1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 bool noswap; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 #define SHMEM_SEEN_INUMS 8 124 #define SHMEM_SEEN_NOSWAP 16 125 }; 126 127 #ifdef CONFIG_TMPFS 128 static unsigned long shmem_default_max_blocks(void) 129 { 130 return totalram_pages() / 2; 131 } 132 133 static unsigned long shmem_default_max_inodes(void) 134 { 135 unsigned long nr_pages = totalram_pages(); 136 137 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 138 } 139 #endif 140 141 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 142 struct folio **foliop, enum sgp_type sgp, 143 gfp_t gfp, struct vm_area_struct *vma, 144 vm_fault_t *fault_type); 145 146 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 147 { 148 return sb->s_fs_info; 149 } 150 151 /* 152 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 153 * for shared memory and for shared anonymous (/dev/zero) mappings 154 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 155 * consistent with the pre-accounting of private mappings ... 156 */ 157 static inline int shmem_acct_size(unsigned long flags, loff_t size) 158 { 159 return (flags & VM_NORESERVE) ? 160 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 161 } 162 163 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 164 { 165 if (!(flags & VM_NORESERVE)) 166 vm_unacct_memory(VM_ACCT(size)); 167 } 168 169 static inline int shmem_reacct_size(unsigned long flags, 170 loff_t oldsize, loff_t newsize) 171 { 172 if (!(flags & VM_NORESERVE)) { 173 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 174 return security_vm_enough_memory_mm(current->mm, 175 VM_ACCT(newsize) - VM_ACCT(oldsize)); 176 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 177 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 178 } 179 return 0; 180 } 181 182 /* 183 * ... whereas tmpfs objects are accounted incrementally as 184 * pages are allocated, in order to allow large sparse files. 185 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 186 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 187 */ 188 static inline int shmem_acct_block(unsigned long flags, long pages) 189 { 190 if (!(flags & VM_NORESERVE)) 191 return 0; 192 193 return security_vm_enough_memory_mm(current->mm, 194 pages * VM_ACCT(PAGE_SIZE)); 195 } 196 197 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 198 { 199 if (flags & VM_NORESERVE) 200 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 201 } 202 203 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 204 { 205 struct shmem_inode_info *info = SHMEM_I(inode); 206 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 207 208 if (shmem_acct_block(info->flags, pages)) 209 return false; 210 211 if (sbinfo->max_blocks) { 212 if (percpu_counter_compare(&sbinfo->used_blocks, 213 sbinfo->max_blocks - pages) > 0) 214 goto unacct; 215 percpu_counter_add(&sbinfo->used_blocks, pages); 216 } 217 218 return true; 219 220 unacct: 221 shmem_unacct_blocks(info->flags, pages); 222 return false; 223 } 224 225 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 226 { 227 struct shmem_inode_info *info = SHMEM_I(inode); 228 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 229 230 if (sbinfo->max_blocks) 231 percpu_counter_sub(&sbinfo->used_blocks, pages); 232 shmem_unacct_blocks(info->flags, pages); 233 } 234 235 static const struct super_operations shmem_ops; 236 const struct address_space_operations shmem_aops; 237 static const struct file_operations shmem_file_operations; 238 static const struct inode_operations shmem_inode_operations; 239 static const struct inode_operations shmem_dir_inode_operations; 240 static const struct inode_operations shmem_special_inode_operations; 241 static const struct vm_operations_struct shmem_vm_ops; 242 static const struct vm_operations_struct shmem_anon_vm_ops; 243 static struct file_system_type shmem_fs_type; 244 245 bool vma_is_anon_shmem(struct vm_area_struct *vma) 246 { 247 return vma->vm_ops == &shmem_anon_vm_ops; 248 } 249 250 bool vma_is_shmem(struct vm_area_struct *vma) 251 { 252 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 253 } 254 255 static LIST_HEAD(shmem_swaplist); 256 static DEFINE_MUTEX(shmem_swaplist_mutex); 257 258 /* 259 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 260 * produces a novel ino for the newly allocated inode. 261 * 262 * It may also be called when making a hard link to permit the space needed by 263 * each dentry. However, in that case, no new inode number is needed since that 264 * internally draws from another pool of inode numbers (currently global 265 * get_next_ino()). This case is indicated by passing NULL as inop. 266 */ 267 #define SHMEM_INO_BATCH 1024 268 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 269 { 270 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 271 ino_t ino; 272 273 if (!(sb->s_flags & SB_KERNMOUNT)) { 274 raw_spin_lock(&sbinfo->stat_lock); 275 if (sbinfo->max_inodes) { 276 if (!sbinfo->free_inodes) { 277 raw_spin_unlock(&sbinfo->stat_lock); 278 return -ENOSPC; 279 } 280 sbinfo->free_inodes--; 281 } 282 if (inop) { 283 ino = sbinfo->next_ino++; 284 if (unlikely(is_zero_ino(ino))) 285 ino = sbinfo->next_ino++; 286 if (unlikely(!sbinfo->full_inums && 287 ino > UINT_MAX)) { 288 /* 289 * Emulate get_next_ino uint wraparound for 290 * compatibility 291 */ 292 if (IS_ENABLED(CONFIG_64BIT)) 293 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 294 __func__, MINOR(sb->s_dev)); 295 sbinfo->next_ino = 1; 296 ino = sbinfo->next_ino++; 297 } 298 *inop = ino; 299 } 300 raw_spin_unlock(&sbinfo->stat_lock); 301 } else if (inop) { 302 /* 303 * __shmem_file_setup, one of our callers, is lock-free: it 304 * doesn't hold stat_lock in shmem_reserve_inode since 305 * max_inodes is always 0, and is called from potentially 306 * unknown contexts. As such, use a per-cpu batched allocator 307 * which doesn't require the per-sb stat_lock unless we are at 308 * the batch boundary. 309 * 310 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 311 * shmem mounts are not exposed to userspace, so we don't need 312 * to worry about things like glibc compatibility. 313 */ 314 ino_t *next_ino; 315 316 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 317 ino = *next_ino; 318 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 319 raw_spin_lock(&sbinfo->stat_lock); 320 ino = sbinfo->next_ino; 321 sbinfo->next_ino += SHMEM_INO_BATCH; 322 raw_spin_unlock(&sbinfo->stat_lock); 323 if (unlikely(is_zero_ino(ino))) 324 ino++; 325 } 326 *inop = ino; 327 *next_ino = ++ino; 328 put_cpu(); 329 } 330 331 return 0; 332 } 333 334 static void shmem_free_inode(struct super_block *sb) 335 { 336 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 337 if (sbinfo->max_inodes) { 338 raw_spin_lock(&sbinfo->stat_lock); 339 sbinfo->free_inodes++; 340 raw_spin_unlock(&sbinfo->stat_lock); 341 } 342 } 343 344 /** 345 * shmem_recalc_inode - recalculate the block usage of an inode 346 * @inode: inode to recalc 347 * 348 * We have to calculate the free blocks since the mm can drop 349 * undirtied hole pages behind our back. 350 * 351 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 352 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 353 * 354 * It has to be called with the spinlock held. 355 */ 356 static void shmem_recalc_inode(struct inode *inode) 357 { 358 struct shmem_inode_info *info = SHMEM_I(inode); 359 long freed; 360 361 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 362 if (freed > 0) { 363 info->alloced -= freed; 364 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 365 shmem_inode_unacct_blocks(inode, freed); 366 } 367 } 368 369 bool shmem_charge(struct inode *inode, long pages) 370 { 371 struct shmem_inode_info *info = SHMEM_I(inode); 372 unsigned long flags; 373 374 if (!shmem_inode_acct_block(inode, pages)) 375 return false; 376 377 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 378 inode->i_mapping->nrpages += pages; 379 380 spin_lock_irqsave(&info->lock, flags); 381 info->alloced += pages; 382 inode->i_blocks += pages * BLOCKS_PER_PAGE; 383 shmem_recalc_inode(inode); 384 spin_unlock_irqrestore(&info->lock, flags); 385 386 return true; 387 } 388 389 void shmem_uncharge(struct inode *inode, long pages) 390 { 391 struct shmem_inode_info *info = SHMEM_I(inode); 392 unsigned long flags; 393 394 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 395 396 spin_lock_irqsave(&info->lock, flags); 397 info->alloced -= pages; 398 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 399 shmem_recalc_inode(inode); 400 spin_unlock_irqrestore(&info->lock, flags); 401 402 shmem_inode_unacct_blocks(inode, pages); 403 } 404 405 /* 406 * Replace item expected in xarray by a new item, while holding xa_lock. 407 */ 408 static int shmem_replace_entry(struct address_space *mapping, 409 pgoff_t index, void *expected, void *replacement) 410 { 411 XA_STATE(xas, &mapping->i_pages, index); 412 void *item; 413 414 VM_BUG_ON(!expected); 415 VM_BUG_ON(!replacement); 416 item = xas_load(&xas); 417 if (item != expected) 418 return -ENOENT; 419 xas_store(&xas, replacement); 420 return 0; 421 } 422 423 /* 424 * Sometimes, before we decide whether to proceed or to fail, we must check 425 * that an entry was not already brought back from swap by a racing thread. 426 * 427 * Checking page is not enough: by the time a SwapCache page is locked, it 428 * might be reused, and again be SwapCache, using the same swap as before. 429 */ 430 static bool shmem_confirm_swap(struct address_space *mapping, 431 pgoff_t index, swp_entry_t swap) 432 { 433 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 434 } 435 436 /* 437 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 438 * 439 * SHMEM_HUGE_NEVER: 440 * disables huge pages for the mount; 441 * SHMEM_HUGE_ALWAYS: 442 * enables huge pages for the mount; 443 * SHMEM_HUGE_WITHIN_SIZE: 444 * only allocate huge pages if the page will be fully within i_size, 445 * also respect fadvise()/madvise() hints; 446 * SHMEM_HUGE_ADVISE: 447 * only allocate huge pages if requested with fadvise()/madvise(); 448 */ 449 450 #define SHMEM_HUGE_NEVER 0 451 #define SHMEM_HUGE_ALWAYS 1 452 #define SHMEM_HUGE_WITHIN_SIZE 2 453 #define SHMEM_HUGE_ADVISE 3 454 455 /* 456 * Special values. 457 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 458 * 459 * SHMEM_HUGE_DENY: 460 * disables huge on shm_mnt and all mounts, for emergency use; 461 * SHMEM_HUGE_FORCE: 462 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 463 * 464 */ 465 #define SHMEM_HUGE_DENY (-1) 466 #define SHMEM_HUGE_FORCE (-2) 467 468 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 469 /* ifdef here to avoid bloating shmem.o when not necessary */ 470 471 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 472 473 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 474 struct mm_struct *mm, unsigned long vm_flags) 475 { 476 loff_t i_size; 477 478 if (!S_ISREG(inode->i_mode)) 479 return false; 480 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 481 return false; 482 if (shmem_huge == SHMEM_HUGE_DENY) 483 return false; 484 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 485 return true; 486 487 switch (SHMEM_SB(inode->i_sb)->huge) { 488 case SHMEM_HUGE_ALWAYS: 489 return true; 490 case SHMEM_HUGE_WITHIN_SIZE: 491 index = round_up(index + 1, HPAGE_PMD_NR); 492 i_size = round_up(i_size_read(inode), PAGE_SIZE); 493 if (i_size >> PAGE_SHIFT >= index) 494 return true; 495 fallthrough; 496 case SHMEM_HUGE_ADVISE: 497 if (mm && (vm_flags & VM_HUGEPAGE)) 498 return true; 499 fallthrough; 500 default: 501 return false; 502 } 503 } 504 505 #if defined(CONFIG_SYSFS) 506 static int shmem_parse_huge(const char *str) 507 { 508 if (!strcmp(str, "never")) 509 return SHMEM_HUGE_NEVER; 510 if (!strcmp(str, "always")) 511 return SHMEM_HUGE_ALWAYS; 512 if (!strcmp(str, "within_size")) 513 return SHMEM_HUGE_WITHIN_SIZE; 514 if (!strcmp(str, "advise")) 515 return SHMEM_HUGE_ADVISE; 516 if (!strcmp(str, "deny")) 517 return SHMEM_HUGE_DENY; 518 if (!strcmp(str, "force")) 519 return SHMEM_HUGE_FORCE; 520 return -EINVAL; 521 } 522 #endif 523 524 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 525 static const char *shmem_format_huge(int huge) 526 { 527 switch (huge) { 528 case SHMEM_HUGE_NEVER: 529 return "never"; 530 case SHMEM_HUGE_ALWAYS: 531 return "always"; 532 case SHMEM_HUGE_WITHIN_SIZE: 533 return "within_size"; 534 case SHMEM_HUGE_ADVISE: 535 return "advise"; 536 case SHMEM_HUGE_DENY: 537 return "deny"; 538 case SHMEM_HUGE_FORCE: 539 return "force"; 540 default: 541 VM_BUG_ON(1); 542 return "bad_val"; 543 } 544 } 545 #endif 546 547 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 548 struct shrink_control *sc, unsigned long nr_to_split) 549 { 550 LIST_HEAD(list), *pos, *next; 551 LIST_HEAD(to_remove); 552 struct inode *inode; 553 struct shmem_inode_info *info; 554 struct folio *folio; 555 unsigned long batch = sc ? sc->nr_to_scan : 128; 556 int split = 0; 557 558 if (list_empty(&sbinfo->shrinklist)) 559 return SHRINK_STOP; 560 561 spin_lock(&sbinfo->shrinklist_lock); 562 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 563 info = list_entry(pos, struct shmem_inode_info, shrinklist); 564 565 /* pin the inode */ 566 inode = igrab(&info->vfs_inode); 567 568 /* inode is about to be evicted */ 569 if (!inode) { 570 list_del_init(&info->shrinklist); 571 goto next; 572 } 573 574 /* Check if there's anything to gain */ 575 if (round_up(inode->i_size, PAGE_SIZE) == 576 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 577 list_move(&info->shrinklist, &to_remove); 578 goto next; 579 } 580 581 list_move(&info->shrinklist, &list); 582 next: 583 sbinfo->shrinklist_len--; 584 if (!--batch) 585 break; 586 } 587 spin_unlock(&sbinfo->shrinklist_lock); 588 589 list_for_each_safe(pos, next, &to_remove) { 590 info = list_entry(pos, struct shmem_inode_info, shrinklist); 591 inode = &info->vfs_inode; 592 list_del_init(&info->shrinklist); 593 iput(inode); 594 } 595 596 list_for_each_safe(pos, next, &list) { 597 int ret; 598 pgoff_t index; 599 600 info = list_entry(pos, struct shmem_inode_info, shrinklist); 601 inode = &info->vfs_inode; 602 603 if (nr_to_split && split >= nr_to_split) 604 goto move_back; 605 606 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 607 folio = filemap_get_folio(inode->i_mapping, index); 608 if (IS_ERR(folio)) 609 goto drop; 610 611 /* No huge page at the end of the file: nothing to split */ 612 if (!folio_test_large(folio)) { 613 folio_put(folio); 614 goto drop; 615 } 616 617 /* 618 * Move the inode on the list back to shrinklist if we failed 619 * to lock the page at this time. 620 * 621 * Waiting for the lock may lead to deadlock in the 622 * reclaim path. 623 */ 624 if (!folio_trylock(folio)) { 625 folio_put(folio); 626 goto move_back; 627 } 628 629 ret = split_folio(folio); 630 folio_unlock(folio); 631 folio_put(folio); 632 633 /* If split failed move the inode on the list back to shrinklist */ 634 if (ret) 635 goto move_back; 636 637 split++; 638 drop: 639 list_del_init(&info->shrinklist); 640 goto put; 641 move_back: 642 /* 643 * Make sure the inode is either on the global list or deleted 644 * from any local list before iput() since it could be deleted 645 * in another thread once we put the inode (then the local list 646 * is corrupted). 647 */ 648 spin_lock(&sbinfo->shrinklist_lock); 649 list_move(&info->shrinklist, &sbinfo->shrinklist); 650 sbinfo->shrinklist_len++; 651 spin_unlock(&sbinfo->shrinklist_lock); 652 put: 653 iput(inode); 654 } 655 656 return split; 657 } 658 659 static long shmem_unused_huge_scan(struct super_block *sb, 660 struct shrink_control *sc) 661 { 662 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 663 664 if (!READ_ONCE(sbinfo->shrinklist_len)) 665 return SHRINK_STOP; 666 667 return shmem_unused_huge_shrink(sbinfo, sc, 0); 668 } 669 670 static long shmem_unused_huge_count(struct super_block *sb, 671 struct shrink_control *sc) 672 { 673 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 674 return READ_ONCE(sbinfo->shrinklist_len); 675 } 676 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 677 678 #define shmem_huge SHMEM_HUGE_DENY 679 680 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 681 struct mm_struct *mm, unsigned long vm_flags) 682 { 683 return false; 684 } 685 686 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 687 struct shrink_control *sc, unsigned long nr_to_split) 688 { 689 return 0; 690 } 691 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 692 693 /* 694 * Like filemap_add_folio, but error if expected item has gone. 695 */ 696 static int shmem_add_to_page_cache(struct folio *folio, 697 struct address_space *mapping, 698 pgoff_t index, void *expected, gfp_t gfp, 699 struct mm_struct *charge_mm) 700 { 701 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 702 long nr = folio_nr_pages(folio); 703 int error; 704 705 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 706 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 707 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 708 VM_BUG_ON(expected && folio_test_large(folio)); 709 710 folio_ref_add(folio, nr); 711 folio->mapping = mapping; 712 folio->index = index; 713 714 if (!folio_test_swapcache(folio)) { 715 error = mem_cgroup_charge(folio, charge_mm, gfp); 716 if (error) { 717 if (folio_test_pmd_mappable(folio)) { 718 count_vm_event(THP_FILE_FALLBACK); 719 count_vm_event(THP_FILE_FALLBACK_CHARGE); 720 } 721 goto error; 722 } 723 } 724 folio_throttle_swaprate(folio, gfp); 725 726 do { 727 xas_lock_irq(&xas); 728 if (expected != xas_find_conflict(&xas)) { 729 xas_set_err(&xas, -EEXIST); 730 goto unlock; 731 } 732 if (expected && xas_find_conflict(&xas)) { 733 xas_set_err(&xas, -EEXIST); 734 goto unlock; 735 } 736 xas_store(&xas, folio); 737 if (xas_error(&xas)) 738 goto unlock; 739 if (folio_test_pmd_mappable(folio)) { 740 count_vm_event(THP_FILE_ALLOC); 741 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 742 } 743 mapping->nrpages += nr; 744 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 745 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 746 unlock: 747 xas_unlock_irq(&xas); 748 } while (xas_nomem(&xas, gfp)); 749 750 if (xas_error(&xas)) { 751 error = xas_error(&xas); 752 goto error; 753 } 754 755 return 0; 756 error: 757 folio->mapping = NULL; 758 folio_ref_sub(folio, nr); 759 return error; 760 } 761 762 /* 763 * Like delete_from_page_cache, but substitutes swap for @folio. 764 */ 765 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 766 { 767 struct address_space *mapping = folio->mapping; 768 long nr = folio_nr_pages(folio); 769 int error; 770 771 xa_lock_irq(&mapping->i_pages); 772 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 773 folio->mapping = NULL; 774 mapping->nrpages -= nr; 775 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 776 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 777 xa_unlock_irq(&mapping->i_pages); 778 folio_put(folio); 779 BUG_ON(error); 780 } 781 782 /* 783 * Remove swap entry from page cache, free the swap and its page cache. 784 */ 785 static int shmem_free_swap(struct address_space *mapping, 786 pgoff_t index, void *radswap) 787 { 788 void *old; 789 790 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 791 if (old != radswap) 792 return -ENOENT; 793 free_swap_and_cache(radix_to_swp_entry(radswap)); 794 return 0; 795 } 796 797 /* 798 * Determine (in bytes) how many of the shmem object's pages mapped by the 799 * given offsets are swapped out. 800 * 801 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 802 * as long as the inode doesn't go away and racy results are not a problem. 803 */ 804 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 805 pgoff_t start, pgoff_t end) 806 { 807 XA_STATE(xas, &mapping->i_pages, start); 808 struct page *page; 809 unsigned long swapped = 0; 810 811 rcu_read_lock(); 812 xas_for_each(&xas, page, end - 1) { 813 if (xas_retry(&xas, page)) 814 continue; 815 if (xa_is_value(page)) 816 swapped++; 817 818 if (need_resched()) { 819 xas_pause(&xas); 820 cond_resched_rcu(); 821 } 822 } 823 824 rcu_read_unlock(); 825 826 return swapped << PAGE_SHIFT; 827 } 828 829 /* 830 * Determine (in bytes) how many of the shmem object's pages mapped by the 831 * given vma is swapped out. 832 * 833 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 834 * as long as the inode doesn't go away and racy results are not a problem. 835 */ 836 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 837 { 838 struct inode *inode = file_inode(vma->vm_file); 839 struct shmem_inode_info *info = SHMEM_I(inode); 840 struct address_space *mapping = inode->i_mapping; 841 unsigned long swapped; 842 843 /* Be careful as we don't hold info->lock */ 844 swapped = READ_ONCE(info->swapped); 845 846 /* 847 * The easier cases are when the shmem object has nothing in swap, or 848 * the vma maps it whole. Then we can simply use the stats that we 849 * already track. 850 */ 851 if (!swapped) 852 return 0; 853 854 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 855 return swapped << PAGE_SHIFT; 856 857 /* Here comes the more involved part */ 858 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 859 vma->vm_pgoff + vma_pages(vma)); 860 } 861 862 /* 863 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 864 */ 865 void shmem_unlock_mapping(struct address_space *mapping) 866 { 867 struct folio_batch fbatch; 868 pgoff_t index = 0; 869 870 folio_batch_init(&fbatch); 871 /* 872 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 873 */ 874 while (!mapping_unevictable(mapping) && 875 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 876 check_move_unevictable_folios(&fbatch); 877 folio_batch_release(&fbatch); 878 cond_resched(); 879 } 880 } 881 882 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 883 { 884 struct folio *folio; 885 886 /* 887 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 888 * beyond i_size, and reports fallocated folios as holes. 889 */ 890 folio = filemap_get_entry(inode->i_mapping, index); 891 if (!folio) 892 return folio; 893 if (!xa_is_value(folio)) { 894 folio_lock(folio); 895 if (folio->mapping == inode->i_mapping) 896 return folio; 897 /* The folio has been swapped out */ 898 folio_unlock(folio); 899 folio_put(folio); 900 } 901 /* 902 * But read a folio back from swap if any of it is within i_size 903 * (although in some cases this is just a waste of time). 904 */ 905 folio = NULL; 906 shmem_get_folio(inode, index, &folio, SGP_READ); 907 return folio; 908 } 909 910 /* 911 * Remove range of pages and swap entries from page cache, and free them. 912 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 913 */ 914 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 915 bool unfalloc) 916 { 917 struct address_space *mapping = inode->i_mapping; 918 struct shmem_inode_info *info = SHMEM_I(inode); 919 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 920 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 921 struct folio_batch fbatch; 922 pgoff_t indices[PAGEVEC_SIZE]; 923 struct folio *folio; 924 bool same_folio; 925 long nr_swaps_freed = 0; 926 pgoff_t index; 927 int i; 928 929 if (lend == -1) 930 end = -1; /* unsigned, so actually very big */ 931 932 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 933 info->fallocend = start; 934 935 folio_batch_init(&fbatch); 936 index = start; 937 while (index < end && find_lock_entries(mapping, &index, end - 1, 938 &fbatch, indices)) { 939 for (i = 0; i < folio_batch_count(&fbatch); i++) { 940 folio = fbatch.folios[i]; 941 942 if (xa_is_value(folio)) { 943 if (unfalloc) 944 continue; 945 nr_swaps_freed += !shmem_free_swap(mapping, 946 indices[i], folio); 947 continue; 948 } 949 950 if (!unfalloc || !folio_test_uptodate(folio)) 951 truncate_inode_folio(mapping, folio); 952 folio_unlock(folio); 953 } 954 folio_batch_remove_exceptionals(&fbatch); 955 folio_batch_release(&fbatch); 956 cond_resched(); 957 } 958 959 /* 960 * When undoing a failed fallocate, we want none of the partial folio 961 * zeroing and splitting below, but shall want to truncate the whole 962 * folio when !uptodate indicates that it was added by this fallocate, 963 * even when [lstart, lend] covers only a part of the folio. 964 */ 965 if (unfalloc) 966 goto whole_folios; 967 968 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 969 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 970 if (folio) { 971 same_folio = lend < folio_pos(folio) + folio_size(folio); 972 folio_mark_dirty(folio); 973 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 974 start = folio->index + folio_nr_pages(folio); 975 if (same_folio) 976 end = folio->index; 977 } 978 folio_unlock(folio); 979 folio_put(folio); 980 folio = NULL; 981 } 982 983 if (!same_folio) 984 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 985 if (folio) { 986 folio_mark_dirty(folio); 987 if (!truncate_inode_partial_folio(folio, lstart, lend)) 988 end = folio->index; 989 folio_unlock(folio); 990 folio_put(folio); 991 } 992 993 whole_folios: 994 995 index = start; 996 while (index < end) { 997 cond_resched(); 998 999 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1000 indices)) { 1001 /* If all gone or hole-punch or unfalloc, we're done */ 1002 if (index == start || end != -1) 1003 break; 1004 /* But if truncating, restart to make sure all gone */ 1005 index = start; 1006 continue; 1007 } 1008 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1009 folio = fbatch.folios[i]; 1010 1011 if (xa_is_value(folio)) { 1012 if (unfalloc) 1013 continue; 1014 if (shmem_free_swap(mapping, indices[i], folio)) { 1015 /* Swap was replaced by page: retry */ 1016 index = indices[i]; 1017 break; 1018 } 1019 nr_swaps_freed++; 1020 continue; 1021 } 1022 1023 folio_lock(folio); 1024 1025 if (!unfalloc || !folio_test_uptodate(folio)) { 1026 if (folio_mapping(folio) != mapping) { 1027 /* Page was replaced by swap: retry */ 1028 folio_unlock(folio); 1029 index = indices[i]; 1030 break; 1031 } 1032 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1033 folio); 1034 truncate_inode_folio(mapping, folio); 1035 } 1036 folio_unlock(folio); 1037 } 1038 folio_batch_remove_exceptionals(&fbatch); 1039 folio_batch_release(&fbatch); 1040 } 1041 1042 spin_lock_irq(&info->lock); 1043 info->swapped -= nr_swaps_freed; 1044 shmem_recalc_inode(inode); 1045 spin_unlock_irq(&info->lock); 1046 } 1047 1048 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1049 { 1050 shmem_undo_range(inode, lstart, lend, false); 1051 inode->i_ctime = inode->i_mtime = current_time(inode); 1052 inode_inc_iversion(inode); 1053 } 1054 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1055 1056 static int shmem_getattr(struct mnt_idmap *idmap, 1057 const struct path *path, struct kstat *stat, 1058 u32 request_mask, unsigned int query_flags) 1059 { 1060 struct inode *inode = path->dentry->d_inode; 1061 struct shmem_inode_info *info = SHMEM_I(inode); 1062 1063 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1064 spin_lock_irq(&info->lock); 1065 shmem_recalc_inode(inode); 1066 spin_unlock_irq(&info->lock); 1067 } 1068 if (info->fsflags & FS_APPEND_FL) 1069 stat->attributes |= STATX_ATTR_APPEND; 1070 if (info->fsflags & FS_IMMUTABLE_FL) 1071 stat->attributes |= STATX_ATTR_IMMUTABLE; 1072 if (info->fsflags & FS_NODUMP_FL) 1073 stat->attributes |= STATX_ATTR_NODUMP; 1074 stat->attributes_mask |= (STATX_ATTR_APPEND | 1075 STATX_ATTR_IMMUTABLE | 1076 STATX_ATTR_NODUMP); 1077 generic_fillattr(idmap, inode, stat); 1078 1079 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1080 stat->blksize = HPAGE_PMD_SIZE; 1081 1082 if (request_mask & STATX_BTIME) { 1083 stat->result_mask |= STATX_BTIME; 1084 stat->btime.tv_sec = info->i_crtime.tv_sec; 1085 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1086 } 1087 1088 return 0; 1089 } 1090 1091 static int shmem_setattr(struct mnt_idmap *idmap, 1092 struct dentry *dentry, struct iattr *attr) 1093 { 1094 struct inode *inode = d_inode(dentry); 1095 struct shmem_inode_info *info = SHMEM_I(inode); 1096 int error; 1097 bool update_mtime = false; 1098 bool update_ctime = true; 1099 1100 error = setattr_prepare(idmap, dentry, attr); 1101 if (error) 1102 return error; 1103 1104 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1105 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1106 return -EPERM; 1107 } 1108 } 1109 1110 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1111 loff_t oldsize = inode->i_size; 1112 loff_t newsize = attr->ia_size; 1113 1114 /* protected by i_rwsem */ 1115 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1116 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1117 return -EPERM; 1118 1119 if (newsize != oldsize) { 1120 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1121 oldsize, newsize); 1122 if (error) 1123 return error; 1124 i_size_write(inode, newsize); 1125 update_mtime = true; 1126 } else { 1127 update_ctime = false; 1128 } 1129 if (newsize <= oldsize) { 1130 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1131 if (oldsize > holebegin) 1132 unmap_mapping_range(inode->i_mapping, 1133 holebegin, 0, 1); 1134 if (info->alloced) 1135 shmem_truncate_range(inode, 1136 newsize, (loff_t)-1); 1137 /* unmap again to remove racily COWed private pages */ 1138 if (oldsize > holebegin) 1139 unmap_mapping_range(inode->i_mapping, 1140 holebegin, 0, 1); 1141 } 1142 } 1143 1144 setattr_copy(idmap, inode, attr); 1145 if (attr->ia_valid & ATTR_MODE) 1146 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1147 if (!error && update_ctime) { 1148 inode->i_ctime = current_time(inode); 1149 if (update_mtime) 1150 inode->i_mtime = inode->i_ctime; 1151 inode_inc_iversion(inode); 1152 } 1153 return error; 1154 } 1155 1156 static void shmem_evict_inode(struct inode *inode) 1157 { 1158 struct shmem_inode_info *info = SHMEM_I(inode); 1159 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1160 1161 if (shmem_mapping(inode->i_mapping)) { 1162 shmem_unacct_size(info->flags, inode->i_size); 1163 inode->i_size = 0; 1164 mapping_set_exiting(inode->i_mapping); 1165 shmem_truncate_range(inode, 0, (loff_t)-1); 1166 if (!list_empty(&info->shrinklist)) { 1167 spin_lock(&sbinfo->shrinklist_lock); 1168 if (!list_empty(&info->shrinklist)) { 1169 list_del_init(&info->shrinklist); 1170 sbinfo->shrinklist_len--; 1171 } 1172 spin_unlock(&sbinfo->shrinklist_lock); 1173 } 1174 while (!list_empty(&info->swaplist)) { 1175 /* Wait while shmem_unuse() is scanning this inode... */ 1176 wait_var_event(&info->stop_eviction, 1177 !atomic_read(&info->stop_eviction)); 1178 mutex_lock(&shmem_swaplist_mutex); 1179 /* ...but beware of the race if we peeked too early */ 1180 if (!atomic_read(&info->stop_eviction)) 1181 list_del_init(&info->swaplist); 1182 mutex_unlock(&shmem_swaplist_mutex); 1183 } 1184 } 1185 1186 simple_xattrs_free(&info->xattrs); 1187 WARN_ON(inode->i_blocks); 1188 shmem_free_inode(inode->i_sb); 1189 clear_inode(inode); 1190 } 1191 1192 static int shmem_find_swap_entries(struct address_space *mapping, 1193 pgoff_t start, struct folio_batch *fbatch, 1194 pgoff_t *indices, unsigned int type) 1195 { 1196 XA_STATE(xas, &mapping->i_pages, start); 1197 struct folio *folio; 1198 swp_entry_t entry; 1199 1200 rcu_read_lock(); 1201 xas_for_each(&xas, folio, ULONG_MAX) { 1202 if (xas_retry(&xas, folio)) 1203 continue; 1204 1205 if (!xa_is_value(folio)) 1206 continue; 1207 1208 entry = radix_to_swp_entry(folio); 1209 /* 1210 * swapin error entries can be found in the mapping. But they're 1211 * deliberately ignored here as we've done everything we can do. 1212 */ 1213 if (swp_type(entry) != type) 1214 continue; 1215 1216 indices[folio_batch_count(fbatch)] = xas.xa_index; 1217 if (!folio_batch_add(fbatch, folio)) 1218 break; 1219 1220 if (need_resched()) { 1221 xas_pause(&xas); 1222 cond_resched_rcu(); 1223 } 1224 } 1225 rcu_read_unlock(); 1226 1227 return xas.xa_index; 1228 } 1229 1230 /* 1231 * Move the swapped pages for an inode to page cache. Returns the count 1232 * of pages swapped in, or the error in case of failure. 1233 */ 1234 static int shmem_unuse_swap_entries(struct inode *inode, 1235 struct folio_batch *fbatch, pgoff_t *indices) 1236 { 1237 int i = 0; 1238 int ret = 0; 1239 int error = 0; 1240 struct address_space *mapping = inode->i_mapping; 1241 1242 for (i = 0; i < folio_batch_count(fbatch); i++) { 1243 struct folio *folio = fbatch->folios[i]; 1244 1245 if (!xa_is_value(folio)) 1246 continue; 1247 error = shmem_swapin_folio(inode, indices[i], 1248 &folio, SGP_CACHE, 1249 mapping_gfp_mask(mapping), 1250 NULL, NULL); 1251 if (error == 0) { 1252 folio_unlock(folio); 1253 folio_put(folio); 1254 ret++; 1255 } 1256 if (error == -ENOMEM) 1257 break; 1258 error = 0; 1259 } 1260 return error ? error : ret; 1261 } 1262 1263 /* 1264 * If swap found in inode, free it and move page from swapcache to filecache. 1265 */ 1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1267 { 1268 struct address_space *mapping = inode->i_mapping; 1269 pgoff_t start = 0; 1270 struct folio_batch fbatch; 1271 pgoff_t indices[PAGEVEC_SIZE]; 1272 int ret = 0; 1273 1274 do { 1275 folio_batch_init(&fbatch); 1276 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1277 if (folio_batch_count(&fbatch) == 0) { 1278 ret = 0; 1279 break; 1280 } 1281 1282 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1283 if (ret < 0) 1284 break; 1285 1286 start = indices[folio_batch_count(&fbatch) - 1]; 1287 } while (true); 1288 1289 return ret; 1290 } 1291 1292 /* 1293 * Read all the shared memory data that resides in the swap 1294 * device 'type' back into memory, so the swap device can be 1295 * unused. 1296 */ 1297 int shmem_unuse(unsigned int type) 1298 { 1299 struct shmem_inode_info *info, *next; 1300 int error = 0; 1301 1302 if (list_empty(&shmem_swaplist)) 1303 return 0; 1304 1305 mutex_lock(&shmem_swaplist_mutex); 1306 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1307 if (!info->swapped) { 1308 list_del_init(&info->swaplist); 1309 continue; 1310 } 1311 /* 1312 * Drop the swaplist mutex while searching the inode for swap; 1313 * but before doing so, make sure shmem_evict_inode() will not 1314 * remove placeholder inode from swaplist, nor let it be freed 1315 * (igrab() would protect from unlink, but not from unmount). 1316 */ 1317 atomic_inc(&info->stop_eviction); 1318 mutex_unlock(&shmem_swaplist_mutex); 1319 1320 error = shmem_unuse_inode(&info->vfs_inode, type); 1321 cond_resched(); 1322 1323 mutex_lock(&shmem_swaplist_mutex); 1324 next = list_next_entry(info, swaplist); 1325 if (!info->swapped) 1326 list_del_init(&info->swaplist); 1327 if (atomic_dec_and_test(&info->stop_eviction)) 1328 wake_up_var(&info->stop_eviction); 1329 if (error) 1330 break; 1331 } 1332 mutex_unlock(&shmem_swaplist_mutex); 1333 1334 return error; 1335 } 1336 1337 /* 1338 * Move the page from the page cache to the swap cache. 1339 */ 1340 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1341 { 1342 struct folio *folio = page_folio(page); 1343 struct address_space *mapping = folio->mapping; 1344 struct inode *inode = mapping->host; 1345 struct shmem_inode_info *info = SHMEM_I(inode); 1346 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1347 swp_entry_t swap; 1348 pgoff_t index; 1349 1350 /* 1351 * Our capabilities prevent regular writeback or sync from ever calling 1352 * shmem_writepage; but a stacking filesystem might use ->writepage of 1353 * its underlying filesystem, in which case tmpfs should write out to 1354 * swap only in response to memory pressure, and not for the writeback 1355 * threads or sync. 1356 */ 1357 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1358 goto redirty; 1359 1360 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1361 goto redirty; 1362 1363 if (!total_swap_pages) 1364 goto redirty; 1365 1366 /* 1367 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1368 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1369 * and its shmem_writeback() needs them to be split when swapping. 1370 */ 1371 if (folio_test_large(folio)) { 1372 /* Ensure the subpages are still dirty */ 1373 folio_test_set_dirty(folio); 1374 if (split_huge_page(page) < 0) 1375 goto redirty; 1376 folio = page_folio(page); 1377 folio_clear_dirty(folio); 1378 } 1379 1380 index = folio->index; 1381 1382 /* 1383 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1384 * value into swapfile.c, the only way we can correctly account for a 1385 * fallocated folio arriving here is now to initialize it and write it. 1386 * 1387 * That's okay for a folio already fallocated earlier, but if we have 1388 * not yet completed the fallocation, then (a) we want to keep track 1389 * of this folio in case we have to undo it, and (b) it may not be a 1390 * good idea to continue anyway, once we're pushing into swap. So 1391 * reactivate the folio, and let shmem_fallocate() quit when too many. 1392 */ 1393 if (!folio_test_uptodate(folio)) { 1394 if (inode->i_private) { 1395 struct shmem_falloc *shmem_falloc; 1396 spin_lock(&inode->i_lock); 1397 shmem_falloc = inode->i_private; 1398 if (shmem_falloc && 1399 !shmem_falloc->waitq && 1400 index >= shmem_falloc->start && 1401 index < shmem_falloc->next) 1402 shmem_falloc->nr_unswapped++; 1403 else 1404 shmem_falloc = NULL; 1405 spin_unlock(&inode->i_lock); 1406 if (shmem_falloc) 1407 goto redirty; 1408 } 1409 folio_zero_range(folio, 0, folio_size(folio)); 1410 flush_dcache_folio(folio); 1411 folio_mark_uptodate(folio); 1412 } 1413 1414 swap = folio_alloc_swap(folio); 1415 if (!swap.val) 1416 goto redirty; 1417 1418 /* 1419 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1420 * if it's not already there. Do it now before the folio is 1421 * moved to swap cache, when its pagelock no longer protects 1422 * the inode from eviction. But don't unlock the mutex until 1423 * we've incremented swapped, because shmem_unuse_inode() will 1424 * prune a !swapped inode from the swaplist under this mutex. 1425 */ 1426 mutex_lock(&shmem_swaplist_mutex); 1427 if (list_empty(&info->swaplist)) 1428 list_add(&info->swaplist, &shmem_swaplist); 1429 1430 if (add_to_swap_cache(folio, swap, 1431 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1432 NULL) == 0) { 1433 spin_lock_irq(&info->lock); 1434 shmem_recalc_inode(inode); 1435 info->swapped++; 1436 spin_unlock_irq(&info->lock); 1437 1438 swap_shmem_alloc(swap); 1439 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1440 1441 mutex_unlock(&shmem_swaplist_mutex); 1442 BUG_ON(folio_mapped(folio)); 1443 swap_writepage(&folio->page, wbc); 1444 return 0; 1445 } 1446 1447 mutex_unlock(&shmem_swaplist_mutex); 1448 put_swap_folio(folio, swap); 1449 redirty: 1450 folio_mark_dirty(folio); 1451 if (wbc->for_reclaim) 1452 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1453 folio_unlock(folio); 1454 return 0; 1455 } 1456 1457 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1458 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1459 { 1460 char buffer[64]; 1461 1462 if (!mpol || mpol->mode == MPOL_DEFAULT) 1463 return; /* show nothing */ 1464 1465 mpol_to_str(buffer, sizeof(buffer), mpol); 1466 1467 seq_printf(seq, ",mpol=%s", buffer); 1468 } 1469 1470 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1471 { 1472 struct mempolicy *mpol = NULL; 1473 if (sbinfo->mpol) { 1474 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1475 mpol = sbinfo->mpol; 1476 mpol_get(mpol); 1477 raw_spin_unlock(&sbinfo->stat_lock); 1478 } 1479 return mpol; 1480 } 1481 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1482 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1483 { 1484 } 1485 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1486 { 1487 return NULL; 1488 } 1489 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1490 #ifndef CONFIG_NUMA 1491 #define vm_policy vm_private_data 1492 #endif 1493 1494 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1495 struct shmem_inode_info *info, pgoff_t index) 1496 { 1497 /* Create a pseudo vma that just contains the policy */ 1498 vma_init(vma, NULL); 1499 /* Bias interleave by inode number to distribute better across nodes */ 1500 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1501 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1502 } 1503 1504 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1505 { 1506 /* Drop reference taken by mpol_shared_policy_lookup() */ 1507 mpol_cond_put(vma->vm_policy); 1508 } 1509 1510 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1511 struct shmem_inode_info *info, pgoff_t index) 1512 { 1513 struct vm_area_struct pvma; 1514 struct page *page; 1515 struct vm_fault vmf = { 1516 .vma = &pvma, 1517 }; 1518 1519 shmem_pseudo_vma_init(&pvma, info, index); 1520 page = swap_cluster_readahead(swap, gfp, &vmf); 1521 shmem_pseudo_vma_destroy(&pvma); 1522 1523 if (!page) 1524 return NULL; 1525 return page_folio(page); 1526 } 1527 1528 /* 1529 * Make sure huge_gfp is always more limited than limit_gfp. 1530 * Some of the flags set permissions, while others set limitations. 1531 */ 1532 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1533 { 1534 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1535 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1536 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1537 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1538 1539 /* Allow allocations only from the originally specified zones. */ 1540 result |= zoneflags; 1541 1542 /* 1543 * Minimize the result gfp by taking the union with the deny flags, 1544 * and the intersection of the allow flags. 1545 */ 1546 result |= (limit_gfp & denyflags); 1547 result |= (huge_gfp & limit_gfp) & allowflags; 1548 1549 return result; 1550 } 1551 1552 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1553 struct shmem_inode_info *info, pgoff_t index) 1554 { 1555 struct vm_area_struct pvma; 1556 struct address_space *mapping = info->vfs_inode.i_mapping; 1557 pgoff_t hindex; 1558 struct folio *folio; 1559 1560 hindex = round_down(index, HPAGE_PMD_NR); 1561 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1562 XA_PRESENT)) 1563 return NULL; 1564 1565 shmem_pseudo_vma_init(&pvma, info, hindex); 1566 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1567 shmem_pseudo_vma_destroy(&pvma); 1568 if (!folio) 1569 count_vm_event(THP_FILE_FALLBACK); 1570 return folio; 1571 } 1572 1573 static struct folio *shmem_alloc_folio(gfp_t gfp, 1574 struct shmem_inode_info *info, pgoff_t index) 1575 { 1576 struct vm_area_struct pvma; 1577 struct folio *folio; 1578 1579 shmem_pseudo_vma_init(&pvma, info, index); 1580 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1581 shmem_pseudo_vma_destroy(&pvma); 1582 1583 return folio; 1584 } 1585 1586 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1587 pgoff_t index, bool huge) 1588 { 1589 struct shmem_inode_info *info = SHMEM_I(inode); 1590 struct folio *folio; 1591 int nr; 1592 int err = -ENOSPC; 1593 1594 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1595 huge = false; 1596 nr = huge ? HPAGE_PMD_NR : 1; 1597 1598 if (!shmem_inode_acct_block(inode, nr)) 1599 goto failed; 1600 1601 if (huge) 1602 folio = shmem_alloc_hugefolio(gfp, info, index); 1603 else 1604 folio = shmem_alloc_folio(gfp, info, index); 1605 if (folio) { 1606 __folio_set_locked(folio); 1607 __folio_set_swapbacked(folio); 1608 return folio; 1609 } 1610 1611 err = -ENOMEM; 1612 shmem_inode_unacct_blocks(inode, nr); 1613 failed: 1614 return ERR_PTR(err); 1615 } 1616 1617 /* 1618 * When a page is moved from swapcache to shmem filecache (either by the 1619 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1620 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1621 * ignorance of the mapping it belongs to. If that mapping has special 1622 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1623 * we may need to copy to a suitable page before moving to filecache. 1624 * 1625 * In a future release, this may well be extended to respect cpuset and 1626 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1627 * but for now it is a simple matter of zone. 1628 */ 1629 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1630 { 1631 return folio_zonenum(folio) > gfp_zone(gfp); 1632 } 1633 1634 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1635 struct shmem_inode_info *info, pgoff_t index) 1636 { 1637 struct folio *old, *new; 1638 struct address_space *swap_mapping; 1639 swp_entry_t entry; 1640 pgoff_t swap_index; 1641 int error; 1642 1643 old = *foliop; 1644 entry = folio_swap_entry(old); 1645 swap_index = swp_offset(entry); 1646 swap_mapping = swap_address_space(entry); 1647 1648 /* 1649 * We have arrived here because our zones are constrained, so don't 1650 * limit chance of success by further cpuset and node constraints. 1651 */ 1652 gfp &= ~GFP_CONSTRAINT_MASK; 1653 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1654 new = shmem_alloc_folio(gfp, info, index); 1655 if (!new) 1656 return -ENOMEM; 1657 1658 folio_get(new); 1659 folio_copy(new, old); 1660 flush_dcache_folio(new); 1661 1662 __folio_set_locked(new); 1663 __folio_set_swapbacked(new); 1664 folio_mark_uptodate(new); 1665 folio_set_swap_entry(new, entry); 1666 folio_set_swapcache(new); 1667 1668 /* 1669 * Our caller will very soon move newpage out of swapcache, but it's 1670 * a nice clean interface for us to replace oldpage by newpage there. 1671 */ 1672 xa_lock_irq(&swap_mapping->i_pages); 1673 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1674 if (!error) { 1675 mem_cgroup_migrate(old, new); 1676 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1677 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1678 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1679 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1680 } 1681 xa_unlock_irq(&swap_mapping->i_pages); 1682 1683 if (unlikely(error)) { 1684 /* 1685 * Is this possible? I think not, now that our callers check 1686 * both PageSwapCache and page_private after getting page lock; 1687 * but be defensive. Reverse old to newpage for clear and free. 1688 */ 1689 old = new; 1690 } else { 1691 folio_add_lru(new); 1692 *foliop = new; 1693 } 1694 1695 folio_clear_swapcache(old); 1696 old->private = NULL; 1697 1698 folio_unlock(old); 1699 folio_put_refs(old, 2); 1700 return error; 1701 } 1702 1703 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1704 struct folio *folio, swp_entry_t swap) 1705 { 1706 struct address_space *mapping = inode->i_mapping; 1707 struct shmem_inode_info *info = SHMEM_I(inode); 1708 swp_entry_t swapin_error; 1709 void *old; 1710 1711 swapin_error = make_swapin_error_entry(); 1712 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1713 swp_to_radix_entry(swap), 1714 swp_to_radix_entry(swapin_error), 0); 1715 if (old != swp_to_radix_entry(swap)) 1716 return; 1717 1718 folio_wait_writeback(folio); 1719 delete_from_swap_cache(folio); 1720 spin_lock_irq(&info->lock); 1721 /* 1722 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1723 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1724 * shmem_evict_inode. 1725 */ 1726 info->alloced--; 1727 info->swapped--; 1728 shmem_recalc_inode(inode); 1729 spin_unlock_irq(&info->lock); 1730 swap_free(swap); 1731 } 1732 1733 /* 1734 * Swap in the folio pointed to by *foliop. 1735 * Caller has to make sure that *foliop contains a valid swapped folio. 1736 * Returns 0 and the folio in foliop if success. On failure, returns the 1737 * error code and NULL in *foliop. 1738 */ 1739 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1740 struct folio **foliop, enum sgp_type sgp, 1741 gfp_t gfp, struct vm_area_struct *vma, 1742 vm_fault_t *fault_type) 1743 { 1744 struct address_space *mapping = inode->i_mapping; 1745 struct shmem_inode_info *info = SHMEM_I(inode); 1746 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1747 struct swap_info_struct *si; 1748 struct folio *folio = NULL; 1749 swp_entry_t swap; 1750 int error; 1751 1752 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1753 swap = radix_to_swp_entry(*foliop); 1754 *foliop = NULL; 1755 1756 if (is_swapin_error_entry(swap)) 1757 return -EIO; 1758 1759 si = get_swap_device(swap); 1760 if (!si) { 1761 if (!shmem_confirm_swap(mapping, index, swap)) 1762 return -EEXIST; 1763 else 1764 return -EINVAL; 1765 } 1766 1767 /* Look it up and read it in.. */ 1768 folio = swap_cache_get_folio(swap, NULL, 0); 1769 if (!folio) { 1770 /* Or update major stats only when swapin succeeds?? */ 1771 if (fault_type) { 1772 *fault_type |= VM_FAULT_MAJOR; 1773 count_vm_event(PGMAJFAULT); 1774 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1775 } 1776 /* Here we actually start the io */ 1777 folio = shmem_swapin(swap, gfp, info, index); 1778 if (!folio) { 1779 error = -ENOMEM; 1780 goto failed; 1781 } 1782 } 1783 1784 /* We have to do this with folio locked to prevent races */ 1785 folio_lock(folio); 1786 if (!folio_test_swapcache(folio) || 1787 folio_swap_entry(folio).val != swap.val || 1788 !shmem_confirm_swap(mapping, index, swap)) { 1789 error = -EEXIST; 1790 goto unlock; 1791 } 1792 if (!folio_test_uptodate(folio)) { 1793 error = -EIO; 1794 goto failed; 1795 } 1796 folio_wait_writeback(folio); 1797 1798 /* 1799 * Some architectures may have to restore extra metadata to the 1800 * folio after reading from swap. 1801 */ 1802 arch_swap_restore(swap, folio); 1803 1804 if (shmem_should_replace_folio(folio, gfp)) { 1805 error = shmem_replace_folio(&folio, gfp, info, index); 1806 if (error) 1807 goto failed; 1808 } 1809 1810 error = shmem_add_to_page_cache(folio, mapping, index, 1811 swp_to_radix_entry(swap), gfp, 1812 charge_mm); 1813 if (error) 1814 goto failed; 1815 1816 spin_lock_irq(&info->lock); 1817 info->swapped--; 1818 shmem_recalc_inode(inode); 1819 spin_unlock_irq(&info->lock); 1820 1821 if (sgp == SGP_WRITE) 1822 folio_mark_accessed(folio); 1823 1824 delete_from_swap_cache(folio); 1825 folio_mark_dirty(folio); 1826 swap_free(swap); 1827 put_swap_device(si); 1828 1829 *foliop = folio; 1830 return 0; 1831 failed: 1832 if (!shmem_confirm_swap(mapping, index, swap)) 1833 error = -EEXIST; 1834 if (error == -EIO) 1835 shmem_set_folio_swapin_error(inode, index, folio, swap); 1836 unlock: 1837 if (folio) { 1838 folio_unlock(folio); 1839 folio_put(folio); 1840 } 1841 put_swap_device(si); 1842 1843 return error; 1844 } 1845 1846 /* 1847 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1848 * 1849 * If we allocate a new one we do not mark it dirty. That's up to the 1850 * vm. If we swap it in we mark it dirty since we also free the swap 1851 * entry since a page cannot live in both the swap and page cache. 1852 * 1853 * vma, vmf, and fault_type are only supplied by shmem_fault: 1854 * otherwise they are NULL. 1855 */ 1856 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1857 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1858 struct vm_area_struct *vma, struct vm_fault *vmf, 1859 vm_fault_t *fault_type) 1860 { 1861 struct address_space *mapping = inode->i_mapping; 1862 struct shmem_inode_info *info = SHMEM_I(inode); 1863 struct shmem_sb_info *sbinfo; 1864 struct mm_struct *charge_mm; 1865 struct folio *folio; 1866 pgoff_t hindex; 1867 gfp_t huge_gfp; 1868 int error; 1869 int once = 0; 1870 int alloced = 0; 1871 1872 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1873 return -EFBIG; 1874 repeat: 1875 if (sgp <= SGP_CACHE && 1876 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1877 return -EINVAL; 1878 } 1879 1880 sbinfo = SHMEM_SB(inode->i_sb); 1881 charge_mm = vma ? vma->vm_mm : NULL; 1882 1883 folio = filemap_get_entry(mapping, index); 1884 if (folio && vma && userfaultfd_minor(vma)) { 1885 if (!xa_is_value(folio)) 1886 folio_put(folio); 1887 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1888 return 0; 1889 } 1890 1891 if (xa_is_value(folio)) { 1892 error = shmem_swapin_folio(inode, index, &folio, 1893 sgp, gfp, vma, fault_type); 1894 if (error == -EEXIST) 1895 goto repeat; 1896 1897 *foliop = folio; 1898 return error; 1899 } 1900 1901 if (folio) { 1902 folio_lock(folio); 1903 1904 /* Has the folio been truncated or swapped out? */ 1905 if (unlikely(folio->mapping != mapping)) { 1906 folio_unlock(folio); 1907 folio_put(folio); 1908 goto repeat; 1909 } 1910 if (sgp == SGP_WRITE) 1911 folio_mark_accessed(folio); 1912 if (folio_test_uptodate(folio)) 1913 goto out; 1914 /* fallocated folio */ 1915 if (sgp != SGP_READ) 1916 goto clear; 1917 folio_unlock(folio); 1918 folio_put(folio); 1919 } 1920 1921 /* 1922 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1923 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1924 */ 1925 *foliop = NULL; 1926 if (sgp == SGP_READ) 1927 return 0; 1928 if (sgp == SGP_NOALLOC) 1929 return -ENOENT; 1930 1931 /* 1932 * Fast cache lookup and swap lookup did not find it: allocate. 1933 */ 1934 1935 if (vma && userfaultfd_missing(vma)) { 1936 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1937 return 0; 1938 } 1939 1940 if (!shmem_is_huge(inode, index, false, 1941 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 1942 goto alloc_nohuge; 1943 1944 huge_gfp = vma_thp_gfp_mask(vma); 1945 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1946 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1947 if (IS_ERR(folio)) { 1948 alloc_nohuge: 1949 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1950 } 1951 if (IS_ERR(folio)) { 1952 int retry = 5; 1953 1954 error = PTR_ERR(folio); 1955 folio = NULL; 1956 if (error != -ENOSPC) 1957 goto unlock; 1958 /* 1959 * Try to reclaim some space by splitting a large folio 1960 * beyond i_size on the filesystem. 1961 */ 1962 while (retry--) { 1963 int ret; 1964 1965 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1966 if (ret == SHRINK_STOP) 1967 break; 1968 if (ret) 1969 goto alloc_nohuge; 1970 } 1971 goto unlock; 1972 } 1973 1974 hindex = round_down(index, folio_nr_pages(folio)); 1975 1976 if (sgp == SGP_WRITE) 1977 __folio_set_referenced(folio); 1978 1979 error = shmem_add_to_page_cache(folio, mapping, hindex, 1980 NULL, gfp & GFP_RECLAIM_MASK, 1981 charge_mm); 1982 if (error) 1983 goto unacct; 1984 folio_add_lru(folio); 1985 1986 spin_lock_irq(&info->lock); 1987 info->alloced += folio_nr_pages(folio); 1988 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1989 shmem_recalc_inode(inode); 1990 spin_unlock_irq(&info->lock); 1991 alloced = true; 1992 1993 if (folio_test_pmd_mappable(folio) && 1994 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1995 folio_next_index(folio) - 1) { 1996 /* 1997 * Part of the large folio is beyond i_size: subject 1998 * to shrink under memory pressure. 1999 */ 2000 spin_lock(&sbinfo->shrinklist_lock); 2001 /* 2002 * _careful to defend against unlocked access to 2003 * ->shrink_list in shmem_unused_huge_shrink() 2004 */ 2005 if (list_empty_careful(&info->shrinklist)) { 2006 list_add_tail(&info->shrinklist, 2007 &sbinfo->shrinklist); 2008 sbinfo->shrinklist_len++; 2009 } 2010 spin_unlock(&sbinfo->shrinklist_lock); 2011 } 2012 2013 /* 2014 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2015 */ 2016 if (sgp == SGP_FALLOC) 2017 sgp = SGP_WRITE; 2018 clear: 2019 /* 2020 * Let SGP_WRITE caller clear ends if write does not fill folio; 2021 * but SGP_FALLOC on a folio fallocated earlier must initialize 2022 * it now, lest undo on failure cancel our earlier guarantee. 2023 */ 2024 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2025 long i, n = folio_nr_pages(folio); 2026 2027 for (i = 0; i < n; i++) 2028 clear_highpage(folio_page(folio, i)); 2029 flush_dcache_folio(folio); 2030 folio_mark_uptodate(folio); 2031 } 2032 2033 /* Perhaps the file has been truncated since we checked */ 2034 if (sgp <= SGP_CACHE && 2035 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2036 if (alloced) { 2037 folio_clear_dirty(folio); 2038 filemap_remove_folio(folio); 2039 spin_lock_irq(&info->lock); 2040 shmem_recalc_inode(inode); 2041 spin_unlock_irq(&info->lock); 2042 } 2043 error = -EINVAL; 2044 goto unlock; 2045 } 2046 out: 2047 *foliop = folio; 2048 return 0; 2049 2050 /* 2051 * Error recovery. 2052 */ 2053 unacct: 2054 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2055 2056 if (folio_test_large(folio)) { 2057 folio_unlock(folio); 2058 folio_put(folio); 2059 goto alloc_nohuge; 2060 } 2061 unlock: 2062 if (folio) { 2063 folio_unlock(folio); 2064 folio_put(folio); 2065 } 2066 if (error == -ENOSPC && !once++) { 2067 spin_lock_irq(&info->lock); 2068 shmem_recalc_inode(inode); 2069 spin_unlock_irq(&info->lock); 2070 goto repeat; 2071 } 2072 if (error == -EEXIST) 2073 goto repeat; 2074 return error; 2075 } 2076 2077 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2078 enum sgp_type sgp) 2079 { 2080 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2081 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2082 } 2083 2084 /* 2085 * This is like autoremove_wake_function, but it removes the wait queue 2086 * entry unconditionally - even if something else had already woken the 2087 * target. 2088 */ 2089 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2090 { 2091 int ret = default_wake_function(wait, mode, sync, key); 2092 list_del_init(&wait->entry); 2093 return ret; 2094 } 2095 2096 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2097 { 2098 struct vm_area_struct *vma = vmf->vma; 2099 struct inode *inode = file_inode(vma->vm_file); 2100 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2101 struct folio *folio = NULL; 2102 int err; 2103 vm_fault_t ret = VM_FAULT_LOCKED; 2104 2105 /* 2106 * Trinity finds that probing a hole which tmpfs is punching can 2107 * prevent the hole-punch from ever completing: which in turn 2108 * locks writers out with its hold on i_rwsem. So refrain from 2109 * faulting pages into the hole while it's being punched. Although 2110 * shmem_undo_range() does remove the additions, it may be unable to 2111 * keep up, as each new page needs its own unmap_mapping_range() call, 2112 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2113 * 2114 * It does not matter if we sometimes reach this check just before the 2115 * hole-punch begins, so that one fault then races with the punch: 2116 * we just need to make racing faults a rare case. 2117 * 2118 * The implementation below would be much simpler if we just used a 2119 * standard mutex or completion: but we cannot take i_rwsem in fault, 2120 * and bloating every shmem inode for this unlikely case would be sad. 2121 */ 2122 if (unlikely(inode->i_private)) { 2123 struct shmem_falloc *shmem_falloc; 2124 2125 spin_lock(&inode->i_lock); 2126 shmem_falloc = inode->i_private; 2127 if (shmem_falloc && 2128 shmem_falloc->waitq && 2129 vmf->pgoff >= shmem_falloc->start && 2130 vmf->pgoff < shmem_falloc->next) { 2131 struct file *fpin; 2132 wait_queue_head_t *shmem_falloc_waitq; 2133 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2134 2135 ret = VM_FAULT_NOPAGE; 2136 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2137 if (fpin) 2138 ret = VM_FAULT_RETRY; 2139 2140 shmem_falloc_waitq = shmem_falloc->waitq; 2141 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2142 TASK_UNINTERRUPTIBLE); 2143 spin_unlock(&inode->i_lock); 2144 schedule(); 2145 2146 /* 2147 * shmem_falloc_waitq points into the shmem_fallocate() 2148 * stack of the hole-punching task: shmem_falloc_waitq 2149 * is usually invalid by the time we reach here, but 2150 * finish_wait() does not dereference it in that case; 2151 * though i_lock needed lest racing with wake_up_all(). 2152 */ 2153 spin_lock(&inode->i_lock); 2154 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2155 spin_unlock(&inode->i_lock); 2156 2157 if (fpin) 2158 fput(fpin); 2159 return ret; 2160 } 2161 spin_unlock(&inode->i_lock); 2162 } 2163 2164 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2165 gfp, vma, vmf, &ret); 2166 if (err) 2167 return vmf_error(err); 2168 if (folio) 2169 vmf->page = folio_file_page(folio, vmf->pgoff); 2170 return ret; 2171 } 2172 2173 unsigned long shmem_get_unmapped_area(struct file *file, 2174 unsigned long uaddr, unsigned long len, 2175 unsigned long pgoff, unsigned long flags) 2176 { 2177 unsigned long (*get_area)(struct file *, 2178 unsigned long, unsigned long, unsigned long, unsigned long); 2179 unsigned long addr; 2180 unsigned long offset; 2181 unsigned long inflated_len; 2182 unsigned long inflated_addr; 2183 unsigned long inflated_offset; 2184 2185 if (len > TASK_SIZE) 2186 return -ENOMEM; 2187 2188 get_area = current->mm->get_unmapped_area; 2189 addr = get_area(file, uaddr, len, pgoff, flags); 2190 2191 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2192 return addr; 2193 if (IS_ERR_VALUE(addr)) 2194 return addr; 2195 if (addr & ~PAGE_MASK) 2196 return addr; 2197 if (addr > TASK_SIZE - len) 2198 return addr; 2199 2200 if (shmem_huge == SHMEM_HUGE_DENY) 2201 return addr; 2202 if (len < HPAGE_PMD_SIZE) 2203 return addr; 2204 if (flags & MAP_FIXED) 2205 return addr; 2206 /* 2207 * Our priority is to support MAP_SHARED mapped hugely; 2208 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2209 * But if caller specified an address hint and we allocated area there 2210 * successfully, respect that as before. 2211 */ 2212 if (uaddr == addr) 2213 return addr; 2214 2215 if (shmem_huge != SHMEM_HUGE_FORCE) { 2216 struct super_block *sb; 2217 2218 if (file) { 2219 VM_BUG_ON(file->f_op != &shmem_file_operations); 2220 sb = file_inode(file)->i_sb; 2221 } else { 2222 /* 2223 * Called directly from mm/mmap.c, or drivers/char/mem.c 2224 * for "/dev/zero", to create a shared anonymous object. 2225 */ 2226 if (IS_ERR(shm_mnt)) 2227 return addr; 2228 sb = shm_mnt->mnt_sb; 2229 } 2230 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2231 return addr; 2232 } 2233 2234 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2235 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2236 return addr; 2237 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2238 return addr; 2239 2240 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2241 if (inflated_len > TASK_SIZE) 2242 return addr; 2243 if (inflated_len < len) 2244 return addr; 2245 2246 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2247 if (IS_ERR_VALUE(inflated_addr)) 2248 return addr; 2249 if (inflated_addr & ~PAGE_MASK) 2250 return addr; 2251 2252 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2253 inflated_addr += offset - inflated_offset; 2254 if (inflated_offset > offset) 2255 inflated_addr += HPAGE_PMD_SIZE; 2256 2257 if (inflated_addr > TASK_SIZE - len) 2258 return addr; 2259 return inflated_addr; 2260 } 2261 2262 #ifdef CONFIG_NUMA 2263 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2264 { 2265 struct inode *inode = file_inode(vma->vm_file); 2266 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2267 } 2268 2269 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2270 unsigned long addr) 2271 { 2272 struct inode *inode = file_inode(vma->vm_file); 2273 pgoff_t index; 2274 2275 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2276 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2277 } 2278 #endif 2279 2280 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2281 { 2282 struct inode *inode = file_inode(file); 2283 struct shmem_inode_info *info = SHMEM_I(inode); 2284 int retval = -ENOMEM; 2285 2286 /* 2287 * What serializes the accesses to info->flags? 2288 * ipc_lock_object() when called from shmctl_do_lock(), 2289 * no serialization needed when called from shm_destroy(). 2290 */ 2291 if (lock && !(info->flags & VM_LOCKED)) { 2292 if (!user_shm_lock(inode->i_size, ucounts)) 2293 goto out_nomem; 2294 info->flags |= VM_LOCKED; 2295 mapping_set_unevictable(file->f_mapping); 2296 } 2297 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2298 user_shm_unlock(inode->i_size, ucounts); 2299 info->flags &= ~VM_LOCKED; 2300 mapping_clear_unevictable(file->f_mapping); 2301 } 2302 retval = 0; 2303 2304 out_nomem: 2305 return retval; 2306 } 2307 2308 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2309 { 2310 struct inode *inode = file_inode(file); 2311 struct shmem_inode_info *info = SHMEM_I(inode); 2312 int ret; 2313 2314 ret = seal_check_future_write(info->seals, vma); 2315 if (ret) 2316 return ret; 2317 2318 /* arm64 - allow memory tagging on RAM-based files */ 2319 vm_flags_set(vma, VM_MTE_ALLOWED); 2320 2321 file_accessed(file); 2322 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2323 if (inode->i_nlink) 2324 vma->vm_ops = &shmem_vm_ops; 2325 else 2326 vma->vm_ops = &shmem_anon_vm_ops; 2327 return 0; 2328 } 2329 2330 #ifdef CONFIG_TMPFS_XATTR 2331 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2332 2333 /* 2334 * chattr's fsflags are unrelated to extended attributes, 2335 * but tmpfs has chosen to enable them under the same config option. 2336 */ 2337 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2338 { 2339 unsigned int i_flags = 0; 2340 2341 if (fsflags & FS_NOATIME_FL) 2342 i_flags |= S_NOATIME; 2343 if (fsflags & FS_APPEND_FL) 2344 i_flags |= S_APPEND; 2345 if (fsflags & FS_IMMUTABLE_FL) 2346 i_flags |= S_IMMUTABLE; 2347 /* 2348 * But FS_NODUMP_FL does not require any action in i_flags. 2349 */ 2350 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2351 } 2352 #else 2353 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2354 { 2355 } 2356 #define shmem_initxattrs NULL 2357 #endif 2358 2359 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, 2360 struct inode *dir, umode_t mode, dev_t dev, 2361 unsigned long flags) 2362 { 2363 struct inode *inode; 2364 struct shmem_inode_info *info; 2365 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2366 ino_t ino; 2367 2368 if (shmem_reserve_inode(sb, &ino)) 2369 return NULL; 2370 2371 inode = new_inode(sb); 2372 if (inode) { 2373 inode->i_ino = ino; 2374 inode_init_owner(idmap, inode, dir, mode); 2375 inode->i_blocks = 0; 2376 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2377 inode->i_generation = get_random_u32(); 2378 info = SHMEM_I(inode); 2379 memset(info, 0, (char *)inode - (char *)info); 2380 spin_lock_init(&info->lock); 2381 atomic_set(&info->stop_eviction, 0); 2382 info->seals = F_SEAL_SEAL; 2383 info->flags = flags & VM_NORESERVE; 2384 info->i_crtime = inode->i_mtime; 2385 info->fsflags = (dir == NULL) ? 0 : 2386 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2387 if (info->fsflags) 2388 shmem_set_inode_flags(inode, info->fsflags); 2389 INIT_LIST_HEAD(&info->shrinklist); 2390 INIT_LIST_HEAD(&info->swaplist); 2391 if (sbinfo->noswap) 2392 mapping_set_unevictable(inode->i_mapping); 2393 simple_xattrs_init(&info->xattrs); 2394 cache_no_acl(inode); 2395 mapping_set_large_folios(inode->i_mapping); 2396 2397 switch (mode & S_IFMT) { 2398 default: 2399 inode->i_op = &shmem_special_inode_operations; 2400 init_special_inode(inode, mode, dev); 2401 break; 2402 case S_IFREG: 2403 inode->i_mapping->a_ops = &shmem_aops; 2404 inode->i_op = &shmem_inode_operations; 2405 inode->i_fop = &shmem_file_operations; 2406 mpol_shared_policy_init(&info->policy, 2407 shmem_get_sbmpol(sbinfo)); 2408 break; 2409 case S_IFDIR: 2410 inc_nlink(inode); 2411 /* Some things misbehave if size == 0 on a directory */ 2412 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2413 inode->i_op = &shmem_dir_inode_operations; 2414 inode->i_fop = &simple_dir_operations; 2415 break; 2416 case S_IFLNK: 2417 /* 2418 * Must not load anything in the rbtree, 2419 * mpol_free_shared_policy will not be called. 2420 */ 2421 mpol_shared_policy_init(&info->policy, NULL); 2422 break; 2423 } 2424 2425 lockdep_annotate_inode_mutex_key(inode); 2426 } else 2427 shmem_free_inode(sb); 2428 return inode; 2429 } 2430 2431 #ifdef CONFIG_USERFAULTFD 2432 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2433 pmd_t *dst_pmd, 2434 struct vm_area_struct *dst_vma, 2435 unsigned long dst_addr, 2436 unsigned long src_addr, 2437 bool zeropage, bool wp_copy, 2438 struct page **pagep) 2439 { 2440 struct inode *inode = file_inode(dst_vma->vm_file); 2441 struct shmem_inode_info *info = SHMEM_I(inode); 2442 struct address_space *mapping = inode->i_mapping; 2443 gfp_t gfp = mapping_gfp_mask(mapping); 2444 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2445 void *page_kaddr; 2446 struct folio *folio; 2447 int ret; 2448 pgoff_t max_off; 2449 2450 if (!shmem_inode_acct_block(inode, 1)) { 2451 /* 2452 * We may have got a page, returned -ENOENT triggering a retry, 2453 * and now we find ourselves with -ENOMEM. Release the page, to 2454 * avoid a BUG_ON in our caller. 2455 */ 2456 if (unlikely(*pagep)) { 2457 put_page(*pagep); 2458 *pagep = NULL; 2459 } 2460 return -ENOMEM; 2461 } 2462 2463 if (!*pagep) { 2464 ret = -ENOMEM; 2465 folio = shmem_alloc_folio(gfp, info, pgoff); 2466 if (!folio) 2467 goto out_unacct_blocks; 2468 2469 if (!zeropage) { /* COPY */ 2470 page_kaddr = kmap_local_folio(folio, 0); 2471 /* 2472 * The read mmap_lock is held here. Despite the 2473 * mmap_lock being read recursive a deadlock is still 2474 * possible if a writer has taken a lock. For example: 2475 * 2476 * process A thread 1 takes read lock on own mmap_lock 2477 * process A thread 2 calls mmap, blocks taking write lock 2478 * process B thread 1 takes page fault, read lock on own mmap lock 2479 * process B thread 2 calls mmap, blocks taking write lock 2480 * process A thread 1 blocks taking read lock on process B 2481 * process B thread 1 blocks taking read lock on process A 2482 * 2483 * Disable page faults to prevent potential deadlock 2484 * and retry the copy outside the mmap_lock. 2485 */ 2486 pagefault_disable(); 2487 ret = copy_from_user(page_kaddr, 2488 (const void __user *)src_addr, 2489 PAGE_SIZE); 2490 pagefault_enable(); 2491 kunmap_local(page_kaddr); 2492 2493 /* fallback to copy_from_user outside mmap_lock */ 2494 if (unlikely(ret)) { 2495 *pagep = &folio->page; 2496 ret = -ENOENT; 2497 /* don't free the page */ 2498 goto out_unacct_blocks; 2499 } 2500 2501 flush_dcache_folio(folio); 2502 } else { /* ZEROPAGE */ 2503 clear_user_highpage(&folio->page, dst_addr); 2504 } 2505 } else { 2506 folio = page_folio(*pagep); 2507 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2508 *pagep = NULL; 2509 } 2510 2511 VM_BUG_ON(folio_test_locked(folio)); 2512 VM_BUG_ON(folio_test_swapbacked(folio)); 2513 __folio_set_locked(folio); 2514 __folio_set_swapbacked(folio); 2515 __folio_mark_uptodate(folio); 2516 2517 ret = -EFAULT; 2518 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2519 if (unlikely(pgoff >= max_off)) 2520 goto out_release; 2521 2522 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2523 gfp & GFP_RECLAIM_MASK, dst_mm); 2524 if (ret) 2525 goto out_release; 2526 2527 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2528 &folio->page, true, wp_copy); 2529 if (ret) 2530 goto out_delete_from_cache; 2531 2532 spin_lock_irq(&info->lock); 2533 info->alloced++; 2534 inode->i_blocks += BLOCKS_PER_PAGE; 2535 shmem_recalc_inode(inode); 2536 spin_unlock_irq(&info->lock); 2537 2538 folio_unlock(folio); 2539 return 0; 2540 out_delete_from_cache: 2541 filemap_remove_folio(folio); 2542 out_release: 2543 folio_unlock(folio); 2544 folio_put(folio); 2545 out_unacct_blocks: 2546 shmem_inode_unacct_blocks(inode, 1); 2547 return ret; 2548 } 2549 #endif /* CONFIG_USERFAULTFD */ 2550 2551 #ifdef CONFIG_TMPFS 2552 static const struct inode_operations shmem_symlink_inode_operations; 2553 static const struct inode_operations shmem_short_symlink_operations; 2554 2555 static int 2556 shmem_write_begin(struct file *file, struct address_space *mapping, 2557 loff_t pos, unsigned len, 2558 struct page **pagep, void **fsdata) 2559 { 2560 struct inode *inode = mapping->host; 2561 struct shmem_inode_info *info = SHMEM_I(inode); 2562 pgoff_t index = pos >> PAGE_SHIFT; 2563 struct folio *folio; 2564 int ret = 0; 2565 2566 /* i_rwsem is held by caller */ 2567 if (unlikely(info->seals & (F_SEAL_GROW | 2568 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2569 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2570 return -EPERM; 2571 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2572 return -EPERM; 2573 } 2574 2575 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2576 2577 if (ret) 2578 return ret; 2579 2580 *pagep = folio_file_page(folio, index); 2581 if (PageHWPoison(*pagep)) { 2582 folio_unlock(folio); 2583 folio_put(folio); 2584 *pagep = NULL; 2585 return -EIO; 2586 } 2587 2588 return 0; 2589 } 2590 2591 static int 2592 shmem_write_end(struct file *file, struct address_space *mapping, 2593 loff_t pos, unsigned len, unsigned copied, 2594 struct page *page, void *fsdata) 2595 { 2596 struct folio *folio = page_folio(page); 2597 struct inode *inode = mapping->host; 2598 2599 if (pos + copied > inode->i_size) 2600 i_size_write(inode, pos + copied); 2601 2602 if (!folio_test_uptodate(folio)) { 2603 if (copied < folio_size(folio)) { 2604 size_t from = offset_in_folio(folio, pos); 2605 folio_zero_segments(folio, 0, from, 2606 from + copied, folio_size(folio)); 2607 } 2608 folio_mark_uptodate(folio); 2609 } 2610 folio_mark_dirty(folio); 2611 folio_unlock(folio); 2612 folio_put(folio); 2613 2614 return copied; 2615 } 2616 2617 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2618 { 2619 struct file *file = iocb->ki_filp; 2620 struct inode *inode = file_inode(file); 2621 struct address_space *mapping = inode->i_mapping; 2622 pgoff_t index; 2623 unsigned long offset; 2624 int error = 0; 2625 ssize_t retval = 0; 2626 loff_t *ppos = &iocb->ki_pos; 2627 2628 index = *ppos >> PAGE_SHIFT; 2629 offset = *ppos & ~PAGE_MASK; 2630 2631 for (;;) { 2632 struct folio *folio = NULL; 2633 struct page *page = NULL; 2634 pgoff_t end_index; 2635 unsigned long nr, ret; 2636 loff_t i_size = i_size_read(inode); 2637 2638 end_index = i_size >> PAGE_SHIFT; 2639 if (index > end_index) 2640 break; 2641 if (index == end_index) { 2642 nr = i_size & ~PAGE_MASK; 2643 if (nr <= offset) 2644 break; 2645 } 2646 2647 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2648 if (error) { 2649 if (error == -EINVAL) 2650 error = 0; 2651 break; 2652 } 2653 if (folio) { 2654 folio_unlock(folio); 2655 2656 page = folio_file_page(folio, index); 2657 if (PageHWPoison(page)) { 2658 folio_put(folio); 2659 error = -EIO; 2660 break; 2661 } 2662 } 2663 2664 /* 2665 * We must evaluate after, since reads (unlike writes) 2666 * are called without i_rwsem protection against truncate 2667 */ 2668 nr = PAGE_SIZE; 2669 i_size = i_size_read(inode); 2670 end_index = i_size >> PAGE_SHIFT; 2671 if (index == end_index) { 2672 nr = i_size & ~PAGE_MASK; 2673 if (nr <= offset) { 2674 if (folio) 2675 folio_put(folio); 2676 break; 2677 } 2678 } 2679 nr -= offset; 2680 2681 if (folio) { 2682 /* 2683 * If users can be writing to this page using arbitrary 2684 * virtual addresses, take care about potential aliasing 2685 * before reading the page on the kernel side. 2686 */ 2687 if (mapping_writably_mapped(mapping)) 2688 flush_dcache_page(page); 2689 /* 2690 * Mark the page accessed if we read the beginning. 2691 */ 2692 if (!offset) 2693 folio_mark_accessed(folio); 2694 /* 2695 * Ok, we have the page, and it's up-to-date, so 2696 * now we can copy it to user space... 2697 */ 2698 ret = copy_page_to_iter(page, offset, nr, to); 2699 folio_put(folio); 2700 2701 } else if (user_backed_iter(to)) { 2702 /* 2703 * Copy to user tends to be so well optimized, but 2704 * clear_user() not so much, that it is noticeably 2705 * faster to copy the zero page instead of clearing. 2706 */ 2707 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2708 } else { 2709 /* 2710 * But submitting the same page twice in a row to 2711 * splice() - or others? - can result in confusion: 2712 * so don't attempt that optimization on pipes etc. 2713 */ 2714 ret = iov_iter_zero(nr, to); 2715 } 2716 2717 retval += ret; 2718 offset += ret; 2719 index += offset >> PAGE_SHIFT; 2720 offset &= ~PAGE_MASK; 2721 2722 if (!iov_iter_count(to)) 2723 break; 2724 if (ret < nr) { 2725 error = -EFAULT; 2726 break; 2727 } 2728 cond_resched(); 2729 } 2730 2731 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2732 file_accessed(file); 2733 return retval ? retval : error; 2734 } 2735 2736 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2737 { 2738 struct address_space *mapping = file->f_mapping; 2739 struct inode *inode = mapping->host; 2740 2741 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2742 return generic_file_llseek_size(file, offset, whence, 2743 MAX_LFS_FILESIZE, i_size_read(inode)); 2744 if (offset < 0) 2745 return -ENXIO; 2746 2747 inode_lock(inode); 2748 /* We're holding i_rwsem so we can access i_size directly */ 2749 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2750 if (offset >= 0) 2751 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2752 inode_unlock(inode); 2753 return offset; 2754 } 2755 2756 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2757 loff_t len) 2758 { 2759 struct inode *inode = file_inode(file); 2760 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2761 struct shmem_inode_info *info = SHMEM_I(inode); 2762 struct shmem_falloc shmem_falloc; 2763 pgoff_t start, index, end, undo_fallocend; 2764 int error; 2765 2766 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2767 return -EOPNOTSUPP; 2768 2769 inode_lock(inode); 2770 2771 if (mode & FALLOC_FL_PUNCH_HOLE) { 2772 struct address_space *mapping = file->f_mapping; 2773 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2774 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2775 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2776 2777 /* protected by i_rwsem */ 2778 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2779 error = -EPERM; 2780 goto out; 2781 } 2782 2783 shmem_falloc.waitq = &shmem_falloc_waitq; 2784 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2785 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2786 spin_lock(&inode->i_lock); 2787 inode->i_private = &shmem_falloc; 2788 spin_unlock(&inode->i_lock); 2789 2790 if ((u64)unmap_end > (u64)unmap_start) 2791 unmap_mapping_range(mapping, unmap_start, 2792 1 + unmap_end - unmap_start, 0); 2793 shmem_truncate_range(inode, offset, offset + len - 1); 2794 /* No need to unmap again: hole-punching leaves COWed pages */ 2795 2796 spin_lock(&inode->i_lock); 2797 inode->i_private = NULL; 2798 wake_up_all(&shmem_falloc_waitq); 2799 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2800 spin_unlock(&inode->i_lock); 2801 error = 0; 2802 goto out; 2803 } 2804 2805 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2806 error = inode_newsize_ok(inode, offset + len); 2807 if (error) 2808 goto out; 2809 2810 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2811 error = -EPERM; 2812 goto out; 2813 } 2814 2815 start = offset >> PAGE_SHIFT; 2816 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2817 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2818 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2819 error = -ENOSPC; 2820 goto out; 2821 } 2822 2823 shmem_falloc.waitq = NULL; 2824 shmem_falloc.start = start; 2825 shmem_falloc.next = start; 2826 shmem_falloc.nr_falloced = 0; 2827 shmem_falloc.nr_unswapped = 0; 2828 spin_lock(&inode->i_lock); 2829 inode->i_private = &shmem_falloc; 2830 spin_unlock(&inode->i_lock); 2831 2832 /* 2833 * info->fallocend is only relevant when huge pages might be 2834 * involved: to prevent split_huge_page() freeing fallocated 2835 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2836 */ 2837 undo_fallocend = info->fallocend; 2838 if (info->fallocend < end) 2839 info->fallocend = end; 2840 2841 for (index = start; index < end; ) { 2842 struct folio *folio; 2843 2844 /* 2845 * Good, the fallocate(2) manpage permits EINTR: we may have 2846 * been interrupted because we are using up too much memory. 2847 */ 2848 if (signal_pending(current)) 2849 error = -EINTR; 2850 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2851 error = -ENOMEM; 2852 else 2853 error = shmem_get_folio(inode, index, &folio, 2854 SGP_FALLOC); 2855 if (error) { 2856 info->fallocend = undo_fallocend; 2857 /* Remove the !uptodate folios we added */ 2858 if (index > start) { 2859 shmem_undo_range(inode, 2860 (loff_t)start << PAGE_SHIFT, 2861 ((loff_t)index << PAGE_SHIFT) - 1, true); 2862 } 2863 goto undone; 2864 } 2865 2866 /* 2867 * Here is a more important optimization than it appears: 2868 * a second SGP_FALLOC on the same large folio will clear it, 2869 * making it uptodate and un-undoable if we fail later. 2870 */ 2871 index = folio_next_index(folio); 2872 /* Beware 32-bit wraparound */ 2873 if (!index) 2874 index--; 2875 2876 /* 2877 * Inform shmem_writepage() how far we have reached. 2878 * No need for lock or barrier: we have the page lock. 2879 */ 2880 if (!folio_test_uptodate(folio)) 2881 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2882 shmem_falloc.next = index; 2883 2884 /* 2885 * If !uptodate, leave it that way so that freeable folios 2886 * can be recognized if we need to rollback on error later. 2887 * But mark it dirty so that memory pressure will swap rather 2888 * than free the folios we are allocating (and SGP_CACHE folios 2889 * might still be clean: we now need to mark those dirty too). 2890 */ 2891 folio_mark_dirty(folio); 2892 folio_unlock(folio); 2893 folio_put(folio); 2894 cond_resched(); 2895 } 2896 2897 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2898 i_size_write(inode, offset + len); 2899 undone: 2900 spin_lock(&inode->i_lock); 2901 inode->i_private = NULL; 2902 spin_unlock(&inode->i_lock); 2903 out: 2904 if (!error) 2905 file_modified(file); 2906 inode_unlock(inode); 2907 return error; 2908 } 2909 2910 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2911 { 2912 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2913 2914 buf->f_type = TMPFS_MAGIC; 2915 buf->f_bsize = PAGE_SIZE; 2916 buf->f_namelen = NAME_MAX; 2917 if (sbinfo->max_blocks) { 2918 buf->f_blocks = sbinfo->max_blocks; 2919 buf->f_bavail = 2920 buf->f_bfree = sbinfo->max_blocks - 2921 percpu_counter_sum(&sbinfo->used_blocks); 2922 } 2923 if (sbinfo->max_inodes) { 2924 buf->f_files = sbinfo->max_inodes; 2925 buf->f_ffree = sbinfo->free_inodes; 2926 } 2927 /* else leave those fields 0 like simple_statfs */ 2928 2929 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2930 2931 return 0; 2932 } 2933 2934 /* 2935 * File creation. Allocate an inode, and we're done.. 2936 */ 2937 static int 2938 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 2939 struct dentry *dentry, umode_t mode, dev_t dev) 2940 { 2941 struct inode *inode; 2942 int error = -ENOSPC; 2943 2944 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 2945 if (inode) { 2946 error = simple_acl_create(dir, inode); 2947 if (error) 2948 goto out_iput; 2949 error = security_inode_init_security(inode, dir, 2950 &dentry->d_name, 2951 shmem_initxattrs, NULL); 2952 if (error && error != -EOPNOTSUPP) 2953 goto out_iput; 2954 2955 error = 0; 2956 dir->i_size += BOGO_DIRENT_SIZE; 2957 dir->i_ctime = dir->i_mtime = current_time(dir); 2958 inode_inc_iversion(dir); 2959 d_instantiate(dentry, inode); 2960 dget(dentry); /* Extra count - pin the dentry in core */ 2961 } 2962 return error; 2963 out_iput: 2964 iput(inode); 2965 return error; 2966 } 2967 2968 static int 2969 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 2970 struct file *file, umode_t mode) 2971 { 2972 struct inode *inode; 2973 int error = -ENOSPC; 2974 2975 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 2976 if (inode) { 2977 error = security_inode_init_security(inode, dir, 2978 NULL, 2979 shmem_initxattrs, NULL); 2980 if (error && error != -EOPNOTSUPP) 2981 goto out_iput; 2982 error = simple_acl_create(dir, inode); 2983 if (error) 2984 goto out_iput; 2985 d_tmpfile(file, inode); 2986 } 2987 return finish_open_simple(file, error); 2988 out_iput: 2989 iput(inode); 2990 return error; 2991 } 2992 2993 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2994 struct dentry *dentry, umode_t mode) 2995 { 2996 int error; 2997 2998 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 2999 if (error) 3000 return error; 3001 inc_nlink(dir); 3002 return 0; 3003 } 3004 3005 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3006 struct dentry *dentry, umode_t mode, bool excl) 3007 { 3008 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3009 } 3010 3011 /* 3012 * Link a file.. 3013 */ 3014 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3015 { 3016 struct inode *inode = d_inode(old_dentry); 3017 int ret = 0; 3018 3019 /* 3020 * No ordinary (disk based) filesystem counts links as inodes; 3021 * but each new link needs a new dentry, pinning lowmem, and 3022 * tmpfs dentries cannot be pruned until they are unlinked. 3023 * But if an O_TMPFILE file is linked into the tmpfs, the 3024 * first link must skip that, to get the accounting right. 3025 */ 3026 if (inode->i_nlink) { 3027 ret = shmem_reserve_inode(inode->i_sb, NULL); 3028 if (ret) 3029 goto out; 3030 } 3031 3032 dir->i_size += BOGO_DIRENT_SIZE; 3033 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3034 inode_inc_iversion(dir); 3035 inc_nlink(inode); 3036 ihold(inode); /* New dentry reference */ 3037 dget(dentry); /* Extra pinning count for the created dentry */ 3038 d_instantiate(dentry, inode); 3039 out: 3040 return ret; 3041 } 3042 3043 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3044 { 3045 struct inode *inode = d_inode(dentry); 3046 3047 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3048 shmem_free_inode(inode->i_sb); 3049 3050 dir->i_size -= BOGO_DIRENT_SIZE; 3051 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3052 inode_inc_iversion(dir); 3053 drop_nlink(inode); 3054 dput(dentry); /* Undo the count from "create" - this does all the work */ 3055 return 0; 3056 } 3057 3058 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3059 { 3060 if (!simple_empty(dentry)) 3061 return -ENOTEMPTY; 3062 3063 drop_nlink(d_inode(dentry)); 3064 drop_nlink(dir); 3065 return shmem_unlink(dir, dentry); 3066 } 3067 3068 static int shmem_whiteout(struct mnt_idmap *idmap, 3069 struct inode *old_dir, struct dentry *old_dentry) 3070 { 3071 struct dentry *whiteout; 3072 int error; 3073 3074 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3075 if (!whiteout) 3076 return -ENOMEM; 3077 3078 error = shmem_mknod(idmap, old_dir, whiteout, 3079 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3080 dput(whiteout); 3081 if (error) 3082 return error; 3083 3084 /* 3085 * Cheat and hash the whiteout while the old dentry is still in 3086 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3087 * 3088 * d_lookup() will consistently find one of them at this point, 3089 * not sure which one, but that isn't even important. 3090 */ 3091 d_rehash(whiteout); 3092 return 0; 3093 } 3094 3095 /* 3096 * The VFS layer already does all the dentry stuff for rename, 3097 * we just have to decrement the usage count for the target if 3098 * it exists so that the VFS layer correctly free's it when it 3099 * gets overwritten. 3100 */ 3101 static int shmem_rename2(struct mnt_idmap *idmap, 3102 struct inode *old_dir, struct dentry *old_dentry, 3103 struct inode *new_dir, struct dentry *new_dentry, 3104 unsigned int flags) 3105 { 3106 struct inode *inode = d_inode(old_dentry); 3107 int they_are_dirs = S_ISDIR(inode->i_mode); 3108 3109 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3110 return -EINVAL; 3111 3112 if (flags & RENAME_EXCHANGE) 3113 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3114 3115 if (!simple_empty(new_dentry)) 3116 return -ENOTEMPTY; 3117 3118 if (flags & RENAME_WHITEOUT) { 3119 int error; 3120 3121 error = shmem_whiteout(idmap, old_dir, old_dentry); 3122 if (error) 3123 return error; 3124 } 3125 3126 if (d_really_is_positive(new_dentry)) { 3127 (void) shmem_unlink(new_dir, new_dentry); 3128 if (they_are_dirs) { 3129 drop_nlink(d_inode(new_dentry)); 3130 drop_nlink(old_dir); 3131 } 3132 } else if (they_are_dirs) { 3133 drop_nlink(old_dir); 3134 inc_nlink(new_dir); 3135 } 3136 3137 old_dir->i_size -= BOGO_DIRENT_SIZE; 3138 new_dir->i_size += BOGO_DIRENT_SIZE; 3139 old_dir->i_ctime = old_dir->i_mtime = 3140 new_dir->i_ctime = new_dir->i_mtime = 3141 inode->i_ctime = current_time(old_dir); 3142 inode_inc_iversion(old_dir); 3143 inode_inc_iversion(new_dir); 3144 return 0; 3145 } 3146 3147 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3148 struct dentry *dentry, const char *symname) 3149 { 3150 int error; 3151 int len; 3152 struct inode *inode; 3153 struct folio *folio; 3154 3155 len = strlen(symname) + 1; 3156 if (len > PAGE_SIZE) 3157 return -ENAMETOOLONG; 3158 3159 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3160 VM_NORESERVE); 3161 if (!inode) 3162 return -ENOSPC; 3163 3164 error = security_inode_init_security(inode, dir, &dentry->d_name, 3165 shmem_initxattrs, NULL); 3166 if (error && error != -EOPNOTSUPP) { 3167 iput(inode); 3168 return error; 3169 } 3170 3171 inode->i_size = len-1; 3172 if (len <= SHORT_SYMLINK_LEN) { 3173 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3174 if (!inode->i_link) { 3175 iput(inode); 3176 return -ENOMEM; 3177 } 3178 inode->i_op = &shmem_short_symlink_operations; 3179 } else { 3180 inode_nohighmem(inode); 3181 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3182 if (error) { 3183 iput(inode); 3184 return error; 3185 } 3186 inode->i_mapping->a_ops = &shmem_aops; 3187 inode->i_op = &shmem_symlink_inode_operations; 3188 memcpy(folio_address(folio), symname, len); 3189 folio_mark_uptodate(folio); 3190 folio_mark_dirty(folio); 3191 folio_unlock(folio); 3192 folio_put(folio); 3193 } 3194 dir->i_size += BOGO_DIRENT_SIZE; 3195 dir->i_ctime = dir->i_mtime = current_time(dir); 3196 inode_inc_iversion(dir); 3197 d_instantiate(dentry, inode); 3198 dget(dentry); 3199 return 0; 3200 } 3201 3202 static void shmem_put_link(void *arg) 3203 { 3204 folio_mark_accessed(arg); 3205 folio_put(arg); 3206 } 3207 3208 static const char *shmem_get_link(struct dentry *dentry, 3209 struct inode *inode, 3210 struct delayed_call *done) 3211 { 3212 struct folio *folio = NULL; 3213 int error; 3214 3215 if (!dentry) { 3216 folio = filemap_get_folio(inode->i_mapping, 0); 3217 if (IS_ERR(folio)) 3218 return ERR_PTR(-ECHILD); 3219 if (PageHWPoison(folio_page(folio, 0)) || 3220 !folio_test_uptodate(folio)) { 3221 folio_put(folio); 3222 return ERR_PTR(-ECHILD); 3223 } 3224 } else { 3225 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3226 if (error) 3227 return ERR_PTR(error); 3228 if (!folio) 3229 return ERR_PTR(-ECHILD); 3230 if (PageHWPoison(folio_page(folio, 0))) { 3231 folio_unlock(folio); 3232 folio_put(folio); 3233 return ERR_PTR(-ECHILD); 3234 } 3235 folio_unlock(folio); 3236 } 3237 set_delayed_call(done, shmem_put_link, folio); 3238 return folio_address(folio); 3239 } 3240 3241 #ifdef CONFIG_TMPFS_XATTR 3242 3243 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3244 { 3245 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3246 3247 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3248 3249 return 0; 3250 } 3251 3252 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3253 struct dentry *dentry, struct fileattr *fa) 3254 { 3255 struct inode *inode = d_inode(dentry); 3256 struct shmem_inode_info *info = SHMEM_I(inode); 3257 3258 if (fileattr_has_fsx(fa)) 3259 return -EOPNOTSUPP; 3260 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3261 return -EOPNOTSUPP; 3262 3263 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3264 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3265 3266 shmem_set_inode_flags(inode, info->fsflags); 3267 inode->i_ctime = current_time(inode); 3268 inode_inc_iversion(inode); 3269 return 0; 3270 } 3271 3272 /* 3273 * Superblocks without xattr inode operations may get some security.* xattr 3274 * support from the LSM "for free". As soon as we have any other xattrs 3275 * like ACLs, we also need to implement the security.* handlers at 3276 * filesystem level, though. 3277 */ 3278 3279 /* 3280 * Callback for security_inode_init_security() for acquiring xattrs. 3281 */ 3282 static int shmem_initxattrs(struct inode *inode, 3283 const struct xattr *xattr_array, 3284 void *fs_info) 3285 { 3286 struct shmem_inode_info *info = SHMEM_I(inode); 3287 const struct xattr *xattr; 3288 struct simple_xattr *new_xattr; 3289 size_t len; 3290 3291 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3292 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3293 if (!new_xattr) 3294 return -ENOMEM; 3295 3296 len = strlen(xattr->name) + 1; 3297 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3298 GFP_KERNEL); 3299 if (!new_xattr->name) { 3300 kvfree(new_xattr); 3301 return -ENOMEM; 3302 } 3303 3304 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3305 XATTR_SECURITY_PREFIX_LEN); 3306 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3307 xattr->name, len); 3308 3309 simple_xattr_add(&info->xattrs, new_xattr); 3310 } 3311 3312 return 0; 3313 } 3314 3315 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3316 struct dentry *unused, struct inode *inode, 3317 const char *name, void *buffer, size_t size) 3318 { 3319 struct shmem_inode_info *info = SHMEM_I(inode); 3320 3321 name = xattr_full_name(handler, name); 3322 return simple_xattr_get(&info->xattrs, name, buffer, size); 3323 } 3324 3325 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3326 struct mnt_idmap *idmap, 3327 struct dentry *unused, struct inode *inode, 3328 const char *name, const void *value, 3329 size_t size, int flags) 3330 { 3331 struct shmem_inode_info *info = SHMEM_I(inode); 3332 int err; 3333 3334 name = xattr_full_name(handler, name); 3335 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3336 if (!err) { 3337 inode->i_ctime = current_time(inode); 3338 inode_inc_iversion(inode); 3339 } 3340 return err; 3341 } 3342 3343 static const struct xattr_handler shmem_security_xattr_handler = { 3344 .prefix = XATTR_SECURITY_PREFIX, 3345 .get = shmem_xattr_handler_get, 3346 .set = shmem_xattr_handler_set, 3347 }; 3348 3349 static const struct xattr_handler shmem_trusted_xattr_handler = { 3350 .prefix = XATTR_TRUSTED_PREFIX, 3351 .get = shmem_xattr_handler_get, 3352 .set = shmem_xattr_handler_set, 3353 }; 3354 3355 static const struct xattr_handler *shmem_xattr_handlers[] = { 3356 #ifdef CONFIG_TMPFS_POSIX_ACL 3357 &posix_acl_access_xattr_handler, 3358 &posix_acl_default_xattr_handler, 3359 #endif 3360 &shmem_security_xattr_handler, 3361 &shmem_trusted_xattr_handler, 3362 NULL 3363 }; 3364 3365 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3366 { 3367 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3368 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3369 } 3370 #endif /* CONFIG_TMPFS_XATTR */ 3371 3372 static const struct inode_operations shmem_short_symlink_operations = { 3373 .getattr = shmem_getattr, 3374 .get_link = simple_get_link, 3375 #ifdef CONFIG_TMPFS_XATTR 3376 .listxattr = shmem_listxattr, 3377 #endif 3378 }; 3379 3380 static const struct inode_operations shmem_symlink_inode_operations = { 3381 .getattr = shmem_getattr, 3382 .get_link = shmem_get_link, 3383 #ifdef CONFIG_TMPFS_XATTR 3384 .listxattr = shmem_listxattr, 3385 #endif 3386 }; 3387 3388 static struct dentry *shmem_get_parent(struct dentry *child) 3389 { 3390 return ERR_PTR(-ESTALE); 3391 } 3392 3393 static int shmem_match(struct inode *ino, void *vfh) 3394 { 3395 __u32 *fh = vfh; 3396 __u64 inum = fh[2]; 3397 inum = (inum << 32) | fh[1]; 3398 return ino->i_ino == inum && fh[0] == ino->i_generation; 3399 } 3400 3401 /* Find any alias of inode, but prefer a hashed alias */ 3402 static struct dentry *shmem_find_alias(struct inode *inode) 3403 { 3404 struct dentry *alias = d_find_alias(inode); 3405 3406 return alias ?: d_find_any_alias(inode); 3407 } 3408 3409 3410 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3411 struct fid *fid, int fh_len, int fh_type) 3412 { 3413 struct inode *inode; 3414 struct dentry *dentry = NULL; 3415 u64 inum; 3416 3417 if (fh_len < 3) 3418 return NULL; 3419 3420 inum = fid->raw[2]; 3421 inum = (inum << 32) | fid->raw[1]; 3422 3423 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3424 shmem_match, fid->raw); 3425 if (inode) { 3426 dentry = shmem_find_alias(inode); 3427 iput(inode); 3428 } 3429 3430 return dentry; 3431 } 3432 3433 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3434 struct inode *parent) 3435 { 3436 if (*len < 3) { 3437 *len = 3; 3438 return FILEID_INVALID; 3439 } 3440 3441 if (inode_unhashed(inode)) { 3442 /* Unfortunately insert_inode_hash is not idempotent, 3443 * so as we hash inodes here rather than at creation 3444 * time, we need a lock to ensure we only try 3445 * to do it once 3446 */ 3447 static DEFINE_SPINLOCK(lock); 3448 spin_lock(&lock); 3449 if (inode_unhashed(inode)) 3450 __insert_inode_hash(inode, 3451 inode->i_ino + inode->i_generation); 3452 spin_unlock(&lock); 3453 } 3454 3455 fh[0] = inode->i_generation; 3456 fh[1] = inode->i_ino; 3457 fh[2] = ((__u64)inode->i_ino) >> 32; 3458 3459 *len = 3; 3460 return 1; 3461 } 3462 3463 static const struct export_operations shmem_export_ops = { 3464 .get_parent = shmem_get_parent, 3465 .encode_fh = shmem_encode_fh, 3466 .fh_to_dentry = shmem_fh_to_dentry, 3467 }; 3468 3469 enum shmem_param { 3470 Opt_gid, 3471 Opt_huge, 3472 Opt_mode, 3473 Opt_mpol, 3474 Opt_nr_blocks, 3475 Opt_nr_inodes, 3476 Opt_size, 3477 Opt_uid, 3478 Opt_inode32, 3479 Opt_inode64, 3480 Opt_noswap, 3481 }; 3482 3483 static const struct constant_table shmem_param_enums_huge[] = { 3484 {"never", SHMEM_HUGE_NEVER }, 3485 {"always", SHMEM_HUGE_ALWAYS }, 3486 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3487 {"advise", SHMEM_HUGE_ADVISE }, 3488 {} 3489 }; 3490 3491 const struct fs_parameter_spec shmem_fs_parameters[] = { 3492 fsparam_u32 ("gid", Opt_gid), 3493 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3494 fsparam_u32oct("mode", Opt_mode), 3495 fsparam_string("mpol", Opt_mpol), 3496 fsparam_string("nr_blocks", Opt_nr_blocks), 3497 fsparam_string("nr_inodes", Opt_nr_inodes), 3498 fsparam_string("size", Opt_size), 3499 fsparam_u32 ("uid", Opt_uid), 3500 fsparam_flag ("inode32", Opt_inode32), 3501 fsparam_flag ("inode64", Opt_inode64), 3502 fsparam_flag ("noswap", Opt_noswap), 3503 {} 3504 }; 3505 3506 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3507 { 3508 struct shmem_options *ctx = fc->fs_private; 3509 struct fs_parse_result result; 3510 unsigned long long size; 3511 char *rest; 3512 int opt; 3513 3514 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3515 if (opt < 0) 3516 return opt; 3517 3518 switch (opt) { 3519 case Opt_size: 3520 size = memparse(param->string, &rest); 3521 if (*rest == '%') { 3522 size <<= PAGE_SHIFT; 3523 size *= totalram_pages(); 3524 do_div(size, 100); 3525 rest++; 3526 } 3527 if (*rest) 3528 goto bad_value; 3529 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3530 ctx->seen |= SHMEM_SEEN_BLOCKS; 3531 break; 3532 case Opt_nr_blocks: 3533 ctx->blocks = memparse(param->string, &rest); 3534 if (*rest || ctx->blocks > S64_MAX) 3535 goto bad_value; 3536 ctx->seen |= SHMEM_SEEN_BLOCKS; 3537 break; 3538 case Opt_nr_inodes: 3539 ctx->inodes = memparse(param->string, &rest); 3540 if (*rest) 3541 goto bad_value; 3542 ctx->seen |= SHMEM_SEEN_INODES; 3543 break; 3544 case Opt_mode: 3545 ctx->mode = result.uint_32 & 07777; 3546 break; 3547 case Opt_uid: 3548 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3549 if (!uid_valid(ctx->uid)) 3550 goto bad_value; 3551 break; 3552 case Opt_gid: 3553 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3554 if (!gid_valid(ctx->gid)) 3555 goto bad_value; 3556 break; 3557 case Opt_huge: 3558 ctx->huge = result.uint_32; 3559 if (ctx->huge != SHMEM_HUGE_NEVER && 3560 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3561 has_transparent_hugepage())) 3562 goto unsupported_parameter; 3563 ctx->seen |= SHMEM_SEEN_HUGE; 3564 break; 3565 case Opt_mpol: 3566 if (IS_ENABLED(CONFIG_NUMA)) { 3567 mpol_put(ctx->mpol); 3568 ctx->mpol = NULL; 3569 if (mpol_parse_str(param->string, &ctx->mpol)) 3570 goto bad_value; 3571 break; 3572 } 3573 goto unsupported_parameter; 3574 case Opt_inode32: 3575 ctx->full_inums = false; 3576 ctx->seen |= SHMEM_SEEN_INUMS; 3577 break; 3578 case Opt_inode64: 3579 if (sizeof(ino_t) < 8) { 3580 return invalfc(fc, 3581 "Cannot use inode64 with <64bit inums in kernel\n"); 3582 } 3583 ctx->full_inums = true; 3584 ctx->seen |= SHMEM_SEEN_INUMS; 3585 break; 3586 case Opt_noswap: 3587 ctx->noswap = true; 3588 ctx->seen |= SHMEM_SEEN_NOSWAP; 3589 break; 3590 } 3591 return 0; 3592 3593 unsupported_parameter: 3594 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3595 bad_value: 3596 return invalfc(fc, "Bad value for '%s'", param->key); 3597 } 3598 3599 static int shmem_parse_options(struct fs_context *fc, void *data) 3600 { 3601 char *options = data; 3602 3603 if (options) { 3604 int err = security_sb_eat_lsm_opts(options, &fc->security); 3605 if (err) 3606 return err; 3607 } 3608 3609 while (options != NULL) { 3610 char *this_char = options; 3611 for (;;) { 3612 /* 3613 * NUL-terminate this option: unfortunately, 3614 * mount options form a comma-separated list, 3615 * but mpol's nodelist may also contain commas. 3616 */ 3617 options = strchr(options, ','); 3618 if (options == NULL) 3619 break; 3620 options++; 3621 if (!isdigit(*options)) { 3622 options[-1] = '\0'; 3623 break; 3624 } 3625 } 3626 if (*this_char) { 3627 char *value = strchr(this_char, '='); 3628 size_t len = 0; 3629 int err; 3630 3631 if (value) { 3632 *value++ = '\0'; 3633 len = strlen(value); 3634 } 3635 err = vfs_parse_fs_string(fc, this_char, value, len); 3636 if (err < 0) 3637 return err; 3638 } 3639 } 3640 return 0; 3641 } 3642 3643 /* 3644 * Reconfigure a shmem filesystem. 3645 * 3646 * Note that we disallow change from limited->unlimited blocks/inodes while any 3647 * are in use; but we must separately disallow unlimited->limited, because in 3648 * that case we have no record of how much is already in use. 3649 */ 3650 static int shmem_reconfigure(struct fs_context *fc) 3651 { 3652 struct shmem_options *ctx = fc->fs_private; 3653 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3654 unsigned long inodes; 3655 struct mempolicy *mpol = NULL; 3656 const char *err; 3657 3658 raw_spin_lock(&sbinfo->stat_lock); 3659 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3660 3661 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3662 if (!sbinfo->max_blocks) { 3663 err = "Cannot retroactively limit size"; 3664 goto out; 3665 } 3666 if (percpu_counter_compare(&sbinfo->used_blocks, 3667 ctx->blocks) > 0) { 3668 err = "Too small a size for current use"; 3669 goto out; 3670 } 3671 } 3672 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3673 if (!sbinfo->max_inodes) { 3674 err = "Cannot retroactively limit inodes"; 3675 goto out; 3676 } 3677 if (ctx->inodes < inodes) { 3678 err = "Too few inodes for current use"; 3679 goto out; 3680 } 3681 } 3682 3683 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3684 sbinfo->next_ino > UINT_MAX) { 3685 err = "Current inum too high to switch to 32-bit inums"; 3686 goto out; 3687 } 3688 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 3689 err = "Cannot disable swap on remount"; 3690 goto out; 3691 } 3692 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 3693 err = "Cannot enable swap on remount if it was disabled on first mount"; 3694 goto out; 3695 } 3696 3697 if (ctx->seen & SHMEM_SEEN_HUGE) 3698 sbinfo->huge = ctx->huge; 3699 if (ctx->seen & SHMEM_SEEN_INUMS) 3700 sbinfo->full_inums = ctx->full_inums; 3701 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3702 sbinfo->max_blocks = ctx->blocks; 3703 if (ctx->seen & SHMEM_SEEN_INODES) { 3704 sbinfo->max_inodes = ctx->inodes; 3705 sbinfo->free_inodes = ctx->inodes - inodes; 3706 } 3707 3708 /* 3709 * Preserve previous mempolicy unless mpol remount option was specified. 3710 */ 3711 if (ctx->mpol) { 3712 mpol = sbinfo->mpol; 3713 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3714 ctx->mpol = NULL; 3715 } 3716 3717 if (ctx->noswap) 3718 sbinfo->noswap = true; 3719 3720 raw_spin_unlock(&sbinfo->stat_lock); 3721 mpol_put(mpol); 3722 return 0; 3723 out: 3724 raw_spin_unlock(&sbinfo->stat_lock); 3725 return invalfc(fc, "%s", err); 3726 } 3727 3728 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3729 { 3730 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3731 3732 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3733 seq_printf(seq, ",size=%luk", 3734 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3735 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3736 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3737 if (sbinfo->mode != (0777 | S_ISVTX)) 3738 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3739 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3740 seq_printf(seq, ",uid=%u", 3741 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3742 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3743 seq_printf(seq, ",gid=%u", 3744 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3745 3746 /* 3747 * Showing inode{64,32} might be useful even if it's the system default, 3748 * since then people don't have to resort to checking both here and 3749 * /proc/config.gz to confirm 64-bit inums were successfully applied 3750 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3751 * 3752 * We hide it when inode64 isn't the default and we are using 32-bit 3753 * inodes, since that probably just means the feature isn't even under 3754 * consideration. 3755 * 3756 * As such: 3757 * 3758 * +-----------------+-----------------+ 3759 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3760 * +------------------+-----------------+-----------------+ 3761 * | full_inums=true | show | show | 3762 * | full_inums=false | show | hide | 3763 * +------------------+-----------------+-----------------+ 3764 * 3765 */ 3766 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3767 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3769 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3770 if (sbinfo->huge) 3771 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3772 #endif 3773 shmem_show_mpol(seq, sbinfo->mpol); 3774 if (sbinfo->noswap) 3775 seq_printf(seq, ",noswap"); 3776 return 0; 3777 } 3778 3779 #endif /* CONFIG_TMPFS */ 3780 3781 static void shmem_put_super(struct super_block *sb) 3782 { 3783 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3784 3785 free_percpu(sbinfo->ino_batch); 3786 percpu_counter_destroy(&sbinfo->used_blocks); 3787 mpol_put(sbinfo->mpol); 3788 kfree(sbinfo); 3789 sb->s_fs_info = NULL; 3790 } 3791 3792 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3793 { 3794 struct shmem_options *ctx = fc->fs_private; 3795 struct inode *inode; 3796 struct shmem_sb_info *sbinfo; 3797 3798 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3799 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3800 L1_CACHE_BYTES), GFP_KERNEL); 3801 if (!sbinfo) 3802 return -ENOMEM; 3803 3804 sb->s_fs_info = sbinfo; 3805 3806 #ifdef CONFIG_TMPFS 3807 /* 3808 * Per default we only allow half of the physical ram per 3809 * tmpfs instance, limiting inodes to one per page of lowmem; 3810 * but the internal instance is left unlimited. 3811 */ 3812 if (!(sb->s_flags & SB_KERNMOUNT)) { 3813 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3814 ctx->blocks = shmem_default_max_blocks(); 3815 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3816 ctx->inodes = shmem_default_max_inodes(); 3817 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3818 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3819 sbinfo->noswap = ctx->noswap; 3820 } else { 3821 sb->s_flags |= SB_NOUSER; 3822 } 3823 sb->s_export_op = &shmem_export_ops; 3824 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 3825 #else 3826 sb->s_flags |= SB_NOUSER; 3827 #endif 3828 sbinfo->max_blocks = ctx->blocks; 3829 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3830 if (sb->s_flags & SB_KERNMOUNT) { 3831 sbinfo->ino_batch = alloc_percpu(ino_t); 3832 if (!sbinfo->ino_batch) 3833 goto failed; 3834 } 3835 sbinfo->uid = ctx->uid; 3836 sbinfo->gid = ctx->gid; 3837 sbinfo->full_inums = ctx->full_inums; 3838 sbinfo->mode = ctx->mode; 3839 sbinfo->huge = ctx->huge; 3840 sbinfo->mpol = ctx->mpol; 3841 ctx->mpol = NULL; 3842 3843 raw_spin_lock_init(&sbinfo->stat_lock); 3844 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3845 goto failed; 3846 spin_lock_init(&sbinfo->shrinklist_lock); 3847 INIT_LIST_HEAD(&sbinfo->shrinklist); 3848 3849 sb->s_maxbytes = MAX_LFS_FILESIZE; 3850 sb->s_blocksize = PAGE_SIZE; 3851 sb->s_blocksize_bits = PAGE_SHIFT; 3852 sb->s_magic = TMPFS_MAGIC; 3853 sb->s_op = &shmem_ops; 3854 sb->s_time_gran = 1; 3855 #ifdef CONFIG_TMPFS_XATTR 3856 sb->s_xattr = shmem_xattr_handlers; 3857 #endif 3858 #ifdef CONFIG_TMPFS_POSIX_ACL 3859 sb->s_flags |= SB_POSIXACL; 3860 #endif 3861 uuid_gen(&sb->s_uuid); 3862 3863 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 3864 VM_NORESERVE); 3865 if (!inode) 3866 goto failed; 3867 inode->i_uid = sbinfo->uid; 3868 inode->i_gid = sbinfo->gid; 3869 sb->s_root = d_make_root(inode); 3870 if (!sb->s_root) 3871 goto failed; 3872 return 0; 3873 3874 failed: 3875 shmem_put_super(sb); 3876 return -ENOMEM; 3877 } 3878 3879 static int shmem_get_tree(struct fs_context *fc) 3880 { 3881 return get_tree_nodev(fc, shmem_fill_super); 3882 } 3883 3884 static void shmem_free_fc(struct fs_context *fc) 3885 { 3886 struct shmem_options *ctx = fc->fs_private; 3887 3888 if (ctx) { 3889 mpol_put(ctx->mpol); 3890 kfree(ctx); 3891 } 3892 } 3893 3894 static const struct fs_context_operations shmem_fs_context_ops = { 3895 .free = shmem_free_fc, 3896 .get_tree = shmem_get_tree, 3897 #ifdef CONFIG_TMPFS 3898 .parse_monolithic = shmem_parse_options, 3899 .parse_param = shmem_parse_one, 3900 .reconfigure = shmem_reconfigure, 3901 #endif 3902 }; 3903 3904 static struct kmem_cache *shmem_inode_cachep; 3905 3906 static struct inode *shmem_alloc_inode(struct super_block *sb) 3907 { 3908 struct shmem_inode_info *info; 3909 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3910 if (!info) 3911 return NULL; 3912 return &info->vfs_inode; 3913 } 3914 3915 static void shmem_free_in_core_inode(struct inode *inode) 3916 { 3917 if (S_ISLNK(inode->i_mode)) 3918 kfree(inode->i_link); 3919 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3920 } 3921 3922 static void shmem_destroy_inode(struct inode *inode) 3923 { 3924 if (S_ISREG(inode->i_mode)) 3925 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3926 } 3927 3928 static void shmem_init_inode(void *foo) 3929 { 3930 struct shmem_inode_info *info = foo; 3931 inode_init_once(&info->vfs_inode); 3932 } 3933 3934 static void shmem_init_inodecache(void) 3935 { 3936 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3937 sizeof(struct shmem_inode_info), 3938 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3939 } 3940 3941 static void shmem_destroy_inodecache(void) 3942 { 3943 kmem_cache_destroy(shmem_inode_cachep); 3944 } 3945 3946 /* Keep the page in page cache instead of truncating it */ 3947 static int shmem_error_remove_page(struct address_space *mapping, 3948 struct page *page) 3949 { 3950 return 0; 3951 } 3952 3953 const struct address_space_operations shmem_aops = { 3954 .writepage = shmem_writepage, 3955 .dirty_folio = noop_dirty_folio, 3956 #ifdef CONFIG_TMPFS 3957 .write_begin = shmem_write_begin, 3958 .write_end = shmem_write_end, 3959 #endif 3960 #ifdef CONFIG_MIGRATION 3961 .migrate_folio = migrate_folio, 3962 #endif 3963 .error_remove_page = shmem_error_remove_page, 3964 }; 3965 EXPORT_SYMBOL(shmem_aops); 3966 3967 static const struct file_operations shmem_file_operations = { 3968 .mmap = shmem_mmap, 3969 .open = generic_file_open, 3970 .get_unmapped_area = shmem_get_unmapped_area, 3971 #ifdef CONFIG_TMPFS 3972 .llseek = shmem_file_llseek, 3973 .read_iter = shmem_file_read_iter, 3974 .write_iter = generic_file_write_iter, 3975 .fsync = noop_fsync, 3976 .splice_read = generic_file_splice_read, 3977 .splice_write = iter_file_splice_write, 3978 .fallocate = shmem_fallocate, 3979 #endif 3980 }; 3981 3982 static const struct inode_operations shmem_inode_operations = { 3983 .getattr = shmem_getattr, 3984 .setattr = shmem_setattr, 3985 #ifdef CONFIG_TMPFS_XATTR 3986 .listxattr = shmem_listxattr, 3987 .set_acl = simple_set_acl, 3988 .fileattr_get = shmem_fileattr_get, 3989 .fileattr_set = shmem_fileattr_set, 3990 #endif 3991 }; 3992 3993 static const struct inode_operations shmem_dir_inode_operations = { 3994 #ifdef CONFIG_TMPFS 3995 .getattr = shmem_getattr, 3996 .create = shmem_create, 3997 .lookup = simple_lookup, 3998 .link = shmem_link, 3999 .unlink = shmem_unlink, 4000 .symlink = shmem_symlink, 4001 .mkdir = shmem_mkdir, 4002 .rmdir = shmem_rmdir, 4003 .mknod = shmem_mknod, 4004 .rename = shmem_rename2, 4005 .tmpfile = shmem_tmpfile, 4006 #endif 4007 #ifdef CONFIG_TMPFS_XATTR 4008 .listxattr = shmem_listxattr, 4009 .fileattr_get = shmem_fileattr_get, 4010 .fileattr_set = shmem_fileattr_set, 4011 #endif 4012 #ifdef CONFIG_TMPFS_POSIX_ACL 4013 .setattr = shmem_setattr, 4014 .set_acl = simple_set_acl, 4015 #endif 4016 }; 4017 4018 static const struct inode_operations shmem_special_inode_operations = { 4019 .getattr = shmem_getattr, 4020 #ifdef CONFIG_TMPFS_XATTR 4021 .listxattr = shmem_listxattr, 4022 #endif 4023 #ifdef CONFIG_TMPFS_POSIX_ACL 4024 .setattr = shmem_setattr, 4025 .set_acl = simple_set_acl, 4026 #endif 4027 }; 4028 4029 static const struct super_operations shmem_ops = { 4030 .alloc_inode = shmem_alloc_inode, 4031 .free_inode = shmem_free_in_core_inode, 4032 .destroy_inode = shmem_destroy_inode, 4033 #ifdef CONFIG_TMPFS 4034 .statfs = shmem_statfs, 4035 .show_options = shmem_show_options, 4036 #endif 4037 .evict_inode = shmem_evict_inode, 4038 .drop_inode = generic_delete_inode, 4039 .put_super = shmem_put_super, 4040 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4041 .nr_cached_objects = shmem_unused_huge_count, 4042 .free_cached_objects = shmem_unused_huge_scan, 4043 #endif 4044 }; 4045 4046 static const struct vm_operations_struct shmem_vm_ops = { 4047 .fault = shmem_fault, 4048 .map_pages = filemap_map_pages, 4049 #ifdef CONFIG_NUMA 4050 .set_policy = shmem_set_policy, 4051 .get_policy = shmem_get_policy, 4052 #endif 4053 }; 4054 4055 static const struct vm_operations_struct shmem_anon_vm_ops = { 4056 .fault = shmem_fault, 4057 .map_pages = filemap_map_pages, 4058 #ifdef CONFIG_NUMA 4059 .set_policy = shmem_set_policy, 4060 .get_policy = shmem_get_policy, 4061 #endif 4062 }; 4063 4064 int shmem_init_fs_context(struct fs_context *fc) 4065 { 4066 struct shmem_options *ctx; 4067 4068 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4069 if (!ctx) 4070 return -ENOMEM; 4071 4072 ctx->mode = 0777 | S_ISVTX; 4073 ctx->uid = current_fsuid(); 4074 ctx->gid = current_fsgid(); 4075 4076 fc->fs_private = ctx; 4077 fc->ops = &shmem_fs_context_ops; 4078 return 0; 4079 } 4080 4081 static struct file_system_type shmem_fs_type = { 4082 .owner = THIS_MODULE, 4083 .name = "tmpfs", 4084 .init_fs_context = shmem_init_fs_context, 4085 #ifdef CONFIG_TMPFS 4086 .parameters = shmem_fs_parameters, 4087 #endif 4088 .kill_sb = kill_litter_super, 4089 #ifdef CONFIG_SHMEM 4090 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4091 #else 4092 .fs_flags = FS_USERNS_MOUNT, 4093 #endif 4094 }; 4095 4096 void __init shmem_init(void) 4097 { 4098 int error; 4099 4100 shmem_init_inodecache(); 4101 4102 error = register_filesystem(&shmem_fs_type); 4103 if (error) { 4104 pr_err("Could not register tmpfs\n"); 4105 goto out2; 4106 } 4107 4108 shm_mnt = kern_mount(&shmem_fs_type); 4109 if (IS_ERR(shm_mnt)) { 4110 error = PTR_ERR(shm_mnt); 4111 pr_err("Could not kern_mount tmpfs\n"); 4112 goto out1; 4113 } 4114 4115 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4116 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4117 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4118 else 4119 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4120 #endif 4121 return; 4122 4123 out1: 4124 unregister_filesystem(&shmem_fs_type); 4125 out2: 4126 shmem_destroy_inodecache(); 4127 shm_mnt = ERR_PTR(error); 4128 } 4129 4130 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4131 static ssize_t shmem_enabled_show(struct kobject *kobj, 4132 struct kobj_attribute *attr, char *buf) 4133 { 4134 static const int values[] = { 4135 SHMEM_HUGE_ALWAYS, 4136 SHMEM_HUGE_WITHIN_SIZE, 4137 SHMEM_HUGE_ADVISE, 4138 SHMEM_HUGE_NEVER, 4139 SHMEM_HUGE_DENY, 4140 SHMEM_HUGE_FORCE, 4141 }; 4142 int len = 0; 4143 int i; 4144 4145 for (i = 0; i < ARRAY_SIZE(values); i++) { 4146 len += sysfs_emit_at(buf, len, 4147 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4148 i ? " " : "", 4149 shmem_format_huge(values[i])); 4150 } 4151 4152 len += sysfs_emit_at(buf, len, "\n"); 4153 4154 return len; 4155 } 4156 4157 static ssize_t shmem_enabled_store(struct kobject *kobj, 4158 struct kobj_attribute *attr, const char *buf, size_t count) 4159 { 4160 char tmp[16]; 4161 int huge; 4162 4163 if (count + 1 > sizeof(tmp)) 4164 return -EINVAL; 4165 memcpy(tmp, buf, count); 4166 tmp[count] = '\0'; 4167 if (count && tmp[count - 1] == '\n') 4168 tmp[count - 1] = '\0'; 4169 4170 huge = shmem_parse_huge(tmp); 4171 if (huge == -EINVAL) 4172 return -EINVAL; 4173 if (!has_transparent_hugepage() && 4174 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4175 return -EINVAL; 4176 4177 shmem_huge = huge; 4178 if (shmem_huge > SHMEM_HUGE_DENY) 4179 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4180 return count; 4181 } 4182 4183 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4185 4186 #else /* !CONFIG_SHMEM */ 4187 4188 /* 4189 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4190 * 4191 * This is intended for small system where the benefits of the full 4192 * shmem code (swap-backed and resource-limited) are outweighed by 4193 * their complexity. On systems without swap this code should be 4194 * effectively equivalent, but much lighter weight. 4195 */ 4196 4197 static struct file_system_type shmem_fs_type = { 4198 .name = "tmpfs", 4199 .init_fs_context = ramfs_init_fs_context, 4200 .parameters = ramfs_fs_parameters, 4201 .kill_sb = kill_litter_super, 4202 .fs_flags = FS_USERNS_MOUNT, 4203 }; 4204 4205 void __init shmem_init(void) 4206 { 4207 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4208 4209 shm_mnt = kern_mount(&shmem_fs_type); 4210 BUG_ON(IS_ERR(shm_mnt)); 4211 } 4212 4213 int shmem_unuse(unsigned int type) 4214 { 4215 return 0; 4216 } 4217 4218 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4219 { 4220 return 0; 4221 } 4222 4223 void shmem_unlock_mapping(struct address_space *mapping) 4224 { 4225 } 4226 4227 #ifdef CONFIG_MMU 4228 unsigned long shmem_get_unmapped_area(struct file *file, 4229 unsigned long addr, unsigned long len, 4230 unsigned long pgoff, unsigned long flags) 4231 { 4232 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4233 } 4234 #endif 4235 4236 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4237 { 4238 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4239 } 4240 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4241 4242 #define shmem_vm_ops generic_file_vm_ops 4243 #define shmem_anon_vm_ops generic_file_vm_ops 4244 #define shmem_file_operations ramfs_file_operations 4245 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4246 #define shmem_acct_size(flags, size) 0 4247 #define shmem_unacct_size(flags, size) do {} while (0) 4248 4249 #endif /* CONFIG_SHMEM */ 4250 4251 /* common code */ 4252 4253 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4254 unsigned long flags, unsigned int i_flags) 4255 { 4256 struct inode *inode; 4257 struct file *res; 4258 4259 if (IS_ERR(mnt)) 4260 return ERR_CAST(mnt); 4261 4262 if (size < 0 || size > MAX_LFS_FILESIZE) 4263 return ERR_PTR(-EINVAL); 4264 4265 if (shmem_acct_size(flags, size)) 4266 return ERR_PTR(-ENOMEM); 4267 4268 if (is_idmapped_mnt(mnt)) 4269 return ERR_PTR(-EINVAL); 4270 4271 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4272 S_IFREG | S_IRWXUGO, 0, flags); 4273 if (unlikely(!inode)) { 4274 shmem_unacct_size(flags, size); 4275 return ERR_PTR(-ENOSPC); 4276 } 4277 inode->i_flags |= i_flags; 4278 inode->i_size = size; 4279 clear_nlink(inode); /* It is unlinked */ 4280 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4281 if (!IS_ERR(res)) 4282 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4283 &shmem_file_operations); 4284 if (IS_ERR(res)) 4285 iput(inode); 4286 return res; 4287 } 4288 4289 /** 4290 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4291 * kernel internal. There will be NO LSM permission checks against the 4292 * underlying inode. So users of this interface must do LSM checks at a 4293 * higher layer. The users are the big_key and shm implementations. LSM 4294 * checks are provided at the key or shm level rather than the inode. 4295 * @name: name for dentry (to be seen in /proc/<pid>/maps 4296 * @size: size to be set for the file 4297 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4298 */ 4299 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4300 { 4301 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4302 } 4303 4304 /** 4305 * shmem_file_setup - get an unlinked file living in tmpfs 4306 * @name: name for dentry (to be seen in /proc/<pid>/maps 4307 * @size: size to be set for the file 4308 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4309 */ 4310 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4311 { 4312 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4313 } 4314 EXPORT_SYMBOL_GPL(shmem_file_setup); 4315 4316 /** 4317 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4318 * @mnt: the tmpfs mount where the file will be created 4319 * @name: name for dentry (to be seen in /proc/<pid>/maps 4320 * @size: size to be set for the file 4321 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4322 */ 4323 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4324 loff_t size, unsigned long flags) 4325 { 4326 return __shmem_file_setup(mnt, name, size, flags, 0); 4327 } 4328 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4329 4330 /** 4331 * shmem_zero_setup - setup a shared anonymous mapping 4332 * @vma: the vma to be mmapped is prepared by do_mmap 4333 */ 4334 int shmem_zero_setup(struct vm_area_struct *vma) 4335 { 4336 struct file *file; 4337 loff_t size = vma->vm_end - vma->vm_start; 4338 4339 /* 4340 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4341 * between XFS directory reading and selinux: since this file is only 4342 * accessible to the user through its mapping, use S_PRIVATE flag to 4343 * bypass file security, in the same way as shmem_kernel_file_setup(). 4344 */ 4345 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4346 if (IS_ERR(file)) 4347 return PTR_ERR(file); 4348 4349 if (vma->vm_file) 4350 fput(vma->vm_file); 4351 vma->vm_file = file; 4352 vma->vm_ops = &shmem_anon_vm_ops; 4353 4354 return 0; 4355 } 4356 4357 /** 4358 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4359 * @mapping: the folio's address_space 4360 * @index: the folio index 4361 * @gfp: the page allocator flags to use if allocating 4362 * 4363 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4364 * with any new page allocations done using the specified allocation flags. 4365 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4366 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4367 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4368 * 4369 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4370 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4371 */ 4372 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4373 pgoff_t index, gfp_t gfp) 4374 { 4375 #ifdef CONFIG_SHMEM 4376 struct inode *inode = mapping->host; 4377 struct folio *folio; 4378 int error; 4379 4380 BUG_ON(!shmem_mapping(mapping)); 4381 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4382 gfp, NULL, NULL, NULL); 4383 if (error) 4384 return ERR_PTR(error); 4385 4386 folio_unlock(folio); 4387 return folio; 4388 #else 4389 /* 4390 * The tiny !SHMEM case uses ramfs without swap 4391 */ 4392 return mapping_read_folio_gfp(mapping, index, gfp); 4393 #endif 4394 } 4395 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4396 4397 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4398 pgoff_t index, gfp_t gfp) 4399 { 4400 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4401 struct page *page; 4402 4403 if (IS_ERR(folio)) 4404 return &folio->page; 4405 4406 page = folio_file_page(folio, index); 4407 if (PageHWPoison(page)) { 4408 folio_put(folio); 4409 return ERR_PTR(-EIO); 4410 } 4411 4412 return page; 4413 } 4414 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4415