xref: /openbmc/linux/mm/shmem.c (revision 62e59c4e)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 
41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 #include <asm/pgtable.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113 	return totalram_pages() / 2;
114 }
115 
116 static unsigned long shmem_default_max_inodes(void)
117 {
118 	unsigned long nr_pages = totalram_pages();
119 
120 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
121 }
122 #endif
123 
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 				struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
128 			     struct page **pagep, enum sgp_type sgp,
129 			     gfp_t gfp, struct vm_area_struct *vma,
130 			     vm_fault_t *fault_type);
131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
132 		struct page **pagep, enum sgp_type sgp,
133 		gfp_t gfp, struct vm_area_struct *vma,
134 		struct vm_fault *vmf, vm_fault_t *fault_type);
135 
136 int shmem_getpage(struct inode *inode, pgoff_t index,
137 		struct page **pagep, enum sgp_type sgp)
138 {
139 	return shmem_getpage_gfp(inode, index, pagep, sgp,
140 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
141 }
142 
143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144 {
145 	return sb->s_fs_info;
146 }
147 
148 /*
149  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150  * for shared memory and for shared anonymous (/dev/zero) mappings
151  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152  * consistent with the pre-accounting of private mappings ...
153  */
154 static inline int shmem_acct_size(unsigned long flags, loff_t size)
155 {
156 	return (flags & VM_NORESERVE) ?
157 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
158 }
159 
160 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161 {
162 	if (!(flags & VM_NORESERVE))
163 		vm_unacct_memory(VM_ACCT(size));
164 }
165 
166 static inline int shmem_reacct_size(unsigned long flags,
167 		loff_t oldsize, loff_t newsize)
168 {
169 	if (!(flags & VM_NORESERVE)) {
170 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171 			return security_vm_enough_memory_mm(current->mm,
172 					VM_ACCT(newsize) - VM_ACCT(oldsize));
173 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
175 	}
176 	return 0;
177 }
178 
179 /*
180  * ... whereas tmpfs objects are accounted incrementally as
181  * pages are allocated, in order to allow large sparse files.
182  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
184  */
185 static inline int shmem_acct_block(unsigned long flags, long pages)
186 {
187 	if (!(flags & VM_NORESERVE))
188 		return 0;
189 
190 	return security_vm_enough_memory_mm(current->mm,
191 			pages * VM_ACCT(PAGE_SIZE));
192 }
193 
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195 {
196 	if (flags & VM_NORESERVE)
197 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
198 }
199 
200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
201 {
202 	struct shmem_inode_info *info = SHMEM_I(inode);
203 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
204 
205 	if (shmem_acct_block(info->flags, pages))
206 		return false;
207 
208 	if (sbinfo->max_blocks) {
209 		if (percpu_counter_compare(&sbinfo->used_blocks,
210 					   sbinfo->max_blocks - pages) > 0)
211 			goto unacct;
212 		percpu_counter_add(&sbinfo->used_blocks, pages);
213 	}
214 
215 	return true;
216 
217 unacct:
218 	shmem_unacct_blocks(info->flags, pages);
219 	return false;
220 }
221 
222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 
227 	if (sbinfo->max_blocks)
228 		percpu_counter_sub(&sbinfo->used_blocks, pages);
229 	shmem_unacct_blocks(info->flags, pages);
230 }
231 
232 static const struct super_operations shmem_ops;
233 static const struct address_space_operations shmem_aops;
234 static const struct file_operations shmem_file_operations;
235 static const struct inode_operations shmem_inode_operations;
236 static const struct inode_operations shmem_dir_inode_operations;
237 static const struct inode_operations shmem_special_inode_operations;
238 static const struct vm_operations_struct shmem_vm_ops;
239 static struct file_system_type shmem_fs_type;
240 
241 bool vma_is_shmem(struct vm_area_struct *vma)
242 {
243 	return vma->vm_ops == &shmem_vm_ops;
244 }
245 
246 static LIST_HEAD(shmem_swaplist);
247 static DEFINE_MUTEX(shmem_swaplist_mutex);
248 
249 static int shmem_reserve_inode(struct super_block *sb)
250 {
251 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
252 	if (sbinfo->max_inodes) {
253 		spin_lock(&sbinfo->stat_lock);
254 		if (!sbinfo->free_inodes) {
255 			spin_unlock(&sbinfo->stat_lock);
256 			return -ENOSPC;
257 		}
258 		sbinfo->free_inodes--;
259 		spin_unlock(&sbinfo->stat_lock);
260 	}
261 	return 0;
262 }
263 
264 static void shmem_free_inode(struct super_block *sb)
265 {
266 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 	if (sbinfo->max_inodes) {
268 		spin_lock(&sbinfo->stat_lock);
269 		sbinfo->free_inodes++;
270 		spin_unlock(&sbinfo->stat_lock);
271 	}
272 }
273 
274 /**
275  * shmem_recalc_inode - recalculate the block usage of an inode
276  * @inode: inode to recalc
277  *
278  * We have to calculate the free blocks since the mm can drop
279  * undirtied hole pages behind our back.
280  *
281  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
282  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
283  *
284  * It has to be called with the spinlock held.
285  */
286 static void shmem_recalc_inode(struct inode *inode)
287 {
288 	struct shmem_inode_info *info = SHMEM_I(inode);
289 	long freed;
290 
291 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
292 	if (freed > 0) {
293 		info->alloced -= freed;
294 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
295 		shmem_inode_unacct_blocks(inode, freed);
296 	}
297 }
298 
299 bool shmem_charge(struct inode *inode, long pages)
300 {
301 	struct shmem_inode_info *info = SHMEM_I(inode);
302 	unsigned long flags;
303 
304 	if (!shmem_inode_acct_block(inode, pages))
305 		return false;
306 
307 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 	inode->i_mapping->nrpages += pages;
309 
310 	spin_lock_irqsave(&info->lock, flags);
311 	info->alloced += pages;
312 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
313 	shmem_recalc_inode(inode);
314 	spin_unlock_irqrestore(&info->lock, flags);
315 
316 	return true;
317 }
318 
319 void shmem_uncharge(struct inode *inode, long pages)
320 {
321 	struct shmem_inode_info *info = SHMEM_I(inode);
322 	unsigned long flags;
323 
324 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
325 
326 	spin_lock_irqsave(&info->lock, flags);
327 	info->alloced -= pages;
328 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
329 	shmem_recalc_inode(inode);
330 	spin_unlock_irqrestore(&info->lock, flags);
331 
332 	shmem_inode_unacct_blocks(inode, pages);
333 }
334 
335 /*
336  * Replace item expected in xarray by a new item, while holding xa_lock.
337  */
338 static int shmem_replace_entry(struct address_space *mapping,
339 			pgoff_t index, void *expected, void *replacement)
340 {
341 	XA_STATE(xas, &mapping->i_pages, index);
342 	void *item;
343 
344 	VM_BUG_ON(!expected);
345 	VM_BUG_ON(!replacement);
346 	item = xas_load(&xas);
347 	if (item != expected)
348 		return -ENOENT;
349 	xas_store(&xas, replacement);
350 	return 0;
351 }
352 
353 /*
354  * Sometimes, before we decide whether to proceed or to fail, we must check
355  * that an entry was not already brought back from swap by a racing thread.
356  *
357  * Checking page is not enough: by the time a SwapCache page is locked, it
358  * might be reused, and again be SwapCache, using the same swap as before.
359  */
360 static bool shmem_confirm_swap(struct address_space *mapping,
361 			       pgoff_t index, swp_entry_t swap)
362 {
363 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
364 }
365 
366 /*
367  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
368  *
369  * SHMEM_HUGE_NEVER:
370  *	disables huge pages for the mount;
371  * SHMEM_HUGE_ALWAYS:
372  *	enables huge pages for the mount;
373  * SHMEM_HUGE_WITHIN_SIZE:
374  *	only allocate huge pages if the page will be fully within i_size,
375  *	also respect fadvise()/madvise() hints;
376  * SHMEM_HUGE_ADVISE:
377  *	only allocate huge pages if requested with fadvise()/madvise();
378  */
379 
380 #define SHMEM_HUGE_NEVER	0
381 #define SHMEM_HUGE_ALWAYS	1
382 #define SHMEM_HUGE_WITHIN_SIZE	2
383 #define SHMEM_HUGE_ADVISE	3
384 
385 /*
386  * Special values.
387  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
388  *
389  * SHMEM_HUGE_DENY:
390  *	disables huge on shm_mnt and all mounts, for emergency use;
391  * SHMEM_HUGE_FORCE:
392  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
393  *
394  */
395 #define SHMEM_HUGE_DENY		(-1)
396 #define SHMEM_HUGE_FORCE	(-2)
397 
398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
399 /* ifdef here to avoid bloating shmem.o when not necessary */
400 
401 static int shmem_huge __read_mostly;
402 
403 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
404 static int shmem_parse_huge(const char *str)
405 {
406 	if (!strcmp(str, "never"))
407 		return SHMEM_HUGE_NEVER;
408 	if (!strcmp(str, "always"))
409 		return SHMEM_HUGE_ALWAYS;
410 	if (!strcmp(str, "within_size"))
411 		return SHMEM_HUGE_WITHIN_SIZE;
412 	if (!strcmp(str, "advise"))
413 		return SHMEM_HUGE_ADVISE;
414 	if (!strcmp(str, "deny"))
415 		return SHMEM_HUGE_DENY;
416 	if (!strcmp(str, "force"))
417 		return SHMEM_HUGE_FORCE;
418 	return -EINVAL;
419 }
420 
421 static const char *shmem_format_huge(int huge)
422 {
423 	switch (huge) {
424 	case SHMEM_HUGE_NEVER:
425 		return "never";
426 	case SHMEM_HUGE_ALWAYS:
427 		return "always";
428 	case SHMEM_HUGE_WITHIN_SIZE:
429 		return "within_size";
430 	case SHMEM_HUGE_ADVISE:
431 		return "advise";
432 	case SHMEM_HUGE_DENY:
433 		return "deny";
434 	case SHMEM_HUGE_FORCE:
435 		return "force";
436 	default:
437 		VM_BUG_ON(1);
438 		return "bad_val";
439 	}
440 }
441 #endif
442 
443 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
444 		struct shrink_control *sc, unsigned long nr_to_split)
445 {
446 	LIST_HEAD(list), *pos, *next;
447 	LIST_HEAD(to_remove);
448 	struct inode *inode;
449 	struct shmem_inode_info *info;
450 	struct page *page;
451 	unsigned long batch = sc ? sc->nr_to_scan : 128;
452 	int removed = 0, split = 0;
453 
454 	if (list_empty(&sbinfo->shrinklist))
455 		return SHRINK_STOP;
456 
457 	spin_lock(&sbinfo->shrinklist_lock);
458 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
459 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
460 
461 		/* pin the inode */
462 		inode = igrab(&info->vfs_inode);
463 
464 		/* inode is about to be evicted */
465 		if (!inode) {
466 			list_del_init(&info->shrinklist);
467 			removed++;
468 			goto next;
469 		}
470 
471 		/* Check if there's anything to gain */
472 		if (round_up(inode->i_size, PAGE_SIZE) ==
473 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
474 			list_move(&info->shrinklist, &to_remove);
475 			removed++;
476 			goto next;
477 		}
478 
479 		list_move(&info->shrinklist, &list);
480 next:
481 		if (!--batch)
482 			break;
483 	}
484 	spin_unlock(&sbinfo->shrinklist_lock);
485 
486 	list_for_each_safe(pos, next, &to_remove) {
487 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
488 		inode = &info->vfs_inode;
489 		list_del_init(&info->shrinklist);
490 		iput(inode);
491 	}
492 
493 	list_for_each_safe(pos, next, &list) {
494 		int ret;
495 
496 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
497 		inode = &info->vfs_inode;
498 
499 		if (nr_to_split && split >= nr_to_split)
500 			goto leave;
501 
502 		page = find_get_page(inode->i_mapping,
503 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
504 		if (!page)
505 			goto drop;
506 
507 		/* No huge page at the end of the file: nothing to split */
508 		if (!PageTransHuge(page)) {
509 			put_page(page);
510 			goto drop;
511 		}
512 
513 		/*
514 		 * Leave the inode on the list if we failed to lock
515 		 * the page at this time.
516 		 *
517 		 * Waiting for the lock may lead to deadlock in the
518 		 * reclaim path.
519 		 */
520 		if (!trylock_page(page)) {
521 			put_page(page);
522 			goto leave;
523 		}
524 
525 		ret = split_huge_page(page);
526 		unlock_page(page);
527 		put_page(page);
528 
529 		/* If split failed leave the inode on the list */
530 		if (ret)
531 			goto leave;
532 
533 		split++;
534 drop:
535 		list_del_init(&info->shrinklist);
536 		removed++;
537 leave:
538 		iput(inode);
539 	}
540 
541 	spin_lock(&sbinfo->shrinklist_lock);
542 	list_splice_tail(&list, &sbinfo->shrinklist);
543 	sbinfo->shrinklist_len -= removed;
544 	spin_unlock(&sbinfo->shrinklist_lock);
545 
546 	return split;
547 }
548 
549 static long shmem_unused_huge_scan(struct super_block *sb,
550 		struct shrink_control *sc)
551 {
552 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
553 
554 	if (!READ_ONCE(sbinfo->shrinklist_len))
555 		return SHRINK_STOP;
556 
557 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
558 }
559 
560 static long shmem_unused_huge_count(struct super_block *sb,
561 		struct shrink_control *sc)
562 {
563 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
564 	return READ_ONCE(sbinfo->shrinklist_len);
565 }
566 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
567 
568 #define shmem_huge SHMEM_HUGE_DENY
569 
570 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
571 		struct shrink_control *sc, unsigned long nr_to_split)
572 {
573 	return 0;
574 }
575 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
576 
577 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
578 {
579 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
580 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
581 	    shmem_huge != SHMEM_HUGE_DENY)
582 		return true;
583 	return false;
584 }
585 
586 /*
587  * Like add_to_page_cache_locked, but error if expected item has gone.
588  */
589 static int shmem_add_to_page_cache(struct page *page,
590 				   struct address_space *mapping,
591 				   pgoff_t index, void *expected, gfp_t gfp)
592 {
593 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
594 	unsigned long i = 0;
595 	unsigned long nr = 1UL << compound_order(page);
596 
597 	VM_BUG_ON_PAGE(PageTail(page), page);
598 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
599 	VM_BUG_ON_PAGE(!PageLocked(page), page);
600 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
601 	VM_BUG_ON(expected && PageTransHuge(page));
602 
603 	page_ref_add(page, nr);
604 	page->mapping = mapping;
605 	page->index = index;
606 
607 	do {
608 		void *entry;
609 		xas_lock_irq(&xas);
610 		entry = xas_find_conflict(&xas);
611 		if (entry != expected)
612 			xas_set_err(&xas, -EEXIST);
613 		xas_create_range(&xas);
614 		if (xas_error(&xas))
615 			goto unlock;
616 next:
617 		xas_store(&xas, page + i);
618 		if (++i < nr) {
619 			xas_next(&xas);
620 			goto next;
621 		}
622 		if (PageTransHuge(page)) {
623 			count_vm_event(THP_FILE_ALLOC);
624 			__inc_node_page_state(page, NR_SHMEM_THPS);
625 		}
626 		mapping->nrpages += nr;
627 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
628 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
629 unlock:
630 		xas_unlock_irq(&xas);
631 	} while (xas_nomem(&xas, gfp));
632 
633 	if (xas_error(&xas)) {
634 		page->mapping = NULL;
635 		page_ref_sub(page, nr);
636 		return xas_error(&xas);
637 	}
638 
639 	return 0;
640 }
641 
642 /*
643  * Like delete_from_page_cache, but substitutes swap for page.
644  */
645 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
646 {
647 	struct address_space *mapping = page->mapping;
648 	int error;
649 
650 	VM_BUG_ON_PAGE(PageCompound(page), page);
651 
652 	xa_lock_irq(&mapping->i_pages);
653 	error = shmem_replace_entry(mapping, page->index, page, radswap);
654 	page->mapping = NULL;
655 	mapping->nrpages--;
656 	__dec_node_page_state(page, NR_FILE_PAGES);
657 	__dec_node_page_state(page, NR_SHMEM);
658 	xa_unlock_irq(&mapping->i_pages);
659 	put_page(page);
660 	BUG_ON(error);
661 }
662 
663 /*
664  * Remove swap entry from page cache, free the swap and its page cache.
665  */
666 static int shmem_free_swap(struct address_space *mapping,
667 			   pgoff_t index, void *radswap)
668 {
669 	void *old;
670 
671 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
672 	if (old != radswap)
673 		return -ENOENT;
674 	free_swap_and_cache(radix_to_swp_entry(radswap));
675 	return 0;
676 }
677 
678 /*
679  * Determine (in bytes) how many of the shmem object's pages mapped by the
680  * given offsets are swapped out.
681  *
682  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
683  * as long as the inode doesn't go away and racy results are not a problem.
684  */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 						pgoff_t start, pgoff_t end)
687 {
688 	XA_STATE(xas, &mapping->i_pages, start);
689 	struct page *page;
690 	unsigned long swapped = 0;
691 
692 	rcu_read_lock();
693 	xas_for_each(&xas, page, end - 1) {
694 		if (xas_retry(&xas, page))
695 			continue;
696 		if (xa_is_value(page))
697 			swapped++;
698 
699 		if (need_resched()) {
700 			xas_pause(&xas);
701 			cond_resched_rcu();
702 		}
703 	}
704 
705 	rcu_read_unlock();
706 
707 	return swapped << PAGE_SHIFT;
708 }
709 
710 /*
711  * Determine (in bytes) how many of the shmem object's pages mapped by the
712  * given vma is swapped out.
713  *
714  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
715  * as long as the inode doesn't go away and racy results are not a problem.
716  */
717 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
718 {
719 	struct inode *inode = file_inode(vma->vm_file);
720 	struct shmem_inode_info *info = SHMEM_I(inode);
721 	struct address_space *mapping = inode->i_mapping;
722 	unsigned long swapped;
723 
724 	/* Be careful as we don't hold info->lock */
725 	swapped = READ_ONCE(info->swapped);
726 
727 	/*
728 	 * The easier cases are when the shmem object has nothing in swap, or
729 	 * the vma maps it whole. Then we can simply use the stats that we
730 	 * already track.
731 	 */
732 	if (!swapped)
733 		return 0;
734 
735 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
736 		return swapped << PAGE_SHIFT;
737 
738 	/* Here comes the more involved part */
739 	return shmem_partial_swap_usage(mapping,
740 			linear_page_index(vma, vma->vm_start),
741 			linear_page_index(vma, vma->vm_end));
742 }
743 
744 /*
745  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
746  */
747 void shmem_unlock_mapping(struct address_space *mapping)
748 {
749 	struct pagevec pvec;
750 	pgoff_t indices[PAGEVEC_SIZE];
751 	pgoff_t index = 0;
752 
753 	pagevec_init(&pvec);
754 	/*
755 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
756 	 */
757 	while (!mapping_unevictable(mapping)) {
758 		/*
759 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
760 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
761 		 */
762 		pvec.nr = find_get_entries(mapping, index,
763 					   PAGEVEC_SIZE, pvec.pages, indices);
764 		if (!pvec.nr)
765 			break;
766 		index = indices[pvec.nr - 1] + 1;
767 		pagevec_remove_exceptionals(&pvec);
768 		check_move_unevictable_pages(&pvec);
769 		pagevec_release(&pvec);
770 		cond_resched();
771 	}
772 }
773 
774 /*
775  * Remove range of pages and swap entries from page cache, and free them.
776  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
777  */
778 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
779 								 bool unfalloc)
780 {
781 	struct address_space *mapping = inode->i_mapping;
782 	struct shmem_inode_info *info = SHMEM_I(inode);
783 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
784 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
785 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
786 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
787 	struct pagevec pvec;
788 	pgoff_t indices[PAGEVEC_SIZE];
789 	long nr_swaps_freed = 0;
790 	pgoff_t index;
791 	int i;
792 
793 	if (lend == -1)
794 		end = -1;	/* unsigned, so actually very big */
795 
796 	pagevec_init(&pvec);
797 	index = start;
798 	while (index < end) {
799 		pvec.nr = find_get_entries(mapping, index,
800 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
801 			pvec.pages, indices);
802 		if (!pvec.nr)
803 			break;
804 		for (i = 0; i < pagevec_count(&pvec); i++) {
805 			struct page *page = pvec.pages[i];
806 
807 			index = indices[i];
808 			if (index >= end)
809 				break;
810 
811 			if (xa_is_value(page)) {
812 				if (unfalloc)
813 					continue;
814 				nr_swaps_freed += !shmem_free_swap(mapping,
815 								index, page);
816 				continue;
817 			}
818 
819 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
820 
821 			if (!trylock_page(page))
822 				continue;
823 
824 			if (PageTransTail(page)) {
825 				/* Middle of THP: zero out the page */
826 				clear_highpage(page);
827 				unlock_page(page);
828 				continue;
829 			} else if (PageTransHuge(page)) {
830 				if (index == round_down(end, HPAGE_PMD_NR)) {
831 					/*
832 					 * Range ends in the middle of THP:
833 					 * zero out the page
834 					 */
835 					clear_highpage(page);
836 					unlock_page(page);
837 					continue;
838 				}
839 				index += HPAGE_PMD_NR - 1;
840 				i += HPAGE_PMD_NR - 1;
841 			}
842 
843 			if (!unfalloc || !PageUptodate(page)) {
844 				VM_BUG_ON_PAGE(PageTail(page), page);
845 				if (page_mapping(page) == mapping) {
846 					VM_BUG_ON_PAGE(PageWriteback(page), page);
847 					truncate_inode_page(mapping, page);
848 				}
849 			}
850 			unlock_page(page);
851 		}
852 		pagevec_remove_exceptionals(&pvec);
853 		pagevec_release(&pvec);
854 		cond_resched();
855 		index++;
856 	}
857 
858 	if (partial_start) {
859 		struct page *page = NULL;
860 		shmem_getpage(inode, start - 1, &page, SGP_READ);
861 		if (page) {
862 			unsigned int top = PAGE_SIZE;
863 			if (start > end) {
864 				top = partial_end;
865 				partial_end = 0;
866 			}
867 			zero_user_segment(page, partial_start, top);
868 			set_page_dirty(page);
869 			unlock_page(page);
870 			put_page(page);
871 		}
872 	}
873 	if (partial_end) {
874 		struct page *page = NULL;
875 		shmem_getpage(inode, end, &page, SGP_READ);
876 		if (page) {
877 			zero_user_segment(page, 0, partial_end);
878 			set_page_dirty(page);
879 			unlock_page(page);
880 			put_page(page);
881 		}
882 	}
883 	if (start >= end)
884 		return;
885 
886 	index = start;
887 	while (index < end) {
888 		cond_resched();
889 
890 		pvec.nr = find_get_entries(mapping, index,
891 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
892 				pvec.pages, indices);
893 		if (!pvec.nr) {
894 			/* If all gone or hole-punch or unfalloc, we're done */
895 			if (index == start || end != -1)
896 				break;
897 			/* But if truncating, restart to make sure all gone */
898 			index = start;
899 			continue;
900 		}
901 		for (i = 0; i < pagevec_count(&pvec); i++) {
902 			struct page *page = pvec.pages[i];
903 
904 			index = indices[i];
905 			if (index >= end)
906 				break;
907 
908 			if (xa_is_value(page)) {
909 				if (unfalloc)
910 					continue;
911 				if (shmem_free_swap(mapping, index, page)) {
912 					/* Swap was replaced by page: retry */
913 					index--;
914 					break;
915 				}
916 				nr_swaps_freed++;
917 				continue;
918 			}
919 
920 			lock_page(page);
921 
922 			if (PageTransTail(page)) {
923 				/* Middle of THP: zero out the page */
924 				clear_highpage(page);
925 				unlock_page(page);
926 				/*
927 				 * Partial thp truncate due 'start' in middle
928 				 * of THP: don't need to look on these pages
929 				 * again on !pvec.nr restart.
930 				 */
931 				if (index != round_down(end, HPAGE_PMD_NR))
932 					start++;
933 				continue;
934 			} else if (PageTransHuge(page)) {
935 				if (index == round_down(end, HPAGE_PMD_NR)) {
936 					/*
937 					 * Range ends in the middle of THP:
938 					 * zero out the page
939 					 */
940 					clear_highpage(page);
941 					unlock_page(page);
942 					continue;
943 				}
944 				index += HPAGE_PMD_NR - 1;
945 				i += HPAGE_PMD_NR - 1;
946 			}
947 
948 			if (!unfalloc || !PageUptodate(page)) {
949 				VM_BUG_ON_PAGE(PageTail(page), page);
950 				if (page_mapping(page) == mapping) {
951 					VM_BUG_ON_PAGE(PageWriteback(page), page);
952 					truncate_inode_page(mapping, page);
953 				} else {
954 					/* Page was replaced by swap: retry */
955 					unlock_page(page);
956 					index--;
957 					break;
958 				}
959 			}
960 			unlock_page(page);
961 		}
962 		pagevec_remove_exceptionals(&pvec);
963 		pagevec_release(&pvec);
964 		index++;
965 	}
966 
967 	spin_lock_irq(&info->lock);
968 	info->swapped -= nr_swaps_freed;
969 	shmem_recalc_inode(inode);
970 	spin_unlock_irq(&info->lock);
971 }
972 
973 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
974 {
975 	shmem_undo_range(inode, lstart, lend, false);
976 	inode->i_ctime = inode->i_mtime = current_time(inode);
977 }
978 EXPORT_SYMBOL_GPL(shmem_truncate_range);
979 
980 static int shmem_getattr(const struct path *path, struct kstat *stat,
981 			 u32 request_mask, unsigned int query_flags)
982 {
983 	struct inode *inode = path->dentry->d_inode;
984 	struct shmem_inode_info *info = SHMEM_I(inode);
985 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
986 
987 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
988 		spin_lock_irq(&info->lock);
989 		shmem_recalc_inode(inode);
990 		spin_unlock_irq(&info->lock);
991 	}
992 	generic_fillattr(inode, stat);
993 
994 	if (is_huge_enabled(sb_info))
995 		stat->blksize = HPAGE_PMD_SIZE;
996 
997 	return 0;
998 }
999 
1000 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1001 {
1002 	struct inode *inode = d_inode(dentry);
1003 	struct shmem_inode_info *info = SHMEM_I(inode);
1004 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1005 	int error;
1006 
1007 	error = setattr_prepare(dentry, attr);
1008 	if (error)
1009 		return error;
1010 
1011 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1012 		loff_t oldsize = inode->i_size;
1013 		loff_t newsize = attr->ia_size;
1014 
1015 		/* protected by i_mutex */
1016 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1017 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1018 			return -EPERM;
1019 
1020 		if (newsize != oldsize) {
1021 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1022 					oldsize, newsize);
1023 			if (error)
1024 				return error;
1025 			i_size_write(inode, newsize);
1026 			inode->i_ctime = inode->i_mtime = current_time(inode);
1027 		}
1028 		if (newsize <= oldsize) {
1029 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1030 			if (oldsize > holebegin)
1031 				unmap_mapping_range(inode->i_mapping,
1032 							holebegin, 0, 1);
1033 			if (info->alloced)
1034 				shmem_truncate_range(inode,
1035 							newsize, (loff_t)-1);
1036 			/* unmap again to remove racily COWed private pages */
1037 			if (oldsize > holebegin)
1038 				unmap_mapping_range(inode->i_mapping,
1039 							holebegin, 0, 1);
1040 
1041 			/*
1042 			 * Part of the huge page can be beyond i_size: subject
1043 			 * to shrink under memory pressure.
1044 			 */
1045 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1046 				spin_lock(&sbinfo->shrinklist_lock);
1047 				/*
1048 				 * _careful to defend against unlocked access to
1049 				 * ->shrink_list in shmem_unused_huge_shrink()
1050 				 */
1051 				if (list_empty_careful(&info->shrinklist)) {
1052 					list_add_tail(&info->shrinklist,
1053 							&sbinfo->shrinklist);
1054 					sbinfo->shrinklist_len++;
1055 				}
1056 				spin_unlock(&sbinfo->shrinklist_lock);
1057 			}
1058 		}
1059 	}
1060 
1061 	setattr_copy(inode, attr);
1062 	if (attr->ia_valid & ATTR_MODE)
1063 		error = posix_acl_chmod(inode, inode->i_mode);
1064 	return error;
1065 }
1066 
1067 static void shmem_evict_inode(struct inode *inode)
1068 {
1069 	struct shmem_inode_info *info = SHMEM_I(inode);
1070 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1071 
1072 	if (inode->i_mapping->a_ops == &shmem_aops) {
1073 		shmem_unacct_size(info->flags, inode->i_size);
1074 		inode->i_size = 0;
1075 		shmem_truncate_range(inode, 0, (loff_t)-1);
1076 		if (!list_empty(&info->shrinklist)) {
1077 			spin_lock(&sbinfo->shrinklist_lock);
1078 			if (!list_empty(&info->shrinklist)) {
1079 				list_del_init(&info->shrinklist);
1080 				sbinfo->shrinklist_len--;
1081 			}
1082 			spin_unlock(&sbinfo->shrinklist_lock);
1083 		}
1084 		while (!list_empty(&info->swaplist)) {
1085 			/* Wait while shmem_unuse() is scanning this inode... */
1086 			wait_var_event(&info->stop_eviction,
1087 				       !atomic_read(&info->stop_eviction));
1088 			mutex_lock(&shmem_swaplist_mutex);
1089 			/* ...but beware of the race if we peeked too early */
1090 			if (!atomic_read(&info->stop_eviction))
1091 				list_del_init(&info->swaplist);
1092 			mutex_unlock(&shmem_swaplist_mutex);
1093 		}
1094 	}
1095 
1096 	simple_xattrs_free(&info->xattrs);
1097 	WARN_ON(inode->i_blocks);
1098 	shmem_free_inode(inode->i_sb);
1099 	clear_inode(inode);
1100 }
1101 
1102 extern struct swap_info_struct *swap_info[];
1103 
1104 static int shmem_find_swap_entries(struct address_space *mapping,
1105 				   pgoff_t start, unsigned int nr_entries,
1106 				   struct page **entries, pgoff_t *indices,
1107 				   unsigned int type, bool frontswap)
1108 {
1109 	XA_STATE(xas, &mapping->i_pages, start);
1110 	struct page *page;
1111 	swp_entry_t entry;
1112 	unsigned int ret = 0;
1113 
1114 	if (!nr_entries)
1115 		return 0;
1116 
1117 	rcu_read_lock();
1118 	xas_for_each(&xas, page, ULONG_MAX) {
1119 		if (xas_retry(&xas, page))
1120 			continue;
1121 
1122 		if (!xa_is_value(page))
1123 			continue;
1124 
1125 		entry = radix_to_swp_entry(page);
1126 		if (swp_type(entry) != type)
1127 			continue;
1128 		if (frontswap &&
1129 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1130 			continue;
1131 
1132 		indices[ret] = xas.xa_index;
1133 		entries[ret] = page;
1134 
1135 		if (need_resched()) {
1136 			xas_pause(&xas);
1137 			cond_resched_rcu();
1138 		}
1139 		if (++ret == nr_entries)
1140 			break;
1141 	}
1142 	rcu_read_unlock();
1143 
1144 	return ret;
1145 }
1146 
1147 /*
1148  * Move the swapped pages for an inode to page cache. Returns the count
1149  * of pages swapped in, or the error in case of failure.
1150  */
1151 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1152 				    pgoff_t *indices)
1153 {
1154 	int i = 0;
1155 	int ret = 0;
1156 	int error = 0;
1157 	struct address_space *mapping = inode->i_mapping;
1158 
1159 	for (i = 0; i < pvec.nr; i++) {
1160 		struct page *page = pvec.pages[i];
1161 
1162 		if (!xa_is_value(page))
1163 			continue;
1164 		error = shmem_swapin_page(inode, indices[i],
1165 					  &page, SGP_CACHE,
1166 					  mapping_gfp_mask(mapping),
1167 					  NULL, NULL);
1168 		if (error == 0) {
1169 			unlock_page(page);
1170 			put_page(page);
1171 			ret++;
1172 		}
1173 		if (error == -ENOMEM)
1174 			break;
1175 		error = 0;
1176 	}
1177 	return error ? error : ret;
1178 }
1179 
1180 /*
1181  * If swap found in inode, free it and move page from swapcache to filecache.
1182  */
1183 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1184 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1185 {
1186 	struct address_space *mapping = inode->i_mapping;
1187 	pgoff_t start = 0;
1188 	struct pagevec pvec;
1189 	pgoff_t indices[PAGEVEC_SIZE];
1190 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1191 	int ret = 0;
1192 
1193 	pagevec_init(&pvec);
1194 	do {
1195 		unsigned int nr_entries = PAGEVEC_SIZE;
1196 
1197 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1198 			nr_entries = *fs_pages_to_unuse;
1199 
1200 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1201 						  pvec.pages, indices,
1202 						  type, frontswap);
1203 		if (pvec.nr == 0) {
1204 			ret = 0;
1205 			break;
1206 		}
1207 
1208 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1209 		if (ret < 0)
1210 			break;
1211 
1212 		if (frontswap_partial) {
1213 			*fs_pages_to_unuse -= ret;
1214 			if (*fs_pages_to_unuse == 0) {
1215 				ret = FRONTSWAP_PAGES_UNUSED;
1216 				break;
1217 			}
1218 		}
1219 
1220 		start = indices[pvec.nr - 1];
1221 	} while (true);
1222 
1223 	return ret;
1224 }
1225 
1226 /*
1227  * Read all the shared memory data that resides in the swap
1228  * device 'type' back into memory, so the swap device can be
1229  * unused.
1230  */
1231 int shmem_unuse(unsigned int type, bool frontswap,
1232 		unsigned long *fs_pages_to_unuse)
1233 {
1234 	struct shmem_inode_info *info, *next;
1235 	int error = 0;
1236 
1237 	if (list_empty(&shmem_swaplist))
1238 		return 0;
1239 
1240 	mutex_lock(&shmem_swaplist_mutex);
1241 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1242 		if (!info->swapped) {
1243 			list_del_init(&info->swaplist);
1244 			continue;
1245 		}
1246 		/*
1247 		 * Drop the swaplist mutex while searching the inode for swap;
1248 		 * but before doing so, make sure shmem_evict_inode() will not
1249 		 * remove placeholder inode from swaplist, nor let it be freed
1250 		 * (igrab() would protect from unlink, but not from unmount).
1251 		 */
1252 		atomic_inc(&info->stop_eviction);
1253 		mutex_unlock(&shmem_swaplist_mutex);
1254 
1255 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1256 					  fs_pages_to_unuse);
1257 		cond_resched();
1258 
1259 		mutex_lock(&shmem_swaplist_mutex);
1260 		next = list_next_entry(info, swaplist);
1261 		if (!info->swapped)
1262 			list_del_init(&info->swaplist);
1263 		if (atomic_dec_and_test(&info->stop_eviction))
1264 			wake_up_var(&info->stop_eviction);
1265 		if (error)
1266 			break;
1267 	}
1268 	mutex_unlock(&shmem_swaplist_mutex);
1269 
1270 	return error;
1271 }
1272 
1273 /*
1274  * Move the page from the page cache to the swap cache.
1275  */
1276 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1277 {
1278 	struct shmem_inode_info *info;
1279 	struct address_space *mapping;
1280 	struct inode *inode;
1281 	swp_entry_t swap;
1282 	pgoff_t index;
1283 
1284 	VM_BUG_ON_PAGE(PageCompound(page), page);
1285 	BUG_ON(!PageLocked(page));
1286 	mapping = page->mapping;
1287 	index = page->index;
1288 	inode = mapping->host;
1289 	info = SHMEM_I(inode);
1290 	if (info->flags & VM_LOCKED)
1291 		goto redirty;
1292 	if (!total_swap_pages)
1293 		goto redirty;
1294 
1295 	/*
1296 	 * Our capabilities prevent regular writeback or sync from ever calling
1297 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1298 	 * its underlying filesystem, in which case tmpfs should write out to
1299 	 * swap only in response to memory pressure, and not for the writeback
1300 	 * threads or sync.
1301 	 */
1302 	if (!wbc->for_reclaim) {
1303 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1304 		goto redirty;
1305 	}
1306 
1307 	/*
1308 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1309 	 * value into swapfile.c, the only way we can correctly account for a
1310 	 * fallocated page arriving here is now to initialize it and write it.
1311 	 *
1312 	 * That's okay for a page already fallocated earlier, but if we have
1313 	 * not yet completed the fallocation, then (a) we want to keep track
1314 	 * of this page in case we have to undo it, and (b) it may not be a
1315 	 * good idea to continue anyway, once we're pushing into swap.  So
1316 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1317 	 */
1318 	if (!PageUptodate(page)) {
1319 		if (inode->i_private) {
1320 			struct shmem_falloc *shmem_falloc;
1321 			spin_lock(&inode->i_lock);
1322 			shmem_falloc = inode->i_private;
1323 			if (shmem_falloc &&
1324 			    !shmem_falloc->waitq &&
1325 			    index >= shmem_falloc->start &&
1326 			    index < shmem_falloc->next)
1327 				shmem_falloc->nr_unswapped++;
1328 			else
1329 				shmem_falloc = NULL;
1330 			spin_unlock(&inode->i_lock);
1331 			if (shmem_falloc)
1332 				goto redirty;
1333 		}
1334 		clear_highpage(page);
1335 		flush_dcache_page(page);
1336 		SetPageUptodate(page);
1337 	}
1338 
1339 	swap = get_swap_page(page);
1340 	if (!swap.val)
1341 		goto redirty;
1342 
1343 	/*
1344 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1345 	 * if it's not already there.  Do it now before the page is
1346 	 * moved to swap cache, when its pagelock no longer protects
1347 	 * the inode from eviction.  But don't unlock the mutex until
1348 	 * we've incremented swapped, because shmem_unuse_inode() will
1349 	 * prune a !swapped inode from the swaplist under this mutex.
1350 	 */
1351 	mutex_lock(&shmem_swaplist_mutex);
1352 	if (list_empty(&info->swaplist))
1353 		list_add(&info->swaplist, &shmem_swaplist);
1354 
1355 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1356 		spin_lock_irq(&info->lock);
1357 		shmem_recalc_inode(inode);
1358 		info->swapped++;
1359 		spin_unlock_irq(&info->lock);
1360 
1361 		swap_shmem_alloc(swap);
1362 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1363 
1364 		mutex_unlock(&shmem_swaplist_mutex);
1365 		BUG_ON(page_mapped(page));
1366 		swap_writepage(page, wbc);
1367 		return 0;
1368 	}
1369 
1370 	mutex_unlock(&shmem_swaplist_mutex);
1371 	put_swap_page(page, swap);
1372 redirty:
1373 	set_page_dirty(page);
1374 	if (wbc->for_reclaim)
1375 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1376 	unlock_page(page);
1377 	return 0;
1378 }
1379 
1380 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1381 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1382 {
1383 	char buffer[64];
1384 
1385 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1386 		return;		/* show nothing */
1387 
1388 	mpol_to_str(buffer, sizeof(buffer), mpol);
1389 
1390 	seq_printf(seq, ",mpol=%s", buffer);
1391 }
1392 
1393 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1394 {
1395 	struct mempolicy *mpol = NULL;
1396 	if (sbinfo->mpol) {
1397 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1398 		mpol = sbinfo->mpol;
1399 		mpol_get(mpol);
1400 		spin_unlock(&sbinfo->stat_lock);
1401 	}
1402 	return mpol;
1403 }
1404 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1405 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1406 {
1407 }
1408 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1409 {
1410 	return NULL;
1411 }
1412 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1413 #ifndef CONFIG_NUMA
1414 #define vm_policy vm_private_data
1415 #endif
1416 
1417 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1418 		struct shmem_inode_info *info, pgoff_t index)
1419 {
1420 	/* Create a pseudo vma that just contains the policy */
1421 	vma_init(vma, NULL);
1422 	/* Bias interleave by inode number to distribute better across nodes */
1423 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1424 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1425 }
1426 
1427 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1428 {
1429 	/* Drop reference taken by mpol_shared_policy_lookup() */
1430 	mpol_cond_put(vma->vm_policy);
1431 }
1432 
1433 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1434 			struct shmem_inode_info *info, pgoff_t index)
1435 {
1436 	struct vm_area_struct pvma;
1437 	struct page *page;
1438 	struct vm_fault vmf;
1439 
1440 	shmem_pseudo_vma_init(&pvma, info, index);
1441 	vmf.vma = &pvma;
1442 	vmf.address = 0;
1443 	page = swap_cluster_readahead(swap, gfp, &vmf);
1444 	shmem_pseudo_vma_destroy(&pvma);
1445 
1446 	return page;
1447 }
1448 
1449 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1450 		struct shmem_inode_info *info, pgoff_t index)
1451 {
1452 	struct vm_area_struct pvma;
1453 	struct address_space *mapping = info->vfs_inode.i_mapping;
1454 	pgoff_t hindex;
1455 	struct page *page;
1456 
1457 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1458 		return NULL;
1459 
1460 	hindex = round_down(index, HPAGE_PMD_NR);
1461 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1462 								XA_PRESENT))
1463 		return NULL;
1464 
1465 	shmem_pseudo_vma_init(&pvma, info, hindex);
1466 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1467 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1468 	shmem_pseudo_vma_destroy(&pvma);
1469 	if (page)
1470 		prep_transhuge_page(page);
1471 	return page;
1472 }
1473 
1474 static struct page *shmem_alloc_page(gfp_t gfp,
1475 			struct shmem_inode_info *info, pgoff_t index)
1476 {
1477 	struct vm_area_struct pvma;
1478 	struct page *page;
1479 
1480 	shmem_pseudo_vma_init(&pvma, info, index);
1481 	page = alloc_page_vma(gfp, &pvma, 0);
1482 	shmem_pseudo_vma_destroy(&pvma);
1483 
1484 	return page;
1485 }
1486 
1487 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1488 		struct inode *inode,
1489 		pgoff_t index, bool huge)
1490 {
1491 	struct shmem_inode_info *info = SHMEM_I(inode);
1492 	struct page *page;
1493 	int nr;
1494 	int err = -ENOSPC;
1495 
1496 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1497 		huge = false;
1498 	nr = huge ? HPAGE_PMD_NR : 1;
1499 
1500 	if (!shmem_inode_acct_block(inode, nr))
1501 		goto failed;
1502 
1503 	if (huge)
1504 		page = shmem_alloc_hugepage(gfp, info, index);
1505 	else
1506 		page = shmem_alloc_page(gfp, info, index);
1507 	if (page) {
1508 		__SetPageLocked(page);
1509 		__SetPageSwapBacked(page);
1510 		return page;
1511 	}
1512 
1513 	err = -ENOMEM;
1514 	shmem_inode_unacct_blocks(inode, nr);
1515 failed:
1516 	return ERR_PTR(err);
1517 }
1518 
1519 /*
1520  * When a page is moved from swapcache to shmem filecache (either by the
1521  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1522  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1523  * ignorance of the mapping it belongs to.  If that mapping has special
1524  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1525  * we may need to copy to a suitable page before moving to filecache.
1526  *
1527  * In a future release, this may well be extended to respect cpuset and
1528  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1529  * but for now it is a simple matter of zone.
1530  */
1531 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1532 {
1533 	return page_zonenum(page) > gfp_zone(gfp);
1534 }
1535 
1536 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1537 				struct shmem_inode_info *info, pgoff_t index)
1538 {
1539 	struct page *oldpage, *newpage;
1540 	struct address_space *swap_mapping;
1541 	swp_entry_t entry;
1542 	pgoff_t swap_index;
1543 	int error;
1544 
1545 	oldpage = *pagep;
1546 	entry.val = page_private(oldpage);
1547 	swap_index = swp_offset(entry);
1548 	swap_mapping = page_mapping(oldpage);
1549 
1550 	/*
1551 	 * We have arrived here because our zones are constrained, so don't
1552 	 * limit chance of success by further cpuset and node constraints.
1553 	 */
1554 	gfp &= ~GFP_CONSTRAINT_MASK;
1555 	newpage = shmem_alloc_page(gfp, info, index);
1556 	if (!newpage)
1557 		return -ENOMEM;
1558 
1559 	get_page(newpage);
1560 	copy_highpage(newpage, oldpage);
1561 	flush_dcache_page(newpage);
1562 
1563 	__SetPageLocked(newpage);
1564 	__SetPageSwapBacked(newpage);
1565 	SetPageUptodate(newpage);
1566 	set_page_private(newpage, entry.val);
1567 	SetPageSwapCache(newpage);
1568 
1569 	/*
1570 	 * Our caller will very soon move newpage out of swapcache, but it's
1571 	 * a nice clean interface for us to replace oldpage by newpage there.
1572 	 */
1573 	xa_lock_irq(&swap_mapping->i_pages);
1574 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1575 	if (!error) {
1576 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1577 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1578 	}
1579 	xa_unlock_irq(&swap_mapping->i_pages);
1580 
1581 	if (unlikely(error)) {
1582 		/*
1583 		 * Is this possible?  I think not, now that our callers check
1584 		 * both PageSwapCache and page_private after getting page lock;
1585 		 * but be defensive.  Reverse old to newpage for clear and free.
1586 		 */
1587 		oldpage = newpage;
1588 	} else {
1589 		mem_cgroup_migrate(oldpage, newpage);
1590 		lru_cache_add_anon(newpage);
1591 		*pagep = newpage;
1592 	}
1593 
1594 	ClearPageSwapCache(oldpage);
1595 	set_page_private(oldpage, 0);
1596 
1597 	unlock_page(oldpage);
1598 	put_page(oldpage);
1599 	put_page(oldpage);
1600 	return error;
1601 }
1602 
1603 /*
1604  * Swap in the page pointed to by *pagep.
1605  * Caller has to make sure that *pagep contains a valid swapped page.
1606  * Returns 0 and the page in pagep if success. On failure, returns the
1607  * the error code and NULL in *pagep.
1608  */
1609 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1610 			     struct page **pagep, enum sgp_type sgp,
1611 			     gfp_t gfp, struct vm_area_struct *vma,
1612 			     vm_fault_t *fault_type)
1613 {
1614 	struct address_space *mapping = inode->i_mapping;
1615 	struct shmem_inode_info *info = SHMEM_I(inode);
1616 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1617 	struct mem_cgroup *memcg;
1618 	struct page *page;
1619 	swp_entry_t swap;
1620 	int error;
1621 
1622 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1623 	swap = radix_to_swp_entry(*pagep);
1624 	*pagep = NULL;
1625 
1626 	/* Look it up and read it in.. */
1627 	page = lookup_swap_cache(swap, NULL, 0);
1628 	if (!page) {
1629 		/* Or update major stats only when swapin succeeds?? */
1630 		if (fault_type) {
1631 			*fault_type |= VM_FAULT_MAJOR;
1632 			count_vm_event(PGMAJFAULT);
1633 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1634 		}
1635 		/* Here we actually start the io */
1636 		page = shmem_swapin(swap, gfp, info, index);
1637 		if (!page) {
1638 			error = -ENOMEM;
1639 			goto failed;
1640 		}
1641 	}
1642 
1643 	/* We have to do this with page locked to prevent races */
1644 	lock_page(page);
1645 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1646 	    !shmem_confirm_swap(mapping, index, swap)) {
1647 		error = -EEXIST;
1648 		goto unlock;
1649 	}
1650 	if (!PageUptodate(page)) {
1651 		error = -EIO;
1652 		goto failed;
1653 	}
1654 	wait_on_page_writeback(page);
1655 
1656 	if (shmem_should_replace_page(page, gfp)) {
1657 		error = shmem_replace_page(&page, gfp, info, index);
1658 		if (error)
1659 			goto failed;
1660 	}
1661 
1662 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1663 					    false);
1664 	if (!error) {
1665 		error = shmem_add_to_page_cache(page, mapping, index,
1666 						swp_to_radix_entry(swap), gfp);
1667 		/*
1668 		 * We already confirmed swap under page lock, and make
1669 		 * no memory allocation here, so usually no possibility
1670 		 * of error; but free_swap_and_cache() only trylocks a
1671 		 * page, so it is just possible that the entry has been
1672 		 * truncated or holepunched since swap was confirmed.
1673 		 * shmem_undo_range() will have done some of the
1674 		 * unaccounting, now delete_from_swap_cache() will do
1675 		 * the rest.
1676 		 */
1677 		if (error) {
1678 			mem_cgroup_cancel_charge(page, memcg, false);
1679 			delete_from_swap_cache(page);
1680 		}
1681 	}
1682 	if (error)
1683 		goto failed;
1684 
1685 	mem_cgroup_commit_charge(page, memcg, true, false);
1686 
1687 	spin_lock_irq(&info->lock);
1688 	info->swapped--;
1689 	shmem_recalc_inode(inode);
1690 	spin_unlock_irq(&info->lock);
1691 
1692 	if (sgp == SGP_WRITE)
1693 		mark_page_accessed(page);
1694 
1695 	delete_from_swap_cache(page);
1696 	set_page_dirty(page);
1697 	swap_free(swap);
1698 
1699 	*pagep = page;
1700 	return 0;
1701 failed:
1702 	if (!shmem_confirm_swap(mapping, index, swap))
1703 		error = -EEXIST;
1704 unlock:
1705 	if (page) {
1706 		unlock_page(page);
1707 		put_page(page);
1708 	}
1709 
1710 	return error;
1711 }
1712 
1713 /*
1714  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1715  *
1716  * If we allocate a new one we do not mark it dirty. That's up to the
1717  * vm. If we swap it in we mark it dirty since we also free the swap
1718  * entry since a page cannot live in both the swap and page cache.
1719  *
1720  * fault_mm and fault_type are only supplied by shmem_fault:
1721  * otherwise they are NULL.
1722  */
1723 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1724 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1725 	struct vm_area_struct *vma, struct vm_fault *vmf,
1726 			vm_fault_t *fault_type)
1727 {
1728 	struct address_space *mapping = inode->i_mapping;
1729 	struct shmem_inode_info *info = SHMEM_I(inode);
1730 	struct shmem_sb_info *sbinfo;
1731 	struct mm_struct *charge_mm;
1732 	struct mem_cgroup *memcg;
1733 	struct page *page;
1734 	enum sgp_type sgp_huge = sgp;
1735 	pgoff_t hindex = index;
1736 	int error;
1737 	int once = 0;
1738 	int alloced = 0;
1739 
1740 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1741 		return -EFBIG;
1742 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1743 		sgp = SGP_CACHE;
1744 repeat:
1745 	if (sgp <= SGP_CACHE &&
1746 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1747 		return -EINVAL;
1748 	}
1749 
1750 	sbinfo = SHMEM_SB(inode->i_sb);
1751 	charge_mm = vma ? vma->vm_mm : current->mm;
1752 
1753 	page = find_lock_entry(mapping, index);
1754 	if (xa_is_value(page)) {
1755 		error = shmem_swapin_page(inode, index, &page,
1756 					  sgp, gfp, vma, fault_type);
1757 		if (error == -EEXIST)
1758 			goto repeat;
1759 
1760 		*pagep = page;
1761 		return error;
1762 	}
1763 
1764 	if (page && sgp == SGP_WRITE)
1765 		mark_page_accessed(page);
1766 
1767 	/* fallocated page? */
1768 	if (page && !PageUptodate(page)) {
1769 		if (sgp != SGP_READ)
1770 			goto clear;
1771 		unlock_page(page);
1772 		put_page(page);
1773 		page = NULL;
1774 	}
1775 	if (page || sgp == SGP_READ) {
1776 		*pagep = page;
1777 		return 0;
1778 	}
1779 
1780 	/*
1781 	 * Fast cache lookup did not find it:
1782 	 * bring it back from swap or allocate.
1783 	 */
1784 
1785 	if (vma && userfaultfd_missing(vma)) {
1786 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1787 		return 0;
1788 	}
1789 
1790 	/* shmem_symlink() */
1791 	if (mapping->a_ops != &shmem_aops)
1792 		goto alloc_nohuge;
1793 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1794 		goto alloc_nohuge;
1795 	if (shmem_huge == SHMEM_HUGE_FORCE)
1796 		goto alloc_huge;
1797 	switch (sbinfo->huge) {
1798 		loff_t i_size;
1799 		pgoff_t off;
1800 	case SHMEM_HUGE_NEVER:
1801 		goto alloc_nohuge;
1802 	case SHMEM_HUGE_WITHIN_SIZE:
1803 		off = round_up(index, HPAGE_PMD_NR);
1804 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1805 		if (i_size >= HPAGE_PMD_SIZE &&
1806 		    i_size >> PAGE_SHIFT >= off)
1807 			goto alloc_huge;
1808 		/* fallthrough */
1809 	case SHMEM_HUGE_ADVISE:
1810 		if (sgp_huge == SGP_HUGE)
1811 			goto alloc_huge;
1812 		/* TODO: implement fadvise() hints */
1813 		goto alloc_nohuge;
1814 	}
1815 
1816 alloc_huge:
1817 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1818 	if (IS_ERR(page)) {
1819 alloc_nohuge:
1820 		page = shmem_alloc_and_acct_page(gfp, inode,
1821 						 index, false);
1822 	}
1823 	if (IS_ERR(page)) {
1824 		int retry = 5;
1825 
1826 		error = PTR_ERR(page);
1827 		page = NULL;
1828 		if (error != -ENOSPC)
1829 			goto unlock;
1830 		/*
1831 		 * Try to reclaim some space by splitting a huge page
1832 		 * beyond i_size on the filesystem.
1833 		 */
1834 		while (retry--) {
1835 			int ret;
1836 
1837 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1838 			if (ret == SHRINK_STOP)
1839 				break;
1840 			if (ret)
1841 				goto alloc_nohuge;
1842 		}
1843 		goto unlock;
1844 	}
1845 
1846 	if (PageTransHuge(page))
1847 		hindex = round_down(index, HPAGE_PMD_NR);
1848 	else
1849 		hindex = index;
1850 
1851 	if (sgp == SGP_WRITE)
1852 		__SetPageReferenced(page);
1853 
1854 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1855 					    PageTransHuge(page));
1856 	if (error)
1857 		goto unacct;
1858 	error = shmem_add_to_page_cache(page, mapping, hindex,
1859 					NULL, gfp & GFP_RECLAIM_MASK);
1860 	if (error) {
1861 		mem_cgroup_cancel_charge(page, memcg,
1862 					 PageTransHuge(page));
1863 		goto unacct;
1864 	}
1865 	mem_cgroup_commit_charge(page, memcg, false,
1866 				 PageTransHuge(page));
1867 	lru_cache_add_anon(page);
1868 
1869 	spin_lock_irq(&info->lock);
1870 	info->alloced += 1 << compound_order(page);
1871 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1872 	shmem_recalc_inode(inode);
1873 	spin_unlock_irq(&info->lock);
1874 	alloced = true;
1875 
1876 	if (PageTransHuge(page) &&
1877 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1878 			hindex + HPAGE_PMD_NR - 1) {
1879 		/*
1880 		 * Part of the huge page is beyond i_size: subject
1881 		 * to shrink under memory pressure.
1882 		 */
1883 		spin_lock(&sbinfo->shrinklist_lock);
1884 		/*
1885 		 * _careful to defend against unlocked access to
1886 		 * ->shrink_list in shmem_unused_huge_shrink()
1887 		 */
1888 		if (list_empty_careful(&info->shrinklist)) {
1889 			list_add_tail(&info->shrinklist,
1890 				      &sbinfo->shrinklist);
1891 			sbinfo->shrinklist_len++;
1892 		}
1893 		spin_unlock(&sbinfo->shrinklist_lock);
1894 	}
1895 
1896 	/*
1897 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1898 	 */
1899 	if (sgp == SGP_FALLOC)
1900 		sgp = SGP_WRITE;
1901 clear:
1902 	/*
1903 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1904 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1905 	 * it now, lest undo on failure cancel our earlier guarantee.
1906 	 */
1907 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1908 		struct page *head = compound_head(page);
1909 		int i;
1910 
1911 		for (i = 0; i < (1 << compound_order(head)); i++) {
1912 			clear_highpage(head + i);
1913 			flush_dcache_page(head + i);
1914 		}
1915 		SetPageUptodate(head);
1916 	}
1917 
1918 	/* Perhaps the file has been truncated since we checked */
1919 	if (sgp <= SGP_CACHE &&
1920 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1921 		if (alloced) {
1922 			ClearPageDirty(page);
1923 			delete_from_page_cache(page);
1924 			spin_lock_irq(&info->lock);
1925 			shmem_recalc_inode(inode);
1926 			spin_unlock_irq(&info->lock);
1927 		}
1928 		error = -EINVAL;
1929 		goto unlock;
1930 	}
1931 	*pagep = page + index - hindex;
1932 	return 0;
1933 
1934 	/*
1935 	 * Error recovery.
1936 	 */
1937 unacct:
1938 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1939 
1940 	if (PageTransHuge(page)) {
1941 		unlock_page(page);
1942 		put_page(page);
1943 		goto alloc_nohuge;
1944 	}
1945 unlock:
1946 	if (page) {
1947 		unlock_page(page);
1948 		put_page(page);
1949 	}
1950 	if (error == -ENOSPC && !once++) {
1951 		spin_lock_irq(&info->lock);
1952 		shmem_recalc_inode(inode);
1953 		spin_unlock_irq(&info->lock);
1954 		goto repeat;
1955 	}
1956 	if (error == -EEXIST)
1957 		goto repeat;
1958 	return error;
1959 }
1960 
1961 /*
1962  * This is like autoremove_wake_function, but it removes the wait queue
1963  * entry unconditionally - even if something else had already woken the
1964  * target.
1965  */
1966 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1967 {
1968 	int ret = default_wake_function(wait, mode, sync, key);
1969 	list_del_init(&wait->entry);
1970 	return ret;
1971 }
1972 
1973 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1974 {
1975 	struct vm_area_struct *vma = vmf->vma;
1976 	struct inode *inode = file_inode(vma->vm_file);
1977 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1978 	enum sgp_type sgp;
1979 	int err;
1980 	vm_fault_t ret = VM_FAULT_LOCKED;
1981 
1982 	/*
1983 	 * Trinity finds that probing a hole which tmpfs is punching can
1984 	 * prevent the hole-punch from ever completing: which in turn
1985 	 * locks writers out with its hold on i_mutex.  So refrain from
1986 	 * faulting pages into the hole while it's being punched.  Although
1987 	 * shmem_undo_range() does remove the additions, it may be unable to
1988 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1989 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1990 	 *
1991 	 * It does not matter if we sometimes reach this check just before the
1992 	 * hole-punch begins, so that one fault then races with the punch:
1993 	 * we just need to make racing faults a rare case.
1994 	 *
1995 	 * The implementation below would be much simpler if we just used a
1996 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1997 	 * and bloating every shmem inode for this unlikely case would be sad.
1998 	 */
1999 	if (unlikely(inode->i_private)) {
2000 		struct shmem_falloc *shmem_falloc;
2001 
2002 		spin_lock(&inode->i_lock);
2003 		shmem_falloc = inode->i_private;
2004 		if (shmem_falloc &&
2005 		    shmem_falloc->waitq &&
2006 		    vmf->pgoff >= shmem_falloc->start &&
2007 		    vmf->pgoff < shmem_falloc->next) {
2008 			wait_queue_head_t *shmem_falloc_waitq;
2009 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2010 
2011 			ret = VM_FAULT_NOPAGE;
2012 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2013 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2014 				/* It's polite to up mmap_sem if we can */
2015 				up_read(&vma->vm_mm->mmap_sem);
2016 				ret = VM_FAULT_RETRY;
2017 			}
2018 
2019 			shmem_falloc_waitq = shmem_falloc->waitq;
2020 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2021 					TASK_UNINTERRUPTIBLE);
2022 			spin_unlock(&inode->i_lock);
2023 			schedule();
2024 
2025 			/*
2026 			 * shmem_falloc_waitq points into the shmem_fallocate()
2027 			 * stack of the hole-punching task: shmem_falloc_waitq
2028 			 * is usually invalid by the time we reach here, but
2029 			 * finish_wait() does not dereference it in that case;
2030 			 * though i_lock needed lest racing with wake_up_all().
2031 			 */
2032 			spin_lock(&inode->i_lock);
2033 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2034 			spin_unlock(&inode->i_lock);
2035 			return ret;
2036 		}
2037 		spin_unlock(&inode->i_lock);
2038 	}
2039 
2040 	sgp = SGP_CACHE;
2041 
2042 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2043 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2044 		sgp = SGP_NOHUGE;
2045 	else if (vma->vm_flags & VM_HUGEPAGE)
2046 		sgp = SGP_HUGE;
2047 
2048 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2049 				  gfp, vma, vmf, &ret);
2050 	if (err)
2051 		return vmf_error(err);
2052 	return ret;
2053 }
2054 
2055 unsigned long shmem_get_unmapped_area(struct file *file,
2056 				      unsigned long uaddr, unsigned long len,
2057 				      unsigned long pgoff, unsigned long flags)
2058 {
2059 	unsigned long (*get_area)(struct file *,
2060 		unsigned long, unsigned long, unsigned long, unsigned long);
2061 	unsigned long addr;
2062 	unsigned long offset;
2063 	unsigned long inflated_len;
2064 	unsigned long inflated_addr;
2065 	unsigned long inflated_offset;
2066 
2067 	if (len > TASK_SIZE)
2068 		return -ENOMEM;
2069 
2070 	get_area = current->mm->get_unmapped_area;
2071 	addr = get_area(file, uaddr, len, pgoff, flags);
2072 
2073 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2074 		return addr;
2075 	if (IS_ERR_VALUE(addr))
2076 		return addr;
2077 	if (addr & ~PAGE_MASK)
2078 		return addr;
2079 	if (addr > TASK_SIZE - len)
2080 		return addr;
2081 
2082 	if (shmem_huge == SHMEM_HUGE_DENY)
2083 		return addr;
2084 	if (len < HPAGE_PMD_SIZE)
2085 		return addr;
2086 	if (flags & MAP_FIXED)
2087 		return addr;
2088 	/*
2089 	 * Our priority is to support MAP_SHARED mapped hugely;
2090 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2091 	 * But if caller specified an address hint, respect that as before.
2092 	 */
2093 	if (uaddr)
2094 		return addr;
2095 
2096 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2097 		struct super_block *sb;
2098 
2099 		if (file) {
2100 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2101 			sb = file_inode(file)->i_sb;
2102 		} else {
2103 			/*
2104 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2105 			 * for "/dev/zero", to create a shared anonymous object.
2106 			 */
2107 			if (IS_ERR(shm_mnt))
2108 				return addr;
2109 			sb = shm_mnt->mnt_sb;
2110 		}
2111 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2112 			return addr;
2113 	}
2114 
2115 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2116 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2117 		return addr;
2118 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2119 		return addr;
2120 
2121 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2122 	if (inflated_len > TASK_SIZE)
2123 		return addr;
2124 	if (inflated_len < len)
2125 		return addr;
2126 
2127 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2128 	if (IS_ERR_VALUE(inflated_addr))
2129 		return addr;
2130 	if (inflated_addr & ~PAGE_MASK)
2131 		return addr;
2132 
2133 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2134 	inflated_addr += offset - inflated_offset;
2135 	if (inflated_offset > offset)
2136 		inflated_addr += HPAGE_PMD_SIZE;
2137 
2138 	if (inflated_addr > TASK_SIZE - len)
2139 		return addr;
2140 	return inflated_addr;
2141 }
2142 
2143 #ifdef CONFIG_NUMA
2144 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2145 {
2146 	struct inode *inode = file_inode(vma->vm_file);
2147 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2148 }
2149 
2150 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2151 					  unsigned long addr)
2152 {
2153 	struct inode *inode = file_inode(vma->vm_file);
2154 	pgoff_t index;
2155 
2156 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2157 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2158 }
2159 #endif
2160 
2161 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2162 {
2163 	struct inode *inode = file_inode(file);
2164 	struct shmem_inode_info *info = SHMEM_I(inode);
2165 	int retval = -ENOMEM;
2166 
2167 	spin_lock_irq(&info->lock);
2168 	if (lock && !(info->flags & VM_LOCKED)) {
2169 		if (!user_shm_lock(inode->i_size, user))
2170 			goto out_nomem;
2171 		info->flags |= VM_LOCKED;
2172 		mapping_set_unevictable(file->f_mapping);
2173 	}
2174 	if (!lock && (info->flags & VM_LOCKED) && user) {
2175 		user_shm_unlock(inode->i_size, user);
2176 		info->flags &= ~VM_LOCKED;
2177 		mapping_clear_unevictable(file->f_mapping);
2178 	}
2179 	retval = 0;
2180 
2181 out_nomem:
2182 	spin_unlock_irq(&info->lock);
2183 	return retval;
2184 }
2185 
2186 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2187 {
2188 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2189 
2190 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2191 		/*
2192 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2193 		 * "future write" seal active.
2194 		 */
2195 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2196 			return -EPERM;
2197 
2198 		/*
2199 		 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2200 		 * read-only mapping, take care to not allow mprotect to revert
2201 		 * protections.
2202 		 */
2203 		vma->vm_flags &= ~(VM_MAYWRITE);
2204 	}
2205 
2206 	file_accessed(file);
2207 	vma->vm_ops = &shmem_vm_ops;
2208 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2209 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2210 			(vma->vm_end & HPAGE_PMD_MASK)) {
2211 		khugepaged_enter(vma, vma->vm_flags);
2212 	}
2213 	return 0;
2214 }
2215 
2216 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2217 				     umode_t mode, dev_t dev, unsigned long flags)
2218 {
2219 	struct inode *inode;
2220 	struct shmem_inode_info *info;
2221 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2222 
2223 	if (shmem_reserve_inode(sb))
2224 		return NULL;
2225 
2226 	inode = new_inode(sb);
2227 	if (inode) {
2228 		inode->i_ino = get_next_ino();
2229 		inode_init_owner(inode, dir, mode);
2230 		inode->i_blocks = 0;
2231 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2232 		inode->i_generation = prandom_u32();
2233 		info = SHMEM_I(inode);
2234 		memset(info, 0, (char *)inode - (char *)info);
2235 		spin_lock_init(&info->lock);
2236 		atomic_set(&info->stop_eviction, 0);
2237 		info->seals = F_SEAL_SEAL;
2238 		info->flags = flags & VM_NORESERVE;
2239 		INIT_LIST_HEAD(&info->shrinklist);
2240 		INIT_LIST_HEAD(&info->swaplist);
2241 		simple_xattrs_init(&info->xattrs);
2242 		cache_no_acl(inode);
2243 
2244 		switch (mode & S_IFMT) {
2245 		default:
2246 			inode->i_op = &shmem_special_inode_operations;
2247 			init_special_inode(inode, mode, dev);
2248 			break;
2249 		case S_IFREG:
2250 			inode->i_mapping->a_ops = &shmem_aops;
2251 			inode->i_op = &shmem_inode_operations;
2252 			inode->i_fop = &shmem_file_operations;
2253 			mpol_shared_policy_init(&info->policy,
2254 						 shmem_get_sbmpol(sbinfo));
2255 			break;
2256 		case S_IFDIR:
2257 			inc_nlink(inode);
2258 			/* Some things misbehave if size == 0 on a directory */
2259 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2260 			inode->i_op = &shmem_dir_inode_operations;
2261 			inode->i_fop = &simple_dir_operations;
2262 			break;
2263 		case S_IFLNK:
2264 			/*
2265 			 * Must not load anything in the rbtree,
2266 			 * mpol_free_shared_policy will not be called.
2267 			 */
2268 			mpol_shared_policy_init(&info->policy, NULL);
2269 			break;
2270 		}
2271 
2272 		lockdep_annotate_inode_mutex_key(inode);
2273 	} else
2274 		shmem_free_inode(sb);
2275 	return inode;
2276 }
2277 
2278 bool shmem_mapping(struct address_space *mapping)
2279 {
2280 	return mapping->a_ops == &shmem_aops;
2281 }
2282 
2283 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2284 				  pmd_t *dst_pmd,
2285 				  struct vm_area_struct *dst_vma,
2286 				  unsigned long dst_addr,
2287 				  unsigned long src_addr,
2288 				  bool zeropage,
2289 				  struct page **pagep)
2290 {
2291 	struct inode *inode = file_inode(dst_vma->vm_file);
2292 	struct shmem_inode_info *info = SHMEM_I(inode);
2293 	struct address_space *mapping = inode->i_mapping;
2294 	gfp_t gfp = mapping_gfp_mask(mapping);
2295 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2296 	struct mem_cgroup *memcg;
2297 	spinlock_t *ptl;
2298 	void *page_kaddr;
2299 	struct page *page;
2300 	pte_t _dst_pte, *dst_pte;
2301 	int ret;
2302 	pgoff_t offset, max_off;
2303 
2304 	ret = -ENOMEM;
2305 	if (!shmem_inode_acct_block(inode, 1))
2306 		goto out;
2307 
2308 	if (!*pagep) {
2309 		page = shmem_alloc_page(gfp, info, pgoff);
2310 		if (!page)
2311 			goto out_unacct_blocks;
2312 
2313 		if (!zeropage) {	/* mcopy_atomic */
2314 			page_kaddr = kmap_atomic(page);
2315 			ret = copy_from_user(page_kaddr,
2316 					     (const void __user *)src_addr,
2317 					     PAGE_SIZE);
2318 			kunmap_atomic(page_kaddr);
2319 
2320 			/* fallback to copy_from_user outside mmap_sem */
2321 			if (unlikely(ret)) {
2322 				*pagep = page;
2323 				shmem_inode_unacct_blocks(inode, 1);
2324 				/* don't free the page */
2325 				return -ENOENT;
2326 			}
2327 		} else {		/* mfill_zeropage_atomic */
2328 			clear_highpage(page);
2329 		}
2330 	} else {
2331 		page = *pagep;
2332 		*pagep = NULL;
2333 	}
2334 
2335 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2336 	__SetPageLocked(page);
2337 	__SetPageSwapBacked(page);
2338 	__SetPageUptodate(page);
2339 
2340 	ret = -EFAULT;
2341 	offset = linear_page_index(dst_vma, dst_addr);
2342 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2343 	if (unlikely(offset >= max_off))
2344 		goto out_release;
2345 
2346 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2347 	if (ret)
2348 		goto out_release;
2349 
2350 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2351 						gfp & GFP_RECLAIM_MASK);
2352 	if (ret)
2353 		goto out_release_uncharge;
2354 
2355 	mem_cgroup_commit_charge(page, memcg, false, false);
2356 
2357 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2358 	if (dst_vma->vm_flags & VM_WRITE)
2359 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2360 	else {
2361 		/*
2362 		 * We don't set the pte dirty if the vma has no
2363 		 * VM_WRITE permission, so mark the page dirty or it
2364 		 * could be freed from under us. We could do it
2365 		 * unconditionally before unlock_page(), but doing it
2366 		 * only if VM_WRITE is not set is faster.
2367 		 */
2368 		set_page_dirty(page);
2369 	}
2370 
2371 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2372 
2373 	ret = -EFAULT;
2374 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2375 	if (unlikely(offset >= max_off))
2376 		goto out_release_uncharge_unlock;
2377 
2378 	ret = -EEXIST;
2379 	if (!pte_none(*dst_pte))
2380 		goto out_release_uncharge_unlock;
2381 
2382 	lru_cache_add_anon(page);
2383 
2384 	spin_lock(&info->lock);
2385 	info->alloced++;
2386 	inode->i_blocks += BLOCKS_PER_PAGE;
2387 	shmem_recalc_inode(inode);
2388 	spin_unlock(&info->lock);
2389 
2390 	inc_mm_counter(dst_mm, mm_counter_file(page));
2391 	page_add_file_rmap(page, false);
2392 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2393 
2394 	/* No need to invalidate - it was non-present before */
2395 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2396 	pte_unmap_unlock(dst_pte, ptl);
2397 	unlock_page(page);
2398 	ret = 0;
2399 out:
2400 	return ret;
2401 out_release_uncharge_unlock:
2402 	pte_unmap_unlock(dst_pte, ptl);
2403 	ClearPageDirty(page);
2404 	delete_from_page_cache(page);
2405 out_release_uncharge:
2406 	mem_cgroup_cancel_charge(page, memcg, false);
2407 out_release:
2408 	unlock_page(page);
2409 	put_page(page);
2410 out_unacct_blocks:
2411 	shmem_inode_unacct_blocks(inode, 1);
2412 	goto out;
2413 }
2414 
2415 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2416 			   pmd_t *dst_pmd,
2417 			   struct vm_area_struct *dst_vma,
2418 			   unsigned long dst_addr,
2419 			   unsigned long src_addr,
2420 			   struct page **pagep)
2421 {
2422 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2423 				      dst_addr, src_addr, false, pagep);
2424 }
2425 
2426 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2427 			     pmd_t *dst_pmd,
2428 			     struct vm_area_struct *dst_vma,
2429 			     unsigned long dst_addr)
2430 {
2431 	struct page *page = NULL;
2432 
2433 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2434 				      dst_addr, 0, true, &page);
2435 }
2436 
2437 #ifdef CONFIG_TMPFS
2438 static const struct inode_operations shmem_symlink_inode_operations;
2439 static const struct inode_operations shmem_short_symlink_operations;
2440 
2441 #ifdef CONFIG_TMPFS_XATTR
2442 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2443 #else
2444 #define shmem_initxattrs NULL
2445 #endif
2446 
2447 static int
2448 shmem_write_begin(struct file *file, struct address_space *mapping,
2449 			loff_t pos, unsigned len, unsigned flags,
2450 			struct page **pagep, void **fsdata)
2451 {
2452 	struct inode *inode = mapping->host;
2453 	struct shmem_inode_info *info = SHMEM_I(inode);
2454 	pgoff_t index = pos >> PAGE_SHIFT;
2455 
2456 	/* i_mutex is held by caller */
2457 	if (unlikely(info->seals & (F_SEAL_GROW |
2458 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2459 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2460 			return -EPERM;
2461 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2462 			return -EPERM;
2463 	}
2464 
2465 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2466 }
2467 
2468 static int
2469 shmem_write_end(struct file *file, struct address_space *mapping,
2470 			loff_t pos, unsigned len, unsigned copied,
2471 			struct page *page, void *fsdata)
2472 {
2473 	struct inode *inode = mapping->host;
2474 
2475 	if (pos + copied > inode->i_size)
2476 		i_size_write(inode, pos + copied);
2477 
2478 	if (!PageUptodate(page)) {
2479 		struct page *head = compound_head(page);
2480 		if (PageTransCompound(page)) {
2481 			int i;
2482 
2483 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2484 				if (head + i == page)
2485 					continue;
2486 				clear_highpage(head + i);
2487 				flush_dcache_page(head + i);
2488 			}
2489 		}
2490 		if (copied < PAGE_SIZE) {
2491 			unsigned from = pos & (PAGE_SIZE - 1);
2492 			zero_user_segments(page, 0, from,
2493 					from + copied, PAGE_SIZE);
2494 		}
2495 		SetPageUptodate(head);
2496 	}
2497 	set_page_dirty(page);
2498 	unlock_page(page);
2499 	put_page(page);
2500 
2501 	return copied;
2502 }
2503 
2504 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2505 {
2506 	struct file *file = iocb->ki_filp;
2507 	struct inode *inode = file_inode(file);
2508 	struct address_space *mapping = inode->i_mapping;
2509 	pgoff_t index;
2510 	unsigned long offset;
2511 	enum sgp_type sgp = SGP_READ;
2512 	int error = 0;
2513 	ssize_t retval = 0;
2514 	loff_t *ppos = &iocb->ki_pos;
2515 
2516 	/*
2517 	 * Might this read be for a stacking filesystem?  Then when reading
2518 	 * holes of a sparse file, we actually need to allocate those pages,
2519 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2520 	 */
2521 	if (!iter_is_iovec(to))
2522 		sgp = SGP_CACHE;
2523 
2524 	index = *ppos >> PAGE_SHIFT;
2525 	offset = *ppos & ~PAGE_MASK;
2526 
2527 	for (;;) {
2528 		struct page *page = NULL;
2529 		pgoff_t end_index;
2530 		unsigned long nr, ret;
2531 		loff_t i_size = i_size_read(inode);
2532 
2533 		end_index = i_size >> PAGE_SHIFT;
2534 		if (index > end_index)
2535 			break;
2536 		if (index == end_index) {
2537 			nr = i_size & ~PAGE_MASK;
2538 			if (nr <= offset)
2539 				break;
2540 		}
2541 
2542 		error = shmem_getpage(inode, index, &page, sgp);
2543 		if (error) {
2544 			if (error == -EINVAL)
2545 				error = 0;
2546 			break;
2547 		}
2548 		if (page) {
2549 			if (sgp == SGP_CACHE)
2550 				set_page_dirty(page);
2551 			unlock_page(page);
2552 		}
2553 
2554 		/*
2555 		 * We must evaluate after, since reads (unlike writes)
2556 		 * are called without i_mutex protection against truncate
2557 		 */
2558 		nr = PAGE_SIZE;
2559 		i_size = i_size_read(inode);
2560 		end_index = i_size >> PAGE_SHIFT;
2561 		if (index == end_index) {
2562 			nr = i_size & ~PAGE_MASK;
2563 			if (nr <= offset) {
2564 				if (page)
2565 					put_page(page);
2566 				break;
2567 			}
2568 		}
2569 		nr -= offset;
2570 
2571 		if (page) {
2572 			/*
2573 			 * If users can be writing to this page using arbitrary
2574 			 * virtual addresses, take care about potential aliasing
2575 			 * before reading the page on the kernel side.
2576 			 */
2577 			if (mapping_writably_mapped(mapping))
2578 				flush_dcache_page(page);
2579 			/*
2580 			 * Mark the page accessed if we read the beginning.
2581 			 */
2582 			if (!offset)
2583 				mark_page_accessed(page);
2584 		} else {
2585 			page = ZERO_PAGE(0);
2586 			get_page(page);
2587 		}
2588 
2589 		/*
2590 		 * Ok, we have the page, and it's up-to-date, so
2591 		 * now we can copy it to user space...
2592 		 */
2593 		ret = copy_page_to_iter(page, offset, nr, to);
2594 		retval += ret;
2595 		offset += ret;
2596 		index += offset >> PAGE_SHIFT;
2597 		offset &= ~PAGE_MASK;
2598 
2599 		put_page(page);
2600 		if (!iov_iter_count(to))
2601 			break;
2602 		if (ret < nr) {
2603 			error = -EFAULT;
2604 			break;
2605 		}
2606 		cond_resched();
2607 	}
2608 
2609 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2610 	file_accessed(file);
2611 	return retval ? retval : error;
2612 }
2613 
2614 /*
2615  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2616  */
2617 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2618 				    pgoff_t index, pgoff_t end, int whence)
2619 {
2620 	struct page *page;
2621 	struct pagevec pvec;
2622 	pgoff_t indices[PAGEVEC_SIZE];
2623 	bool done = false;
2624 	int i;
2625 
2626 	pagevec_init(&pvec);
2627 	pvec.nr = 1;		/* start small: we may be there already */
2628 	while (!done) {
2629 		pvec.nr = find_get_entries(mapping, index,
2630 					pvec.nr, pvec.pages, indices);
2631 		if (!pvec.nr) {
2632 			if (whence == SEEK_DATA)
2633 				index = end;
2634 			break;
2635 		}
2636 		for (i = 0; i < pvec.nr; i++, index++) {
2637 			if (index < indices[i]) {
2638 				if (whence == SEEK_HOLE) {
2639 					done = true;
2640 					break;
2641 				}
2642 				index = indices[i];
2643 			}
2644 			page = pvec.pages[i];
2645 			if (page && !xa_is_value(page)) {
2646 				if (!PageUptodate(page))
2647 					page = NULL;
2648 			}
2649 			if (index >= end ||
2650 			    (page && whence == SEEK_DATA) ||
2651 			    (!page && whence == SEEK_HOLE)) {
2652 				done = true;
2653 				break;
2654 			}
2655 		}
2656 		pagevec_remove_exceptionals(&pvec);
2657 		pagevec_release(&pvec);
2658 		pvec.nr = PAGEVEC_SIZE;
2659 		cond_resched();
2660 	}
2661 	return index;
2662 }
2663 
2664 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2665 {
2666 	struct address_space *mapping = file->f_mapping;
2667 	struct inode *inode = mapping->host;
2668 	pgoff_t start, end;
2669 	loff_t new_offset;
2670 
2671 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2672 		return generic_file_llseek_size(file, offset, whence,
2673 					MAX_LFS_FILESIZE, i_size_read(inode));
2674 	inode_lock(inode);
2675 	/* We're holding i_mutex so we can access i_size directly */
2676 
2677 	if (offset < 0 || offset >= inode->i_size)
2678 		offset = -ENXIO;
2679 	else {
2680 		start = offset >> PAGE_SHIFT;
2681 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2682 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2683 		new_offset <<= PAGE_SHIFT;
2684 		if (new_offset > offset) {
2685 			if (new_offset < inode->i_size)
2686 				offset = new_offset;
2687 			else if (whence == SEEK_DATA)
2688 				offset = -ENXIO;
2689 			else
2690 				offset = inode->i_size;
2691 		}
2692 	}
2693 
2694 	if (offset >= 0)
2695 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2696 	inode_unlock(inode);
2697 	return offset;
2698 }
2699 
2700 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2701 							 loff_t len)
2702 {
2703 	struct inode *inode = file_inode(file);
2704 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2705 	struct shmem_inode_info *info = SHMEM_I(inode);
2706 	struct shmem_falloc shmem_falloc;
2707 	pgoff_t start, index, end;
2708 	int error;
2709 
2710 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2711 		return -EOPNOTSUPP;
2712 
2713 	inode_lock(inode);
2714 
2715 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2716 		struct address_space *mapping = file->f_mapping;
2717 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2718 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2719 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2720 
2721 		/* protected by i_mutex */
2722 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2723 			error = -EPERM;
2724 			goto out;
2725 		}
2726 
2727 		shmem_falloc.waitq = &shmem_falloc_waitq;
2728 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2729 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2730 		spin_lock(&inode->i_lock);
2731 		inode->i_private = &shmem_falloc;
2732 		spin_unlock(&inode->i_lock);
2733 
2734 		if ((u64)unmap_end > (u64)unmap_start)
2735 			unmap_mapping_range(mapping, unmap_start,
2736 					    1 + unmap_end - unmap_start, 0);
2737 		shmem_truncate_range(inode, offset, offset + len - 1);
2738 		/* No need to unmap again: hole-punching leaves COWed pages */
2739 
2740 		spin_lock(&inode->i_lock);
2741 		inode->i_private = NULL;
2742 		wake_up_all(&shmem_falloc_waitq);
2743 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2744 		spin_unlock(&inode->i_lock);
2745 		error = 0;
2746 		goto out;
2747 	}
2748 
2749 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2750 	error = inode_newsize_ok(inode, offset + len);
2751 	if (error)
2752 		goto out;
2753 
2754 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2755 		error = -EPERM;
2756 		goto out;
2757 	}
2758 
2759 	start = offset >> PAGE_SHIFT;
2760 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2761 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2762 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2763 		error = -ENOSPC;
2764 		goto out;
2765 	}
2766 
2767 	shmem_falloc.waitq = NULL;
2768 	shmem_falloc.start = start;
2769 	shmem_falloc.next  = start;
2770 	shmem_falloc.nr_falloced = 0;
2771 	shmem_falloc.nr_unswapped = 0;
2772 	spin_lock(&inode->i_lock);
2773 	inode->i_private = &shmem_falloc;
2774 	spin_unlock(&inode->i_lock);
2775 
2776 	for (index = start; index < end; index++) {
2777 		struct page *page;
2778 
2779 		/*
2780 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2781 		 * been interrupted because we are using up too much memory.
2782 		 */
2783 		if (signal_pending(current))
2784 			error = -EINTR;
2785 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2786 			error = -ENOMEM;
2787 		else
2788 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2789 		if (error) {
2790 			/* Remove the !PageUptodate pages we added */
2791 			if (index > start) {
2792 				shmem_undo_range(inode,
2793 				    (loff_t)start << PAGE_SHIFT,
2794 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2795 			}
2796 			goto undone;
2797 		}
2798 
2799 		/*
2800 		 * Inform shmem_writepage() how far we have reached.
2801 		 * No need for lock or barrier: we have the page lock.
2802 		 */
2803 		shmem_falloc.next++;
2804 		if (!PageUptodate(page))
2805 			shmem_falloc.nr_falloced++;
2806 
2807 		/*
2808 		 * If !PageUptodate, leave it that way so that freeable pages
2809 		 * can be recognized if we need to rollback on error later.
2810 		 * But set_page_dirty so that memory pressure will swap rather
2811 		 * than free the pages we are allocating (and SGP_CACHE pages
2812 		 * might still be clean: we now need to mark those dirty too).
2813 		 */
2814 		set_page_dirty(page);
2815 		unlock_page(page);
2816 		put_page(page);
2817 		cond_resched();
2818 	}
2819 
2820 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2821 		i_size_write(inode, offset + len);
2822 	inode->i_ctime = current_time(inode);
2823 undone:
2824 	spin_lock(&inode->i_lock);
2825 	inode->i_private = NULL;
2826 	spin_unlock(&inode->i_lock);
2827 out:
2828 	inode_unlock(inode);
2829 	return error;
2830 }
2831 
2832 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2833 {
2834 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2835 
2836 	buf->f_type = TMPFS_MAGIC;
2837 	buf->f_bsize = PAGE_SIZE;
2838 	buf->f_namelen = NAME_MAX;
2839 	if (sbinfo->max_blocks) {
2840 		buf->f_blocks = sbinfo->max_blocks;
2841 		buf->f_bavail =
2842 		buf->f_bfree  = sbinfo->max_blocks -
2843 				percpu_counter_sum(&sbinfo->used_blocks);
2844 	}
2845 	if (sbinfo->max_inodes) {
2846 		buf->f_files = sbinfo->max_inodes;
2847 		buf->f_ffree = sbinfo->free_inodes;
2848 	}
2849 	/* else leave those fields 0 like simple_statfs */
2850 	return 0;
2851 }
2852 
2853 /*
2854  * File creation. Allocate an inode, and we're done..
2855  */
2856 static int
2857 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2858 {
2859 	struct inode *inode;
2860 	int error = -ENOSPC;
2861 
2862 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2863 	if (inode) {
2864 		error = simple_acl_create(dir, inode);
2865 		if (error)
2866 			goto out_iput;
2867 		error = security_inode_init_security(inode, dir,
2868 						     &dentry->d_name,
2869 						     shmem_initxattrs, NULL);
2870 		if (error && error != -EOPNOTSUPP)
2871 			goto out_iput;
2872 
2873 		error = 0;
2874 		dir->i_size += BOGO_DIRENT_SIZE;
2875 		dir->i_ctime = dir->i_mtime = current_time(dir);
2876 		d_instantiate(dentry, inode);
2877 		dget(dentry); /* Extra count - pin the dentry in core */
2878 	}
2879 	return error;
2880 out_iput:
2881 	iput(inode);
2882 	return error;
2883 }
2884 
2885 static int
2886 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2887 {
2888 	struct inode *inode;
2889 	int error = -ENOSPC;
2890 
2891 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2892 	if (inode) {
2893 		error = security_inode_init_security(inode, dir,
2894 						     NULL,
2895 						     shmem_initxattrs, NULL);
2896 		if (error && error != -EOPNOTSUPP)
2897 			goto out_iput;
2898 		error = simple_acl_create(dir, inode);
2899 		if (error)
2900 			goto out_iput;
2901 		d_tmpfile(dentry, inode);
2902 	}
2903 	return error;
2904 out_iput:
2905 	iput(inode);
2906 	return error;
2907 }
2908 
2909 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2910 {
2911 	int error;
2912 
2913 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2914 		return error;
2915 	inc_nlink(dir);
2916 	return 0;
2917 }
2918 
2919 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2920 		bool excl)
2921 {
2922 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2923 }
2924 
2925 /*
2926  * Link a file..
2927  */
2928 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2929 {
2930 	struct inode *inode = d_inode(old_dentry);
2931 	int ret = 0;
2932 
2933 	/*
2934 	 * No ordinary (disk based) filesystem counts links as inodes;
2935 	 * but each new link needs a new dentry, pinning lowmem, and
2936 	 * tmpfs dentries cannot be pruned until they are unlinked.
2937 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2938 	 * first link must skip that, to get the accounting right.
2939 	 */
2940 	if (inode->i_nlink) {
2941 		ret = shmem_reserve_inode(inode->i_sb);
2942 		if (ret)
2943 			goto out;
2944 	}
2945 
2946 	dir->i_size += BOGO_DIRENT_SIZE;
2947 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2948 	inc_nlink(inode);
2949 	ihold(inode);	/* New dentry reference */
2950 	dget(dentry);		/* Extra pinning count for the created dentry */
2951 	d_instantiate(dentry, inode);
2952 out:
2953 	return ret;
2954 }
2955 
2956 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2957 {
2958 	struct inode *inode = d_inode(dentry);
2959 
2960 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2961 		shmem_free_inode(inode->i_sb);
2962 
2963 	dir->i_size -= BOGO_DIRENT_SIZE;
2964 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2965 	drop_nlink(inode);
2966 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2967 	return 0;
2968 }
2969 
2970 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2971 {
2972 	if (!simple_empty(dentry))
2973 		return -ENOTEMPTY;
2974 
2975 	drop_nlink(d_inode(dentry));
2976 	drop_nlink(dir);
2977 	return shmem_unlink(dir, dentry);
2978 }
2979 
2980 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2981 {
2982 	bool old_is_dir = d_is_dir(old_dentry);
2983 	bool new_is_dir = d_is_dir(new_dentry);
2984 
2985 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2986 		if (old_is_dir) {
2987 			drop_nlink(old_dir);
2988 			inc_nlink(new_dir);
2989 		} else {
2990 			drop_nlink(new_dir);
2991 			inc_nlink(old_dir);
2992 		}
2993 	}
2994 	old_dir->i_ctime = old_dir->i_mtime =
2995 	new_dir->i_ctime = new_dir->i_mtime =
2996 	d_inode(old_dentry)->i_ctime =
2997 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2998 
2999 	return 0;
3000 }
3001 
3002 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3003 {
3004 	struct dentry *whiteout;
3005 	int error;
3006 
3007 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3008 	if (!whiteout)
3009 		return -ENOMEM;
3010 
3011 	error = shmem_mknod(old_dir, whiteout,
3012 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3013 	dput(whiteout);
3014 	if (error)
3015 		return error;
3016 
3017 	/*
3018 	 * Cheat and hash the whiteout while the old dentry is still in
3019 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3020 	 *
3021 	 * d_lookup() will consistently find one of them at this point,
3022 	 * not sure which one, but that isn't even important.
3023 	 */
3024 	d_rehash(whiteout);
3025 	return 0;
3026 }
3027 
3028 /*
3029  * The VFS layer already does all the dentry stuff for rename,
3030  * we just have to decrement the usage count for the target if
3031  * it exists so that the VFS layer correctly free's it when it
3032  * gets overwritten.
3033  */
3034 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3035 {
3036 	struct inode *inode = d_inode(old_dentry);
3037 	int they_are_dirs = S_ISDIR(inode->i_mode);
3038 
3039 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3040 		return -EINVAL;
3041 
3042 	if (flags & RENAME_EXCHANGE)
3043 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3044 
3045 	if (!simple_empty(new_dentry))
3046 		return -ENOTEMPTY;
3047 
3048 	if (flags & RENAME_WHITEOUT) {
3049 		int error;
3050 
3051 		error = shmem_whiteout(old_dir, old_dentry);
3052 		if (error)
3053 			return error;
3054 	}
3055 
3056 	if (d_really_is_positive(new_dentry)) {
3057 		(void) shmem_unlink(new_dir, new_dentry);
3058 		if (they_are_dirs) {
3059 			drop_nlink(d_inode(new_dentry));
3060 			drop_nlink(old_dir);
3061 		}
3062 	} else if (they_are_dirs) {
3063 		drop_nlink(old_dir);
3064 		inc_nlink(new_dir);
3065 	}
3066 
3067 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3068 	new_dir->i_size += BOGO_DIRENT_SIZE;
3069 	old_dir->i_ctime = old_dir->i_mtime =
3070 	new_dir->i_ctime = new_dir->i_mtime =
3071 	inode->i_ctime = current_time(old_dir);
3072 	return 0;
3073 }
3074 
3075 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3076 {
3077 	int error;
3078 	int len;
3079 	struct inode *inode;
3080 	struct page *page;
3081 
3082 	len = strlen(symname) + 1;
3083 	if (len > PAGE_SIZE)
3084 		return -ENAMETOOLONG;
3085 
3086 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3087 				VM_NORESERVE);
3088 	if (!inode)
3089 		return -ENOSPC;
3090 
3091 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3092 					     shmem_initxattrs, NULL);
3093 	if (error) {
3094 		if (error != -EOPNOTSUPP) {
3095 			iput(inode);
3096 			return error;
3097 		}
3098 		error = 0;
3099 	}
3100 
3101 	inode->i_size = len-1;
3102 	if (len <= SHORT_SYMLINK_LEN) {
3103 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3104 		if (!inode->i_link) {
3105 			iput(inode);
3106 			return -ENOMEM;
3107 		}
3108 		inode->i_op = &shmem_short_symlink_operations;
3109 	} else {
3110 		inode_nohighmem(inode);
3111 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3112 		if (error) {
3113 			iput(inode);
3114 			return error;
3115 		}
3116 		inode->i_mapping->a_ops = &shmem_aops;
3117 		inode->i_op = &shmem_symlink_inode_operations;
3118 		memcpy(page_address(page), symname, len);
3119 		SetPageUptodate(page);
3120 		set_page_dirty(page);
3121 		unlock_page(page);
3122 		put_page(page);
3123 	}
3124 	dir->i_size += BOGO_DIRENT_SIZE;
3125 	dir->i_ctime = dir->i_mtime = current_time(dir);
3126 	d_instantiate(dentry, inode);
3127 	dget(dentry);
3128 	return 0;
3129 }
3130 
3131 static void shmem_put_link(void *arg)
3132 {
3133 	mark_page_accessed(arg);
3134 	put_page(arg);
3135 }
3136 
3137 static const char *shmem_get_link(struct dentry *dentry,
3138 				  struct inode *inode,
3139 				  struct delayed_call *done)
3140 {
3141 	struct page *page = NULL;
3142 	int error;
3143 	if (!dentry) {
3144 		page = find_get_page(inode->i_mapping, 0);
3145 		if (!page)
3146 			return ERR_PTR(-ECHILD);
3147 		if (!PageUptodate(page)) {
3148 			put_page(page);
3149 			return ERR_PTR(-ECHILD);
3150 		}
3151 	} else {
3152 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3153 		if (error)
3154 			return ERR_PTR(error);
3155 		unlock_page(page);
3156 	}
3157 	set_delayed_call(done, shmem_put_link, page);
3158 	return page_address(page);
3159 }
3160 
3161 #ifdef CONFIG_TMPFS_XATTR
3162 /*
3163  * Superblocks without xattr inode operations may get some security.* xattr
3164  * support from the LSM "for free". As soon as we have any other xattrs
3165  * like ACLs, we also need to implement the security.* handlers at
3166  * filesystem level, though.
3167  */
3168 
3169 /*
3170  * Callback for security_inode_init_security() for acquiring xattrs.
3171  */
3172 static int shmem_initxattrs(struct inode *inode,
3173 			    const struct xattr *xattr_array,
3174 			    void *fs_info)
3175 {
3176 	struct shmem_inode_info *info = SHMEM_I(inode);
3177 	const struct xattr *xattr;
3178 	struct simple_xattr *new_xattr;
3179 	size_t len;
3180 
3181 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3182 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3183 		if (!new_xattr)
3184 			return -ENOMEM;
3185 
3186 		len = strlen(xattr->name) + 1;
3187 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3188 					  GFP_KERNEL);
3189 		if (!new_xattr->name) {
3190 			kfree(new_xattr);
3191 			return -ENOMEM;
3192 		}
3193 
3194 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3195 		       XATTR_SECURITY_PREFIX_LEN);
3196 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3197 		       xattr->name, len);
3198 
3199 		simple_xattr_list_add(&info->xattrs, new_xattr);
3200 	}
3201 
3202 	return 0;
3203 }
3204 
3205 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3206 				   struct dentry *unused, struct inode *inode,
3207 				   const char *name, void *buffer, size_t size)
3208 {
3209 	struct shmem_inode_info *info = SHMEM_I(inode);
3210 
3211 	name = xattr_full_name(handler, name);
3212 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3213 }
3214 
3215 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3216 				   struct dentry *unused, struct inode *inode,
3217 				   const char *name, const void *value,
3218 				   size_t size, int flags)
3219 {
3220 	struct shmem_inode_info *info = SHMEM_I(inode);
3221 
3222 	name = xattr_full_name(handler, name);
3223 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3224 }
3225 
3226 static const struct xattr_handler shmem_security_xattr_handler = {
3227 	.prefix = XATTR_SECURITY_PREFIX,
3228 	.get = shmem_xattr_handler_get,
3229 	.set = shmem_xattr_handler_set,
3230 };
3231 
3232 static const struct xattr_handler shmem_trusted_xattr_handler = {
3233 	.prefix = XATTR_TRUSTED_PREFIX,
3234 	.get = shmem_xattr_handler_get,
3235 	.set = shmem_xattr_handler_set,
3236 };
3237 
3238 static const struct xattr_handler *shmem_xattr_handlers[] = {
3239 #ifdef CONFIG_TMPFS_POSIX_ACL
3240 	&posix_acl_access_xattr_handler,
3241 	&posix_acl_default_xattr_handler,
3242 #endif
3243 	&shmem_security_xattr_handler,
3244 	&shmem_trusted_xattr_handler,
3245 	NULL
3246 };
3247 
3248 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3249 {
3250 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3251 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3252 }
3253 #endif /* CONFIG_TMPFS_XATTR */
3254 
3255 static const struct inode_operations shmem_short_symlink_operations = {
3256 	.get_link	= simple_get_link,
3257 #ifdef CONFIG_TMPFS_XATTR
3258 	.listxattr	= shmem_listxattr,
3259 #endif
3260 };
3261 
3262 static const struct inode_operations shmem_symlink_inode_operations = {
3263 	.get_link	= shmem_get_link,
3264 #ifdef CONFIG_TMPFS_XATTR
3265 	.listxattr	= shmem_listxattr,
3266 #endif
3267 };
3268 
3269 static struct dentry *shmem_get_parent(struct dentry *child)
3270 {
3271 	return ERR_PTR(-ESTALE);
3272 }
3273 
3274 static int shmem_match(struct inode *ino, void *vfh)
3275 {
3276 	__u32 *fh = vfh;
3277 	__u64 inum = fh[2];
3278 	inum = (inum << 32) | fh[1];
3279 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3280 }
3281 
3282 /* Find any alias of inode, but prefer a hashed alias */
3283 static struct dentry *shmem_find_alias(struct inode *inode)
3284 {
3285 	struct dentry *alias = d_find_alias(inode);
3286 
3287 	return alias ?: d_find_any_alias(inode);
3288 }
3289 
3290 
3291 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3292 		struct fid *fid, int fh_len, int fh_type)
3293 {
3294 	struct inode *inode;
3295 	struct dentry *dentry = NULL;
3296 	u64 inum;
3297 
3298 	if (fh_len < 3)
3299 		return NULL;
3300 
3301 	inum = fid->raw[2];
3302 	inum = (inum << 32) | fid->raw[1];
3303 
3304 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3305 			shmem_match, fid->raw);
3306 	if (inode) {
3307 		dentry = shmem_find_alias(inode);
3308 		iput(inode);
3309 	}
3310 
3311 	return dentry;
3312 }
3313 
3314 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3315 				struct inode *parent)
3316 {
3317 	if (*len < 3) {
3318 		*len = 3;
3319 		return FILEID_INVALID;
3320 	}
3321 
3322 	if (inode_unhashed(inode)) {
3323 		/* Unfortunately insert_inode_hash is not idempotent,
3324 		 * so as we hash inodes here rather than at creation
3325 		 * time, we need a lock to ensure we only try
3326 		 * to do it once
3327 		 */
3328 		static DEFINE_SPINLOCK(lock);
3329 		spin_lock(&lock);
3330 		if (inode_unhashed(inode))
3331 			__insert_inode_hash(inode,
3332 					    inode->i_ino + inode->i_generation);
3333 		spin_unlock(&lock);
3334 	}
3335 
3336 	fh[0] = inode->i_generation;
3337 	fh[1] = inode->i_ino;
3338 	fh[2] = ((__u64)inode->i_ino) >> 32;
3339 
3340 	*len = 3;
3341 	return 1;
3342 }
3343 
3344 static const struct export_operations shmem_export_ops = {
3345 	.get_parent     = shmem_get_parent,
3346 	.encode_fh      = shmem_encode_fh,
3347 	.fh_to_dentry	= shmem_fh_to_dentry,
3348 };
3349 
3350 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3351 			       bool remount)
3352 {
3353 	char *this_char, *value, *rest;
3354 	struct mempolicy *mpol = NULL;
3355 	uid_t uid;
3356 	gid_t gid;
3357 
3358 	while (options != NULL) {
3359 		this_char = options;
3360 		for (;;) {
3361 			/*
3362 			 * NUL-terminate this option: unfortunately,
3363 			 * mount options form a comma-separated list,
3364 			 * but mpol's nodelist may also contain commas.
3365 			 */
3366 			options = strchr(options, ',');
3367 			if (options == NULL)
3368 				break;
3369 			options++;
3370 			if (!isdigit(*options)) {
3371 				options[-1] = '\0';
3372 				break;
3373 			}
3374 		}
3375 		if (!*this_char)
3376 			continue;
3377 		if ((value = strchr(this_char,'=')) != NULL) {
3378 			*value++ = 0;
3379 		} else {
3380 			pr_err("tmpfs: No value for mount option '%s'\n",
3381 			       this_char);
3382 			goto error;
3383 		}
3384 
3385 		if (!strcmp(this_char,"size")) {
3386 			unsigned long long size;
3387 			size = memparse(value,&rest);
3388 			if (*rest == '%') {
3389 				size <<= PAGE_SHIFT;
3390 				size *= totalram_pages();
3391 				do_div(size, 100);
3392 				rest++;
3393 			}
3394 			if (*rest)
3395 				goto bad_val;
3396 			sbinfo->max_blocks =
3397 				DIV_ROUND_UP(size, PAGE_SIZE);
3398 		} else if (!strcmp(this_char,"nr_blocks")) {
3399 			sbinfo->max_blocks = memparse(value, &rest);
3400 			if (*rest)
3401 				goto bad_val;
3402 		} else if (!strcmp(this_char,"nr_inodes")) {
3403 			sbinfo->max_inodes = memparse(value, &rest);
3404 			if (*rest)
3405 				goto bad_val;
3406 		} else if (!strcmp(this_char,"mode")) {
3407 			if (remount)
3408 				continue;
3409 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3410 			if (*rest)
3411 				goto bad_val;
3412 		} else if (!strcmp(this_char,"uid")) {
3413 			if (remount)
3414 				continue;
3415 			uid = simple_strtoul(value, &rest, 0);
3416 			if (*rest)
3417 				goto bad_val;
3418 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3419 			if (!uid_valid(sbinfo->uid))
3420 				goto bad_val;
3421 		} else if (!strcmp(this_char,"gid")) {
3422 			if (remount)
3423 				continue;
3424 			gid = simple_strtoul(value, &rest, 0);
3425 			if (*rest)
3426 				goto bad_val;
3427 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3428 			if (!gid_valid(sbinfo->gid))
3429 				goto bad_val;
3430 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3431 		} else if (!strcmp(this_char, "huge")) {
3432 			int huge;
3433 			huge = shmem_parse_huge(value);
3434 			if (huge < 0)
3435 				goto bad_val;
3436 			if (!has_transparent_hugepage() &&
3437 					huge != SHMEM_HUGE_NEVER)
3438 				goto bad_val;
3439 			sbinfo->huge = huge;
3440 #endif
3441 #ifdef CONFIG_NUMA
3442 		} else if (!strcmp(this_char,"mpol")) {
3443 			mpol_put(mpol);
3444 			mpol = NULL;
3445 			if (mpol_parse_str(value, &mpol))
3446 				goto bad_val;
3447 #endif
3448 		} else {
3449 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3450 			goto error;
3451 		}
3452 	}
3453 	sbinfo->mpol = mpol;
3454 	return 0;
3455 
3456 bad_val:
3457 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3458 	       value, this_char);
3459 error:
3460 	mpol_put(mpol);
3461 	return 1;
3462 
3463 }
3464 
3465 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3466 {
3467 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3468 	struct shmem_sb_info config = *sbinfo;
3469 	unsigned long inodes;
3470 	int error = -EINVAL;
3471 
3472 	config.mpol = NULL;
3473 	if (shmem_parse_options(data, &config, true))
3474 		return error;
3475 
3476 	spin_lock(&sbinfo->stat_lock);
3477 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3478 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3479 		goto out;
3480 	if (config.max_inodes < inodes)
3481 		goto out;
3482 	/*
3483 	 * Those tests disallow limited->unlimited while any are in use;
3484 	 * but we must separately disallow unlimited->limited, because
3485 	 * in that case we have no record of how much is already in use.
3486 	 */
3487 	if (config.max_blocks && !sbinfo->max_blocks)
3488 		goto out;
3489 	if (config.max_inodes && !sbinfo->max_inodes)
3490 		goto out;
3491 
3492 	error = 0;
3493 	sbinfo->huge = config.huge;
3494 	sbinfo->max_blocks  = config.max_blocks;
3495 	sbinfo->max_inodes  = config.max_inodes;
3496 	sbinfo->free_inodes = config.max_inodes - inodes;
3497 
3498 	/*
3499 	 * Preserve previous mempolicy unless mpol remount option was specified.
3500 	 */
3501 	if (config.mpol) {
3502 		mpol_put(sbinfo->mpol);
3503 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3504 	}
3505 out:
3506 	spin_unlock(&sbinfo->stat_lock);
3507 	return error;
3508 }
3509 
3510 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3511 {
3512 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3513 
3514 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3515 		seq_printf(seq, ",size=%luk",
3516 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3517 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3518 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3519 	if (sbinfo->mode != (0777 | S_ISVTX))
3520 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3521 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3522 		seq_printf(seq, ",uid=%u",
3523 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3524 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3525 		seq_printf(seq, ",gid=%u",
3526 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3527 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3528 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3529 	if (sbinfo->huge)
3530 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3531 #endif
3532 	shmem_show_mpol(seq, sbinfo->mpol);
3533 	return 0;
3534 }
3535 
3536 #endif /* CONFIG_TMPFS */
3537 
3538 static void shmem_put_super(struct super_block *sb)
3539 {
3540 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3541 
3542 	percpu_counter_destroy(&sbinfo->used_blocks);
3543 	mpol_put(sbinfo->mpol);
3544 	kfree(sbinfo);
3545 	sb->s_fs_info = NULL;
3546 }
3547 
3548 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3549 {
3550 	struct inode *inode;
3551 	struct shmem_sb_info *sbinfo;
3552 	int err = -ENOMEM;
3553 
3554 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3555 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3556 				L1_CACHE_BYTES), GFP_KERNEL);
3557 	if (!sbinfo)
3558 		return -ENOMEM;
3559 
3560 	sbinfo->mode = 0777 | S_ISVTX;
3561 	sbinfo->uid = current_fsuid();
3562 	sbinfo->gid = current_fsgid();
3563 	sb->s_fs_info = sbinfo;
3564 
3565 #ifdef CONFIG_TMPFS
3566 	/*
3567 	 * Per default we only allow half of the physical ram per
3568 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3569 	 * but the internal instance is left unlimited.
3570 	 */
3571 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3572 		sbinfo->max_blocks = shmem_default_max_blocks();
3573 		sbinfo->max_inodes = shmem_default_max_inodes();
3574 		if (shmem_parse_options(data, sbinfo, false)) {
3575 			err = -EINVAL;
3576 			goto failed;
3577 		}
3578 	} else {
3579 		sb->s_flags |= SB_NOUSER;
3580 	}
3581 	sb->s_export_op = &shmem_export_ops;
3582 	sb->s_flags |= SB_NOSEC;
3583 #else
3584 	sb->s_flags |= SB_NOUSER;
3585 #endif
3586 
3587 	spin_lock_init(&sbinfo->stat_lock);
3588 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3589 		goto failed;
3590 	sbinfo->free_inodes = sbinfo->max_inodes;
3591 	spin_lock_init(&sbinfo->shrinklist_lock);
3592 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3593 
3594 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3595 	sb->s_blocksize = PAGE_SIZE;
3596 	sb->s_blocksize_bits = PAGE_SHIFT;
3597 	sb->s_magic = TMPFS_MAGIC;
3598 	sb->s_op = &shmem_ops;
3599 	sb->s_time_gran = 1;
3600 #ifdef CONFIG_TMPFS_XATTR
3601 	sb->s_xattr = shmem_xattr_handlers;
3602 #endif
3603 #ifdef CONFIG_TMPFS_POSIX_ACL
3604 	sb->s_flags |= SB_POSIXACL;
3605 #endif
3606 	uuid_gen(&sb->s_uuid);
3607 
3608 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3609 	if (!inode)
3610 		goto failed;
3611 	inode->i_uid = sbinfo->uid;
3612 	inode->i_gid = sbinfo->gid;
3613 	sb->s_root = d_make_root(inode);
3614 	if (!sb->s_root)
3615 		goto failed;
3616 	return 0;
3617 
3618 failed:
3619 	shmem_put_super(sb);
3620 	return err;
3621 }
3622 
3623 static struct kmem_cache *shmem_inode_cachep;
3624 
3625 static struct inode *shmem_alloc_inode(struct super_block *sb)
3626 {
3627 	struct shmem_inode_info *info;
3628 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3629 	if (!info)
3630 		return NULL;
3631 	return &info->vfs_inode;
3632 }
3633 
3634 static void shmem_destroy_callback(struct rcu_head *head)
3635 {
3636 	struct inode *inode = container_of(head, struct inode, i_rcu);
3637 	if (S_ISLNK(inode->i_mode))
3638 		kfree(inode->i_link);
3639 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3640 }
3641 
3642 static void shmem_destroy_inode(struct inode *inode)
3643 {
3644 	if (S_ISREG(inode->i_mode))
3645 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3646 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3647 }
3648 
3649 static void shmem_init_inode(void *foo)
3650 {
3651 	struct shmem_inode_info *info = foo;
3652 	inode_init_once(&info->vfs_inode);
3653 }
3654 
3655 static void shmem_init_inodecache(void)
3656 {
3657 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3658 				sizeof(struct shmem_inode_info),
3659 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3660 }
3661 
3662 static void shmem_destroy_inodecache(void)
3663 {
3664 	kmem_cache_destroy(shmem_inode_cachep);
3665 }
3666 
3667 static const struct address_space_operations shmem_aops = {
3668 	.writepage	= shmem_writepage,
3669 	.set_page_dirty	= __set_page_dirty_no_writeback,
3670 #ifdef CONFIG_TMPFS
3671 	.write_begin	= shmem_write_begin,
3672 	.write_end	= shmem_write_end,
3673 #endif
3674 #ifdef CONFIG_MIGRATION
3675 	.migratepage	= migrate_page,
3676 #endif
3677 	.error_remove_page = generic_error_remove_page,
3678 };
3679 
3680 static const struct file_operations shmem_file_operations = {
3681 	.mmap		= shmem_mmap,
3682 	.get_unmapped_area = shmem_get_unmapped_area,
3683 #ifdef CONFIG_TMPFS
3684 	.llseek		= shmem_file_llseek,
3685 	.read_iter	= shmem_file_read_iter,
3686 	.write_iter	= generic_file_write_iter,
3687 	.fsync		= noop_fsync,
3688 	.splice_read	= generic_file_splice_read,
3689 	.splice_write	= iter_file_splice_write,
3690 	.fallocate	= shmem_fallocate,
3691 #endif
3692 };
3693 
3694 static const struct inode_operations shmem_inode_operations = {
3695 	.getattr	= shmem_getattr,
3696 	.setattr	= shmem_setattr,
3697 #ifdef CONFIG_TMPFS_XATTR
3698 	.listxattr	= shmem_listxattr,
3699 	.set_acl	= simple_set_acl,
3700 #endif
3701 };
3702 
3703 static const struct inode_operations shmem_dir_inode_operations = {
3704 #ifdef CONFIG_TMPFS
3705 	.create		= shmem_create,
3706 	.lookup		= simple_lookup,
3707 	.link		= shmem_link,
3708 	.unlink		= shmem_unlink,
3709 	.symlink	= shmem_symlink,
3710 	.mkdir		= shmem_mkdir,
3711 	.rmdir		= shmem_rmdir,
3712 	.mknod		= shmem_mknod,
3713 	.rename		= shmem_rename2,
3714 	.tmpfile	= shmem_tmpfile,
3715 #endif
3716 #ifdef CONFIG_TMPFS_XATTR
3717 	.listxattr	= shmem_listxattr,
3718 #endif
3719 #ifdef CONFIG_TMPFS_POSIX_ACL
3720 	.setattr	= shmem_setattr,
3721 	.set_acl	= simple_set_acl,
3722 #endif
3723 };
3724 
3725 static const struct inode_operations shmem_special_inode_operations = {
3726 #ifdef CONFIG_TMPFS_XATTR
3727 	.listxattr	= shmem_listxattr,
3728 #endif
3729 #ifdef CONFIG_TMPFS_POSIX_ACL
3730 	.setattr	= shmem_setattr,
3731 	.set_acl	= simple_set_acl,
3732 #endif
3733 };
3734 
3735 static const struct super_operations shmem_ops = {
3736 	.alloc_inode	= shmem_alloc_inode,
3737 	.destroy_inode	= shmem_destroy_inode,
3738 #ifdef CONFIG_TMPFS
3739 	.statfs		= shmem_statfs,
3740 	.remount_fs	= shmem_remount_fs,
3741 	.show_options	= shmem_show_options,
3742 #endif
3743 	.evict_inode	= shmem_evict_inode,
3744 	.drop_inode	= generic_delete_inode,
3745 	.put_super	= shmem_put_super,
3746 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3747 	.nr_cached_objects	= shmem_unused_huge_count,
3748 	.free_cached_objects	= shmem_unused_huge_scan,
3749 #endif
3750 };
3751 
3752 static const struct vm_operations_struct shmem_vm_ops = {
3753 	.fault		= shmem_fault,
3754 	.map_pages	= filemap_map_pages,
3755 #ifdef CONFIG_NUMA
3756 	.set_policy     = shmem_set_policy,
3757 	.get_policy     = shmem_get_policy,
3758 #endif
3759 };
3760 
3761 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3762 	int flags, const char *dev_name, void *data)
3763 {
3764 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3765 }
3766 
3767 static struct file_system_type shmem_fs_type = {
3768 	.owner		= THIS_MODULE,
3769 	.name		= "tmpfs",
3770 	.mount		= shmem_mount,
3771 	.kill_sb	= kill_litter_super,
3772 	.fs_flags	= FS_USERNS_MOUNT,
3773 };
3774 
3775 int __init shmem_init(void)
3776 {
3777 	int error;
3778 
3779 	/* If rootfs called this, don't re-init */
3780 	if (shmem_inode_cachep)
3781 		return 0;
3782 
3783 	shmem_init_inodecache();
3784 
3785 	error = register_filesystem(&shmem_fs_type);
3786 	if (error) {
3787 		pr_err("Could not register tmpfs\n");
3788 		goto out2;
3789 	}
3790 
3791 	shm_mnt = kern_mount(&shmem_fs_type);
3792 	if (IS_ERR(shm_mnt)) {
3793 		error = PTR_ERR(shm_mnt);
3794 		pr_err("Could not kern_mount tmpfs\n");
3795 		goto out1;
3796 	}
3797 
3798 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3799 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3800 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3801 	else
3802 		shmem_huge = 0; /* just in case it was patched */
3803 #endif
3804 	return 0;
3805 
3806 out1:
3807 	unregister_filesystem(&shmem_fs_type);
3808 out2:
3809 	shmem_destroy_inodecache();
3810 	shm_mnt = ERR_PTR(error);
3811 	return error;
3812 }
3813 
3814 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3815 static ssize_t shmem_enabled_show(struct kobject *kobj,
3816 		struct kobj_attribute *attr, char *buf)
3817 {
3818 	int values[] = {
3819 		SHMEM_HUGE_ALWAYS,
3820 		SHMEM_HUGE_WITHIN_SIZE,
3821 		SHMEM_HUGE_ADVISE,
3822 		SHMEM_HUGE_NEVER,
3823 		SHMEM_HUGE_DENY,
3824 		SHMEM_HUGE_FORCE,
3825 	};
3826 	int i, count;
3827 
3828 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3829 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3830 
3831 		count += sprintf(buf + count, fmt,
3832 				shmem_format_huge(values[i]));
3833 	}
3834 	buf[count - 1] = '\n';
3835 	return count;
3836 }
3837 
3838 static ssize_t shmem_enabled_store(struct kobject *kobj,
3839 		struct kobj_attribute *attr, const char *buf, size_t count)
3840 {
3841 	char tmp[16];
3842 	int huge;
3843 
3844 	if (count + 1 > sizeof(tmp))
3845 		return -EINVAL;
3846 	memcpy(tmp, buf, count);
3847 	tmp[count] = '\0';
3848 	if (count && tmp[count - 1] == '\n')
3849 		tmp[count - 1] = '\0';
3850 
3851 	huge = shmem_parse_huge(tmp);
3852 	if (huge == -EINVAL)
3853 		return -EINVAL;
3854 	if (!has_transparent_hugepage() &&
3855 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3856 		return -EINVAL;
3857 
3858 	shmem_huge = huge;
3859 	if (shmem_huge > SHMEM_HUGE_DENY)
3860 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3861 	return count;
3862 }
3863 
3864 struct kobj_attribute shmem_enabled_attr =
3865 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3866 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3867 
3868 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3869 bool shmem_huge_enabled(struct vm_area_struct *vma)
3870 {
3871 	struct inode *inode = file_inode(vma->vm_file);
3872 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3873 	loff_t i_size;
3874 	pgoff_t off;
3875 
3876 	if (shmem_huge == SHMEM_HUGE_FORCE)
3877 		return true;
3878 	if (shmem_huge == SHMEM_HUGE_DENY)
3879 		return false;
3880 	switch (sbinfo->huge) {
3881 		case SHMEM_HUGE_NEVER:
3882 			return false;
3883 		case SHMEM_HUGE_ALWAYS:
3884 			return true;
3885 		case SHMEM_HUGE_WITHIN_SIZE:
3886 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3887 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3888 			if (i_size >= HPAGE_PMD_SIZE &&
3889 					i_size >> PAGE_SHIFT >= off)
3890 				return true;
3891 			/* fall through */
3892 		case SHMEM_HUGE_ADVISE:
3893 			/* TODO: implement fadvise() hints */
3894 			return (vma->vm_flags & VM_HUGEPAGE);
3895 		default:
3896 			VM_BUG_ON(1);
3897 			return false;
3898 	}
3899 }
3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3901 
3902 #else /* !CONFIG_SHMEM */
3903 
3904 /*
3905  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3906  *
3907  * This is intended for small system where the benefits of the full
3908  * shmem code (swap-backed and resource-limited) are outweighed by
3909  * their complexity. On systems without swap this code should be
3910  * effectively equivalent, but much lighter weight.
3911  */
3912 
3913 static struct file_system_type shmem_fs_type = {
3914 	.name		= "tmpfs",
3915 	.mount		= ramfs_mount,
3916 	.kill_sb	= kill_litter_super,
3917 	.fs_flags	= FS_USERNS_MOUNT,
3918 };
3919 
3920 int __init shmem_init(void)
3921 {
3922 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3923 
3924 	shm_mnt = kern_mount(&shmem_fs_type);
3925 	BUG_ON(IS_ERR(shm_mnt));
3926 
3927 	return 0;
3928 }
3929 
3930 int shmem_unuse(unsigned int type, bool frontswap,
3931 		unsigned long *fs_pages_to_unuse)
3932 {
3933 	return 0;
3934 }
3935 
3936 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3937 {
3938 	return 0;
3939 }
3940 
3941 void shmem_unlock_mapping(struct address_space *mapping)
3942 {
3943 }
3944 
3945 #ifdef CONFIG_MMU
3946 unsigned long shmem_get_unmapped_area(struct file *file,
3947 				      unsigned long addr, unsigned long len,
3948 				      unsigned long pgoff, unsigned long flags)
3949 {
3950 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3951 }
3952 #endif
3953 
3954 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3955 {
3956 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3957 }
3958 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3959 
3960 #define shmem_vm_ops				generic_file_vm_ops
3961 #define shmem_file_operations			ramfs_file_operations
3962 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3963 #define shmem_acct_size(flags, size)		0
3964 #define shmem_unacct_size(flags, size)		do {} while (0)
3965 
3966 #endif /* CONFIG_SHMEM */
3967 
3968 /* common code */
3969 
3970 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3971 				       unsigned long flags, unsigned int i_flags)
3972 {
3973 	struct inode *inode;
3974 	struct file *res;
3975 
3976 	if (IS_ERR(mnt))
3977 		return ERR_CAST(mnt);
3978 
3979 	if (size < 0 || size > MAX_LFS_FILESIZE)
3980 		return ERR_PTR(-EINVAL);
3981 
3982 	if (shmem_acct_size(flags, size))
3983 		return ERR_PTR(-ENOMEM);
3984 
3985 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3986 				flags);
3987 	if (unlikely(!inode)) {
3988 		shmem_unacct_size(flags, size);
3989 		return ERR_PTR(-ENOSPC);
3990 	}
3991 	inode->i_flags |= i_flags;
3992 	inode->i_size = size;
3993 	clear_nlink(inode);	/* It is unlinked */
3994 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3995 	if (!IS_ERR(res))
3996 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3997 				&shmem_file_operations);
3998 	if (IS_ERR(res))
3999 		iput(inode);
4000 	return res;
4001 }
4002 
4003 /**
4004  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4005  * 	kernel internal.  There will be NO LSM permission checks against the
4006  * 	underlying inode.  So users of this interface must do LSM checks at a
4007  *	higher layer.  The users are the big_key and shm implementations.  LSM
4008  *	checks are provided at the key or shm level rather than the inode.
4009  * @name: name for dentry (to be seen in /proc/<pid>/maps
4010  * @size: size to be set for the file
4011  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4012  */
4013 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4014 {
4015 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4016 }
4017 
4018 /**
4019  * shmem_file_setup - get an unlinked file living in tmpfs
4020  * @name: name for dentry (to be seen in /proc/<pid>/maps
4021  * @size: size to be set for the file
4022  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4023  */
4024 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4025 {
4026 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4027 }
4028 EXPORT_SYMBOL_GPL(shmem_file_setup);
4029 
4030 /**
4031  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4032  * @mnt: the tmpfs mount where the file will be created
4033  * @name: name for dentry (to be seen in /proc/<pid>/maps
4034  * @size: size to be set for the file
4035  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4036  */
4037 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4038 				       loff_t size, unsigned long flags)
4039 {
4040 	return __shmem_file_setup(mnt, name, size, flags, 0);
4041 }
4042 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4043 
4044 /**
4045  * shmem_zero_setup - setup a shared anonymous mapping
4046  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4047  */
4048 int shmem_zero_setup(struct vm_area_struct *vma)
4049 {
4050 	struct file *file;
4051 	loff_t size = vma->vm_end - vma->vm_start;
4052 
4053 	/*
4054 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4055 	 * between XFS directory reading and selinux: since this file is only
4056 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4057 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4058 	 */
4059 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4060 	if (IS_ERR(file))
4061 		return PTR_ERR(file);
4062 
4063 	if (vma->vm_file)
4064 		fput(vma->vm_file);
4065 	vma->vm_file = file;
4066 	vma->vm_ops = &shmem_vm_ops;
4067 
4068 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4069 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4070 			(vma->vm_end & HPAGE_PMD_MASK)) {
4071 		khugepaged_enter(vma, vma->vm_flags);
4072 	}
4073 
4074 	return 0;
4075 }
4076 
4077 /**
4078  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4079  * @mapping:	the page's address_space
4080  * @index:	the page index
4081  * @gfp:	the page allocator flags to use if allocating
4082  *
4083  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4084  * with any new page allocations done using the specified allocation flags.
4085  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4086  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4087  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4088  *
4089  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4090  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4091  */
4092 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4093 					 pgoff_t index, gfp_t gfp)
4094 {
4095 #ifdef CONFIG_SHMEM
4096 	struct inode *inode = mapping->host;
4097 	struct page *page;
4098 	int error;
4099 
4100 	BUG_ON(mapping->a_ops != &shmem_aops);
4101 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4102 				  gfp, NULL, NULL, NULL);
4103 	if (error)
4104 		page = ERR_PTR(error);
4105 	else
4106 		unlock_page(page);
4107 	return page;
4108 #else
4109 	/*
4110 	 * The tiny !SHMEM case uses ramfs without swap
4111 	 */
4112 	return read_cache_page_gfp(mapping, index, gfp);
4113 #endif
4114 }
4115 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4116