opt_huge,
3303 	Opt_mode,
3304 	Opt_mpol,
3305 	Opt_nr_blocks,
3306 	Opt_nr_inodes,
3307 	Opt_size,
3308 	Opt_uid,
3309 	Opt_inode32,
3310 	Opt_inode64,
3311 };
3312 
3313 static const struct constant_table shmem_param_enums_huge[] = {
3314 	{"never",	SHMEM_HUGE_NEVER },
3315 	{"always",	SHMEM_HUGE_ALWAYS },
3316 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3317 	{"advise",	SHMEM_HUGE_ADVISE },
3318 	{}
3319 };
3320 
3321 const struct fs_parameter_spec shmem_fs_parameters[] = {
3322 	fsparam_u32   ("gid",		Opt_gid),
3323 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3324 	fsparam_u32oct("mode",		Opt_mode),
3325 	fsparam_string("mpol",		Opt_mpol),
3326 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3327 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3328 	fsparam_string("size",		Opt_size),
3329 	fsparam_u32   ("uid",		Opt_uid),
3330 	fsparam_flag  ("inode32",	Opt_inode32),
3331 	fsparam_flag  ("inode64",	Opt_inode64),
3332 	{}
3333 };
3334 
3335 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3336 {
3337 	struct shmem_options *ctx = fc->fs_private;
3338 	struct fs_parse_result result;
3339 	unsigned long long size;
3340 	char *rest;
3341 	int opt;
3342 
3343 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3344 	if (opt < 0)
3345 		return opt;
3346 
3347 	switch (opt) {
3348 	case Opt_size:
3349 		size = memparse(param->string, &rest);
3350 		if (*rest == '%') {
3351 			size <<= PAGE_SHIFT;
3352 			size *= totalram_pages();
3353 			do_div(size, 100);
3354 			rest++;
3355 		}
3356 		if (*rest)
3357 			goto bad_value;
3358 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3359 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3360 		break;
3361 	case Opt_nr_blocks:
3362 		ctx->blocks = memparse(param->string, &rest);
3363 		if (*rest)
3364 			goto bad_value;
3365 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3366 		break;
3367 	case Opt_nr_inodes:
3368 		ctx->inodes = memparse(param->string, &rest);
3369 		if (*rest)
3370 			goto bad_value;
3371 		ctx->seen |= SHMEM_SEEN_INODES;
3372 		break;
3373 	case Opt_mode:
3374 		ctx->mode = result.uint_32 & 07777;
3375 		break;
3376 	case Opt_uid:
3377 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3378 		if (!uid_valid(ctx->uid))
3379 			goto bad_value;
3380 		break;
3381 	case Opt_gid:
3382 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3383 		if (!gid_valid(ctx->gid))
3384 			goto bad_value;
3385 		break;
3386 	case Opt_huge:
3387 		ctx->huge = result.uint_32;
3388 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3389 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3390 		      has_transparent_hugepage()))
3391 			goto unsupported_parameter;
3392 		ctx->seen |= SHMEM_SEEN_HUGE;
3393 		break;
3394 	case Opt_mpol:
3395 		if (IS_ENABLED(CONFIG_NUMA)) {
3396 			mpol_put(ctx->mpol);
3397 			ctx->mpol = NULL;
3398 			if (mpol_parse_str(param->string, &ctx->mpol))
3399 				goto bad_value;
3400 			break;
3401 		}
3402 		goto unsupported_parameter;
3403 	case Opt_inode32:
3404 		ctx->full_inums = false;
3405 		ctx->seen |= SHMEM_SEEN_INUMS;
3406 		break;
3407 	case Opt_inode64:
3408 		if (sizeof(ino_t) < 8) {
3409 			return invalfc(fc,
3410 				       "Cannot use inode64 with <64bit inums in kernel\n");
3411 		}
3412 		ctx->full_inums = true;
3413 		ctx->seen |= SHMEM_SEEN_INUMS;
3414 		break;
3415 	}
3416 	return 0;
3417 
3418 unsupported_parameter:
3419 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3420 bad_value:
3421 	return invalfc(fc, "Bad value for '%s'", param->key);
3422 }
3423 
3424 static int shmem_parse_options(struct fs_context *fc, void *data)
3425 {
3426 	char *options = data;
3427 
3428 	if (options) {
3429 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3430 		if (err)
3431 			return err;
3432 	}
3433 
3434 	while (options != NULL) {
3435 		char *this_char = options;
3436 		for (;;) {
3437 			/*
3438 			 * NUL-terminate this option: unfortunately,
3439 			 * mount options form a comma-separated list,
3440 			 * but mpol's nodelist may also contain commas.
3441 			 */
3442 			options = strchr(options, ',');
3443 			if (options == NULL)
3444 				break;
3445 			options++;
3446 			if (!isdigit(*options)) {
3447 				options[-1] = '\0';
3448 				break;
3449 			}
3450 		}
3451 		if (*this_char) {
3452 			char *value = strchr(this_char, '=');
3453 			size_t len = 0;
3454 			int err;
3455 
3456 			if (value) {
3457 				*value++ = '\0';
3458 				len = strlen(value);
3459 			}
3460 			err = vfs_parse_fs_string(fc, this_char, value, len);
3461 			if (err < 0)
3462 				return err;
3463 		}
3464 	}
3465 	return 0;
3466 }
3467 
3468 /*
3469  * Reconfigure a shmem filesystem.
3470  *
3471  * Note that we disallow change from limited->unlimited blocks/inodes while any
3472  * are in use; but we must separately disallow unlimited->limited, because in
3473  * that case we have no record of how much is already in use.
3474  */
3475 static int shmem_reconfigure(struct fs_context *fc)
3476 {
3477 	struct shmem_options *ctx = fc->fs_private;
3478 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3479 	unsigned long inodes;
3480 	struct mempolicy *mpol = NULL;
3481 	const char *err;
3482 
3483 	raw_spin_lock(&sbinfo->stat_lock);
3484 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3485 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3486 		if (!sbinfo->max_blocks) {
3487 			err = "Cannot retroactively limit size";
3488 			goto out;
3489 		}
3490 		if (percpu_counter_compare(&sbinfo->used_blocks,
3491 					   ctx->blocks) > 0) {
3492 			err = "Too small a size for current use";
3493 			goto out;
3494 		}
3495 	}
3496 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3497 		if (!sbinfo->max_inodes) {
3498 			err = "Cannot retroactively limit inodes";
3499 			goto out;
3500 		}
3501 		if (ctx->inodes < inodes) {
3502 			err = "Too few inodes for current use";
3503 			goto out;
3504 		}
3505 	}
3506 
3507 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3508 	    sbinfo->next_ino > UINT_MAX) {
3509 		err = "Current inum too high to switch to 32-bit inums";
3510 		goto out;
3511 	}
3512 
3513 	if (ctx->seen & SHMEM_SEEN_HUGE)
3514 		sbinfo->huge = ctx->huge;
3515 	if (ctx->seen & SHMEM_SEEN_INUMS)
3516 		sbinfo->full_inums = ctx->full_inums;
3517 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3518 		sbinfo->max_blocks  = ctx->blocks;
3519 	if (ctx->seen & SHMEM_SEEN_INODES) {
3520 		sbinfo->max_inodes  = ctx->inodes;
3521 		sbinfo->free_inodes = ctx->inodes - inodes;
3522 	}
3523 
3524 	/*
3525 	 * Preserve previous mempolicy unless mpol remount option was specified.
3526 	 */
3527 	if (ctx->mpol) {
3528 		mpol = sbinfo->mpol;
3529 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3530 		ctx->mpol = NULL;
3531 	}
3532 	raw_spin_unlock(&sbinfo->stat_lock);
3533 	mpol_put(mpol);
3534 	return 0;
3535 out:
3536 	raw_spin_unlock(&sbinfo->stat_lock);
3537 	return invalfc(fc, "%s", err);
3538 }
3539 
3540 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3541 {
3542 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3543 
3544 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3545 		seq_printf(seq, ",size=%luk",
3546 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3547 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3548 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3549 	if (sbinfo->mode != (0777 | S_ISVTX))
3550 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3551 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3552 		seq_printf(seq, ",uid=%u",
3553 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3554 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3555 		seq_printf(seq, ",gid=%u",
3556 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3557 
3558 	/*
3559 	 * Showing inode{64,32} might be useful even if it's the system default,
3560 	 * since then people don't have to resort to checking both here and
3561 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3562 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3563 	 *
3564 	 * We hide it when inode64 isn't the default and we are using 32-bit
3565 	 * inodes, since that probably just means the feature isn't even under
3566 	 * consideration.
3567 	 *
3568 	 * As such:
3569 	 *
3570 	 *                     +-----------------+-----------------+
3571 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3572 	 *  +------------------+-----------------+-----------------+
3573 	 *  | full_inums=true  | show            | show            |
3574 	 *  | full_inums=false | show            | hide            |
3575 	 *  +------------------+-----------------+-----------------+
3576 	 *
3577 	 */
3578 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3579 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3581 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3582 	if (sbinfo->huge)
3583 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3584 #endif
3585 	shmem_show_mpol(seq, sbinfo->mpol);
3586 	return 0;
3587 }
3588 
3589 #endif /* CONFIG_TMPFS */
3590 
3591 static void shmem_put_super(struct super_block *sb)
3592 {
3593 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3594 
3595 	free_percpu(sbinfo->ino_batch);
3596 	percpu_counter_destroy(&sbinfo->used_blocks);
3597 	mpol_put(sbinfo->mpol);
3598 	kfree(sbinfo);
3599 	sb->s_fs_info = NULL;
3600 }
3601 
3602 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3603 {
3604 	struct shmem_options *ctx = fc->fs_private;
3605 	struct inode *inode;
3606 	struct shmem_sb_info *sbinfo;
3607 
3608 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3609 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3610 				L1_CACHE_BYTES), GFP_KERNEL);
3611 	if (!sbinfo)
3612 		return -ENOMEM;
3613 
3614 	sb->s_fs_info = sbinfo;
3615 
3616 #ifdef CONFIG_TMPFS
3617 	/*
3618 	 * Per default we only allow half of the physical ram per
3619 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3620 	 * but the internal instance is left unlimited.
3621 	 */
3622 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3623 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3624 			ctx->blocks = shmem_default_max_blocks();
3625 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3626 			ctx->inodes = shmem_default_max_inodes();
3627 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3628 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3629 	} else {
3630 		sb->s_flags |= SB_NOUSER;
3631 	}
3632 	sb->s_export_op = &shmem_export_ops;
3633 	sb->s_flags |= SB_NOSEC;
3634 #else
3635 	sb->s_flags |= SB_NOUSER;
3636 #endif
3637 	sbinfo->max_blocks = ctx->blocks;
3638 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3639 	if (sb->s_flags & SB_KERNMOUNT) {
3640 		sbinfo->ino_batch = alloc_percpu(ino_t);
3641 		if (!sbinfo->ino_batch)
3642 			goto failed;
3643 	}
3644 	sbinfo->uid = ctx->uid;
3645 	sbinfo->gid = ctx->gid;
3646 	sbinfo->full_inums = ctx->full_inums;
3647 	sbinfo->mode = ctx->mode;
3648 	sbinfo->huge = ctx->huge;
3649 	sbinfo->mpol = ctx->mpol;
3650 	ctx->mpol = NULL;
3651 
3652 	raw_spin_lock_init(&sbinfo->stat_lock);
3653 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3654 		goto failed;
3655 	spin_lock_init(&sbinfo->shrinklist_lock);
3656 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3657 
3658 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3659 	sb->s_blocksize = PAGE_SIZE;
3660 	sb->s_blocksize_bits = PAGE_SHIFT;
3661 	sb->s_magic = TMPFS_MAGIC;
3662 	sb->s_op = &shmem_ops;
3663 	sb->s_time_gran = 1;
3664 #ifdef CONFIG_TMPFS_XATTR
3665 	sb->s_xattr = shmem_xattr_handlers;
3666 #endif
3667 #ifdef CONFIG_TMPFS_POSIX_ACL
3668 	sb->s_flags |= SB_POSIXACL;
3669 #endif
3670 	uuid_gen(&sb->s_uuid);
3671 
3672 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3673 	if (!inode)
3674 		goto failed;
3675 	inode->i_uid = sbinfo->uid;
3676 	inode->i_gid = sbinfo->gid;
3677 	sb->s_root = d_make_root(inode);
3678 	if (!sb->s_root)
3679 		goto failed;
3680 	return 0;
3681 
3682 failed:
3683 	shmem_put_super(sb);
3684 	return -ENOMEM;
3685 }
3686 
3687 static int shmem_get_tree(struct fs_context *fc)
3688 {
3689 	return get_tree_nodev(fc, shmem_fill_super);
3690 }
3691 
3692 static void shmem_free_fc(struct fs_context *fc)
3693 {
3694 	struct shmem_options *ctx = fc->fs_private;
3695 
3696 	if (ctx) {
3697 		mpol_put(ctx->mpol);
3698 		kfree(ctx);
3699 	}
3700 }
3701 
3702 static const struct fs_context_operations shmem_fs_context_ops = {
3703 	.free			= shmem_free_fc,
3704 	.get_tree		= shmem_get_tree,
3705 #ifdef CONFIG_TMPFS
3706 	.parse_monolithic	= shmem_parse_options,
3707 	.parse_param		= shmem_parse_one,
3708 	.reconfigure		= shmem_reconfigure,
3709 #endif
3710 };
3711 
3712 static struct kmem_cache *shmem_inode_cachep;
3713 
3714 static struct inode *shmem_alloc_inode(struct super_block *sb)
3715 {
3716 	struct shmem_inode_info *info;
3717 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3718 	if (!info)
3719 		return NULL;
3720 	return &info->vfs_inode;
3721 }
3722 
3723 static void shmem_free_in_core_inode(struct inode *inode)
3724 {
3725 	if (S_ISLNK(inode->i_mode))
3726 		kfree(inode->i_link);
3727 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3728 }
3729 
3730 static void shmem_destroy_inode(struct inode *inode)
3731 {
3732 	if (S_ISREG(inode->i_mode))
3733 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3734 }
3735 
3736 static void shmem_init_inode(void *foo)
3737 {
3738 	struct shmem_inode_info *info = foo;
3739 	inode_init_once(&info->vfs_inode);
3740 }
3741 
3742 static void shmem_init_inodecache(void)
3743 {
3744 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3745 				sizeof(struct shmem_inode_info),
3746 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3747 }
3748 
3749 static void shmem_destroy_inodecache(void)
3750 {
3751 	kmem_cache_destroy(shmem_inode_cachep);
3752 }
3753 
3754 const struct address_space_operations shmem_aops = {
3755 	.writepage	= shmem_writepage,
3756 	.set_page_dirty	= __set_page_dirty_no_writeback,
3757 #ifdef CONFIG_TMPFS
3758 	.write_begin	= shmem_write_begin,
3759 	.write_end	= shmem_write_end,
3760 #endif
3761 #ifdef CONFIG_MIGRATION
3762 	.migratepage	= migrate_page,
3763 #endif
3764 	.error_remove_page = generic_error_remove_page,
3765 };
3766 EXPORT_SYMBOL(shmem_aops);
3767 
3768 static const struct file_operations shmem_file_operations = {
3769 	.mmap		= shmem_mmap,
3770 	.get_unmapped_area = shmem_get_unmapped_area,
3771 #ifdef CONFIG_TMPFS
3772 	.llseek		= shmem_file_llseek,
3773 	.read_iter	= shmem_file_read_iter,
3774 	.write_iter	= generic_file_write_iter,
3775 	.fsync		= noop_fsync,
3776 	.splice_read	= generic_file_splice_read,
3777 	.splice_write	= iter_file_splice_write,
3778 	.fallocate	= shmem_fallocate,
3779 #endif
3780 };
3781 
3782 static const struct inode_operations shmem_inode_operations = {
3783 	.getattr	= shmem_getattr,
3784 	.setattr	= shmem_setattr,
3785 #ifdef CONFIG_TMPFS_XATTR
3786 	.listxattr	= shmem_listxattr,
3787 	.set_acl	= simple_set_acl,
3788 #endif
3789 };
3790 
3791 static const struct inode_operations shmem_dir_inode_operations = {
3792 #ifdef CONFIG_TMPFS
3793 	.create		= shmem_create,
3794 	.lookup		= simple_lookup,
3795 	.link		= shmem_link,
3796 	.unlink		= shmem_unlink,
3797 	.symlink	= shmem_symlink,
3798 	.mkdir		= shmem_mkdir,
3799 	.rmdir		= shmem_rmdir,
3800 	.mknod		= shmem_mknod,
3801 	.rename		= shmem_rename2,
3802 	.tmpfile	= shmem_tmpfile,
3803 #endif
3804 #ifdef CONFIG_TMPFS_XATTR
3805 	.listxattr	= shmem_listxattr,
3806 #endif
3807 #ifdef CONFIG_TMPFS_POSIX_ACL
3808 	.setattr	= shmem_setattr,
3809 	.set_acl	= simple_set_acl,
3810 #endif
3811 };
3812 
3813 static const struct inode_operations shmem_special_inode_operations = {
3814 #ifdef CONFIG_TMPFS_XATTR
3815 	.listxattr	= shmem_listxattr,
3816 #endif
3817 #ifdef CONFIG_TMPFS_POSIX_ACL
3818 	.setattr	= shmem_setattr,
3819 	.set_acl	= simple_set_acl,
3820 #endif
3821 };
3822 
3823 static const struct super_operations shmem_ops = {
3824 	.alloc_inode	= shmem_alloc_inode,
3825 	.free_inode	= shmem_free_in_core_inode,
3826 	.destroy_inode	= shmem_destroy_inode,
3827 #ifdef CONFIG_TMPFS
3828 	.statfs		= shmem_statfs,
3829 	.show_options	= shmem_show_options,
3830 #endif
3831 	.evict_inode	= shmem_evict_inode,
3832 	.drop_inode	= generic_delete_inode,
3833 	.put_super	= shmem_put_super,
3834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3835 	.nr_cached_objects	= shmem_unused_huge_count,
3836 	.free_cached_objects	= shmem_unused_huge_scan,
3837 #endif
3838 };
3839 
3840 static const struct vm_operations_struct shmem_vm_ops = {
3841 	.fault		= shmem_fault,
3842 	.map_pages	= filemap_map_pages,
3843 #ifdef CONFIG_NUMA
3844 	.set_policy     = shmem_set_policy,
3845 	.get_policy     = shmem_get_policy,
3846 #endif
3847 };
3848 
3849 int shmem_init_fs_context(struct fs_context *fc)
3850 {
3851 	struct shmem_options *ctx;
3852 
3853 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3854 	if (!ctx)
3855 		return -ENOMEM;
3856 
3857 	ctx->mode = 0777 | S_ISVTX;
3858 	ctx->uid = current_fsuid();
3859 	ctx->gid = current_fsgid();
3860 
3861 	fc->fs_private = ctx;
3862 	fc->ops = &shmem_fs_context_ops;
3863 	return 0;
3864 }
3865 
3866 static struct file_system_type shmem_fs_type = {
3867 	.owner		= THIS_MODULE,
3868 	.name		= "tmpfs",
3869 	.init_fs_context = shmem_init_fs_context,
3870 #ifdef CONFIG_TMPFS
3871 	.parameters	= shmem_fs_parameters,
3872 #endif
3873 	.kill_sb	= kill_litter_super,
3874 	.fs_flags	= FS_USERNS_MOUNT,
3875 };
3876 
3877 int __init shmem_init(void)
3878 {
3879 	int error;
3880 
3881 	shmem_init_inodecache();
3882 
3883 	error = register_filesystem(&shmem_fs_type);
3884 	if (error) {
3885 		pr_err("Could not register tmpfs\n");
3886 		goto out2;
3887 	}
3888 
3889 	shm_mnt = kern_mount(&shmem_fs_type);
3890 	if (IS_ERR(shm_mnt)) {
3891 		error = PTR_ERR(shm_mnt);
3892 		pr_err("Could not kern_mount tmpfs\n");
3893 		goto out1;
3894 	}
3895 
3896 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3897 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3898 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3899 	else
3900 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3901 #endif
3902 	return 0;
3903 
3904 out1:
3905 	unregister_filesystem(&shmem_fs_type);
3906 out2:
3907 	shmem_destroy_inodecache();
3908 	shm_mnt = ERR_PTR(error);
3909 	return error;
3910 }
3911 
3912 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3913 static ssize_t shmem_enabled_show(struct kobject *kobj,
3914 				  struct kobj_attribute *attr, char *buf)
3915 {
3916 	static const int values[] = {
3917 		SHMEM_HUGE_ALWAYS,
3918 		SHMEM_HUGE_WITHIN_SIZE,
3919 		SHMEM_HUGE_ADVISE,
3920 		SHMEM_HUGE_NEVER,
3921 		SHMEM_HUGE_DENY,
3922 		SHMEM_HUGE_FORCE,
3923 	};
3924 	int len = 0;
3925 	int i;
3926 
3927 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3928 		len += sysfs_emit_at(buf, len,
3929 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3930 				     i ? " " : "",
3931 				     shmem_format_huge(values[i]));
3932 	}
3933 
3934 	len += sysfs_emit_at(buf, len, "\n");
3935 
3936 	return len;
3937 }
3938 
3939 static ssize_t shmem_enabled_store(struct kobject *kobj,
3940 		struct kobj_attribute *attr, const char *buf, size_t count)
3941 {
3942 	char tmp[16];
3943 	int huge;
3944 
3945 	if (count + 1 > sizeof(tmp))
3946 		return -EINVAL;
3947 	memcpy(tmp, buf, count);
3948 	tmp[count] = '\0';
3949 	if (count && tmp[count - 1] == '\n')
3950 		tmp[count - 1] = '\0';
3951 
3952 	huge = shmem_parse_huge(tmp);
3953 	if (huge == -EINVAL)
3954 		return -EINVAL;
3955 	if (!has_transparent_hugepage() &&
3956 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3957 		return -EINVAL;
3958 
3959 	shmem_huge = huge;
3960 	if (shmem_huge > SHMEM_HUGE_DENY)
3961 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3962 	return count;
3963 }
3964 
3965 struct kobj_attribute shmem_enabled_attr =
3966 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3968 
3969 #else /* !CONFIG_SHMEM */
3970 
3971 /*
3972  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3973  *
3974  * This is intended for small system where the benefits of the full
3975  * shmem code (swap-backed and resource-limited) are outweighed by
3976  * their complexity. On systems without swap this code should be
3977  * effectively equivalent, but much lighter weight.
3978  */
3979 
3980 static struct file_system_type shmem_fs_type = {
3981 	.name		= "tmpfs",
3982 	.init_fs_context = ramfs_init_fs_context,
3983 	.parameters	= ramfs_fs_parameters,
3984 	.kill_sb	= kill_litter_super,
3985 	.fs_flags	= FS_USERNS_MOUNT,
3986 };
3987 
3988 int __init shmem_init(void)
3989 {
3990 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3991 
3992 	shm_mnt = kern_mount(&shmem_fs_type);
3993 	BUG_ON(IS_ERR(shm_mnt));
3994 
3995 	return 0;
3996 }
3997 
3998 int shmem_unuse(unsigned int type, bool frontswap,
3999 		unsigned long *fs_pages_to_unuse)
4000 {
4001 	return 0;
4002 }
4003 
4004 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4005 {
4006 	return 0;
4007 }
4008 
4009 void shmem_unlock_mapping(struct address_space *mapping)
4010 {
4011 }
4012 
4013 #ifdef CONFIG_MMU
4014 unsigned long shmem_get_unmapped_area(struct file *file,
4015 				      unsigned long addr, unsigned long len,
4016 				      unsigned long pgoff, unsigned long flags)
4017 {
4018 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4019 }
4020 #endif
4021 
4022 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4023 {
4024 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4025 }
4026 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4027 
4028 #define shmem_vm_ops				generic_file_vm_ops
4029 #define shmem_file_operations			ramfs_file_operations
4030 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4031 #define shmem_acct_size(flags, size)		0
4032 #define shmem_unacct_size(flags, size)		do {} while (0)
4033 
4034 #endif /* CONFIG_SHMEM */
4035 
4036 /* common code */
4037 
4038 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4039 				       unsigned long flags, unsigned int i_flags)
4040 {
4041 	struct inode *inode;
4042 	struct file *res;
4043 
4044 	if (IS_ERR(mnt))
4045 		return ERR_CAST(mnt);
4046 
4047 	if (size < 0 || size > MAX_LFS_FILESIZE)
4048 		return ERR_PTR(-EINVAL);
4049 
4050 	if (shmem_acct_size(flags, size))
4051 		return ERR_PTR(-ENOMEM);
4052 
4053 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4054 				flags);
4055 	if (unlikely(!inode)) {
4056 		shmem_unacct_size(flags, size);
4057 		return ERR_PTR(-ENOSPC);
4058 	}
4059 	inode->i_flags |= i_flags;
4060 	inode->i_size = size;
4061 	clear_nlink(inode);	/* It is unlinked */
4062 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4063 	if (!IS_ERR(res))
4064 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4065 				&shmem_file_operations);
4066 	if (IS_ERR(res))
4067 		iput(inode);
4068 	return res;
4069 }
4070 
4071 /**
4072  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4073  * 	kernel internal.  There will be NO LSM permission checks against the
4074  * 	underlying inode.  So users of this interface must do LSM checks at a
4075  *	higher layer.  The users are the big_key and shm implementations.  LSM
4076  *	checks are provided at the key or shm level rather than the inode.
4077  * @name: name for dentry (to be seen in /proc/<pid>/maps
4078  * @size: size to be set for the file
4079  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4080  */
4081 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4082 {
4083 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4084 }
4085 
4086 /**
4087  * shmem_file_setup - get an unlinked file living in tmpfs
4088  * @name: name for dentry (to be seen in /proc/<pid>/maps
4089  * @size: size to be set for the file
4090  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4091  */
4092 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4093 {
4094 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4095 }
4096 EXPORT_SYMBOL_GPL(shmem_file_setup);
4097 
4098 /**
4099  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4100  * @mnt: the tmpfs mount where the file will be created
4101  * @name: name for dentry (to be seen in /proc/<pid>/maps
4102  * @size: size to be set for the file
4103  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4104  */
4105 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4106 				       loff_t size, unsigned long flags)
4107 {
4108 	return __shmem_file_setup(mnt, name, size, flags, 0);
4109 }
4110 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4111 
4112 /**
4113  * shmem_zero_setup - setup a shared anonymous mapping
4114  * @vma: the vma to be mmapped is prepared by do_mmap
4115  */
4116 int shmem_zero_setup(struct vm_area_struct *vma)
4117 {
4118 	struct file *file;
4119 	loff_t size = vma->vm_end - vma->vm_start;
4120 
4121 	/*
4122 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4123 	 * between XFS directory reading and selinux: since this file is only
4124 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4125 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4126 	 */
4127 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4128 	if (IS_ERR(file))
4129 		return PTR_ERR(file);
4130 
4131 	if (vma->vm_file)
4132 		fput(vma->vm_file);
4133 	vma->vm_file = file;
4134 	vma->vm_ops = &shmem_vm_ops;
4135 
4136 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4137 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4138 			(vma->vm_end & HPAGE_PMD_MASK)) {
4139 		khugepaged_enter(vma, vma->vm_flags);
4140 	}
4141 
4142 	return 0;
4143 }
4144 
4145 /**
4146  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4147  * @mapping:	the page's address_space
4148  * @index:	the page index
4149  * @gfp:	the page allocator flags to use if allocating
4150  *
4151  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4152  * with any new page allocations done using the specified allocation flags.
4153  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4154  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4155  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4156  *
4157  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4158  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4159  */
4160 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4161 					 pgoff_t index, gfp_t gfp)
4162 {
4163 #ifdef CONFIG_SHMEM
4164 	struct inode *inode = mapping->host;
4165 	struct page *page;
4166 	int error;
4167 
4168 	BUG_ON(!shmem_mapping(mapping));
4169 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4170 				  gfp, NULL, NULL, NULL);
4171 	if (error)
4172 		page = ERR_PTR(error);
4173 	else
4174 		unlock_page(page);
4175 	return page;
4176 #else
4177 	/*
4178 	 * The tiny !SHMEM case uses ramfs without swap
4179 	 */
4180 	return read_cache_page_gfp(mapping, index, gfp);
4181 #endif
4182 }
4183 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4184