1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #define SHMEM_SEEN_BLOCKS 1 126 #define SHMEM_SEEN_INODES 2 127 #define SHMEM_SEEN_HUGE 4 128 #define SHMEM_SEEN_INUMS 8 129 #define SHMEM_SEEN_NOSWAP 16 130 #define SHMEM_SEEN_QUOTA 32 131 }; 132 133 #ifdef CONFIG_TMPFS 134 static unsigned long shmem_default_max_blocks(void) 135 { 136 return totalram_pages() / 2; 137 } 138 139 static unsigned long shmem_default_max_inodes(void) 140 { 141 unsigned long nr_pages = totalram_pages(); 142 143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 144 ULONG_MAX / BOGO_INODE_SIZE); 145 } 146 #endif 147 148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 149 struct folio **foliop, enum sgp_type sgp, 150 gfp_t gfp, struct vm_area_struct *vma, 151 vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_block(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) 227 goto unacct; 228 229 percpu_counter_add(&sbinfo->used_blocks, pages); 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool vma_is_anon_shmem(struct vm_area_struct *vma) 267 { 268 return vma->vm_ops == &shmem_anon_vm_ops; 269 } 270 271 bool vma_is_shmem(struct vm_area_struct *vma) 272 { 273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 274 } 275 276 static LIST_HEAD(shmem_swaplist); 277 static DEFINE_MUTEX(shmem_swaplist_mutex); 278 279 #ifdef CONFIG_TMPFS_QUOTA 280 281 static int shmem_enable_quotas(struct super_block *sb, 282 unsigned short quota_types) 283 { 284 int type, err = 0; 285 286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 288 if (!(quota_types & (1 << type))) 289 continue; 290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 291 DQUOT_USAGE_ENABLED | 292 DQUOT_LIMITS_ENABLED); 293 if (err) 294 goto out_err; 295 } 296 return 0; 297 298 out_err: 299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 300 type, err); 301 for (type--; type >= 0; type--) 302 dquot_quota_off(sb, type); 303 return err; 304 } 305 306 static void shmem_disable_quotas(struct super_block *sb) 307 { 308 int type; 309 310 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 311 dquot_quota_off(sb, type); 312 } 313 314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 315 { 316 return SHMEM_I(inode)->i_dquot; 317 } 318 #endif /* CONFIG_TMPFS_QUOTA */ 319 320 /* 321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 322 * produces a novel ino for the newly allocated inode. 323 * 324 * It may also be called when making a hard link to permit the space needed by 325 * each dentry. However, in that case, no new inode number is needed since that 326 * internally draws from another pool of inode numbers (currently global 327 * get_next_ino()). This case is indicated by passing NULL as inop. 328 */ 329 #define SHMEM_INO_BATCH 1024 330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 331 { 332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 333 ino_t ino; 334 335 if (!(sb->s_flags & SB_KERNMOUNT)) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 if (sbinfo->max_inodes) { 338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 339 raw_spin_unlock(&sbinfo->stat_lock); 340 return -ENOSPC; 341 } 342 sbinfo->free_ispace -= BOGO_INODE_SIZE; 343 } 344 if (inop) { 345 ino = sbinfo->next_ino++; 346 if (unlikely(is_zero_ino(ino))) 347 ino = sbinfo->next_ino++; 348 if (unlikely(!sbinfo->full_inums && 349 ino > UINT_MAX)) { 350 /* 351 * Emulate get_next_ino uint wraparound for 352 * compatibility 353 */ 354 if (IS_ENABLED(CONFIG_64BIT)) 355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 356 __func__, MINOR(sb->s_dev)); 357 sbinfo->next_ino = 1; 358 ino = sbinfo->next_ino++; 359 } 360 *inop = ino; 361 } 362 raw_spin_unlock(&sbinfo->stat_lock); 363 } else if (inop) { 364 /* 365 * __shmem_file_setup, one of our callers, is lock-free: it 366 * doesn't hold stat_lock in shmem_reserve_inode since 367 * max_inodes is always 0, and is called from potentially 368 * unknown contexts. As such, use a per-cpu batched allocator 369 * which doesn't require the per-sb stat_lock unless we are at 370 * the batch boundary. 371 * 372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 373 * shmem mounts are not exposed to userspace, so we don't need 374 * to worry about things like glibc compatibility. 375 */ 376 ino_t *next_ino; 377 378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 379 ino = *next_ino; 380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 381 raw_spin_lock(&sbinfo->stat_lock); 382 ino = sbinfo->next_ino; 383 sbinfo->next_ino += SHMEM_INO_BATCH; 384 raw_spin_unlock(&sbinfo->stat_lock); 385 if (unlikely(is_zero_ino(ino))) 386 ino++; 387 } 388 *inop = ino; 389 *next_ino = ++ino; 390 put_cpu(); 391 } 392 393 return 0; 394 } 395 396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 397 { 398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 399 if (sbinfo->max_inodes) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 } 404 } 405 406 /** 407 * shmem_recalc_inode - recalculate the block usage of an inode 408 * @inode: inode to recalc 409 * @alloced: the change in number of pages allocated to inode 410 * @swapped: the change in number of pages swapped from inode 411 * 412 * We have to calculate the free blocks since the mm can drop 413 * undirtied hole pages behind our back. 414 * 415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 417 */ 418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 419 { 420 struct shmem_inode_info *info = SHMEM_I(inode); 421 long freed; 422 423 spin_lock(&info->lock); 424 info->alloced += alloced; 425 info->swapped += swapped; 426 freed = info->alloced - info->swapped - 427 READ_ONCE(inode->i_mapping->nrpages); 428 /* 429 * Special case: whereas normally shmem_recalc_inode() is called 430 * after i_mapping->nrpages has already been adjusted (up or down), 431 * shmem_writepage() has to raise swapped before nrpages is lowered - 432 * to stop a racing shmem_recalc_inode() from thinking that a page has 433 * been freed. Compensate here, to avoid the need for a followup call. 434 */ 435 if (swapped > 0) 436 freed += swapped; 437 if (freed > 0) 438 info->alloced -= freed; 439 spin_unlock(&info->lock); 440 441 /* The quota case may block */ 442 if (freed > 0) 443 shmem_inode_unacct_blocks(inode, freed); 444 } 445 446 bool shmem_charge(struct inode *inode, long pages) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 450 if (shmem_inode_acct_block(inode, pages)) 451 return false; 452 453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 454 xa_lock_irq(&mapping->i_pages); 455 mapping->nrpages += pages; 456 xa_unlock_irq(&mapping->i_pages); 457 458 shmem_recalc_inode(inode, pages, 0); 459 return true; 460 } 461 462 void shmem_uncharge(struct inode *inode, long pages) 463 { 464 /* pages argument is currently unused: keep it to help debugging */ 465 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 466 467 shmem_recalc_inode(inode, 0, 0); 468 } 469 470 /* 471 * Replace item expected in xarray by a new item, while holding xa_lock. 472 */ 473 static int shmem_replace_entry(struct address_space *mapping, 474 pgoff_t index, void *expected, void *replacement) 475 { 476 XA_STATE(xas, &mapping->i_pages, index); 477 void *item; 478 479 VM_BUG_ON(!expected); 480 VM_BUG_ON(!replacement); 481 item = xas_load(&xas); 482 if (item != expected) 483 return -ENOENT; 484 xas_store(&xas, replacement); 485 return 0; 486 } 487 488 /* 489 * Sometimes, before we decide whether to proceed or to fail, we must check 490 * that an entry was not already brought back from swap by a racing thread. 491 * 492 * Checking page is not enough: by the time a SwapCache page is locked, it 493 * might be reused, and again be SwapCache, using the same swap as before. 494 */ 495 static bool shmem_confirm_swap(struct address_space *mapping, 496 pgoff_t index, swp_entry_t swap) 497 { 498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 499 } 500 501 /* 502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 503 * 504 * SHMEM_HUGE_NEVER: 505 * disables huge pages for the mount; 506 * SHMEM_HUGE_ALWAYS: 507 * enables huge pages for the mount; 508 * SHMEM_HUGE_WITHIN_SIZE: 509 * only allocate huge pages if the page will be fully within i_size, 510 * also respect fadvise()/madvise() hints; 511 * SHMEM_HUGE_ADVISE: 512 * only allocate huge pages if requested with fadvise()/madvise(); 513 */ 514 515 #define SHMEM_HUGE_NEVER 0 516 #define SHMEM_HUGE_ALWAYS 1 517 #define SHMEM_HUGE_WITHIN_SIZE 2 518 #define SHMEM_HUGE_ADVISE 3 519 520 /* 521 * Special values. 522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 523 * 524 * SHMEM_HUGE_DENY: 525 * disables huge on shm_mnt and all mounts, for emergency use; 526 * SHMEM_HUGE_FORCE: 527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 528 * 529 */ 530 #define SHMEM_HUGE_DENY (-1) 531 #define SHMEM_HUGE_FORCE (-2) 532 533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 534 /* ifdef here to avoid bloating shmem.o when not necessary */ 535 536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 537 538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index, 539 bool shmem_huge_force, struct mm_struct *mm, 540 unsigned long vm_flags) 541 { 542 loff_t i_size; 543 544 if (!S_ISREG(inode->i_mode)) 545 return false; 546 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 547 return false; 548 if (shmem_huge == SHMEM_HUGE_DENY) 549 return false; 550 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 551 return true; 552 553 switch (SHMEM_SB(inode->i_sb)->huge) { 554 case SHMEM_HUGE_ALWAYS: 555 return true; 556 case SHMEM_HUGE_WITHIN_SIZE: 557 index = round_up(index + 1, HPAGE_PMD_NR); 558 i_size = round_up(i_size_read(inode), PAGE_SIZE); 559 if (i_size >> PAGE_SHIFT >= index) 560 return true; 561 fallthrough; 562 case SHMEM_HUGE_ADVISE: 563 if (mm && (vm_flags & VM_HUGEPAGE)) 564 return true; 565 fallthrough; 566 default: 567 return false; 568 } 569 } 570 571 bool shmem_is_huge(struct inode *inode, pgoff_t index, 572 bool shmem_huge_force, struct mm_struct *mm, 573 unsigned long vm_flags) 574 { 575 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 576 return false; 577 578 return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags); 579 } 580 581 #if defined(CONFIG_SYSFS) 582 static int shmem_parse_huge(const char *str) 583 { 584 if (!strcmp(str, "never")) 585 return SHMEM_HUGE_NEVER; 586 if (!strcmp(str, "always")) 587 return SHMEM_HUGE_ALWAYS; 588 if (!strcmp(str, "within_size")) 589 return SHMEM_HUGE_WITHIN_SIZE; 590 if (!strcmp(str, "advise")) 591 return SHMEM_HUGE_ADVISE; 592 if (!strcmp(str, "deny")) 593 return SHMEM_HUGE_DENY; 594 if (!strcmp(str, "force")) 595 return SHMEM_HUGE_FORCE; 596 return -EINVAL; 597 } 598 #endif 599 600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 601 static const char *shmem_format_huge(int huge) 602 { 603 switch (huge) { 604 case SHMEM_HUGE_NEVER: 605 return "never"; 606 case SHMEM_HUGE_ALWAYS: 607 return "always"; 608 case SHMEM_HUGE_WITHIN_SIZE: 609 return "within_size"; 610 case SHMEM_HUGE_ADVISE: 611 return "advise"; 612 case SHMEM_HUGE_DENY: 613 return "deny"; 614 case SHMEM_HUGE_FORCE: 615 return "force"; 616 default: 617 VM_BUG_ON(1); 618 return "bad_val"; 619 } 620 } 621 #endif 622 623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 624 struct shrink_control *sc, unsigned long nr_to_split) 625 { 626 LIST_HEAD(list), *pos, *next; 627 LIST_HEAD(to_remove); 628 struct inode *inode; 629 struct shmem_inode_info *info; 630 struct folio *folio; 631 unsigned long batch = sc ? sc->nr_to_scan : 128; 632 int split = 0; 633 634 if (list_empty(&sbinfo->shrinklist)) 635 return SHRINK_STOP; 636 637 spin_lock(&sbinfo->shrinklist_lock); 638 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 639 info = list_entry(pos, struct shmem_inode_info, shrinklist); 640 641 /* pin the inode */ 642 inode = igrab(&info->vfs_inode); 643 644 /* inode is about to be evicted */ 645 if (!inode) { 646 list_del_init(&info->shrinklist); 647 goto next; 648 } 649 650 /* Check if there's anything to gain */ 651 if (round_up(inode->i_size, PAGE_SIZE) == 652 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 653 list_move(&info->shrinklist, &to_remove); 654 goto next; 655 } 656 657 list_move(&info->shrinklist, &list); 658 next: 659 sbinfo->shrinklist_len--; 660 if (!--batch) 661 break; 662 } 663 spin_unlock(&sbinfo->shrinklist_lock); 664 665 list_for_each_safe(pos, next, &to_remove) { 666 info = list_entry(pos, struct shmem_inode_info, shrinklist); 667 inode = &info->vfs_inode; 668 list_del_init(&info->shrinklist); 669 iput(inode); 670 } 671 672 list_for_each_safe(pos, next, &list) { 673 int ret; 674 pgoff_t index; 675 676 info = list_entry(pos, struct shmem_inode_info, shrinklist); 677 inode = &info->vfs_inode; 678 679 if (nr_to_split && split >= nr_to_split) 680 goto move_back; 681 682 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 683 folio = filemap_get_folio(inode->i_mapping, index); 684 if (IS_ERR(folio)) 685 goto drop; 686 687 /* No huge page at the end of the file: nothing to split */ 688 if (!folio_test_large(folio)) { 689 folio_put(folio); 690 goto drop; 691 } 692 693 /* 694 * Move the inode on the list back to shrinklist if we failed 695 * to lock the page at this time. 696 * 697 * Waiting for the lock may lead to deadlock in the 698 * reclaim path. 699 */ 700 if (!folio_trylock(folio)) { 701 folio_put(folio); 702 goto move_back; 703 } 704 705 ret = split_folio(folio); 706 folio_unlock(folio); 707 folio_put(folio); 708 709 /* If split failed move the inode on the list back to shrinklist */ 710 if (ret) 711 goto move_back; 712 713 split++; 714 drop: 715 list_del_init(&info->shrinklist); 716 goto put; 717 move_back: 718 /* 719 * Make sure the inode is either on the global list or deleted 720 * from any local list before iput() since it could be deleted 721 * in another thread once we put the inode (then the local list 722 * is corrupted). 723 */ 724 spin_lock(&sbinfo->shrinklist_lock); 725 list_move(&info->shrinklist, &sbinfo->shrinklist); 726 sbinfo->shrinklist_len++; 727 spin_unlock(&sbinfo->shrinklist_lock); 728 put: 729 iput(inode); 730 } 731 732 return split; 733 } 734 735 static long shmem_unused_huge_scan(struct super_block *sb, 736 struct shrink_control *sc) 737 { 738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 739 740 if (!READ_ONCE(sbinfo->shrinklist_len)) 741 return SHRINK_STOP; 742 743 return shmem_unused_huge_shrink(sbinfo, sc, 0); 744 } 745 746 static long shmem_unused_huge_count(struct super_block *sb, 747 struct shrink_control *sc) 748 { 749 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 750 return READ_ONCE(sbinfo->shrinklist_len); 751 } 752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 753 754 #define shmem_huge SHMEM_HUGE_DENY 755 756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 757 struct shrink_control *sc, unsigned long nr_to_split) 758 { 759 return 0; 760 } 761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 762 763 /* 764 * Like filemap_add_folio, but error if expected item has gone. 765 */ 766 static int shmem_add_to_page_cache(struct folio *folio, 767 struct address_space *mapping, 768 pgoff_t index, void *expected, gfp_t gfp, 769 struct mm_struct *charge_mm) 770 { 771 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 772 long nr = folio_nr_pages(folio); 773 int error; 774 775 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 776 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 777 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 778 VM_BUG_ON(expected && folio_test_large(folio)); 779 780 folio_ref_add(folio, nr); 781 folio->mapping = mapping; 782 folio->index = index; 783 784 if (!folio_test_swapcache(folio)) { 785 error = mem_cgroup_charge(folio, charge_mm, gfp); 786 if (error) { 787 if (folio_test_pmd_mappable(folio)) { 788 count_vm_event(THP_FILE_FALLBACK); 789 count_vm_event(THP_FILE_FALLBACK_CHARGE); 790 } 791 goto error; 792 } 793 } 794 folio_throttle_swaprate(folio, gfp); 795 796 do { 797 xas_lock_irq(&xas); 798 if (expected != xas_find_conflict(&xas)) { 799 xas_set_err(&xas, -EEXIST); 800 goto unlock; 801 } 802 if (expected && xas_find_conflict(&xas)) { 803 xas_set_err(&xas, -EEXIST); 804 goto unlock; 805 } 806 xas_store(&xas, folio); 807 if (xas_error(&xas)) 808 goto unlock; 809 if (folio_test_pmd_mappable(folio)) { 810 count_vm_event(THP_FILE_ALLOC); 811 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 812 } 813 mapping->nrpages += nr; 814 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 815 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 816 unlock: 817 xas_unlock_irq(&xas); 818 } while (xas_nomem(&xas, gfp)); 819 820 if (xas_error(&xas)) { 821 error = xas_error(&xas); 822 goto error; 823 } 824 825 return 0; 826 error: 827 folio->mapping = NULL; 828 folio_ref_sub(folio, nr); 829 return error; 830 } 831 832 /* 833 * Like delete_from_page_cache, but substitutes swap for @folio. 834 */ 835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 836 { 837 struct address_space *mapping = folio->mapping; 838 long nr = folio_nr_pages(folio); 839 int error; 840 841 xa_lock_irq(&mapping->i_pages); 842 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 843 folio->mapping = NULL; 844 mapping->nrpages -= nr; 845 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 846 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 847 xa_unlock_irq(&mapping->i_pages); 848 folio_put(folio); 849 BUG_ON(error); 850 } 851 852 /* 853 * Remove swap entry from page cache, free the swap and its page cache. 854 */ 855 static int shmem_free_swap(struct address_space *mapping, 856 pgoff_t index, void *radswap) 857 { 858 void *old; 859 860 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 861 if (old != radswap) 862 return -ENOENT; 863 free_swap_and_cache(radix_to_swp_entry(radswap)); 864 return 0; 865 } 866 867 /* 868 * Determine (in bytes) how many of the shmem object's pages mapped by the 869 * given offsets are swapped out. 870 * 871 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 872 * as long as the inode doesn't go away and racy results are not a problem. 873 */ 874 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 875 pgoff_t start, pgoff_t end) 876 { 877 XA_STATE(xas, &mapping->i_pages, start); 878 struct page *page; 879 unsigned long swapped = 0; 880 unsigned long max = end - 1; 881 882 rcu_read_lock(); 883 xas_for_each(&xas, page, max) { 884 if (xas_retry(&xas, page)) 885 continue; 886 if (xa_is_value(page)) 887 swapped++; 888 if (xas.xa_index == max) 889 break; 890 if (need_resched()) { 891 xas_pause(&xas); 892 cond_resched_rcu(); 893 } 894 } 895 896 rcu_read_unlock(); 897 898 return swapped << PAGE_SHIFT; 899 } 900 901 /* 902 * Determine (in bytes) how many of the shmem object's pages mapped by the 903 * given vma is swapped out. 904 * 905 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 906 * as long as the inode doesn't go away and racy results are not a problem. 907 */ 908 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 909 { 910 struct inode *inode = file_inode(vma->vm_file); 911 struct shmem_inode_info *info = SHMEM_I(inode); 912 struct address_space *mapping = inode->i_mapping; 913 unsigned long swapped; 914 915 /* Be careful as we don't hold info->lock */ 916 swapped = READ_ONCE(info->swapped); 917 918 /* 919 * The easier cases are when the shmem object has nothing in swap, or 920 * the vma maps it whole. Then we can simply use the stats that we 921 * already track. 922 */ 923 if (!swapped) 924 return 0; 925 926 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 927 return swapped << PAGE_SHIFT; 928 929 /* Here comes the more involved part */ 930 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 931 vma->vm_pgoff + vma_pages(vma)); 932 } 933 934 /* 935 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 936 */ 937 void shmem_unlock_mapping(struct address_space *mapping) 938 { 939 struct folio_batch fbatch; 940 pgoff_t index = 0; 941 942 folio_batch_init(&fbatch); 943 /* 944 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 945 */ 946 while (!mapping_unevictable(mapping) && 947 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 948 check_move_unevictable_folios(&fbatch); 949 folio_batch_release(&fbatch); 950 cond_resched(); 951 } 952 } 953 954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 955 { 956 struct folio *folio; 957 958 /* 959 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 960 * beyond i_size, and reports fallocated folios as holes. 961 */ 962 folio = filemap_get_entry(inode->i_mapping, index); 963 if (!folio) 964 return folio; 965 if (!xa_is_value(folio)) { 966 folio_lock(folio); 967 if (folio->mapping == inode->i_mapping) 968 return folio; 969 /* The folio has been swapped out */ 970 folio_unlock(folio); 971 folio_put(folio); 972 } 973 /* 974 * But read a folio back from swap if any of it is within i_size 975 * (although in some cases this is just a waste of time). 976 */ 977 folio = NULL; 978 shmem_get_folio(inode, index, &folio, SGP_READ); 979 return folio; 980 } 981 982 /* 983 * Remove range of pages and swap entries from page cache, and free them. 984 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 985 */ 986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 987 bool unfalloc) 988 { 989 struct address_space *mapping = inode->i_mapping; 990 struct shmem_inode_info *info = SHMEM_I(inode); 991 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 992 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 993 struct folio_batch fbatch; 994 pgoff_t indices[PAGEVEC_SIZE]; 995 struct folio *folio; 996 bool same_folio; 997 long nr_swaps_freed = 0; 998 pgoff_t index; 999 int i; 1000 1001 if (lend == -1) 1002 end = -1; /* unsigned, so actually very big */ 1003 1004 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1005 info->fallocend = start; 1006 1007 folio_batch_init(&fbatch); 1008 index = start; 1009 while (index < end && find_lock_entries(mapping, &index, end - 1, 1010 &fbatch, indices)) { 1011 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1012 folio = fbatch.folios[i]; 1013 1014 if (xa_is_value(folio)) { 1015 if (unfalloc) 1016 continue; 1017 nr_swaps_freed += !shmem_free_swap(mapping, 1018 indices[i], folio); 1019 continue; 1020 } 1021 1022 if (!unfalloc || !folio_test_uptodate(folio)) 1023 truncate_inode_folio(mapping, folio); 1024 folio_unlock(folio); 1025 } 1026 folio_batch_remove_exceptionals(&fbatch); 1027 folio_batch_release(&fbatch); 1028 cond_resched(); 1029 } 1030 1031 /* 1032 * When undoing a failed fallocate, we want none of the partial folio 1033 * zeroing and splitting below, but shall want to truncate the whole 1034 * folio when !uptodate indicates that it was added by this fallocate, 1035 * even when [lstart, lend] covers only a part of the folio. 1036 */ 1037 if (unfalloc) 1038 goto whole_folios; 1039 1040 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1041 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1042 if (folio) { 1043 same_folio = lend < folio_pos(folio) + folio_size(folio); 1044 folio_mark_dirty(folio); 1045 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1046 start = folio_next_index(folio); 1047 if (same_folio) 1048 end = folio->index; 1049 } 1050 folio_unlock(folio); 1051 folio_put(folio); 1052 folio = NULL; 1053 } 1054 1055 if (!same_folio) 1056 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1057 if (folio) { 1058 folio_mark_dirty(folio); 1059 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1060 end = folio->index; 1061 folio_unlock(folio); 1062 folio_put(folio); 1063 } 1064 1065 whole_folios: 1066 1067 index = start; 1068 while (index < end) { 1069 cond_resched(); 1070 1071 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1072 indices)) { 1073 /* If all gone or hole-punch or unfalloc, we're done */ 1074 if (index == start || end != -1) 1075 break; 1076 /* But if truncating, restart to make sure all gone */ 1077 index = start; 1078 continue; 1079 } 1080 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1081 folio = fbatch.folios[i]; 1082 1083 if (xa_is_value(folio)) { 1084 if (unfalloc) 1085 continue; 1086 if (shmem_free_swap(mapping, indices[i], folio)) { 1087 /* Swap was replaced by page: retry */ 1088 index = indices[i]; 1089 break; 1090 } 1091 nr_swaps_freed++; 1092 continue; 1093 } 1094 1095 folio_lock(folio); 1096 1097 if (!unfalloc || !folio_test_uptodate(folio)) { 1098 if (folio_mapping(folio) != mapping) { 1099 /* Page was replaced by swap: retry */ 1100 folio_unlock(folio); 1101 index = indices[i]; 1102 break; 1103 } 1104 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1105 folio); 1106 1107 if (!folio_test_large(folio)) { 1108 truncate_inode_folio(mapping, folio); 1109 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1110 /* 1111 * If we split a page, reset the loop so 1112 * that we pick up the new sub pages. 1113 * Otherwise the THP was entirely 1114 * dropped or the target range was 1115 * zeroed, so just continue the loop as 1116 * is. 1117 */ 1118 if (!folio_test_large(folio)) { 1119 folio_unlock(folio); 1120 index = start; 1121 break; 1122 } 1123 } 1124 } 1125 folio_unlock(folio); 1126 } 1127 folio_batch_remove_exceptionals(&fbatch); 1128 folio_batch_release(&fbatch); 1129 } 1130 1131 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1132 } 1133 1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1135 { 1136 shmem_undo_range(inode, lstart, lend, false); 1137 inode->i_mtime = inode_set_ctime_current(inode); 1138 inode_inc_iversion(inode); 1139 } 1140 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1141 1142 static int shmem_getattr(struct mnt_idmap *idmap, 1143 const struct path *path, struct kstat *stat, 1144 u32 request_mask, unsigned int query_flags) 1145 { 1146 struct inode *inode = path->dentry->d_inode; 1147 struct shmem_inode_info *info = SHMEM_I(inode); 1148 1149 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1150 shmem_recalc_inode(inode, 0, 0); 1151 1152 if (info->fsflags & FS_APPEND_FL) 1153 stat->attributes |= STATX_ATTR_APPEND; 1154 if (info->fsflags & FS_IMMUTABLE_FL) 1155 stat->attributes |= STATX_ATTR_IMMUTABLE; 1156 if (info->fsflags & FS_NODUMP_FL) 1157 stat->attributes |= STATX_ATTR_NODUMP; 1158 stat->attributes_mask |= (STATX_ATTR_APPEND | 1159 STATX_ATTR_IMMUTABLE | 1160 STATX_ATTR_NODUMP); 1161 generic_fillattr(idmap, request_mask, inode, stat); 1162 1163 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1164 stat->blksize = HPAGE_PMD_SIZE; 1165 1166 if (request_mask & STATX_BTIME) { 1167 stat->result_mask |= STATX_BTIME; 1168 stat->btime.tv_sec = info->i_crtime.tv_sec; 1169 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1170 } 1171 1172 return 0; 1173 } 1174 1175 static int shmem_setattr(struct mnt_idmap *idmap, 1176 struct dentry *dentry, struct iattr *attr) 1177 { 1178 struct inode *inode = d_inode(dentry); 1179 struct shmem_inode_info *info = SHMEM_I(inode); 1180 int error; 1181 bool update_mtime = false; 1182 bool update_ctime = true; 1183 1184 error = setattr_prepare(idmap, dentry, attr); 1185 if (error) 1186 return error; 1187 1188 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1189 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1190 return -EPERM; 1191 } 1192 } 1193 1194 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1195 loff_t oldsize = inode->i_size; 1196 loff_t newsize = attr->ia_size; 1197 1198 /* protected by i_rwsem */ 1199 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1200 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1201 return -EPERM; 1202 1203 if (newsize != oldsize) { 1204 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1205 oldsize, newsize); 1206 if (error) 1207 return error; 1208 i_size_write(inode, newsize); 1209 update_mtime = true; 1210 } else { 1211 update_ctime = false; 1212 } 1213 if (newsize <= oldsize) { 1214 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1215 if (oldsize > holebegin) 1216 unmap_mapping_range(inode->i_mapping, 1217 holebegin, 0, 1); 1218 if (info->alloced) 1219 shmem_truncate_range(inode, 1220 newsize, (loff_t)-1); 1221 /* unmap again to remove racily COWed private pages */ 1222 if (oldsize > holebegin) 1223 unmap_mapping_range(inode->i_mapping, 1224 holebegin, 0, 1); 1225 } 1226 } 1227 1228 if (is_quota_modification(idmap, inode, attr)) { 1229 error = dquot_initialize(inode); 1230 if (error) 1231 return error; 1232 } 1233 1234 /* Transfer quota accounting */ 1235 if (i_uid_needs_update(idmap, attr, inode) || 1236 i_gid_needs_update(idmap, attr, inode)) { 1237 error = dquot_transfer(idmap, inode, attr); 1238 1239 if (error) 1240 return error; 1241 } 1242 1243 setattr_copy(idmap, inode, attr); 1244 if (attr->ia_valid & ATTR_MODE) 1245 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1246 if (!error && update_ctime) { 1247 inode_set_ctime_current(inode); 1248 if (update_mtime) 1249 inode->i_mtime = inode_get_ctime(inode); 1250 inode_inc_iversion(inode); 1251 } 1252 return error; 1253 } 1254 1255 static void shmem_evict_inode(struct inode *inode) 1256 { 1257 struct shmem_inode_info *info = SHMEM_I(inode); 1258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1259 size_t freed = 0; 1260 1261 if (shmem_mapping(inode->i_mapping)) { 1262 shmem_unacct_size(info->flags, inode->i_size); 1263 inode->i_size = 0; 1264 mapping_set_exiting(inode->i_mapping); 1265 shmem_truncate_range(inode, 0, (loff_t)-1); 1266 if (!list_empty(&info->shrinklist)) { 1267 spin_lock(&sbinfo->shrinklist_lock); 1268 if (!list_empty(&info->shrinklist)) { 1269 list_del_init(&info->shrinklist); 1270 sbinfo->shrinklist_len--; 1271 } 1272 spin_unlock(&sbinfo->shrinklist_lock); 1273 } 1274 while (!list_empty(&info->swaplist)) { 1275 /* Wait while shmem_unuse() is scanning this inode... */ 1276 wait_var_event(&info->stop_eviction, 1277 !atomic_read(&info->stop_eviction)); 1278 mutex_lock(&shmem_swaplist_mutex); 1279 /* ...but beware of the race if we peeked too early */ 1280 if (!atomic_read(&info->stop_eviction)) 1281 list_del_init(&info->swaplist); 1282 mutex_unlock(&shmem_swaplist_mutex); 1283 } 1284 } 1285 1286 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1287 shmem_free_inode(inode->i_sb, freed); 1288 WARN_ON(inode->i_blocks); 1289 clear_inode(inode); 1290 #ifdef CONFIG_TMPFS_QUOTA 1291 dquot_free_inode(inode); 1292 dquot_drop(inode); 1293 #endif 1294 } 1295 1296 static int shmem_find_swap_entries(struct address_space *mapping, 1297 pgoff_t start, struct folio_batch *fbatch, 1298 pgoff_t *indices, unsigned int type) 1299 { 1300 XA_STATE(xas, &mapping->i_pages, start); 1301 struct folio *folio; 1302 swp_entry_t entry; 1303 1304 rcu_read_lock(); 1305 xas_for_each(&xas, folio, ULONG_MAX) { 1306 if (xas_retry(&xas, folio)) 1307 continue; 1308 1309 if (!xa_is_value(folio)) 1310 continue; 1311 1312 entry = radix_to_swp_entry(folio); 1313 /* 1314 * swapin error entries can be found in the mapping. But they're 1315 * deliberately ignored here as we've done everything we can do. 1316 */ 1317 if (swp_type(entry) != type) 1318 continue; 1319 1320 indices[folio_batch_count(fbatch)] = xas.xa_index; 1321 if (!folio_batch_add(fbatch, folio)) 1322 break; 1323 1324 if (need_resched()) { 1325 xas_pause(&xas); 1326 cond_resched_rcu(); 1327 } 1328 } 1329 rcu_read_unlock(); 1330 1331 return xas.xa_index; 1332 } 1333 1334 /* 1335 * Move the swapped pages for an inode to page cache. Returns the count 1336 * of pages swapped in, or the error in case of failure. 1337 */ 1338 static int shmem_unuse_swap_entries(struct inode *inode, 1339 struct folio_batch *fbatch, pgoff_t *indices) 1340 { 1341 int i = 0; 1342 int ret = 0; 1343 int error = 0; 1344 struct address_space *mapping = inode->i_mapping; 1345 1346 for (i = 0; i < folio_batch_count(fbatch); i++) { 1347 struct folio *folio = fbatch->folios[i]; 1348 1349 if (!xa_is_value(folio)) 1350 continue; 1351 error = shmem_swapin_folio(inode, indices[i], 1352 &folio, SGP_CACHE, 1353 mapping_gfp_mask(mapping), 1354 NULL, NULL); 1355 if (error == 0) { 1356 folio_unlock(folio); 1357 folio_put(folio); 1358 ret++; 1359 } 1360 if (error == -ENOMEM) 1361 break; 1362 error = 0; 1363 } 1364 return error ? error : ret; 1365 } 1366 1367 /* 1368 * If swap found in inode, free it and move page from swapcache to filecache. 1369 */ 1370 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1371 { 1372 struct address_space *mapping = inode->i_mapping; 1373 pgoff_t start = 0; 1374 struct folio_batch fbatch; 1375 pgoff_t indices[PAGEVEC_SIZE]; 1376 int ret = 0; 1377 1378 do { 1379 folio_batch_init(&fbatch); 1380 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1381 if (folio_batch_count(&fbatch) == 0) { 1382 ret = 0; 1383 break; 1384 } 1385 1386 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1387 if (ret < 0) 1388 break; 1389 1390 start = indices[folio_batch_count(&fbatch) - 1]; 1391 } while (true); 1392 1393 return ret; 1394 } 1395 1396 /* 1397 * Read all the shared memory data that resides in the swap 1398 * device 'type' back into memory, so the swap device can be 1399 * unused. 1400 */ 1401 int shmem_unuse(unsigned int type) 1402 { 1403 struct shmem_inode_info *info, *next; 1404 int error = 0; 1405 1406 if (list_empty(&shmem_swaplist)) 1407 return 0; 1408 1409 mutex_lock(&shmem_swaplist_mutex); 1410 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1411 if (!info->swapped) { 1412 list_del_init(&info->swaplist); 1413 continue; 1414 } 1415 /* 1416 * Drop the swaplist mutex while searching the inode for swap; 1417 * but before doing so, make sure shmem_evict_inode() will not 1418 * remove placeholder inode from swaplist, nor let it be freed 1419 * (igrab() would protect from unlink, but not from unmount). 1420 */ 1421 atomic_inc(&info->stop_eviction); 1422 mutex_unlock(&shmem_swaplist_mutex); 1423 1424 error = shmem_unuse_inode(&info->vfs_inode, type); 1425 cond_resched(); 1426 1427 mutex_lock(&shmem_swaplist_mutex); 1428 next = list_next_entry(info, swaplist); 1429 if (!info->swapped) 1430 list_del_init(&info->swaplist); 1431 if (atomic_dec_and_test(&info->stop_eviction)) 1432 wake_up_var(&info->stop_eviction); 1433 if (error) 1434 break; 1435 } 1436 mutex_unlock(&shmem_swaplist_mutex); 1437 1438 return error; 1439 } 1440 1441 /* 1442 * Move the page from the page cache to the swap cache. 1443 */ 1444 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1445 { 1446 struct folio *folio = page_folio(page); 1447 struct address_space *mapping = folio->mapping; 1448 struct inode *inode = mapping->host; 1449 struct shmem_inode_info *info = SHMEM_I(inode); 1450 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1451 swp_entry_t swap; 1452 pgoff_t index; 1453 1454 /* 1455 * Our capabilities prevent regular writeback or sync from ever calling 1456 * shmem_writepage; but a stacking filesystem might use ->writepage of 1457 * its underlying filesystem, in which case tmpfs should write out to 1458 * swap only in response to memory pressure, and not for the writeback 1459 * threads or sync. 1460 */ 1461 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1462 goto redirty; 1463 1464 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1465 goto redirty; 1466 1467 if (!total_swap_pages) 1468 goto redirty; 1469 1470 /* 1471 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1472 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1473 * and its shmem_writeback() needs them to be split when swapping. 1474 */ 1475 if (folio_test_large(folio)) { 1476 /* Ensure the subpages are still dirty */ 1477 folio_test_set_dirty(folio); 1478 if (split_huge_page(page) < 0) 1479 goto redirty; 1480 folio = page_folio(page); 1481 folio_clear_dirty(folio); 1482 } 1483 1484 index = folio->index; 1485 1486 /* 1487 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1488 * value into swapfile.c, the only way we can correctly account for a 1489 * fallocated folio arriving here is now to initialize it and write it. 1490 * 1491 * That's okay for a folio already fallocated earlier, but if we have 1492 * not yet completed the fallocation, then (a) we want to keep track 1493 * of this folio in case we have to undo it, and (b) it may not be a 1494 * good idea to continue anyway, once we're pushing into swap. So 1495 * reactivate the folio, and let shmem_fallocate() quit when too many. 1496 */ 1497 if (!folio_test_uptodate(folio)) { 1498 if (inode->i_private) { 1499 struct shmem_falloc *shmem_falloc; 1500 spin_lock(&inode->i_lock); 1501 shmem_falloc = inode->i_private; 1502 if (shmem_falloc && 1503 !shmem_falloc->waitq && 1504 index >= shmem_falloc->start && 1505 index < shmem_falloc->next) 1506 shmem_falloc->nr_unswapped++; 1507 else 1508 shmem_falloc = NULL; 1509 spin_unlock(&inode->i_lock); 1510 if (shmem_falloc) 1511 goto redirty; 1512 } 1513 folio_zero_range(folio, 0, folio_size(folio)); 1514 flush_dcache_folio(folio); 1515 folio_mark_uptodate(folio); 1516 } 1517 1518 swap = folio_alloc_swap(folio); 1519 if (!swap.val) 1520 goto redirty; 1521 1522 /* 1523 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1524 * if it's not already there. Do it now before the folio is 1525 * moved to swap cache, when its pagelock no longer protects 1526 * the inode from eviction. But don't unlock the mutex until 1527 * we've incremented swapped, because shmem_unuse_inode() will 1528 * prune a !swapped inode from the swaplist under this mutex. 1529 */ 1530 mutex_lock(&shmem_swaplist_mutex); 1531 if (list_empty(&info->swaplist)) 1532 list_add(&info->swaplist, &shmem_swaplist); 1533 1534 if (add_to_swap_cache(folio, swap, 1535 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1536 NULL) == 0) { 1537 shmem_recalc_inode(inode, 0, 1); 1538 swap_shmem_alloc(swap); 1539 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1540 1541 mutex_unlock(&shmem_swaplist_mutex); 1542 BUG_ON(folio_mapped(folio)); 1543 swap_writepage(&folio->page, wbc); 1544 return 0; 1545 } 1546 1547 mutex_unlock(&shmem_swaplist_mutex); 1548 put_swap_folio(folio, swap); 1549 redirty: 1550 folio_mark_dirty(folio); 1551 if (wbc->for_reclaim) 1552 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1553 folio_unlock(folio); 1554 return 0; 1555 } 1556 1557 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1558 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1559 { 1560 char buffer[64]; 1561 1562 if (!mpol || mpol->mode == MPOL_DEFAULT) 1563 return; /* show nothing */ 1564 1565 mpol_to_str(buffer, sizeof(buffer), mpol); 1566 1567 seq_printf(seq, ",mpol=%s", buffer); 1568 } 1569 1570 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1571 { 1572 struct mempolicy *mpol = NULL; 1573 if (sbinfo->mpol) { 1574 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1575 mpol = sbinfo->mpol; 1576 mpol_get(mpol); 1577 raw_spin_unlock(&sbinfo->stat_lock); 1578 } 1579 return mpol; 1580 } 1581 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1582 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1583 { 1584 } 1585 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1586 { 1587 return NULL; 1588 } 1589 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1590 #ifndef CONFIG_NUMA 1591 #define vm_policy vm_private_data 1592 #endif 1593 1594 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1595 struct shmem_inode_info *info, pgoff_t index) 1596 { 1597 /* Create a pseudo vma that just contains the policy */ 1598 vma_init(vma, NULL); 1599 /* Bias interleave by inode number to distribute better across nodes */ 1600 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1601 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1602 } 1603 1604 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1605 { 1606 /* Drop reference taken by mpol_shared_policy_lookup() */ 1607 mpol_cond_put(vma->vm_policy); 1608 } 1609 1610 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1611 struct shmem_inode_info *info, pgoff_t index) 1612 { 1613 struct vm_area_struct pvma; 1614 struct page *page; 1615 struct vm_fault vmf = { 1616 .vma = &pvma, 1617 }; 1618 1619 shmem_pseudo_vma_init(&pvma, info, index); 1620 page = swap_cluster_readahead(swap, gfp, &vmf); 1621 shmem_pseudo_vma_destroy(&pvma); 1622 1623 if (!page) 1624 return NULL; 1625 return page_folio(page); 1626 } 1627 1628 /* 1629 * Make sure huge_gfp is always more limited than limit_gfp. 1630 * Some of the flags set permissions, while others set limitations. 1631 */ 1632 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1633 { 1634 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1635 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1636 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1637 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1638 1639 /* Allow allocations only from the originally specified zones. */ 1640 result |= zoneflags; 1641 1642 /* 1643 * Minimize the result gfp by taking the union with the deny flags, 1644 * and the intersection of the allow flags. 1645 */ 1646 result |= (limit_gfp & denyflags); 1647 result |= (huge_gfp & limit_gfp) & allowflags; 1648 1649 return result; 1650 } 1651 1652 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1653 struct shmem_inode_info *info, pgoff_t index) 1654 { 1655 struct vm_area_struct pvma; 1656 struct address_space *mapping = info->vfs_inode.i_mapping; 1657 pgoff_t hindex; 1658 struct folio *folio; 1659 1660 hindex = round_down(index, HPAGE_PMD_NR); 1661 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1662 XA_PRESENT)) 1663 return NULL; 1664 1665 shmem_pseudo_vma_init(&pvma, info, hindex); 1666 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1667 shmem_pseudo_vma_destroy(&pvma); 1668 if (!folio) 1669 count_vm_event(THP_FILE_FALLBACK); 1670 return folio; 1671 } 1672 1673 static struct folio *shmem_alloc_folio(gfp_t gfp, 1674 struct shmem_inode_info *info, pgoff_t index) 1675 { 1676 struct vm_area_struct pvma; 1677 struct folio *folio; 1678 1679 shmem_pseudo_vma_init(&pvma, info, index); 1680 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1681 shmem_pseudo_vma_destroy(&pvma); 1682 1683 return folio; 1684 } 1685 1686 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1687 pgoff_t index, bool huge) 1688 { 1689 struct shmem_inode_info *info = SHMEM_I(inode); 1690 struct folio *folio; 1691 int nr; 1692 int err; 1693 1694 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1695 huge = false; 1696 nr = huge ? HPAGE_PMD_NR : 1; 1697 1698 err = shmem_inode_acct_block(inode, nr); 1699 if (err) 1700 goto failed; 1701 1702 if (huge) 1703 folio = shmem_alloc_hugefolio(gfp, info, index); 1704 else 1705 folio = shmem_alloc_folio(gfp, info, index); 1706 if (folio) { 1707 __folio_set_locked(folio); 1708 __folio_set_swapbacked(folio); 1709 return folio; 1710 } 1711 1712 err = -ENOMEM; 1713 shmem_inode_unacct_blocks(inode, nr); 1714 failed: 1715 return ERR_PTR(err); 1716 } 1717 1718 /* 1719 * When a page is moved from swapcache to shmem filecache (either by the 1720 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1721 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1722 * ignorance of the mapping it belongs to. If that mapping has special 1723 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1724 * we may need to copy to a suitable page before moving to filecache. 1725 * 1726 * In a future release, this may well be extended to respect cpuset and 1727 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1728 * but for now it is a simple matter of zone. 1729 */ 1730 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1731 { 1732 return folio_zonenum(folio) > gfp_zone(gfp); 1733 } 1734 1735 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1736 struct shmem_inode_info *info, pgoff_t index) 1737 { 1738 struct folio *old, *new; 1739 struct address_space *swap_mapping; 1740 swp_entry_t entry; 1741 pgoff_t swap_index; 1742 int error; 1743 1744 old = *foliop; 1745 entry = old->swap; 1746 swap_index = swp_offset(entry); 1747 swap_mapping = swap_address_space(entry); 1748 1749 /* 1750 * We have arrived here because our zones are constrained, so don't 1751 * limit chance of success by further cpuset and node constraints. 1752 */ 1753 gfp &= ~GFP_CONSTRAINT_MASK; 1754 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1755 new = shmem_alloc_folio(gfp, info, index); 1756 if (!new) 1757 return -ENOMEM; 1758 1759 folio_get(new); 1760 folio_copy(new, old); 1761 flush_dcache_folio(new); 1762 1763 __folio_set_locked(new); 1764 __folio_set_swapbacked(new); 1765 folio_mark_uptodate(new); 1766 new->swap = entry; 1767 folio_set_swapcache(new); 1768 1769 /* 1770 * Our caller will very soon move newpage out of swapcache, but it's 1771 * a nice clean interface for us to replace oldpage by newpage there. 1772 */ 1773 xa_lock_irq(&swap_mapping->i_pages); 1774 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1775 if (!error) { 1776 mem_cgroup_migrate(old, new); 1777 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1778 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1779 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1780 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1781 } 1782 xa_unlock_irq(&swap_mapping->i_pages); 1783 1784 if (unlikely(error)) { 1785 /* 1786 * Is this possible? I think not, now that our callers check 1787 * both PageSwapCache and page_private after getting page lock; 1788 * but be defensive. Reverse old to newpage for clear and free. 1789 */ 1790 old = new; 1791 } else { 1792 folio_add_lru(new); 1793 *foliop = new; 1794 } 1795 1796 folio_clear_swapcache(old); 1797 old->private = NULL; 1798 1799 folio_unlock(old); 1800 folio_put_refs(old, 2); 1801 return error; 1802 } 1803 1804 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1805 struct folio *folio, swp_entry_t swap) 1806 { 1807 struct address_space *mapping = inode->i_mapping; 1808 swp_entry_t swapin_error; 1809 void *old; 1810 1811 swapin_error = make_poisoned_swp_entry(); 1812 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1813 swp_to_radix_entry(swap), 1814 swp_to_radix_entry(swapin_error), 0); 1815 if (old != swp_to_radix_entry(swap)) 1816 return; 1817 1818 folio_wait_writeback(folio); 1819 delete_from_swap_cache(folio); 1820 /* 1821 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1822 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1823 * in shmem_evict_inode(). 1824 */ 1825 shmem_recalc_inode(inode, -1, -1); 1826 swap_free(swap); 1827 } 1828 1829 /* 1830 * Swap in the folio pointed to by *foliop. 1831 * Caller has to make sure that *foliop contains a valid swapped folio. 1832 * Returns 0 and the folio in foliop if success. On failure, returns the 1833 * error code and NULL in *foliop. 1834 */ 1835 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1836 struct folio **foliop, enum sgp_type sgp, 1837 gfp_t gfp, struct vm_area_struct *vma, 1838 vm_fault_t *fault_type) 1839 { 1840 struct address_space *mapping = inode->i_mapping; 1841 struct shmem_inode_info *info = SHMEM_I(inode); 1842 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1843 struct swap_info_struct *si; 1844 struct folio *folio = NULL; 1845 swp_entry_t swap; 1846 int error; 1847 1848 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1849 swap = radix_to_swp_entry(*foliop); 1850 *foliop = NULL; 1851 1852 if (is_poisoned_swp_entry(swap)) 1853 return -EIO; 1854 1855 si = get_swap_device(swap); 1856 if (!si) { 1857 if (!shmem_confirm_swap(mapping, index, swap)) 1858 return -EEXIST; 1859 else 1860 return -EINVAL; 1861 } 1862 1863 /* Look it up and read it in.. */ 1864 folio = swap_cache_get_folio(swap, NULL, 0); 1865 if (!folio) { 1866 /* Or update major stats only when swapin succeeds?? */ 1867 if (fault_type) { 1868 *fault_type |= VM_FAULT_MAJOR; 1869 count_vm_event(PGMAJFAULT); 1870 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1871 } 1872 /* Here we actually start the io */ 1873 folio = shmem_swapin(swap, gfp, info, index); 1874 if (!folio) { 1875 error = -ENOMEM; 1876 goto failed; 1877 } 1878 } 1879 1880 /* We have to do this with folio locked to prevent races */ 1881 folio_lock(folio); 1882 if (!folio_test_swapcache(folio) || 1883 folio->swap.val != swap.val || 1884 !shmem_confirm_swap(mapping, index, swap)) { 1885 error = -EEXIST; 1886 goto unlock; 1887 } 1888 if (!folio_test_uptodate(folio)) { 1889 error = -EIO; 1890 goto failed; 1891 } 1892 folio_wait_writeback(folio); 1893 1894 /* 1895 * Some architectures may have to restore extra metadata to the 1896 * folio after reading from swap. 1897 */ 1898 arch_swap_restore(swap, folio); 1899 1900 if (shmem_should_replace_folio(folio, gfp)) { 1901 error = shmem_replace_folio(&folio, gfp, info, index); 1902 if (error) 1903 goto failed; 1904 } 1905 1906 error = shmem_add_to_page_cache(folio, mapping, index, 1907 swp_to_radix_entry(swap), gfp, 1908 charge_mm); 1909 if (error) 1910 goto failed; 1911 1912 shmem_recalc_inode(inode, 0, -1); 1913 1914 if (sgp == SGP_WRITE) 1915 folio_mark_accessed(folio); 1916 1917 delete_from_swap_cache(folio); 1918 folio_mark_dirty(folio); 1919 swap_free(swap); 1920 put_swap_device(si); 1921 1922 *foliop = folio; 1923 return 0; 1924 failed: 1925 if (!shmem_confirm_swap(mapping, index, swap)) 1926 error = -EEXIST; 1927 if (error == -EIO) 1928 shmem_set_folio_swapin_error(inode, index, folio, swap); 1929 unlock: 1930 if (folio) { 1931 folio_unlock(folio); 1932 folio_put(folio); 1933 } 1934 put_swap_device(si); 1935 1936 return error; 1937 } 1938 1939 /* 1940 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1941 * 1942 * If we allocate a new one we do not mark it dirty. That's up to the 1943 * vm. If we swap it in we mark it dirty since we also free the swap 1944 * entry since a page cannot live in both the swap and page cache. 1945 * 1946 * vma, vmf, and fault_type are only supplied by shmem_fault: 1947 * otherwise they are NULL. 1948 */ 1949 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1950 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1951 struct vm_area_struct *vma, struct vm_fault *vmf, 1952 vm_fault_t *fault_type) 1953 { 1954 struct address_space *mapping = inode->i_mapping; 1955 struct shmem_inode_info *info = SHMEM_I(inode); 1956 struct shmem_sb_info *sbinfo; 1957 struct mm_struct *charge_mm; 1958 struct folio *folio; 1959 pgoff_t hindex; 1960 gfp_t huge_gfp; 1961 int error; 1962 int once = 0; 1963 int alloced = 0; 1964 1965 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1966 return -EFBIG; 1967 repeat: 1968 if (sgp <= SGP_CACHE && 1969 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1970 return -EINVAL; 1971 } 1972 1973 sbinfo = SHMEM_SB(inode->i_sb); 1974 charge_mm = vma ? vma->vm_mm : NULL; 1975 1976 folio = filemap_get_entry(mapping, index); 1977 if (folio && vma && userfaultfd_minor(vma)) { 1978 if (!xa_is_value(folio)) 1979 folio_put(folio); 1980 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1981 return 0; 1982 } 1983 1984 if (xa_is_value(folio)) { 1985 error = shmem_swapin_folio(inode, index, &folio, 1986 sgp, gfp, vma, fault_type); 1987 if (error == -EEXIST) 1988 goto repeat; 1989 1990 *foliop = folio; 1991 return error; 1992 } 1993 1994 if (folio) { 1995 folio_lock(folio); 1996 1997 /* Has the folio been truncated or swapped out? */ 1998 if (unlikely(folio->mapping != mapping)) { 1999 folio_unlock(folio); 2000 folio_put(folio); 2001 goto repeat; 2002 } 2003 if (sgp == SGP_WRITE) 2004 folio_mark_accessed(folio); 2005 if (folio_test_uptodate(folio)) 2006 goto out; 2007 /* fallocated folio */ 2008 if (sgp != SGP_READ) 2009 goto clear; 2010 folio_unlock(folio); 2011 folio_put(folio); 2012 } 2013 2014 /* 2015 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2016 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2017 */ 2018 *foliop = NULL; 2019 if (sgp == SGP_READ) 2020 return 0; 2021 if (sgp == SGP_NOALLOC) 2022 return -ENOENT; 2023 2024 /* 2025 * Fast cache lookup and swap lookup did not find it: allocate. 2026 */ 2027 2028 if (vma && userfaultfd_missing(vma)) { 2029 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2030 return 0; 2031 } 2032 2033 if (!shmem_is_huge(inode, index, false, 2034 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 2035 goto alloc_nohuge; 2036 2037 huge_gfp = vma_thp_gfp_mask(vma); 2038 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2039 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 2040 if (IS_ERR(folio)) { 2041 alloc_nohuge: 2042 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 2043 } 2044 if (IS_ERR(folio)) { 2045 int retry = 5; 2046 2047 error = PTR_ERR(folio); 2048 folio = NULL; 2049 if (error != -ENOSPC) 2050 goto unlock; 2051 /* 2052 * Try to reclaim some space by splitting a large folio 2053 * beyond i_size on the filesystem. 2054 */ 2055 while (retry--) { 2056 int ret; 2057 2058 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 2059 if (ret == SHRINK_STOP) 2060 break; 2061 if (ret) 2062 goto alloc_nohuge; 2063 } 2064 goto unlock; 2065 } 2066 2067 hindex = round_down(index, folio_nr_pages(folio)); 2068 2069 if (sgp == SGP_WRITE) 2070 __folio_set_referenced(folio); 2071 2072 error = shmem_add_to_page_cache(folio, mapping, hindex, 2073 NULL, gfp & GFP_RECLAIM_MASK, 2074 charge_mm); 2075 if (error) 2076 goto unacct; 2077 2078 folio_add_lru(folio); 2079 shmem_recalc_inode(inode, folio_nr_pages(folio), 0); 2080 alloced = true; 2081 2082 if (folio_test_pmd_mappable(folio) && 2083 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2084 folio_next_index(folio) - 1) { 2085 /* 2086 * Part of the large folio is beyond i_size: subject 2087 * to shrink under memory pressure. 2088 */ 2089 spin_lock(&sbinfo->shrinklist_lock); 2090 /* 2091 * _careful to defend against unlocked access to 2092 * ->shrink_list in shmem_unused_huge_shrink() 2093 */ 2094 if (list_empty_careful(&info->shrinklist)) { 2095 list_add_tail(&info->shrinklist, 2096 &sbinfo->shrinklist); 2097 sbinfo->shrinklist_len++; 2098 } 2099 spin_unlock(&sbinfo->shrinklist_lock); 2100 } 2101 2102 /* 2103 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2104 */ 2105 if (sgp == SGP_FALLOC) 2106 sgp = SGP_WRITE; 2107 clear: 2108 /* 2109 * Let SGP_WRITE caller clear ends if write does not fill folio; 2110 * but SGP_FALLOC on a folio fallocated earlier must initialize 2111 * it now, lest undo on failure cancel our earlier guarantee. 2112 */ 2113 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2114 long i, n = folio_nr_pages(folio); 2115 2116 for (i = 0; i < n; i++) 2117 clear_highpage(folio_page(folio, i)); 2118 flush_dcache_folio(folio); 2119 folio_mark_uptodate(folio); 2120 } 2121 2122 /* Perhaps the file has been truncated since we checked */ 2123 if (sgp <= SGP_CACHE && 2124 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2125 if (alloced) { 2126 folio_clear_dirty(folio); 2127 filemap_remove_folio(folio); 2128 shmem_recalc_inode(inode, 0, 0); 2129 } 2130 error = -EINVAL; 2131 goto unlock; 2132 } 2133 out: 2134 *foliop = folio; 2135 return 0; 2136 2137 /* 2138 * Error recovery. 2139 */ 2140 unacct: 2141 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2142 2143 if (folio_test_large(folio)) { 2144 folio_unlock(folio); 2145 folio_put(folio); 2146 goto alloc_nohuge; 2147 } 2148 unlock: 2149 if (folio) { 2150 folio_unlock(folio); 2151 folio_put(folio); 2152 } 2153 if (error == -ENOSPC && !once++) { 2154 shmem_recalc_inode(inode, 0, 0); 2155 goto repeat; 2156 } 2157 if (error == -EEXIST) 2158 goto repeat; 2159 return error; 2160 } 2161 2162 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2163 enum sgp_type sgp) 2164 { 2165 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2166 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2167 } 2168 2169 /* 2170 * This is like autoremove_wake_function, but it removes the wait queue 2171 * entry unconditionally - even if something else had already woken the 2172 * target. 2173 */ 2174 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2175 { 2176 int ret = default_wake_function(wait, mode, sync, key); 2177 list_del_init(&wait->entry); 2178 return ret; 2179 } 2180 2181 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2182 { 2183 struct vm_area_struct *vma = vmf->vma; 2184 struct inode *inode = file_inode(vma->vm_file); 2185 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2186 struct folio *folio = NULL; 2187 int err; 2188 vm_fault_t ret = VM_FAULT_LOCKED; 2189 2190 /* 2191 * Trinity finds that probing a hole which tmpfs is punching can 2192 * prevent the hole-punch from ever completing: which in turn 2193 * locks writers out with its hold on i_rwsem. So refrain from 2194 * faulting pages into the hole while it's being punched. Although 2195 * shmem_undo_range() does remove the additions, it may be unable to 2196 * keep up, as each new page needs its own unmap_mapping_range() call, 2197 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2198 * 2199 * It does not matter if we sometimes reach this check just before the 2200 * hole-punch begins, so that one fault then races with the punch: 2201 * we just need to make racing faults a rare case. 2202 * 2203 * The implementation below would be much simpler if we just used a 2204 * standard mutex or completion: but we cannot take i_rwsem in fault, 2205 * and bloating every shmem inode for this unlikely case would be sad. 2206 */ 2207 if (unlikely(inode->i_private)) { 2208 struct shmem_falloc *shmem_falloc; 2209 2210 spin_lock(&inode->i_lock); 2211 shmem_falloc = inode->i_private; 2212 if (shmem_falloc && 2213 shmem_falloc->waitq && 2214 vmf->pgoff >= shmem_falloc->start && 2215 vmf->pgoff < shmem_falloc->next) { 2216 struct file *fpin; 2217 wait_queue_head_t *shmem_falloc_waitq; 2218 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2219 2220 ret = VM_FAULT_NOPAGE; 2221 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2222 if (fpin) 2223 ret = VM_FAULT_RETRY; 2224 2225 shmem_falloc_waitq = shmem_falloc->waitq; 2226 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2227 TASK_UNINTERRUPTIBLE); 2228 spin_unlock(&inode->i_lock); 2229 schedule(); 2230 2231 /* 2232 * shmem_falloc_waitq points into the shmem_fallocate() 2233 * stack of the hole-punching task: shmem_falloc_waitq 2234 * is usually invalid by the time we reach here, but 2235 * finish_wait() does not dereference it in that case; 2236 * though i_lock needed lest racing with wake_up_all(). 2237 */ 2238 spin_lock(&inode->i_lock); 2239 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2240 spin_unlock(&inode->i_lock); 2241 2242 if (fpin) 2243 fput(fpin); 2244 return ret; 2245 } 2246 spin_unlock(&inode->i_lock); 2247 } 2248 2249 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2250 gfp, vma, vmf, &ret); 2251 if (err) 2252 return vmf_error(err); 2253 if (folio) 2254 vmf->page = folio_file_page(folio, vmf->pgoff); 2255 return ret; 2256 } 2257 2258 unsigned long shmem_get_unmapped_area(struct file *file, 2259 unsigned long uaddr, unsigned long len, 2260 unsigned long pgoff, unsigned long flags) 2261 { 2262 unsigned long (*get_area)(struct file *, 2263 unsigned long, unsigned long, unsigned long, unsigned long); 2264 unsigned long addr; 2265 unsigned long offset; 2266 unsigned long inflated_len; 2267 unsigned long inflated_addr; 2268 unsigned long inflated_offset; 2269 2270 if (len > TASK_SIZE) 2271 return -ENOMEM; 2272 2273 get_area = current->mm->get_unmapped_area; 2274 addr = get_area(file, uaddr, len, pgoff, flags); 2275 2276 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2277 return addr; 2278 if (IS_ERR_VALUE(addr)) 2279 return addr; 2280 if (addr & ~PAGE_MASK) 2281 return addr; 2282 if (addr > TASK_SIZE - len) 2283 return addr; 2284 2285 if (shmem_huge == SHMEM_HUGE_DENY) 2286 return addr; 2287 if (len < HPAGE_PMD_SIZE) 2288 return addr; 2289 if (flags & MAP_FIXED) 2290 return addr; 2291 /* 2292 * Our priority is to support MAP_SHARED mapped hugely; 2293 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2294 * But if caller specified an address hint and we allocated area there 2295 * successfully, respect that as before. 2296 */ 2297 if (uaddr == addr) 2298 return addr; 2299 2300 if (shmem_huge != SHMEM_HUGE_FORCE) { 2301 struct super_block *sb; 2302 2303 if (file) { 2304 VM_BUG_ON(file->f_op != &shmem_file_operations); 2305 sb = file_inode(file)->i_sb; 2306 } else { 2307 /* 2308 * Called directly from mm/mmap.c, or drivers/char/mem.c 2309 * for "/dev/zero", to create a shared anonymous object. 2310 */ 2311 if (IS_ERR(shm_mnt)) 2312 return addr; 2313 sb = shm_mnt->mnt_sb; 2314 } 2315 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2316 return addr; 2317 } 2318 2319 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2320 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2321 return addr; 2322 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2323 return addr; 2324 2325 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2326 if (inflated_len > TASK_SIZE) 2327 return addr; 2328 if (inflated_len < len) 2329 return addr; 2330 2331 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2332 if (IS_ERR_VALUE(inflated_addr)) 2333 return addr; 2334 if (inflated_addr & ~PAGE_MASK) 2335 return addr; 2336 2337 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2338 inflated_addr += offset - inflated_offset; 2339 if (inflated_offset > offset) 2340 inflated_addr += HPAGE_PMD_SIZE; 2341 2342 if (inflated_addr > TASK_SIZE - len) 2343 return addr; 2344 return inflated_addr; 2345 } 2346 2347 #ifdef CONFIG_NUMA 2348 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2349 { 2350 struct inode *inode = file_inode(vma->vm_file); 2351 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2352 } 2353 2354 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2355 unsigned long addr) 2356 { 2357 struct inode *inode = file_inode(vma->vm_file); 2358 pgoff_t index; 2359 2360 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2361 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2362 } 2363 #endif 2364 2365 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2366 { 2367 struct inode *inode = file_inode(file); 2368 struct shmem_inode_info *info = SHMEM_I(inode); 2369 int retval = -ENOMEM; 2370 2371 /* 2372 * What serializes the accesses to info->flags? 2373 * ipc_lock_object() when called from shmctl_do_lock(), 2374 * no serialization needed when called from shm_destroy(). 2375 */ 2376 if (lock && !(info->flags & VM_LOCKED)) { 2377 if (!user_shm_lock(inode->i_size, ucounts)) 2378 goto out_nomem; 2379 info->flags |= VM_LOCKED; 2380 mapping_set_unevictable(file->f_mapping); 2381 } 2382 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2383 user_shm_unlock(inode->i_size, ucounts); 2384 info->flags &= ~VM_LOCKED; 2385 mapping_clear_unevictable(file->f_mapping); 2386 } 2387 retval = 0; 2388 2389 out_nomem: 2390 return retval; 2391 } 2392 2393 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2394 { 2395 struct inode *inode = file_inode(file); 2396 struct shmem_inode_info *info = SHMEM_I(inode); 2397 int ret; 2398 2399 ret = seal_check_future_write(info->seals, vma); 2400 if (ret) 2401 return ret; 2402 2403 file_accessed(file); 2404 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2405 if (inode->i_nlink) 2406 vma->vm_ops = &shmem_vm_ops; 2407 else 2408 vma->vm_ops = &shmem_anon_vm_ops; 2409 return 0; 2410 } 2411 2412 static int shmem_file_open(struct inode *inode, struct file *file) 2413 { 2414 file->f_mode |= FMODE_CAN_ODIRECT; 2415 return generic_file_open(inode, file); 2416 } 2417 2418 #ifdef CONFIG_TMPFS_XATTR 2419 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2420 2421 /* 2422 * chattr's fsflags are unrelated to extended attributes, 2423 * but tmpfs has chosen to enable them under the same config option. 2424 */ 2425 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2426 { 2427 unsigned int i_flags = 0; 2428 2429 if (fsflags & FS_NOATIME_FL) 2430 i_flags |= S_NOATIME; 2431 if (fsflags & FS_APPEND_FL) 2432 i_flags |= S_APPEND; 2433 if (fsflags & FS_IMMUTABLE_FL) 2434 i_flags |= S_IMMUTABLE; 2435 /* 2436 * But FS_NODUMP_FL does not require any action in i_flags. 2437 */ 2438 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2439 } 2440 #else 2441 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2442 { 2443 } 2444 #define shmem_initxattrs NULL 2445 #endif 2446 2447 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2448 { 2449 return &SHMEM_I(inode)->dir_offsets; 2450 } 2451 2452 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2453 struct super_block *sb, 2454 struct inode *dir, umode_t mode, 2455 dev_t dev, unsigned long flags) 2456 { 2457 struct inode *inode; 2458 struct shmem_inode_info *info; 2459 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2460 ino_t ino; 2461 int err; 2462 2463 err = shmem_reserve_inode(sb, &ino); 2464 if (err) 2465 return ERR_PTR(err); 2466 2467 2468 inode = new_inode(sb); 2469 if (!inode) { 2470 shmem_free_inode(sb, 0); 2471 return ERR_PTR(-ENOSPC); 2472 } 2473 2474 inode->i_ino = ino; 2475 inode_init_owner(idmap, inode, dir, mode); 2476 inode->i_blocks = 0; 2477 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 2478 inode->i_generation = get_random_u32(); 2479 info = SHMEM_I(inode); 2480 memset(info, 0, (char *)inode - (char *)info); 2481 spin_lock_init(&info->lock); 2482 atomic_set(&info->stop_eviction, 0); 2483 info->seals = F_SEAL_SEAL; 2484 info->flags = flags & VM_NORESERVE; 2485 info->i_crtime = inode->i_mtime; 2486 info->fsflags = (dir == NULL) ? 0 : 2487 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2488 if (info->fsflags) 2489 shmem_set_inode_flags(inode, info->fsflags); 2490 INIT_LIST_HEAD(&info->shrinklist); 2491 INIT_LIST_HEAD(&info->swaplist); 2492 INIT_LIST_HEAD(&info->swaplist); 2493 if (sbinfo->noswap) 2494 mapping_set_unevictable(inode->i_mapping); 2495 simple_xattrs_init(&info->xattrs); 2496 cache_no_acl(inode); 2497 mapping_set_large_folios(inode->i_mapping); 2498 2499 switch (mode & S_IFMT) { 2500 default: 2501 inode->i_op = &shmem_special_inode_operations; 2502 init_special_inode(inode, mode, dev); 2503 break; 2504 case S_IFREG: 2505 inode->i_mapping->a_ops = &shmem_aops; 2506 inode->i_op = &shmem_inode_operations; 2507 inode->i_fop = &shmem_file_operations; 2508 mpol_shared_policy_init(&info->policy, 2509 shmem_get_sbmpol(sbinfo)); 2510 break; 2511 case S_IFDIR: 2512 inc_nlink(inode); 2513 /* Some things misbehave if size == 0 on a directory */ 2514 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2515 inode->i_op = &shmem_dir_inode_operations; 2516 inode->i_fop = &simple_offset_dir_operations; 2517 simple_offset_init(shmem_get_offset_ctx(inode)); 2518 break; 2519 case S_IFLNK: 2520 /* 2521 * Must not load anything in the rbtree, 2522 * mpol_free_shared_policy will not be called. 2523 */ 2524 mpol_shared_policy_init(&info->policy, NULL); 2525 break; 2526 } 2527 2528 lockdep_annotate_inode_mutex_key(inode); 2529 return inode; 2530 } 2531 2532 #ifdef CONFIG_TMPFS_QUOTA 2533 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2534 struct super_block *sb, struct inode *dir, 2535 umode_t mode, dev_t dev, unsigned long flags) 2536 { 2537 int err; 2538 struct inode *inode; 2539 2540 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2541 if (IS_ERR(inode)) 2542 return inode; 2543 2544 err = dquot_initialize(inode); 2545 if (err) 2546 goto errout; 2547 2548 err = dquot_alloc_inode(inode); 2549 if (err) { 2550 dquot_drop(inode); 2551 goto errout; 2552 } 2553 return inode; 2554 2555 errout: 2556 inode->i_flags |= S_NOQUOTA; 2557 iput(inode); 2558 return ERR_PTR(err); 2559 } 2560 #else 2561 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2562 struct super_block *sb, struct inode *dir, 2563 umode_t mode, dev_t dev, unsigned long flags) 2564 { 2565 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2566 } 2567 #endif /* CONFIG_TMPFS_QUOTA */ 2568 2569 #ifdef CONFIG_USERFAULTFD 2570 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2571 struct vm_area_struct *dst_vma, 2572 unsigned long dst_addr, 2573 unsigned long src_addr, 2574 uffd_flags_t flags, 2575 struct folio **foliop) 2576 { 2577 struct inode *inode = file_inode(dst_vma->vm_file); 2578 struct shmem_inode_info *info = SHMEM_I(inode); 2579 struct address_space *mapping = inode->i_mapping; 2580 gfp_t gfp = mapping_gfp_mask(mapping); 2581 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2582 void *page_kaddr; 2583 struct folio *folio; 2584 int ret; 2585 pgoff_t max_off; 2586 2587 if (shmem_inode_acct_block(inode, 1)) { 2588 /* 2589 * We may have got a page, returned -ENOENT triggering a retry, 2590 * and now we find ourselves with -ENOMEM. Release the page, to 2591 * avoid a BUG_ON in our caller. 2592 */ 2593 if (unlikely(*foliop)) { 2594 folio_put(*foliop); 2595 *foliop = NULL; 2596 } 2597 return -ENOMEM; 2598 } 2599 2600 if (!*foliop) { 2601 ret = -ENOMEM; 2602 folio = shmem_alloc_folio(gfp, info, pgoff); 2603 if (!folio) 2604 goto out_unacct_blocks; 2605 2606 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2607 page_kaddr = kmap_local_folio(folio, 0); 2608 /* 2609 * The read mmap_lock is held here. Despite the 2610 * mmap_lock being read recursive a deadlock is still 2611 * possible if a writer has taken a lock. For example: 2612 * 2613 * process A thread 1 takes read lock on own mmap_lock 2614 * process A thread 2 calls mmap, blocks taking write lock 2615 * process B thread 1 takes page fault, read lock on own mmap lock 2616 * process B thread 2 calls mmap, blocks taking write lock 2617 * process A thread 1 blocks taking read lock on process B 2618 * process B thread 1 blocks taking read lock on process A 2619 * 2620 * Disable page faults to prevent potential deadlock 2621 * and retry the copy outside the mmap_lock. 2622 */ 2623 pagefault_disable(); 2624 ret = copy_from_user(page_kaddr, 2625 (const void __user *)src_addr, 2626 PAGE_SIZE); 2627 pagefault_enable(); 2628 kunmap_local(page_kaddr); 2629 2630 /* fallback to copy_from_user outside mmap_lock */ 2631 if (unlikely(ret)) { 2632 *foliop = folio; 2633 ret = -ENOENT; 2634 /* don't free the page */ 2635 goto out_unacct_blocks; 2636 } 2637 2638 flush_dcache_folio(folio); 2639 } else { /* ZEROPAGE */ 2640 clear_user_highpage(&folio->page, dst_addr); 2641 } 2642 } else { 2643 folio = *foliop; 2644 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2645 *foliop = NULL; 2646 } 2647 2648 VM_BUG_ON(folio_test_locked(folio)); 2649 VM_BUG_ON(folio_test_swapbacked(folio)); 2650 __folio_set_locked(folio); 2651 __folio_set_swapbacked(folio); 2652 __folio_mark_uptodate(folio); 2653 2654 ret = -EFAULT; 2655 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2656 if (unlikely(pgoff >= max_off)) 2657 goto out_release; 2658 2659 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2660 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2661 if (ret) 2662 goto out_release; 2663 2664 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2665 &folio->page, true, flags); 2666 if (ret) 2667 goto out_delete_from_cache; 2668 2669 shmem_recalc_inode(inode, 1, 0); 2670 folio_unlock(folio); 2671 return 0; 2672 out_delete_from_cache: 2673 filemap_remove_folio(folio); 2674 out_release: 2675 folio_unlock(folio); 2676 folio_put(folio); 2677 out_unacct_blocks: 2678 shmem_inode_unacct_blocks(inode, 1); 2679 return ret; 2680 } 2681 #endif /* CONFIG_USERFAULTFD */ 2682 2683 #ifdef CONFIG_TMPFS 2684 static const struct inode_operations shmem_symlink_inode_operations; 2685 static const struct inode_operations shmem_short_symlink_operations; 2686 2687 static int 2688 shmem_write_begin(struct file *file, struct address_space *mapping, 2689 loff_t pos, unsigned len, 2690 struct page **pagep, void **fsdata) 2691 { 2692 struct inode *inode = mapping->host; 2693 struct shmem_inode_info *info = SHMEM_I(inode); 2694 pgoff_t index = pos >> PAGE_SHIFT; 2695 struct folio *folio; 2696 int ret = 0; 2697 2698 /* i_rwsem is held by caller */ 2699 if (unlikely(info->seals & (F_SEAL_GROW | 2700 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2701 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2702 return -EPERM; 2703 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2704 return -EPERM; 2705 } 2706 2707 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2708 2709 if (ret) 2710 return ret; 2711 2712 *pagep = folio_file_page(folio, index); 2713 if (PageHWPoison(*pagep)) { 2714 folio_unlock(folio); 2715 folio_put(folio); 2716 *pagep = NULL; 2717 return -EIO; 2718 } 2719 2720 return 0; 2721 } 2722 2723 static int 2724 shmem_write_end(struct file *file, struct address_space *mapping, 2725 loff_t pos, unsigned len, unsigned copied, 2726 struct page *page, void *fsdata) 2727 { 2728 struct folio *folio = page_folio(page); 2729 struct inode *inode = mapping->host; 2730 2731 if (pos + copied > inode->i_size) 2732 i_size_write(inode, pos + copied); 2733 2734 if (!folio_test_uptodate(folio)) { 2735 if (copied < folio_size(folio)) { 2736 size_t from = offset_in_folio(folio, pos); 2737 folio_zero_segments(folio, 0, from, 2738 from + copied, folio_size(folio)); 2739 } 2740 folio_mark_uptodate(folio); 2741 } 2742 folio_mark_dirty(folio); 2743 folio_unlock(folio); 2744 folio_put(folio); 2745 2746 return copied; 2747 } 2748 2749 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2750 { 2751 struct file *file = iocb->ki_filp; 2752 struct inode *inode = file_inode(file); 2753 struct address_space *mapping = inode->i_mapping; 2754 pgoff_t index; 2755 unsigned long offset; 2756 int error = 0; 2757 ssize_t retval = 0; 2758 loff_t *ppos = &iocb->ki_pos; 2759 2760 index = *ppos >> PAGE_SHIFT; 2761 offset = *ppos & ~PAGE_MASK; 2762 2763 for (;;) { 2764 struct folio *folio = NULL; 2765 struct page *page = NULL; 2766 pgoff_t end_index; 2767 unsigned long nr, ret; 2768 loff_t i_size = i_size_read(inode); 2769 2770 end_index = i_size >> PAGE_SHIFT; 2771 if (index > end_index) 2772 break; 2773 if (index == end_index) { 2774 nr = i_size & ~PAGE_MASK; 2775 if (nr <= offset) 2776 break; 2777 } 2778 2779 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2780 if (error) { 2781 if (error == -EINVAL) 2782 error = 0; 2783 break; 2784 } 2785 if (folio) { 2786 folio_unlock(folio); 2787 2788 page = folio_file_page(folio, index); 2789 if (PageHWPoison(page)) { 2790 folio_put(folio); 2791 error = -EIO; 2792 break; 2793 } 2794 } 2795 2796 /* 2797 * We must evaluate after, since reads (unlike writes) 2798 * are called without i_rwsem protection against truncate 2799 */ 2800 nr = PAGE_SIZE; 2801 i_size = i_size_read(inode); 2802 end_index = i_size >> PAGE_SHIFT; 2803 if (index == end_index) { 2804 nr = i_size & ~PAGE_MASK; 2805 if (nr <= offset) { 2806 if (folio) 2807 folio_put(folio); 2808 break; 2809 } 2810 } 2811 nr -= offset; 2812 2813 if (folio) { 2814 /* 2815 * If users can be writing to this page using arbitrary 2816 * virtual addresses, take care about potential aliasing 2817 * before reading the page on the kernel side. 2818 */ 2819 if (mapping_writably_mapped(mapping)) 2820 flush_dcache_page(page); 2821 /* 2822 * Mark the page accessed if we read the beginning. 2823 */ 2824 if (!offset) 2825 folio_mark_accessed(folio); 2826 /* 2827 * Ok, we have the page, and it's up-to-date, so 2828 * now we can copy it to user space... 2829 */ 2830 ret = copy_page_to_iter(page, offset, nr, to); 2831 folio_put(folio); 2832 2833 } else if (user_backed_iter(to)) { 2834 /* 2835 * Copy to user tends to be so well optimized, but 2836 * clear_user() not so much, that it is noticeably 2837 * faster to copy the zero page instead of clearing. 2838 */ 2839 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2840 } else { 2841 /* 2842 * But submitting the same page twice in a row to 2843 * splice() - or others? - can result in confusion: 2844 * so don't attempt that optimization on pipes etc. 2845 */ 2846 ret = iov_iter_zero(nr, to); 2847 } 2848 2849 retval += ret; 2850 offset += ret; 2851 index += offset >> PAGE_SHIFT; 2852 offset &= ~PAGE_MASK; 2853 2854 if (!iov_iter_count(to)) 2855 break; 2856 if (ret < nr) { 2857 error = -EFAULT; 2858 break; 2859 } 2860 cond_resched(); 2861 } 2862 2863 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2864 file_accessed(file); 2865 return retval ? retval : error; 2866 } 2867 2868 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2869 { 2870 struct file *file = iocb->ki_filp; 2871 struct inode *inode = file->f_mapping->host; 2872 ssize_t ret; 2873 2874 inode_lock(inode); 2875 ret = generic_write_checks(iocb, from); 2876 if (ret <= 0) 2877 goto unlock; 2878 ret = file_remove_privs(file); 2879 if (ret) 2880 goto unlock; 2881 ret = file_update_time(file); 2882 if (ret) 2883 goto unlock; 2884 ret = generic_perform_write(iocb, from); 2885 unlock: 2886 inode_unlock(inode); 2887 return ret; 2888 } 2889 2890 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2891 struct pipe_buffer *buf) 2892 { 2893 return true; 2894 } 2895 2896 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2897 struct pipe_buffer *buf) 2898 { 2899 } 2900 2901 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2902 struct pipe_buffer *buf) 2903 { 2904 return false; 2905 } 2906 2907 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2908 .release = zero_pipe_buf_release, 2909 .try_steal = zero_pipe_buf_try_steal, 2910 .get = zero_pipe_buf_get, 2911 }; 2912 2913 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2914 loff_t fpos, size_t size) 2915 { 2916 size_t offset = fpos & ~PAGE_MASK; 2917 2918 size = min_t(size_t, size, PAGE_SIZE - offset); 2919 2920 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2921 struct pipe_buffer *buf = pipe_head_buf(pipe); 2922 2923 *buf = (struct pipe_buffer) { 2924 .ops = &zero_pipe_buf_ops, 2925 .page = ZERO_PAGE(0), 2926 .offset = offset, 2927 .len = size, 2928 }; 2929 pipe->head++; 2930 } 2931 2932 return size; 2933 } 2934 2935 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2936 struct pipe_inode_info *pipe, 2937 size_t len, unsigned int flags) 2938 { 2939 struct inode *inode = file_inode(in); 2940 struct address_space *mapping = inode->i_mapping; 2941 struct folio *folio = NULL; 2942 size_t total_spliced = 0, used, npages, n, part; 2943 loff_t isize; 2944 int error = 0; 2945 2946 /* Work out how much data we can actually add into the pipe */ 2947 used = pipe_occupancy(pipe->head, pipe->tail); 2948 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2949 len = min_t(size_t, len, npages * PAGE_SIZE); 2950 2951 do { 2952 if (*ppos >= i_size_read(inode)) 2953 break; 2954 2955 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2956 SGP_READ); 2957 if (error) { 2958 if (error == -EINVAL) 2959 error = 0; 2960 break; 2961 } 2962 if (folio) { 2963 folio_unlock(folio); 2964 2965 if (folio_test_hwpoison(folio) || 2966 (folio_test_large(folio) && 2967 folio_test_has_hwpoisoned(folio))) { 2968 error = -EIO; 2969 break; 2970 } 2971 } 2972 2973 /* 2974 * i_size must be checked after we know the pages are Uptodate. 2975 * 2976 * Checking i_size after the check allows us to calculate 2977 * the correct value for "nr", which means the zero-filled 2978 * part of the page is not copied back to userspace (unless 2979 * another truncate extends the file - this is desired though). 2980 */ 2981 isize = i_size_read(inode); 2982 if (unlikely(*ppos >= isize)) 2983 break; 2984 part = min_t(loff_t, isize - *ppos, len); 2985 2986 if (folio) { 2987 /* 2988 * If users can be writing to this page using arbitrary 2989 * virtual addresses, take care about potential aliasing 2990 * before reading the page on the kernel side. 2991 */ 2992 if (mapping_writably_mapped(mapping)) 2993 flush_dcache_folio(folio); 2994 folio_mark_accessed(folio); 2995 /* 2996 * Ok, we have the page, and it's up-to-date, so we can 2997 * now splice it into the pipe. 2998 */ 2999 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3000 folio_put(folio); 3001 folio = NULL; 3002 } else { 3003 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3004 } 3005 3006 if (!n) 3007 break; 3008 len -= n; 3009 total_spliced += n; 3010 *ppos += n; 3011 in->f_ra.prev_pos = *ppos; 3012 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3013 break; 3014 3015 cond_resched(); 3016 } while (len); 3017 3018 if (folio) 3019 folio_put(folio); 3020 3021 file_accessed(in); 3022 return total_spliced ? total_spliced : error; 3023 } 3024 3025 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3026 { 3027 struct address_space *mapping = file->f_mapping; 3028 struct inode *inode = mapping->host; 3029 3030 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3031 return generic_file_llseek_size(file, offset, whence, 3032 MAX_LFS_FILESIZE, i_size_read(inode)); 3033 if (offset < 0) 3034 return -ENXIO; 3035 3036 inode_lock(inode); 3037 /* We're holding i_rwsem so we can access i_size directly */ 3038 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3039 if (offset >= 0) 3040 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3041 inode_unlock(inode); 3042 return offset; 3043 } 3044 3045 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3046 loff_t len) 3047 { 3048 struct inode *inode = file_inode(file); 3049 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3050 struct shmem_inode_info *info = SHMEM_I(inode); 3051 struct shmem_falloc shmem_falloc; 3052 pgoff_t start, index, end, undo_fallocend; 3053 int error; 3054 3055 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3056 return -EOPNOTSUPP; 3057 3058 inode_lock(inode); 3059 3060 if (mode & FALLOC_FL_PUNCH_HOLE) { 3061 struct address_space *mapping = file->f_mapping; 3062 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3063 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3064 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3065 3066 /* protected by i_rwsem */ 3067 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3068 error = -EPERM; 3069 goto out; 3070 } 3071 3072 shmem_falloc.waitq = &shmem_falloc_waitq; 3073 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3074 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3075 spin_lock(&inode->i_lock); 3076 inode->i_private = &shmem_falloc; 3077 spin_unlock(&inode->i_lock); 3078 3079 if ((u64)unmap_end > (u64)unmap_start) 3080 unmap_mapping_range(mapping, unmap_start, 3081 1 + unmap_end - unmap_start, 0); 3082 shmem_truncate_range(inode, offset, offset + len - 1); 3083 /* No need to unmap again: hole-punching leaves COWed pages */ 3084 3085 spin_lock(&inode->i_lock); 3086 inode->i_private = NULL; 3087 wake_up_all(&shmem_falloc_waitq); 3088 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3089 spin_unlock(&inode->i_lock); 3090 error = 0; 3091 goto out; 3092 } 3093 3094 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3095 error = inode_newsize_ok(inode, offset + len); 3096 if (error) 3097 goto out; 3098 3099 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3100 error = -EPERM; 3101 goto out; 3102 } 3103 3104 start = offset >> PAGE_SHIFT; 3105 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3106 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3107 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3108 error = -ENOSPC; 3109 goto out; 3110 } 3111 3112 shmem_falloc.waitq = NULL; 3113 shmem_falloc.start = start; 3114 shmem_falloc.next = start; 3115 shmem_falloc.nr_falloced = 0; 3116 shmem_falloc.nr_unswapped = 0; 3117 spin_lock(&inode->i_lock); 3118 inode->i_private = &shmem_falloc; 3119 spin_unlock(&inode->i_lock); 3120 3121 /* 3122 * info->fallocend is only relevant when huge pages might be 3123 * involved: to prevent split_huge_page() freeing fallocated 3124 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3125 */ 3126 undo_fallocend = info->fallocend; 3127 if (info->fallocend < end) 3128 info->fallocend = end; 3129 3130 for (index = start; index < end; ) { 3131 struct folio *folio; 3132 3133 /* 3134 * Good, the fallocate(2) manpage permits EINTR: we may have 3135 * been interrupted because we are using up too much memory. 3136 */ 3137 if (signal_pending(current)) 3138 error = -EINTR; 3139 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3140 error = -ENOMEM; 3141 else 3142 error = shmem_get_folio(inode, index, &folio, 3143 SGP_FALLOC); 3144 if (error) { 3145 info->fallocend = undo_fallocend; 3146 /* Remove the !uptodate folios we added */ 3147 if (index > start) { 3148 shmem_undo_range(inode, 3149 (loff_t)start << PAGE_SHIFT, 3150 ((loff_t)index << PAGE_SHIFT) - 1, true); 3151 } 3152 goto undone; 3153 } 3154 3155 /* 3156 * Here is a more important optimization than it appears: 3157 * a second SGP_FALLOC on the same large folio will clear it, 3158 * making it uptodate and un-undoable if we fail later. 3159 */ 3160 index = folio_next_index(folio); 3161 /* Beware 32-bit wraparound */ 3162 if (!index) 3163 index--; 3164 3165 /* 3166 * Inform shmem_writepage() how far we have reached. 3167 * No need for lock or barrier: we have the page lock. 3168 */ 3169 if (!folio_test_uptodate(folio)) 3170 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3171 shmem_falloc.next = index; 3172 3173 /* 3174 * If !uptodate, leave it that way so that freeable folios 3175 * can be recognized if we need to rollback on error later. 3176 * But mark it dirty so that memory pressure will swap rather 3177 * than free the folios we are allocating (and SGP_CACHE folios 3178 * might still be clean: we now need to mark those dirty too). 3179 */ 3180 folio_mark_dirty(folio); 3181 folio_unlock(folio); 3182 folio_put(folio); 3183 cond_resched(); 3184 } 3185 3186 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3187 i_size_write(inode, offset + len); 3188 undone: 3189 spin_lock(&inode->i_lock); 3190 inode->i_private = NULL; 3191 spin_unlock(&inode->i_lock); 3192 out: 3193 if (!error) 3194 file_modified(file); 3195 inode_unlock(inode); 3196 return error; 3197 } 3198 3199 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3200 { 3201 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3202 3203 buf->f_type = TMPFS_MAGIC; 3204 buf->f_bsize = PAGE_SIZE; 3205 buf->f_namelen = NAME_MAX; 3206 if (sbinfo->max_blocks) { 3207 buf->f_blocks = sbinfo->max_blocks; 3208 buf->f_bavail = 3209 buf->f_bfree = sbinfo->max_blocks - 3210 percpu_counter_sum(&sbinfo->used_blocks); 3211 } 3212 if (sbinfo->max_inodes) { 3213 buf->f_files = sbinfo->max_inodes; 3214 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3215 } 3216 /* else leave those fields 0 like simple_statfs */ 3217 3218 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3219 3220 return 0; 3221 } 3222 3223 /* 3224 * File creation. Allocate an inode, and we're done.. 3225 */ 3226 static int 3227 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3228 struct dentry *dentry, umode_t mode, dev_t dev) 3229 { 3230 struct inode *inode; 3231 int error; 3232 3233 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3234 if (IS_ERR(inode)) 3235 return PTR_ERR(inode); 3236 3237 error = simple_acl_create(dir, inode); 3238 if (error) 3239 goto out_iput; 3240 error = security_inode_init_security(inode, dir, 3241 &dentry->d_name, 3242 shmem_initxattrs, NULL); 3243 if (error && error != -EOPNOTSUPP) 3244 goto out_iput; 3245 3246 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3247 if (error) 3248 goto out_iput; 3249 3250 dir->i_size += BOGO_DIRENT_SIZE; 3251 dir->i_mtime = inode_set_ctime_current(dir); 3252 inode_inc_iversion(dir); 3253 d_instantiate(dentry, inode); 3254 dget(dentry); /* Extra count - pin the dentry in core */ 3255 return error; 3256 3257 out_iput: 3258 iput(inode); 3259 return error; 3260 } 3261 3262 static int 3263 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3264 struct file *file, umode_t mode) 3265 { 3266 struct inode *inode; 3267 int error; 3268 3269 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3270 3271 if (IS_ERR(inode)) { 3272 error = PTR_ERR(inode); 3273 goto err_out; 3274 } 3275 3276 error = security_inode_init_security(inode, dir, 3277 NULL, 3278 shmem_initxattrs, NULL); 3279 if (error && error != -EOPNOTSUPP) 3280 goto out_iput; 3281 error = simple_acl_create(dir, inode); 3282 if (error) 3283 goto out_iput; 3284 d_tmpfile(file, inode); 3285 3286 err_out: 3287 return finish_open_simple(file, error); 3288 out_iput: 3289 iput(inode); 3290 return error; 3291 } 3292 3293 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3294 struct dentry *dentry, umode_t mode) 3295 { 3296 int error; 3297 3298 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3299 if (error) 3300 return error; 3301 inc_nlink(dir); 3302 return 0; 3303 } 3304 3305 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3306 struct dentry *dentry, umode_t mode, bool excl) 3307 { 3308 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3309 } 3310 3311 /* 3312 * Link a file.. 3313 */ 3314 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3315 { 3316 struct inode *inode = d_inode(old_dentry); 3317 int ret = 0; 3318 3319 /* 3320 * No ordinary (disk based) filesystem counts links as inodes; 3321 * but each new link needs a new dentry, pinning lowmem, and 3322 * tmpfs dentries cannot be pruned until they are unlinked. 3323 * But if an O_TMPFILE file is linked into the tmpfs, the 3324 * first link must skip that, to get the accounting right. 3325 */ 3326 if (inode->i_nlink) { 3327 ret = shmem_reserve_inode(inode->i_sb, NULL); 3328 if (ret) 3329 goto out; 3330 } 3331 3332 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3333 if (ret) { 3334 if (inode->i_nlink) 3335 shmem_free_inode(inode->i_sb, 0); 3336 goto out; 3337 } 3338 3339 dir->i_size += BOGO_DIRENT_SIZE; 3340 dir->i_mtime = inode_set_ctime_to_ts(dir, 3341 inode_set_ctime_current(inode)); 3342 inode_inc_iversion(dir); 3343 inc_nlink(inode); 3344 ihold(inode); /* New dentry reference */ 3345 dget(dentry); /* Extra pinning count for the created dentry */ 3346 d_instantiate(dentry, inode); 3347 out: 3348 return ret; 3349 } 3350 3351 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3352 { 3353 struct inode *inode = d_inode(dentry); 3354 3355 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3356 shmem_free_inode(inode->i_sb, 0); 3357 3358 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3359 3360 dir->i_size -= BOGO_DIRENT_SIZE; 3361 dir->i_mtime = inode_set_ctime_to_ts(dir, 3362 inode_set_ctime_current(inode)); 3363 inode_inc_iversion(dir); 3364 drop_nlink(inode); 3365 dput(dentry); /* Undo the count from "create" - this does all the work */ 3366 return 0; 3367 } 3368 3369 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3370 { 3371 if (!simple_empty(dentry)) 3372 return -ENOTEMPTY; 3373 3374 drop_nlink(d_inode(dentry)); 3375 drop_nlink(dir); 3376 return shmem_unlink(dir, dentry); 3377 } 3378 3379 static int shmem_whiteout(struct mnt_idmap *idmap, 3380 struct inode *old_dir, struct dentry *old_dentry) 3381 { 3382 struct dentry *whiteout; 3383 int error; 3384 3385 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3386 if (!whiteout) 3387 return -ENOMEM; 3388 3389 error = shmem_mknod(idmap, old_dir, whiteout, 3390 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3391 dput(whiteout); 3392 if (error) 3393 return error; 3394 3395 /* 3396 * Cheat and hash the whiteout while the old dentry is still in 3397 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3398 * 3399 * d_lookup() will consistently find one of them at this point, 3400 * not sure which one, but that isn't even important. 3401 */ 3402 d_rehash(whiteout); 3403 return 0; 3404 } 3405 3406 /* 3407 * The VFS layer already does all the dentry stuff for rename, 3408 * we just have to decrement the usage count for the target if 3409 * it exists so that the VFS layer correctly free's it when it 3410 * gets overwritten. 3411 */ 3412 static int shmem_rename2(struct mnt_idmap *idmap, 3413 struct inode *old_dir, struct dentry *old_dentry, 3414 struct inode *new_dir, struct dentry *new_dentry, 3415 unsigned int flags) 3416 { 3417 struct inode *inode = d_inode(old_dentry); 3418 int they_are_dirs = S_ISDIR(inode->i_mode); 3419 int error; 3420 3421 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3422 return -EINVAL; 3423 3424 if (flags & RENAME_EXCHANGE) 3425 return simple_offset_rename_exchange(old_dir, old_dentry, 3426 new_dir, new_dentry); 3427 3428 if (!simple_empty(new_dentry)) 3429 return -ENOTEMPTY; 3430 3431 if (flags & RENAME_WHITEOUT) { 3432 error = shmem_whiteout(idmap, old_dir, old_dentry); 3433 if (error) 3434 return error; 3435 } 3436 3437 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3438 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3439 if (error) 3440 return error; 3441 3442 if (d_really_is_positive(new_dentry)) { 3443 (void) shmem_unlink(new_dir, new_dentry); 3444 if (they_are_dirs) { 3445 drop_nlink(d_inode(new_dentry)); 3446 drop_nlink(old_dir); 3447 } 3448 } else if (they_are_dirs) { 3449 drop_nlink(old_dir); 3450 inc_nlink(new_dir); 3451 } 3452 3453 old_dir->i_size -= BOGO_DIRENT_SIZE; 3454 new_dir->i_size += BOGO_DIRENT_SIZE; 3455 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3456 inode_inc_iversion(old_dir); 3457 inode_inc_iversion(new_dir); 3458 return 0; 3459 } 3460 3461 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3462 struct dentry *dentry, const char *symname) 3463 { 3464 int error; 3465 int len; 3466 struct inode *inode; 3467 struct folio *folio; 3468 3469 len = strlen(symname) + 1; 3470 if (len > PAGE_SIZE) 3471 return -ENAMETOOLONG; 3472 3473 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3474 VM_NORESERVE); 3475 3476 if (IS_ERR(inode)) 3477 return PTR_ERR(inode); 3478 3479 error = security_inode_init_security(inode, dir, &dentry->d_name, 3480 shmem_initxattrs, NULL); 3481 if (error && error != -EOPNOTSUPP) 3482 goto out_iput; 3483 3484 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3485 if (error) 3486 goto out_iput; 3487 3488 inode->i_size = len-1; 3489 if (len <= SHORT_SYMLINK_LEN) { 3490 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3491 if (!inode->i_link) { 3492 error = -ENOMEM; 3493 goto out_remove_offset; 3494 } 3495 inode->i_op = &shmem_short_symlink_operations; 3496 } else { 3497 inode_nohighmem(inode); 3498 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3499 if (error) 3500 goto out_remove_offset; 3501 inode->i_mapping->a_ops = &shmem_aops; 3502 inode->i_op = &shmem_symlink_inode_operations; 3503 memcpy(folio_address(folio), symname, len); 3504 folio_mark_uptodate(folio); 3505 folio_mark_dirty(folio); 3506 folio_unlock(folio); 3507 folio_put(folio); 3508 } 3509 dir->i_size += BOGO_DIRENT_SIZE; 3510 dir->i_mtime = inode_set_ctime_current(dir); 3511 inode_inc_iversion(dir); 3512 d_instantiate(dentry, inode); 3513 dget(dentry); 3514 return 0; 3515 3516 out_remove_offset: 3517 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3518 out_iput: 3519 iput(inode); 3520 return error; 3521 } 3522 3523 static void shmem_put_link(void *arg) 3524 { 3525 folio_mark_accessed(arg); 3526 folio_put(arg); 3527 } 3528 3529 static const char *shmem_get_link(struct dentry *dentry, 3530 struct inode *inode, 3531 struct delayed_call *done) 3532 { 3533 struct folio *folio = NULL; 3534 int error; 3535 3536 if (!dentry) { 3537 folio = filemap_get_folio(inode->i_mapping, 0); 3538 if (IS_ERR(folio)) 3539 return ERR_PTR(-ECHILD); 3540 if (PageHWPoison(folio_page(folio, 0)) || 3541 !folio_test_uptodate(folio)) { 3542 folio_put(folio); 3543 return ERR_PTR(-ECHILD); 3544 } 3545 } else { 3546 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3547 if (error) 3548 return ERR_PTR(error); 3549 if (!folio) 3550 return ERR_PTR(-ECHILD); 3551 if (PageHWPoison(folio_page(folio, 0))) { 3552 folio_unlock(folio); 3553 folio_put(folio); 3554 return ERR_PTR(-ECHILD); 3555 } 3556 folio_unlock(folio); 3557 } 3558 set_delayed_call(done, shmem_put_link, folio); 3559 return folio_address(folio); 3560 } 3561 3562 #ifdef CONFIG_TMPFS_XATTR 3563 3564 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3565 { 3566 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3567 3568 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3569 3570 return 0; 3571 } 3572 3573 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3574 struct dentry *dentry, struct fileattr *fa) 3575 { 3576 struct inode *inode = d_inode(dentry); 3577 struct shmem_inode_info *info = SHMEM_I(inode); 3578 3579 if (fileattr_has_fsx(fa)) 3580 return -EOPNOTSUPP; 3581 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3582 return -EOPNOTSUPP; 3583 3584 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3585 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3586 3587 shmem_set_inode_flags(inode, info->fsflags); 3588 inode_set_ctime_current(inode); 3589 inode_inc_iversion(inode); 3590 return 0; 3591 } 3592 3593 /* 3594 * Superblocks without xattr inode operations may get some security.* xattr 3595 * support from the LSM "for free". As soon as we have any other xattrs 3596 * like ACLs, we also need to implement the security.* handlers at 3597 * filesystem level, though. 3598 */ 3599 3600 /* 3601 * Callback for security_inode_init_security() for acquiring xattrs. 3602 */ 3603 static int shmem_initxattrs(struct inode *inode, 3604 const struct xattr *xattr_array, 3605 void *fs_info) 3606 { 3607 struct shmem_inode_info *info = SHMEM_I(inode); 3608 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3609 const struct xattr *xattr; 3610 struct simple_xattr *new_xattr; 3611 size_t ispace = 0; 3612 size_t len; 3613 3614 if (sbinfo->max_inodes) { 3615 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3616 ispace += simple_xattr_space(xattr->name, 3617 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3618 } 3619 if (ispace) { 3620 raw_spin_lock(&sbinfo->stat_lock); 3621 if (sbinfo->free_ispace < ispace) 3622 ispace = 0; 3623 else 3624 sbinfo->free_ispace -= ispace; 3625 raw_spin_unlock(&sbinfo->stat_lock); 3626 if (!ispace) 3627 return -ENOSPC; 3628 } 3629 } 3630 3631 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3632 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3633 if (!new_xattr) 3634 break; 3635 3636 len = strlen(xattr->name) + 1; 3637 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3638 GFP_KERNEL_ACCOUNT); 3639 if (!new_xattr->name) { 3640 kvfree(new_xattr); 3641 break; 3642 } 3643 3644 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3645 XATTR_SECURITY_PREFIX_LEN); 3646 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3647 xattr->name, len); 3648 3649 simple_xattr_add(&info->xattrs, new_xattr); 3650 } 3651 3652 if (xattr->name != NULL) { 3653 if (ispace) { 3654 raw_spin_lock(&sbinfo->stat_lock); 3655 sbinfo->free_ispace += ispace; 3656 raw_spin_unlock(&sbinfo->stat_lock); 3657 } 3658 simple_xattrs_free(&info->xattrs, NULL); 3659 return -ENOMEM; 3660 } 3661 3662 return 0; 3663 } 3664 3665 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3666 struct dentry *unused, struct inode *inode, 3667 const char *name, void *buffer, size_t size) 3668 { 3669 struct shmem_inode_info *info = SHMEM_I(inode); 3670 3671 name = xattr_full_name(handler, name); 3672 return simple_xattr_get(&info->xattrs, name, buffer, size); 3673 } 3674 3675 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3676 struct mnt_idmap *idmap, 3677 struct dentry *unused, struct inode *inode, 3678 const char *name, const void *value, 3679 size_t size, int flags) 3680 { 3681 struct shmem_inode_info *info = SHMEM_I(inode); 3682 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3683 struct simple_xattr *old_xattr; 3684 size_t ispace = 0; 3685 3686 name = xattr_full_name(handler, name); 3687 if (value && sbinfo->max_inodes) { 3688 ispace = simple_xattr_space(name, size); 3689 raw_spin_lock(&sbinfo->stat_lock); 3690 if (sbinfo->free_ispace < ispace) 3691 ispace = 0; 3692 else 3693 sbinfo->free_ispace -= ispace; 3694 raw_spin_unlock(&sbinfo->stat_lock); 3695 if (!ispace) 3696 return -ENOSPC; 3697 } 3698 3699 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3700 if (!IS_ERR(old_xattr)) { 3701 ispace = 0; 3702 if (old_xattr && sbinfo->max_inodes) 3703 ispace = simple_xattr_space(old_xattr->name, 3704 old_xattr->size); 3705 simple_xattr_free(old_xattr); 3706 old_xattr = NULL; 3707 inode_set_ctime_current(inode); 3708 inode_inc_iversion(inode); 3709 } 3710 if (ispace) { 3711 raw_spin_lock(&sbinfo->stat_lock); 3712 sbinfo->free_ispace += ispace; 3713 raw_spin_unlock(&sbinfo->stat_lock); 3714 } 3715 return PTR_ERR(old_xattr); 3716 } 3717 3718 static const struct xattr_handler shmem_security_xattr_handler = { 3719 .prefix = XATTR_SECURITY_PREFIX, 3720 .get = shmem_xattr_handler_get, 3721 .set = shmem_xattr_handler_set, 3722 }; 3723 3724 static const struct xattr_handler shmem_trusted_xattr_handler = { 3725 .prefix = XATTR_TRUSTED_PREFIX, 3726 .get = shmem_xattr_handler_get, 3727 .set = shmem_xattr_handler_set, 3728 }; 3729 3730 static const struct xattr_handler shmem_user_xattr_handler = { 3731 .prefix = XATTR_USER_PREFIX, 3732 .get = shmem_xattr_handler_get, 3733 .set = shmem_xattr_handler_set, 3734 }; 3735 3736 static const struct xattr_handler *shmem_xattr_handlers[] = { 3737 &shmem_security_xattr_handler, 3738 &shmem_trusted_xattr_handler, 3739 &shmem_user_xattr_handler, 3740 NULL 3741 }; 3742 3743 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3744 { 3745 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3746 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3747 } 3748 #endif /* CONFIG_TMPFS_XATTR */ 3749 3750 static const struct inode_operations shmem_short_symlink_operations = { 3751 .getattr = shmem_getattr, 3752 .setattr = shmem_setattr, 3753 .get_link = simple_get_link, 3754 #ifdef CONFIG_TMPFS_XATTR 3755 .listxattr = shmem_listxattr, 3756 #endif 3757 }; 3758 3759 static const struct inode_operations shmem_symlink_inode_operations = { 3760 .getattr = shmem_getattr, 3761 .setattr = shmem_setattr, 3762 .get_link = shmem_get_link, 3763 #ifdef CONFIG_TMPFS_XATTR 3764 .listxattr = shmem_listxattr, 3765 #endif 3766 }; 3767 3768 static struct dentry *shmem_get_parent(struct dentry *child) 3769 { 3770 return ERR_PTR(-ESTALE); 3771 } 3772 3773 static int shmem_match(struct inode *ino, void *vfh) 3774 { 3775 __u32 *fh = vfh; 3776 __u64 inum = fh[2]; 3777 inum = (inum << 32) | fh[1]; 3778 return ino->i_ino == inum && fh[0] == ino->i_generation; 3779 } 3780 3781 /* Find any alias of inode, but prefer a hashed alias */ 3782 static struct dentry *shmem_find_alias(struct inode *inode) 3783 { 3784 struct dentry *alias = d_find_alias(inode); 3785 3786 return alias ?: d_find_any_alias(inode); 3787 } 3788 3789 3790 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3791 struct fid *fid, int fh_len, int fh_type) 3792 { 3793 struct inode *inode; 3794 struct dentry *dentry = NULL; 3795 u64 inum; 3796 3797 if (fh_len < 3) 3798 return NULL; 3799 3800 inum = fid->raw[2]; 3801 inum = (inum << 32) | fid->raw[1]; 3802 3803 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3804 shmem_match, fid->raw); 3805 if (inode) { 3806 dentry = shmem_find_alias(inode); 3807 iput(inode); 3808 } 3809 3810 return dentry; 3811 } 3812 3813 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3814 struct inode *parent) 3815 { 3816 if (*len < 3) { 3817 *len = 3; 3818 return FILEID_INVALID; 3819 } 3820 3821 if (inode_unhashed(inode)) { 3822 /* Unfortunately insert_inode_hash is not idempotent, 3823 * so as we hash inodes here rather than at creation 3824 * time, we need a lock to ensure we only try 3825 * to do it once 3826 */ 3827 static DEFINE_SPINLOCK(lock); 3828 spin_lock(&lock); 3829 if (inode_unhashed(inode)) 3830 __insert_inode_hash(inode, 3831 inode->i_ino + inode->i_generation); 3832 spin_unlock(&lock); 3833 } 3834 3835 fh[0] = inode->i_generation; 3836 fh[1] = inode->i_ino; 3837 fh[2] = ((__u64)inode->i_ino) >> 32; 3838 3839 *len = 3; 3840 return 1; 3841 } 3842 3843 static const struct export_operations shmem_export_ops = { 3844 .get_parent = shmem_get_parent, 3845 .encode_fh = shmem_encode_fh, 3846 .fh_to_dentry = shmem_fh_to_dentry, 3847 }; 3848 3849 enum shmem_param { 3850 Opt_gid, 3851 Opt_huge, 3852 Opt_mode, 3853 Opt_mpol, 3854 Opt_nr_blocks, 3855 Opt_nr_inodes, 3856 Opt_size, 3857 Opt_uid, 3858 Opt_inode32, 3859 Opt_inode64, 3860 Opt_noswap, 3861 Opt_quota, 3862 Opt_usrquota, 3863 Opt_grpquota, 3864 Opt_usrquota_block_hardlimit, 3865 Opt_usrquota_inode_hardlimit, 3866 Opt_grpquota_block_hardlimit, 3867 Opt_grpquota_inode_hardlimit, 3868 }; 3869 3870 static const struct constant_table shmem_param_enums_huge[] = { 3871 {"never", SHMEM_HUGE_NEVER }, 3872 {"always", SHMEM_HUGE_ALWAYS }, 3873 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3874 {"advise", SHMEM_HUGE_ADVISE }, 3875 {} 3876 }; 3877 3878 const struct fs_parameter_spec shmem_fs_parameters[] = { 3879 fsparam_u32 ("gid", Opt_gid), 3880 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3881 fsparam_u32oct("mode", Opt_mode), 3882 fsparam_string("mpol", Opt_mpol), 3883 fsparam_string("nr_blocks", Opt_nr_blocks), 3884 fsparam_string("nr_inodes", Opt_nr_inodes), 3885 fsparam_string("size", Opt_size), 3886 fsparam_u32 ("uid", Opt_uid), 3887 fsparam_flag ("inode32", Opt_inode32), 3888 fsparam_flag ("inode64", Opt_inode64), 3889 fsparam_flag ("noswap", Opt_noswap), 3890 #ifdef CONFIG_TMPFS_QUOTA 3891 fsparam_flag ("quota", Opt_quota), 3892 fsparam_flag ("usrquota", Opt_usrquota), 3893 fsparam_flag ("grpquota", Opt_grpquota), 3894 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3895 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3896 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3897 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3898 #endif 3899 {} 3900 }; 3901 3902 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3903 { 3904 struct shmem_options *ctx = fc->fs_private; 3905 struct fs_parse_result result; 3906 unsigned long long size; 3907 char *rest; 3908 int opt; 3909 kuid_t kuid; 3910 kgid_t kgid; 3911 3912 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3913 if (opt < 0) 3914 return opt; 3915 3916 switch (opt) { 3917 case Opt_size: 3918 size = memparse(param->string, &rest); 3919 if (*rest == '%') { 3920 size <<= PAGE_SHIFT; 3921 size *= totalram_pages(); 3922 do_div(size, 100); 3923 rest++; 3924 } 3925 if (*rest) 3926 goto bad_value; 3927 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3928 ctx->seen |= SHMEM_SEEN_BLOCKS; 3929 break; 3930 case Opt_nr_blocks: 3931 ctx->blocks = memparse(param->string, &rest); 3932 if (*rest || ctx->blocks > LONG_MAX) 3933 goto bad_value; 3934 ctx->seen |= SHMEM_SEEN_BLOCKS; 3935 break; 3936 case Opt_nr_inodes: 3937 ctx->inodes = memparse(param->string, &rest); 3938 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3939 goto bad_value; 3940 ctx->seen |= SHMEM_SEEN_INODES; 3941 break; 3942 case Opt_mode: 3943 ctx->mode = result.uint_32 & 07777; 3944 break; 3945 case Opt_uid: 3946 kuid = make_kuid(current_user_ns(), result.uint_32); 3947 if (!uid_valid(kuid)) 3948 goto bad_value; 3949 3950 /* 3951 * The requested uid must be representable in the 3952 * filesystem's idmapping. 3953 */ 3954 if (!kuid_has_mapping(fc->user_ns, kuid)) 3955 goto bad_value; 3956 3957 ctx->uid = kuid; 3958 break; 3959 case Opt_gid: 3960 kgid = make_kgid(current_user_ns(), result.uint_32); 3961 if (!gid_valid(kgid)) 3962 goto bad_value; 3963 3964 /* 3965 * The requested gid must be representable in the 3966 * filesystem's idmapping. 3967 */ 3968 if (!kgid_has_mapping(fc->user_ns, kgid)) 3969 goto bad_value; 3970 3971 ctx->gid = kgid; 3972 break; 3973 case Opt_huge: 3974 ctx->huge = result.uint_32; 3975 if (ctx->huge != SHMEM_HUGE_NEVER && 3976 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3977 has_transparent_hugepage())) 3978 goto unsupported_parameter; 3979 ctx->seen |= SHMEM_SEEN_HUGE; 3980 break; 3981 case Opt_mpol: 3982 if (IS_ENABLED(CONFIG_NUMA)) { 3983 mpol_put(ctx->mpol); 3984 ctx->mpol = NULL; 3985 if (mpol_parse_str(param->string, &ctx->mpol)) 3986 goto bad_value; 3987 break; 3988 } 3989 goto unsupported_parameter; 3990 case Opt_inode32: 3991 ctx->full_inums = false; 3992 ctx->seen |= SHMEM_SEEN_INUMS; 3993 break; 3994 case Opt_inode64: 3995 if (sizeof(ino_t) < 8) { 3996 return invalfc(fc, 3997 "Cannot use inode64 with <64bit inums in kernel\n"); 3998 } 3999 ctx->full_inums = true; 4000 ctx->seen |= SHMEM_SEEN_INUMS; 4001 break; 4002 case Opt_noswap: 4003 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4004 return invalfc(fc, 4005 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4006 } 4007 ctx->noswap = true; 4008 ctx->seen |= SHMEM_SEEN_NOSWAP; 4009 break; 4010 case Opt_quota: 4011 if (fc->user_ns != &init_user_ns) 4012 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4013 ctx->seen |= SHMEM_SEEN_QUOTA; 4014 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4015 break; 4016 case Opt_usrquota: 4017 if (fc->user_ns != &init_user_ns) 4018 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4019 ctx->seen |= SHMEM_SEEN_QUOTA; 4020 ctx->quota_types |= QTYPE_MASK_USR; 4021 break; 4022 case Opt_grpquota: 4023 if (fc->user_ns != &init_user_ns) 4024 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4025 ctx->seen |= SHMEM_SEEN_QUOTA; 4026 ctx->quota_types |= QTYPE_MASK_GRP; 4027 break; 4028 case Opt_usrquota_block_hardlimit: 4029 size = memparse(param->string, &rest); 4030 if (*rest || !size) 4031 goto bad_value; 4032 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4033 return invalfc(fc, 4034 "User quota block hardlimit too large."); 4035 ctx->qlimits.usrquota_bhardlimit = size; 4036 break; 4037 case Opt_grpquota_block_hardlimit: 4038 size = memparse(param->string, &rest); 4039 if (*rest || !size) 4040 goto bad_value; 4041 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4042 return invalfc(fc, 4043 "Group quota block hardlimit too large."); 4044 ctx->qlimits.grpquota_bhardlimit = size; 4045 break; 4046 case Opt_usrquota_inode_hardlimit: 4047 size = memparse(param->string, &rest); 4048 if (*rest || !size) 4049 goto bad_value; 4050 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4051 return invalfc(fc, 4052 "User quota inode hardlimit too large."); 4053 ctx->qlimits.usrquota_ihardlimit = size; 4054 break; 4055 case Opt_grpquota_inode_hardlimit: 4056 size = memparse(param->string, &rest); 4057 if (*rest || !size) 4058 goto bad_value; 4059 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4060 return invalfc(fc, 4061 "Group quota inode hardlimit too large."); 4062 ctx->qlimits.grpquota_ihardlimit = size; 4063 break; 4064 } 4065 return 0; 4066 4067 unsupported_parameter: 4068 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4069 bad_value: 4070 return invalfc(fc, "Bad value for '%s'", param->key); 4071 } 4072 4073 static int shmem_parse_options(struct fs_context *fc, void *data) 4074 { 4075 char *options = data; 4076 4077 if (options) { 4078 int err = security_sb_eat_lsm_opts(options, &fc->security); 4079 if (err) 4080 return err; 4081 } 4082 4083 while (options != NULL) { 4084 char *this_char = options; 4085 for (;;) { 4086 /* 4087 * NUL-terminate this option: unfortunately, 4088 * mount options form a comma-separated list, 4089 * but mpol's nodelist may also contain commas. 4090 */ 4091 options = strchr(options, ','); 4092 if (options == NULL) 4093 break; 4094 options++; 4095 if (!isdigit(*options)) { 4096 options[-1] = '\0'; 4097 break; 4098 } 4099 } 4100 if (*this_char) { 4101 char *value = strchr(this_char, '='); 4102 size_t len = 0; 4103 int err; 4104 4105 if (value) { 4106 *value++ = '\0'; 4107 len = strlen(value); 4108 } 4109 err = vfs_parse_fs_string(fc, this_char, value, len); 4110 if (err < 0) 4111 return err; 4112 } 4113 } 4114 return 0; 4115 } 4116 4117 /* 4118 * Reconfigure a shmem filesystem. 4119 */ 4120 static int shmem_reconfigure(struct fs_context *fc) 4121 { 4122 struct shmem_options *ctx = fc->fs_private; 4123 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4124 unsigned long used_isp; 4125 struct mempolicy *mpol = NULL; 4126 const char *err; 4127 4128 raw_spin_lock(&sbinfo->stat_lock); 4129 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4130 4131 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4132 if (!sbinfo->max_blocks) { 4133 err = "Cannot retroactively limit size"; 4134 goto out; 4135 } 4136 if (percpu_counter_compare(&sbinfo->used_blocks, 4137 ctx->blocks) > 0) { 4138 err = "Too small a size for current use"; 4139 goto out; 4140 } 4141 } 4142 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4143 if (!sbinfo->max_inodes) { 4144 err = "Cannot retroactively limit inodes"; 4145 goto out; 4146 } 4147 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4148 err = "Too few inodes for current use"; 4149 goto out; 4150 } 4151 } 4152 4153 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4154 sbinfo->next_ino > UINT_MAX) { 4155 err = "Current inum too high to switch to 32-bit inums"; 4156 goto out; 4157 } 4158 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4159 err = "Cannot disable swap on remount"; 4160 goto out; 4161 } 4162 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4163 err = "Cannot enable swap on remount if it was disabled on first mount"; 4164 goto out; 4165 } 4166 4167 if (ctx->seen & SHMEM_SEEN_QUOTA && 4168 !sb_any_quota_loaded(fc->root->d_sb)) { 4169 err = "Cannot enable quota on remount"; 4170 goto out; 4171 } 4172 4173 #ifdef CONFIG_TMPFS_QUOTA 4174 #define CHANGED_LIMIT(name) \ 4175 (ctx->qlimits.name## hardlimit && \ 4176 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4177 4178 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4179 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4180 err = "Cannot change global quota limit on remount"; 4181 goto out; 4182 } 4183 #endif /* CONFIG_TMPFS_QUOTA */ 4184 4185 if (ctx->seen & SHMEM_SEEN_HUGE) 4186 sbinfo->huge = ctx->huge; 4187 if (ctx->seen & SHMEM_SEEN_INUMS) 4188 sbinfo->full_inums = ctx->full_inums; 4189 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4190 sbinfo->max_blocks = ctx->blocks; 4191 if (ctx->seen & SHMEM_SEEN_INODES) { 4192 sbinfo->max_inodes = ctx->inodes; 4193 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4194 } 4195 4196 /* 4197 * Preserve previous mempolicy unless mpol remount option was specified. 4198 */ 4199 if (ctx->mpol) { 4200 mpol = sbinfo->mpol; 4201 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4202 ctx->mpol = NULL; 4203 } 4204 4205 if (ctx->noswap) 4206 sbinfo->noswap = true; 4207 4208 raw_spin_unlock(&sbinfo->stat_lock); 4209 mpol_put(mpol); 4210 return 0; 4211 out: 4212 raw_spin_unlock(&sbinfo->stat_lock); 4213 return invalfc(fc, "%s", err); 4214 } 4215 4216 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4217 { 4218 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4219 struct mempolicy *mpol; 4220 4221 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4222 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4223 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4224 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4225 if (sbinfo->mode != (0777 | S_ISVTX)) 4226 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4227 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4228 seq_printf(seq, ",uid=%u", 4229 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4230 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4231 seq_printf(seq, ",gid=%u", 4232 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4233 4234 /* 4235 * Showing inode{64,32} might be useful even if it's the system default, 4236 * since then people don't have to resort to checking both here and 4237 * /proc/config.gz to confirm 64-bit inums were successfully applied 4238 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4239 * 4240 * We hide it when inode64 isn't the default and we are using 32-bit 4241 * inodes, since that probably just means the feature isn't even under 4242 * consideration. 4243 * 4244 * As such: 4245 * 4246 * +-----------------+-----------------+ 4247 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4248 * +------------------+-----------------+-----------------+ 4249 * | full_inums=true | show | show | 4250 * | full_inums=false | show | hide | 4251 * +------------------+-----------------+-----------------+ 4252 * 4253 */ 4254 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4255 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4257 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4258 if (sbinfo->huge) 4259 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4260 #endif 4261 mpol = shmem_get_sbmpol(sbinfo); 4262 shmem_show_mpol(seq, mpol); 4263 mpol_put(mpol); 4264 if (sbinfo->noswap) 4265 seq_printf(seq, ",noswap"); 4266 return 0; 4267 } 4268 4269 #endif /* CONFIG_TMPFS */ 4270 4271 static void shmem_put_super(struct super_block *sb) 4272 { 4273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4274 4275 #ifdef CONFIG_TMPFS_QUOTA 4276 shmem_disable_quotas(sb); 4277 #endif 4278 free_percpu(sbinfo->ino_batch); 4279 percpu_counter_destroy(&sbinfo->used_blocks); 4280 mpol_put(sbinfo->mpol); 4281 kfree(sbinfo); 4282 sb->s_fs_info = NULL; 4283 } 4284 4285 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4286 { 4287 struct shmem_options *ctx = fc->fs_private; 4288 struct inode *inode; 4289 struct shmem_sb_info *sbinfo; 4290 int error = -ENOMEM; 4291 4292 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4293 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4294 L1_CACHE_BYTES), GFP_KERNEL); 4295 if (!sbinfo) 4296 return error; 4297 4298 sb->s_fs_info = sbinfo; 4299 4300 #ifdef CONFIG_TMPFS 4301 /* 4302 * Per default we only allow half of the physical ram per 4303 * tmpfs instance, limiting inodes to one per page of lowmem; 4304 * but the internal instance is left unlimited. 4305 */ 4306 if (!(sb->s_flags & SB_KERNMOUNT)) { 4307 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4308 ctx->blocks = shmem_default_max_blocks(); 4309 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4310 ctx->inodes = shmem_default_max_inodes(); 4311 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4312 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4313 sbinfo->noswap = ctx->noswap; 4314 } else { 4315 sb->s_flags |= SB_NOUSER; 4316 } 4317 sb->s_export_op = &shmem_export_ops; 4318 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4319 #else 4320 sb->s_flags |= SB_NOUSER; 4321 #endif 4322 sbinfo->max_blocks = ctx->blocks; 4323 sbinfo->max_inodes = ctx->inodes; 4324 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4325 if (sb->s_flags & SB_KERNMOUNT) { 4326 sbinfo->ino_batch = alloc_percpu(ino_t); 4327 if (!sbinfo->ino_batch) 4328 goto failed; 4329 } 4330 sbinfo->uid = ctx->uid; 4331 sbinfo->gid = ctx->gid; 4332 sbinfo->full_inums = ctx->full_inums; 4333 sbinfo->mode = ctx->mode; 4334 sbinfo->huge = ctx->huge; 4335 sbinfo->mpol = ctx->mpol; 4336 ctx->mpol = NULL; 4337 4338 raw_spin_lock_init(&sbinfo->stat_lock); 4339 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4340 goto failed; 4341 spin_lock_init(&sbinfo->shrinklist_lock); 4342 INIT_LIST_HEAD(&sbinfo->shrinklist); 4343 4344 sb->s_maxbytes = MAX_LFS_FILESIZE; 4345 sb->s_blocksize = PAGE_SIZE; 4346 sb->s_blocksize_bits = PAGE_SHIFT; 4347 sb->s_magic = TMPFS_MAGIC; 4348 sb->s_op = &shmem_ops; 4349 sb->s_time_gran = 1; 4350 #ifdef CONFIG_TMPFS_XATTR 4351 sb->s_xattr = shmem_xattr_handlers; 4352 #endif 4353 #ifdef CONFIG_TMPFS_POSIX_ACL 4354 sb->s_flags |= SB_POSIXACL; 4355 #endif 4356 uuid_gen(&sb->s_uuid); 4357 4358 #ifdef CONFIG_TMPFS_QUOTA 4359 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4360 sb->dq_op = &shmem_quota_operations; 4361 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4362 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4363 4364 /* Copy the default limits from ctx into sbinfo */ 4365 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4366 sizeof(struct shmem_quota_limits)); 4367 4368 if (shmem_enable_quotas(sb, ctx->quota_types)) 4369 goto failed; 4370 } 4371 #endif /* CONFIG_TMPFS_QUOTA */ 4372 4373 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4374 VM_NORESERVE); 4375 if (IS_ERR(inode)) { 4376 error = PTR_ERR(inode); 4377 goto failed; 4378 } 4379 inode->i_uid = sbinfo->uid; 4380 inode->i_gid = sbinfo->gid; 4381 sb->s_root = d_make_root(inode); 4382 if (!sb->s_root) 4383 goto failed; 4384 return 0; 4385 4386 failed: 4387 shmem_put_super(sb); 4388 return error; 4389 } 4390 4391 static int shmem_get_tree(struct fs_context *fc) 4392 { 4393 return get_tree_nodev(fc, shmem_fill_super); 4394 } 4395 4396 static void shmem_free_fc(struct fs_context *fc) 4397 { 4398 struct shmem_options *ctx = fc->fs_private; 4399 4400 if (ctx) { 4401 mpol_put(ctx->mpol); 4402 kfree(ctx); 4403 } 4404 } 4405 4406 static const struct fs_context_operations shmem_fs_context_ops = { 4407 .free = shmem_free_fc, 4408 .get_tree = shmem_get_tree, 4409 #ifdef CONFIG_TMPFS 4410 .parse_monolithic = shmem_parse_options, 4411 .parse_param = shmem_parse_one, 4412 .reconfigure = shmem_reconfigure, 4413 #endif 4414 }; 4415 4416 static struct kmem_cache *shmem_inode_cachep; 4417 4418 static struct inode *shmem_alloc_inode(struct super_block *sb) 4419 { 4420 struct shmem_inode_info *info; 4421 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4422 if (!info) 4423 return NULL; 4424 return &info->vfs_inode; 4425 } 4426 4427 static void shmem_free_in_core_inode(struct inode *inode) 4428 { 4429 if (S_ISLNK(inode->i_mode)) 4430 kfree(inode->i_link); 4431 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4432 } 4433 4434 static void shmem_destroy_inode(struct inode *inode) 4435 { 4436 if (S_ISREG(inode->i_mode)) 4437 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4438 if (S_ISDIR(inode->i_mode)) 4439 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4440 } 4441 4442 static void shmem_init_inode(void *foo) 4443 { 4444 struct shmem_inode_info *info = foo; 4445 inode_init_once(&info->vfs_inode); 4446 } 4447 4448 static void shmem_init_inodecache(void) 4449 { 4450 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4451 sizeof(struct shmem_inode_info), 4452 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4453 } 4454 4455 static void shmem_destroy_inodecache(void) 4456 { 4457 kmem_cache_destroy(shmem_inode_cachep); 4458 } 4459 4460 /* Keep the page in page cache instead of truncating it */ 4461 static int shmem_error_remove_page(struct address_space *mapping, 4462 struct page *page) 4463 { 4464 return 0; 4465 } 4466 4467 const struct address_space_operations shmem_aops = { 4468 .writepage = shmem_writepage, 4469 .dirty_folio = noop_dirty_folio, 4470 #ifdef CONFIG_TMPFS 4471 .write_begin = shmem_write_begin, 4472 .write_end = shmem_write_end, 4473 #endif 4474 #ifdef CONFIG_MIGRATION 4475 .migrate_folio = migrate_folio, 4476 #endif 4477 .error_remove_page = shmem_error_remove_page, 4478 }; 4479 EXPORT_SYMBOL(shmem_aops); 4480 4481 static const struct file_operations shmem_file_operations = { 4482 .mmap = shmem_mmap, 4483 .open = shmem_file_open, 4484 .get_unmapped_area = shmem_get_unmapped_area, 4485 #ifdef CONFIG_TMPFS 4486 .llseek = shmem_file_llseek, 4487 .read_iter = shmem_file_read_iter, 4488 .write_iter = shmem_file_write_iter, 4489 .fsync = noop_fsync, 4490 .splice_read = shmem_file_splice_read, 4491 .splice_write = iter_file_splice_write, 4492 .fallocate = shmem_fallocate, 4493 #endif 4494 }; 4495 4496 static const struct inode_operations shmem_inode_operations = { 4497 .getattr = shmem_getattr, 4498 .setattr = shmem_setattr, 4499 #ifdef CONFIG_TMPFS_XATTR 4500 .listxattr = shmem_listxattr, 4501 .set_acl = simple_set_acl, 4502 .fileattr_get = shmem_fileattr_get, 4503 .fileattr_set = shmem_fileattr_set, 4504 #endif 4505 }; 4506 4507 static const struct inode_operations shmem_dir_inode_operations = { 4508 #ifdef CONFIG_TMPFS 4509 .getattr = shmem_getattr, 4510 .create = shmem_create, 4511 .lookup = simple_lookup, 4512 .link = shmem_link, 4513 .unlink = shmem_unlink, 4514 .symlink = shmem_symlink, 4515 .mkdir = shmem_mkdir, 4516 .rmdir = shmem_rmdir, 4517 .mknod = shmem_mknod, 4518 .rename = shmem_rename2, 4519 .tmpfile = shmem_tmpfile, 4520 .get_offset_ctx = shmem_get_offset_ctx, 4521 #endif 4522 #ifdef CONFIG_TMPFS_XATTR 4523 .listxattr = shmem_listxattr, 4524 .fileattr_get = shmem_fileattr_get, 4525 .fileattr_set = shmem_fileattr_set, 4526 #endif 4527 #ifdef CONFIG_TMPFS_POSIX_ACL 4528 .setattr = shmem_setattr, 4529 .set_acl = simple_set_acl, 4530 #endif 4531 }; 4532 4533 static const struct inode_operations shmem_special_inode_operations = { 4534 .getattr = shmem_getattr, 4535 #ifdef CONFIG_TMPFS_XATTR 4536 .listxattr = shmem_listxattr, 4537 #endif 4538 #ifdef CONFIG_TMPFS_POSIX_ACL 4539 .setattr = shmem_setattr, 4540 .set_acl = simple_set_acl, 4541 #endif 4542 }; 4543 4544 static const struct super_operations shmem_ops = { 4545 .alloc_inode = shmem_alloc_inode, 4546 .free_inode = shmem_free_in_core_inode, 4547 .destroy_inode = shmem_destroy_inode, 4548 #ifdef CONFIG_TMPFS 4549 .statfs = shmem_statfs, 4550 .show_options = shmem_show_options, 4551 #endif 4552 #ifdef CONFIG_TMPFS_QUOTA 4553 .get_dquots = shmem_get_dquots, 4554 #endif 4555 .evict_inode = shmem_evict_inode, 4556 .drop_inode = generic_delete_inode, 4557 .put_super = shmem_put_super, 4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4559 .nr_cached_objects = shmem_unused_huge_count, 4560 .free_cached_objects = shmem_unused_huge_scan, 4561 #endif 4562 }; 4563 4564 static const struct vm_operations_struct shmem_vm_ops = { 4565 .fault = shmem_fault, 4566 .map_pages = filemap_map_pages, 4567 #ifdef CONFIG_NUMA 4568 .set_policy = shmem_set_policy, 4569 .get_policy = shmem_get_policy, 4570 #endif 4571 }; 4572 4573 static const struct vm_operations_struct shmem_anon_vm_ops = { 4574 .fault = shmem_fault, 4575 .map_pages = filemap_map_pages, 4576 #ifdef CONFIG_NUMA 4577 .set_policy = shmem_set_policy, 4578 .get_policy = shmem_get_policy, 4579 #endif 4580 }; 4581 4582 int shmem_init_fs_context(struct fs_context *fc) 4583 { 4584 struct shmem_options *ctx; 4585 4586 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4587 if (!ctx) 4588 return -ENOMEM; 4589 4590 ctx->mode = 0777 | S_ISVTX; 4591 ctx->uid = current_fsuid(); 4592 ctx->gid = current_fsgid(); 4593 4594 fc->fs_private = ctx; 4595 fc->ops = &shmem_fs_context_ops; 4596 return 0; 4597 } 4598 4599 static struct file_system_type shmem_fs_type = { 4600 .owner = THIS_MODULE, 4601 .name = "tmpfs", 4602 .init_fs_context = shmem_init_fs_context, 4603 #ifdef CONFIG_TMPFS 4604 .parameters = shmem_fs_parameters, 4605 #endif 4606 .kill_sb = kill_litter_super, 4607 #ifdef CONFIG_SHMEM 4608 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4609 #else 4610 .fs_flags = FS_USERNS_MOUNT, 4611 #endif 4612 }; 4613 4614 void __init shmem_init(void) 4615 { 4616 int error; 4617 4618 shmem_init_inodecache(); 4619 4620 #ifdef CONFIG_TMPFS_QUOTA 4621 error = register_quota_format(&shmem_quota_format); 4622 if (error < 0) { 4623 pr_err("Could not register quota format\n"); 4624 goto out3; 4625 } 4626 #endif 4627 4628 error = register_filesystem(&shmem_fs_type); 4629 if (error) { 4630 pr_err("Could not register tmpfs\n"); 4631 goto out2; 4632 } 4633 4634 shm_mnt = kern_mount(&shmem_fs_type); 4635 if (IS_ERR(shm_mnt)) { 4636 error = PTR_ERR(shm_mnt); 4637 pr_err("Could not kern_mount tmpfs\n"); 4638 goto out1; 4639 } 4640 4641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4642 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4643 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4644 else 4645 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4646 #endif 4647 return; 4648 4649 out1: 4650 unregister_filesystem(&shmem_fs_type); 4651 out2: 4652 #ifdef CONFIG_TMPFS_QUOTA 4653 unregister_quota_format(&shmem_quota_format); 4654 out3: 4655 #endif 4656 shmem_destroy_inodecache(); 4657 shm_mnt = ERR_PTR(error); 4658 } 4659 4660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4661 static ssize_t shmem_enabled_show(struct kobject *kobj, 4662 struct kobj_attribute *attr, char *buf) 4663 { 4664 static const int values[] = { 4665 SHMEM_HUGE_ALWAYS, 4666 SHMEM_HUGE_WITHIN_SIZE, 4667 SHMEM_HUGE_ADVISE, 4668 SHMEM_HUGE_NEVER, 4669 SHMEM_HUGE_DENY, 4670 SHMEM_HUGE_FORCE, 4671 }; 4672 int len = 0; 4673 int i; 4674 4675 for (i = 0; i < ARRAY_SIZE(values); i++) { 4676 len += sysfs_emit_at(buf, len, 4677 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4678 i ? " " : "", 4679 shmem_format_huge(values[i])); 4680 } 4681 4682 len += sysfs_emit_at(buf, len, "\n"); 4683 4684 return len; 4685 } 4686 4687 static ssize_t shmem_enabled_store(struct kobject *kobj, 4688 struct kobj_attribute *attr, const char *buf, size_t count) 4689 { 4690 char tmp[16]; 4691 int huge; 4692 4693 if (count + 1 > sizeof(tmp)) 4694 return -EINVAL; 4695 memcpy(tmp, buf, count); 4696 tmp[count] = '\0'; 4697 if (count && tmp[count - 1] == '\n') 4698 tmp[count - 1] = '\0'; 4699 4700 huge = shmem_parse_huge(tmp); 4701 if (huge == -EINVAL) 4702 return -EINVAL; 4703 if (!has_transparent_hugepage() && 4704 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4705 return -EINVAL; 4706 4707 shmem_huge = huge; 4708 if (shmem_huge > SHMEM_HUGE_DENY) 4709 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4710 return count; 4711 } 4712 4713 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4714 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4715 4716 #else /* !CONFIG_SHMEM */ 4717 4718 /* 4719 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4720 * 4721 * This is intended for small system where the benefits of the full 4722 * shmem code (swap-backed and resource-limited) are outweighed by 4723 * their complexity. On systems without swap this code should be 4724 * effectively equivalent, but much lighter weight. 4725 */ 4726 4727 static struct file_system_type shmem_fs_type = { 4728 .name = "tmpfs", 4729 .init_fs_context = ramfs_init_fs_context, 4730 .parameters = ramfs_fs_parameters, 4731 .kill_sb = ramfs_kill_sb, 4732 .fs_flags = FS_USERNS_MOUNT, 4733 }; 4734 4735 void __init shmem_init(void) 4736 { 4737 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4738 4739 shm_mnt = kern_mount(&shmem_fs_type); 4740 BUG_ON(IS_ERR(shm_mnt)); 4741 } 4742 4743 int shmem_unuse(unsigned int type) 4744 { 4745 return 0; 4746 } 4747 4748 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4749 { 4750 return 0; 4751 } 4752 4753 void shmem_unlock_mapping(struct address_space *mapping) 4754 { 4755 } 4756 4757 #ifdef CONFIG_MMU 4758 unsigned long shmem_get_unmapped_area(struct file *file, 4759 unsigned long addr, unsigned long len, 4760 unsigned long pgoff, unsigned long flags) 4761 { 4762 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4763 } 4764 #endif 4765 4766 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4767 { 4768 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4769 } 4770 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4771 4772 #define shmem_vm_ops generic_file_vm_ops 4773 #define shmem_anon_vm_ops generic_file_vm_ops 4774 #define shmem_file_operations ramfs_file_operations 4775 #define shmem_acct_size(flags, size) 0 4776 #define shmem_unacct_size(flags, size) do {} while (0) 4777 4778 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir, 4779 umode_t mode, dev_t dev, unsigned long flags) 4780 { 4781 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4782 return inode ? inode : ERR_PTR(-ENOSPC); 4783 } 4784 4785 #endif /* CONFIG_SHMEM */ 4786 4787 /* common code */ 4788 4789 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4790 unsigned long flags, unsigned int i_flags) 4791 { 4792 struct inode *inode; 4793 struct file *res; 4794 4795 if (IS_ERR(mnt)) 4796 return ERR_CAST(mnt); 4797 4798 if (size < 0 || size > MAX_LFS_FILESIZE) 4799 return ERR_PTR(-EINVAL); 4800 4801 if (shmem_acct_size(flags, size)) 4802 return ERR_PTR(-ENOMEM); 4803 4804 if (is_idmapped_mnt(mnt)) 4805 return ERR_PTR(-EINVAL); 4806 4807 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4808 S_IFREG | S_IRWXUGO, 0, flags); 4809 4810 if (IS_ERR(inode)) { 4811 shmem_unacct_size(flags, size); 4812 return ERR_CAST(inode); 4813 } 4814 inode->i_flags |= i_flags; 4815 inode->i_size = size; 4816 clear_nlink(inode); /* It is unlinked */ 4817 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4818 if (!IS_ERR(res)) 4819 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4820 &shmem_file_operations); 4821 if (IS_ERR(res)) 4822 iput(inode); 4823 return res; 4824 } 4825 4826 /** 4827 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4828 * kernel internal. There will be NO LSM permission checks against the 4829 * underlying inode. So users of this interface must do LSM checks at a 4830 * higher layer. The users are the big_key and shm implementations. LSM 4831 * checks are provided at the key or shm level rather than the inode. 4832 * @name: name for dentry (to be seen in /proc/<pid>/maps 4833 * @size: size to be set for the file 4834 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4835 */ 4836 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4837 { 4838 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4839 } 4840 4841 /** 4842 * shmem_file_setup - get an unlinked file living in tmpfs 4843 * @name: name for dentry (to be seen in /proc/<pid>/maps 4844 * @size: size to be set for the file 4845 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4846 */ 4847 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4848 { 4849 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4850 } 4851 EXPORT_SYMBOL_GPL(shmem_file_setup); 4852 4853 /** 4854 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4855 * @mnt: the tmpfs mount where the file will be created 4856 * @name: name for dentry (to be seen in /proc/<pid>/maps 4857 * @size: size to be set for the file 4858 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4859 */ 4860 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4861 loff_t size, unsigned long flags) 4862 { 4863 return __shmem_file_setup(mnt, name, size, flags, 0); 4864 } 4865 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4866 4867 /** 4868 * shmem_zero_setup - setup a shared anonymous mapping 4869 * @vma: the vma to be mmapped is prepared by do_mmap 4870 */ 4871 int shmem_zero_setup(struct vm_area_struct *vma) 4872 { 4873 struct file *file; 4874 loff_t size = vma->vm_end - vma->vm_start; 4875 4876 /* 4877 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4878 * between XFS directory reading and selinux: since this file is only 4879 * accessible to the user through its mapping, use S_PRIVATE flag to 4880 * bypass file security, in the same way as shmem_kernel_file_setup(). 4881 */ 4882 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4883 if (IS_ERR(file)) 4884 return PTR_ERR(file); 4885 4886 if (vma->vm_file) 4887 fput(vma->vm_file); 4888 vma->vm_file = file; 4889 vma->vm_ops = &shmem_anon_vm_ops; 4890 4891 return 0; 4892 } 4893 4894 /** 4895 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4896 * @mapping: the folio's address_space 4897 * @index: the folio index 4898 * @gfp: the page allocator flags to use if allocating 4899 * 4900 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4901 * with any new page allocations done using the specified allocation flags. 4902 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4903 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4904 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4905 * 4906 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4907 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4908 */ 4909 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4910 pgoff_t index, gfp_t gfp) 4911 { 4912 #ifdef CONFIG_SHMEM 4913 struct inode *inode = mapping->host; 4914 struct folio *folio; 4915 int error; 4916 4917 BUG_ON(!shmem_mapping(mapping)); 4918 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4919 gfp, NULL, NULL, NULL); 4920 if (error) 4921 return ERR_PTR(error); 4922 4923 folio_unlock(folio); 4924 return folio; 4925 #else 4926 /* 4927 * The tiny !SHMEM case uses ramfs without swap 4928 */ 4929 return mapping_read_folio_gfp(mapping, index, gfp); 4930 #endif 4931 } 4932 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4933 4934 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4935 pgoff_t index, gfp_t gfp) 4936 { 4937 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4938 struct page *page; 4939 4940 if (IS_ERR(folio)) 4941 return &folio->page; 4942 4943 page = folio_file_page(folio, index); 4944 if (PageHWPoison(page)) { 4945 folio_put(folio); 4946 return ERR_PTR(-EIO); 4947 } 4948 4949 return page; 4950 } 4951 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4952