xref: /openbmc/linux/mm/shmem.c (revision 66dabbb6)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 	bool noswap;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 #define SHMEM_SEEN_NOSWAP 16
125 };
126 
127 #ifdef CONFIG_TMPFS
128 static unsigned long shmem_default_max_blocks(void)
129 {
130 	return totalram_pages() / 2;
131 }
132 
133 static unsigned long shmem_default_max_inodes(void)
134 {
135 	unsigned long nr_pages = totalram_pages();
136 
137 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
138 }
139 #endif
140 
141 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
142 			     struct folio **foliop, enum sgp_type sgp,
143 			     gfp_t gfp, struct vm_area_struct *vma,
144 			     vm_fault_t *fault_type);
145 
146 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
147 {
148 	return sb->s_fs_info;
149 }
150 
151 /*
152  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
153  * for shared memory and for shared anonymous (/dev/zero) mappings
154  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
155  * consistent with the pre-accounting of private mappings ...
156  */
157 static inline int shmem_acct_size(unsigned long flags, loff_t size)
158 {
159 	return (flags & VM_NORESERVE) ?
160 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
161 }
162 
163 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
164 {
165 	if (!(flags & VM_NORESERVE))
166 		vm_unacct_memory(VM_ACCT(size));
167 }
168 
169 static inline int shmem_reacct_size(unsigned long flags,
170 		loff_t oldsize, loff_t newsize)
171 {
172 	if (!(flags & VM_NORESERVE)) {
173 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
174 			return security_vm_enough_memory_mm(current->mm,
175 					VM_ACCT(newsize) - VM_ACCT(oldsize));
176 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
177 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
178 	}
179 	return 0;
180 }
181 
182 /*
183  * ... whereas tmpfs objects are accounted incrementally as
184  * pages are allocated, in order to allow large sparse files.
185  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
186  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
187  */
188 static inline int shmem_acct_block(unsigned long flags, long pages)
189 {
190 	if (!(flags & VM_NORESERVE))
191 		return 0;
192 
193 	return security_vm_enough_memory_mm(current->mm,
194 			pages * VM_ACCT(PAGE_SIZE));
195 }
196 
197 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
198 {
199 	if (flags & VM_NORESERVE)
200 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
201 }
202 
203 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
204 {
205 	struct shmem_inode_info *info = SHMEM_I(inode);
206 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
207 
208 	if (shmem_acct_block(info->flags, pages))
209 		return false;
210 
211 	if (sbinfo->max_blocks) {
212 		if (percpu_counter_compare(&sbinfo->used_blocks,
213 					   sbinfo->max_blocks - pages) > 0)
214 			goto unacct;
215 		percpu_counter_add(&sbinfo->used_blocks, pages);
216 	}
217 
218 	return true;
219 
220 unacct:
221 	shmem_unacct_blocks(info->flags, pages);
222 	return false;
223 }
224 
225 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
226 {
227 	struct shmem_inode_info *info = SHMEM_I(inode);
228 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
229 
230 	if (sbinfo->max_blocks)
231 		percpu_counter_sub(&sbinfo->used_blocks, pages);
232 	shmem_unacct_blocks(info->flags, pages);
233 }
234 
235 static const struct super_operations shmem_ops;
236 const struct address_space_operations shmem_aops;
237 static const struct file_operations shmem_file_operations;
238 static const struct inode_operations shmem_inode_operations;
239 static const struct inode_operations shmem_dir_inode_operations;
240 static const struct inode_operations shmem_special_inode_operations;
241 static const struct vm_operations_struct shmem_vm_ops;
242 static const struct vm_operations_struct shmem_anon_vm_ops;
243 static struct file_system_type shmem_fs_type;
244 
245 bool vma_is_anon_shmem(struct vm_area_struct *vma)
246 {
247 	return vma->vm_ops == &shmem_anon_vm_ops;
248 }
249 
250 bool vma_is_shmem(struct vm_area_struct *vma)
251 {
252 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
253 }
254 
255 static LIST_HEAD(shmem_swaplist);
256 static DEFINE_MUTEX(shmem_swaplist_mutex);
257 
258 /*
259  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
260  * produces a novel ino for the newly allocated inode.
261  *
262  * It may also be called when making a hard link to permit the space needed by
263  * each dentry. However, in that case, no new inode number is needed since that
264  * internally draws from another pool of inode numbers (currently global
265  * get_next_ino()). This case is indicated by passing NULL as inop.
266  */
267 #define SHMEM_INO_BATCH 1024
268 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
269 {
270 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
271 	ino_t ino;
272 
273 	if (!(sb->s_flags & SB_KERNMOUNT)) {
274 		raw_spin_lock(&sbinfo->stat_lock);
275 		if (sbinfo->max_inodes) {
276 			if (!sbinfo->free_inodes) {
277 				raw_spin_unlock(&sbinfo->stat_lock);
278 				return -ENOSPC;
279 			}
280 			sbinfo->free_inodes--;
281 		}
282 		if (inop) {
283 			ino = sbinfo->next_ino++;
284 			if (unlikely(is_zero_ino(ino)))
285 				ino = sbinfo->next_ino++;
286 			if (unlikely(!sbinfo->full_inums &&
287 				     ino > UINT_MAX)) {
288 				/*
289 				 * Emulate get_next_ino uint wraparound for
290 				 * compatibility
291 				 */
292 				if (IS_ENABLED(CONFIG_64BIT))
293 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
294 						__func__, MINOR(sb->s_dev));
295 				sbinfo->next_ino = 1;
296 				ino = sbinfo->next_ino++;
297 			}
298 			*inop = ino;
299 		}
300 		raw_spin_unlock(&sbinfo->stat_lock);
301 	} else if (inop) {
302 		/*
303 		 * __shmem_file_setup, one of our callers, is lock-free: it
304 		 * doesn't hold stat_lock in shmem_reserve_inode since
305 		 * max_inodes is always 0, and is called from potentially
306 		 * unknown contexts. As such, use a per-cpu batched allocator
307 		 * which doesn't require the per-sb stat_lock unless we are at
308 		 * the batch boundary.
309 		 *
310 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
311 		 * shmem mounts are not exposed to userspace, so we don't need
312 		 * to worry about things like glibc compatibility.
313 		 */
314 		ino_t *next_ino;
315 
316 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
317 		ino = *next_ino;
318 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
319 			raw_spin_lock(&sbinfo->stat_lock);
320 			ino = sbinfo->next_ino;
321 			sbinfo->next_ino += SHMEM_INO_BATCH;
322 			raw_spin_unlock(&sbinfo->stat_lock);
323 			if (unlikely(is_zero_ino(ino)))
324 				ino++;
325 		}
326 		*inop = ino;
327 		*next_ino = ++ino;
328 		put_cpu();
329 	}
330 
331 	return 0;
332 }
333 
334 static void shmem_free_inode(struct super_block *sb)
335 {
336 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
337 	if (sbinfo->max_inodes) {
338 		raw_spin_lock(&sbinfo->stat_lock);
339 		sbinfo->free_inodes++;
340 		raw_spin_unlock(&sbinfo->stat_lock);
341 	}
342 }
343 
344 /**
345  * shmem_recalc_inode - recalculate the block usage of an inode
346  * @inode: inode to recalc
347  *
348  * We have to calculate the free blocks since the mm can drop
349  * undirtied hole pages behind our back.
350  *
351  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
352  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
353  *
354  * It has to be called with the spinlock held.
355  */
356 static void shmem_recalc_inode(struct inode *inode)
357 {
358 	struct shmem_inode_info *info = SHMEM_I(inode);
359 	long freed;
360 
361 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
362 	if (freed > 0) {
363 		info->alloced -= freed;
364 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
365 		shmem_inode_unacct_blocks(inode, freed);
366 	}
367 }
368 
369 bool shmem_charge(struct inode *inode, long pages)
370 {
371 	struct shmem_inode_info *info = SHMEM_I(inode);
372 	unsigned long flags;
373 
374 	if (!shmem_inode_acct_block(inode, pages))
375 		return false;
376 
377 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
378 	inode->i_mapping->nrpages += pages;
379 
380 	spin_lock_irqsave(&info->lock, flags);
381 	info->alloced += pages;
382 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
383 	shmem_recalc_inode(inode);
384 	spin_unlock_irqrestore(&info->lock, flags);
385 
386 	return true;
387 }
388 
389 void shmem_uncharge(struct inode *inode, long pages)
390 {
391 	struct shmem_inode_info *info = SHMEM_I(inode);
392 	unsigned long flags;
393 
394 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
395 
396 	spin_lock_irqsave(&info->lock, flags);
397 	info->alloced -= pages;
398 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
399 	shmem_recalc_inode(inode);
400 	spin_unlock_irqrestore(&info->lock, flags);
401 
402 	shmem_inode_unacct_blocks(inode, pages);
403 }
404 
405 /*
406  * Replace item expected in xarray by a new item, while holding xa_lock.
407  */
408 static int shmem_replace_entry(struct address_space *mapping,
409 			pgoff_t index, void *expected, void *replacement)
410 {
411 	XA_STATE(xas, &mapping->i_pages, index);
412 	void *item;
413 
414 	VM_BUG_ON(!expected);
415 	VM_BUG_ON(!replacement);
416 	item = xas_load(&xas);
417 	if (item != expected)
418 		return -ENOENT;
419 	xas_store(&xas, replacement);
420 	return 0;
421 }
422 
423 /*
424  * Sometimes, before we decide whether to proceed or to fail, we must check
425  * that an entry was not already brought back from swap by a racing thread.
426  *
427  * Checking page is not enough: by the time a SwapCache page is locked, it
428  * might be reused, and again be SwapCache, using the same swap as before.
429  */
430 static bool shmem_confirm_swap(struct address_space *mapping,
431 			       pgoff_t index, swp_entry_t swap)
432 {
433 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
434 }
435 
436 /*
437  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
438  *
439  * SHMEM_HUGE_NEVER:
440  *	disables huge pages for the mount;
441  * SHMEM_HUGE_ALWAYS:
442  *	enables huge pages for the mount;
443  * SHMEM_HUGE_WITHIN_SIZE:
444  *	only allocate huge pages if the page will be fully within i_size,
445  *	also respect fadvise()/madvise() hints;
446  * SHMEM_HUGE_ADVISE:
447  *	only allocate huge pages if requested with fadvise()/madvise();
448  */
449 
450 #define SHMEM_HUGE_NEVER	0
451 #define SHMEM_HUGE_ALWAYS	1
452 #define SHMEM_HUGE_WITHIN_SIZE	2
453 #define SHMEM_HUGE_ADVISE	3
454 
455 /*
456  * Special values.
457  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
458  *
459  * SHMEM_HUGE_DENY:
460  *	disables huge on shm_mnt and all mounts, for emergency use;
461  * SHMEM_HUGE_FORCE:
462  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
463  *
464  */
465 #define SHMEM_HUGE_DENY		(-1)
466 #define SHMEM_HUGE_FORCE	(-2)
467 
468 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
469 /* ifdef here to avoid bloating shmem.o when not necessary */
470 
471 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
472 
473 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
474 		   struct mm_struct *mm, unsigned long vm_flags)
475 {
476 	loff_t i_size;
477 
478 	if (!S_ISREG(inode->i_mode))
479 		return false;
480 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
481 		return false;
482 	if (shmem_huge == SHMEM_HUGE_DENY)
483 		return false;
484 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
485 		return true;
486 
487 	switch (SHMEM_SB(inode->i_sb)->huge) {
488 	case SHMEM_HUGE_ALWAYS:
489 		return true;
490 	case SHMEM_HUGE_WITHIN_SIZE:
491 		index = round_up(index + 1, HPAGE_PMD_NR);
492 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
493 		if (i_size >> PAGE_SHIFT >= index)
494 			return true;
495 		fallthrough;
496 	case SHMEM_HUGE_ADVISE:
497 		if (mm && (vm_flags & VM_HUGEPAGE))
498 			return true;
499 		fallthrough;
500 	default:
501 		return false;
502 	}
503 }
504 
505 #if defined(CONFIG_SYSFS)
506 static int shmem_parse_huge(const char *str)
507 {
508 	if (!strcmp(str, "never"))
509 		return SHMEM_HUGE_NEVER;
510 	if (!strcmp(str, "always"))
511 		return SHMEM_HUGE_ALWAYS;
512 	if (!strcmp(str, "within_size"))
513 		return SHMEM_HUGE_WITHIN_SIZE;
514 	if (!strcmp(str, "advise"))
515 		return SHMEM_HUGE_ADVISE;
516 	if (!strcmp(str, "deny"))
517 		return SHMEM_HUGE_DENY;
518 	if (!strcmp(str, "force"))
519 		return SHMEM_HUGE_FORCE;
520 	return -EINVAL;
521 }
522 #endif
523 
524 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
525 static const char *shmem_format_huge(int huge)
526 {
527 	switch (huge) {
528 	case SHMEM_HUGE_NEVER:
529 		return "never";
530 	case SHMEM_HUGE_ALWAYS:
531 		return "always";
532 	case SHMEM_HUGE_WITHIN_SIZE:
533 		return "within_size";
534 	case SHMEM_HUGE_ADVISE:
535 		return "advise";
536 	case SHMEM_HUGE_DENY:
537 		return "deny";
538 	case SHMEM_HUGE_FORCE:
539 		return "force";
540 	default:
541 		VM_BUG_ON(1);
542 		return "bad_val";
543 	}
544 }
545 #endif
546 
547 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
548 		struct shrink_control *sc, unsigned long nr_to_split)
549 {
550 	LIST_HEAD(list), *pos, *next;
551 	LIST_HEAD(to_remove);
552 	struct inode *inode;
553 	struct shmem_inode_info *info;
554 	struct folio *folio;
555 	unsigned long batch = sc ? sc->nr_to_scan : 128;
556 	int split = 0;
557 
558 	if (list_empty(&sbinfo->shrinklist))
559 		return SHRINK_STOP;
560 
561 	spin_lock(&sbinfo->shrinklist_lock);
562 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
563 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
564 
565 		/* pin the inode */
566 		inode = igrab(&info->vfs_inode);
567 
568 		/* inode is about to be evicted */
569 		if (!inode) {
570 			list_del_init(&info->shrinklist);
571 			goto next;
572 		}
573 
574 		/* Check if there's anything to gain */
575 		if (round_up(inode->i_size, PAGE_SIZE) ==
576 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
577 			list_move(&info->shrinklist, &to_remove);
578 			goto next;
579 		}
580 
581 		list_move(&info->shrinklist, &list);
582 next:
583 		sbinfo->shrinklist_len--;
584 		if (!--batch)
585 			break;
586 	}
587 	spin_unlock(&sbinfo->shrinklist_lock);
588 
589 	list_for_each_safe(pos, next, &to_remove) {
590 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
591 		inode = &info->vfs_inode;
592 		list_del_init(&info->shrinklist);
593 		iput(inode);
594 	}
595 
596 	list_for_each_safe(pos, next, &list) {
597 		int ret;
598 		pgoff_t index;
599 
600 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
601 		inode = &info->vfs_inode;
602 
603 		if (nr_to_split && split >= nr_to_split)
604 			goto move_back;
605 
606 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
607 		folio = filemap_get_folio(inode->i_mapping, index);
608 		if (IS_ERR(folio))
609 			goto drop;
610 
611 		/* No huge page at the end of the file: nothing to split */
612 		if (!folio_test_large(folio)) {
613 			folio_put(folio);
614 			goto drop;
615 		}
616 
617 		/*
618 		 * Move the inode on the list back to shrinklist if we failed
619 		 * to lock the page at this time.
620 		 *
621 		 * Waiting for the lock may lead to deadlock in the
622 		 * reclaim path.
623 		 */
624 		if (!folio_trylock(folio)) {
625 			folio_put(folio);
626 			goto move_back;
627 		}
628 
629 		ret = split_folio(folio);
630 		folio_unlock(folio);
631 		folio_put(folio);
632 
633 		/* If split failed move the inode on the list back to shrinklist */
634 		if (ret)
635 			goto move_back;
636 
637 		split++;
638 drop:
639 		list_del_init(&info->shrinklist);
640 		goto put;
641 move_back:
642 		/*
643 		 * Make sure the inode is either on the global list or deleted
644 		 * from any local list before iput() since it could be deleted
645 		 * in another thread once we put the inode (then the local list
646 		 * is corrupted).
647 		 */
648 		spin_lock(&sbinfo->shrinklist_lock);
649 		list_move(&info->shrinklist, &sbinfo->shrinklist);
650 		sbinfo->shrinklist_len++;
651 		spin_unlock(&sbinfo->shrinklist_lock);
652 put:
653 		iput(inode);
654 	}
655 
656 	return split;
657 }
658 
659 static long shmem_unused_huge_scan(struct super_block *sb,
660 		struct shrink_control *sc)
661 {
662 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663 
664 	if (!READ_ONCE(sbinfo->shrinklist_len))
665 		return SHRINK_STOP;
666 
667 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
668 }
669 
670 static long shmem_unused_huge_count(struct super_block *sb,
671 		struct shrink_control *sc)
672 {
673 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
674 	return READ_ONCE(sbinfo->shrinklist_len);
675 }
676 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
677 
678 #define shmem_huge SHMEM_HUGE_DENY
679 
680 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
681 		   struct mm_struct *mm, unsigned long vm_flags)
682 {
683 	return false;
684 }
685 
686 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
687 		struct shrink_control *sc, unsigned long nr_to_split)
688 {
689 	return 0;
690 }
691 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
692 
693 /*
694  * Like filemap_add_folio, but error if expected item has gone.
695  */
696 static int shmem_add_to_page_cache(struct folio *folio,
697 				   struct address_space *mapping,
698 				   pgoff_t index, void *expected, gfp_t gfp,
699 				   struct mm_struct *charge_mm)
700 {
701 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
702 	long nr = folio_nr_pages(folio);
703 	int error;
704 
705 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
706 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
707 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
708 	VM_BUG_ON(expected && folio_test_large(folio));
709 
710 	folio_ref_add(folio, nr);
711 	folio->mapping = mapping;
712 	folio->index = index;
713 
714 	if (!folio_test_swapcache(folio)) {
715 		error = mem_cgroup_charge(folio, charge_mm, gfp);
716 		if (error) {
717 			if (folio_test_pmd_mappable(folio)) {
718 				count_vm_event(THP_FILE_FALLBACK);
719 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
720 			}
721 			goto error;
722 		}
723 	}
724 	folio_throttle_swaprate(folio, gfp);
725 
726 	do {
727 		xas_lock_irq(&xas);
728 		if (expected != xas_find_conflict(&xas)) {
729 			xas_set_err(&xas, -EEXIST);
730 			goto unlock;
731 		}
732 		if (expected && xas_find_conflict(&xas)) {
733 			xas_set_err(&xas, -EEXIST);
734 			goto unlock;
735 		}
736 		xas_store(&xas, folio);
737 		if (xas_error(&xas))
738 			goto unlock;
739 		if (folio_test_pmd_mappable(folio)) {
740 			count_vm_event(THP_FILE_ALLOC);
741 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
742 		}
743 		mapping->nrpages += nr;
744 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
745 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
746 unlock:
747 		xas_unlock_irq(&xas);
748 	} while (xas_nomem(&xas, gfp));
749 
750 	if (xas_error(&xas)) {
751 		error = xas_error(&xas);
752 		goto error;
753 	}
754 
755 	return 0;
756 error:
757 	folio->mapping = NULL;
758 	folio_ref_sub(folio, nr);
759 	return error;
760 }
761 
762 /*
763  * Like delete_from_page_cache, but substitutes swap for @folio.
764  */
765 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
766 {
767 	struct address_space *mapping = folio->mapping;
768 	long nr = folio_nr_pages(folio);
769 	int error;
770 
771 	xa_lock_irq(&mapping->i_pages);
772 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
773 	folio->mapping = NULL;
774 	mapping->nrpages -= nr;
775 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
776 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
777 	xa_unlock_irq(&mapping->i_pages);
778 	folio_put(folio);
779 	BUG_ON(error);
780 }
781 
782 /*
783  * Remove swap entry from page cache, free the swap and its page cache.
784  */
785 static int shmem_free_swap(struct address_space *mapping,
786 			   pgoff_t index, void *radswap)
787 {
788 	void *old;
789 
790 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791 	if (old != radswap)
792 		return -ENOENT;
793 	free_swap_and_cache(radix_to_swp_entry(radswap));
794 	return 0;
795 }
796 
797 /*
798  * Determine (in bytes) how many of the shmem object's pages mapped by the
799  * given offsets are swapped out.
800  *
801  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802  * as long as the inode doesn't go away and racy results are not a problem.
803  */
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 						pgoff_t start, pgoff_t end)
806 {
807 	XA_STATE(xas, &mapping->i_pages, start);
808 	struct page *page;
809 	unsigned long swapped = 0;
810 
811 	rcu_read_lock();
812 	xas_for_each(&xas, page, end - 1) {
813 		if (xas_retry(&xas, page))
814 			continue;
815 		if (xa_is_value(page))
816 			swapped++;
817 
818 		if (need_resched()) {
819 			xas_pause(&xas);
820 			cond_resched_rcu();
821 		}
822 	}
823 
824 	rcu_read_unlock();
825 
826 	return swapped << PAGE_SHIFT;
827 }
828 
829 /*
830  * Determine (in bytes) how many of the shmem object's pages mapped by the
831  * given vma is swapped out.
832  *
833  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834  * as long as the inode doesn't go away and racy results are not a problem.
835  */
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838 	struct inode *inode = file_inode(vma->vm_file);
839 	struct shmem_inode_info *info = SHMEM_I(inode);
840 	struct address_space *mapping = inode->i_mapping;
841 	unsigned long swapped;
842 
843 	/* Be careful as we don't hold info->lock */
844 	swapped = READ_ONCE(info->swapped);
845 
846 	/*
847 	 * The easier cases are when the shmem object has nothing in swap, or
848 	 * the vma maps it whole. Then we can simply use the stats that we
849 	 * already track.
850 	 */
851 	if (!swapped)
852 		return 0;
853 
854 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 		return swapped << PAGE_SHIFT;
856 
857 	/* Here comes the more involved part */
858 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
859 					vma->vm_pgoff + vma_pages(vma));
860 }
861 
862 /*
863  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
864  */
865 void shmem_unlock_mapping(struct address_space *mapping)
866 {
867 	struct folio_batch fbatch;
868 	pgoff_t index = 0;
869 
870 	folio_batch_init(&fbatch);
871 	/*
872 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
873 	 */
874 	while (!mapping_unevictable(mapping) &&
875 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
876 		check_move_unevictable_folios(&fbatch);
877 		folio_batch_release(&fbatch);
878 		cond_resched();
879 	}
880 }
881 
882 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
883 {
884 	struct folio *folio;
885 
886 	/*
887 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
888 	 * beyond i_size, and reports fallocated folios as holes.
889 	 */
890 	folio = filemap_get_entry(inode->i_mapping, index);
891 	if (!folio)
892 		return folio;
893 	if (!xa_is_value(folio)) {
894 		folio_lock(folio);
895 		if (folio->mapping == inode->i_mapping)
896 			return folio;
897 		/* The folio has been swapped out */
898 		folio_unlock(folio);
899 		folio_put(folio);
900 	}
901 	/*
902 	 * But read a folio back from swap if any of it is within i_size
903 	 * (although in some cases this is just a waste of time).
904 	 */
905 	folio = NULL;
906 	shmem_get_folio(inode, index, &folio, SGP_READ);
907 	return folio;
908 }
909 
910 /*
911  * Remove range of pages and swap entries from page cache, and free them.
912  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913  */
914 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915 								 bool unfalloc)
916 {
917 	struct address_space *mapping = inode->i_mapping;
918 	struct shmem_inode_info *info = SHMEM_I(inode);
919 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921 	struct folio_batch fbatch;
922 	pgoff_t indices[PAGEVEC_SIZE];
923 	struct folio *folio;
924 	bool same_folio;
925 	long nr_swaps_freed = 0;
926 	pgoff_t index;
927 	int i;
928 
929 	if (lend == -1)
930 		end = -1;	/* unsigned, so actually very big */
931 
932 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933 		info->fallocend = start;
934 
935 	folio_batch_init(&fbatch);
936 	index = start;
937 	while (index < end && find_lock_entries(mapping, &index, end - 1,
938 			&fbatch, indices)) {
939 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
940 			folio = fbatch.folios[i];
941 
942 			if (xa_is_value(folio)) {
943 				if (unfalloc)
944 					continue;
945 				nr_swaps_freed += !shmem_free_swap(mapping,
946 							indices[i], folio);
947 				continue;
948 			}
949 
950 			if (!unfalloc || !folio_test_uptodate(folio))
951 				truncate_inode_folio(mapping, folio);
952 			folio_unlock(folio);
953 		}
954 		folio_batch_remove_exceptionals(&fbatch);
955 		folio_batch_release(&fbatch);
956 		cond_resched();
957 	}
958 
959 	/*
960 	 * When undoing a failed fallocate, we want none of the partial folio
961 	 * zeroing and splitting below, but shall want to truncate the whole
962 	 * folio when !uptodate indicates that it was added by this fallocate,
963 	 * even when [lstart, lend] covers only a part of the folio.
964 	 */
965 	if (unfalloc)
966 		goto whole_folios;
967 
968 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
969 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
970 	if (folio) {
971 		same_folio = lend < folio_pos(folio) + folio_size(folio);
972 		folio_mark_dirty(folio);
973 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
974 			start = folio->index + folio_nr_pages(folio);
975 			if (same_folio)
976 				end = folio->index;
977 		}
978 		folio_unlock(folio);
979 		folio_put(folio);
980 		folio = NULL;
981 	}
982 
983 	if (!same_folio)
984 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
985 	if (folio) {
986 		folio_mark_dirty(folio);
987 		if (!truncate_inode_partial_folio(folio, lstart, lend))
988 			end = folio->index;
989 		folio_unlock(folio);
990 		folio_put(folio);
991 	}
992 
993 whole_folios:
994 
995 	index = start;
996 	while (index < end) {
997 		cond_resched();
998 
999 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1000 				indices)) {
1001 			/* If all gone or hole-punch or unfalloc, we're done */
1002 			if (index == start || end != -1)
1003 				break;
1004 			/* But if truncating, restart to make sure all gone */
1005 			index = start;
1006 			continue;
1007 		}
1008 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1009 			folio = fbatch.folios[i];
1010 
1011 			if (xa_is_value(folio)) {
1012 				if (unfalloc)
1013 					continue;
1014 				if (shmem_free_swap(mapping, indices[i], folio)) {
1015 					/* Swap was replaced by page: retry */
1016 					index = indices[i];
1017 					break;
1018 				}
1019 				nr_swaps_freed++;
1020 				continue;
1021 			}
1022 
1023 			folio_lock(folio);
1024 
1025 			if (!unfalloc || !folio_test_uptodate(folio)) {
1026 				if (folio_mapping(folio) != mapping) {
1027 					/* Page was replaced by swap: retry */
1028 					folio_unlock(folio);
1029 					index = indices[i];
1030 					break;
1031 				}
1032 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1033 						folio);
1034 				truncate_inode_folio(mapping, folio);
1035 			}
1036 			folio_unlock(folio);
1037 		}
1038 		folio_batch_remove_exceptionals(&fbatch);
1039 		folio_batch_release(&fbatch);
1040 	}
1041 
1042 	spin_lock_irq(&info->lock);
1043 	info->swapped -= nr_swaps_freed;
1044 	shmem_recalc_inode(inode);
1045 	spin_unlock_irq(&info->lock);
1046 }
1047 
1048 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1049 {
1050 	shmem_undo_range(inode, lstart, lend, false);
1051 	inode->i_ctime = inode->i_mtime = current_time(inode);
1052 	inode_inc_iversion(inode);
1053 }
1054 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1055 
1056 static int shmem_getattr(struct mnt_idmap *idmap,
1057 			 const struct path *path, struct kstat *stat,
1058 			 u32 request_mask, unsigned int query_flags)
1059 {
1060 	struct inode *inode = path->dentry->d_inode;
1061 	struct shmem_inode_info *info = SHMEM_I(inode);
1062 
1063 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1064 		spin_lock_irq(&info->lock);
1065 		shmem_recalc_inode(inode);
1066 		spin_unlock_irq(&info->lock);
1067 	}
1068 	if (info->fsflags & FS_APPEND_FL)
1069 		stat->attributes |= STATX_ATTR_APPEND;
1070 	if (info->fsflags & FS_IMMUTABLE_FL)
1071 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1072 	if (info->fsflags & FS_NODUMP_FL)
1073 		stat->attributes |= STATX_ATTR_NODUMP;
1074 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1075 			STATX_ATTR_IMMUTABLE |
1076 			STATX_ATTR_NODUMP);
1077 	generic_fillattr(idmap, inode, stat);
1078 
1079 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1080 		stat->blksize = HPAGE_PMD_SIZE;
1081 
1082 	if (request_mask & STATX_BTIME) {
1083 		stat->result_mask |= STATX_BTIME;
1084 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1085 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static int shmem_setattr(struct mnt_idmap *idmap,
1092 			 struct dentry *dentry, struct iattr *attr)
1093 {
1094 	struct inode *inode = d_inode(dentry);
1095 	struct shmem_inode_info *info = SHMEM_I(inode);
1096 	int error;
1097 	bool update_mtime = false;
1098 	bool update_ctime = true;
1099 
1100 	error = setattr_prepare(idmap, dentry, attr);
1101 	if (error)
1102 		return error;
1103 
1104 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1105 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1106 			return -EPERM;
1107 		}
1108 	}
1109 
1110 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1111 		loff_t oldsize = inode->i_size;
1112 		loff_t newsize = attr->ia_size;
1113 
1114 		/* protected by i_rwsem */
1115 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1116 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1117 			return -EPERM;
1118 
1119 		if (newsize != oldsize) {
1120 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1121 					oldsize, newsize);
1122 			if (error)
1123 				return error;
1124 			i_size_write(inode, newsize);
1125 			update_mtime = true;
1126 		} else {
1127 			update_ctime = false;
1128 		}
1129 		if (newsize <= oldsize) {
1130 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1131 			if (oldsize > holebegin)
1132 				unmap_mapping_range(inode->i_mapping,
1133 							holebegin, 0, 1);
1134 			if (info->alloced)
1135 				shmem_truncate_range(inode,
1136 							newsize, (loff_t)-1);
1137 			/* unmap again to remove racily COWed private pages */
1138 			if (oldsize > holebegin)
1139 				unmap_mapping_range(inode->i_mapping,
1140 							holebegin, 0, 1);
1141 		}
1142 	}
1143 
1144 	setattr_copy(idmap, inode, attr);
1145 	if (attr->ia_valid & ATTR_MODE)
1146 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1147 	if (!error && update_ctime) {
1148 		inode->i_ctime = current_time(inode);
1149 		if (update_mtime)
1150 			inode->i_mtime = inode->i_ctime;
1151 		inode_inc_iversion(inode);
1152 	}
1153 	return error;
1154 }
1155 
1156 static void shmem_evict_inode(struct inode *inode)
1157 {
1158 	struct shmem_inode_info *info = SHMEM_I(inode);
1159 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1160 
1161 	if (shmem_mapping(inode->i_mapping)) {
1162 		shmem_unacct_size(info->flags, inode->i_size);
1163 		inode->i_size = 0;
1164 		mapping_set_exiting(inode->i_mapping);
1165 		shmem_truncate_range(inode, 0, (loff_t)-1);
1166 		if (!list_empty(&info->shrinklist)) {
1167 			spin_lock(&sbinfo->shrinklist_lock);
1168 			if (!list_empty(&info->shrinklist)) {
1169 				list_del_init(&info->shrinklist);
1170 				sbinfo->shrinklist_len--;
1171 			}
1172 			spin_unlock(&sbinfo->shrinklist_lock);
1173 		}
1174 		while (!list_empty(&info->swaplist)) {
1175 			/* Wait while shmem_unuse() is scanning this inode... */
1176 			wait_var_event(&info->stop_eviction,
1177 				       !atomic_read(&info->stop_eviction));
1178 			mutex_lock(&shmem_swaplist_mutex);
1179 			/* ...but beware of the race if we peeked too early */
1180 			if (!atomic_read(&info->stop_eviction))
1181 				list_del_init(&info->swaplist);
1182 			mutex_unlock(&shmem_swaplist_mutex);
1183 		}
1184 	}
1185 
1186 	simple_xattrs_free(&info->xattrs);
1187 	WARN_ON(inode->i_blocks);
1188 	shmem_free_inode(inode->i_sb);
1189 	clear_inode(inode);
1190 }
1191 
1192 static int shmem_find_swap_entries(struct address_space *mapping,
1193 				   pgoff_t start, struct folio_batch *fbatch,
1194 				   pgoff_t *indices, unsigned int type)
1195 {
1196 	XA_STATE(xas, &mapping->i_pages, start);
1197 	struct folio *folio;
1198 	swp_entry_t entry;
1199 
1200 	rcu_read_lock();
1201 	xas_for_each(&xas, folio, ULONG_MAX) {
1202 		if (xas_retry(&xas, folio))
1203 			continue;
1204 
1205 		if (!xa_is_value(folio))
1206 			continue;
1207 
1208 		entry = radix_to_swp_entry(folio);
1209 		/*
1210 		 * swapin error entries can be found in the mapping. But they're
1211 		 * deliberately ignored here as we've done everything we can do.
1212 		 */
1213 		if (swp_type(entry) != type)
1214 			continue;
1215 
1216 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1217 		if (!folio_batch_add(fbatch, folio))
1218 			break;
1219 
1220 		if (need_resched()) {
1221 			xas_pause(&xas);
1222 			cond_resched_rcu();
1223 		}
1224 	}
1225 	rcu_read_unlock();
1226 
1227 	return xas.xa_index;
1228 }
1229 
1230 /*
1231  * Move the swapped pages for an inode to page cache. Returns the count
1232  * of pages swapped in, or the error in case of failure.
1233  */
1234 static int shmem_unuse_swap_entries(struct inode *inode,
1235 		struct folio_batch *fbatch, pgoff_t *indices)
1236 {
1237 	int i = 0;
1238 	int ret = 0;
1239 	int error = 0;
1240 	struct address_space *mapping = inode->i_mapping;
1241 
1242 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1243 		struct folio *folio = fbatch->folios[i];
1244 
1245 		if (!xa_is_value(folio))
1246 			continue;
1247 		error = shmem_swapin_folio(inode, indices[i],
1248 					  &folio, SGP_CACHE,
1249 					  mapping_gfp_mask(mapping),
1250 					  NULL, NULL);
1251 		if (error == 0) {
1252 			folio_unlock(folio);
1253 			folio_put(folio);
1254 			ret++;
1255 		}
1256 		if (error == -ENOMEM)
1257 			break;
1258 		error = 0;
1259 	}
1260 	return error ? error : ret;
1261 }
1262 
1263 /*
1264  * If swap found in inode, free it and move page from swapcache to filecache.
1265  */
1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1267 {
1268 	struct address_space *mapping = inode->i_mapping;
1269 	pgoff_t start = 0;
1270 	struct folio_batch fbatch;
1271 	pgoff_t indices[PAGEVEC_SIZE];
1272 	int ret = 0;
1273 
1274 	do {
1275 		folio_batch_init(&fbatch);
1276 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1277 		if (folio_batch_count(&fbatch) == 0) {
1278 			ret = 0;
1279 			break;
1280 		}
1281 
1282 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1283 		if (ret < 0)
1284 			break;
1285 
1286 		start = indices[folio_batch_count(&fbatch) - 1];
1287 	} while (true);
1288 
1289 	return ret;
1290 }
1291 
1292 /*
1293  * Read all the shared memory data that resides in the swap
1294  * device 'type' back into memory, so the swap device can be
1295  * unused.
1296  */
1297 int shmem_unuse(unsigned int type)
1298 {
1299 	struct shmem_inode_info *info, *next;
1300 	int error = 0;
1301 
1302 	if (list_empty(&shmem_swaplist))
1303 		return 0;
1304 
1305 	mutex_lock(&shmem_swaplist_mutex);
1306 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1307 		if (!info->swapped) {
1308 			list_del_init(&info->swaplist);
1309 			continue;
1310 		}
1311 		/*
1312 		 * Drop the swaplist mutex while searching the inode for swap;
1313 		 * but before doing so, make sure shmem_evict_inode() will not
1314 		 * remove placeholder inode from swaplist, nor let it be freed
1315 		 * (igrab() would protect from unlink, but not from unmount).
1316 		 */
1317 		atomic_inc(&info->stop_eviction);
1318 		mutex_unlock(&shmem_swaplist_mutex);
1319 
1320 		error = shmem_unuse_inode(&info->vfs_inode, type);
1321 		cond_resched();
1322 
1323 		mutex_lock(&shmem_swaplist_mutex);
1324 		next = list_next_entry(info, swaplist);
1325 		if (!info->swapped)
1326 			list_del_init(&info->swaplist);
1327 		if (atomic_dec_and_test(&info->stop_eviction))
1328 			wake_up_var(&info->stop_eviction);
1329 		if (error)
1330 			break;
1331 	}
1332 	mutex_unlock(&shmem_swaplist_mutex);
1333 
1334 	return error;
1335 }
1336 
1337 /*
1338  * Move the page from the page cache to the swap cache.
1339  */
1340 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1341 {
1342 	struct folio *folio = page_folio(page);
1343 	struct address_space *mapping = folio->mapping;
1344 	struct inode *inode = mapping->host;
1345 	struct shmem_inode_info *info = SHMEM_I(inode);
1346 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1347 	swp_entry_t swap;
1348 	pgoff_t index;
1349 
1350 	/*
1351 	 * Our capabilities prevent regular writeback or sync from ever calling
1352 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1353 	 * its underlying filesystem, in which case tmpfs should write out to
1354 	 * swap only in response to memory pressure, and not for the writeback
1355 	 * threads or sync.
1356 	 */
1357 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1358 		goto redirty;
1359 
1360 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1361 		goto redirty;
1362 
1363 	if (!total_swap_pages)
1364 		goto redirty;
1365 
1366 	/*
1367 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1368 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1369 	 * and its shmem_writeback() needs them to be split when swapping.
1370 	 */
1371 	if (folio_test_large(folio)) {
1372 		/* Ensure the subpages are still dirty */
1373 		folio_test_set_dirty(folio);
1374 		if (split_huge_page(page) < 0)
1375 			goto redirty;
1376 		folio = page_folio(page);
1377 		folio_clear_dirty(folio);
1378 	}
1379 
1380 	index = folio->index;
1381 
1382 	/*
1383 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1384 	 * value into swapfile.c, the only way we can correctly account for a
1385 	 * fallocated folio arriving here is now to initialize it and write it.
1386 	 *
1387 	 * That's okay for a folio already fallocated earlier, but if we have
1388 	 * not yet completed the fallocation, then (a) we want to keep track
1389 	 * of this folio in case we have to undo it, and (b) it may not be a
1390 	 * good idea to continue anyway, once we're pushing into swap.  So
1391 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1392 	 */
1393 	if (!folio_test_uptodate(folio)) {
1394 		if (inode->i_private) {
1395 			struct shmem_falloc *shmem_falloc;
1396 			spin_lock(&inode->i_lock);
1397 			shmem_falloc = inode->i_private;
1398 			if (shmem_falloc &&
1399 			    !shmem_falloc->waitq &&
1400 			    index >= shmem_falloc->start &&
1401 			    index < shmem_falloc->next)
1402 				shmem_falloc->nr_unswapped++;
1403 			else
1404 				shmem_falloc = NULL;
1405 			spin_unlock(&inode->i_lock);
1406 			if (shmem_falloc)
1407 				goto redirty;
1408 		}
1409 		folio_zero_range(folio, 0, folio_size(folio));
1410 		flush_dcache_folio(folio);
1411 		folio_mark_uptodate(folio);
1412 	}
1413 
1414 	swap = folio_alloc_swap(folio);
1415 	if (!swap.val)
1416 		goto redirty;
1417 
1418 	/*
1419 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1420 	 * if it's not already there.  Do it now before the folio is
1421 	 * moved to swap cache, when its pagelock no longer protects
1422 	 * the inode from eviction.  But don't unlock the mutex until
1423 	 * we've incremented swapped, because shmem_unuse_inode() will
1424 	 * prune a !swapped inode from the swaplist under this mutex.
1425 	 */
1426 	mutex_lock(&shmem_swaplist_mutex);
1427 	if (list_empty(&info->swaplist))
1428 		list_add(&info->swaplist, &shmem_swaplist);
1429 
1430 	if (add_to_swap_cache(folio, swap,
1431 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1432 			NULL) == 0) {
1433 		spin_lock_irq(&info->lock);
1434 		shmem_recalc_inode(inode);
1435 		info->swapped++;
1436 		spin_unlock_irq(&info->lock);
1437 
1438 		swap_shmem_alloc(swap);
1439 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1440 
1441 		mutex_unlock(&shmem_swaplist_mutex);
1442 		BUG_ON(folio_mapped(folio));
1443 		swap_writepage(&folio->page, wbc);
1444 		return 0;
1445 	}
1446 
1447 	mutex_unlock(&shmem_swaplist_mutex);
1448 	put_swap_folio(folio, swap);
1449 redirty:
1450 	folio_mark_dirty(folio);
1451 	if (wbc->for_reclaim)
1452 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1453 	folio_unlock(folio);
1454 	return 0;
1455 }
1456 
1457 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1458 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1459 {
1460 	char buffer[64];
1461 
1462 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1463 		return;		/* show nothing */
1464 
1465 	mpol_to_str(buffer, sizeof(buffer), mpol);
1466 
1467 	seq_printf(seq, ",mpol=%s", buffer);
1468 }
1469 
1470 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1471 {
1472 	struct mempolicy *mpol = NULL;
1473 	if (sbinfo->mpol) {
1474 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1475 		mpol = sbinfo->mpol;
1476 		mpol_get(mpol);
1477 		raw_spin_unlock(&sbinfo->stat_lock);
1478 	}
1479 	return mpol;
1480 }
1481 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1482 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1483 {
1484 }
1485 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1486 {
1487 	return NULL;
1488 }
1489 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1490 #ifndef CONFIG_NUMA
1491 #define vm_policy vm_private_data
1492 #endif
1493 
1494 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1495 		struct shmem_inode_info *info, pgoff_t index)
1496 {
1497 	/* Create a pseudo vma that just contains the policy */
1498 	vma_init(vma, NULL);
1499 	/* Bias interleave by inode number to distribute better across nodes */
1500 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1501 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1502 }
1503 
1504 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1505 {
1506 	/* Drop reference taken by mpol_shared_policy_lookup() */
1507 	mpol_cond_put(vma->vm_policy);
1508 }
1509 
1510 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1511 			struct shmem_inode_info *info, pgoff_t index)
1512 {
1513 	struct vm_area_struct pvma;
1514 	struct page *page;
1515 	struct vm_fault vmf = {
1516 		.vma = &pvma,
1517 	};
1518 
1519 	shmem_pseudo_vma_init(&pvma, info, index);
1520 	page = swap_cluster_readahead(swap, gfp, &vmf);
1521 	shmem_pseudo_vma_destroy(&pvma);
1522 
1523 	if (!page)
1524 		return NULL;
1525 	return page_folio(page);
1526 }
1527 
1528 /*
1529  * Make sure huge_gfp is always more limited than limit_gfp.
1530  * Some of the flags set permissions, while others set limitations.
1531  */
1532 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1533 {
1534 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1535 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1536 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1537 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1538 
1539 	/* Allow allocations only from the originally specified zones. */
1540 	result |= zoneflags;
1541 
1542 	/*
1543 	 * Minimize the result gfp by taking the union with the deny flags,
1544 	 * and the intersection of the allow flags.
1545 	 */
1546 	result |= (limit_gfp & denyflags);
1547 	result |= (huge_gfp & limit_gfp) & allowflags;
1548 
1549 	return result;
1550 }
1551 
1552 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1553 		struct shmem_inode_info *info, pgoff_t index)
1554 {
1555 	struct vm_area_struct pvma;
1556 	struct address_space *mapping = info->vfs_inode.i_mapping;
1557 	pgoff_t hindex;
1558 	struct folio *folio;
1559 
1560 	hindex = round_down(index, HPAGE_PMD_NR);
1561 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1562 								XA_PRESENT))
1563 		return NULL;
1564 
1565 	shmem_pseudo_vma_init(&pvma, info, hindex);
1566 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1567 	shmem_pseudo_vma_destroy(&pvma);
1568 	if (!folio)
1569 		count_vm_event(THP_FILE_FALLBACK);
1570 	return folio;
1571 }
1572 
1573 static struct folio *shmem_alloc_folio(gfp_t gfp,
1574 			struct shmem_inode_info *info, pgoff_t index)
1575 {
1576 	struct vm_area_struct pvma;
1577 	struct folio *folio;
1578 
1579 	shmem_pseudo_vma_init(&pvma, info, index);
1580 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1581 	shmem_pseudo_vma_destroy(&pvma);
1582 
1583 	return folio;
1584 }
1585 
1586 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1587 		pgoff_t index, bool huge)
1588 {
1589 	struct shmem_inode_info *info = SHMEM_I(inode);
1590 	struct folio *folio;
1591 	int nr;
1592 	int err = -ENOSPC;
1593 
1594 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1595 		huge = false;
1596 	nr = huge ? HPAGE_PMD_NR : 1;
1597 
1598 	if (!shmem_inode_acct_block(inode, nr))
1599 		goto failed;
1600 
1601 	if (huge)
1602 		folio = shmem_alloc_hugefolio(gfp, info, index);
1603 	else
1604 		folio = shmem_alloc_folio(gfp, info, index);
1605 	if (folio) {
1606 		__folio_set_locked(folio);
1607 		__folio_set_swapbacked(folio);
1608 		return folio;
1609 	}
1610 
1611 	err = -ENOMEM;
1612 	shmem_inode_unacct_blocks(inode, nr);
1613 failed:
1614 	return ERR_PTR(err);
1615 }
1616 
1617 /*
1618  * When a page is moved from swapcache to shmem filecache (either by the
1619  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1620  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1621  * ignorance of the mapping it belongs to.  If that mapping has special
1622  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1623  * we may need to copy to a suitable page before moving to filecache.
1624  *
1625  * In a future release, this may well be extended to respect cpuset and
1626  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1627  * but for now it is a simple matter of zone.
1628  */
1629 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1630 {
1631 	return folio_zonenum(folio) > gfp_zone(gfp);
1632 }
1633 
1634 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1635 				struct shmem_inode_info *info, pgoff_t index)
1636 {
1637 	struct folio *old, *new;
1638 	struct address_space *swap_mapping;
1639 	swp_entry_t entry;
1640 	pgoff_t swap_index;
1641 	int error;
1642 
1643 	old = *foliop;
1644 	entry = folio_swap_entry(old);
1645 	swap_index = swp_offset(entry);
1646 	swap_mapping = swap_address_space(entry);
1647 
1648 	/*
1649 	 * We have arrived here because our zones are constrained, so don't
1650 	 * limit chance of success by further cpuset and node constraints.
1651 	 */
1652 	gfp &= ~GFP_CONSTRAINT_MASK;
1653 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1654 	new = shmem_alloc_folio(gfp, info, index);
1655 	if (!new)
1656 		return -ENOMEM;
1657 
1658 	folio_get(new);
1659 	folio_copy(new, old);
1660 	flush_dcache_folio(new);
1661 
1662 	__folio_set_locked(new);
1663 	__folio_set_swapbacked(new);
1664 	folio_mark_uptodate(new);
1665 	folio_set_swap_entry(new, entry);
1666 	folio_set_swapcache(new);
1667 
1668 	/*
1669 	 * Our caller will very soon move newpage out of swapcache, but it's
1670 	 * a nice clean interface for us to replace oldpage by newpage there.
1671 	 */
1672 	xa_lock_irq(&swap_mapping->i_pages);
1673 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1674 	if (!error) {
1675 		mem_cgroup_migrate(old, new);
1676 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1677 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1678 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1679 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1680 	}
1681 	xa_unlock_irq(&swap_mapping->i_pages);
1682 
1683 	if (unlikely(error)) {
1684 		/*
1685 		 * Is this possible?  I think not, now that our callers check
1686 		 * both PageSwapCache and page_private after getting page lock;
1687 		 * but be defensive.  Reverse old to newpage for clear and free.
1688 		 */
1689 		old = new;
1690 	} else {
1691 		folio_add_lru(new);
1692 		*foliop = new;
1693 	}
1694 
1695 	folio_clear_swapcache(old);
1696 	old->private = NULL;
1697 
1698 	folio_unlock(old);
1699 	folio_put_refs(old, 2);
1700 	return error;
1701 }
1702 
1703 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1704 					 struct folio *folio, swp_entry_t swap)
1705 {
1706 	struct address_space *mapping = inode->i_mapping;
1707 	struct shmem_inode_info *info = SHMEM_I(inode);
1708 	swp_entry_t swapin_error;
1709 	void *old;
1710 
1711 	swapin_error = make_swapin_error_entry();
1712 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1713 			     swp_to_radix_entry(swap),
1714 			     swp_to_radix_entry(swapin_error), 0);
1715 	if (old != swp_to_radix_entry(swap))
1716 		return;
1717 
1718 	folio_wait_writeback(folio);
1719 	delete_from_swap_cache(folio);
1720 	spin_lock_irq(&info->lock);
1721 	/*
1722 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1723 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1724 	 * shmem_evict_inode.
1725 	 */
1726 	info->alloced--;
1727 	info->swapped--;
1728 	shmem_recalc_inode(inode);
1729 	spin_unlock_irq(&info->lock);
1730 	swap_free(swap);
1731 }
1732 
1733 /*
1734  * Swap in the folio pointed to by *foliop.
1735  * Caller has to make sure that *foliop contains a valid swapped folio.
1736  * Returns 0 and the folio in foliop if success. On failure, returns the
1737  * error code and NULL in *foliop.
1738  */
1739 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1740 			     struct folio **foliop, enum sgp_type sgp,
1741 			     gfp_t gfp, struct vm_area_struct *vma,
1742 			     vm_fault_t *fault_type)
1743 {
1744 	struct address_space *mapping = inode->i_mapping;
1745 	struct shmem_inode_info *info = SHMEM_I(inode);
1746 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1747 	struct swap_info_struct *si;
1748 	struct folio *folio = NULL;
1749 	swp_entry_t swap;
1750 	int error;
1751 
1752 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1753 	swap = radix_to_swp_entry(*foliop);
1754 	*foliop = NULL;
1755 
1756 	if (is_swapin_error_entry(swap))
1757 		return -EIO;
1758 
1759 	si = get_swap_device(swap);
1760 	if (!si) {
1761 		if (!shmem_confirm_swap(mapping, index, swap))
1762 			return -EEXIST;
1763 		else
1764 			return -EINVAL;
1765 	}
1766 
1767 	/* Look it up and read it in.. */
1768 	folio = swap_cache_get_folio(swap, NULL, 0);
1769 	if (!folio) {
1770 		/* Or update major stats only when swapin succeeds?? */
1771 		if (fault_type) {
1772 			*fault_type |= VM_FAULT_MAJOR;
1773 			count_vm_event(PGMAJFAULT);
1774 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1775 		}
1776 		/* Here we actually start the io */
1777 		folio = shmem_swapin(swap, gfp, info, index);
1778 		if (!folio) {
1779 			error = -ENOMEM;
1780 			goto failed;
1781 		}
1782 	}
1783 
1784 	/* We have to do this with folio locked to prevent races */
1785 	folio_lock(folio);
1786 	if (!folio_test_swapcache(folio) ||
1787 	    folio_swap_entry(folio).val != swap.val ||
1788 	    !shmem_confirm_swap(mapping, index, swap)) {
1789 		error = -EEXIST;
1790 		goto unlock;
1791 	}
1792 	if (!folio_test_uptodate(folio)) {
1793 		error = -EIO;
1794 		goto failed;
1795 	}
1796 	folio_wait_writeback(folio);
1797 
1798 	/*
1799 	 * Some architectures may have to restore extra metadata to the
1800 	 * folio after reading from swap.
1801 	 */
1802 	arch_swap_restore(swap, folio);
1803 
1804 	if (shmem_should_replace_folio(folio, gfp)) {
1805 		error = shmem_replace_folio(&folio, gfp, info, index);
1806 		if (error)
1807 			goto failed;
1808 	}
1809 
1810 	error = shmem_add_to_page_cache(folio, mapping, index,
1811 					swp_to_radix_entry(swap), gfp,
1812 					charge_mm);
1813 	if (error)
1814 		goto failed;
1815 
1816 	spin_lock_irq(&info->lock);
1817 	info->swapped--;
1818 	shmem_recalc_inode(inode);
1819 	spin_unlock_irq(&info->lock);
1820 
1821 	if (sgp == SGP_WRITE)
1822 		folio_mark_accessed(folio);
1823 
1824 	delete_from_swap_cache(folio);
1825 	folio_mark_dirty(folio);
1826 	swap_free(swap);
1827 	put_swap_device(si);
1828 
1829 	*foliop = folio;
1830 	return 0;
1831 failed:
1832 	if (!shmem_confirm_swap(mapping, index, swap))
1833 		error = -EEXIST;
1834 	if (error == -EIO)
1835 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1836 unlock:
1837 	if (folio) {
1838 		folio_unlock(folio);
1839 		folio_put(folio);
1840 	}
1841 	put_swap_device(si);
1842 
1843 	return error;
1844 }
1845 
1846 /*
1847  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1848  *
1849  * If we allocate a new one we do not mark it dirty. That's up to the
1850  * vm. If we swap it in we mark it dirty since we also free the swap
1851  * entry since a page cannot live in both the swap and page cache.
1852  *
1853  * vma, vmf, and fault_type are only supplied by shmem_fault:
1854  * otherwise they are NULL.
1855  */
1856 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1857 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1858 		struct vm_area_struct *vma, struct vm_fault *vmf,
1859 		vm_fault_t *fault_type)
1860 {
1861 	struct address_space *mapping = inode->i_mapping;
1862 	struct shmem_inode_info *info = SHMEM_I(inode);
1863 	struct shmem_sb_info *sbinfo;
1864 	struct mm_struct *charge_mm;
1865 	struct folio *folio;
1866 	pgoff_t hindex;
1867 	gfp_t huge_gfp;
1868 	int error;
1869 	int once = 0;
1870 	int alloced = 0;
1871 
1872 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1873 		return -EFBIG;
1874 repeat:
1875 	if (sgp <= SGP_CACHE &&
1876 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1877 		return -EINVAL;
1878 	}
1879 
1880 	sbinfo = SHMEM_SB(inode->i_sb);
1881 	charge_mm = vma ? vma->vm_mm : NULL;
1882 
1883 	folio = filemap_get_entry(mapping, index);
1884 	if (folio && vma && userfaultfd_minor(vma)) {
1885 		if (!xa_is_value(folio))
1886 			folio_put(folio);
1887 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1888 		return 0;
1889 	}
1890 
1891 	if (xa_is_value(folio)) {
1892 		error = shmem_swapin_folio(inode, index, &folio,
1893 					  sgp, gfp, vma, fault_type);
1894 		if (error == -EEXIST)
1895 			goto repeat;
1896 
1897 		*foliop = folio;
1898 		return error;
1899 	}
1900 
1901 	if (folio) {
1902 		folio_lock(folio);
1903 
1904 		/* Has the folio been truncated or swapped out? */
1905 		if (unlikely(folio->mapping != mapping)) {
1906 			folio_unlock(folio);
1907 			folio_put(folio);
1908 			goto repeat;
1909 		}
1910 		if (sgp == SGP_WRITE)
1911 			folio_mark_accessed(folio);
1912 		if (folio_test_uptodate(folio))
1913 			goto out;
1914 		/* fallocated folio */
1915 		if (sgp != SGP_READ)
1916 			goto clear;
1917 		folio_unlock(folio);
1918 		folio_put(folio);
1919 	}
1920 
1921 	/*
1922 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1923 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1924 	 */
1925 	*foliop = NULL;
1926 	if (sgp == SGP_READ)
1927 		return 0;
1928 	if (sgp == SGP_NOALLOC)
1929 		return -ENOENT;
1930 
1931 	/*
1932 	 * Fast cache lookup and swap lookup did not find it: allocate.
1933 	 */
1934 
1935 	if (vma && userfaultfd_missing(vma)) {
1936 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1937 		return 0;
1938 	}
1939 
1940 	if (!shmem_is_huge(inode, index, false,
1941 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
1942 		goto alloc_nohuge;
1943 
1944 	huge_gfp = vma_thp_gfp_mask(vma);
1945 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1946 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1947 	if (IS_ERR(folio)) {
1948 alloc_nohuge:
1949 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1950 	}
1951 	if (IS_ERR(folio)) {
1952 		int retry = 5;
1953 
1954 		error = PTR_ERR(folio);
1955 		folio = NULL;
1956 		if (error != -ENOSPC)
1957 			goto unlock;
1958 		/*
1959 		 * Try to reclaim some space by splitting a large folio
1960 		 * beyond i_size on the filesystem.
1961 		 */
1962 		while (retry--) {
1963 			int ret;
1964 
1965 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1966 			if (ret == SHRINK_STOP)
1967 				break;
1968 			if (ret)
1969 				goto alloc_nohuge;
1970 		}
1971 		goto unlock;
1972 	}
1973 
1974 	hindex = round_down(index, folio_nr_pages(folio));
1975 
1976 	if (sgp == SGP_WRITE)
1977 		__folio_set_referenced(folio);
1978 
1979 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1980 					NULL, gfp & GFP_RECLAIM_MASK,
1981 					charge_mm);
1982 	if (error)
1983 		goto unacct;
1984 	folio_add_lru(folio);
1985 
1986 	spin_lock_irq(&info->lock);
1987 	info->alloced += folio_nr_pages(folio);
1988 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1989 	shmem_recalc_inode(inode);
1990 	spin_unlock_irq(&info->lock);
1991 	alloced = true;
1992 
1993 	if (folio_test_pmd_mappable(folio) &&
1994 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1995 					folio_next_index(folio) - 1) {
1996 		/*
1997 		 * Part of the large folio is beyond i_size: subject
1998 		 * to shrink under memory pressure.
1999 		 */
2000 		spin_lock(&sbinfo->shrinklist_lock);
2001 		/*
2002 		 * _careful to defend against unlocked access to
2003 		 * ->shrink_list in shmem_unused_huge_shrink()
2004 		 */
2005 		if (list_empty_careful(&info->shrinklist)) {
2006 			list_add_tail(&info->shrinklist,
2007 				      &sbinfo->shrinklist);
2008 			sbinfo->shrinklist_len++;
2009 		}
2010 		spin_unlock(&sbinfo->shrinklist_lock);
2011 	}
2012 
2013 	/*
2014 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2015 	 */
2016 	if (sgp == SGP_FALLOC)
2017 		sgp = SGP_WRITE;
2018 clear:
2019 	/*
2020 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2021 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2022 	 * it now, lest undo on failure cancel our earlier guarantee.
2023 	 */
2024 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2025 		long i, n = folio_nr_pages(folio);
2026 
2027 		for (i = 0; i < n; i++)
2028 			clear_highpage(folio_page(folio, i));
2029 		flush_dcache_folio(folio);
2030 		folio_mark_uptodate(folio);
2031 	}
2032 
2033 	/* Perhaps the file has been truncated since we checked */
2034 	if (sgp <= SGP_CACHE &&
2035 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2036 		if (alloced) {
2037 			folio_clear_dirty(folio);
2038 			filemap_remove_folio(folio);
2039 			spin_lock_irq(&info->lock);
2040 			shmem_recalc_inode(inode);
2041 			spin_unlock_irq(&info->lock);
2042 		}
2043 		error = -EINVAL;
2044 		goto unlock;
2045 	}
2046 out:
2047 	*foliop = folio;
2048 	return 0;
2049 
2050 	/*
2051 	 * Error recovery.
2052 	 */
2053 unacct:
2054 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2055 
2056 	if (folio_test_large(folio)) {
2057 		folio_unlock(folio);
2058 		folio_put(folio);
2059 		goto alloc_nohuge;
2060 	}
2061 unlock:
2062 	if (folio) {
2063 		folio_unlock(folio);
2064 		folio_put(folio);
2065 	}
2066 	if (error == -ENOSPC && !once++) {
2067 		spin_lock_irq(&info->lock);
2068 		shmem_recalc_inode(inode);
2069 		spin_unlock_irq(&info->lock);
2070 		goto repeat;
2071 	}
2072 	if (error == -EEXIST)
2073 		goto repeat;
2074 	return error;
2075 }
2076 
2077 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2078 		enum sgp_type sgp)
2079 {
2080 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2081 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2082 }
2083 
2084 /*
2085  * This is like autoremove_wake_function, but it removes the wait queue
2086  * entry unconditionally - even if something else had already woken the
2087  * target.
2088  */
2089 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2090 {
2091 	int ret = default_wake_function(wait, mode, sync, key);
2092 	list_del_init(&wait->entry);
2093 	return ret;
2094 }
2095 
2096 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2097 {
2098 	struct vm_area_struct *vma = vmf->vma;
2099 	struct inode *inode = file_inode(vma->vm_file);
2100 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2101 	struct folio *folio = NULL;
2102 	int err;
2103 	vm_fault_t ret = VM_FAULT_LOCKED;
2104 
2105 	/*
2106 	 * Trinity finds that probing a hole which tmpfs is punching can
2107 	 * prevent the hole-punch from ever completing: which in turn
2108 	 * locks writers out with its hold on i_rwsem.  So refrain from
2109 	 * faulting pages into the hole while it's being punched.  Although
2110 	 * shmem_undo_range() does remove the additions, it may be unable to
2111 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2112 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2113 	 *
2114 	 * It does not matter if we sometimes reach this check just before the
2115 	 * hole-punch begins, so that one fault then races with the punch:
2116 	 * we just need to make racing faults a rare case.
2117 	 *
2118 	 * The implementation below would be much simpler if we just used a
2119 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2120 	 * and bloating every shmem inode for this unlikely case would be sad.
2121 	 */
2122 	if (unlikely(inode->i_private)) {
2123 		struct shmem_falloc *shmem_falloc;
2124 
2125 		spin_lock(&inode->i_lock);
2126 		shmem_falloc = inode->i_private;
2127 		if (shmem_falloc &&
2128 		    shmem_falloc->waitq &&
2129 		    vmf->pgoff >= shmem_falloc->start &&
2130 		    vmf->pgoff < shmem_falloc->next) {
2131 			struct file *fpin;
2132 			wait_queue_head_t *shmem_falloc_waitq;
2133 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2134 
2135 			ret = VM_FAULT_NOPAGE;
2136 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2137 			if (fpin)
2138 				ret = VM_FAULT_RETRY;
2139 
2140 			shmem_falloc_waitq = shmem_falloc->waitq;
2141 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2142 					TASK_UNINTERRUPTIBLE);
2143 			spin_unlock(&inode->i_lock);
2144 			schedule();
2145 
2146 			/*
2147 			 * shmem_falloc_waitq points into the shmem_fallocate()
2148 			 * stack of the hole-punching task: shmem_falloc_waitq
2149 			 * is usually invalid by the time we reach here, but
2150 			 * finish_wait() does not dereference it in that case;
2151 			 * though i_lock needed lest racing with wake_up_all().
2152 			 */
2153 			spin_lock(&inode->i_lock);
2154 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2155 			spin_unlock(&inode->i_lock);
2156 
2157 			if (fpin)
2158 				fput(fpin);
2159 			return ret;
2160 		}
2161 		spin_unlock(&inode->i_lock);
2162 	}
2163 
2164 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2165 				  gfp, vma, vmf, &ret);
2166 	if (err)
2167 		return vmf_error(err);
2168 	if (folio)
2169 		vmf->page = folio_file_page(folio, vmf->pgoff);
2170 	return ret;
2171 }
2172 
2173 unsigned long shmem_get_unmapped_area(struct file *file,
2174 				      unsigned long uaddr, unsigned long len,
2175 				      unsigned long pgoff, unsigned long flags)
2176 {
2177 	unsigned long (*get_area)(struct file *,
2178 		unsigned long, unsigned long, unsigned long, unsigned long);
2179 	unsigned long addr;
2180 	unsigned long offset;
2181 	unsigned long inflated_len;
2182 	unsigned long inflated_addr;
2183 	unsigned long inflated_offset;
2184 
2185 	if (len > TASK_SIZE)
2186 		return -ENOMEM;
2187 
2188 	get_area = current->mm->get_unmapped_area;
2189 	addr = get_area(file, uaddr, len, pgoff, flags);
2190 
2191 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2192 		return addr;
2193 	if (IS_ERR_VALUE(addr))
2194 		return addr;
2195 	if (addr & ~PAGE_MASK)
2196 		return addr;
2197 	if (addr > TASK_SIZE - len)
2198 		return addr;
2199 
2200 	if (shmem_huge == SHMEM_HUGE_DENY)
2201 		return addr;
2202 	if (len < HPAGE_PMD_SIZE)
2203 		return addr;
2204 	if (flags & MAP_FIXED)
2205 		return addr;
2206 	/*
2207 	 * Our priority is to support MAP_SHARED mapped hugely;
2208 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2209 	 * But if caller specified an address hint and we allocated area there
2210 	 * successfully, respect that as before.
2211 	 */
2212 	if (uaddr == addr)
2213 		return addr;
2214 
2215 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2216 		struct super_block *sb;
2217 
2218 		if (file) {
2219 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2220 			sb = file_inode(file)->i_sb;
2221 		} else {
2222 			/*
2223 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2224 			 * for "/dev/zero", to create a shared anonymous object.
2225 			 */
2226 			if (IS_ERR(shm_mnt))
2227 				return addr;
2228 			sb = shm_mnt->mnt_sb;
2229 		}
2230 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2231 			return addr;
2232 	}
2233 
2234 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2235 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2236 		return addr;
2237 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2238 		return addr;
2239 
2240 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2241 	if (inflated_len > TASK_SIZE)
2242 		return addr;
2243 	if (inflated_len < len)
2244 		return addr;
2245 
2246 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2247 	if (IS_ERR_VALUE(inflated_addr))
2248 		return addr;
2249 	if (inflated_addr & ~PAGE_MASK)
2250 		return addr;
2251 
2252 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2253 	inflated_addr += offset - inflated_offset;
2254 	if (inflated_offset > offset)
2255 		inflated_addr += HPAGE_PMD_SIZE;
2256 
2257 	if (inflated_addr > TASK_SIZE - len)
2258 		return addr;
2259 	return inflated_addr;
2260 }
2261 
2262 #ifdef CONFIG_NUMA
2263 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2264 {
2265 	struct inode *inode = file_inode(vma->vm_file);
2266 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2267 }
2268 
2269 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2270 					  unsigned long addr)
2271 {
2272 	struct inode *inode = file_inode(vma->vm_file);
2273 	pgoff_t index;
2274 
2275 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2276 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2277 }
2278 #endif
2279 
2280 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2281 {
2282 	struct inode *inode = file_inode(file);
2283 	struct shmem_inode_info *info = SHMEM_I(inode);
2284 	int retval = -ENOMEM;
2285 
2286 	/*
2287 	 * What serializes the accesses to info->flags?
2288 	 * ipc_lock_object() when called from shmctl_do_lock(),
2289 	 * no serialization needed when called from shm_destroy().
2290 	 */
2291 	if (lock && !(info->flags & VM_LOCKED)) {
2292 		if (!user_shm_lock(inode->i_size, ucounts))
2293 			goto out_nomem;
2294 		info->flags |= VM_LOCKED;
2295 		mapping_set_unevictable(file->f_mapping);
2296 	}
2297 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2298 		user_shm_unlock(inode->i_size, ucounts);
2299 		info->flags &= ~VM_LOCKED;
2300 		mapping_clear_unevictable(file->f_mapping);
2301 	}
2302 	retval = 0;
2303 
2304 out_nomem:
2305 	return retval;
2306 }
2307 
2308 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2309 {
2310 	struct inode *inode = file_inode(file);
2311 	struct shmem_inode_info *info = SHMEM_I(inode);
2312 	int ret;
2313 
2314 	ret = seal_check_future_write(info->seals, vma);
2315 	if (ret)
2316 		return ret;
2317 
2318 	/* arm64 - allow memory tagging on RAM-based files */
2319 	vm_flags_set(vma, VM_MTE_ALLOWED);
2320 
2321 	file_accessed(file);
2322 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2323 	if (inode->i_nlink)
2324 		vma->vm_ops = &shmem_vm_ops;
2325 	else
2326 		vma->vm_ops = &shmem_anon_vm_ops;
2327 	return 0;
2328 }
2329 
2330 #ifdef CONFIG_TMPFS_XATTR
2331 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2332 
2333 /*
2334  * chattr's fsflags are unrelated to extended attributes,
2335  * but tmpfs has chosen to enable them under the same config option.
2336  */
2337 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2338 {
2339 	unsigned int i_flags = 0;
2340 
2341 	if (fsflags & FS_NOATIME_FL)
2342 		i_flags |= S_NOATIME;
2343 	if (fsflags & FS_APPEND_FL)
2344 		i_flags |= S_APPEND;
2345 	if (fsflags & FS_IMMUTABLE_FL)
2346 		i_flags |= S_IMMUTABLE;
2347 	/*
2348 	 * But FS_NODUMP_FL does not require any action in i_flags.
2349 	 */
2350 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2351 }
2352 #else
2353 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2354 {
2355 }
2356 #define shmem_initxattrs NULL
2357 #endif
2358 
2359 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb,
2360 				     struct inode *dir, umode_t mode, dev_t dev,
2361 				     unsigned long flags)
2362 {
2363 	struct inode *inode;
2364 	struct shmem_inode_info *info;
2365 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2366 	ino_t ino;
2367 
2368 	if (shmem_reserve_inode(sb, &ino))
2369 		return NULL;
2370 
2371 	inode = new_inode(sb);
2372 	if (inode) {
2373 		inode->i_ino = ino;
2374 		inode_init_owner(idmap, inode, dir, mode);
2375 		inode->i_blocks = 0;
2376 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2377 		inode->i_generation = get_random_u32();
2378 		info = SHMEM_I(inode);
2379 		memset(info, 0, (char *)inode - (char *)info);
2380 		spin_lock_init(&info->lock);
2381 		atomic_set(&info->stop_eviction, 0);
2382 		info->seals = F_SEAL_SEAL;
2383 		info->flags = flags & VM_NORESERVE;
2384 		info->i_crtime = inode->i_mtime;
2385 		info->fsflags = (dir == NULL) ? 0 :
2386 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2387 		if (info->fsflags)
2388 			shmem_set_inode_flags(inode, info->fsflags);
2389 		INIT_LIST_HEAD(&info->shrinklist);
2390 		INIT_LIST_HEAD(&info->swaplist);
2391 		if (sbinfo->noswap)
2392 			mapping_set_unevictable(inode->i_mapping);
2393 		simple_xattrs_init(&info->xattrs);
2394 		cache_no_acl(inode);
2395 		mapping_set_large_folios(inode->i_mapping);
2396 
2397 		switch (mode & S_IFMT) {
2398 		default:
2399 			inode->i_op = &shmem_special_inode_operations;
2400 			init_special_inode(inode, mode, dev);
2401 			break;
2402 		case S_IFREG:
2403 			inode->i_mapping->a_ops = &shmem_aops;
2404 			inode->i_op = &shmem_inode_operations;
2405 			inode->i_fop = &shmem_file_operations;
2406 			mpol_shared_policy_init(&info->policy,
2407 						 shmem_get_sbmpol(sbinfo));
2408 			break;
2409 		case S_IFDIR:
2410 			inc_nlink(inode);
2411 			/* Some things misbehave if size == 0 on a directory */
2412 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2413 			inode->i_op = &shmem_dir_inode_operations;
2414 			inode->i_fop = &simple_dir_operations;
2415 			break;
2416 		case S_IFLNK:
2417 			/*
2418 			 * Must not load anything in the rbtree,
2419 			 * mpol_free_shared_policy will not be called.
2420 			 */
2421 			mpol_shared_policy_init(&info->policy, NULL);
2422 			break;
2423 		}
2424 
2425 		lockdep_annotate_inode_mutex_key(inode);
2426 	} else
2427 		shmem_free_inode(sb);
2428 	return inode;
2429 }
2430 
2431 #ifdef CONFIG_USERFAULTFD
2432 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2433 			   pmd_t *dst_pmd,
2434 			   struct vm_area_struct *dst_vma,
2435 			   unsigned long dst_addr,
2436 			   unsigned long src_addr,
2437 			   bool zeropage, bool wp_copy,
2438 			   struct page **pagep)
2439 {
2440 	struct inode *inode = file_inode(dst_vma->vm_file);
2441 	struct shmem_inode_info *info = SHMEM_I(inode);
2442 	struct address_space *mapping = inode->i_mapping;
2443 	gfp_t gfp = mapping_gfp_mask(mapping);
2444 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2445 	void *page_kaddr;
2446 	struct folio *folio;
2447 	int ret;
2448 	pgoff_t max_off;
2449 
2450 	if (!shmem_inode_acct_block(inode, 1)) {
2451 		/*
2452 		 * We may have got a page, returned -ENOENT triggering a retry,
2453 		 * and now we find ourselves with -ENOMEM. Release the page, to
2454 		 * avoid a BUG_ON in our caller.
2455 		 */
2456 		if (unlikely(*pagep)) {
2457 			put_page(*pagep);
2458 			*pagep = NULL;
2459 		}
2460 		return -ENOMEM;
2461 	}
2462 
2463 	if (!*pagep) {
2464 		ret = -ENOMEM;
2465 		folio = shmem_alloc_folio(gfp, info, pgoff);
2466 		if (!folio)
2467 			goto out_unacct_blocks;
2468 
2469 		if (!zeropage) {	/* COPY */
2470 			page_kaddr = kmap_local_folio(folio, 0);
2471 			/*
2472 			 * The read mmap_lock is held here.  Despite the
2473 			 * mmap_lock being read recursive a deadlock is still
2474 			 * possible if a writer has taken a lock.  For example:
2475 			 *
2476 			 * process A thread 1 takes read lock on own mmap_lock
2477 			 * process A thread 2 calls mmap, blocks taking write lock
2478 			 * process B thread 1 takes page fault, read lock on own mmap lock
2479 			 * process B thread 2 calls mmap, blocks taking write lock
2480 			 * process A thread 1 blocks taking read lock on process B
2481 			 * process B thread 1 blocks taking read lock on process A
2482 			 *
2483 			 * Disable page faults to prevent potential deadlock
2484 			 * and retry the copy outside the mmap_lock.
2485 			 */
2486 			pagefault_disable();
2487 			ret = copy_from_user(page_kaddr,
2488 					     (const void __user *)src_addr,
2489 					     PAGE_SIZE);
2490 			pagefault_enable();
2491 			kunmap_local(page_kaddr);
2492 
2493 			/* fallback to copy_from_user outside mmap_lock */
2494 			if (unlikely(ret)) {
2495 				*pagep = &folio->page;
2496 				ret = -ENOENT;
2497 				/* don't free the page */
2498 				goto out_unacct_blocks;
2499 			}
2500 
2501 			flush_dcache_folio(folio);
2502 		} else {		/* ZEROPAGE */
2503 			clear_user_highpage(&folio->page, dst_addr);
2504 		}
2505 	} else {
2506 		folio = page_folio(*pagep);
2507 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2508 		*pagep = NULL;
2509 	}
2510 
2511 	VM_BUG_ON(folio_test_locked(folio));
2512 	VM_BUG_ON(folio_test_swapbacked(folio));
2513 	__folio_set_locked(folio);
2514 	__folio_set_swapbacked(folio);
2515 	__folio_mark_uptodate(folio);
2516 
2517 	ret = -EFAULT;
2518 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2519 	if (unlikely(pgoff >= max_off))
2520 		goto out_release;
2521 
2522 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2523 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2524 	if (ret)
2525 		goto out_release;
2526 
2527 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2528 				       &folio->page, true, wp_copy);
2529 	if (ret)
2530 		goto out_delete_from_cache;
2531 
2532 	spin_lock_irq(&info->lock);
2533 	info->alloced++;
2534 	inode->i_blocks += BLOCKS_PER_PAGE;
2535 	shmem_recalc_inode(inode);
2536 	spin_unlock_irq(&info->lock);
2537 
2538 	folio_unlock(folio);
2539 	return 0;
2540 out_delete_from_cache:
2541 	filemap_remove_folio(folio);
2542 out_release:
2543 	folio_unlock(folio);
2544 	folio_put(folio);
2545 out_unacct_blocks:
2546 	shmem_inode_unacct_blocks(inode, 1);
2547 	return ret;
2548 }
2549 #endif /* CONFIG_USERFAULTFD */
2550 
2551 #ifdef CONFIG_TMPFS
2552 static const struct inode_operations shmem_symlink_inode_operations;
2553 static const struct inode_operations shmem_short_symlink_operations;
2554 
2555 static int
2556 shmem_write_begin(struct file *file, struct address_space *mapping,
2557 			loff_t pos, unsigned len,
2558 			struct page **pagep, void **fsdata)
2559 {
2560 	struct inode *inode = mapping->host;
2561 	struct shmem_inode_info *info = SHMEM_I(inode);
2562 	pgoff_t index = pos >> PAGE_SHIFT;
2563 	struct folio *folio;
2564 	int ret = 0;
2565 
2566 	/* i_rwsem is held by caller */
2567 	if (unlikely(info->seals & (F_SEAL_GROW |
2568 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2569 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2570 			return -EPERM;
2571 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2572 			return -EPERM;
2573 	}
2574 
2575 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2576 
2577 	if (ret)
2578 		return ret;
2579 
2580 	*pagep = folio_file_page(folio, index);
2581 	if (PageHWPoison(*pagep)) {
2582 		folio_unlock(folio);
2583 		folio_put(folio);
2584 		*pagep = NULL;
2585 		return -EIO;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static int
2592 shmem_write_end(struct file *file, struct address_space *mapping,
2593 			loff_t pos, unsigned len, unsigned copied,
2594 			struct page *page, void *fsdata)
2595 {
2596 	struct folio *folio = page_folio(page);
2597 	struct inode *inode = mapping->host;
2598 
2599 	if (pos + copied > inode->i_size)
2600 		i_size_write(inode, pos + copied);
2601 
2602 	if (!folio_test_uptodate(folio)) {
2603 		if (copied < folio_size(folio)) {
2604 			size_t from = offset_in_folio(folio, pos);
2605 			folio_zero_segments(folio, 0, from,
2606 					from + copied, folio_size(folio));
2607 		}
2608 		folio_mark_uptodate(folio);
2609 	}
2610 	folio_mark_dirty(folio);
2611 	folio_unlock(folio);
2612 	folio_put(folio);
2613 
2614 	return copied;
2615 }
2616 
2617 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2618 {
2619 	struct file *file = iocb->ki_filp;
2620 	struct inode *inode = file_inode(file);
2621 	struct address_space *mapping = inode->i_mapping;
2622 	pgoff_t index;
2623 	unsigned long offset;
2624 	int error = 0;
2625 	ssize_t retval = 0;
2626 	loff_t *ppos = &iocb->ki_pos;
2627 
2628 	index = *ppos >> PAGE_SHIFT;
2629 	offset = *ppos & ~PAGE_MASK;
2630 
2631 	for (;;) {
2632 		struct folio *folio = NULL;
2633 		struct page *page = NULL;
2634 		pgoff_t end_index;
2635 		unsigned long nr, ret;
2636 		loff_t i_size = i_size_read(inode);
2637 
2638 		end_index = i_size >> PAGE_SHIFT;
2639 		if (index > end_index)
2640 			break;
2641 		if (index == end_index) {
2642 			nr = i_size & ~PAGE_MASK;
2643 			if (nr <= offset)
2644 				break;
2645 		}
2646 
2647 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2648 		if (error) {
2649 			if (error == -EINVAL)
2650 				error = 0;
2651 			break;
2652 		}
2653 		if (folio) {
2654 			folio_unlock(folio);
2655 
2656 			page = folio_file_page(folio, index);
2657 			if (PageHWPoison(page)) {
2658 				folio_put(folio);
2659 				error = -EIO;
2660 				break;
2661 			}
2662 		}
2663 
2664 		/*
2665 		 * We must evaluate after, since reads (unlike writes)
2666 		 * are called without i_rwsem protection against truncate
2667 		 */
2668 		nr = PAGE_SIZE;
2669 		i_size = i_size_read(inode);
2670 		end_index = i_size >> PAGE_SHIFT;
2671 		if (index == end_index) {
2672 			nr = i_size & ~PAGE_MASK;
2673 			if (nr <= offset) {
2674 				if (folio)
2675 					folio_put(folio);
2676 				break;
2677 			}
2678 		}
2679 		nr -= offset;
2680 
2681 		if (folio) {
2682 			/*
2683 			 * If users can be writing to this page using arbitrary
2684 			 * virtual addresses, take care about potential aliasing
2685 			 * before reading the page on the kernel side.
2686 			 */
2687 			if (mapping_writably_mapped(mapping))
2688 				flush_dcache_page(page);
2689 			/*
2690 			 * Mark the page accessed if we read the beginning.
2691 			 */
2692 			if (!offset)
2693 				folio_mark_accessed(folio);
2694 			/*
2695 			 * Ok, we have the page, and it's up-to-date, so
2696 			 * now we can copy it to user space...
2697 			 */
2698 			ret = copy_page_to_iter(page, offset, nr, to);
2699 			folio_put(folio);
2700 
2701 		} else if (user_backed_iter(to)) {
2702 			/*
2703 			 * Copy to user tends to be so well optimized, but
2704 			 * clear_user() not so much, that it is noticeably
2705 			 * faster to copy the zero page instead of clearing.
2706 			 */
2707 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2708 		} else {
2709 			/*
2710 			 * But submitting the same page twice in a row to
2711 			 * splice() - or others? - can result in confusion:
2712 			 * so don't attempt that optimization on pipes etc.
2713 			 */
2714 			ret = iov_iter_zero(nr, to);
2715 		}
2716 
2717 		retval += ret;
2718 		offset += ret;
2719 		index += offset >> PAGE_SHIFT;
2720 		offset &= ~PAGE_MASK;
2721 
2722 		if (!iov_iter_count(to))
2723 			break;
2724 		if (ret < nr) {
2725 			error = -EFAULT;
2726 			break;
2727 		}
2728 		cond_resched();
2729 	}
2730 
2731 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2732 	file_accessed(file);
2733 	return retval ? retval : error;
2734 }
2735 
2736 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2737 {
2738 	struct address_space *mapping = file->f_mapping;
2739 	struct inode *inode = mapping->host;
2740 
2741 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2742 		return generic_file_llseek_size(file, offset, whence,
2743 					MAX_LFS_FILESIZE, i_size_read(inode));
2744 	if (offset < 0)
2745 		return -ENXIO;
2746 
2747 	inode_lock(inode);
2748 	/* We're holding i_rwsem so we can access i_size directly */
2749 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2750 	if (offset >= 0)
2751 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2752 	inode_unlock(inode);
2753 	return offset;
2754 }
2755 
2756 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2757 							 loff_t len)
2758 {
2759 	struct inode *inode = file_inode(file);
2760 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2761 	struct shmem_inode_info *info = SHMEM_I(inode);
2762 	struct shmem_falloc shmem_falloc;
2763 	pgoff_t start, index, end, undo_fallocend;
2764 	int error;
2765 
2766 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2767 		return -EOPNOTSUPP;
2768 
2769 	inode_lock(inode);
2770 
2771 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2772 		struct address_space *mapping = file->f_mapping;
2773 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2774 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2775 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2776 
2777 		/* protected by i_rwsem */
2778 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2779 			error = -EPERM;
2780 			goto out;
2781 		}
2782 
2783 		shmem_falloc.waitq = &shmem_falloc_waitq;
2784 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2785 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2786 		spin_lock(&inode->i_lock);
2787 		inode->i_private = &shmem_falloc;
2788 		spin_unlock(&inode->i_lock);
2789 
2790 		if ((u64)unmap_end > (u64)unmap_start)
2791 			unmap_mapping_range(mapping, unmap_start,
2792 					    1 + unmap_end - unmap_start, 0);
2793 		shmem_truncate_range(inode, offset, offset + len - 1);
2794 		/* No need to unmap again: hole-punching leaves COWed pages */
2795 
2796 		spin_lock(&inode->i_lock);
2797 		inode->i_private = NULL;
2798 		wake_up_all(&shmem_falloc_waitq);
2799 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2800 		spin_unlock(&inode->i_lock);
2801 		error = 0;
2802 		goto out;
2803 	}
2804 
2805 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2806 	error = inode_newsize_ok(inode, offset + len);
2807 	if (error)
2808 		goto out;
2809 
2810 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2811 		error = -EPERM;
2812 		goto out;
2813 	}
2814 
2815 	start = offset >> PAGE_SHIFT;
2816 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2818 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2819 		error = -ENOSPC;
2820 		goto out;
2821 	}
2822 
2823 	shmem_falloc.waitq = NULL;
2824 	shmem_falloc.start = start;
2825 	shmem_falloc.next  = start;
2826 	shmem_falloc.nr_falloced = 0;
2827 	shmem_falloc.nr_unswapped = 0;
2828 	spin_lock(&inode->i_lock);
2829 	inode->i_private = &shmem_falloc;
2830 	spin_unlock(&inode->i_lock);
2831 
2832 	/*
2833 	 * info->fallocend is only relevant when huge pages might be
2834 	 * involved: to prevent split_huge_page() freeing fallocated
2835 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2836 	 */
2837 	undo_fallocend = info->fallocend;
2838 	if (info->fallocend < end)
2839 		info->fallocend = end;
2840 
2841 	for (index = start; index < end; ) {
2842 		struct folio *folio;
2843 
2844 		/*
2845 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2846 		 * been interrupted because we are using up too much memory.
2847 		 */
2848 		if (signal_pending(current))
2849 			error = -EINTR;
2850 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2851 			error = -ENOMEM;
2852 		else
2853 			error = shmem_get_folio(inode, index, &folio,
2854 						SGP_FALLOC);
2855 		if (error) {
2856 			info->fallocend = undo_fallocend;
2857 			/* Remove the !uptodate folios we added */
2858 			if (index > start) {
2859 				shmem_undo_range(inode,
2860 				    (loff_t)start << PAGE_SHIFT,
2861 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2862 			}
2863 			goto undone;
2864 		}
2865 
2866 		/*
2867 		 * Here is a more important optimization than it appears:
2868 		 * a second SGP_FALLOC on the same large folio will clear it,
2869 		 * making it uptodate and un-undoable if we fail later.
2870 		 */
2871 		index = folio_next_index(folio);
2872 		/* Beware 32-bit wraparound */
2873 		if (!index)
2874 			index--;
2875 
2876 		/*
2877 		 * Inform shmem_writepage() how far we have reached.
2878 		 * No need for lock or barrier: we have the page lock.
2879 		 */
2880 		if (!folio_test_uptodate(folio))
2881 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2882 		shmem_falloc.next = index;
2883 
2884 		/*
2885 		 * If !uptodate, leave it that way so that freeable folios
2886 		 * can be recognized if we need to rollback on error later.
2887 		 * But mark it dirty so that memory pressure will swap rather
2888 		 * than free the folios we are allocating (and SGP_CACHE folios
2889 		 * might still be clean: we now need to mark those dirty too).
2890 		 */
2891 		folio_mark_dirty(folio);
2892 		folio_unlock(folio);
2893 		folio_put(folio);
2894 		cond_resched();
2895 	}
2896 
2897 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2898 		i_size_write(inode, offset + len);
2899 undone:
2900 	spin_lock(&inode->i_lock);
2901 	inode->i_private = NULL;
2902 	spin_unlock(&inode->i_lock);
2903 out:
2904 	if (!error)
2905 		file_modified(file);
2906 	inode_unlock(inode);
2907 	return error;
2908 }
2909 
2910 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2911 {
2912 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2913 
2914 	buf->f_type = TMPFS_MAGIC;
2915 	buf->f_bsize = PAGE_SIZE;
2916 	buf->f_namelen = NAME_MAX;
2917 	if (sbinfo->max_blocks) {
2918 		buf->f_blocks = sbinfo->max_blocks;
2919 		buf->f_bavail =
2920 		buf->f_bfree  = sbinfo->max_blocks -
2921 				percpu_counter_sum(&sbinfo->used_blocks);
2922 	}
2923 	if (sbinfo->max_inodes) {
2924 		buf->f_files = sbinfo->max_inodes;
2925 		buf->f_ffree = sbinfo->free_inodes;
2926 	}
2927 	/* else leave those fields 0 like simple_statfs */
2928 
2929 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2930 
2931 	return 0;
2932 }
2933 
2934 /*
2935  * File creation. Allocate an inode, and we're done..
2936  */
2937 static int
2938 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
2939 	    struct dentry *dentry, umode_t mode, dev_t dev)
2940 {
2941 	struct inode *inode;
2942 	int error = -ENOSPC;
2943 
2944 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
2945 	if (inode) {
2946 		error = simple_acl_create(dir, inode);
2947 		if (error)
2948 			goto out_iput;
2949 		error = security_inode_init_security(inode, dir,
2950 						     &dentry->d_name,
2951 						     shmem_initxattrs, NULL);
2952 		if (error && error != -EOPNOTSUPP)
2953 			goto out_iput;
2954 
2955 		error = 0;
2956 		dir->i_size += BOGO_DIRENT_SIZE;
2957 		dir->i_ctime = dir->i_mtime = current_time(dir);
2958 		inode_inc_iversion(dir);
2959 		d_instantiate(dentry, inode);
2960 		dget(dentry); /* Extra count - pin the dentry in core */
2961 	}
2962 	return error;
2963 out_iput:
2964 	iput(inode);
2965 	return error;
2966 }
2967 
2968 static int
2969 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
2970 	      struct file *file, umode_t mode)
2971 {
2972 	struct inode *inode;
2973 	int error = -ENOSPC;
2974 
2975 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
2976 	if (inode) {
2977 		error = security_inode_init_security(inode, dir,
2978 						     NULL,
2979 						     shmem_initxattrs, NULL);
2980 		if (error && error != -EOPNOTSUPP)
2981 			goto out_iput;
2982 		error = simple_acl_create(dir, inode);
2983 		if (error)
2984 			goto out_iput;
2985 		d_tmpfile(file, inode);
2986 	}
2987 	return finish_open_simple(file, error);
2988 out_iput:
2989 	iput(inode);
2990 	return error;
2991 }
2992 
2993 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2994 		       struct dentry *dentry, umode_t mode)
2995 {
2996 	int error;
2997 
2998 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
2999 	if (error)
3000 		return error;
3001 	inc_nlink(dir);
3002 	return 0;
3003 }
3004 
3005 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3006 			struct dentry *dentry, umode_t mode, bool excl)
3007 {
3008 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3009 }
3010 
3011 /*
3012  * Link a file..
3013  */
3014 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3015 {
3016 	struct inode *inode = d_inode(old_dentry);
3017 	int ret = 0;
3018 
3019 	/*
3020 	 * No ordinary (disk based) filesystem counts links as inodes;
3021 	 * but each new link needs a new dentry, pinning lowmem, and
3022 	 * tmpfs dentries cannot be pruned until they are unlinked.
3023 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3024 	 * first link must skip that, to get the accounting right.
3025 	 */
3026 	if (inode->i_nlink) {
3027 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3028 		if (ret)
3029 			goto out;
3030 	}
3031 
3032 	dir->i_size += BOGO_DIRENT_SIZE;
3033 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3034 	inode_inc_iversion(dir);
3035 	inc_nlink(inode);
3036 	ihold(inode);	/* New dentry reference */
3037 	dget(dentry);		/* Extra pinning count for the created dentry */
3038 	d_instantiate(dentry, inode);
3039 out:
3040 	return ret;
3041 }
3042 
3043 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3044 {
3045 	struct inode *inode = d_inode(dentry);
3046 
3047 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3048 		shmem_free_inode(inode->i_sb);
3049 
3050 	dir->i_size -= BOGO_DIRENT_SIZE;
3051 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3052 	inode_inc_iversion(dir);
3053 	drop_nlink(inode);
3054 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3055 	return 0;
3056 }
3057 
3058 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3059 {
3060 	if (!simple_empty(dentry))
3061 		return -ENOTEMPTY;
3062 
3063 	drop_nlink(d_inode(dentry));
3064 	drop_nlink(dir);
3065 	return shmem_unlink(dir, dentry);
3066 }
3067 
3068 static int shmem_whiteout(struct mnt_idmap *idmap,
3069 			  struct inode *old_dir, struct dentry *old_dentry)
3070 {
3071 	struct dentry *whiteout;
3072 	int error;
3073 
3074 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3075 	if (!whiteout)
3076 		return -ENOMEM;
3077 
3078 	error = shmem_mknod(idmap, old_dir, whiteout,
3079 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3080 	dput(whiteout);
3081 	if (error)
3082 		return error;
3083 
3084 	/*
3085 	 * Cheat and hash the whiteout while the old dentry is still in
3086 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3087 	 *
3088 	 * d_lookup() will consistently find one of them at this point,
3089 	 * not sure which one, but that isn't even important.
3090 	 */
3091 	d_rehash(whiteout);
3092 	return 0;
3093 }
3094 
3095 /*
3096  * The VFS layer already does all the dentry stuff for rename,
3097  * we just have to decrement the usage count for the target if
3098  * it exists so that the VFS layer correctly free's it when it
3099  * gets overwritten.
3100  */
3101 static int shmem_rename2(struct mnt_idmap *idmap,
3102 			 struct inode *old_dir, struct dentry *old_dentry,
3103 			 struct inode *new_dir, struct dentry *new_dentry,
3104 			 unsigned int flags)
3105 {
3106 	struct inode *inode = d_inode(old_dentry);
3107 	int they_are_dirs = S_ISDIR(inode->i_mode);
3108 
3109 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3110 		return -EINVAL;
3111 
3112 	if (flags & RENAME_EXCHANGE)
3113 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3114 
3115 	if (!simple_empty(new_dentry))
3116 		return -ENOTEMPTY;
3117 
3118 	if (flags & RENAME_WHITEOUT) {
3119 		int error;
3120 
3121 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3122 		if (error)
3123 			return error;
3124 	}
3125 
3126 	if (d_really_is_positive(new_dentry)) {
3127 		(void) shmem_unlink(new_dir, new_dentry);
3128 		if (they_are_dirs) {
3129 			drop_nlink(d_inode(new_dentry));
3130 			drop_nlink(old_dir);
3131 		}
3132 	} else if (they_are_dirs) {
3133 		drop_nlink(old_dir);
3134 		inc_nlink(new_dir);
3135 	}
3136 
3137 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3138 	new_dir->i_size += BOGO_DIRENT_SIZE;
3139 	old_dir->i_ctime = old_dir->i_mtime =
3140 	new_dir->i_ctime = new_dir->i_mtime =
3141 	inode->i_ctime = current_time(old_dir);
3142 	inode_inc_iversion(old_dir);
3143 	inode_inc_iversion(new_dir);
3144 	return 0;
3145 }
3146 
3147 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3148 			 struct dentry *dentry, const char *symname)
3149 {
3150 	int error;
3151 	int len;
3152 	struct inode *inode;
3153 	struct folio *folio;
3154 
3155 	len = strlen(symname) + 1;
3156 	if (len > PAGE_SIZE)
3157 		return -ENAMETOOLONG;
3158 
3159 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3160 				VM_NORESERVE);
3161 	if (!inode)
3162 		return -ENOSPC;
3163 
3164 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3165 					     shmem_initxattrs, NULL);
3166 	if (error && error != -EOPNOTSUPP) {
3167 		iput(inode);
3168 		return error;
3169 	}
3170 
3171 	inode->i_size = len-1;
3172 	if (len <= SHORT_SYMLINK_LEN) {
3173 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3174 		if (!inode->i_link) {
3175 			iput(inode);
3176 			return -ENOMEM;
3177 		}
3178 		inode->i_op = &shmem_short_symlink_operations;
3179 	} else {
3180 		inode_nohighmem(inode);
3181 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3182 		if (error) {
3183 			iput(inode);
3184 			return error;
3185 		}
3186 		inode->i_mapping->a_ops = &shmem_aops;
3187 		inode->i_op = &shmem_symlink_inode_operations;
3188 		memcpy(folio_address(folio), symname, len);
3189 		folio_mark_uptodate(folio);
3190 		folio_mark_dirty(folio);
3191 		folio_unlock(folio);
3192 		folio_put(folio);
3193 	}
3194 	dir->i_size += BOGO_DIRENT_SIZE;
3195 	dir->i_ctime = dir->i_mtime = current_time(dir);
3196 	inode_inc_iversion(dir);
3197 	d_instantiate(dentry, inode);
3198 	dget(dentry);
3199 	return 0;
3200 }
3201 
3202 static void shmem_put_link(void *arg)
3203 {
3204 	folio_mark_accessed(arg);
3205 	folio_put(arg);
3206 }
3207 
3208 static const char *shmem_get_link(struct dentry *dentry,
3209 				  struct inode *inode,
3210 				  struct delayed_call *done)
3211 {
3212 	struct folio *folio = NULL;
3213 	int error;
3214 
3215 	if (!dentry) {
3216 		folio = filemap_get_folio(inode->i_mapping, 0);
3217 		if (IS_ERR(folio))
3218 			return ERR_PTR(-ECHILD);
3219 		if (PageHWPoison(folio_page(folio, 0)) ||
3220 		    !folio_test_uptodate(folio)) {
3221 			folio_put(folio);
3222 			return ERR_PTR(-ECHILD);
3223 		}
3224 	} else {
3225 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3226 		if (error)
3227 			return ERR_PTR(error);
3228 		if (!folio)
3229 			return ERR_PTR(-ECHILD);
3230 		if (PageHWPoison(folio_page(folio, 0))) {
3231 			folio_unlock(folio);
3232 			folio_put(folio);
3233 			return ERR_PTR(-ECHILD);
3234 		}
3235 		folio_unlock(folio);
3236 	}
3237 	set_delayed_call(done, shmem_put_link, folio);
3238 	return folio_address(folio);
3239 }
3240 
3241 #ifdef CONFIG_TMPFS_XATTR
3242 
3243 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3244 {
3245 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3246 
3247 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3248 
3249 	return 0;
3250 }
3251 
3252 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3253 			      struct dentry *dentry, struct fileattr *fa)
3254 {
3255 	struct inode *inode = d_inode(dentry);
3256 	struct shmem_inode_info *info = SHMEM_I(inode);
3257 
3258 	if (fileattr_has_fsx(fa))
3259 		return -EOPNOTSUPP;
3260 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3261 		return -EOPNOTSUPP;
3262 
3263 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3264 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3265 
3266 	shmem_set_inode_flags(inode, info->fsflags);
3267 	inode->i_ctime = current_time(inode);
3268 	inode_inc_iversion(inode);
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Superblocks without xattr inode operations may get some security.* xattr
3274  * support from the LSM "for free". As soon as we have any other xattrs
3275  * like ACLs, we also need to implement the security.* handlers at
3276  * filesystem level, though.
3277  */
3278 
3279 /*
3280  * Callback for security_inode_init_security() for acquiring xattrs.
3281  */
3282 static int shmem_initxattrs(struct inode *inode,
3283 			    const struct xattr *xattr_array,
3284 			    void *fs_info)
3285 {
3286 	struct shmem_inode_info *info = SHMEM_I(inode);
3287 	const struct xattr *xattr;
3288 	struct simple_xattr *new_xattr;
3289 	size_t len;
3290 
3291 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3292 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3293 		if (!new_xattr)
3294 			return -ENOMEM;
3295 
3296 		len = strlen(xattr->name) + 1;
3297 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3298 					  GFP_KERNEL);
3299 		if (!new_xattr->name) {
3300 			kvfree(new_xattr);
3301 			return -ENOMEM;
3302 		}
3303 
3304 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3305 		       XATTR_SECURITY_PREFIX_LEN);
3306 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3307 		       xattr->name, len);
3308 
3309 		simple_xattr_add(&info->xattrs, new_xattr);
3310 	}
3311 
3312 	return 0;
3313 }
3314 
3315 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3316 				   struct dentry *unused, struct inode *inode,
3317 				   const char *name, void *buffer, size_t size)
3318 {
3319 	struct shmem_inode_info *info = SHMEM_I(inode);
3320 
3321 	name = xattr_full_name(handler, name);
3322 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3323 }
3324 
3325 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3326 				   struct mnt_idmap *idmap,
3327 				   struct dentry *unused, struct inode *inode,
3328 				   const char *name, const void *value,
3329 				   size_t size, int flags)
3330 {
3331 	struct shmem_inode_info *info = SHMEM_I(inode);
3332 	int err;
3333 
3334 	name = xattr_full_name(handler, name);
3335 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3336 	if (!err) {
3337 		inode->i_ctime = current_time(inode);
3338 		inode_inc_iversion(inode);
3339 	}
3340 	return err;
3341 }
3342 
3343 static const struct xattr_handler shmem_security_xattr_handler = {
3344 	.prefix = XATTR_SECURITY_PREFIX,
3345 	.get = shmem_xattr_handler_get,
3346 	.set = shmem_xattr_handler_set,
3347 };
3348 
3349 static const struct xattr_handler shmem_trusted_xattr_handler = {
3350 	.prefix = XATTR_TRUSTED_PREFIX,
3351 	.get = shmem_xattr_handler_get,
3352 	.set = shmem_xattr_handler_set,
3353 };
3354 
3355 static const struct xattr_handler *shmem_xattr_handlers[] = {
3356 #ifdef CONFIG_TMPFS_POSIX_ACL
3357 	&posix_acl_access_xattr_handler,
3358 	&posix_acl_default_xattr_handler,
3359 #endif
3360 	&shmem_security_xattr_handler,
3361 	&shmem_trusted_xattr_handler,
3362 	NULL
3363 };
3364 
3365 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3366 {
3367 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3368 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3369 }
3370 #endif /* CONFIG_TMPFS_XATTR */
3371 
3372 static const struct inode_operations shmem_short_symlink_operations = {
3373 	.getattr	= shmem_getattr,
3374 	.get_link	= simple_get_link,
3375 #ifdef CONFIG_TMPFS_XATTR
3376 	.listxattr	= shmem_listxattr,
3377 #endif
3378 };
3379 
3380 static const struct inode_operations shmem_symlink_inode_operations = {
3381 	.getattr	= shmem_getattr,
3382 	.get_link	= shmem_get_link,
3383 #ifdef CONFIG_TMPFS_XATTR
3384 	.listxattr	= shmem_listxattr,
3385 #endif
3386 };
3387 
3388 static struct dentry *shmem_get_parent(struct dentry *child)
3389 {
3390 	return ERR_PTR(-ESTALE);
3391 }
3392 
3393 static int shmem_match(struct inode *ino, void *vfh)
3394 {
3395 	__u32 *fh = vfh;
3396 	__u64 inum = fh[2];
3397 	inum = (inum << 32) | fh[1];
3398 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3399 }
3400 
3401 /* Find any alias of inode, but prefer a hashed alias */
3402 static struct dentry *shmem_find_alias(struct inode *inode)
3403 {
3404 	struct dentry *alias = d_find_alias(inode);
3405 
3406 	return alias ?: d_find_any_alias(inode);
3407 }
3408 
3409 
3410 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3411 		struct fid *fid, int fh_len, int fh_type)
3412 {
3413 	struct inode *inode;
3414 	struct dentry *dentry = NULL;
3415 	u64 inum;
3416 
3417 	if (fh_len < 3)
3418 		return NULL;
3419 
3420 	inum = fid->raw[2];
3421 	inum = (inum << 32) | fid->raw[1];
3422 
3423 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3424 			shmem_match, fid->raw);
3425 	if (inode) {
3426 		dentry = shmem_find_alias(inode);
3427 		iput(inode);
3428 	}
3429 
3430 	return dentry;
3431 }
3432 
3433 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3434 				struct inode *parent)
3435 {
3436 	if (*len < 3) {
3437 		*len = 3;
3438 		return FILEID_INVALID;
3439 	}
3440 
3441 	if (inode_unhashed(inode)) {
3442 		/* Unfortunately insert_inode_hash is not idempotent,
3443 		 * so as we hash inodes here rather than at creation
3444 		 * time, we need a lock to ensure we only try
3445 		 * to do it once
3446 		 */
3447 		static DEFINE_SPINLOCK(lock);
3448 		spin_lock(&lock);
3449 		if (inode_unhashed(inode))
3450 			__insert_inode_hash(inode,
3451 					    inode->i_ino + inode->i_generation);
3452 		spin_unlock(&lock);
3453 	}
3454 
3455 	fh[0] = inode->i_generation;
3456 	fh[1] = inode->i_ino;
3457 	fh[2] = ((__u64)inode->i_ino) >> 32;
3458 
3459 	*len = 3;
3460 	return 1;
3461 }
3462 
3463 static const struct export_operations shmem_export_ops = {
3464 	.get_parent     = shmem_get_parent,
3465 	.encode_fh      = shmem_encode_fh,
3466 	.fh_to_dentry	= shmem_fh_to_dentry,
3467 };
3468 
3469 enum shmem_param {
3470 	Opt_gid,
3471 	Opt_huge,
3472 	Opt_mode,
3473 	Opt_mpol,
3474 	Opt_nr_blocks,
3475 	Opt_nr_inodes,
3476 	Opt_size,
3477 	Opt_uid,
3478 	Opt_inode32,
3479 	Opt_inode64,
3480 	Opt_noswap,
3481 };
3482 
3483 static const struct constant_table shmem_param_enums_huge[] = {
3484 	{"never",	SHMEM_HUGE_NEVER },
3485 	{"always",	SHMEM_HUGE_ALWAYS },
3486 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3487 	{"advise",	SHMEM_HUGE_ADVISE },
3488 	{}
3489 };
3490 
3491 const struct fs_parameter_spec shmem_fs_parameters[] = {
3492 	fsparam_u32   ("gid",		Opt_gid),
3493 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3494 	fsparam_u32oct("mode",		Opt_mode),
3495 	fsparam_string("mpol",		Opt_mpol),
3496 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3497 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3498 	fsparam_string("size",		Opt_size),
3499 	fsparam_u32   ("uid",		Opt_uid),
3500 	fsparam_flag  ("inode32",	Opt_inode32),
3501 	fsparam_flag  ("inode64",	Opt_inode64),
3502 	fsparam_flag  ("noswap",	Opt_noswap),
3503 	{}
3504 };
3505 
3506 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3507 {
3508 	struct shmem_options *ctx = fc->fs_private;
3509 	struct fs_parse_result result;
3510 	unsigned long long size;
3511 	char *rest;
3512 	int opt;
3513 
3514 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3515 	if (opt < 0)
3516 		return opt;
3517 
3518 	switch (opt) {
3519 	case Opt_size:
3520 		size = memparse(param->string, &rest);
3521 		if (*rest == '%') {
3522 			size <<= PAGE_SHIFT;
3523 			size *= totalram_pages();
3524 			do_div(size, 100);
3525 			rest++;
3526 		}
3527 		if (*rest)
3528 			goto bad_value;
3529 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3530 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3531 		break;
3532 	case Opt_nr_blocks:
3533 		ctx->blocks = memparse(param->string, &rest);
3534 		if (*rest || ctx->blocks > S64_MAX)
3535 			goto bad_value;
3536 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3537 		break;
3538 	case Opt_nr_inodes:
3539 		ctx->inodes = memparse(param->string, &rest);
3540 		if (*rest)
3541 			goto bad_value;
3542 		ctx->seen |= SHMEM_SEEN_INODES;
3543 		break;
3544 	case Opt_mode:
3545 		ctx->mode = result.uint_32 & 07777;
3546 		break;
3547 	case Opt_uid:
3548 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3549 		if (!uid_valid(ctx->uid))
3550 			goto bad_value;
3551 		break;
3552 	case Opt_gid:
3553 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3554 		if (!gid_valid(ctx->gid))
3555 			goto bad_value;
3556 		break;
3557 	case Opt_huge:
3558 		ctx->huge = result.uint_32;
3559 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3560 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3561 		      has_transparent_hugepage()))
3562 			goto unsupported_parameter;
3563 		ctx->seen |= SHMEM_SEEN_HUGE;
3564 		break;
3565 	case Opt_mpol:
3566 		if (IS_ENABLED(CONFIG_NUMA)) {
3567 			mpol_put(ctx->mpol);
3568 			ctx->mpol = NULL;
3569 			if (mpol_parse_str(param->string, &ctx->mpol))
3570 				goto bad_value;
3571 			break;
3572 		}
3573 		goto unsupported_parameter;
3574 	case Opt_inode32:
3575 		ctx->full_inums = false;
3576 		ctx->seen |= SHMEM_SEEN_INUMS;
3577 		break;
3578 	case Opt_inode64:
3579 		if (sizeof(ino_t) < 8) {
3580 			return invalfc(fc,
3581 				       "Cannot use inode64 with <64bit inums in kernel\n");
3582 		}
3583 		ctx->full_inums = true;
3584 		ctx->seen |= SHMEM_SEEN_INUMS;
3585 		break;
3586 	case Opt_noswap:
3587 		ctx->noswap = true;
3588 		ctx->seen |= SHMEM_SEEN_NOSWAP;
3589 		break;
3590 	}
3591 	return 0;
3592 
3593 unsupported_parameter:
3594 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3595 bad_value:
3596 	return invalfc(fc, "Bad value for '%s'", param->key);
3597 }
3598 
3599 static int shmem_parse_options(struct fs_context *fc, void *data)
3600 {
3601 	char *options = data;
3602 
3603 	if (options) {
3604 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3605 		if (err)
3606 			return err;
3607 	}
3608 
3609 	while (options != NULL) {
3610 		char *this_char = options;
3611 		for (;;) {
3612 			/*
3613 			 * NUL-terminate this option: unfortunately,
3614 			 * mount options form a comma-separated list,
3615 			 * but mpol's nodelist may also contain commas.
3616 			 */
3617 			options = strchr(options, ',');
3618 			if (options == NULL)
3619 				break;
3620 			options++;
3621 			if (!isdigit(*options)) {
3622 				options[-1] = '\0';
3623 				break;
3624 			}
3625 		}
3626 		if (*this_char) {
3627 			char *value = strchr(this_char, '=');
3628 			size_t len = 0;
3629 			int err;
3630 
3631 			if (value) {
3632 				*value++ = '\0';
3633 				len = strlen(value);
3634 			}
3635 			err = vfs_parse_fs_string(fc, this_char, value, len);
3636 			if (err < 0)
3637 				return err;
3638 		}
3639 	}
3640 	return 0;
3641 }
3642 
3643 /*
3644  * Reconfigure a shmem filesystem.
3645  *
3646  * Note that we disallow change from limited->unlimited blocks/inodes while any
3647  * are in use; but we must separately disallow unlimited->limited, because in
3648  * that case we have no record of how much is already in use.
3649  */
3650 static int shmem_reconfigure(struct fs_context *fc)
3651 {
3652 	struct shmem_options *ctx = fc->fs_private;
3653 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3654 	unsigned long inodes;
3655 	struct mempolicy *mpol = NULL;
3656 	const char *err;
3657 
3658 	raw_spin_lock(&sbinfo->stat_lock);
3659 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3660 
3661 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3662 		if (!sbinfo->max_blocks) {
3663 			err = "Cannot retroactively limit size";
3664 			goto out;
3665 		}
3666 		if (percpu_counter_compare(&sbinfo->used_blocks,
3667 					   ctx->blocks) > 0) {
3668 			err = "Too small a size for current use";
3669 			goto out;
3670 		}
3671 	}
3672 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3673 		if (!sbinfo->max_inodes) {
3674 			err = "Cannot retroactively limit inodes";
3675 			goto out;
3676 		}
3677 		if (ctx->inodes < inodes) {
3678 			err = "Too few inodes for current use";
3679 			goto out;
3680 		}
3681 	}
3682 
3683 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3684 	    sbinfo->next_ino > UINT_MAX) {
3685 		err = "Current inum too high to switch to 32-bit inums";
3686 		goto out;
3687 	}
3688 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
3689 		err = "Cannot disable swap on remount";
3690 		goto out;
3691 	}
3692 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
3693 		err = "Cannot enable swap on remount if it was disabled on first mount";
3694 		goto out;
3695 	}
3696 
3697 	if (ctx->seen & SHMEM_SEEN_HUGE)
3698 		sbinfo->huge = ctx->huge;
3699 	if (ctx->seen & SHMEM_SEEN_INUMS)
3700 		sbinfo->full_inums = ctx->full_inums;
3701 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3702 		sbinfo->max_blocks  = ctx->blocks;
3703 	if (ctx->seen & SHMEM_SEEN_INODES) {
3704 		sbinfo->max_inodes  = ctx->inodes;
3705 		sbinfo->free_inodes = ctx->inodes - inodes;
3706 	}
3707 
3708 	/*
3709 	 * Preserve previous mempolicy unless mpol remount option was specified.
3710 	 */
3711 	if (ctx->mpol) {
3712 		mpol = sbinfo->mpol;
3713 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3714 		ctx->mpol = NULL;
3715 	}
3716 
3717 	if (ctx->noswap)
3718 		sbinfo->noswap = true;
3719 
3720 	raw_spin_unlock(&sbinfo->stat_lock);
3721 	mpol_put(mpol);
3722 	return 0;
3723 out:
3724 	raw_spin_unlock(&sbinfo->stat_lock);
3725 	return invalfc(fc, "%s", err);
3726 }
3727 
3728 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3729 {
3730 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3731 
3732 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3733 		seq_printf(seq, ",size=%luk",
3734 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3735 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3736 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3737 	if (sbinfo->mode != (0777 | S_ISVTX))
3738 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3739 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3740 		seq_printf(seq, ",uid=%u",
3741 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3742 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3743 		seq_printf(seq, ",gid=%u",
3744 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3745 
3746 	/*
3747 	 * Showing inode{64,32} might be useful even if it's the system default,
3748 	 * since then people don't have to resort to checking both here and
3749 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3750 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3751 	 *
3752 	 * We hide it when inode64 isn't the default and we are using 32-bit
3753 	 * inodes, since that probably just means the feature isn't even under
3754 	 * consideration.
3755 	 *
3756 	 * As such:
3757 	 *
3758 	 *                     +-----------------+-----------------+
3759 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3760 	 *  +------------------+-----------------+-----------------+
3761 	 *  | full_inums=true  | show            | show            |
3762 	 *  | full_inums=false | show            | hide            |
3763 	 *  +------------------+-----------------+-----------------+
3764 	 *
3765 	 */
3766 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3767 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3770 	if (sbinfo->huge)
3771 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3772 #endif
3773 	shmem_show_mpol(seq, sbinfo->mpol);
3774 	if (sbinfo->noswap)
3775 		seq_printf(seq, ",noswap");
3776 	return 0;
3777 }
3778 
3779 #endif /* CONFIG_TMPFS */
3780 
3781 static void shmem_put_super(struct super_block *sb)
3782 {
3783 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3784 
3785 	free_percpu(sbinfo->ino_batch);
3786 	percpu_counter_destroy(&sbinfo->used_blocks);
3787 	mpol_put(sbinfo->mpol);
3788 	kfree(sbinfo);
3789 	sb->s_fs_info = NULL;
3790 }
3791 
3792 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3793 {
3794 	struct shmem_options *ctx = fc->fs_private;
3795 	struct inode *inode;
3796 	struct shmem_sb_info *sbinfo;
3797 
3798 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3799 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3800 				L1_CACHE_BYTES), GFP_KERNEL);
3801 	if (!sbinfo)
3802 		return -ENOMEM;
3803 
3804 	sb->s_fs_info = sbinfo;
3805 
3806 #ifdef CONFIG_TMPFS
3807 	/*
3808 	 * Per default we only allow half of the physical ram per
3809 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3810 	 * but the internal instance is left unlimited.
3811 	 */
3812 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3813 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3814 			ctx->blocks = shmem_default_max_blocks();
3815 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3816 			ctx->inodes = shmem_default_max_inodes();
3817 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3818 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3819 		sbinfo->noswap = ctx->noswap;
3820 	} else {
3821 		sb->s_flags |= SB_NOUSER;
3822 	}
3823 	sb->s_export_op = &shmem_export_ops;
3824 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3825 #else
3826 	sb->s_flags |= SB_NOUSER;
3827 #endif
3828 	sbinfo->max_blocks = ctx->blocks;
3829 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3830 	if (sb->s_flags & SB_KERNMOUNT) {
3831 		sbinfo->ino_batch = alloc_percpu(ino_t);
3832 		if (!sbinfo->ino_batch)
3833 			goto failed;
3834 	}
3835 	sbinfo->uid = ctx->uid;
3836 	sbinfo->gid = ctx->gid;
3837 	sbinfo->full_inums = ctx->full_inums;
3838 	sbinfo->mode = ctx->mode;
3839 	sbinfo->huge = ctx->huge;
3840 	sbinfo->mpol = ctx->mpol;
3841 	ctx->mpol = NULL;
3842 
3843 	raw_spin_lock_init(&sbinfo->stat_lock);
3844 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3845 		goto failed;
3846 	spin_lock_init(&sbinfo->shrinklist_lock);
3847 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3848 
3849 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3850 	sb->s_blocksize = PAGE_SIZE;
3851 	sb->s_blocksize_bits = PAGE_SHIFT;
3852 	sb->s_magic = TMPFS_MAGIC;
3853 	sb->s_op = &shmem_ops;
3854 	sb->s_time_gran = 1;
3855 #ifdef CONFIG_TMPFS_XATTR
3856 	sb->s_xattr = shmem_xattr_handlers;
3857 #endif
3858 #ifdef CONFIG_TMPFS_POSIX_ACL
3859 	sb->s_flags |= SB_POSIXACL;
3860 #endif
3861 	uuid_gen(&sb->s_uuid);
3862 
3863 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
3864 				VM_NORESERVE);
3865 	if (!inode)
3866 		goto failed;
3867 	inode->i_uid = sbinfo->uid;
3868 	inode->i_gid = sbinfo->gid;
3869 	sb->s_root = d_make_root(inode);
3870 	if (!sb->s_root)
3871 		goto failed;
3872 	return 0;
3873 
3874 failed:
3875 	shmem_put_super(sb);
3876 	return -ENOMEM;
3877 }
3878 
3879 static int shmem_get_tree(struct fs_context *fc)
3880 {
3881 	return get_tree_nodev(fc, shmem_fill_super);
3882 }
3883 
3884 static void shmem_free_fc(struct fs_context *fc)
3885 {
3886 	struct shmem_options *ctx = fc->fs_private;
3887 
3888 	if (ctx) {
3889 		mpol_put(ctx->mpol);
3890 		kfree(ctx);
3891 	}
3892 }
3893 
3894 static const struct fs_context_operations shmem_fs_context_ops = {
3895 	.free			= shmem_free_fc,
3896 	.get_tree		= shmem_get_tree,
3897 #ifdef CONFIG_TMPFS
3898 	.parse_monolithic	= shmem_parse_options,
3899 	.parse_param		= shmem_parse_one,
3900 	.reconfigure		= shmem_reconfigure,
3901 #endif
3902 };
3903 
3904 static struct kmem_cache *shmem_inode_cachep;
3905 
3906 static struct inode *shmem_alloc_inode(struct super_block *sb)
3907 {
3908 	struct shmem_inode_info *info;
3909 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3910 	if (!info)
3911 		return NULL;
3912 	return &info->vfs_inode;
3913 }
3914 
3915 static void shmem_free_in_core_inode(struct inode *inode)
3916 {
3917 	if (S_ISLNK(inode->i_mode))
3918 		kfree(inode->i_link);
3919 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3920 }
3921 
3922 static void shmem_destroy_inode(struct inode *inode)
3923 {
3924 	if (S_ISREG(inode->i_mode))
3925 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3926 }
3927 
3928 static void shmem_init_inode(void *foo)
3929 {
3930 	struct shmem_inode_info *info = foo;
3931 	inode_init_once(&info->vfs_inode);
3932 }
3933 
3934 static void shmem_init_inodecache(void)
3935 {
3936 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3937 				sizeof(struct shmem_inode_info),
3938 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3939 }
3940 
3941 static void shmem_destroy_inodecache(void)
3942 {
3943 	kmem_cache_destroy(shmem_inode_cachep);
3944 }
3945 
3946 /* Keep the page in page cache instead of truncating it */
3947 static int shmem_error_remove_page(struct address_space *mapping,
3948 				   struct page *page)
3949 {
3950 	return 0;
3951 }
3952 
3953 const struct address_space_operations shmem_aops = {
3954 	.writepage	= shmem_writepage,
3955 	.dirty_folio	= noop_dirty_folio,
3956 #ifdef CONFIG_TMPFS
3957 	.write_begin	= shmem_write_begin,
3958 	.write_end	= shmem_write_end,
3959 #endif
3960 #ifdef CONFIG_MIGRATION
3961 	.migrate_folio	= migrate_folio,
3962 #endif
3963 	.error_remove_page = shmem_error_remove_page,
3964 };
3965 EXPORT_SYMBOL(shmem_aops);
3966 
3967 static const struct file_operations shmem_file_operations = {
3968 	.mmap		= shmem_mmap,
3969 	.open		= generic_file_open,
3970 	.get_unmapped_area = shmem_get_unmapped_area,
3971 #ifdef CONFIG_TMPFS
3972 	.llseek		= shmem_file_llseek,
3973 	.read_iter	= shmem_file_read_iter,
3974 	.write_iter	= generic_file_write_iter,
3975 	.fsync		= noop_fsync,
3976 	.splice_read	= generic_file_splice_read,
3977 	.splice_write	= iter_file_splice_write,
3978 	.fallocate	= shmem_fallocate,
3979 #endif
3980 };
3981 
3982 static const struct inode_operations shmem_inode_operations = {
3983 	.getattr	= shmem_getattr,
3984 	.setattr	= shmem_setattr,
3985 #ifdef CONFIG_TMPFS_XATTR
3986 	.listxattr	= shmem_listxattr,
3987 	.set_acl	= simple_set_acl,
3988 	.fileattr_get	= shmem_fileattr_get,
3989 	.fileattr_set	= shmem_fileattr_set,
3990 #endif
3991 };
3992 
3993 static const struct inode_operations shmem_dir_inode_operations = {
3994 #ifdef CONFIG_TMPFS
3995 	.getattr	= shmem_getattr,
3996 	.create		= shmem_create,
3997 	.lookup		= simple_lookup,
3998 	.link		= shmem_link,
3999 	.unlink		= shmem_unlink,
4000 	.symlink	= shmem_symlink,
4001 	.mkdir		= shmem_mkdir,
4002 	.rmdir		= shmem_rmdir,
4003 	.mknod		= shmem_mknod,
4004 	.rename		= shmem_rename2,
4005 	.tmpfile	= shmem_tmpfile,
4006 #endif
4007 #ifdef CONFIG_TMPFS_XATTR
4008 	.listxattr	= shmem_listxattr,
4009 	.fileattr_get	= shmem_fileattr_get,
4010 	.fileattr_set	= shmem_fileattr_set,
4011 #endif
4012 #ifdef CONFIG_TMPFS_POSIX_ACL
4013 	.setattr	= shmem_setattr,
4014 	.set_acl	= simple_set_acl,
4015 #endif
4016 };
4017 
4018 static const struct inode_operations shmem_special_inode_operations = {
4019 	.getattr	= shmem_getattr,
4020 #ifdef CONFIG_TMPFS_XATTR
4021 	.listxattr	= shmem_listxattr,
4022 #endif
4023 #ifdef CONFIG_TMPFS_POSIX_ACL
4024 	.setattr	= shmem_setattr,
4025 	.set_acl	= simple_set_acl,
4026 #endif
4027 };
4028 
4029 static const struct super_operations shmem_ops = {
4030 	.alloc_inode	= shmem_alloc_inode,
4031 	.free_inode	= shmem_free_in_core_inode,
4032 	.destroy_inode	= shmem_destroy_inode,
4033 #ifdef CONFIG_TMPFS
4034 	.statfs		= shmem_statfs,
4035 	.show_options	= shmem_show_options,
4036 #endif
4037 	.evict_inode	= shmem_evict_inode,
4038 	.drop_inode	= generic_delete_inode,
4039 	.put_super	= shmem_put_super,
4040 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4041 	.nr_cached_objects	= shmem_unused_huge_count,
4042 	.free_cached_objects	= shmem_unused_huge_scan,
4043 #endif
4044 };
4045 
4046 static const struct vm_operations_struct shmem_vm_ops = {
4047 	.fault		= shmem_fault,
4048 	.map_pages	= filemap_map_pages,
4049 #ifdef CONFIG_NUMA
4050 	.set_policy     = shmem_set_policy,
4051 	.get_policy     = shmem_get_policy,
4052 #endif
4053 };
4054 
4055 static const struct vm_operations_struct shmem_anon_vm_ops = {
4056 	.fault		= shmem_fault,
4057 	.map_pages	= filemap_map_pages,
4058 #ifdef CONFIG_NUMA
4059 	.set_policy     = shmem_set_policy,
4060 	.get_policy     = shmem_get_policy,
4061 #endif
4062 };
4063 
4064 int shmem_init_fs_context(struct fs_context *fc)
4065 {
4066 	struct shmem_options *ctx;
4067 
4068 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4069 	if (!ctx)
4070 		return -ENOMEM;
4071 
4072 	ctx->mode = 0777 | S_ISVTX;
4073 	ctx->uid = current_fsuid();
4074 	ctx->gid = current_fsgid();
4075 
4076 	fc->fs_private = ctx;
4077 	fc->ops = &shmem_fs_context_ops;
4078 	return 0;
4079 }
4080 
4081 static struct file_system_type shmem_fs_type = {
4082 	.owner		= THIS_MODULE,
4083 	.name		= "tmpfs",
4084 	.init_fs_context = shmem_init_fs_context,
4085 #ifdef CONFIG_TMPFS
4086 	.parameters	= shmem_fs_parameters,
4087 #endif
4088 	.kill_sb	= kill_litter_super,
4089 #ifdef CONFIG_SHMEM
4090 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4091 #else
4092 	.fs_flags	= FS_USERNS_MOUNT,
4093 #endif
4094 };
4095 
4096 void __init shmem_init(void)
4097 {
4098 	int error;
4099 
4100 	shmem_init_inodecache();
4101 
4102 	error = register_filesystem(&shmem_fs_type);
4103 	if (error) {
4104 		pr_err("Could not register tmpfs\n");
4105 		goto out2;
4106 	}
4107 
4108 	shm_mnt = kern_mount(&shmem_fs_type);
4109 	if (IS_ERR(shm_mnt)) {
4110 		error = PTR_ERR(shm_mnt);
4111 		pr_err("Could not kern_mount tmpfs\n");
4112 		goto out1;
4113 	}
4114 
4115 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4116 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4117 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4118 	else
4119 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4120 #endif
4121 	return;
4122 
4123 out1:
4124 	unregister_filesystem(&shmem_fs_type);
4125 out2:
4126 	shmem_destroy_inodecache();
4127 	shm_mnt = ERR_PTR(error);
4128 }
4129 
4130 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4131 static ssize_t shmem_enabled_show(struct kobject *kobj,
4132 				  struct kobj_attribute *attr, char *buf)
4133 {
4134 	static const int values[] = {
4135 		SHMEM_HUGE_ALWAYS,
4136 		SHMEM_HUGE_WITHIN_SIZE,
4137 		SHMEM_HUGE_ADVISE,
4138 		SHMEM_HUGE_NEVER,
4139 		SHMEM_HUGE_DENY,
4140 		SHMEM_HUGE_FORCE,
4141 	};
4142 	int len = 0;
4143 	int i;
4144 
4145 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4146 		len += sysfs_emit_at(buf, len,
4147 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4148 				     i ? " " : "",
4149 				     shmem_format_huge(values[i]));
4150 	}
4151 
4152 	len += sysfs_emit_at(buf, len, "\n");
4153 
4154 	return len;
4155 }
4156 
4157 static ssize_t shmem_enabled_store(struct kobject *kobj,
4158 		struct kobj_attribute *attr, const char *buf, size_t count)
4159 {
4160 	char tmp[16];
4161 	int huge;
4162 
4163 	if (count + 1 > sizeof(tmp))
4164 		return -EINVAL;
4165 	memcpy(tmp, buf, count);
4166 	tmp[count] = '\0';
4167 	if (count && tmp[count - 1] == '\n')
4168 		tmp[count - 1] = '\0';
4169 
4170 	huge = shmem_parse_huge(tmp);
4171 	if (huge == -EINVAL)
4172 		return -EINVAL;
4173 	if (!has_transparent_hugepage() &&
4174 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4175 		return -EINVAL;
4176 
4177 	shmem_huge = huge;
4178 	if (shmem_huge > SHMEM_HUGE_DENY)
4179 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4180 	return count;
4181 }
4182 
4183 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4185 
4186 #else /* !CONFIG_SHMEM */
4187 
4188 /*
4189  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4190  *
4191  * This is intended for small system where the benefits of the full
4192  * shmem code (swap-backed and resource-limited) are outweighed by
4193  * their complexity. On systems without swap this code should be
4194  * effectively equivalent, but much lighter weight.
4195  */
4196 
4197 static struct file_system_type shmem_fs_type = {
4198 	.name		= "tmpfs",
4199 	.init_fs_context = ramfs_init_fs_context,
4200 	.parameters	= ramfs_fs_parameters,
4201 	.kill_sb	= kill_litter_super,
4202 	.fs_flags	= FS_USERNS_MOUNT,
4203 };
4204 
4205 void __init shmem_init(void)
4206 {
4207 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4208 
4209 	shm_mnt = kern_mount(&shmem_fs_type);
4210 	BUG_ON(IS_ERR(shm_mnt));
4211 }
4212 
4213 int shmem_unuse(unsigned int type)
4214 {
4215 	return 0;
4216 }
4217 
4218 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4219 {
4220 	return 0;
4221 }
4222 
4223 void shmem_unlock_mapping(struct address_space *mapping)
4224 {
4225 }
4226 
4227 #ifdef CONFIG_MMU
4228 unsigned long shmem_get_unmapped_area(struct file *file,
4229 				      unsigned long addr, unsigned long len,
4230 				      unsigned long pgoff, unsigned long flags)
4231 {
4232 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4233 }
4234 #endif
4235 
4236 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4237 {
4238 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4239 }
4240 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4241 
4242 #define shmem_vm_ops				generic_file_vm_ops
4243 #define shmem_anon_vm_ops			generic_file_vm_ops
4244 #define shmem_file_operations			ramfs_file_operations
4245 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4246 #define shmem_acct_size(flags, size)		0
4247 #define shmem_unacct_size(flags, size)		do {} while (0)
4248 
4249 #endif /* CONFIG_SHMEM */
4250 
4251 /* common code */
4252 
4253 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4254 				       unsigned long flags, unsigned int i_flags)
4255 {
4256 	struct inode *inode;
4257 	struct file *res;
4258 
4259 	if (IS_ERR(mnt))
4260 		return ERR_CAST(mnt);
4261 
4262 	if (size < 0 || size > MAX_LFS_FILESIZE)
4263 		return ERR_PTR(-EINVAL);
4264 
4265 	if (shmem_acct_size(flags, size))
4266 		return ERR_PTR(-ENOMEM);
4267 
4268 	if (is_idmapped_mnt(mnt))
4269 		return ERR_PTR(-EINVAL);
4270 
4271 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4272 				S_IFREG | S_IRWXUGO, 0, flags);
4273 	if (unlikely(!inode)) {
4274 		shmem_unacct_size(flags, size);
4275 		return ERR_PTR(-ENOSPC);
4276 	}
4277 	inode->i_flags |= i_flags;
4278 	inode->i_size = size;
4279 	clear_nlink(inode);	/* It is unlinked */
4280 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4281 	if (!IS_ERR(res))
4282 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4283 				&shmem_file_operations);
4284 	if (IS_ERR(res))
4285 		iput(inode);
4286 	return res;
4287 }
4288 
4289 /**
4290  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4291  * 	kernel internal.  There will be NO LSM permission checks against the
4292  * 	underlying inode.  So users of this interface must do LSM checks at a
4293  *	higher layer.  The users are the big_key and shm implementations.  LSM
4294  *	checks are provided at the key or shm level rather than the inode.
4295  * @name: name for dentry (to be seen in /proc/<pid>/maps
4296  * @size: size to be set for the file
4297  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4298  */
4299 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4300 {
4301 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4302 }
4303 
4304 /**
4305  * shmem_file_setup - get an unlinked file living in tmpfs
4306  * @name: name for dentry (to be seen in /proc/<pid>/maps
4307  * @size: size to be set for the file
4308  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4309  */
4310 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4311 {
4312 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4313 }
4314 EXPORT_SYMBOL_GPL(shmem_file_setup);
4315 
4316 /**
4317  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4318  * @mnt: the tmpfs mount where the file will be created
4319  * @name: name for dentry (to be seen in /proc/<pid>/maps
4320  * @size: size to be set for the file
4321  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4322  */
4323 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4324 				       loff_t size, unsigned long flags)
4325 {
4326 	return __shmem_file_setup(mnt, name, size, flags, 0);
4327 }
4328 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4329 
4330 /**
4331  * shmem_zero_setup - setup a shared anonymous mapping
4332  * @vma: the vma to be mmapped is prepared by do_mmap
4333  */
4334 int shmem_zero_setup(struct vm_area_struct *vma)
4335 {
4336 	struct file *file;
4337 	loff_t size = vma->vm_end - vma->vm_start;
4338 
4339 	/*
4340 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4341 	 * between XFS directory reading and selinux: since this file is only
4342 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4343 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4344 	 */
4345 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4346 	if (IS_ERR(file))
4347 		return PTR_ERR(file);
4348 
4349 	if (vma->vm_file)
4350 		fput(vma->vm_file);
4351 	vma->vm_file = file;
4352 	vma->vm_ops = &shmem_anon_vm_ops;
4353 
4354 	return 0;
4355 }
4356 
4357 /**
4358  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4359  * @mapping:	the folio's address_space
4360  * @index:	the folio index
4361  * @gfp:	the page allocator flags to use if allocating
4362  *
4363  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4364  * with any new page allocations done using the specified allocation flags.
4365  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4366  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4367  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4368  *
4369  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4370  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4371  */
4372 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4373 		pgoff_t index, gfp_t gfp)
4374 {
4375 #ifdef CONFIG_SHMEM
4376 	struct inode *inode = mapping->host;
4377 	struct folio *folio;
4378 	int error;
4379 
4380 	BUG_ON(!shmem_mapping(mapping));
4381 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4382 				  gfp, NULL, NULL, NULL);
4383 	if (error)
4384 		return ERR_PTR(error);
4385 
4386 	folio_unlock(folio);
4387 	return folio;
4388 #else
4389 	/*
4390 	 * The tiny !SHMEM case uses ramfs without swap
4391 	 */
4392 	return mapping_read_folio_gfp(mapping, index, gfp);
4393 #endif
4394 }
4395 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4396 
4397 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4398 					 pgoff_t index, gfp_t gfp)
4399 {
4400 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4401 	struct page *page;
4402 
4403 	if (IS_ERR(folio))
4404 		return &folio->page;
4405 
4406 	page = folio_file_page(folio, index);
4407 	if (PageHWPoison(page)) {
4408 		folio_put(folio);
4409 		return ERR_PTR(-EIO);
4410 	}
4411 
4412 	return page;
4413 }
4414 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4415