xref: /openbmc/linux/mm/shmem.c (revision 62e7ca52)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72 
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81 
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 	pgoff_t start;		/* start of range currently being fallocated */
90 	pgoff_t next;		/* the next page offset to be fallocated */
91 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
92 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
93 };
94 
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 	SGP_READ,	/* don't exceed i_size, don't allocate page */
98 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
99 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
100 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
101 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
102 };
103 
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 	return totalram_pages / 2;
108 }
109 
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115 
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 				struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121 
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 	return shmem_getpage_gfp(inode, index, pagep, sgp,
126 			mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128 
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 	return sb->s_fs_info;
132 }
133 
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 	return (flags & VM_NORESERVE) ?
143 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145 
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 	if (!(flags & VM_NORESERVE))
149 		vm_unacct_memory(VM_ACCT(size));
150 }
151 
152 static inline int shmem_reacct_size(unsigned long flags,
153 		loff_t oldsize, loff_t newsize)
154 {
155 	if (!(flags & VM_NORESERVE)) {
156 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157 			return security_vm_enough_memory_mm(current->mm,
158 					VM_ACCT(newsize) - VM_ACCT(oldsize));
159 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161 	}
162 	return 0;
163 }
164 
165 /*
166  * ... whereas tmpfs objects are accounted incrementally as
167  * pages are allocated, in order to allow huge sparse files.
168  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170  */
171 static inline int shmem_acct_block(unsigned long flags)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
175 }
176 
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 {
179 	if (flags & VM_NORESERVE)
180 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 }
182 
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static const struct vm_operations_struct shmem_vm_ops;
190 
191 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
192 	.ra_pages	= 0,	/* No readahead */
193 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
194 };
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 	if (sbinfo->max_inodes) {
203 		spin_lock(&sbinfo->stat_lock);
204 		if (!sbinfo->free_inodes) {
205 			spin_unlock(&sbinfo->stat_lock);
206 			return -ENOSPC;
207 		}
208 		sbinfo->free_inodes--;
209 		spin_unlock(&sbinfo->stat_lock);
210 	}
211 	return 0;
212 }
213 
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 	if (sbinfo->max_inodes) {
218 		spin_lock(&sbinfo->stat_lock);
219 		sbinfo->free_inodes++;
220 		spin_unlock(&sbinfo->stat_lock);
221 	}
222 }
223 
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	long freed;
240 
241 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 	if (freed > 0) {
243 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 		if (sbinfo->max_blocks)
245 			percpu_counter_add(&sbinfo->used_blocks, -freed);
246 		info->alloced -= freed;
247 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 		shmem_unacct_blocks(info->flags, freed);
249 	}
250 }
251 
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 			pgoff_t index, void *expected, void *replacement)
257 {
258 	void **pslot;
259 	void *item;
260 
261 	VM_BUG_ON(!expected);
262 	VM_BUG_ON(!replacement);
263 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 	if (!pslot)
265 		return -ENOENT;
266 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 	if (item != expected)
268 		return -ENOENT;
269 	radix_tree_replace_slot(pslot, replacement);
270 	return 0;
271 }
272 
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 			       pgoff_t index, swp_entry_t swap)
282 {
283 	void *item;
284 
285 	rcu_read_lock();
286 	item = radix_tree_lookup(&mapping->page_tree, index);
287 	rcu_read_unlock();
288 	return item == swp_to_radix_entry(swap);
289 }
290 
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295 				   struct address_space *mapping,
296 				   pgoff_t index, void *expected)
297 {
298 	int error;
299 
300 	VM_BUG_ON_PAGE(!PageLocked(page), page);
301 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302 
303 	page_cache_get(page);
304 	page->mapping = mapping;
305 	page->index = index;
306 
307 	spin_lock_irq(&mapping->tree_lock);
308 	if (!expected)
309 		error = radix_tree_insert(&mapping->page_tree, index, page);
310 	else
311 		error = shmem_radix_tree_replace(mapping, index, expected,
312 								 page);
313 	if (!error) {
314 		mapping->nrpages++;
315 		__inc_zone_page_state(page, NR_FILE_PAGES);
316 		__inc_zone_page_state(page, NR_SHMEM);
317 		spin_unlock_irq(&mapping->tree_lock);
318 	} else {
319 		page->mapping = NULL;
320 		spin_unlock_irq(&mapping->tree_lock);
321 		page_cache_release(page);
322 	}
323 	return error;
324 }
325 
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 	struct address_space *mapping = page->mapping;
332 	int error;
333 
334 	spin_lock_irq(&mapping->tree_lock);
335 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 	page->mapping = NULL;
337 	mapping->nrpages--;
338 	__dec_zone_page_state(page, NR_FILE_PAGES);
339 	__dec_zone_page_state(page, NR_SHMEM);
340 	spin_unlock_irq(&mapping->tree_lock);
341 	page_cache_release(page);
342 	BUG_ON(error);
343 }
344 
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349 			   pgoff_t index, void *radswap)
350 {
351 	void *old;
352 
353 	spin_lock_irq(&mapping->tree_lock);
354 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 	spin_unlock_irq(&mapping->tree_lock);
356 	if (old != radswap)
357 		return -ENOENT;
358 	free_swap_and_cache(radix_to_swp_entry(radswap));
359 	return 0;
360 }
361 
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367 	struct pagevec pvec;
368 	pgoff_t indices[PAGEVEC_SIZE];
369 	pgoff_t index = 0;
370 
371 	pagevec_init(&pvec, 0);
372 	/*
373 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 	 */
375 	while (!mapping_unevictable(mapping)) {
376 		/*
377 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 		 */
380 		pvec.nr = find_get_entries(mapping, index,
381 					   PAGEVEC_SIZE, pvec.pages, indices);
382 		if (!pvec.nr)
383 			break;
384 		index = indices[pvec.nr - 1] + 1;
385 		pagevec_remove_exceptionals(&pvec);
386 		check_move_unevictable_pages(pvec.pages, pvec.nr);
387 		pagevec_release(&pvec);
388 		cond_resched();
389 	}
390 }
391 
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 								 bool unfalloc)
398 {
399 	struct address_space *mapping = inode->i_mapping;
400 	struct shmem_inode_info *info = SHMEM_I(inode);
401 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 	struct pagevec pvec;
406 	pgoff_t indices[PAGEVEC_SIZE];
407 	long nr_swaps_freed = 0;
408 	pgoff_t index;
409 	int i;
410 
411 	if (lend == -1)
412 		end = -1;	/* unsigned, so actually very big */
413 
414 	pagevec_init(&pvec, 0);
415 	index = start;
416 	while (index < end) {
417 		pvec.nr = find_get_entries(mapping, index,
418 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 			pvec.pages, indices);
420 		if (!pvec.nr)
421 			break;
422 		mem_cgroup_uncharge_start();
423 		for (i = 0; i < pagevec_count(&pvec); i++) {
424 			struct page *page = pvec.pages[i];
425 
426 			index = indices[i];
427 			if (index >= end)
428 				break;
429 
430 			if (radix_tree_exceptional_entry(page)) {
431 				if (unfalloc)
432 					continue;
433 				nr_swaps_freed += !shmem_free_swap(mapping,
434 								index, page);
435 				continue;
436 			}
437 
438 			if (!trylock_page(page))
439 				continue;
440 			if (!unfalloc || !PageUptodate(page)) {
441 				if (page->mapping == mapping) {
442 					VM_BUG_ON_PAGE(PageWriteback(page), page);
443 					truncate_inode_page(mapping, page);
444 				}
445 			}
446 			unlock_page(page);
447 		}
448 		pagevec_remove_exceptionals(&pvec);
449 		pagevec_release(&pvec);
450 		mem_cgroup_uncharge_end();
451 		cond_resched();
452 		index++;
453 	}
454 
455 	if (partial_start) {
456 		struct page *page = NULL;
457 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
458 		if (page) {
459 			unsigned int top = PAGE_CACHE_SIZE;
460 			if (start > end) {
461 				top = partial_end;
462 				partial_end = 0;
463 			}
464 			zero_user_segment(page, partial_start, top);
465 			set_page_dirty(page);
466 			unlock_page(page);
467 			page_cache_release(page);
468 		}
469 	}
470 	if (partial_end) {
471 		struct page *page = NULL;
472 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
473 		if (page) {
474 			zero_user_segment(page, 0, partial_end);
475 			set_page_dirty(page);
476 			unlock_page(page);
477 			page_cache_release(page);
478 		}
479 	}
480 	if (start >= end)
481 		return;
482 
483 	index = start;
484 	while (index < end) {
485 		cond_resched();
486 
487 		pvec.nr = find_get_entries(mapping, index,
488 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
489 				pvec.pages, indices);
490 		if (!pvec.nr) {
491 			/* If all gone or hole-punch or unfalloc, we're done */
492 			if (index == start || end != -1)
493 				break;
494 			/* But if truncating, restart to make sure all gone */
495 			index = start;
496 			continue;
497 		}
498 		mem_cgroup_uncharge_start();
499 		for (i = 0; i < pagevec_count(&pvec); i++) {
500 			struct page *page = pvec.pages[i];
501 
502 			index = indices[i];
503 			if (index >= end)
504 				break;
505 
506 			if (radix_tree_exceptional_entry(page)) {
507 				if (unfalloc)
508 					continue;
509 				if (shmem_free_swap(mapping, index, page)) {
510 					/* Swap was replaced by page: retry */
511 					index--;
512 					break;
513 				}
514 				nr_swaps_freed++;
515 				continue;
516 			}
517 
518 			lock_page(page);
519 			if (!unfalloc || !PageUptodate(page)) {
520 				if (page->mapping == mapping) {
521 					VM_BUG_ON_PAGE(PageWriteback(page), page);
522 					truncate_inode_page(mapping, page);
523 				} else {
524 					/* Page was replaced by swap: retry */
525 					unlock_page(page);
526 					index--;
527 					break;
528 				}
529 			}
530 			unlock_page(page);
531 		}
532 		pagevec_remove_exceptionals(&pvec);
533 		pagevec_release(&pvec);
534 		mem_cgroup_uncharge_end();
535 		index++;
536 	}
537 
538 	spin_lock(&info->lock);
539 	info->swapped -= nr_swaps_freed;
540 	shmem_recalc_inode(inode);
541 	spin_unlock(&info->lock);
542 }
543 
544 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
545 {
546 	shmem_undo_range(inode, lstart, lend, false);
547 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 }
549 EXPORT_SYMBOL_GPL(shmem_truncate_range);
550 
551 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
552 {
553 	struct inode *inode = dentry->d_inode;
554 	int error;
555 
556 	error = inode_change_ok(inode, attr);
557 	if (error)
558 		return error;
559 
560 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561 		loff_t oldsize = inode->i_size;
562 		loff_t newsize = attr->ia_size;
563 
564 		if (newsize != oldsize) {
565 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
566 					oldsize, newsize);
567 			if (error)
568 				return error;
569 			i_size_write(inode, newsize);
570 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
571 		}
572 		if (newsize < oldsize) {
573 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
574 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
575 			shmem_truncate_range(inode, newsize, (loff_t)-1);
576 			/* unmap again to remove racily COWed private pages */
577 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
578 		}
579 	}
580 
581 	setattr_copy(inode, attr);
582 	if (attr->ia_valid & ATTR_MODE)
583 		error = posix_acl_chmod(inode, inode->i_mode);
584 	return error;
585 }
586 
587 static void shmem_evict_inode(struct inode *inode)
588 {
589 	struct shmem_inode_info *info = SHMEM_I(inode);
590 
591 	if (inode->i_mapping->a_ops == &shmem_aops) {
592 		shmem_unacct_size(info->flags, inode->i_size);
593 		inode->i_size = 0;
594 		shmem_truncate_range(inode, 0, (loff_t)-1);
595 		if (!list_empty(&info->swaplist)) {
596 			mutex_lock(&shmem_swaplist_mutex);
597 			list_del_init(&info->swaplist);
598 			mutex_unlock(&shmem_swaplist_mutex);
599 		}
600 	} else
601 		kfree(info->symlink);
602 
603 	simple_xattrs_free(&info->xattrs);
604 	WARN_ON(inode->i_blocks);
605 	shmem_free_inode(inode->i_sb);
606 	clear_inode(inode);
607 }
608 
609 /*
610  * If swap found in inode, free it and move page from swapcache to filecache.
611  */
612 static int shmem_unuse_inode(struct shmem_inode_info *info,
613 			     swp_entry_t swap, struct page **pagep)
614 {
615 	struct address_space *mapping = info->vfs_inode.i_mapping;
616 	void *radswap;
617 	pgoff_t index;
618 	gfp_t gfp;
619 	int error = 0;
620 
621 	radswap = swp_to_radix_entry(swap);
622 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
623 	if (index == -1)
624 		return 0;
625 
626 	/*
627 	 * Move _head_ to start search for next from here.
628 	 * But be careful: shmem_evict_inode checks list_empty without taking
629 	 * mutex, and there's an instant in list_move_tail when info->swaplist
630 	 * would appear empty, if it were the only one on shmem_swaplist.
631 	 */
632 	if (shmem_swaplist.next != &info->swaplist)
633 		list_move_tail(&shmem_swaplist, &info->swaplist);
634 
635 	gfp = mapping_gfp_mask(mapping);
636 	if (shmem_should_replace_page(*pagep, gfp)) {
637 		mutex_unlock(&shmem_swaplist_mutex);
638 		error = shmem_replace_page(pagep, gfp, info, index);
639 		mutex_lock(&shmem_swaplist_mutex);
640 		/*
641 		 * We needed to drop mutex to make that restrictive page
642 		 * allocation, but the inode might have been freed while we
643 		 * dropped it: although a racing shmem_evict_inode() cannot
644 		 * complete without emptying the radix_tree, our page lock
645 		 * on this swapcache page is not enough to prevent that -
646 		 * free_swap_and_cache() of our swap entry will only
647 		 * trylock_page(), removing swap from radix_tree whatever.
648 		 *
649 		 * We must not proceed to shmem_add_to_page_cache() if the
650 		 * inode has been freed, but of course we cannot rely on
651 		 * inode or mapping or info to check that.  However, we can
652 		 * safely check if our swap entry is still in use (and here
653 		 * it can't have got reused for another page): if it's still
654 		 * in use, then the inode cannot have been freed yet, and we
655 		 * can safely proceed (if it's no longer in use, that tells
656 		 * nothing about the inode, but we don't need to unuse swap).
657 		 */
658 		if (!page_swapcount(*pagep))
659 			error = -ENOENT;
660 	}
661 
662 	/*
663 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
665 	 * beneath us (pagelock doesn't help until the page is in pagecache).
666 	 */
667 	if (!error)
668 		error = shmem_add_to_page_cache(*pagep, mapping, index,
669 						radswap);
670 	if (error != -ENOMEM) {
671 		/*
672 		 * Truncation and eviction use free_swap_and_cache(), which
673 		 * only does trylock page: if we raced, best clean up here.
674 		 */
675 		delete_from_swap_cache(*pagep);
676 		set_page_dirty(*pagep);
677 		if (!error) {
678 			spin_lock(&info->lock);
679 			info->swapped--;
680 			spin_unlock(&info->lock);
681 			swap_free(swap);
682 		}
683 		error = 1;	/* not an error, but entry was found */
684 	}
685 	return error;
686 }
687 
688 /*
689  * Search through swapped inodes to find and replace swap by page.
690  */
691 int shmem_unuse(swp_entry_t swap, struct page *page)
692 {
693 	struct list_head *this, *next;
694 	struct shmem_inode_info *info;
695 	int found = 0;
696 	int error = 0;
697 
698 	/*
699 	 * There's a faint possibility that swap page was replaced before
700 	 * caller locked it: caller will come back later with the right page.
701 	 */
702 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
703 		goto out;
704 
705 	/*
706 	 * Charge page using GFP_KERNEL while we can wait, before taking
707 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
708 	 * Charged back to the user (not to caller) when swap account is used.
709 	 */
710 	error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
711 	if (error)
712 		goto out;
713 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
714 
715 	mutex_lock(&shmem_swaplist_mutex);
716 	list_for_each_safe(this, next, &shmem_swaplist) {
717 		info = list_entry(this, struct shmem_inode_info, swaplist);
718 		if (info->swapped)
719 			found = shmem_unuse_inode(info, swap, &page);
720 		else
721 			list_del_init(&info->swaplist);
722 		cond_resched();
723 		if (found)
724 			break;
725 	}
726 	mutex_unlock(&shmem_swaplist_mutex);
727 
728 	if (found < 0)
729 		error = found;
730 out:
731 	unlock_page(page);
732 	page_cache_release(page);
733 	return error;
734 }
735 
736 /*
737  * Move the page from the page cache to the swap cache.
738  */
739 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
740 {
741 	struct shmem_inode_info *info;
742 	struct address_space *mapping;
743 	struct inode *inode;
744 	swp_entry_t swap;
745 	pgoff_t index;
746 
747 	BUG_ON(!PageLocked(page));
748 	mapping = page->mapping;
749 	index = page->index;
750 	inode = mapping->host;
751 	info = SHMEM_I(inode);
752 	if (info->flags & VM_LOCKED)
753 		goto redirty;
754 	if (!total_swap_pages)
755 		goto redirty;
756 
757 	/*
758 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
759 	 * sync from ever calling shmem_writepage; but a stacking filesystem
760 	 * might use ->writepage of its underlying filesystem, in which case
761 	 * tmpfs should write out to swap only in response to memory pressure,
762 	 * and not for the writeback threads or sync.
763 	 */
764 	if (!wbc->for_reclaim) {
765 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
766 		goto redirty;
767 	}
768 
769 	/*
770 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
771 	 * value into swapfile.c, the only way we can correctly account for a
772 	 * fallocated page arriving here is now to initialize it and write it.
773 	 *
774 	 * That's okay for a page already fallocated earlier, but if we have
775 	 * not yet completed the fallocation, then (a) we want to keep track
776 	 * of this page in case we have to undo it, and (b) it may not be a
777 	 * good idea to continue anyway, once we're pushing into swap.  So
778 	 * reactivate the page, and let shmem_fallocate() quit when too many.
779 	 */
780 	if (!PageUptodate(page)) {
781 		if (inode->i_private) {
782 			struct shmem_falloc *shmem_falloc;
783 			spin_lock(&inode->i_lock);
784 			shmem_falloc = inode->i_private;
785 			if (shmem_falloc &&
786 			    !shmem_falloc->waitq &&
787 			    index >= shmem_falloc->start &&
788 			    index < shmem_falloc->next)
789 				shmem_falloc->nr_unswapped++;
790 			else
791 				shmem_falloc = NULL;
792 			spin_unlock(&inode->i_lock);
793 			if (shmem_falloc)
794 				goto redirty;
795 		}
796 		clear_highpage(page);
797 		flush_dcache_page(page);
798 		SetPageUptodate(page);
799 	}
800 
801 	swap = get_swap_page();
802 	if (!swap.val)
803 		goto redirty;
804 
805 	/*
806 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
807 	 * if it's not already there.  Do it now before the page is
808 	 * moved to swap cache, when its pagelock no longer protects
809 	 * the inode from eviction.  But don't unlock the mutex until
810 	 * we've incremented swapped, because shmem_unuse_inode() will
811 	 * prune a !swapped inode from the swaplist under this mutex.
812 	 */
813 	mutex_lock(&shmem_swaplist_mutex);
814 	if (list_empty(&info->swaplist))
815 		list_add_tail(&info->swaplist, &shmem_swaplist);
816 
817 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
818 		swap_shmem_alloc(swap);
819 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
820 
821 		spin_lock(&info->lock);
822 		info->swapped++;
823 		shmem_recalc_inode(inode);
824 		spin_unlock(&info->lock);
825 
826 		mutex_unlock(&shmem_swaplist_mutex);
827 		BUG_ON(page_mapped(page));
828 		swap_writepage(page, wbc);
829 		return 0;
830 	}
831 
832 	mutex_unlock(&shmem_swaplist_mutex);
833 	swapcache_free(swap, NULL);
834 redirty:
835 	set_page_dirty(page);
836 	if (wbc->for_reclaim)
837 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
838 	unlock_page(page);
839 	return 0;
840 }
841 
842 #ifdef CONFIG_NUMA
843 #ifdef CONFIG_TMPFS
844 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
845 {
846 	char buffer[64];
847 
848 	if (!mpol || mpol->mode == MPOL_DEFAULT)
849 		return;		/* show nothing */
850 
851 	mpol_to_str(buffer, sizeof(buffer), mpol);
852 
853 	seq_printf(seq, ",mpol=%s", buffer);
854 }
855 
856 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
857 {
858 	struct mempolicy *mpol = NULL;
859 	if (sbinfo->mpol) {
860 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
861 		mpol = sbinfo->mpol;
862 		mpol_get(mpol);
863 		spin_unlock(&sbinfo->stat_lock);
864 	}
865 	return mpol;
866 }
867 #endif /* CONFIG_TMPFS */
868 
869 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
870 			struct shmem_inode_info *info, pgoff_t index)
871 {
872 	struct vm_area_struct pvma;
873 	struct page *page;
874 
875 	/* Create a pseudo vma that just contains the policy */
876 	pvma.vm_start = 0;
877 	/* Bias interleave by inode number to distribute better across nodes */
878 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
879 	pvma.vm_ops = NULL;
880 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
881 
882 	page = swapin_readahead(swap, gfp, &pvma, 0);
883 
884 	/* Drop reference taken by mpol_shared_policy_lookup() */
885 	mpol_cond_put(pvma.vm_policy);
886 
887 	return page;
888 }
889 
890 static struct page *shmem_alloc_page(gfp_t gfp,
891 			struct shmem_inode_info *info, pgoff_t index)
892 {
893 	struct vm_area_struct pvma;
894 	struct page *page;
895 
896 	/* Create a pseudo vma that just contains the policy */
897 	pvma.vm_start = 0;
898 	/* Bias interleave by inode number to distribute better across nodes */
899 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
900 	pvma.vm_ops = NULL;
901 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
902 
903 	page = alloc_page_vma(gfp, &pvma, 0);
904 
905 	/* Drop reference taken by mpol_shared_policy_lookup() */
906 	mpol_cond_put(pvma.vm_policy);
907 
908 	return page;
909 }
910 #else /* !CONFIG_NUMA */
911 #ifdef CONFIG_TMPFS
912 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
913 {
914 }
915 #endif /* CONFIG_TMPFS */
916 
917 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
918 			struct shmem_inode_info *info, pgoff_t index)
919 {
920 	return swapin_readahead(swap, gfp, NULL, 0);
921 }
922 
923 static inline struct page *shmem_alloc_page(gfp_t gfp,
924 			struct shmem_inode_info *info, pgoff_t index)
925 {
926 	return alloc_page(gfp);
927 }
928 #endif /* CONFIG_NUMA */
929 
930 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
931 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
932 {
933 	return NULL;
934 }
935 #endif
936 
937 /*
938  * When a page is moved from swapcache to shmem filecache (either by the
939  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
940  * shmem_unuse_inode()), it may have been read in earlier from swap, in
941  * ignorance of the mapping it belongs to.  If that mapping has special
942  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
943  * we may need to copy to a suitable page before moving to filecache.
944  *
945  * In a future release, this may well be extended to respect cpuset and
946  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
947  * but for now it is a simple matter of zone.
948  */
949 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
950 {
951 	return page_zonenum(page) > gfp_zone(gfp);
952 }
953 
954 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
955 				struct shmem_inode_info *info, pgoff_t index)
956 {
957 	struct page *oldpage, *newpage;
958 	struct address_space *swap_mapping;
959 	pgoff_t swap_index;
960 	int error;
961 
962 	oldpage = *pagep;
963 	swap_index = page_private(oldpage);
964 	swap_mapping = page_mapping(oldpage);
965 
966 	/*
967 	 * We have arrived here because our zones are constrained, so don't
968 	 * limit chance of success by further cpuset and node constraints.
969 	 */
970 	gfp &= ~GFP_CONSTRAINT_MASK;
971 	newpage = shmem_alloc_page(gfp, info, index);
972 	if (!newpage)
973 		return -ENOMEM;
974 
975 	page_cache_get(newpage);
976 	copy_highpage(newpage, oldpage);
977 	flush_dcache_page(newpage);
978 
979 	__set_page_locked(newpage);
980 	SetPageUptodate(newpage);
981 	SetPageSwapBacked(newpage);
982 	set_page_private(newpage, swap_index);
983 	SetPageSwapCache(newpage);
984 
985 	/*
986 	 * Our caller will very soon move newpage out of swapcache, but it's
987 	 * a nice clean interface for us to replace oldpage by newpage there.
988 	 */
989 	spin_lock_irq(&swap_mapping->tree_lock);
990 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
991 								   newpage);
992 	if (!error) {
993 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
994 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
995 	}
996 	spin_unlock_irq(&swap_mapping->tree_lock);
997 
998 	if (unlikely(error)) {
999 		/*
1000 		 * Is this possible?  I think not, now that our callers check
1001 		 * both PageSwapCache and page_private after getting page lock;
1002 		 * but be defensive.  Reverse old to newpage for clear and free.
1003 		 */
1004 		oldpage = newpage;
1005 	} else {
1006 		mem_cgroup_replace_page_cache(oldpage, newpage);
1007 		lru_cache_add_anon(newpage);
1008 		*pagep = newpage;
1009 	}
1010 
1011 	ClearPageSwapCache(oldpage);
1012 	set_page_private(oldpage, 0);
1013 
1014 	unlock_page(oldpage);
1015 	page_cache_release(oldpage);
1016 	page_cache_release(oldpage);
1017 	return error;
1018 }
1019 
1020 /*
1021  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1022  *
1023  * If we allocate a new one we do not mark it dirty. That's up to the
1024  * vm. If we swap it in we mark it dirty since we also free the swap
1025  * entry since a page cannot live in both the swap and page cache
1026  */
1027 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1028 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1029 {
1030 	struct address_space *mapping = inode->i_mapping;
1031 	struct shmem_inode_info *info;
1032 	struct shmem_sb_info *sbinfo;
1033 	struct page *page;
1034 	swp_entry_t swap;
1035 	int error;
1036 	int once = 0;
1037 	int alloced = 0;
1038 
1039 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1040 		return -EFBIG;
1041 repeat:
1042 	swap.val = 0;
1043 	page = find_lock_entry(mapping, index);
1044 	if (radix_tree_exceptional_entry(page)) {
1045 		swap = radix_to_swp_entry(page);
1046 		page = NULL;
1047 	}
1048 
1049 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1050 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1051 		error = -EINVAL;
1052 		goto failed;
1053 	}
1054 
1055 	if (page && sgp == SGP_WRITE)
1056 		mark_page_accessed(page);
1057 
1058 	/* fallocated page? */
1059 	if (page && !PageUptodate(page)) {
1060 		if (sgp != SGP_READ)
1061 			goto clear;
1062 		unlock_page(page);
1063 		page_cache_release(page);
1064 		page = NULL;
1065 	}
1066 	if (page || (sgp == SGP_READ && !swap.val)) {
1067 		*pagep = page;
1068 		return 0;
1069 	}
1070 
1071 	/*
1072 	 * Fast cache lookup did not find it:
1073 	 * bring it back from swap or allocate.
1074 	 */
1075 	info = SHMEM_I(inode);
1076 	sbinfo = SHMEM_SB(inode->i_sb);
1077 
1078 	if (swap.val) {
1079 		/* Look it up and read it in.. */
1080 		page = lookup_swap_cache(swap);
1081 		if (!page) {
1082 			/* here we actually do the io */
1083 			if (fault_type)
1084 				*fault_type |= VM_FAULT_MAJOR;
1085 			page = shmem_swapin(swap, gfp, info, index);
1086 			if (!page) {
1087 				error = -ENOMEM;
1088 				goto failed;
1089 			}
1090 		}
1091 
1092 		/* We have to do this with page locked to prevent races */
1093 		lock_page(page);
1094 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1095 		    !shmem_confirm_swap(mapping, index, swap)) {
1096 			error = -EEXIST;	/* try again */
1097 			goto unlock;
1098 		}
1099 		if (!PageUptodate(page)) {
1100 			error = -EIO;
1101 			goto failed;
1102 		}
1103 		wait_on_page_writeback(page);
1104 
1105 		if (shmem_should_replace_page(page, gfp)) {
1106 			error = shmem_replace_page(&page, gfp, info, index);
1107 			if (error)
1108 				goto failed;
1109 		}
1110 
1111 		error = mem_cgroup_charge_file(page, current->mm,
1112 						gfp & GFP_RECLAIM_MASK);
1113 		if (!error) {
1114 			error = shmem_add_to_page_cache(page, mapping, index,
1115 						swp_to_radix_entry(swap));
1116 			/*
1117 			 * We already confirmed swap under page lock, and make
1118 			 * no memory allocation here, so usually no possibility
1119 			 * of error; but free_swap_and_cache() only trylocks a
1120 			 * page, so it is just possible that the entry has been
1121 			 * truncated or holepunched since swap was confirmed.
1122 			 * shmem_undo_range() will have done some of the
1123 			 * unaccounting, now delete_from_swap_cache() will do
1124 			 * the rest (including mem_cgroup_uncharge_swapcache).
1125 			 * Reset swap.val? No, leave it so "failed" goes back to
1126 			 * "repeat": reading a hole and writing should succeed.
1127 			 */
1128 			if (error)
1129 				delete_from_swap_cache(page);
1130 		}
1131 		if (error)
1132 			goto failed;
1133 
1134 		spin_lock(&info->lock);
1135 		info->swapped--;
1136 		shmem_recalc_inode(inode);
1137 		spin_unlock(&info->lock);
1138 
1139 		if (sgp == SGP_WRITE)
1140 			mark_page_accessed(page);
1141 
1142 		delete_from_swap_cache(page);
1143 		set_page_dirty(page);
1144 		swap_free(swap);
1145 
1146 	} else {
1147 		if (shmem_acct_block(info->flags)) {
1148 			error = -ENOSPC;
1149 			goto failed;
1150 		}
1151 		if (sbinfo->max_blocks) {
1152 			if (percpu_counter_compare(&sbinfo->used_blocks,
1153 						sbinfo->max_blocks) >= 0) {
1154 				error = -ENOSPC;
1155 				goto unacct;
1156 			}
1157 			percpu_counter_inc(&sbinfo->used_blocks);
1158 		}
1159 
1160 		page = shmem_alloc_page(gfp, info, index);
1161 		if (!page) {
1162 			error = -ENOMEM;
1163 			goto decused;
1164 		}
1165 
1166 		__SetPageSwapBacked(page);
1167 		__set_page_locked(page);
1168 		if (sgp == SGP_WRITE)
1169 			__SetPageReferenced(page);
1170 
1171 		error = mem_cgroup_charge_file(page, current->mm,
1172 						gfp & GFP_RECLAIM_MASK);
1173 		if (error)
1174 			goto decused;
1175 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1176 		if (!error) {
1177 			error = shmem_add_to_page_cache(page, mapping, index,
1178 							NULL);
1179 			radix_tree_preload_end();
1180 		}
1181 		if (error) {
1182 			mem_cgroup_uncharge_cache_page(page);
1183 			goto decused;
1184 		}
1185 		lru_cache_add_anon(page);
1186 
1187 		spin_lock(&info->lock);
1188 		info->alloced++;
1189 		inode->i_blocks += BLOCKS_PER_PAGE;
1190 		shmem_recalc_inode(inode);
1191 		spin_unlock(&info->lock);
1192 		alloced = true;
1193 
1194 		/*
1195 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1196 		 */
1197 		if (sgp == SGP_FALLOC)
1198 			sgp = SGP_WRITE;
1199 clear:
1200 		/*
1201 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1202 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1203 		 * it now, lest undo on failure cancel our earlier guarantee.
1204 		 */
1205 		if (sgp != SGP_WRITE) {
1206 			clear_highpage(page);
1207 			flush_dcache_page(page);
1208 			SetPageUptodate(page);
1209 		}
1210 		if (sgp == SGP_DIRTY)
1211 			set_page_dirty(page);
1212 	}
1213 
1214 	/* Perhaps the file has been truncated since we checked */
1215 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1216 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1217 		error = -EINVAL;
1218 		if (alloced)
1219 			goto trunc;
1220 		else
1221 			goto failed;
1222 	}
1223 	*pagep = page;
1224 	return 0;
1225 
1226 	/*
1227 	 * Error recovery.
1228 	 */
1229 trunc:
1230 	info = SHMEM_I(inode);
1231 	ClearPageDirty(page);
1232 	delete_from_page_cache(page);
1233 	spin_lock(&info->lock);
1234 	info->alloced--;
1235 	inode->i_blocks -= BLOCKS_PER_PAGE;
1236 	spin_unlock(&info->lock);
1237 decused:
1238 	sbinfo = SHMEM_SB(inode->i_sb);
1239 	if (sbinfo->max_blocks)
1240 		percpu_counter_add(&sbinfo->used_blocks, -1);
1241 unacct:
1242 	shmem_unacct_blocks(info->flags, 1);
1243 failed:
1244 	if (swap.val && error != -EINVAL &&
1245 	    !shmem_confirm_swap(mapping, index, swap))
1246 		error = -EEXIST;
1247 unlock:
1248 	if (page) {
1249 		unlock_page(page);
1250 		page_cache_release(page);
1251 	}
1252 	if (error == -ENOSPC && !once++) {
1253 		info = SHMEM_I(inode);
1254 		spin_lock(&info->lock);
1255 		shmem_recalc_inode(inode);
1256 		spin_unlock(&info->lock);
1257 		goto repeat;
1258 	}
1259 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1260 		goto repeat;
1261 	return error;
1262 }
1263 
1264 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1265 {
1266 	struct inode *inode = file_inode(vma->vm_file);
1267 	int error;
1268 	int ret = VM_FAULT_LOCKED;
1269 
1270 	/*
1271 	 * Trinity finds that probing a hole which tmpfs is punching can
1272 	 * prevent the hole-punch from ever completing: which in turn
1273 	 * locks writers out with its hold on i_mutex.  So refrain from
1274 	 * faulting pages into the hole while it's being punched.  Although
1275 	 * shmem_undo_range() does remove the additions, it may be unable to
1276 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1277 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1278 	 *
1279 	 * It does not matter if we sometimes reach this check just before the
1280 	 * hole-punch begins, so that one fault then races with the punch:
1281 	 * we just need to make racing faults a rare case.
1282 	 *
1283 	 * The implementation below would be much simpler if we just used a
1284 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1285 	 * and bloating every shmem inode for this unlikely case would be sad.
1286 	 */
1287 	if (unlikely(inode->i_private)) {
1288 		struct shmem_falloc *shmem_falloc;
1289 
1290 		spin_lock(&inode->i_lock);
1291 		shmem_falloc = inode->i_private;
1292 		if (shmem_falloc &&
1293 		    shmem_falloc->waitq &&
1294 		    vmf->pgoff >= shmem_falloc->start &&
1295 		    vmf->pgoff < shmem_falloc->next) {
1296 			wait_queue_head_t *shmem_falloc_waitq;
1297 			DEFINE_WAIT(shmem_fault_wait);
1298 
1299 			ret = VM_FAULT_NOPAGE;
1300 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1301 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1302 				/* It's polite to up mmap_sem if we can */
1303 				up_read(&vma->vm_mm->mmap_sem);
1304 				ret = VM_FAULT_RETRY;
1305 			}
1306 
1307 			shmem_falloc_waitq = shmem_falloc->waitq;
1308 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1309 					TASK_UNINTERRUPTIBLE);
1310 			spin_unlock(&inode->i_lock);
1311 			schedule();
1312 
1313 			/*
1314 			 * shmem_falloc_waitq points into the shmem_fallocate()
1315 			 * stack of the hole-punching task: shmem_falloc_waitq
1316 			 * is usually invalid by the time we reach here, but
1317 			 * finish_wait() does not dereference it in that case;
1318 			 * though i_lock needed lest racing with wake_up_all().
1319 			 */
1320 			spin_lock(&inode->i_lock);
1321 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1322 			spin_unlock(&inode->i_lock);
1323 			return ret;
1324 		}
1325 		spin_unlock(&inode->i_lock);
1326 	}
1327 
1328 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1329 	if (error)
1330 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1331 
1332 	if (ret & VM_FAULT_MAJOR) {
1333 		count_vm_event(PGMAJFAULT);
1334 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1335 	}
1336 	return ret;
1337 }
1338 
1339 #ifdef CONFIG_NUMA
1340 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1341 {
1342 	struct inode *inode = file_inode(vma->vm_file);
1343 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1344 }
1345 
1346 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1347 					  unsigned long addr)
1348 {
1349 	struct inode *inode = file_inode(vma->vm_file);
1350 	pgoff_t index;
1351 
1352 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1353 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1354 }
1355 #endif
1356 
1357 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1358 {
1359 	struct inode *inode = file_inode(file);
1360 	struct shmem_inode_info *info = SHMEM_I(inode);
1361 	int retval = -ENOMEM;
1362 
1363 	spin_lock(&info->lock);
1364 	if (lock && !(info->flags & VM_LOCKED)) {
1365 		if (!user_shm_lock(inode->i_size, user))
1366 			goto out_nomem;
1367 		info->flags |= VM_LOCKED;
1368 		mapping_set_unevictable(file->f_mapping);
1369 	}
1370 	if (!lock && (info->flags & VM_LOCKED) && user) {
1371 		user_shm_unlock(inode->i_size, user);
1372 		info->flags &= ~VM_LOCKED;
1373 		mapping_clear_unevictable(file->f_mapping);
1374 	}
1375 	retval = 0;
1376 
1377 out_nomem:
1378 	spin_unlock(&info->lock);
1379 	return retval;
1380 }
1381 
1382 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1383 {
1384 	file_accessed(file);
1385 	vma->vm_ops = &shmem_vm_ops;
1386 	return 0;
1387 }
1388 
1389 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1390 				     umode_t mode, dev_t dev, unsigned long flags)
1391 {
1392 	struct inode *inode;
1393 	struct shmem_inode_info *info;
1394 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1395 
1396 	if (shmem_reserve_inode(sb))
1397 		return NULL;
1398 
1399 	inode = new_inode(sb);
1400 	if (inode) {
1401 		inode->i_ino = get_next_ino();
1402 		inode_init_owner(inode, dir, mode);
1403 		inode->i_blocks = 0;
1404 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1405 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1406 		inode->i_generation = get_seconds();
1407 		info = SHMEM_I(inode);
1408 		memset(info, 0, (char *)inode - (char *)info);
1409 		spin_lock_init(&info->lock);
1410 		info->flags = flags & VM_NORESERVE;
1411 		INIT_LIST_HEAD(&info->swaplist);
1412 		simple_xattrs_init(&info->xattrs);
1413 		cache_no_acl(inode);
1414 
1415 		switch (mode & S_IFMT) {
1416 		default:
1417 			inode->i_op = &shmem_special_inode_operations;
1418 			init_special_inode(inode, mode, dev);
1419 			break;
1420 		case S_IFREG:
1421 			inode->i_mapping->a_ops = &shmem_aops;
1422 			inode->i_op = &shmem_inode_operations;
1423 			inode->i_fop = &shmem_file_operations;
1424 			mpol_shared_policy_init(&info->policy,
1425 						 shmem_get_sbmpol(sbinfo));
1426 			break;
1427 		case S_IFDIR:
1428 			inc_nlink(inode);
1429 			/* Some things misbehave if size == 0 on a directory */
1430 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1431 			inode->i_op = &shmem_dir_inode_operations;
1432 			inode->i_fop = &simple_dir_operations;
1433 			break;
1434 		case S_IFLNK:
1435 			/*
1436 			 * Must not load anything in the rbtree,
1437 			 * mpol_free_shared_policy will not be called.
1438 			 */
1439 			mpol_shared_policy_init(&info->policy, NULL);
1440 			break;
1441 		}
1442 	} else
1443 		shmem_free_inode(sb);
1444 	return inode;
1445 }
1446 
1447 bool shmem_mapping(struct address_space *mapping)
1448 {
1449 	return mapping->backing_dev_info == &shmem_backing_dev_info;
1450 }
1451 
1452 #ifdef CONFIG_TMPFS
1453 static const struct inode_operations shmem_symlink_inode_operations;
1454 static const struct inode_operations shmem_short_symlink_operations;
1455 
1456 #ifdef CONFIG_TMPFS_XATTR
1457 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1458 #else
1459 #define shmem_initxattrs NULL
1460 #endif
1461 
1462 static int
1463 shmem_write_begin(struct file *file, struct address_space *mapping,
1464 			loff_t pos, unsigned len, unsigned flags,
1465 			struct page **pagep, void **fsdata)
1466 {
1467 	struct inode *inode = mapping->host;
1468 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1469 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1470 }
1471 
1472 static int
1473 shmem_write_end(struct file *file, struct address_space *mapping,
1474 			loff_t pos, unsigned len, unsigned copied,
1475 			struct page *page, void *fsdata)
1476 {
1477 	struct inode *inode = mapping->host;
1478 
1479 	if (pos + copied > inode->i_size)
1480 		i_size_write(inode, pos + copied);
1481 
1482 	if (!PageUptodate(page)) {
1483 		if (copied < PAGE_CACHE_SIZE) {
1484 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1485 			zero_user_segments(page, 0, from,
1486 					from + copied, PAGE_CACHE_SIZE);
1487 		}
1488 		SetPageUptodate(page);
1489 	}
1490 	set_page_dirty(page);
1491 	unlock_page(page);
1492 	page_cache_release(page);
1493 
1494 	return copied;
1495 }
1496 
1497 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1498 {
1499 	struct file *file = iocb->ki_filp;
1500 	struct inode *inode = file_inode(file);
1501 	struct address_space *mapping = inode->i_mapping;
1502 	pgoff_t index;
1503 	unsigned long offset;
1504 	enum sgp_type sgp = SGP_READ;
1505 	int error = 0;
1506 	ssize_t retval = 0;
1507 	loff_t *ppos = &iocb->ki_pos;
1508 
1509 	/*
1510 	 * Might this read be for a stacking filesystem?  Then when reading
1511 	 * holes of a sparse file, we actually need to allocate those pages,
1512 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1513 	 */
1514 	if (segment_eq(get_fs(), KERNEL_DS))
1515 		sgp = SGP_DIRTY;
1516 
1517 	index = *ppos >> PAGE_CACHE_SHIFT;
1518 	offset = *ppos & ~PAGE_CACHE_MASK;
1519 
1520 	for (;;) {
1521 		struct page *page = NULL;
1522 		pgoff_t end_index;
1523 		unsigned long nr, ret;
1524 		loff_t i_size = i_size_read(inode);
1525 
1526 		end_index = i_size >> PAGE_CACHE_SHIFT;
1527 		if (index > end_index)
1528 			break;
1529 		if (index == end_index) {
1530 			nr = i_size & ~PAGE_CACHE_MASK;
1531 			if (nr <= offset)
1532 				break;
1533 		}
1534 
1535 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1536 		if (error) {
1537 			if (error == -EINVAL)
1538 				error = 0;
1539 			break;
1540 		}
1541 		if (page)
1542 			unlock_page(page);
1543 
1544 		/*
1545 		 * We must evaluate after, since reads (unlike writes)
1546 		 * are called without i_mutex protection against truncate
1547 		 */
1548 		nr = PAGE_CACHE_SIZE;
1549 		i_size = i_size_read(inode);
1550 		end_index = i_size >> PAGE_CACHE_SHIFT;
1551 		if (index == end_index) {
1552 			nr = i_size & ~PAGE_CACHE_MASK;
1553 			if (nr <= offset) {
1554 				if (page)
1555 					page_cache_release(page);
1556 				break;
1557 			}
1558 		}
1559 		nr -= offset;
1560 
1561 		if (page) {
1562 			/*
1563 			 * If users can be writing to this page using arbitrary
1564 			 * virtual addresses, take care about potential aliasing
1565 			 * before reading the page on the kernel side.
1566 			 */
1567 			if (mapping_writably_mapped(mapping))
1568 				flush_dcache_page(page);
1569 			/*
1570 			 * Mark the page accessed if we read the beginning.
1571 			 */
1572 			if (!offset)
1573 				mark_page_accessed(page);
1574 		} else {
1575 			page = ZERO_PAGE(0);
1576 			page_cache_get(page);
1577 		}
1578 
1579 		/*
1580 		 * Ok, we have the page, and it's up-to-date, so
1581 		 * now we can copy it to user space...
1582 		 */
1583 		ret = copy_page_to_iter(page, offset, nr, to);
1584 		retval += ret;
1585 		offset += ret;
1586 		index += offset >> PAGE_CACHE_SHIFT;
1587 		offset &= ~PAGE_CACHE_MASK;
1588 
1589 		page_cache_release(page);
1590 		if (!iov_iter_count(to))
1591 			break;
1592 		if (ret < nr) {
1593 			error = -EFAULT;
1594 			break;
1595 		}
1596 		cond_resched();
1597 	}
1598 
1599 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1600 	file_accessed(file);
1601 	return retval ? retval : error;
1602 }
1603 
1604 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1605 				struct pipe_inode_info *pipe, size_t len,
1606 				unsigned int flags)
1607 {
1608 	struct address_space *mapping = in->f_mapping;
1609 	struct inode *inode = mapping->host;
1610 	unsigned int loff, nr_pages, req_pages;
1611 	struct page *pages[PIPE_DEF_BUFFERS];
1612 	struct partial_page partial[PIPE_DEF_BUFFERS];
1613 	struct page *page;
1614 	pgoff_t index, end_index;
1615 	loff_t isize, left;
1616 	int error, page_nr;
1617 	struct splice_pipe_desc spd = {
1618 		.pages = pages,
1619 		.partial = partial,
1620 		.nr_pages_max = PIPE_DEF_BUFFERS,
1621 		.flags = flags,
1622 		.ops = &page_cache_pipe_buf_ops,
1623 		.spd_release = spd_release_page,
1624 	};
1625 
1626 	isize = i_size_read(inode);
1627 	if (unlikely(*ppos >= isize))
1628 		return 0;
1629 
1630 	left = isize - *ppos;
1631 	if (unlikely(left < len))
1632 		len = left;
1633 
1634 	if (splice_grow_spd(pipe, &spd))
1635 		return -ENOMEM;
1636 
1637 	index = *ppos >> PAGE_CACHE_SHIFT;
1638 	loff = *ppos & ~PAGE_CACHE_MASK;
1639 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1640 	nr_pages = min(req_pages, spd.nr_pages_max);
1641 
1642 	spd.nr_pages = find_get_pages_contig(mapping, index,
1643 						nr_pages, spd.pages);
1644 	index += spd.nr_pages;
1645 	error = 0;
1646 
1647 	while (spd.nr_pages < nr_pages) {
1648 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1649 		if (error)
1650 			break;
1651 		unlock_page(page);
1652 		spd.pages[spd.nr_pages++] = page;
1653 		index++;
1654 	}
1655 
1656 	index = *ppos >> PAGE_CACHE_SHIFT;
1657 	nr_pages = spd.nr_pages;
1658 	spd.nr_pages = 0;
1659 
1660 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1661 		unsigned int this_len;
1662 
1663 		if (!len)
1664 			break;
1665 
1666 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1667 		page = spd.pages[page_nr];
1668 
1669 		if (!PageUptodate(page) || page->mapping != mapping) {
1670 			error = shmem_getpage(inode, index, &page,
1671 							SGP_CACHE, NULL);
1672 			if (error)
1673 				break;
1674 			unlock_page(page);
1675 			page_cache_release(spd.pages[page_nr]);
1676 			spd.pages[page_nr] = page;
1677 		}
1678 
1679 		isize = i_size_read(inode);
1680 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1681 		if (unlikely(!isize || index > end_index))
1682 			break;
1683 
1684 		if (end_index == index) {
1685 			unsigned int plen;
1686 
1687 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1688 			if (plen <= loff)
1689 				break;
1690 
1691 			this_len = min(this_len, plen - loff);
1692 			len = this_len;
1693 		}
1694 
1695 		spd.partial[page_nr].offset = loff;
1696 		spd.partial[page_nr].len = this_len;
1697 		len -= this_len;
1698 		loff = 0;
1699 		spd.nr_pages++;
1700 		index++;
1701 	}
1702 
1703 	while (page_nr < nr_pages)
1704 		page_cache_release(spd.pages[page_nr++]);
1705 
1706 	if (spd.nr_pages)
1707 		error = splice_to_pipe(pipe, &spd);
1708 
1709 	splice_shrink_spd(&spd);
1710 
1711 	if (error > 0) {
1712 		*ppos += error;
1713 		file_accessed(in);
1714 	}
1715 	return error;
1716 }
1717 
1718 /*
1719  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1720  */
1721 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1722 				    pgoff_t index, pgoff_t end, int whence)
1723 {
1724 	struct page *page;
1725 	struct pagevec pvec;
1726 	pgoff_t indices[PAGEVEC_SIZE];
1727 	bool done = false;
1728 	int i;
1729 
1730 	pagevec_init(&pvec, 0);
1731 	pvec.nr = 1;		/* start small: we may be there already */
1732 	while (!done) {
1733 		pvec.nr = find_get_entries(mapping, index,
1734 					pvec.nr, pvec.pages, indices);
1735 		if (!pvec.nr) {
1736 			if (whence == SEEK_DATA)
1737 				index = end;
1738 			break;
1739 		}
1740 		for (i = 0; i < pvec.nr; i++, index++) {
1741 			if (index < indices[i]) {
1742 				if (whence == SEEK_HOLE) {
1743 					done = true;
1744 					break;
1745 				}
1746 				index = indices[i];
1747 			}
1748 			page = pvec.pages[i];
1749 			if (page && !radix_tree_exceptional_entry(page)) {
1750 				if (!PageUptodate(page))
1751 					page = NULL;
1752 			}
1753 			if (index >= end ||
1754 			    (page && whence == SEEK_DATA) ||
1755 			    (!page && whence == SEEK_HOLE)) {
1756 				done = true;
1757 				break;
1758 			}
1759 		}
1760 		pagevec_remove_exceptionals(&pvec);
1761 		pagevec_release(&pvec);
1762 		pvec.nr = PAGEVEC_SIZE;
1763 		cond_resched();
1764 	}
1765 	return index;
1766 }
1767 
1768 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1769 {
1770 	struct address_space *mapping = file->f_mapping;
1771 	struct inode *inode = mapping->host;
1772 	pgoff_t start, end;
1773 	loff_t new_offset;
1774 
1775 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1776 		return generic_file_llseek_size(file, offset, whence,
1777 					MAX_LFS_FILESIZE, i_size_read(inode));
1778 	mutex_lock(&inode->i_mutex);
1779 	/* We're holding i_mutex so we can access i_size directly */
1780 
1781 	if (offset < 0)
1782 		offset = -EINVAL;
1783 	else if (offset >= inode->i_size)
1784 		offset = -ENXIO;
1785 	else {
1786 		start = offset >> PAGE_CACHE_SHIFT;
1787 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1788 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1789 		new_offset <<= PAGE_CACHE_SHIFT;
1790 		if (new_offset > offset) {
1791 			if (new_offset < inode->i_size)
1792 				offset = new_offset;
1793 			else if (whence == SEEK_DATA)
1794 				offset = -ENXIO;
1795 			else
1796 				offset = inode->i_size;
1797 		}
1798 	}
1799 
1800 	if (offset >= 0)
1801 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1802 	mutex_unlock(&inode->i_mutex);
1803 	return offset;
1804 }
1805 
1806 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1807 							 loff_t len)
1808 {
1809 	struct inode *inode = file_inode(file);
1810 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1811 	struct shmem_falloc shmem_falloc;
1812 	pgoff_t start, index, end;
1813 	int error;
1814 
1815 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1816 		return -EOPNOTSUPP;
1817 
1818 	mutex_lock(&inode->i_mutex);
1819 
1820 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1821 		struct address_space *mapping = file->f_mapping;
1822 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1823 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1824 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1825 
1826 		shmem_falloc.waitq = &shmem_falloc_waitq;
1827 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1828 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1829 		spin_lock(&inode->i_lock);
1830 		inode->i_private = &shmem_falloc;
1831 		spin_unlock(&inode->i_lock);
1832 
1833 		if ((u64)unmap_end > (u64)unmap_start)
1834 			unmap_mapping_range(mapping, unmap_start,
1835 					    1 + unmap_end - unmap_start, 0);
1836 		shmem_truncate_range(inode, offset, offset + len - 1);
1837 		/* No need to unmap again: hole-punching leaves COWed pages */
1838 
1839 		spin_lock(&inode->i_lock);
1840 		inode->i_private = NULL;
1841 		wake_up_all(&shmem_falloc_waitq);
1842 		spin_unlock(&inode->i_lock);
1843 		error = 0;
1844 		goto out;
1845 	}
1846 
1847 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1848 	error = inode_newsize_ok(inode, offset + len);
1849 	if (error)
1850 		goto out;
1851 
1852 	start = offset >> PAGE_CACHE_SHIFT;
1853 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1854 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1855 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1856 		error = -ENOSPC;
1857 		goto out;
1858 	}
1859 
1860 	shmem_falloc.waitq = NULL;
1861 	shmem_falloc.start = start;
1862 	shmem_falloc.next  = start;
1863 	shmem_falloc.nr_falloced = 0;
1864 	shmem_falloc.nr_unswapped = 0;
1865 	spin_lock(&inode->i_lock);
1866 	inode->i_private = &shmem_falloc;
1867 	spin_unlock(&inode->i_lock);
1868 
1869 	for (index = start; index < end; index++) {
1870 		struct page *page;
1871 
1872 		/*
1873 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1874 		 * been interrupted because we are using up too much memory.
1875 		 */
1876 		if (signal_pending(current))
1877 			error = -EINTR;
1878 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1879 			error = -ENOMEM;
1880 		else
1881 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1882 									NULL);
1883 		if (error) {
1884 			/* Remove the !PageUptodate pages we added */
1885 			shmem_undo_range(inode,
1886 				(loff_t)start << PAGE_CACHE_SHIFT,
1887 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1888 			goto undone;
1889 		}
1890 
1891 		/*
1892 		 * Inform shmem_writepage() how far we have reached.
1893 		 * No need for lock or barrier: we have the page lock.
1894 		 */
1895 		shmem_falloc.next++;
1896 		if (!PageUptodate(page))
1897 			shmem_falloc.nr_falloced++;
1898 
1899 		/*
1900 		 * If !PageUptodate, leave it that way so that freeable pages
1901 		 * can be recognized if we need to rollback on error later.
1902 		 * But set_page_dirty so that memory pressure will swap rather
1903 		 * than free the pages we are allocating (and SGP_CACHE pages
1904 		 * might still be clean: we now need to mark those dirty too).
1905 		 */
1906 		set_page_dirty(page);
1907 		unlock_page(page);
1908 		page_cache_release(page);
1909 		cond_resched();
1910 	}
1911 
1912 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1913 		i_size_write(inode, offset + len);
1914 	inode->i_ctime = CURRENT_TIME;
1915 undone:
1916 	spin_lock(&inode->i_lock);
1917 	inode->i_private = NULL;
1918 	spin_unlock(&inode->i_lock);
1919 out:
1920 	mutex_unlock(&inode->i_mutex);
1921 	return error;
1922 }
1923 
1924 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1925 {
1926 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1927 
1928 	buf->f_type = TMPFS_MAGIC;
1929 	buf->f_bsize = PAGE_CACHE_SIZE;
1930 	buf->f_namelen = NAME_MAX;
1931 	if (sbinfo->max_blocks) {
1932 		buf->f_blocks = sbinfo->max_blocks;
1933 		buf->f_bavail =
1934 		buf->f_bfree  = sbinfo->max_blocks -
1935 				percpu_counter_sum(&sbinfo->used_blocks);
1936 	}
1937 	if (sbinfo->max_inodes) {
1938 		buf->f_files = sbinfo->max_inodes;
1939 		buf->f_ffree = sbinfo->free_inodes;
1940 	}
1941 	/* else leave those fields 0 like simple_statfs */
1942 	return 0;
1943 }
1944 
1945 /*
1946  * File creation. Allocate an inode, and we're done..
1947  */
1948 static int
1949 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1950 {
1951 	struct inode *inode;
1952 	int error = -ENOSPC;
1953 
1954 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1955 	if (inode) {
1956 		error = simple_acl_create(dir, inode);
1957 		if (error)
1958 			goto out_iput;
1959 		error = security_inode_init_security(inode, dir,
1960 						     &dentry->d_name,
1961 						     shmem_initxattrs, NULL);
1962 		if (error && error != -EOPNOTSUPP)
1963 			goto out_iput;
1964 
1965 		error = 0;
1966 		dir->i_size += BOGO_DIRENT_SIZE;
1967 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1968 		d_instantiate(dentry, inode);
1969 		dget(dentry); /* Extra count - pin the dentry in core */
1970 	}
1971 	return error;
1972 out_iput:
1973 	iput(inode);
1974 	return error;
1975 }
1976 
1977 static int
1978 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1979 {
1980 	struct inode *inode;
1981 	int error = -ENOSPC;
1982 
1983 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1984 	if (inode) {
1985 		error = security_inode_init_security(inode, dir,
1986 						     NULL,
1987 						     shmem_initxattrs, NULL);
1988 		if (error && error != -EOPNOTSUPP)
1989 			goto out_iput;
1990 		error = simple_acl_create(dir, inode);
1991 		if (error)
1992 			goto out_iput;
1993 		d_tmpfile(dentry, inode);
1994 	}
1995 	return error;
1996 out_iput:
1997 	iput(inode);
1998 	return error;
1999 }
2000 
2001 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2002 {
2003 	int error;
2004 
2005 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2006 		return error;
2007 	inc_nlink(dir);
2008 	return 0;
2009 }
2010 
2011 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2012 		bool excl)
2013 {
2014 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2015 }
2016 
2017 /*
2018  * Link a file..
2019  */
2020 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2021 {
2022 	struct inode *inode = old_dentry->d_inode;
2023 	int ret;
2024 
2025 	/*
2026 	 * No ordinary (disk based) filesystem counts links as inodes;
2027 	 * but each new link needs a new dentry, pinning lowmem, and
2028 	 * tmpfs dentries cannot be pruned until they are unlinked.
2029 	 */
2030 	ret = shmem_reserve_inode(inode->i_sb);
2031 	if (ret)
2032 		goto out;
2033 
2034 	dir->i_size += BOGO_DIRENT_SIZE;
2035 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2036 	inc_nlink(inode);
2037 	ihold(inode);	/* New dentry reference */
2038 	dget(dentry);		/* Extra pinning count for the created dentry */
2039 	d_instantiate(dentry, inode);
2040 out:
2041 	return ret;
2042 }
2043 
2044 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2045 {
2046 	struct inode *inode = dentry->d_inode;
2047 
2048 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2049 		shmem_free_inode(inode->i_sb);
2050 
2051 	dir->i_size -= BOGO_DIRENT_SIZE;
2052 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2053 	drop_nlink(inode);
2054 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2055 	return 0;
2056 }
2057 
2058 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2059 {
2060 	if (!simple_empty(dentry))
2061 		return -ENOTEMPTY;
2062 
2063 	drop_nlink(dentry->d_inode);
2064 	drop_nlink(dir);
2065 	return shmem_unlink(dir, dentry);
2066 }
2067 
2068 /*
2069  * The VFS layer already does all the dentry stuff for rename,
2070  * we just have to decrement the usage count for the target if
2071  * it exists so that the VFS layer correctly free's it when it
2072  * gets overwritten.
2073  */
2074 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2075 {
2076 	struct inode *inode = old_dentry->d_inode;
2077 	int they_are_dirs = S_ISDIR(inode->i_mode);
2078 
2079 	if (!simple_empty(new_dentry))
2080 		return -ENOTEMPTY;
2081 
2082 	if (new_dentry->d_inode) {
2083 		(void) shmem_unlink(new_dir, new_dentry);
2084 		if (they_are_dirs)
2085 			drop_nlink(old_dir);
2086 	} else if (they_are_dirs) {
2087 		drop_nlink(old_dir);
2088 		inc_nlink(new_dir);
2089 	}
2090 
2091 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2092 	new_dir->i_size += BOGO_DIRENT_SIZE;
2093 	old_dir->i_ctime = old_dir->i_mtime =
2094 	new_dir->i_ctime = new_dir->i_mtime =
2095 	inode->i_ctime = CURRENT_TIME;
2096 	return 0;
2097 }
2098 
2099 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2100 {
2101 	int error;
2102 	int len;
2103 	struct inode *inode;
2104 	struct page *page;
2105 	char *kaddr;
2106 	struct shmem_inode_info *info;
2107 
2108 	len = strlen(symname) + 1;
2109 	if (len > PAGE_CACHE_SIZE)
2110 		return -ENAMETOOLONG;
2111 
2112 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2113 	if (!inode)
2114 		return -ENOSPC;
2115 
2116 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2117 					     shmem_initxattrs, NULL);
2118 	if (error) {
2119 		if (error != -EOPNOTSUPP) {
2120 			iput(inode);
2121 			return error;
2122 		}
2123 		error = 0;
2124 	}
2125 
2126 	info = SHMEM_I(inode);
2127 	inode->i_size = len-1;
2128 	if (len <= SHORT_SYMLINK_LEN) {
2129 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2130 		if (!info->symlink) {
2131 			iput(inode);
2132 			return -ENOMEM;
2133 		}
2134 		inode->i_op = &shmem_short_symlink_operations;
2135 	} else {
2136 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2137 		if (error) {
2138 			iput(inode);
2139 			return error;
2140 		}
2141 		inode->i_mapping->a_ops = &shmem_aops;
2142 		inode->i_op = &shmem_symlink_inode_operations;
2143 		kaddr = kmap_atomic(page);
2144 		memcpy(kaddr, symname, len);
2145 		kunmap_atomic(kaddr);
2146 		SetPageUptodate(page);
2147 		set_page_dirty(page);
2148 		unlock_page(page);
2149 		page_cache_release(page);
2150 	}
2151 	dir->i_size += BOGO_DIRENT_SIZE;
2152 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2153 	d_instantiate(dentry, inode);
2154 	dget(dentry);
2155 	return 0;
2156 }
2157 
2158 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2159 {
2160 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2161 	return NULL;
2162 }
2163 
2164 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2165 {
2166 	struct page *page = NULL;
2167 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2168 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2169 	if (page)
2170 		unlock_page(page);
2171 	return page;
2172 }
2173 
2174 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2175 {
2176 	if (!IS_ERR(nd_get_link(nd))) {
2177 		struct page *page = cookie;
2178 		kunmap(page);
2179 		mark_page_accessed(page);
2180 		page_cache_release(page);
2181 	}
2182 }
2183 
2184 #ifdef CONFIG_TMPFS_XATTR
2185 /*
2186  * Superblocks without xattr inode operations may get some security.* xattr
2187  * support from the LSM "for free". As soon as we have any other xattrs
2188  * like ACLs, we also need to implement the security.* handlers at
2189  * filesystem level, though.
2190  */
2191 
2192 /*
2193  * Callback for security_inode_init_security() for acquiring xattrs.
2194  */
2195 static int shmem_initxattrs(struct inode *inode,
2196 			    const struct xattr *xattr_array,
2197 			    void *fs_info)
2198 {
2199 	struct shmem_inode_info *info = SHMEM_I(inode);
2200 	const struct xattr *xattr;
2201 	struct simple_xattr *new_xattr;
2202 	size_t len;
2203 
2204 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2205 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2206 		if (!new_xattr)
2207 			return -ENOMEM;
2208 
2209 		len = strlen(xattr->name) + 1;
2210 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2211 					  GFP_KERNEL);
2212 		if (!new_xattr->name) {
2213 			kfree(new_xattr);
2214 			return -ENOMEM;
2215 		}
2216 
2217 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2218 		       XATTR_SECURITY_PREFIX_LEN);
2219 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2220 		       xattr->name, len);
2221 
2222 		simple_xattr_list_add(&info->xattrs, new_xattr);
2223 	}
2224 
2225 	return 0;
2226 }
2227 
2228 static const struct xattr_handler *shmem_xattr_handlers[] = {
2229 #ifdef CONFIG_TMPFS_POSIX_ACL
2230 	&posix_acl_access_xattr_handler,
2231 	&posix_acl_default_xattr_handler,
2232 #endif
2233 	NULL
2234 };
2235 
2236 static int shmem_xattr_validate(const char *name)
2237 {
2238 	struct { const char *prefix; size_t len; } arr[] = {
2239 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2240 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2241 	};
2242 	int i;
2243 
2244 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2245 		size_t preflen = arr[i].len;
2246 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2247 			if (!name[preflen])
2248 				return -EINVAL;
2249 			return 0;
2250 		}
2251 	}
2252 	return -EOPNOTSUPP;
2253 }
2254 
2255 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2256 			      void *buffer, size_t size)
2257 {
2258 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2259 	int err;
2260 
2261 	/*
2262 	 * If this is a request for a synthetic attribute in the system.*
2263 	 * namespace use the generic infrastructure to resolve a handler
2264 	 * for it via sb->s_xattr.
2265 	 */
2266 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2267 		return generic_getxattr(dentry, name, buffer, size);
2268 
2269 	err = shmem_xattr_validate(name);
2270 	if (err)
2271 		return err;
2272 
2273 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2274 }
2275 
2276 static int shmem_setxattr(struct dentry *dentry, const char *name,
2277 			  const void *value, size_t size, int flags)
2278 {
2279 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2280 	int err;
2281 
2282 	/*
2283 	 * If this is a request for a synthetic attribute in the system.*
2284 	 * namespace use the generic infrastructure to resolve a handler
2285 	 * for it via sb->s_xattr.
2286 	 */
2287 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2288 		return generic_setxattr(dentry, name, value, size, flags);
2289 
2290 	err = shmem_xattr_validate(name);
2291 	if (err)
2292 		return err;
2293 
2294 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2295 }
2296 
2297 static int shmem_removexattr(struct dentry *dentry, const char *name)
2298 {
2299 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2300 	int err;
2301 
2302 	/*
2303 	 * If this is a request for a synthetic attribute in the system.*
2304 	 * namespace use the generic infrastructure to resolve a handler
2305 	 * for it via sb->s_xattr.
2306 	 */
2307 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2308 		return generic_removexattr(dentry, name);
2309 
2310 	err = shmem_xattr_validate(name);
2311 	if (err)
2312 		return err;
2313 
2314 	return simple_xattr_remove(&info->xattrs, name);
2315 }
2316 
2317 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2318 {
2319 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2320 	return simple_xattr_list(&info->xattrs, buffer, size);
2321 }
2322 #endif /* CONFIG_TMPFS_XATTR */
2323 
2324 static const struct inode_operations shmem_short_symlink_operations = {
2325 	.readlink	= generic_readlink,
2326 	.follow_link	= shmem_follow_short_symlink,
2327 #ifdef CONFIG_TMPFS_XATTR
2328 	.setxattr	= shmem_setxattr,
2329 	.getxattr	= shmem_getxattr,
2330 	.listxattr	= shmem_listxattr,
2331 	.removexattr	= shmem_removexattr,
2332 #endif
2333 };
2334 
2335 static const struct inode_operations shmem_symlink_inode_operations = {
2336 	.readlink	= generic_readlink,
2337 	.follow_link	= shmem_follow_link,
2338 	.put_link	= shmem_put_link,
2339 #ifdef CONFIG_TMPFS_XATTR
2340 	.setxattr	= shmem_setxattr,
2341 	.getxattr	= shmem_getxattr,
2342 	.listxattr	= shmem_listxattr,
2343 	.removexattr	= shmem_removexattr,
2344 #endif
2345 };
2346 
2347 static struct dentry *shmem_get_parent(struct dentry *child)
2348 {
2349 	return ERR_PTR(-ESTALE);
2350 }
2351 
2352 static int shmem_match(struct inode *ino, void *vfh)
2353 {
2354 	__u32 *fh = vfh;
2355 	__u64 inum = fh[2];
2356 	inum = (inum << 32) | fh[1];
2357 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2358 }
2359 
2360 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2361 		struct fid *fid, int fh_len, int fh_type)
2362 {
2363 	struct inode *inode;
2364 	struct dentry *dentry = NULL;
2365 	u64 inum;
2366 
2367 	if (fh_len < 3)
2368 		return NULL;
2369 
2370 	inum = fid->raw[2];
2371 	inum = (inum << 32) | fid->raw[1];
2372 
2373 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2374 			shmem_match, fid->raw);
2375 	if (inode) {
2376 		dentry = d_find_alias(inode);
2377 		iput(inode);
2378 	}
2379 
2380 	return dentry;
2381 }
2382 
2383 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2384 				struct inode *parent)
2385 {
2386 	if (*len < 3) {
2387 		*len = 3;
2388 		return FILEID_INVALID;
2389 	}
2390 
2391 	if (inode_unhashed(inode)) {
2392 		/* Unfortunately insert_inode_hash is not idempotent,
2393 		 * so as we hash inodes here rather than at creation
2394 		 * time, we need a lock to ensure we only try
2395 		 * to do it once
2396 		 */
2397 		static DEFINE_SPINLOCK(lock);
2398 		spin_lock(&lock);
2399 		if (inode_unhashed(inode))
2400 			__insert_inode_hash(inode,
2401 					    inode->i_ino + inode->i_generation);
2402 		spin_unlock(&lock);
2403 	}
2404 
2405 	fh[0] = inode->i_generation;
2406 	fh[1] = inode->i_ino;
2407 	fh[2] = ((__u64)inode->i_ino) >> 32;
2408 
2409 	*len = 3;
2410 	return 1;
2411 }
2412 
2413 static const struct export_operations shmem_export_ops = {
2414 	.get_parent     = shmem_get_parent,
2415 	.encode_fh      = shmem_encode_fh,
2416 	.fh_to_dentry	= shmem_fh_to_dentry,
2417 };
2418 
2419 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2420 			       bool remount)
2421 {
2422 	char *this_char, *value, *rest;
2423 	struct mempolicy *mpol = NULL;
2424 	uid_t uid;
2425 	gid_t gid;
2426 
2427 	while (options != NULL) {
2428 		this_char = options;
2429 		for (;;) {
2430 			/*
2431 			 * NUL-terminate this option: unfortunately,
2432 			 * mount options form a comma-separated list,
2433 			 * but mpol's nodelist may also contain commas.
2434 			 */
2435 			options = strchr(options, ',');
2436 			if (options == NULL)
2437 				break;
2438 			options++;
2439 			if (!isdigit(*options)) {
2440 				options[-1] = '\0';
2441 				break;
2442 			}
2443 		}
2444 		if (!*this_char)
2445 			continue;
2446 		if ((value = strchr(this_char,'=')) != NULL) {
2447 			*value++ = 0;
2448 		} else {
2449 			printk(KERN_ERR
2450 			    "tmpfs: No value for mount option '%s'\n",
2451 			    this_char);
2452 			goto error;
2453 		}
2454 
2455 		if (!strcmp(this_char,"size")) {
2456 			unsigned long long size;
2457 			size = memparse(value,&rest);
2458 			if (*rest == '%') {
2459 				size <<= PAGE_SHIFT;
2460 				size *= totalram_pages;
2461 				do_div(size, 100);
2462 				rest++;
2463 			}
2464 			if (*rest)
2465 				goto bad_val;
2466 			sbinfo->max_blocks =
2467 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2468 		} else if (!strcmp(this_char,"nr_blocks")) {
2469 			sbinfo->max_blocks = memparse(value, &rest);
2470 			if (*rest)
2471 				goto bad_val;
2472 		} else if (!strcmp(this_char,"nr_inodes")) {
2473 			sbinfo->max_inodes = memparse(value, &rest);
2474 			if (*rest)
2475 				goto bad_val;
2476 		} else if (!strcmp(this_char,"mode")) {
2477 			if (remount)
2478 				continue;
2479 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2480 			if (*rest)
2481 				goto bad_val;
2482 		} else if (!strcmp(this_char,"uid")) {
2483 			if (remount)
2484 				continue;
2485 			uid = simple_strtoul(value, &rest, 0);
2486 			if (*rest)
2487 				goto bad_val;
2488 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2489 			if (!uid_valid(sbinfo->uid))
2490 				goto bad_val;
2491 		} else if (!strcmp(this_char,"gid")) {
2492 			if (remount)
2493 				continue;
2494 			gid = simple_strtoul(value, &rest, 0);
2495 			if (*rest)
2496 				goto bad_val;
2497 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2498 			if (!gid_valid(sbinfo->gid))
2499 				goto bad_val;
2500 		} else if (!strcmp(this_char,"mpol")) {
2501 			mpol_put(mpol);
2502 			mpol = NULL;
2503 			if (mpol_parse_str(value, &mpol))
2504 				goto bad_val;
2505 		} else {
2506 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2507 			       this_char);
2508 			goto error;
2509 		}
2510 	}
2511 	sbinfo->mpol = mpol;
2512 	return 0;
2513 
2514 bad_val:
2515 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2516 	       value, this_char);
2517 error:
2518 	mpol_put(mpol);
2519 	return 1;
2520 
2521 }
2522 
2523 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2524 {
2525 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2526 	struct shmem_sb_info config = *sbinfo;
2527 	unsigned long inodes;
2528 	int error = -EINVAL;
2529 
2530 	config.mpol = NULL;
2531 	if (shmem_parse_options(data, &config, true))
2532 		return error;
2533 
2534 	spin_lock(&sbinfo->stat_lock);
2535 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2536 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2537 		goto out;
2538 	if (config.max_inodes < inodes)
2539 		goto out;
2540 	/*
2541 	 * Those tests disallow limited->unlimited while any are in use;
2542 	 * but we must separately disallow unlimited->limited, because
2543 	 * in that case we have no record of how much is already in use.
2544 	 */
2545 	if (config.max_blocks && !sbinfo->max_blocks)
2546 		goto out;
2547 	if (config.max_inodes && !sbinfo->max_inodes)
2548 		goto out;
2549 
2550 	error = 0;
2551 	sbinfo->max_blocks  = config.max_blocks;
2552 	sbinfo->max_inodes  = config.max_inodes;
2553 	sbinfo->free_inodes = config.max_inodes - inodes;
2554 
2555 	/*
2556 	 * Preserve previous mempolicy unless mpol remount option was specified.
2557 	 */
2558 	if (config.mpol) {
2559 		mpol_put(sbinfo->mpol);
2560 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2561 	}
2562 out:
2563 	spin_unlock(&sbinfo->stat_lock);
2564 	return error;
2565 }
2566 
2567 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2568 {
2569 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2570 
2571 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2572 		seq_printf(seq, ",size=%luk",
2573 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2574 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2575 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2576 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2577 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2578 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2579 		seq_printf(seq, ",uid=%u",
2580 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2581 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2582 		seq_printf(seq, ",gid=%u",
2583 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2584 	shmem_show_mpol(seq, sbinfo->mpol);
2585 	return 0;
2586 }
2587 #endif /* CONFIG_TMPFS */
2588 
2589 static void shmem_put_super(struct super_block *sb)
2590 {
2591 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2592 
2593 	percpu_counter_destroy(&sbinfo->used_blocks);
2594 	mpol_put(sbinfo->mpol);
2595 	kfree(sbinfo);
2596 	sb->s_fs_info = NULL;
2597 }
2598 
2599 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2600 {
2601 	struct inode *inode;
2602 	struct shmem_sb_info *sbinfo;
2603 	int err = -ENOMEM;
2604 
2605 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2606 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2607 				L1_CACHE_BYTES), GFP_KERNEL);
2608 	if (!sbinfo)
2609 		return -ENOMEM;
2610 
2611 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2612 	sbinfo->uid = current_fsuid();
2613 	sbinfo->gid = current_fsgid();
2614 	sb->s_fs_info = sbinfo;
2615 
2616 #ifdef CONFIG_TMPFS
2617 	/*
2618 	 * Per default we only allow half of the physical ram per
2619 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2620 	 * but the internal instance is left unlimited.
2621 	 */
2622 	if (!(sb->s_flags & MS_KERNMOUNT)) {
2623 		sbinfo->max_blocks = shmem_default_max_blocks();
2624 		sbinfo->max_inodes = shmem_default_max_inodes();
2625 		if (shmem_parse_options(data, sbinfo, false)) {
2626 			err = -EINVAL;
2627 			goto failed;
2628 		}
2629 	} else {
2630 		sb->s_flags |= MS_NOUSER;
2631 	}
2632 	sb->s_export_op = &shmem_export_ops;
2633 	sb->s_flags |= MS_NOSEC;
2634 #else
2635 	sb->s_flags |= MS_NOUSER;
2636 #endif
2637 
2638 	spin_lock_init(&sbinfo->stat_lock);
2639 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2640 		goto failed;
2641 	sbinfo->free_inodes = sbinfo->max_inodes;
2642 
2643 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2644 	sb->s_blocksize = PAGE_CACHE_SIZE;
2645 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2646 	sb->s_magic = TMPFS_MAGIC;
2647 	sb->s_op = &shmem_ops;
2648 	sb->s_time_gran = 1;
2649 #ifdef CONFIG_TMPFS_XATTR
2650 	sb->s_xattr = shmem_xattr_handlers;
2651 #endif
2652 #ifdef CONFIG_TMPFS_POSIX_ACL
2653 	sb->s_flags |= MS_POSIXACL;
2654 #endif
2655 
2656 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2657 	if (!inode)
2658 		goto failed;
2659 	inode->i_uid = sbinfo->uid;
2660 	inode->i_gid = sbinfo->gid;
2661 	sb->s_root = d_make_root(inode);
2662 	if (!sb->s_root)
2663 		goto failed;
2664 	return 0;
2665 
2666 failed:
2667 	shmem_put_super(sb);
2668 	return err;
2669 }
2670 
2671 static struct kmem_cache *shmem_inode_cachep;
2672 
2673 static struct inode *shmem_alloc_inode(struct super_block *sb)
2674 {
2675 	struct shmem_inode_info *info;
2676 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2677 	if (!info)
2678 		return NULL;
2679 	return &info->vfs_inode;
2680 }
2681 
2682 static void shmem_destroy_callback(struct rcu_head *head)
2683 {
2684 	struct inode *inode = container_of(head, struct inode, i_rcu);
2685 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2686 }
2687 
2688 static void shmem_destroy_inode(struct inode *inode)
2689 {
2690 	if (S_ISREG(inode->i_mode))
2691 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2692 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2693 }
2694 
2695 static void shmem_init_inode(void *foo)
2696 {
2697 	struct shmem_inode_info *info = foo;
2698 	inode_init_once(&info->vfs_inode);
2699 }
2700 
2701 static int shmem_init_inodecache(void)
2702 {
2703 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2704 				sizeof(struct shmem_inode_info),
2705 				0, SLAB_PANIC, shmem_init_inode);
2706 	return 0;
2707 }
2708 
2709 static void shmem_destroy_inodecache(void)
2710 {
2711 	kmem_cache_destroy(shmem_inode_cachep);
2712 }
2713 
2714 static const struct address_space_operations shmem_aops = {
2715 	.writepage	= shmem_writepage,
2716 	.set_page_dirty	= __set_page_dirty_no_writeback,
2717 #ifdef CONFIG_TMPFS
2718 	.write_begin	= shmem_write_begin,
2719 	.write_end	= shmem_write_end,
2720 #endif
2721 	.migratepage	= migrate_page,
2722 	.error_remove_page = generic_error_remove_page,
2723 };
2724 
2725 static const struct file_operations shmem_file_operations = {
2726 	.mmap		= shmem_mmap,
2727 #ifdef CONFIG_TMPFS
2728 	.llseek		= shmem_file_llseek,
2729 	.read		= new_sync_read,
2730 	.write		= new_sync_write,
2731 	.read_iter	= shmem_file_read_iter,
2732 	.write_iter	= generic_file_write_iter,
2733 	.fsync		= noop_fsync,
2734 	.splice_read	= shmem_file_splice_read,
2735 	.splice_write	= iter_file_splice_write,
2736 	.fallocate	= shmem_fallocate,
2737 #endif
2738 };
2739 
2740 static const struct inode_operations shmem_inode_operations = {
2741 	.setattr	= shmem_setattr,
2742 #ifdef CONFIG_TMPFS_XATTR
2743 	.setxattr	= shmem_setxattr,
2744 	.getxattr	= shmem_getxattr,
2745 	.listxattr	= shmem_listxattr,
2746 	.removexattr	= shmem_removexattr,
2747 	.set_acl	= simple_set_acl,
2748 #endif
2749 };
2750 
2751 static const struct inode_operations shmem_dir_inode_operations = {
2752 #ifdef CONFIG_TMPFS
2753 	.create		= shmem_create,
2754 	.lookup		= simple_lookup,
2755 	.link		= shmem_link,
2756 	.unlink		= shmem_unlink,
2757 	.symlink	= shmem_symlink,
2758 	.mkdir		= shmem_mkdir,
2759 	.rmdir		= shmem_rmdir,
2760 	.mknod		= shmem_mknod,
2761 	.rename		= shmem_rename,
2762 	.tmpfile	= shmem_tmpfile,
2763 #endif
2764 #ifdef CONFIG_TMPFS_XATTR
2765 	.setxattr	= shmem_setxattr,
2766 	.getxattr	= shmem_getxattr,
2767 	.listxattr	= shmem_listxattr,
2768 	.removexattr	= shmem_removexattr,
2769 #endif
2770 #ifdef CONFIG_TMPFS_POSIX_ACL
2771 	.setattr	= shmem_setattr,
2772 	.set_acl	= simple_set_acl,
2773 #endif
2774 };
2775 
2776 static const struct inode_operations shmem_special_inode_operations = {
2777 #ifdef CONFIG_TMPFS_XATTR
2778 	.setxattr	= shmem_setxattr,
2779 	.getxattr	= shmem_getxattr,
2780 	.listxattr	= shmem_listxattr,
2781 	.removexattr	= shmem_removexattr,
2782 #endif
2783 #ifdef CONFIG_TMPFS_POSIX_ACL
2784 	.setattr	= shmem_setattr,
2785 	.set_acl	= simple_set_acl,
2786 #endif
2787 };
2788 
2789 static const struct super_operations shmem_ops = {
2790 	.alloc_inode	= shmem_alloc_inode,
2791 	.destroy_inode	= shmem_destroy_inode,
2792 #ifdef CONFIG_TMPFS
2793 	.statfs		= shmem_statfs,
2794 	.remount_fs	= shmem_remount_fs,
2795 	.show_options	= shmem_show_options,
2796 #endif
2797 	.evict_inode	= shmem_evict_inode,
2798 	.drop_inode	= generic_delete_inode,
2799 	.put_super	= shmem_put_super,
2800 };
2801 
2802 static const struct vm_operations_struct shmem_vm_ops = {
2803 	.fault		= shmem_fault,
2804 	.map_pages	= filemap_map_pages,
2805 #ifdef CONFIG_NUMA
2806 	.set_policy     = shmem_set_policy,
2807 	.get_policy     = shmem_get_policy,
2808 #endif
2809 	.remap_pages	= generic_file_remap_pages,
2810 };
2811 
2812 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2813 	int flags, const char *dev_name, void *data)
2814 {
2815 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2816 }
2817 
2818 static struct file_system_type shmem_fs_type = {
2819 	.owner		= THIS_MODULE,
2820 	.name		= "tmpfs",
2821 	.mount		= shmem_mount,
2822 	.kill_sb	= kill_litter_super,
2823 	.fs_flags	= FS_USERNS_MOUNT,
2824 };
2825 
2826 int __init shmem_init(void)
2827 {
2828 	int error;
2829 
2830 	/* If rootfs called this, don't re-init */
2831 	if (shmem_inode_cachep)
2832 		return 0;
2833 
2834 	error = bdi_init(&shmem_backing_dev_info);
2835 	if (error)
2836 		goto out4;
2837 
2838 	error = shmem_init_inodecache();
2839 	if (error)
2840 		goto out3;
2841 
2842 	error = register_filesystem(&shmem_fs_type);
2843 	if (error) {
2844 		printk(KERN_ERR "Could not register tmpfs\n");
2845 		goto out2;
2846 	}
2847 
2848 	shm_mnt = kern_mount(&shmem_fs_type);
2849 	if (IS_ERR(shm_mnt)) {
2850 		error = PTR_ERR(shm_mnt);
2851 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2852 		goto out1;
2853 	}
2854 	return 0;
2855 
2856 out1:
2857 	unregister_filesystem(&shmem_fs_type);
2858 out2:
2859 	shmem_destroy_inodecache();
2860 out3:
2861 	bdi_destroy(&shmem_backing_dev_info);
2862 out4:
2863 	shm_mnt = ERR_PTR(error);
2864 	return error;
2865 }
2866 
2867 #else /* !CONFIG_SHMEM */
2868 
2869 /*
2870  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2871  *
2872  * This is intended for small system where the benefits of the full
2873  * shmem code (swap-backed and resource-limited) are outweighed by
2874  * their complexity. On systems without swap this code should be
2875  * effectively equivalent, but much lighter weight.
2876  */
2877 
2878 static struct file_system_type shmem_fs_type = {
2879 	.name		= "tmpfs",
2880 	.mount		= ramfs_mount,
2881 	.kill_sb	= kill_litter_super,
2882 	.fs_flags	= FS_USERNS_MOUNT,
2883 };
2884 
2885 int __init shmem_init(void)
2886 {
2887 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2888 
2889 	shm_mnt = kern_mount(&shmem_fs_type);
2890 	BUG_ON(IS_ERR(shm_mnt));
2891 
2892 	return 0;
2893 }
2894 
2895 int shmem_unuse(swp_entry_t swap, struct page *page)
2896 {
2897 	return 0;
2898 }
2899 
2900 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2901 {
2902 	return 0;
2903 }
2904 
2905 void shmem_unlock_mapping(struct address_space *mapping)
2906 {
2907 }
2908 
2909 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2910 {
2911 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2912 }
2913 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2914 
2915 #define shmem_vm_ops				generic_file_vm_ops
2916 #define shmem_file_operations			ramfs_file_operations
2917 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2918 #define shmem_acct_size(flags, size)		0
2919 #define shmem_unacct_size(flags, size)		do {} while (0)
2920 
2921 #endif /* CONFIG_SHMEM */
2922 
2923 /* common code */
2924 
2925 static struct dentry_operations anon_ops = {
2926 	.d_dname = simple_dname
2927 };
2928 
2929 static struct file *__shmem_file_setup(const char *name, loff_t size,
2930 				       unsigned long flags, unsigned int i_flags)
2931 {
2932 	struct file *res;
2933 	struct inode *inode;
2934 	struct path path;
2935 	struct super_block *sb;
2936 	struct qstr this;
2937 
2938 	if (IS_ERR(shm_mnt))
2939 		return ERR_CAST(shm_mnt);
2940 
2941 	if (size < 0 || size > MAX_LFS_FILESIZE)
2942 		return ERR_PTR(-EINVAL);
2943 
2944 	if (shmem_acct_size(flags, size))
2945 		return ERR_PTR(-ENOMEM);
2946 
2947 	res = ERR_PTR(-ENOMEM);
2948 	this.name = name;
2949 	this.len = strlen(name);
2950 	this.hash = 0; /* will go */
2951 	sb = shm_mnt->mnt_sb;
2952 	path.mnt = mntget(shm_mnt);
2953 	path.dentry = d_alloc_pseudo(sb, &this);
2954 	if (!path.dentry)
2955 		goto put_memory;
2956 	d_set_d_op(path.dentry, &anon_ops);
2957 
2958 	res = ERR_PTR(-ENOSPC);
2959 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2960 	if (!inode)
2961 		goto put_memory;
2962 
2963 	inode->i_flags |= i_flags;
2964 	d_instantiate(path.dentry, inode);
2965 	inode->i_size = size;
2966 	clear_nlink(inode);	/* It is unlinked */
2967 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2968 	if (IS_ERR(res))
2969 		goto put_path;
2970 
2971 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2972 		  &shmem_file_operations);
2973 	if (IS_ERR(res))
2974 		goto put_path;
2975 
2976 	return res;
2977 
2978 put_memory:
2979 	shmem_unacct_size(flags, size);
2980 put_path:
2981 	path_put(&path);
2982 	return res;
2983 }
2984 
2985 /**
2986  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2987  * 	kernel internal.  There will be NO LSM permission checks against the
2988  * 	underlying inode.  So users of this interface must do LSM checks at a
2989  * 	higher layer.  The one user is the big_key implementation.  LSM checks
2990  * 	are provided at the key level rather than the inode level.
2991  * @name: name for dentry (to be seen in /proc/<pid>/maps
2992  * @size: size to be set for the file
2993  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2994  */
2995 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2996 {
2997 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2998 }
2999 
3000 /**
3001  * shmem_file_setup - get an unlinked file living in tmpfs
3002  * @name: name for dentry (to be seen in /proc/<pid>/maps
3003  * @size: size to be set for the file
3004  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3005  */
3006 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3007 {
3008 	return __shmem_file_setup(name, size, flags, 0);
3009 }
3010 EXPORT_SYMBOL_GPL(shmem_file_setup);
3011 
3012 /**
3013  * shmem_zero_setup - setup a shared anonymous mapping
3014  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3015  */
3016 int shmem_zero_setup(struct vm_area_struct *vma)
3017 {
3018 	struct file *file;
3019 	loff_t size = vma->vm_end - vma->vm_start;
3020 
3021 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3022 	if (IS_ERR(file))
3023 		return PTR_ERR(file);
3024 
3025 	if (vma->vm_file)
3026 		fput(vma->vm_file);
3027 	vma->vm_file = file;
3028 	vma->vm_ops = &shmem_vm_ops;
3029 	return 0;
3030 }
3031 
3032 /**
3033  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3034  * @mapping:	the page's address_space
3035  * @index:	the page index
3036  * @gfp:	the page allocator flags to use if allocating
3037  *
3038  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3039  * with any new page allocations done using the specified allocation flags.
3040  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3041  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3042  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3043  *
3044  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3045  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3046  */
3047 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3048 					 pgoff_t index, gfp_t gfp)
3049 {
3050 #ifdef CONFIG_SHMEM
3051 	struct inode *inode = mapping->host;
3052 	struct page *page;
3053 	int error;
3054 
3055 	BUG_ON(mapping->a_ops != &shmem_aops);
3056 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3057 	if (error)
3058 		page = ERR_PTR(error);
3059 	else
3060 		unlock_page(page);
3061 	return page;
3062 #else
3063 	/*
3064 	 * The tiny !SHMEM case uses ramfs without swap
3065 	 */
3066 	return read_cache_page_gfp(mapping, index, gfp);
3067 #endif
3068 }
3069 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3070