1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/aio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 70 #include <asm/uaccess.h> 71 #include <asm/pgtable.h> 72 73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 75 76 /* Pretend that each entry is of this size in directory's i_size */ 77 #define BOGO_DIRENT_SIZE 20 78 79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 80 #define SHORT_SYMLINK_LEN 128 81 82 /* 83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 84 * inode->i_private (with i_mutex making sure that it has only one user at 85 * a time): we would prefer not to enlarge the shmem inode just for that. 86 */ 87 struct shmem_falloc { 88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 89 pgoff_t start; /* start of range currently being fallocated */ 90 pgoff_t next; /* the next page offset to be fallocated */ 91 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 93 }; 94 95 /* Flag allocation requirements to shmem_getpage */ 96 enum sgp_type { 97 SGP_READ, /* don't exceed i_size, don't allocate page */ 98 SGP_CACHE, /* don't exceed i_size, may allocate page */ 99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 102 }; 103 104 #ifdef CONFIG_TMPFS 105 static unsigned long shmem_default_max_blocks(void) 106 { 107 return totalram_pages / 2; 108 } 109 110 static unsigned long shmem_default_max_inodes(void) 111 { 112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 113 } 114 #endif 115 116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 117 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 118 struct shmem_inode_info *info, pgoff_t index); 119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 121 122 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, int *fault_type) 124 { 125 return shmem_getpage_gfp(inode, index, pagep, sgp, 126 mapping_gfp_mask(inode->i_mapping), fault_type); 127 } 128 129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 130 { 131 return sb->s_fs_info; 132 } 133 134 /* 135 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 136 * for shared memory and for shared anonymous (/dev/zero) mappings 137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 138 * consistent with the pre-accounting of private mappings ... 139 */ 140 static inline int shmem_acct_size(unsigned long flags, loff_t size) 141 { 142 return (flags & VM_NORESERVE) ? 143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 144 } 145 146 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 147 { 148 if (!(flags & VM_NORESERVE)) 149 vm_unacct_memory(VM_ACCT(size)); 150 } 151 152 static inline int shmem_reacct_size(unsigned long flags, 153 loff_t oldsize, loff_t newsize) 154 { 155 if (!(flags & VM_NORESERVE)) { 156 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 157 return security_vm_enough_memory_mm(current->mm, 158 VM_ACCT(newsize) - VM_ACCT(oldsize)); 159 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 160 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 161 } 162 return 0; 163 } 164 165 /* 166 * ... whereas tmpfs objects are accounted incrementally as 167 * pages are allocated, in order to allow huge sparse files. 168 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 169 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 170 */ 171 static inline int shmem_acct_block(unsigned long flags) 172 { 173 return (flags & VM_NORESERVE) ? 174 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 175 } 176 177 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 178 { 179 if (flags & VM_NORESERVE) 180 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 181 } 182 183 static const struct super_operations shmem_ops; 184 static const struct address_space_operations shmem_aops; 185 static const struct file_operations shmem_file_operations; 186 static const struct inode_operations shmem_inode_operations; 187 static const struct inode_operations shmem_dir_inode_operations; 188 static const struct inode_operations shmem_special_inode_operations; 189 static const struct vm_operations_struct shmem_vm_ops; 190 191 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 192 .ra_pages = 0, /* No readahead */ 193 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 194 }; 195 196 static LIST_HEAD(shmem_swaplist); 197 static DEFINE_MUTEX(shmem_swaplist_mutex); 198 199 static int shmem_reserve_inode(struct super_block *sb) 200 { 201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 202 if (sbinfo->max_inodes) { 203 spin_lock(&sbinfo->stat_lock); 204 if (!sbinfo->free_inodes) { 205 spin_unlock(&sbinfo->stat_lock); 206 return -ENOSPC; 207 } 208 sbinfo->free_inodes--; 209 spin_unlock(&sbinfo->stat_lock); 210 } 211 return 0; 212 } 213 214 static void shmem_free_inode(struct super_block *sb) 215 { 216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 217 if (sbinfo->max_inodes) { 218 spin_lock(&sbinfo->stat_lock); 219 sbinfo->free_inodes++; 220 spin_unlock(&sbinfo->stat_lock); 221 } 222 } 223 224 /** 225 * shmem_recalc_inode - recalculate the block usage of an inode 226 * @inode: inode to recalc 227 * 228 * We have to calculate the free blocks since the mm can drop 229 * undirtied hole pages behind our back. 230 * 231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 233 * 234 * It has to be called with the spinlock held. 235 */ 236 static void shmem_recalc_inode(struct inode *inode) 237 { 238 struct shmem_inode_info *info = SHMEM_I(inode); 239 long freed; 240 241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 242 if (freed > 0) { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 244 if (sbinfo->max_blocks) 245 percpu_counter_add(&sbinfo->used_blocks, -freed); 246 info->alloced -= freed; 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 248 shmem_unacct_blocks(info->flags, freed); 249 } 250 } 251 252 /* 253 * Replace item expected in radix tree by a new item, while holding tree lock. 254 */ 255 static int shmem_radix_tree_replace(struct address_space *mapping, 256 pgoff_t index, void *expected, void *replacement) 257 { 258 void **pslot; 259 void *item; 260 261 VM_BUG_ON(!expected); 262 VM_BUG_ON(!replacement); 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 264 if (!pslot) 265 return -ENOENT; 266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 267 if (item != expected) 268 return -ENOENT; 269 radix_tree_replace_slot(pslot, replacement); 270 return 0; 271 } 272 273 /* 274 * Sometimes, before we decide whether to proceed or to fail, we must check 275 * that an entry was not already brought back from swap by a racing thread. 276 * 277 * Checking page is not enough: by the time a SwapCache page is locked, it 278 * might be reused, and again be SwapCache, using the same swap as before. 279 */ 280 static bool shmem_confirm_swap(struct address_space *mapping, 281 pgoff_t index, swp_entry_t swap) 282 { 283 void *item; 284 285 rcu_read_lock(); 286 item = radix_tree_lookup(&mapping->page_tree, index); 287 rcu_read_unlock(); 288 return item == swp_to_radix_entry(swap); 289 } 290 291 /* 292 * Like add_to_page_cache_locked, but error if expected item has gone. 293 */ 294 static int shmem_add_to_page_cache(struct page *page, 295 struct address_space *mapping, 296 pgoff_t index, void *expected) 297 { 298 int error; 299 300 VM_BUG_ON_PAGE(!PageLocked(page), page); 301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 302 303 page_cache_get(page); 304 page->mapping = mapping; 305 page->index = index; 306 307 spin_lock_irq(&mapping->tree_lock); 308 if (!expected) 309 error = radix_tree_insert(&mapping->page_tree, index, page); 310 else 311 error = shmem_radix_tree_replace(mapping, index, expected, 312 page); 313 if (!error) { 314 mapping->nrpages++; 315 __inc_zone_page_state(page, NR_FILE_PAGES); 316 __inc_zone_page_state(page, NR_SHMEM); 317 spin_unlock_irq(&mapping->tree_lock); 318 } else { 319 page->mapping = NULL; 320 spin_unlock_irq(&mapping->tree_lock); 321 page_cache_release(page); 322 } 323 return error; 324 } 325 326 /* 327 * Like delete_from_page_cache, but substitutes swap for page. 328 */ 329 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 330 { 331 struct address_space *mapping = page->mapping; 332 int error; 333 334 spin_lock_irq(&mapping->tree_lock); 335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 336 page->mapping = NULL; 337 mapping->nrpages--; 338 __dec_zone_page_state(page, NR_FILE_PAGES); 339 __dec_zone_page_state(page, NR_SHMEM); 340 spin_unlock_irq(&mapping->tree_lock); 341 page_cache_release(page); 342 BUG_ON(error); 343 } 344 345 /* 346 * Remove swap entry from radix tree, free the swap and its page cache. 347 */ 348 static int shmem_free_swap(struct address_space *mapping, 349 pgoff_t index, void *radswap) 350 { 351 void *old; 352 353 spin_lock_irq(&mapping->tree_lock); 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 355 spin_unlock_irq(&mapping->tree_lock); 356 if (old != radswap) 357 return -ENOENT; 358 free_swap_and_cache(radix_to_swp_entry(radswap)); 359 return 0; 360 } 361 362 /* 363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 364 */ 365 void shmem_unlock_mapping(struct address_space *mapping) 366 { 367 struct pagevec pvec; 368 pgoff_t indices[PAGEVEC_SIZE]; 369 pgoff_t index = 0; 370 371 pagevec_init(&pvec, 0); 372 /* 373 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 374 */ 375 while (!mapping_unevictable(mapping)) { 376 /* 377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 379 */ 380 pvec.nr = find_get_entries(mapping, index, 381 PAGEVEC_SIZE, pvec.pages, indices); 382 if (!pvec.nr) 383 break; 384 index = indices[pvec.nr - 1] + 1; 385 pagevec_remove_exceptionals(&pvec); 386 check_move_unevictable_pages(pvec.pages, pvec.nr); 387 pagevec_release(&pvec); 388 cond_resched(); 389 } 390 } 391 392 /* 393 * Remove range of pages and swap entries from radix tree, and free them. 394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 395 */ 396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 397 bool unfalloc) 398 { 399 struct address_space *mapping = inode->i_mapping; 400 struct shmem_inode_info *info = SHMEM_I(inode); 401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 405 struct pagevec pvec; 406 pgoff_t indices[PAGEVEC_SIZE]; 407 long nr_swaps_freed = 0; 408 pgoff_t index; 409 int i; 410 411 if (lend == -1) 412 end = -1; /* unsigned, so actually very big */ 413 414 pagevec_init(&pvec, 0); 415 index = start; 416 while (index < end) { 417 pvec.nr = find_get_entries(mapping, index, 418 min(end - index, (pgoff_t)PAGEVEC_SIZE), 419 pvec.pages, indices); 420 if (!pvec.nr) 421 break; 422 mem_cgroup_uncharge_start(); 423 for (i = 0; i < pagevec_count(&pvec); i++) { 424 struct page *page = pvec.pages[i]; 425 426 index = indices[i]; 427 if (index >= end) 428 break; 429 430 if (radix_tree_exceptional_entry(page)) { 431 if (unfalloc) 432 continue; 433 nr_swaps_freed += !shmem_free_swap(mapping, 434 index, page); 435 continue; 436 } 437 438 if (!trylock_page(page)) 439 continue; 440 if (!unfalloc || !PageUptodate(page)) { 441 if (page->mapping == mapping) { 442 VM_BUG_ON_PAGE(PageWriteback(page), page); 443 truncate_inode_page(mapping, page); 444 } 445 } 446 unlock_page(page); 447 } 448 pagevec_remove_exceptionals(&pvec); 449 pagevec_release(&pvec); 450 mem_cgroup_uncharge_end(); 451 cond_resched(); 452 index++; 453 } 454 455 if (partial_start) { 456 struct page *page = NULL; 457 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 458 if (page) { 459 unsigned int top = PAGE_CACHE_SIZE; 460 if (start > end) { 461 top = partial_end; 462 partial_end = 0; 463 } 464 zero_user_segment(page, partial_start, top); 465 set_page_dirty(page); 466 unlock_page(page); 467 page_cache_release(page); 468 } 469 } 470 if (partial_end) { 471 struct page *page = NULL; 472 shmem_getpage(inode, end, &page, SGP_READ, NULL); 473 if (page) { 474 zero_user_segment(page, 0, partial_end); 475 set_page_dirty(page); 476 unlock_page(page); 477 page_cache_release(page); 478 } 479 } 480 if (start >= end) 481 return; 482 483 index = start; 484 while (index < end) { 485 cond_resched(); 486 487 pvec.nr = find_get_entries(mapping, index, 488 min(end - index, (pgoff_t)PAGEVEC_SIZE), 489 pvec.pages, indices); 490 if (!pvec.nr) { 491 /* If all gone or hole-punch or unfalloc, we're done */ 492 if (index == start || end != -1) 493 break; 494 /* But if truncating, restart to make sure all gone */ 495 index = start; 496 continue; 497 } 498 mem_cgroup_uncharge_start(); 499 for (i = 0; i < pagevec_count(&pvec); i++) { 500 struct page *page = pvec.pages[i]; 501 502 index = indices[i]; 503 if (index >= end) 504 break; 505 506 if (radix_tree_exceptional_entry(page)) { 507 if (unfalloc) 508 continue; 509 if (shmem_free_swap(mapping, index, page)) { 510 /* Swap was replaced by page: retry */ 511 index--; 512 break; 513 } 514 nr_swaps_freed++; 515 continue; 516 } 517 518 lock_page(page); 519 if (!unfalloc || !PageUptodate(page)) { 520 if (page->mapping == mapping) { 521 VM_BUG_ON_PAGE(PageWriteback(page), page); 522 truncate_inode_page(mapping, page); 523 } else { 524 /* Page was replaced by swap: retry */ 525 unlock_page(page); 526 index--; 527 break; 528 } 529 } 530 unlock_page(page); 531 } 532 pagevec_remove_exceptionals(&pvec); 533 pagevec_release(&pvec); 534 mem_cgroup_uncharge_end(); 535 index++; 536 } 537 538 spin_lock(&info->lock); 539 info->swapped -= nr_swaps_freed; 540 shmem_recalc_inode(inode); 541 spin_unlock(&info->lock); 542 } 543 544 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 545 { 546 shmem_undo_range(inode, lstart, lend, false); 547 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 548 } 549 EXPORT_SYMBOL_GPL(shmem_truncate_range); 550 551 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 552 { 553 struct inode *inode = dentry->d_inode; 554 int error; 555 556 error = inode_change_ok(inode, attr); 557 if (error) 558 return error; 559 560 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 561 loff_t oldsize = inode->i_size; 562 loff_t newsize = attr->ia_size; 563 564 if (newsize != oldsize) { 565 error = shmem_reacct_size(SHMEM_I(inode)->flags, 566 oldsize, newsize); 567 if (error) 568 return error; 569 i_size_write(inode, newsize); 570 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 571 } 572 if (newsize < oldsize) { 573 loff_t holebegin = round_up(newsize, PAGE_SIZE); 574 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 575 shmem_truncate_range(inode, newsize, (loff_t)-1); 576 /* unmap again to remove racily COWed private pages */ 577 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 578 } 579 } 580 581 setattr_copy(inode, attr); 582 if (attr->ia_valid & ATTR_MODE) 583 error = posix_acl_chmod(inode, inode->i_mode); 584 return error; 585 } 586 587 static void shmem_evict_inode(struct inode *inode) 588 { 589 struct shmem_inode_info *info = SHMEM_I(inode); 590 591 if (inode->i_mapping->a_ops == &shmem_aops) { 592 shmem_unacct_size(info->flags, inode->i_size); 593 inode->i_size = 0; 594 shmem_truncate_range(inode, 0, (loff_t)-1); 595 if (!list_empty(&info->swaplist)) { 596 mutex_lock(&shmem_swaplist_mutex); 597 list_del_init(&info->swaplist); 598 mutex_unlock(&shmem_swaplist_mutex); 599 } 600 } else 601 kfree(info->symlink); 602 603 simple_xattrs_free(&info->xattrs); 604 WARN_ON(inode->i_blocks); 605 shmem_free_inode(inode->i_sb); 606 clear_inode(inode); 607 } 608 609 /* 610 * If swap found in inode, free it and move page from swapcache to filecache. 611 */ 612 static int shmem_unuse_inode(struct shmem_inode_info *info, 613 swp_entry_t swap, struct page **pagep) 614 { 615 struct address_space *mapping = info->vfs_inode.i_mapping; 616 void *radswap; 617 pgoff_t index; 618 gfp_t gfp; 619 int error = 0; 620 621 radswap = swp_to_radix_entry(swap); 622 index = radix_tree_locate_item(&mapping->page_tree, radswap); 623 if (index == -1) 624 return 0; 625 626 /* 627 * Move _head_ to start search for next from here. 628 * But be careful: shmem_evict_inode checks list_empty without taking 629 * mutex, and there's an instant in list_move_tail when info->swaplist 630 * would appear empty, if it were the only one on shmem_swaplist. 631 */ 632 if (shmem_swaplist.next != &info->swaplist) 633 list_move_tail(&shmem_swaplist, &info->swaplist); 634 635 gfp = mapping_gfp_mask(mapping); 636 if (shmem_should_replace_page(*pagep, gfp)) { 637 mutex_unlock(&shmem_swaplist_mutex); 638 error = shmem_replace_page(pagep, gfp, info, index); 639 mutex_lock(&shmem_swaplist_mutex); 640 /* 641 * We needed to drop mutex to make that restrictive page 642 * allocation, but the inode might have been freed while we 643 * dropped it: although a racing shmem_evict_inode() cannot 644 * complete without emptying the radix_tree, our page lock 645 * on this swapcache page is not enough to prevent that - 646 * free_swap_and_cache() of our swap entry will only 647 * trylock_page(), removing swap from radix_tree whatever. 648 * 649 * We must not proceed to shmem_add_to_page_cache() if the 650 * inode has been freed, but of course we cannot rely on 651 * inode or mapping or info to check that. However, we can 652 * safely check if our swap entry is still in use (and here 653 * it can't have got reused for another page): if it's still 654 * in use, then the inode cannot have been freed yet, and we 655 * can safely proceed (if it's no longer in use, that tells 656 * nothing about the inode, but we don't need to unuse swap). 657 */ 658 if (!page_swapcount(*pagep)) 659 error = -ENOENT; 660 } 661 662 /* 663 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 664 * but also to hold up shmem_evict_inode(): so inode cannot be freed 665 * beneath us (pagelock doesn't help until the page is in pagecache). 666 */ 667 if (!error) 668 error = shmem_add_to_page_cache(*pagep, mapping, index, 669 radswap); 670 if (error != -ENOMEM) { 671 /* 672 * Truncation and eviction use free_swap_and_cache(), which 673 * only does trylock page: if we raced, best clean up here. 674 */ 675 delete_from_swap_cache(*pagep); 676 set_page_dirty(*pagep); 677 if (!error) { 678 spin_lock(&info->lock); 679 info->swapped--; 680 spin_unlock(&info->lock); 681 swap_free(swap); 682 } 683 error = 1; /* not an error, but entry was found */ 684 } 685 return error; 686 } 687 688 /* 689 * Search through swapped inodes to find and replace swap by page. 690 */ 691 int shmem_unuse(swp_entry_t swap, struct page *page) 692 { 693 struct list_head *this, *next; 694 struct shmem_inode_info *info; 695 int found = 0; 696 int error = 0; 697 698 /* 699 * There's a faint possibility that swap page was replaced before 700 * caller locked it: caller will come back later with the right page. 701 */ 702 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 703 goto out; 704 705 /* 706 * Charge page using GFP_KERNEL while we can wait, before taking 707 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 708 * Charged back to the user (not to caller) when swap account is used. 709 */ 710 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL); 711 if (error) 712 goto out; 713 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 714 715 mutex_lock(&shmem_swaplist_mutex); 716 list_for_each_safe(this, next, &shmem_swaplist) { 717 info = list_entry(this, struct shmem_inode_info, swaplist); 718 if (info->swapped) 719 found = shmem_unuse_inode(info, swap, &page); 720 else 721 list_del_init(&info->swaplist); 722 cond_resched(); 723 if (found) 724 break; 725 } 726 mutex_unlock(&shmem_swaplist_mutex); 727 728 if (found < 0) 729 error = found; 730 out: 731 unlock_page(page); 732 page_cache_release(page); 733 return error; 734 } 735 736 /* 737 * Move the page from the page cache to the swap cache. 738 */ 739 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 740 { 741 struct shmem_inode_info *info; 742 struct address_space *mapping; 743 struct inode *inode; 744 swp_entry_t swap; 745 pgoff_t index; 746 747 BUG_ON(!PageLocked(page)); 748 mapping = page->mapping; 749 index = page->index; 750 inode = mapping->host; 751 info = SHMEM_I(inode); 752 if (info->flags & VM_LOCKED) 753 goto redirty; 754 if (!total_swap_pages) 755 goto redirty; 756 757 /* 758 * shmem_backing_dev_info's capabilities prevent regular writeback or 759 * sync from ever calling shmem_writepage; but a stacking filesystem 760 * might use ->writepage of its underlying filesystem, in which case 761 * tmpfs should write out to swap only in response to memory pressure, 762 * and not for the writeback threads or sync. 763 */ 764 if (!wbc->for_reclaim) { 765 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 766 goto redirty; 767 } 768 769 /* 770 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 771 * value into swapfile.c, the only way we can correctly account for a 772 * fallocated page arriving here is now to initialize it and write it. 773 * 774 * That's okay for a page already fallocated earlier, but if we have 775 * not yet completed the fallocation, then (a) we want to keep track 776 * of this page in case we have to undo it, and (b) it may not be a 777 * good idea to continue anyway, once we're pushing into swap. So 778 * reactivate the page, and let shmem_fallocate() quit when too many. 779 */ 780 if (!PageUptodate(page)) { 781 if (inode->i_private) { 782 struct shmem_falloc *shmem_falloc; 783 spin_lock(&inode->i_lock); 784 shmem_falloc = inode->i_private; 785 if (shmem_falloc && 786 !shmem_falloc->waitq && 787 index >= shmem_falloc->start && 788 index < shmem_falloc->next) 789 shmem_falloc->nr_unswapped++; 790 else 791 shmem_falloc = NULL; 792 spin_unlock(&inode->i_lock); 793 if (shmem_falloc) 794 goto redirty; 795 } 796 clear_highpage(page); 797 flush_dcache_page(page); 798 SetPageUptodate(page); 799 } 800 801 swap = get_swap_page(); 802 if (!swap.val) 803 goto redirty; 804 805 /* 806 * Add inode to shmem_unuse()'s list of swapped-out inodes, 807 * if it's not already there. Do it now before the page is 808 * moved to swap cache, when its pagelock no longer protects 809 * the inode from eviction. But don't unlock the mutex until 810 * we've incremented swapped, because shmem_unuse_inode() will 811 * prune a !swapped inode from the swaplist under this mutex. 812 */ 813 mutex_lock(&shmem_swaplist_mutex); 814 if (list_empty(&info->swaplist)) 815 list_add_tail(&info->swaplist, &shmem_swaplist); 816 817 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 818 swap_shmem_alloc(swap); 819 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 820 821 spin_lock(&info->lock); 822 info->swapped++; 823 shmem_recalc_inode(inode); 824 spin_unlock(&info->lock); 825 826 mutex_unlock(&shmem_swaplist_mutex); 827 BUG_ON(page_mapped(page)); 828 swap_writepage(page, wbc); 829 return 0; 830 } 831 832 mutex_unlock(&shmem_swaplist_mutex); 833 swapcache_free(swap, NULL); 834 redirty: 835 set_page_dirty(page); 836 if (wbc->for_reclaim) 837 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 838 unlock_page(page); 839 return 0; 840 } 841 842 #ifdef CONFIG_NUMA 843 #ifdef CONFIG_TMPFS 844 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 845 { 846 char buffer[64]; 847 848 if (!mpol || mpol->mode == MPOL_DEFAULT) 849 return; /* show nothing */ 850 851 mpol_to_str(buffer, sizeof(buffer), mpol); 852 853 seq_printf(seq, ",mpol=%s", buffer); 854 } 855 856 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 857 { 858 struct mempolicy *mpol = NULL; 859 if (sbinfo->mpol) { 860 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 861 mpol = sbinfo->mpol; 862 mpol_get(mpol); 863 spin_unlock(&sbinfo->stat_lock); 864 } 865 return mpol; 866 } 867 #endif /* CONFIG_TMPFS */ 868 869 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 870 struct shmem_inode_info *info, pgoff_t index) 871 { 872 struct vm_area_struct pvma; 873 struct page *page; 874 875 /* Create a pseudo vma that just contains the policy */ 876 pvma.vm_start = 0; 877 /* Bias interleave by inode number to distribute better across nodes */ 878 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 879 pvma.vm_ops = NULL; 880 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 881 882 page = swapin_readahead(swap, gfp, &pvma, 0); 883 884 /* Drop reference taken by mpol_shared_policy_lookup() */ 885 mpol_cond_put(pvma.vm_policy); 886 887 return page; 888 } 889 890 static struct page *shmem_alloc_page(gfp_t gfp, 891 struct shmem_inode_info *info, pgoff_t index) 892 { 893 struct vm_area_struct pvma; 894 struct page *page; 895 896 /* Create a pseudo vma that just contains the policy */ 897 pvma.vm_start = 0; 898 /* Bias interleave by inode number to distribute better across nodes */ 899 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 900 pvma.vm_ops = NULL; 901 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 902 903 page = alloc_page_vma(gfp, &pvma, 0); 904 905 /* Drop reference taken by mpol_shared_policy_lookup() */ 906 mpol_cond_put(pvma.vm_policy); 907 908 return page; 909 } 910 #else /* !CONFIG_NUMA */ 911 #ifdef CONFIG_TMPFS 912 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 913 { 914 } 915 #endif /* CONFIG_TMPFS */ 916 917 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 918 struct shmem_inode_info *info, pgoff_t index) 919 { 920 return swapin_readahead(swap, gfp, NULL, 0); 921 } 922 923 static inline struct page *shmem_alloc_page(gfp_t gfp, 924 struct shmem_inode_info *info, pgoff_t index) 925 { 926 return alloc_page(gfp); 927 } 928 #endif /* CONFIG_NUMA */ 929 930 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 931 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 932 { 933 return NULL; 934 } 935 #endif 936 937 /* 938 * When a page is moved from swapcache to shmem filecache (either by the 939 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 940 * shmem_unuse_inode()), it may have been read in earlier from swap, in 941 * ignorance of the mapping it belongs to. If that mapping has special 942 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 943 * we may need to copy to a suitable page before moving to filecache. 944 * 945 * In a future release, this may well be extended to respect cpuset and 946 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 947 * but for now it is a simple matter of zone. 948 */ 949 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 950 { 951 return page_zonenum(page) > gfp_zone(gfp); 952 } 953 954 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 955 struct shmem_inode_info *info, pgoff_t index) 956 { 957 struct page *oldpage, *newpage; 958 struct address_space *swap_mapping; 959 pgoff_t swap_index; 960 int error; 961 962 oldpage = *pagep; 963 swap_index = page_private(oldpage); 964 swap_mapping = page_mapping(oldpage); 965 966 /* 967 * We have arrived here because our zones are constrained, so don't 968 * limit chance of success by further cpuset and node constraints. 969 */ 970 gfp &= ~GFP_CONSTRAINT_MASK; 971 newpage = shmem_alloc_page(gfp, info, index); 972 if (!newpage) 973 return -ENOMEM; 974 975 page_cache_get(newpage); 976 copy_highpage(newpage, oldpage); 977 flush_dcache_page(newpage); 978 979 __set_page_locked(newpage); 980 SetPageUptodate(newpage); 981 SetPageSwapBacked(newpage); 982 set_page_private(newpage, swap_index); 983 SetPageSwapCache(newpage); 984 985 /* 986 * Our caller will very soon move newpage out of swapcache, but it's 987 * a nice clean interface for us to replace oldpage by newpage there. 988 */ 989 spin_lock_irq(&swap_mapping->tree_lock); 990 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 991 newpage); 992 if (!error) { 993 __inc_zone_page_state(newpage, NR_FILE_PAGES); 994 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 995 } 996 spin_unlock_irq(&swap_mapping->tree_lock); 997 998 if (unlikely(error)) { 999 /* 1000 * Is this possible? I think not, now that our callers check 1001 * both PageSwapCache and page_private after getting page lock; 1002 * but be defensive. Reverse old to newpage for clear and free. 1003 */ 1004 oldpage = newpage; 1005 } else { 1006 mem_cgroup_replace_page_cache(oldpage, newpage); 1007 lru_cache_add_anon(newpage); 1008 *pagep = newpage; 1009 } 1010 1011 ClearPageSwapCache(oldpage); 1012 set_page_private(oldpage, 0); 1013 1014 unlock_page(oldpage); 1015 page_cache_release(oldpage); 1016 page_cache_release(oldpage); 1017 return error; 1018 } 1019 1020 /* 1021 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1022 * 1023 * If we allocate a new one we do not mark it dirty. That's up to the 1024 * vm. If we swap it in we mark it dirty since we also free the swap 1025 * entry since a page cannot live in both the swap and page cache 1026 */ 1027 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1028 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1029 { 1030 struct address_space *mapping = inode->i_mapping; 1031 struct shmem_inode_info *info; 1032 struct shmem_sb_info *sbinfo; 1033 struct page *page; 1034 swp_entry_t swap; 1035 int error; 1036 int once = 0; 1037 int alloced = 0; 1038 1039 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1040 return -EFBIG; 1041 repeat: 1042 swap.val = 0; 1043 page = find_lock_entry(mapping, index); 1044 if (radix_tree_exceptional_entry(page)) { 1045 swap = radix_to_swp_entry(page); 1046 page = NULL; 1047 } 1048 1049 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1050 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1051 error = -EINVAL; 1052 goto failed; 1053 } 1054 1055 if (page && sgp == SGP_WRITE) 1056 mark_page_accessed(page); 1057 1058 /* fallocated page? */ 1059 if (page && !PageUptodate(page)) { 1060 if (sgp != SGP_READ) 1061 goto clear; 1062 unlock_page(page); 1063 page_cache_release(page); 1064 page = NULL; 1065 } 1066 if (page || (sgp == SGP_READ && !swap.val)) { 1067 *pagep = page; 1068 return 0; 1069 } 1070 1071 /* 1072 * Fast cache lookup did not find it: 1073 * bring it back from swap or allocate. 1074 */ 1075 info = SHMEM_I(inode); 1076 sbinfo = SHMEM_SB(inode->i_sb); 1077 1078 if (swap.val) { 1079 /* Look it up and read it in.. */ 1080 page = lookup_swap_cache(swap); 1081 if (!page) { 1082 /* here we actually do the io */ 1083 if (fault_type) 1084 *fault_type |= VM_FAULT_MAJOR; 1085 page = shmem_swapin(swap, gfp, info, index); 1086 if (!page) { 1087 error = -ENOMEM; 1088 goto failed; 1089 } 1090 } 1091 1092 /* We have to do this with page locked to prevent races */ 1093 lock_page(page); 1094 if (!PageSwapCache(page) || page_private(page) != swap.val || 1095 !shmem_confirm_swap(mapping, index, swap)) { 1096 error = -EEXIST; /* try again */ 1097 goto unlock; 1098 } 1099 if (!PageUptodate(page)) { 1100 error = -EIO; 1101 goto failed; 1102 } 1103 wait_on_page_writeback(page); 1104 1105 if (shmem_should_replace_page(page, gfp)) { 1106 error = shmem_replace_page(&page, gfp, info, index); 1107 if (error) 1108 goto failed; 1109 } 1110 1111 error = mem_cgroup_charge_file(page, current->mm, 1112 gfp & GFP_RECLAIM_MASK); 1113 if (!error) { 1114 error = shmem_add_to_page_cache(page, mapping, index, 1115 swp_to_radix_entry(swap)); 1116 /* 1117 * We already confirmed swap under page lock, and make 1118 * no memory allocation here, so usually no possibility 1119 * of error; but free_swap_and_cache() only trylocks a 1120 * page, so it is just possible that the entry has been 1121 * truncated or holepunched since swap was confirmed. 1122 * shmem_undo_range() will have done some of the 1123 * unaccounting, now delete_from_swap_cache() will do 1124 * the rest (including mem_cgroup_uncharge_swapcache). 1125 * Reset swap.val? No, leave it so "failed" goes back to 1126 * "repeat": reading a hole and writing should succeed. 1127 */ 1128 if (error) 1129 delete_from_swap_cache(page); 1130 } 1131 if (error) 1132 goto failed; 1133 1134 spin_lock(&info->lock); 1135 info->swapped--; 1136 shmem_recalc_inode(inode); 1137 spin_unlock(&info->lock); 1138 1139 if (sgp == SGP_WRITE) 1140 mark_page_accessed(page); 1141 1142 delete_from_swap_cache(page); 1143 set_page_dirty(page); 1144 swap_free(swap); 1145 1146 } else { 1147 if (shmem_acct_block(info->flags)) { 1148 error = -ENOSPC; 1149 goto failed; 1150 } 1151 if (sbinfo->max_blocks) { 1152 if (percpu_counter_compare(&sbinfo->used_blocks, 1153 sbinfo->max_blocks) >= 0) { 1154 error = -ENOSPC; 1155 goto unacct; 1156 } 1157 percpu_counter_inc(&sbinfo->used_blocks); 1158 } 1159 1160 page = shmem_alloc_page(gfp, info, index); 1161 if (!page) { 1162 error = -ENOMEM; 1163 goto decused; 1164 } 1165 1166 __SetPageSwapBacked(page); 1167 __set_page_locked(page); 1168 if (sgp == SGP_WRITE) 1169 __SetPageReferenced(page); 1170 1171 error = mem_cgroup_charge_file(page, current->mm, 1172 gfp & GFP_RECLAIM_MASK); 1173 if (error) 1174 goto decused; 1175 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1176 if (!error) { 1177 error = shmem_add_to_page_cache(page, mapping, index, 1178 NULL); 1179 radix_tree_preload_end(); 1180 } 1181 if (error) { 1182 mem_cgroup_uncharge_cache_page(page); 1183 goto decused; 1184 } 1185 lru_cache_add_anon(page); 1186 1187 spin_lock(&info->lock); 1188 info->alloced++; 1189 inode->i_blocks += BLOCKS_PER_PAGE; 1190 shmem_recalc_inode(inode); 1191 spin_unlock(&info->lock); 1192 alloced = true; 1193 1194 /* 1195 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1196 */ 1197 if (sgp == SGP_FALLOC) 1198 sgp = SGP_WRITE; 1199 clear: 1200 /* 1201 * Let SGP_WRITE caller clear ends if write does not fill page; 1202 * but SGP_FALLOC on a page fallocated earlier must initialize 1203 * it now, lest undo on failure cancel our earlier guarantee. 1204 */ 1205 if (sgp != SGP_WRITE) { 1206 clear_highpage(page); 1207 flush_dcache_page(page); 1208 SetPageUptodate(page); 1209 } 1210 if (sgp == SGP_DIRTY) 1211 set_page_dirty(page); 1212 } 1213 1214 /* Perhaps the file has been truncated since we checked */ 1215 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1216 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1217 error = -EINVAL; 1218 if (alloced) 1219 goto trunc; 1220 else 1221 goto failed; 1222 } 1223 *pagep = page; 1224 return 0; 1225 1226 /* 1227 * Error recovery. 1228 */ 1229 trunc: 1230 info = SHMEM_I(inode); 1231 ClearPageDirty(page); 1232 delete_from_page_cache(page); 1233 spin_lock(&info->lock); 1234 info->alloced--; 1235 inode->i_blocks -= BLOCKS_PER_PAGE; 1236 spin_unlock(&info->lock); 1237 decused: 1238 sbinfo = SHMEM_SB(inode->i_sb); 1239 if (sbinfo->max_blocks) 1240 percpu_counter_add(&sbinfo->used_blocks, -1); 1241 unacct: 1242 shmem_unacct_blocks(info->flags, 1); 1243 failed: 1244 if (swap.val && error != -EINVAL && 1245 !shmem_confirm_swap(mapping, index, swap)) 1246 error = -EEXIST; 1247 unlock: 1248 if (page) { 1249 unlock_page(page); 1250 page_cache_release(page); 1251 } 1252 if (error == -ENOSPC && !once++) { 1253 info = SHMEM_I(inode); 1254 spin_lock(&info->lock); 1255 shmem_recalc_inode(inode); 1256 spin_unlock(&info->lock); 1257 goto repeat; 1258 } 1259 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1260 goto repeat; 1261 return error; 1262 } 1263 1264 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1265 { 1266 struct inode *inode = file_inode(vma->vm_file); 1267 int error; 1268 int ret = VM_FAULT_LOCKED; 1269 1270 /* 1271 * Trinity finds that probing a hole which tmpfs is punching can 1272 * prevent the hole-punch from ever completing: which in turn 1273 * locks writers out with its hold on i_mutex. So refrain from 1274 * faulting pages into the hole while it's being punched. Although 1275 * shmem_undo_range() does remove the additions, it may be unable to 1276 * keep up, as each new page needs its own unmap_mapping_range() call, 1277 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1278 * 1279 * It does not matter if we sometimes reach this check just before the 1280 * hole-punch begins, so that one fault then races with the punch: 1281 * we just need to make racing faults a rare case. 1282 * 1283 * The implementation below would be much simpler if we just used a 1284 * standard mutex or completion: but we cannot take i_mutex in fault, 1285 * and bloating every shmem inode for this unlikely case would be sad. 1286 */ 1287 if (unlikely(inode->i_private)) { 1288 struct shmem_falloc *shmem_falloc; 1289 1290 spin_lock(&inode->i_lock); 1291 shmem_falloc = inode->i_private; 1292 if (shmem_falloc && 1293 shmem_falloc->waitq && 1294 vmf->pgoff >= shmem_falloc->start && 1295 vmf->pgoff < shmem_falloc->next) { 1296 wait_queue_head_t *shmem_falloc_waitq; 1297 DEFINE_WAIT(shmem_fault_wait); 1298 1299 ret = VM_FAULT_NOPAGE; 1300 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1301 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1302 /* It's polite to up mmap_sem if we can */ 1303 up_read(&vma->vm_mm->mmap_sem); 1304 ret = VM_FAULT_RETRY; 1305 } 1306 1307 shmem_falloc_waitq = shmem_falloc->waitq; 1308 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1309 TASK_UNINTERRUPTIBLE); 1310 spin_unlock(&inode->i_lock); 1311 schedule(); 1312 1313 /* 1314 * shmem_falloc_waitq points into the shmem_fallocate() 1315 * stack of the hole-punching task: shmem_falloc_waitq 1316 * is usually invalid by the time we reach here, but 1317 * finish_wait() does not dereference it in that case; 1318 * though i_lock needed lest racing with wake_up_all(). 1319 */ 1320 spin_lock(&inode->i_lock); 1321 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1322 spin_unlock(&inode->i_lock); 1323 return ret; 1324 } 1325 spin_unlock(&inode->i_lock); 1326 } 1327 1328 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1329 if (error) 1330 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1331 1332 if (ret & VM_FAULT_MAJOR) { 1333 count_vm_event(PGMAJFAULT); 1334 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1335 } 1336 return ret; 1337 } 1338 1339 #ifdef CONFIG_NUMA 1340 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1341 { 1342 struct inode *inode = file_inode(vma->vm_file); 1343 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1344 } 1345 1346 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1347 unsigned long addr) 1348 { 1349 struct inode *inode = file_inode(vma->vm_file); 1350 pgoff_t index; 1351 1352 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1353 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1354 } 1355 #endif 1356 1357 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1358 { 1359 struct inode *inode = file_inode(file); 1360 struct shmem_inode_info *info = SHMEM_I(inode); 1361 int retval = -ENOMEM; 1362 1363 spin_lock(&info->lock); 1364 if (lock && !(info->flags & VM_LOCKED)) { 1365 if (!user_shm_lock(inode->i_size, user)) 1366 goto out_nomem; 1367 info->flags |= VM_LOCKED; 1368 mapping_set_unevictable(file->f_mapping); 1369 } 1370 if (!lock && (info->flags & VM_LOCKED) && user) { 1371 user_shm_unlock(inode->i_size, user); 1372 info->flags &= ~VM_LOCKED; 1373 mapping_clear_unevictable(file->f_mapping); 1374 } 1375 retval = 0; 1376 1377 out_nomem: 1378 spin_unlock(&info->lock); 1379 return retval; 1380 } 1381 1382 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1383 { 1384 file_accessed(file); 1385 vma->vm_ops = &shmem_vm_ops; 1386 return 0; 1387 } 1388 1389 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1390 umode_t mode, dev_t dev, unsigned long flags) 1391 { 1392 struct inode *inode; 1393 struct shmem_inode_info *info; 1394 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1395 1396 if (shmem_reserve_inode(sb)) 1397 return NULL; 1398 1399 inode = new_inode(sb); 1400 if (inode) { 1401 inode->i_ino = get_next_ino(); 1402 inode_init_owner(inode, dir, mode); 1403 inode->i_blocks = 0; 1404 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1405 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1406 inode->i_generation = get_seconds(); 1407 info = SHMEM_I(inode); 1408 memset(info, 0, (char *)inode - (char *)info); 1409 spin_lock_init(&info->lock); 1410 info->flags = flags & VM_NORESERVE; 1411 INIT_LIST_HEAD(&info->swaplist); 1412 simple_xattrs_init(&info->xattrs); 1413 cache_no_acl(inode); 1414 1415 switch (mode & S_IFMT) { 1416 default: 1417 inode->i_op = &shmem_special_inode_operations; 1418 init_special_inode(inode, mode, dev); 1419 break; 1420 case S_IFREG: 1421 inode->i_mapping->a_ops = &shmem_aops; 1422 inode->i_op = &shmem_inode_operations; 1423 inode->i_fop = &shmem_file_operations; 1424 mpol_shared_policy_init(&info->policy, 1425 shmem_get_sbmpol(sbinfo)); 1426 break; 1427 case S_IFDIR: 1428 inc_nlink(inode); 1429 /* Some things misbehave if size == 0 on a directory */ 1430 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1431 inode->i_op = &shmem_dir_inode_operations; 1432 inode->i_fop = &simple_dir_operations; 1433 break; 1434 case S_IFLNK: 1435 /* 1436 * Must not load anything in the rbtree, 1437 * mpol_free_shared_policy will not be called. 1438 */ 1439 mpol_shared_policy_init(&info->policy, NULL); 1440 break; 1441 } 1442 } else 1443 shmem_free_inode(sb); 1444 return inode; 1445 } 1446 1447 bool shmem_mapping(struct address_space *mapping) 1448 { 1449 return mapping->backing_dev_info == &shmem_backing_dev_info; 1450 } 1451 1452 #ifdef CONFIG_TMPFS 1453 static const struct inode_operations shmem_symlink_inode_operations; 1454 static const struct inode_operations shmem_short_symlink_operations; 1455 1456 #ifdef CONFIG_TMPFS_XATTR 1457 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1458 #else 1459 #define shmem_initxattrs NULL 1460 #endif 1461 1462 static int 1463 shmem_write_begin(struct file *file, struct address_space *mapping, 1464 loff_t pos, unsigned len, unsigned flags, 1465 struct page **pagep, void **fsdata) 1466 { 1467 struct inode *inode = mapping->host; 1468 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1469 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1470 } 1471 1472 static int 1473 shmem_write_end(struct file *file, struct address_space *mapping, 1474 loff_t pos, unsigned len, unsigned copied, 1475 struct page *page, void *fsdata) 1476 { 1477 struct inode *inode = mapping->host; 1478 1479 if (pos + copied > inode->i_size) 1480 i_size_write(inode, pos + copied); 1481 1482 if (!PageUptodate(page)) { 1483 if (copied < PAGE_CACHE_SIZE) { 1484 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1485 zero_user_segments(page, 0, from, 1486 from + copied, PAGE_CACHE_SIZE); 1487 } 1488 SetPageUptodate(page); 1489 } 1490 set_page_dirty(page); 1491 unlock_page(page); 1492 page_cache_release(page); 1493 1494 return copied; 1495 } 1496 1497 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1498 { 1499 struct file *file = iocb->ki_filp; 1500 struct inode *inode = file_inode(file); 1501 struct address_space *mapping = inode->i_mapping; 1502 pgoff_t index; 1503 unsigned long offset; 1504 enum sgp_type sgp = SGP_READ; 1505 int error = 0; 1506 ssize_t retval = 0; 1507 loff_t *ppos = &iocb->ki_pos; 1508 1509 /* 1510 * Might this read be for a stacking filesystem? Then when reading 1511 * holes of a sparse file, we actually need to allocate those pages, 1512 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1513 */ 1514 if (segment_eq(get_fs(), KERNEL_DS)) 1515 sgp = SGP_DIRTY; 1516 1517 index = *ppos >> PAGE_CACHE_SHIFT; 1518 offset = *ppos & ~PAGE_CACHE_MASK; 1519 1520 for (;;) { 1521 struct page *page = NULL; 1522 pgoff_t end_index; 1523 unsigned long nr, ret; 1524 loff_t i_size = i_size_read(inode); 1525 1526 end_index = i_size >> PAGE_CACHE_SHIFT; 1527 if (index > end_index) 1528 break; 1529 if (index == end_index) { 1530 nr = i_size & ~PAGE_CACHE_MASK; 1531 if (nr <= offset) 1532 break; 1533 } 1534 1535 error = shmem_getpage(inode, index, &page, sgp, NULL); 1536 if (error) { 1537 if (error == -EINVAL) 1538 error = 0; 1539 break; 1540 } 1541 if (page) 1542 unlock_page(page); 1543 1544 /* 1545 * We must evaluate after, since reads (unlike writes) 1546 * are called without i_mutex protection against truncate 1547 */ 1548 nr = PAGE_CACHE_SIZE; 1549 i_size = i_size_read(inode); 1550 end_index = i_size >> PAGE_CACHE_SHIFT; 1551 if (index == end_index) { 1552 nr = i_size & ~PAGE_CACHE_MASK; 1553 if (nr <= offset) { 1554 if (page) 1555 page_cache_release(page); 1556 break; 1557 } 1558 } 1559 nr -= offset; 1560 1561 if (page) { 1562 /* 1563 * If users can be writing to this page using arbitrary 1564 * virtual addresses, take care about potential aliasing 1565 * before reading the page on the kernel side. 1566 */ 1567 if (mapping_writably_mapped(mapping)) 1568 flush_dcache_page(page); 1569 /* 1570 * Mark the page accessed if we read the beginning. 1571 */ 1572 if (!offset) 1573 mark_page_accessed(page); 1574 } else { 1575 page = ZERO_PAGE(0); 1576 page_cache_get(page); 1577 } 1578 1579 /* 1580 * Ok, we have the page, and it's up-to-date, so 1581 * now we can copy it to user space... 1582 */ 1583 ret = copy_page_to_iter(page, offset, nr, to); 1584 retval += ret; 1585 offset += ret; 1586 index += offset >> PAGE_CACHE_SHIFT; 1587 offset &= ~PAGE_CACHE_MASK; 1588 1589 page_cache_release(page); 1590 if (!iov_iter_count(to)) 1591 break; 1592 if (ret < nr) { 1593 error = -EFAULT; 1594 break; 1595 } 1596 cond_resched(); 1597 } 1598 1599 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1600 file_accessed(file); 1601 return retval ? retval : error; 1602 } 1603 1604 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1605 struct pipe_inode_info *pipe, size_t len, 1606 unsigned int flags) 1607 { 1608 struct address_space *mapping = in->f_mapping; 1609 struct inode *inode = mapping->host; 1610 unsigned int loff, nr_pages, req_pages; 1611 struct page *pages[PIPE_DEF_BUFFERS]; 1612 struct partial_page partial[PIPE_DEF_BUFFERS]; 1613 struct page *page; 1614 pgoff_t index, end_index; 1615 loff_t isize, left; 1616 int error, page_nr; 1617 struct splice_pipe_desc spd = { 1618 .pages = pages, 1619 .partial = partial, 1620 .nr_pages_max = PIPE_DEF_BUFFERS, 1621 .flags = flags, 1622 .ops = &page_cache_pipe_buf_ops, 1623 .spd_release = spd_release_page, 1624 }; 1625 1626 isize = i_size_read(inode); 1627 if (unlikely(*ppos >= isize)) 1628 return 0; 1629 1630 left = isize - *ppos; 1631 if (unlikely(left < len)) 1632 len = left; 1633 1634 if (splice_grow_spd(pipe, &spd)) 1635 return -ENOMEM; 1636 1637 index = *ppos >> PAGE_CACHE_SHIFT; 1638 loff = *ppos & ~PAGE_CACHE_MASK; 1639 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1640 nr_pages = min(req_pages, spd.nr_pages_max); 1641 1642 spd.nr_pages = find_get_pages_contig(mapping, index, 1643 nr_pages, spd.pages); 1644 index += spd.nr_pages; 1645 error = 0; 1646 1647 while (spd.nr_pages < nr_pages) { 1648 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1649 if (error) 1650 break; 1651 unlock_page(page); 1652 spd.pages[spd.nr_pages++] = page; 1653 index++; 1654 } 1655 1656 index = *ppos >> PAGE_CACHE_SHIFT; 1657 nr_pages = spd.nr_pages; 1658 spd.nr_pages = 0; 1659 1660 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1661 unsigned int this_len; 1662 1663 if (!len) 1664 break; 1665 1666 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1667 page = spd.pages[page_nr]; 1668 1669 if (!PageUptodate(page) || page->mapping != mapping) { 1670 error = shmem_getpage(inode, index, &page, 1671 SGP_CACHE, NULL); 1672 if (error) 1673 break; 1674 unlock_page(page); 1675 page_cache_release(spd.pages[page_nr]); 1676 spd.pages[page_nr] = page; 1677 } 1678 1679 isize = i_size_read(inode); 1680 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1681 if (unlikely(!isize || index > end_index)) 1682 break; 1683 1684 if (end_index == index) { 1685 unsigned int plen; 1686 1687 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1688 if (plen <= loff) 1689 break; 1690 1691 this_len = min(this_len, plen - loff); 1692 len = this_len; 1693 } 1694 1695 spd.partial[page_nr].offset = loff; 1696 spd.partial[page_nr].len = this_len; 1697 len -= this_len; 1698 loff = 0; 1699 spd.nr_pages++; 1700 index++; 1701 } 1702 1703 while (page_nr < nr_pages) 1704 page_cache_release(spd.pages[page_nr++]); 1705 1706 if (spd.nr_pages) 1707 error = splice_to_pipe(pipe, &spd); 1708 1709 splice_shrink_spd(&spd); 1710 1711 if (error > 0) { 1712 *ppos += error; 1713 file_accessed(in); 1714 } 1715 return error; 1716 } 1717 1718 /* 1719 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1720 */ 1721 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1722 pgoff_t index, pgoff_t end, int whence) 1723 { 1724 struct page *page; 1725 struct pagevec pvec; 1726 pgoff_t indices[PAGEVEC_SIZE]; 1727 bool done = false; 1728 int i; 1729 1730 pagevec_init(&pvec, 0); 1731 pvec.nr = 1; /* start small: we may be there already */ 1732 while (!done) { 1733 pvec.nr = find_get_entries(mapping, index, 1734 pvec.nr, pvec.pages, indices); 1735 if (!pvec.nr) { 1736 if (whence == SEEK_DATA) 1737 index = end; 1738 break; 1739 } 1740 for (i = 0; i < pvec.nr; i++, index++) { 1741 if (index < indices[i]) { 1742 if (whence == SEEK_HOLE) { 1743 done = true; 1744 break; 1745 } 1746 index = indices[i]; 1747 } 1748 page = pvec.pages[i]; 1749 if (page && !radix_tree_exceptional_entry(page)) { 1750 if (!PageUptodate(page)) 1751 page = NULL; 1752 } 1753 if (index >= end || 1754 (page && whence == SEEK_DATA) || 1755 (!page && whence == SEEK_HOLE)) { 1756 done = true; 1757 break; 1758 } 1759 } 1760 pagevec_remove_exceptionals(&pvec); 1761 pagevec_release(&pvec); 1762 pvec.nr = PAGEVEC_SIZE; 1763 cond_resched(); 1764 } 1765 return index; 1766 } 1767 1768 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1769 { 1770 struct address_space *mapping = file->f_mapping; 1771 struct inode *inode = mapping->host; 1772 pgoff_t start, end; 1773 loff_t new_offset; 1774 1775 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1776 return generic_file_llseek_size(file, offset, whence, 1777 MAX_LFS_FILESIZE, i_size_read(inode)); 1778 mutex_lock(&inode->i_mutex); 1779 /* We're holding i_mutex so we can access i_size directly */ 1780 1781 if (offset < 0) 1782 offset = -EINVAL; 1783 else if (offset >= inode->i_size) 1784 offset = -ENXIO; 1785 else { 1786 start = offset >> PAGE_CACHE_SHIFT; 1787 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1788 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1789 new_offset <<= PAGE_CACHE_SHIFT; 1790 if (new_offset > offset) { 1791 if (new_offset < inode->i_size) 1792 offset = new_offset; 1793 else if (whence == SEEK_DATA) 1794 offset = -ENXIO; 1795 else 1796 offset = inode->i_size; 1797 } 1798 } 1799 1800 if (offset >= 0) 1801 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1802 mutex_unlock(&inode->i_mutex); 1803 return offset; 1804 } 1805 1806 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1807 loff_t len) 1808 { 1809 struct inode *inode = file_inode(file); 1810 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1811 struct shmem_falloc shmem_falloc; 1812 pgoff_t start, index, end; 1813 int error; 1814 1815 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 1816 return -EOPNOTSUPP; 1817 1818 mutex_lock(&inode->i_mutex); 1819 1820 if (mode & FALLOC_FL_PUNCH_HOLE) { 1821 struct address_space *mapping = file->f_mapping; 1822 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1823 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1824 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 1825 1826 shmem_falloc.waitq = &shmem_falloc_waitq; 1827 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 1828 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 1829 spin_lock(&inode->i_lock); 1830 inode->i_private = &shmem_falloc; 1831 spin_unlock(&inode->i_lock); 1832 1833 if ((u64)unmap_end > (u64)unmap_start) 1834 unmap_mapping_range(mapping, unmap_start, 1835 1 + unmap_end - unmap_start, 0); 1836 shmem_truncate_range(inode, offset, offset + len - 1); 1837 /* No need to unmap again: hole-punching leaves COWed pages */ 1838 1839 spin_lock(&inode->i_lock); 1840 inode->i_private = NULL; 1841 wake_up_all(&shmem_falloc_waitq); 1842 spin_unlock(&inode->i_lock); 1843 error = 0; 1844 goto out; 1845 } 1846 1847 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 1848 error = inode_newsize_ok(inode, offset + len); 1849 if (error) 1850 goto out; 1851 1852 start = offset >> PAGE_CACHE_SHIFT; 1853 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1854 /* Try to avoid a swapstorm if len is impossible to satisfy */ 1855 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 1856 error = -ENOSPC; 1857 goto out; 1858 } 1859 1860 shmem_falloc.waitq = NULL; 1861 shmem_falloc.start = start; 1862 shmem_falloc.next = start; 1863 shmem_falloc.nr_falloced = 0; 1864 shmem_falloc.nr_unswapped = 0; 1865 spin_lock(&inode->i_lock); 1866 inode->i_private = &shmem_falloc; 1867 spin_unlock(&inode->i_lock); 1868 1869 for (index = start; index < end; index++) { 1870 struct page *page; 1871 1872 /* 1873 * Good, the fallocate(2) manpage permits EINTR: we may have 1874 * been interrupted because we are using up too much memory. 1875 */ 1876 if (signal_pending(current)) 1877 error = -EINTR; 1878 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 1879 error = -ENOMEM; 1880 else 1881 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 1882 NULL); 1883 if (error) { 1884 /* Remove the !PageUptodate pages we added */ 1885 shmem_undo_range(inode, 1886 (loff_t)start << PAGE_CACHE_SHIFT, 1887 (loff_t)index << PAGE_CACHE_SHIFT, true); 1888 goto undone; 1889 } 1890 1891 /* 1892 * Inform shmem_writepage() how far we have reached. 1893 * No need for lock or barrier: we have the page lock. 1894 */ 1895 shmem_falloc.next++; 1896 if (!PageUptodate(page)) 1897 shmem_falloc.nr_falloced++; 1898 1899 /* 1900 * If !PageUptodate, leave it that way so that freeable pages 1901 * can be recognized if we need to rollback on error later. 1902 * But set_page_dirty so that memory pressure will swap rather 1903 * than free the pages we are allocating (and SGP_CACHE pages 1904 * might still be clean: we now need to mark those dirty too). 1905 */ 1906 set_page_dirty(page); 1907 unlock_page(page); 1908 page_cache_release(page); 1909 cond_resched(); 1910 } 1911 1912 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 1913 i_size_write(inode, offset + len); 1914 inode->i_ctime = CURRENT_TIME; 1915 undone: 1916 spin_lock(&inode->i_lock); 1917 inode->i_private = NULL; 1918 spin_unlock(&inode->i_lock); 1919 out: 1920 mutex_unlock(&inode->i_mutex); 1921 return error; 1922 } 1923 1924 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1925 { 1926 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1927 1928 buf->f_type = TMPFS_MAGIC; 1929 buf->f_bsize = PAGE_CACHE_SIZE; 1930 buf->f_namelen = NAME_MAX; 1931 if (sbinfo->max_blocks) { 1932 buf->f_blocks = sbinfo->max_blocks; 1933 buf->f_bavail = 1934 buf->f_bfree = sbinfo->max_blocks - 1935 percpu_counter_sum(&sbinfo->used_blocks); 1936 } 1937 if (sbinfo->max_inodes) { 1938 buf->f_files = sbinfo->max_inodes; 1939 buf->f_ffree = sbinfo->free_inodes; 1940 } 1941 /* else leave those fields 0 like simple_statfs */ 1942 return 0; 1943 } 1944 1945 /* 1946 * File creation. Allocate an inode, and we're done.. 1947 */ 1948 static int 1949 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1950 { 1951 struct inode *inode; 1952 int error = -ENOSPC; 1953 1954 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1955 if (inode) { 1956 error = simple_acl_create(dir, inode); 1957 if (error) 1958 goto out_iput; 1959 error = security_inode_init_security(inode, dir, 1960 &dentry->d_name, 1961 shmem_initxattrs, NULL); 1962 if (error && error != -EOPNOTSUPP) 1963 goto out_iput; 1964 1965 error = 0; 1966 dir->i_size += BOGO_DIRENT_SIZE; 1967 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1968 d_instantiate(dentry, inode); 1969 dget(dentry); /* Extra count - pin the dentry in core */ 1970 } 1971 return error; 1972 out_iput: 1973 iput(inode); 1974 return error; 1975 } 1976 1977 static int 1978 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 1979 { 1980 struct inode *inode; 1981 int error = -ENOSPC; 1982 1983 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 1984 if (inode) { 1985 error = security_inode_init_security(inode, dir, 1986 NULL, 1987 shmem_initxattrs, NULL); 1988 if (error && error != -EOPNOTSUPP) 1989 goto out_iput; 1990 error = simple_acl_create(dir, inode); 1991 if (error) 1992 goto out_iput; 1993 d_tmpfile(dentry, inode); 1994 } 1995 return error; 1996 out_iput: 1997 iput(inode); 1998 return error; 1999 } 2000 2001 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2002 { 2003 int error; 2004 2005 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2006 return error; 2007 inc_nlink(dir); 2008 return 0; 2009 } 2010 2011 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2012 bool excl) 2013 { 2014 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2015 } 2016 2017 /* 2018 * Link a file.. 2019 */ 2020 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2021 { 2022 struct inode *inode = old_dentry->d_inode; 2023 int ret; 2024 2025 /* 2026 * No ordinary (disk based) filesystem counts links as inodes; 2027 * but each new link needs a new dentry, pinning lowmem, and 2028 * tmpfs dentries cannot be pruned until they are unlinked. 2029 */ 2030 ret = shmem_reserve_inode(inode->i_sb); 2031 if (ret) 2032 goto out; 2033 2034 dir->i_size += BOGO_DIRENT_SIZE; 2035 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2036 inc_nlink(inode); 2037 ihold(inode); /* New dentry reference */ 2038 dget(dentry); /* Extra pinning count for the created dentry */ 2039 d_instantiate(dentry, inode); 2040 out: 2041 return ret; 2042 } 2043 2044 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2045 { 2046 struct inode *inode = dentry->d_inode; 2047 2048 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2049 shmem_free_inode(inode->i_sb); 2050 2051 dir->i_size -= BOGO_DIRENT_SIZE; 2052 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2053 drop_nlink(inode); 2054 dput(dentry); /* Undo the count from "create" - this does all the work */ 2055 return 0; 2056 } 2057 2058 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2059 { 2060 if (!simple_empty(dentry)) 2061 return -ENOTEMPTY; 2062 2063 drop_nlink(dentry->d_inode); 2064 drop_nlink(dir); 2065 return shmem_unlink(dir, dentry); 2066 } 2067 2068 /* 2069 * The VFS layer already does all the dentry stuff for rename, 2070 * we just have to decrement the usage count for the target if 2071 * it exists so that the VFS layer correctly free's it when it 2072 * gets overwritten. 2073 */ 2074 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2075 { 2076 struct inode *inode = old_dentry->d_inode; 2077 int they_are_dirs = S_ISDIR(inode->i_mode); 2078 2079 if (!simple_empty(new_dentry)) 2080 return -ENOTEMPTY; 2081 2082 if (new_dentry->d_inode) { 2083 (void) shmem_unlink(new_dir, new_dentry); 2084 if (they_are_dirs) 2085 drop_nlink(old_dir); 2086 } else if (they_are_dirs) { 2087 drop_nlink(old_dir); 2088 inc_nlink(new_dir); 2089 } 2090 2091 old_dir->i_size -= BOGO_DIRENT_SIZE; 2092 new_dir->i_size += BOGO_DIRENT_SIZE; 2093 old_dir->i_ctime = old_dir->i_mtime = 2094 new_dir->i_ctime = new_dir->i_mtime = 2095 inode->i_ctime = CURRENT_TIME; 2096 return 0; 2097 } 2098 2099 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2100 { 2101 int error; 2102 int len; 2103 struct inode *inode; 2104 struct page *page; 2105 char *kaddr; 2106 struct shmem_inode_info *info; 2107 2108 len = strlen(symname) + 1; 2109 if (len > PAGE_CACHE_SIZE) 2110 return -ENAMETOOLONG; 2111 2112 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2113 if (!inode) 2114 return -ENOSPC; 2115 2116 error = security_inode_init_security(inode, dir, &dentry->d_name, 2117 shmem_initxattrs, NULL); 2118 if (error) { 2119 if (error != -EOPNOTSUPP) { 2120 iput(inode); 2121 return error; 2122 } 2123 error = 0; 2124 } 2125 2126 info = SHMEM_I(inode); 2127 inode->i_size = len-1; 2128 if (len <= SHORT_SYMLINK_LEN) { 2129 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2130 if (!info->symlink) { 2131 iput(inode); 2132 return -ENOMEM; 2133 } 2134 inode->i_op = &shmem_short_symlink_operations; 2135 } else { 2136 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2137 if (error) { 2138 iput(inode); 2139 return error; 2140 } 2141 inode->i_mapping->a_ops = &shmem_aops; 2142 inode->i_op = &shmem_symlink_inode_operations; 2143 kaddr = kmap_atomic(page); 2144 memcpy(kaddr, symname, len); 2145 kunmap_atomic(kaddr); 2146 SetPageUptodate(page); 2147 set_page_dirty(page); 2148 unlock_page(page); 2149 page_cache_release(page); 2150 } 2151 dir->i_size += BOGO_DIRENT_SIZE; 2152 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2153 d_instantiate(dentry, inode); 2154 dget(dentry); 2155 return 0; 2156 } 2157 2158 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2159 { 2160 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 2161 return NULL; 2162 } 2163 2164 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2165 { 2166 struct page *page = NULL; 2167 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2168 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2169 if (page) 2170 unlock_page(page); 2171 return page; 2172 } 2173 2174 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2175 { 2176 if (!IS_ERR(nd_get_link(nd))) { 2177 struct page *page = cookie; 2178 kunmap(page); 2179 mark_page_accessed(page); 2180 page_cache_release(page); 2181 } 2182 } 2183 2184 #ifdef CONFIG_TMPFS_XATTR 2185 /* 2186 * Superblocks without xattr inode operations may get some security.* xattr 2187 * support from the LSM "for free". As soon as we have any other xattrs 2188 * like ACLs, we also need to implement the security.* handlers at 2189 * filesystem level, though. 2190 */ 2191 2192 /* 2193 * Callback for security_inode_init_security() for acquiring xattrs. 2194 */ 2195 static int shmem_initxattrs(struct inode *inode, 2196 const struct xattr *xattr_array, 2197 void *fs_info) 2198 { 2199 struct shmem_inode_info *info = SHMEM_I(inode); 2200 const struct xattr *xattr; 2201 struct simple_xattr *new_xattr; 2202 size_t len; 2203 2204 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2205 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2206 if (!new_xattr) 2207 return -ENOMEM; 2208 2209 len = strlen(xattr->name) + 1; 2210 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2211 GFP_KERNEL); 2212 if (!new_xattr->name) { 2213 kfree(new_xattr); 2214 return -ENOMEM; 2215 } 2216 2217 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2218 XATTR_SECURITY_PREFIX_LEN); 2219 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2220 xattr->name, len); 2221 2222 simple_xattr_list_add(&info->xattrs, new_xattr); 2223 } 2224 2225 return 0; 2226 } 2227 2228 static const struct xattr_handler *shmem_xattr_handlers[] = { 2229 #ifdef CONFIG_TMPFS_POSIX_ACL 2230 &posix_acl_access_xattr_handler, 2231 &posix_acl_default_xattr_handler, 2232 #endif 2233 NULL 2234 }; 2235 2236 static int shmem_xattr_validate(const char *name) 2237 { 2238 struct { const char *prefix; size_t len; } arr[] = { 2239 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2240 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2241 }; 2242 int i; 2243 2244 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2245 size_t preflen = arr[i].len; 2246 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2247 if (!name[preflen]) 2248 return -EINVAL; 2249 return 0; 2250 } 2251 } 2252 return -EOPNOTSUPP; 2253 } 2254 2255 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2256 void *buffer, size_t size) 2257 { 2258 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2259 int err; 2260 2261 /* 2262 * If this is a request for a synthetic attribute in the system.* 2263 * namespace use the generic infrastructure to resolve a handler 2264 * for it via sb->s_xattr. 2265 */ 2266 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2267 return generic_getxattr(dentry, name, buffer, size); 2268 2269 err = shmem_xattr_validate(name); 2270 if (err) 2271 return err; 2272 2273 return simple_xattr_get(&info->xattrs, name, buffer, size); 2274 } 2275 2276 static int shmem_setxattr(struct dentry *dentry, const char *name, 2277 const void *value, size_t size, int flags) 2278 { 2279 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2280 int err; 2281 2282 /* 2283 * If this is a request for a synthetic attribute in the system.* 2284 * namespace use the generic infrastructure to resolve a handler 2285 * for it via sb->s_xattr. 2286 */ 2287 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2288 return generic_setxattr(dentry, name, value, size, flags); 2289 2290 err = shmem_xattr_validate(name); 2291 if (err) 2292 return err; 2293 2294 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2295 } 2296 2297 static int shmem_removexattr(struct dentry *dentry, const char *name) 2298 { 2299 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2300 int err; 2301 2302 /* 2303 * If this is a request for a synthetic attribute in the system.* 2304 * namespace use the generic infrastructure to resolve a handler 2305 * for it via sb->s_xattr. 2306 */ 2307 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2308 return generic_removexattr(dentry, name); 2309 2310 err = shmem_xattr_validate(name); 2311 if (err) 2312 return err; 2313 2314 return simple_xattr_remove(&info->xattrs, name); 2315 } 2316 2317 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2318 { 2319 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2320 return simple_xattr_list(&info->xattrs, buffer, size); 2321 } 2322 #endif /* CONFIG_TMPFS_XATTR */ 2323 2324 static const struct inode_operations shmem_short_symlink_operations = { 2325 .readlink = generic_readlink, 2326 .follow_link = shmem_follow_short_symlink, 2327 #ifdef CONFIG_TMPFS_XATTR 2328 .setxattr = shmem_setxattr, 2329 .getxattr = shmem_getxattr, 2330 .listxattr = shmem_listxattr, 2331 .removexattr = shmem_removexattr, 2332 #endif 2333 }; 2334 2335 static const struct inode_operations shmem_symlink_inode_operations = { 2336 .readlink = generic_readlink, 2337 .follow_link = shmem_follow_link, 2338 .put_link = shmem_put_link, 2339 #ifdef CONFIG_TMPFS_XATTR 2340 .setxattr = shmem_setxattr, 2341 .getxattr = shmem_getxattr, 2342 .listxattr = shmem_listxattr, 2343 .removexattr = shmem_removexattr, 2344 #endif 2345 }; 2346 2347 static struct dentry *shmem_get_parent(struct dentry *child) 2348 { 2349 return ERR_PTR(-ESTALE); 2350 } 2351 2352 static int shmem_match(struct inode *ino, void *vfh) 2353 { 2354 __u32 *fh = vfh; 2355 __u64 inum = fh[2]; 2356 inum = (inum << 32) | fh[1]; 2357 return ino->i_ino == inum && fh[0] == ino->i_generation; 2358 } 2359 2360 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2361 struct fid *fid, int fh_len, int fh_type) 2362 { 2363 struct inode *inode; 2364 struct dentry *dentry = NULL; 2365 u64 inum; 2366 2367 if (fh_len < 3) 2368 return NULL; 2369 2370 inum = fid->raw[2]; 2371 inum = (inum << 32) | fid->raw[1]; 2372 2373 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2374 shmem_match, fid->raw); 2375 if (inode) { 2376 dentry = d_find_alias(inode); 2377 iput(inode); 2378 } 2379 2380 return dentry; 2381 } 2382 2383 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2384 struct inode *parent) 2385 { 2386 if (*len < 3) { 2387 *len = 3; 2388 return FILEID_INVALID; 2389 } 2390 2391 if (inode_unhashed(inode)) { 2392 /* Unfortunately insert_inode_hash is not idempotent, 2393 * so as we hash inodes here rather than at creation 2394 * time, we need a lock to ensure we only try 2395 * to do it once 2396 */ 2397 static DEFINE_SPINLOCK(lock); 2398 spin_lock(&lock); 2399 if (inode_unhashed(inode)) 2400 __insert_inode_hash(inode, 2401 inode->i_ino + inode->i_generation); 2402 spin_unlock(&lock); 2403 } 2404 2405 fh[0] = inode->i_generation; 2406 fh[1] = inode->i_ino; 2407 fh[2] = ((__u64)inode->i_ino) >> 32; 2408 2409 *len = 3; 2410 return 1; 2411 } 2412 2413 static const struct export_operations shmem_export_ops = { 2414 .get_parent = shmem_get_parent, 2415 .encode_fh = shmem_encode_fh, 2416 .fh_to_dentry = shmem_fh_to_dentry, 2417 }; 2418 2419 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2420 bool remount) 2421 { 2422 char *this_char, *value, *rest; 2423 struct mempolicy *mpol = NULL; 2424 uid_t uid; 2425 gid_t gid; 2426 2427 while (options != NULL) { 2428 this_char = options; 2429 for (;;) { 2430 /* 2431 * NUL-terminate this option: unfortunately, 2432 * mount options form a comma-separated list, 2433 * but mpol's nodelist may also contain commas. 2434 */ 2435 options = strchr(options, ','); 2436 if (options == NULL) 2437 break; 2438 options++; 2439 if (!isdigit(*options)) { 2440 options[-1] = '\0'; 2441 break; 2442 } 2443 } 2444 if (!*this_char) 2445 continue; 2446 if ((value = strchr(this_char,'=')) != NULL) { 2447 *value++ = 0; 2448 } else { 2449 printk(KERN_ERR 2450 "tmpfs: No value for mount option '%s'\n", 2451 this_char); 2452 goto error; 2453 } 2454 2455 if (!strcmp(this_char,"size")) { 2456 unsigned long long size; 2457 size = memparse(value,&rest); 2458 if (*rest == '%') { 2459 size <<= PAGE_SHIFT; 2460 size *= totalram_pages; 2461 do_div(size, 100); 2462 rest++; 2463 } 2464 if (*rest) 2465 goto bad_val; 2466 sbinfo->max_blocks = 2467 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2468 } else if (!strcmp(this_char,"nr_blocks")) { 2469 sbinfo->max_blocks = memparse(value, &rest); 2470 if (*rest) 2471 goto bad_val; 2472 } else if (!strcmp(this_char,"nr_inodes")) { 2473 sbinfo->max_inodes = memparse(value, &rest); 2474 if (*rest) 2475 goto bad_val; 2476 } else if (!strcmp(this_char,"mode")) { 2477 if (remount) 2478 continue; 2479 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2480 if (*rest) 2481 goto bad_val; 2482 } else if (!strcmp(this_char,"uid")) { 2483 if (remount) 2484 continue; 2485 uid = simple_strtoul(value, &rest, 0); 2486 if (*rest) 2487 goto bad_val; 2488 sbinfo->uid = make_kuid(current_user_ns(), uid); 2489 if (!uid_valid(sbinfo->uid)) 2490 goto bad_val; 2491 } else if (!strcmp(this_char,"gid")) { 2492 if (remount) 2493 continue; 2494 gid = simple_strtoul(value, &rest, 0); 2495 if (*rest) 2496 goto bad_val; 2497 sbinfo->gid = make_kgid(current_user_ns(), gid); 2498 if (!gid_valid(sbinfo->gid)) 2499 goto bad_val; 2500 } else if (!strcmp(this_char,"mpol")) { 2501 mpol_put(mpol); 2502 mpol = NULL; 2503 if (mpol_parse_str(value, &mpol)) 2504 goto bad_val; 2505 } else { 2506 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2507 this_char); 2508 goto error; 2509 } 2510 } 2511 sbinfo->mpol = mpol; 2512 return 0; 2513 2514 bad_val: 2515 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2516 value, this_char); 2517 error: 2518 mpol_put(mpol); 2519 return 1; 2520 2521 } 2522 2523 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2524 { 2525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2526 struct shmem_sb_info config = *sbinfo; 2527 unsigned long inodes; 2528 int error = -EINVAL; 2529 2530 config.mpol = NULL; 2531 if (shmem_parse_options(data, &config, true)) 2532 return error; 2533 2534 spin_lock(&sbinfo->stat_lock); 2535 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2536 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2537 goto out; 2538 if (config.max_inodes < inodes) 2539 goto out; 2540 /* 2541 * Those tests disallow limited->unlimited while any are in use; 2542 * but we must separately disallow unlimited->limited, because 2543 * in that case we have no record of how much is already in use. 2544 */ 2545 if (config.max_blocks && !sbinfo->max_blocks) 2546 goto out; 2547 if (config.max_inodes && !sbinfo->max_inodes) 2548 goto out; 2549 2550 error = 0; 2551 sbinfo->max_blocks = config.max_blocks; 2552 sbinfo->max_inodes = config.max_inodes; 2553 sbinfo->free_inodes = config.max_inodes - inodes; 2554 2555 /* 2556 * Preserve previous mempolicy unless mpol remount option was specified. 2557 */ 2558 if (config.mpol) { 2559 mpol_put(sbinfo->mpol); 2560 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2561 } 2562 out: 2563 spin_unlock(&sbinfo->stat_lock); 2564 return error; 2565 } 2566 2567 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2568 { 2569 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2570 2571 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2572 seq_printf(seq, ",size=%luk", 2573 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2574 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2575 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2576 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2577 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2578 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2579 seq_printf(seq, ",uid=%u", 2580 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2581 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2582 seq_printf(seq, ",gid=%u", 2583 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2584 shmem_show_mpol(seq, sbinfo->mpol); 2585 return 0; 2586 } 2587 #endif /* CONFIG_TMPFS */ 2588 2589 static void shmem_put_super(struct super_block *sb) 2590 { 2591 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2592 2593 percpu_counter_destroy(&sbinfo->used_blocks); 2594 mpol_put(sbinfo->mpol); 2595 kfree(sbinfo); 2596 sb->s_fs_info = NULL; 2597 } 2598 2599 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2600 { 2601 struct inode *inode; 2602 struct shmem_sb_info *sbinfo; 2603 int err = -ENOMEM; 2604 2605 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2606 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2607 L1_CACHE_BYTES), GFP_KERNEL); 2608 if (!sbinfo) 2609 return -ENOMEM; 2610 2611 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2612 sbinfo->uid = current_fsuid(); 2613 sbinfo->gid = current_fsgid(); 2614 sb->s_fs_info = sbinfo; 2615 2616 #ifdef CONFIG_TMPFS 2617 /* 2618 * Per default we only allow half of the physical ram per 2619 * tmpfs instance, limiting inodes to one per page of lowmem; 2620 * but the internal instance is left unlimited. 2621 */ 2622 if (!(sb->s_flags & MS_KERNMOUNT)) { 2623 sbinfo->max_blocks = shmem_default_max_blocks(); 2624 sbinfo->max_inodes = shmem_default_max_inodes(); 2625 if (shmem_parse_options(data, sbinfo, false)) { 2626 err = -EINVAL; 2627 goto failed; 2628 } 2629 } else { 2630 sb->s_flags |= MS_NOUSER; 2631 } 2632 sb->s_export_op = &shmem_export_ops; 2633 sb->s_flags |= MS_NOSEC; 2634 #else 2635 sb->s_flags |= MS_NOUSER; 2636 #endif 2637 2638 spin_lock_init(&sbinfo->stat_lock); 2639 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2640 goto failed; 2641 sbinfo->free_inodes = sbinfo->max_inodes; 2642 2643 sb->s_maxbytes = MAX_LFS_FILESIZE; 2644 sb->s_blocksize = PAGE_CACHE_SIZE; 2645 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2646 sb->s_magic = TMPFS_MAGIC; 2647 sb->s_op = &shmem_ops; 2648 sb->s_time_gran = 1; 2649 #ifdef CONFIG_TMPFS_XATTR 2650 sb->s_xattr = shmem_xattr_handlers; 2651 #endif 2652 #ifdef CONFIG_TMPFS_POSIX_ACL 2653 sb->s_flags |= MS_POSIXACL; 2654 #endif 2655 2656 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2657 if (!inode) 2658 goto failed; 2659 inode->i_uid = sbinfo->uid; 2660 inode->i_gid = sbinfo->gid; 2661 sb->s_root = d_make_root(inode); 2662 if (!sb->s_root) 2663 goto failed; 2664 return 0; 2665 2666 failed: 2667 shmem_put_super(sb); 2668 return err; 2669 } 2670 2671 static struct kmem_cache *shmem_inode_cachep; 2672 2673 static struct inode *shmem_alloc_inode(struct super_block *sb) 2674 { 2675 struct shmem_inode_info *info; 2676 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2677 if (!info) 2678 return NULL; 2679 return &info->vfs_inode; 2680 } 2681 2682 static void shmem_destroy_callback(struct rcu_head *head) 2683 { 2684 struct inode *inode = container_of(head, struct inode, i_rcu); 2685 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2686 } 2687 2688 static void shmem_destroy_inode(struct inode *inode) 2689 { 2690 if (S_ISREG(inode->i_mode)) 2691 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2692 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2693 } 2694 2695 static void shmem_init_inode(void *foo) 2696 { 2697 struct shmem_inode_info *info = foo; 2698 inode_init_once(&info->vfs_inode); 2699 } 2700 2701 static int shmem_init_inodecache(void) 2702 { 2703 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2704 sizeof(struct shmem_inode_info), 2705 0, SLAB_PANIC, shmem_init_inode); 2706 return 0; 2707 } 2708 2709 static void shmem_destroy_inodecache(void) 2710 { 2711 kmem_cache_destroy(shmem_inode_cachep); 2712 } 2713 2714 static const struct address_space_operations shmem_aops = { 2715 .writepage = shmem_writepage, 2716 .set_page_dirty = __set_page_dirty_no_writeback, 2717 #ifdef CONFIG_TMPFS 2718 .write_begin = shmem_write_begin, 2719 .write_end = shmem_write_end, 2720 #endif 2721 .migratepage = migrate_page, 2722 .error_remove_page = generic_error_remove_page, 2723 }; 2724 2725 static const struct file_operations shmem_file_operations = { 2726 .mmap = shmem_mmap, 2727 #ifdef CONFIG_TMPFS 2728 .llseek = shmem_file_llseek, 2729 .read = new_sync_read, 2730 .write = new_sync_write, 2731 .read_iter = shmem_file_read_iter, 2732 .write_iter = generic_file_write_iter, 2733 .fsync = noop_fsync, 2734 .splice_read = shmem_file_splice_read, 2735 .splice_write = iter_file_splice_write, 2736 .fallocate = shmem_fallocate, 2737 #endif 2738 }; 2739 2740 static const struct inode_operations shmem_inode_operations = { 2741 .setattr = shmem_setattr, 2742 #ifdef CONFIG_TMPFS_XATTR 2743 .setxattr = shmem_setxattr, 2744 .getxattr = shmem_getxattr, 2745 .listxattr = shmem_listxattr, 2746 .removexattr = shmem_removexattr, 2747 .set_acl = simple_set_acl, 2748 #endif 2749 }; 2750 2751 static const struct inode_operations shmem_dir_inode_operations = { 2752 #ifdef CONFIG_TMPFS 2753 .create = shmem_create, 2754 .lookup = simple_lookup, 2755 .link = shmem_link, 2756 .unlink = shmem_unlink, 2757 .symlink = shmem_symlink, 2758 .mkdir = shmem_mkdir, 2759 .rmdir = shmem_rmdir, 2760 .mknod = shmem_mknod, 2761 .rename = shmem_rename, 2762 .tmpfile = shmem_tmpfile, 2763 #endif 2764 #ifdef CONFIG_TMPFS_XATTR 2765 .setxattr = shmem_setxattr, 2766 .getxattr = shmem_getxattr, 2767 .listxattr = shmem_listxattr, 2768 .removexattr = shmem_removexattr, 2769 #endif 2770 #ifdef CONFIG_TMPFS_POSIX_ACL 2771 .setattr = shmem_setattr, 2772 .set_acl = simple_set_acl, 2773 #endif 2774 }; 2775 2776 static const struct inode_operations shmem_special_inode_operations = { 2777 #ifdef CONFIG_TMPFS_XATTR 2778 .setxattr = shmem_setxattr, 2779 .getxattr = shmem_getxattr, 2780 .listxattr = shmem_listxattr, 2781 .removexattr = shmem_removexattr, 2782 #endif 2783 #ifdef CONFIG_TMPFS_POSIX_ACL 2784 .setattr = shmem_setattr, 2785 .set_acl = simple_set_acl, 2786 #endif 2787 }; 2788 2789 static const struct super_operations shmem_ops = { 2790 .alloc_inode = shmem_alloc_inode, 2791 .destroy_inode = shmem_destroy_inode, 2792 #ifdef CONFIG_TMPFS 2793 .statfs = shmem_statfs, 2794 .remount_fs = shmem_remount_fs, 2795 .show_options = shmem_show_options, 2796 #endif 2797 .evict_inode = shmem_evict_inode, 2798 .drop_inode = generic_delete_inode, 2799 .put_super = shmem_put_super, 2800 }; 2801 2802 static const struct vm_operations_struct shmem_vm_ops = { 2803 .fault = shmem_fault, 2804 .map_pages = filemap_map_pages, 2805 #ifdef CONFIG_NUMA 2806 .set_policy = shmem_set_policy, 2807 .get_policy = shmem_get_policy, 2808 #endif 2809 .remap_pages = generic_file_remap_pages, 2810 }; 2811 2812 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2813 int flags, const char *dev_name, void *data) 2814 { 2815 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2816 } 2817 2818 static struct file_system_type shmem_fs_type = { 2819 .owner = THIS_MODULE, 2820 .name = "tmpfs", 2821 .mount = shmem_mount, 2822 .kill_sb = kill_litter_super, 2823 .fs_flags = FS_USERNS_MOUNT, 2824 }; 2825 2826 int __init shmem_init(void) 2827 { 2828 int error; 2829 2830 /* If rootfs called this, don't re-init */ 2831 if (shmem_inode_cachep) 2832 return 0; 2833 2834 error = bdi_init(&shmem_backing_dev_info); 2835 if (error) 2836 goto out4; 2837 2838 error = shmem_init_inodecache(); 2839 if (error) 2840 goto out3; 2841 2842 error = register_filesystem(&shmem_fs_type); 2843 if (error) { 2844 printk(KERN_ERR "Could not register tmpfs\n"); 2845 goto out2; 2846 } 2847 2848 shm_mnt = kern_mount(&shmem_fs_type); 2849 if (IS_ERR(shm_mnt)) { 2850 error = PTR_ERR(shm_mnt); 2851 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2852 goto out1; 2853 } 2854 return 0; 2855 2856 out1: 2857 unregister_filesystem(&shmem_fs_type); 2858 out2: 2859 shmem_destroy_inodecache(); 2860 out3: 2861 bdi_destroy(&shmem_backing_dev_info); 2862 out4: 2863 shm_mnt = ERR_PTR(error); 2864 return error; 2865 } 2866 2867 #else /* !CONFIG_SHMEM */ 2868 2869 /* 2870 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2871 * 2872 * This is intended for small system where the benefits of the full 2873 * shmem code (swap-backed and resource-limited) are outweighed by 2874 * their complexity. On systems without swap this code should be 2875 * effectively equivalent, but much lighter weight. 2876 */ 2877 2878 static struct file_system_type shmem_fs_type = { 2879 .name = "tmpfs", 2880 .mount = ramfs_mount, 2881 .kill_sb = kill_litter_super, 2882 .fs_flags = FS_USERNS_MOUNT, 2883 }; 2884 2885 int __init shmem_init(void) 2886 { 2887 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2888 2889 shm_mnt = kern_mount(&shmem_fs_type); 2890 BUG_ON(IS_ERR(shm_mnt)); 2891 2892 return 0; 2893 } 2894 2895 int shmem_unuse(swp_entry_t swap, struct page *page) 2896 { 2897 return 0; 2898 } 2899 2900 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2901 { 2902 return 0; 2903 } 2904 2905 void shmem_unlock_mapping(struct address_space *mapping) 2906 { 2907 } 2908 2909 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2910 { 2911 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2912 } 2913 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2914 2915 #define shmem_vm_ops generic_file_vm_ops 2916 #define shmem_file_operations ramfs_file_operations 2917 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2918 #define shmem_acct_size(flags, size) 0 2919 #define shmem_unacct_size(flags, size) do {} while (0) 2920 2921 #endif /* CONFIG_SHMEM */ 2922 2923 /* common code */ 2924 2925 static struct dentry_operations anon_ops = { 2926 .d_dname = simple_dname 2927 }; 2928 2929 static struct file *__shmem_file_setup(const char *name, loff_t size, 2930 unsigned long flags, unsigned int i_flags) 2931 { 2932 struct file *res; 2933 struct inode *inode; 2934 struct path path; 2935 struct super_block *sb; 2936 struct qstr this; 2937 2938 if (IS_ERR(shm_mnt)) 2939 return ERR_CAST(shm_mnt); 2940 2941 if (size < 0 || size > MAX_LFS_FILESIZE) 2942 return ERR_PTR(-EINVAL); 2943 2944 if (shmem_acct_size(flags, size)) 2945 return ERR_PTR(-ENOMEM); 2946 2947 res = ERR_PTR(-ENOMEM); 2948 this.name = name; 2949 this.len = strlen(name); 2950 this.hash = 0; /* will go */ 2951 sb = shm_mnt->mnt_sb; 2952 path.mnt = mntget(shm_mnt); 2953 path.dentry = d_alloc_pseudo(sb, &this); 2954 if (!path.dentry) 2955 goto put_memory; 2956 d_set_d_op(path.dentry, &anon_ops); 2957 2958 res = ERR_PTR(-ENOSPC); 2959 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2960 if (!inode) 2961 goto put_memory; 2962 2963 inode->i_flags |= i_flags; 2964 d_instantiate(path.dentry, inode); 2965 inode->i_size = size; 2966 clear_nlink(inode); /* It is unlinked */ 2967 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 2968 if (IS_ERR(res)) 2969 goto put_path; 2970 2971 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2972 &shmem_file_operations); 2973 if (IS_ERR(res)) 2974 goto put_path; 2975 2976 return res; 2977 2978 put_memory: 2979 shmem_unacct_size(flags, size); 2980 put_path: 2981 path_put(&path); 2982 return res; 2983 } 2984 2985 /** 2986 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 2987 * kernel internal. There will be NO LSM permission checks against the 2988 * underlying inode. So users of this interface must do LSM checks at a 2989 * higher layer. The one user is the big_key implementation. LSM checks 2990 * are provided at the key level rather than the inode level. 2991 * @name: name for dentry (to be seen in /proc/<pid>/maps 2992 * @size: size to be set for the file 2993 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2994 */ 2995 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 2996 { 2997 return __shmem_file_setup(name, size, flags, S_PRIVATE); 2998 } 2999 3000 /** 3001 * shmem_file_setup - get an unlinked file living in tmpfs 3002 * @name: name for dentry (to be seen in /proc/<pid>/maps 3003 * @size: size to be set for the file 3004 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3005 */ 3006 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3007 { 3008 return __shmem_file_setup(name, size, flags, 0); 3009 } 3010 EXPORT_SYMBOL_GPL(shmem_file_setup); 3011 3012 /** 3013 * shmem_zero_setup - setup a shared anonymous mapping 3014 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3015 */ 3016 int shmem_zero_setup(struct vm_area_struct *vma) 3017 { 3018 struct file *file; 3019 loff_t size = vma->vm_end - vma->vm_start; 3020 3021 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 3022 if (IS_ERR(file)) 3023 return PTR_ERR(file); 3024 3025 if (vma->vm_file) 3026 fput(vma->vm_file); 3027 vma->vm_file = file; 3028 vma->vm_ops = &shmem_vm_ops; 3029 return 0; 3030 } 3031 3032 /** 3033 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3034 * @mapping: the page's address_space 3035 * @index: the page index 3036 * @gfp: the page allocator flags to use if allocating 3037 * 3038 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3039 * with any new page allocations done using the specified allocation flags. 3040 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3041 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3042 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3043 * 3044 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3045 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3046 */ 3047 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3048 pgoff_t index, gfp_t gfp) 3049 { 3050 #ifdef CONFIG_SHMEM 3051 struct inode *inode = mapping->host; 3052 struct page *page; 3053 int error; 3054 3055 BUG_ON(mapping->a_ops != &shmem_aops); 3056 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3057 if (error) 3058 page = ERR_PTR(error); 3059 else 3060 unlock_page(page); 3061 return page; 3062 #else 3063 /* 3064 * The tiny !SHMEM case uses ramfs without swap 3065 */ 3066 return read_cache_page_gfp(mapping, index, gfp); 3067 #endif 3068 } 3069 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3070