1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/aio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 78 79 /* Pretend that each entry is of this size in directory's i_size */ 80 #define BOGO_DIRENT_SIZE 20 81 82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 83 #define SHORT_SYMLINK_LEN 128 84 85 /* 86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 87 * inode->i_private (with i_mutex making sure that it has only one user at 88 * a time): we would prefer not to enlarge the shmem inode just for that. 89 */ 90 struct shmem_falloc { 91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 92 pgoff_t start; /* start of range currently being fallocated */ 93 pgoff_t next; /* the next page offset to be fallocated */ 94 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 96 }; 97 98 /* Flag allocation requirements to shmem_getpage */ 99 enum sgp_type { 100 SGP_READ, /* don't exceed i_size, don't allocate page */ 101 SGP_CACHE, /* don't exceed i_size, may allocate page */ 102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 105 }; 106 107 #ifdef CONFIG_TMPFS 108 static unsigned long shmem_default_max_blocks(void) 109 { 110 return totalram_pages / 2; 111 } 112 113 static unsigned long shmem_default_max_inodes(void) 114 { 115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 116 } 117 #endif 118 119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 120 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 121 struct shmem_inode_info *info, pgoff_t index); 122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 124 125 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 126 struct page **pagep, enum sgp_type sgp, int *fault_type) 127 { 128 return shmem_getpage_gfp(inode, index, pagep, sgp, 129 mapping_gfp_mask(inode->i_mapping), fault_type); 130 } 131 132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 133 { 134 return sb->s_fs_info; 135 } 136 137 /* 138 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 139 * for shared memory and for shared anonymous (/dev/zero) mappings 140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 141 * consistent with the pre-accounting of private mappings ... 142 */ 143 static inline int shmem_acct_size(unsigned long flags, loff_t size) 144 { 145 return (flags & VM_NORESERVE) ? 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 147 } 148 149 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 150 { 151 if (!(flags & VM_NORESERVE)) 152 vm_unacct_memory(VM_ACCT(size)); 153 } 154 155 static inline int shmem_reacct_size(unsigned long flags, 156 loff_t oldsize, loff_t newsize) 157 { 158 if (!(flags & VM_NORESERVE)) { 159 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 160 return security_vm_enough_memory_mm(current->mm, 161 VM_ACCT(newsize) - VM_ACCT(oldsize)); 162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 164 } 165 return 0; 166 } 167 168 /* 169 * ... whereas tmpfs objects are accounted incrementally as 170 * pages are allocated, in order to allow huge sparse files. 171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 173 */ 174 static inline int shmem_acct_block(unsigned long flags) 175 { 176 return (flags & VM_NORESERVE) ? 177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 178 } 179 180 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 181 { 182 if (flags & VM_NORESERVE) 183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 184 } 185 186 static const struct super_operations shmem_ops; 187 static const struct address_space_operations shmem_aops; 188 static const struct file_operations shmem_file_operations; 189 static const struct inode_operations shmem_inode_operations; 190 static const struct inode_operations shmem_dir_inode_operations; 191 static const struct inode_operations shmem_special_inode_operations; 192 static const struct vm_operations_struct shmem_vm_ops; 193 194 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 195 .ra_pages = 0, /* No readahead */ 196 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 197 }; 198 199 static LIST_HEAD(shmem_swaplist); 200 static DEFINE_MUTEX(shmem_swaplist_mutex); 201 202 static int shmem_reserve_inode(struct super_block *sb) 203 { 204 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 205 if (sbinfo->max_inodes) { 206 spin_lock(&sbinfo->stat_lock); 207 if (!sbinfo->free_inodes) { 208 spin_unlock(&sbinfo->stat_lock); 209 return -ENOSPC; 210 } 211 sbinfo->free_inodes--; 212 spin_unlock(&sbinfo->stat_lock); 213 } 214 return 0; 215 } 216 217 static void shmem_free_inode(struct super_block *sb) 218 { 219 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 220 if (sbinfo->max_inodes) { 221 spin_lock(&sbinfo->stat_lock); 222 sbinfo->free_inodes++; 223 spin_unlock(&sbinfo->stat_lock); 224 } 225 } 226 227 /** 228 * shmem_recalc_inode - recalculate the block usage of an inode 229 * @inode: inode to recalc 230 * 231 * We have to calculate the free blocks since the mm can drop 232 * undirtied hole pages behind our back. 233 * 234 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 235 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 236 * 237 * It has to be called with the spinlock held. 238 */ 239 static void shmem_recalc_inode(struct inode *inode) 240 { 241 struct shmem_inode_info *info = SHMEM_I(inode); 242 long freed; 243 244 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 245 if (freed > 0) { 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 if (sbinfo->max_blocks) 248 percpu_counter_add(&sbinfo->used_blocks, -freed); 249 info->alloced -= freed; 250 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 251 shmem_unacct_blocks(info->flags, freed); 252 } 253 } 254 255 /* 256 * Replace item expected in radix tree by a new item, while holding tree lock. 257 */ 258 static int shmem_radix_tree_replace(struct address_space *mapping, 259 pgoff_t index, void *expected, void *replacement) 260 { 261 void **pslot; 262 void *item; 263 264 VM_BUG_ON(!expected); 265 VM_BUG_ON(!replacement); 266 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 267 if (!pslot) 268 return -ENOENT; 269 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 270 if (item != expected) 271 return -ENOENT; 272 radix_tree_replace_slot(pslot, replacement); 273 return 0; 274 } 275 276 /* 277 * Sometimes, before we decide whether to proceed or to fail, we must check 278 * that an entry was not already brought back from swap by a racing thread. 279 * 280 * Checking page is not enough: by the time a SwapCache page is locked, it 281 * might be reused, and again be SwapCache, using the same swap as before. 282 */ 283 static bool shmem_confirm_swap(struct address_space *mapping, 284 pgoff_t index, swp_entry_t swap) 285 { 286 void *item; 287 288 rcu_read_lock(); 289 item = radix_tree_lookup(&mapping->page_tree, index); 290 rcu_read_unlock(); 291 return item == swp_to_radix_entry(swap); 292 } 293 294 /* 295 * Like add_to_page_cache_locked, but error if expected item has gone. 296 */ 297 static int shmem_add_to_page_cache(struct page *page, 298 struct address_space *mapping, 299 pgoff_t index, void *expected) 300 { 301 int error; 302 303 VM_BUG_ON_PAGE(!PageLocked(page), page); 304 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 305 306 page_cache_get(page); 307 page->mapping = mapping; 308 page->index = index; 309 310 spin_lock_irq(&mapping->tree_lock); 311 if (!expected) 312 error = radix_tree_insert(&mapping->page_tree, index, page); 313 else 314 error = shmem_radix_tree_replace(mapping, index, expected, 315 page); 316 if (!error) { 317 mapping->nrpages++; 318 __inc_zone_page_state(page, NR_FILE_PAGES); 319 __inc_zone_page_state(page, NR_SHMEM); 320 spin_unlock_irq(&mapping->tree_lock); 321 } else { 322 page->mapping = NULL; 323 spin_unlock_irq(&mapping->tree_lock); 324 page_cache_release(page); 325 } 326 return error; 327 } 328 329 /* 330 * Like delete_from_page_cache, but substitutes swap for page. 331 */ 332 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 333 { 334 struct address_space *mapping = page->mapping; 335 int error; 336 337 spin_lock_irq(&mapping->tree_lock); 338 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 339 page->mapping = NULL; 340 mapping->nrpages--; 341 __dec_zone_page_state(page, NR_FILE_PAGES); 342 __dec_zone_page_state(page, NR_SHMEM); 343 spin_unlock_irq(&mapping->tree_lock); 344 page_cache_release(page); 345 BUG_ON(error); 346 } 347 348 /* 349 * Remove swap entry from radix tree, free the swap and its page cache. 350 */ 351 static int shmem_free_swap(struct address_space *mapping, 352 pgoff_t index, void *radswap) 353 { 354 void *old; 355 356 spin_lock_irq(&mapping->tree_lock); 357 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 358 spin_unlock_irq(&mapping->tree_lock); 359 if (old != radswap) 360 return -ENOENT; 361 free_swap_and_cache(radix_to_swp_entry(radswap)); 362 return 0; 363 } 364 365 /* 366 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 367 */ 368 void shmem_unlock_mapping(struct address_space *mapping) 369 { 370 struct pagevec pvec; 371 pgoff_t indices[PAGEVEC_SIZE]; 372 pgoff_t index = 0; 373 374 pagevec_init(&pvec, 0); 375 /* 376 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 377 */ 378 while (!mapping_unevictable(mapping)) { 379 /* 380 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 381 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 382 */ 383 pvec.nr = find_get_entries(mapping, index, 384 PAGEVEC_SIZE, pvec.pages, indices); 385 if (!pvec.nr) 386 break; 387 index = indices[pvec.nr - 1] + 1; 388 pagevec_remove_exceptionals(&pvec); 389 check_move_unevictable_pages(pvec.pages, pvec.nr); 390 pagevec_release(&pvec); 391 cond_resched(); 392 } 393 } 394 395 /* 396 * Remove range of pages and swap entries from radix tree, and free them. 397 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 398 */ 399 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 400 bool unfalloc) 401 { 402 struct address_space *mapping = inode->i_mapping; 403 struct shmem_inode_info *info = SHMEM_I(inode); 404 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 405 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 406 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 407 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 408 struct pagevec pvec; 409 pgoff_t indices[PAGEVEC_SIZE]; 410 long nr_swaps_freed = 0; 411 pgoff_t index; 412 int i; 413 414 if (lend == -1) 415 end = -1; /* unsigned, so actually very big */ 416 417 pagevec_init(&pvec, 0); 418 index = start; 419 while (index < end) { 420 pvec.nr = find_get_entries(mapping, index, 421 min(end - index, (pgoff_t)PAGEVEC_SIZE), 422 pvec.pages, indices); 423 if (!pvec.nr) 424 break; 425 for (i = 0; i < pagevec_count(&pvec); i++) { 426 struct page *page = pvec.pages[i]; 427 428 index = indices[i]; 429 if (index >= end) 430 break; 431 432 if (radix_tree_exceptional_entry(page)) { 433 if (unfalloc) 434 continue; 435 nr_swaps_freed += !shmem_free_swap(mapping, 436 index, page); 437 continue; 438 } 439 440 if (!trylock_page(page)) 441 continue; 442 if (!unfalloc || !PageUptodate(page)) { 443 if (page->mapping == mapping) { 444 VM_BUG_ON_PAGE(PageWriteback(page), page); 445 truncate_inode_page(mapping, page); 446 } 447 } 448 unlock_page(page); 449 } 450 pagevec_remove_exceptionals(&pvec); 451 pagevec_release(&pvec); 452 cond_resched(); 453 index++; 454 } 455 456 if (partial_start) { 457 struct page *page = NULL; 458 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 459 if (page) { 460 unsigned int top = PAGE_CACHE_SIZE; 461 if (start > end) { 462 top = partial_end; 463 partial_end = 0; 464 } 465 zero_user_segment(page, partial_start, top); 466 set_page_dirty(page); 467 unlock_page(page); 468 page_cache_release(page); 469 } 470 } 471 if (partial_end) { 472 struct page *page = NULL; 473 shmem_getpage(inode, end, &page, SGP_READ, NULL); 474 if (page) { 475 zero_user_segment(page, 0, partial_end); 476 set_page_dirty(page); 477 unlock_page(page); 478 page_cache_release(page); 479 } 480 } 481 if (start >= end) 482 return; 483 484 index = start; 485 while (index < end) { 486 cond_resched(); 487 488 pvec.nr = find_get_entries(mapping, index, 489 min(end - index, (pgoff_t)PAGEVEC_SIZE), 490 pvec.pages, indices); 491 if (!pvec.nr) { 492 /* If all gone or hole-punch or unfalloc, we're done */ 493 if (index == start || end != -1) 494 break; 495 /* But if truncating, restart to make sure all gone */ 496 index = start; 497 continue; 498 } 499 for (i = 0; i < pagevec_count(&pvec); i++) { 500 struct page *page = pvec.pages[i]; 501 502 index = indices[i]; 503 if (index >= end) 504 break; 505 506 if (radix_tree_exceptional_entry(page)) { 507 if (unfalloc) 508 continue; 509 if (shmem_free_swap(mapping, index, page)) { 510 /* Swap was replaced by page: retry */ 511 index--; 512 break; 513 } 514 nr_swaps_freed++; 515 continue; 516 } 517 518 lock_page(page); 519 if (!unfalloc || !PageUptodate(page)) { 520 if (page->mapping == mapping) { 521 VM_BUG_ON_PAGE(PageWriteback(page), page); 522 truncate_inode_page(mapping, page); 523 } else { 524 /* Page was replaced by swap: retry */ 525 unlock_page(page); 526 index--; 527 break; 528 } 529 } 530 unlock_page(page); 531 } 532 pagevec_remove_exceptionals(&pvec); 533 pagevec_release(&pvec); 534 index++; 535 } 536 537 spin_lock(&info->lock); 538 info->swapped -= nr_swaps_freed; 539 shmem_recalc_inode(inode); 540 spin_unlock(&info->lock); 541 } 542 543 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 544 { 545 shmem_undo_range(inode, lstart, lend, false); 546 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 547 } 548 EXPORT_SYMBOL_GPL(shmem_truncate_range); 549 550 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 551 { 552 struct inode *inode = dentry->d_inode; 553 struct shmem_inode_info *info = SHMEM_I(inode); 554 int error; 555 556 error = inode_change_ok(inode, attr); 557 if (error) 558 return error; 559 560 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 561 loff_t oldsize = inode->i_size; 562 loff_t newsize = attr->ia_size; 563 564 /* protected by i_mutex */ 565 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 566 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 567 return -EPERM; 568 569 if (newsize != oldsize) { 570 error = shmem_reacct_size(SHMEM_I(inode)->flags, 571 oldsize, newsize); 572 if (error) 573 return error; 574 i_size_write(inode, newsize); 575 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 576 } 577 if (newsize < oldsize) { 578 loff_t holebegin = round_up(newsize, PAGE_SIZE); 579 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 580 shmem_truncate_range(inode, newsize, (loff_t)-1); 581 /* unmap again to remove racily COWed private pages */ 582 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 583 } 584 } 585 586 setattr_copy(inode, attr); 587 if (attr->ia_valid & ATTR_MODE) 588 error = posix_acl_chmod(inode, inode->i_mode); 589 return error; 590 } 591 592 static void shmem_evict_inode(struct inode *inode) 593 { 594 struct shmem_inode_info *info = SHMEM_I(inode); 595 596 if (inode->i_mapping->a_ops == &shmem_aops) { 597 shmem_unacct_size(info->flags, inode->i_size); 598 inode->i_size = 0; 599 shmem_truncate_range(inode, 0, (loff_t)-1); 600 if (!list_empty(&info->swaplist)) { 601 mutex_lock(&shmem_swaplist_mutex); 602 list_del_init(&info->swaplist); 603 mutex_unlock(&shmem_swaplist_mutex); 604 } 605 } else 606 kfree(info->symlink); 607 608 simple_xattrs_free(&info->xattrs); 609 WARN_ON(inode->i_blocks); 610 shmem_free_inode(inode->i_sb); 611 clear_inode(inode); 612 } 613 614 /* 615 * If swap found in inode, free it and move page from swapcache to filecache. 616 */ 617 static int shmem_unuse_inode(struct shmem_inode_info *info, 618 swp_entry_t swap, struct page **pagep) 619 { 620 struct address_space *mapping = info->vfs_inode.i_mapping; 621 void *radswap; 622 pgoff_t index; 623 gfp_t gfp; 624 int error = 0; 625 626 radswap = swp_to_radix_entry(swap); 627 index = radix_tree_locate_item(&mapping->page_tree, radswap); 628 if (index == -1) 629 return -EAGAIN; /* tell shmem_unuse we found nothing */ 630 631 /* 632 * Move _head_ to start search for next from here. 633 * But be careful: shmem_evict_inode checks list_empty without taking 634 * mutex, and there's an instant in list_move_tail when info->swaplist 635 * would appear empty, if it were the only one on shmem_swaplist. 636 */ 637 if (shmem_swaplist.next != &info->swaplist) 638 list_move_tail(&shmem_swaplist, &info->swaplist); 639 640 gfp = mapping_gfp_mask(mapping); 641 if (shmem_should_replace_page(*pagep, gfp)) { 642 mutex_unlock(&shmem_swaplist_mutex); 643 error = shmem_replace_page(pagep, gfp, info, index); 644 mutex_lock(&shmem_swaplist_mutex); 645 /* 646 * We needed to drop mutex to make that restrictive page 647 * allocation, but the inode might have been freed while we 648 * dropped it: although a racing shmem_evict_inode() cannot 649 * complete without emptying the radix_tree, our page lock 650 * on this swapcache page is not enough to prevent that - 651 * free_swap_and_cache() of our swap entry will only 652 * trylock_page(), removing swap from radix_tree whatever. 653 * 654 * We must not proceed to shmem_add_to_page_cache() if the 655 * inode has been freed, but of course we cannot rely on 656 * inode or mapping or info to check that. However, we can 657 * safely check if our swap entry is still in use (and here 658 * it can't have got reused for another page): if it's still 659 * in use, then the inode cannot have been freed yet, and we 660 * can safely proceed (if it's no longer in use, that tells 661 * nothing about the inode, but we don't need to unuse swap). 662 */ 663 if (!page_swapcount(*pagep)) 664 error = -ENOENT; 665 } 666 667 /* 668 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 669 * but also to hold up shmem_evict_inode(): so inode cannot be freed 670 * beneath us (pagelock doesn't help until the page is in pagecache). 671 */ 672 if (!error) 673 error = shmem_add_to_page_cache(*pagep, mapping, index, 674 radswap); 675 if (error != -ENOMEM) { 676 /* 677 * Truncation and eviction use free_swap_and_cache(), which 678 * only does trylock page: if we raced, best clean up here. 679 */ 680 delete_from_swap_cache(*pagep); 681 set_page_dirty(*pagep); 682 if (!error) { 683 spin_lock(&info->lock); 684 info->swapped--; 685 spin_unlock(&info->lock); 686 swap_free(swap); 687 } 688 } 689 return error; 690 } 691 692 /* 693 * Search through swapped inodes to find and replace swap by page. 694 */ 695 int shmem_unuse(swp_entry_t swap, struct page *page) 696 { 697 struct list_head *this, *next; 698 struct shmem_inode_info *info; 699 struct mem_cgroup *memcg; 700 int error = 0; 701 702 /* 703 * There's a faint possibility that swap page was replaced before 704 * caller locked it: caller will come back later with the right page. 705 */ 706 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 707 goto out; 708 709 /* 710 * Charge page using GFP_KERNEL while we can wait, before taking 711 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 712 * Charged back to the user (not to caller) when swap account is used. 713 */ 714 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg); 715 if (error) 716 goto out; 717 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 718 error = -EAGAIN; 719 720 mutex_lock(&shmem_swaplist_mutex); 721 list_for_each_safe(this, next, &shmem_swaplist) { 722 info = list_entry(this, struct shmem_inode_info, swaplist); 723 if (info->swapped) 724 error = shmem_unuse_inode(info, swap, &page); 725 else 726 list_del_init(&info->swaplist); 727 cond_resched(); 728 if (error != -EAGAIN) 729 break; 730 /* found nothing in this: move on to search the next */ 731 } 732 mutex_unlock(&shmem_swaplist_mutex); 733 734 if (error) { 735 if (error != -ENOMEM) 736 error = 0; 737 mem_cgroup_cancel_charge(page, memcg); 738 } else 739 mem_cgroup_commit_charge(page, memcg, true); 740 out: 741 unlock_page(page); 742 page_cache_release(page); 743 return error; 744 } 745 746 /* 747 * Move the page from the page cache to the swap cache. 748 */ 749 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 750 { 751 struct shmem_inode_info *info; 752 struct address_space *mapping; 753 struct inode *inode; 754 swp_entry_t swap; 755 pgoff_t index; 756 757 BUG_ON(!PageLocked(page)); 758 mapping = page->mapping; 759 index = page->index; 760 inode = mapping->host; 761 info = SHMEM_I(inode); 762 if (info->flags & VM_LOCKED) 763 goto redirty; 764 if (!total_swap_pages) 765 goto redirty; 766 767 /* 768 * shmem_backing_dev_info's capabilities prevent regular writeback or 769 * sync from ever calling shmem_writepage; but a stacking filesystem 770 * might use ->writepage of its underlying filesystem, in which case 771 * tmpfs should write out to swap only in response to memory pressure, 772 * and not for the writeback threads or sync. 773 */ 774 if (!wbc->for_reclaim) { 775 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 776 goto redirty; 777 } 778 779 /* 780 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 781 * value into swapfile.c, the only way we can correctly account for a 782 * fallocated page arriving here is now to initialize it and write it. 783 * 784 * That's okay for a page already fallocated earlier, but if we have 785 * not yet completed the fallocation, then (a) we want to keep track 786 * of this page in case we have to undo it, and (b) it may not be a 787 * good idea to continue anyway, once we're pushing into swap. So 788 * reactivate the page, and let shmem_fallocate() quit when too many. 789 */ 790 if (!PageUptodate(page)) { 791 if (inode->i_private) { 792 struct shmem_falloc *shmem_falloc; 793 spin_lock(&inode->i_lock); 794 shmem_falloc = inode->i_private; 795 if (shmem_falloc && 796 !shmem_falloc->waitq && 797 index >= shmem_falloc->start && 798 index < shmem_falloc->next) 799 shmem_falloc->nr_unswapped++; 800 else 801 shmem_falloc = NULL; 802 spin_unlock(&inode->i_lock); 803 if (shmem_falloc) 804 goto redirty; 805 } 806 clear_highpage(page); 807 flush_dcache_page(page); 808 SetPageUptodate(page); 809 } 810 811 swap = get_swap_page(); 812 if (!swap.val) 813 goto redirty; 814 815 /* 816 * Add inode to shmem_unuse()'s list of swapped-out inodes, 817 * if it's not already there. Do it now before the page is 818 * moved to swap cache, when its pagelock no longer protects 819 * the inode from eviction. But don't unlock the mutex until 820 * we've incremented swapped, because shmem_unuse_inode() will 821 * prune a !swapped inode from the swaplist under this mutex. 822 */ 823 mutex_lock(&shmem_swaplist_mutex); 824 if (list_empty(&info->swaplist)) 825 list_add_tail(&info->swaplist, &shmem_swaplist); 826 827 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 828 swap_shmem_alloc(swap); 829 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 830 831 spin_lock(&info->lock); 832 info->swapped++; 833 shmem_recalc_inode(inode); 834 spin_unlock(&info->lock); 835 836 mutex_unlock(&shmem_swaplist_mutex); 837 BUG_ON(page_mapped(page)); 838 swap_writepage(page, wbc); 839 return 0; 840 } 841 842 mutex_unlock(&shmem_swaplist_mutex); 843 swapcache_free(swap); 844 redirty: 845 set_page_dirty(page); 846 if (wbc->for_reclaim) 847 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 848 unlock_page(page); 849 return 0; 850 } 851 852 #ifdef CONFIG_NUMA 853 #ifdef CONFIG_TMPFS 854 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 855 { 856 char buffer[64]; 857 858 if (!mpol || mpol->mode == MPOL_DEFAULT) 859 return; /* show nothing */ 860 861 mpol_to_str(buffer, sizeof(buffer), mpol); 862 863 seq_printf(seq, ",mpol=%s", buffer); 864 } 865 866 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 867 { 868 struct mempolicy *mpol = NULL; 869 if (sbinfo->mpol) { 870 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 871 mpol = sbinfo->mpol; 872 mpol_get(mpol); 873 spin_unlock(&sbinfo->stat_lock); 874 } 875 return mpol; 876 } 877 #endif /* CONFIG_TMPFS */ 878 879 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 880 struct shmem_inode_info *info, pgoff_t index) 881 { 882 struct vm_area_struct pvma; 883 struct page *page; 884 885 /* Create a pseudo vma that just contains the policy */ 886 pvma.vm_start = 0; 887 /* Bias interleave by inode number to distribute better across nodes */ 888 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 889 pvma.vm_ops = NULL; 890 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 891 892 page = swapin_readahead(swap, gfp, &pvma, 0); 893 894 /* Drop reference taken by mpol_shared_policy_lookup() */ 895 mpol_cond_put(pvma.vm_policy); 896 897 return page; 898 } 899 900 static struct page *shmem_alloc_page(gfp_t gfp, 901 struct shmem_inode_info *info, pgoff_t index) 902 { 903 struct vm_area_struct pvma; 904 struct page *page; 905 906 /* Create a pseudo vma that just contains the policy */ 907 pvma.vm_start = 0; 908 /* Bias interleave by inode number to distribute better across nodes */ 909 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 910 pvma.vm_ops = NULL; 911 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 912 913 page = alloc_page_vma(gfp, &pvma, 0); 914 915 /* Drop reference taken by mpol_shared_policy_lookup() */ 916 mpol_cond_put(pvma.vm_policy); 917 918 return page; 919 } 920 #else /* !CONFIG_NUMA */ 921 #ifdef CONFIG_TMPFS 922 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 923 { 924 } 925 #endif /* CONFIG_TMPFS */ 926 927 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 928 struct shmem_inode_info *info, pgoff_t index) 929 { 930 return swapin_readahead(swap, gfp, NULL, 0); 931 } 932 933 static inline struct page *shmem_alloc_page(gfp_t gfp, 934 struct shmem_inode_info *info, pgoff_t index) 935 { 936 return alloc_page(gfp); 937 } 938 #endif /* CONFIG_NUMA */ 939 940 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 941 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 942 { 943 return NULL; 944 } 945 #endif 946 947 /* 948 * When a page is moved from swapcache to shmem filecache (either by the 949 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 950 * shmem_unuse_inode()), it may have been read in earlier from swap, in 951 * ignorance of the mapping it belongs to. If that mapping has special 952 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 953 * we may need to copy to a suitable page before moving to filecache. 954 * 955 * In a future release, this may well be extended to respect cpuset and 956 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 957 * but for now it is a simple matter of zone. 958 */ 959 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 960 { 961 return page_zonenum(page) > gfp_zone(gfp); 962 } 963 964 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 965 struct shmem_inode_info *info, pgoff_t index) 966 { 967 struct page *oldpage, *newpage; 968 struct address_space *swap_mapping; 969 pgoff_t swap_index; 970 int error; 971 972 oldpage = *pagep; 973 swap_index = page_private(oldpage); 974 swap_mapping = page_mapping(oldpage); 975 976 /* 977 * We have arrived here because our zones are constrained, so don't 978 * limit chance of success by further cpuset and node constraints. 979 */ 980 gfp &= ~GFP_CONSTRAINT_MASK; 981 newpage = shmem_alloc_page(gfp, info, index); 982 if (!newpage) 983 return -ENOMEM; 984 985 page_cache_get(newpage); 986 copy_highpage(newpage, oldpage); 987 flush_dcache_page(newpage); 988 989 __set_page_locked(newpage); 990 SetPageUptodate(newpage); 991 SetPageSwapBacked(newpage); 992 set_page_private(newpage, swap_index); 993 SetPageSwapCache(newpage); 994 995 /* 996 * Our caller will very soon move newpage out of swapcache, but it's 997 * a nice clean interface for us to replace oldpage by newpage there. 998 */ 999 spin_lock_irq(&swap_mapping->tree_lock); 1000 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1001 newpage); 1002 if (!error) { 1003 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1004 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1005 } 1006 spin_unlock_irq(&swap_mapping->tree_lock); 1007 1008 if (unlikely(error)) { 1009 /* 1010 * Is this possible? I think not, now that our callers check 1011 * both PageSwapCache and page_private after getting page lock; 1012 * but be defensive. Reverse old to newpage for clear and free. 1013 */ 1014 oldpage = newpage; 1015 } else { 1016 mem_cgroup_migrate(oldpage, newpage, false); 1017 lru_cache_add_anon(newpage); 1018 *pagep = newpage; 1019 } 1020 1021 ClearPageSwapCache(oldpage); 1022 set_page_private(oldpage, 0); 1023 1024 unlock_page(oldpage); 1025 page_cache_release(oldpage); 1026 page_cache_release(oldpage); 1027 return error; 1028 } 1029 1030 /* 1031 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1032 * 1033 * If we allocate a new one we do not mark it dirty. That's up to the 1034 * vm. If we swap it in we mark it dirty since we also free the swap 1035 * entry since a page cannot live in both the swap and page cache 1036 */ 1037 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1038 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1039 { 1040 struct address_space *mapping = inode->i_mapping; 1041 struct shmem_inode_info *info; 1042 struct shmem_sb_info *sbinfo; 1043 struct mem_cgroup *memcg; 1044 struct page *page; 1045 swp_entry_t swap; 1046 int error; 1047 int once = 0; 1048 int alloced = 0; 1049 1050 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1051 return -EFBIG; 1052 repeat: 1053 swap.val = 0; 1054 page = find_lock_entry(mapping, index); 1055 if (radix_tree_exceptional_entry(page)) { 1056 swap = radix_to_swp_entry(page); 1057 page = NULL; 1058 } 1059 1060 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1061 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1062 error = -EINVAL; 1063 goto failed; 1064 } 1065 1066 if (page && sgp == SGP_WRITE) 1067 mark_page_accessed(page); 1068 1069 /* fallocated page? */ 1070 if (page && !PageUptodate(page)) { 1071 if (sgp != SGP_READ) 1072 goto clear; 1073 unlock_page(page); 1074 page_cache_release(page); 1075 page = NULL; 1076 } 1077 if (page || (sgp == SGP_READ && !swap.val)) { 1078 *pagep = page; 1079 return 0; 1080 } 1081 1082 /* 1083 * Fast cache lookup did not find it: 1084 * bring it back from swap or allocate. 1085 */ 1086 info = SHMEM_I(inode); 1087 sbinfo = SHMEM_SB(inode->i_sb); 1088 1089 if (swap.val) { 1090 /* Look it up and read it in.. */ 1091 page = lookup_swap_cache(swap); 1092 if (!page) { 1093 /* here we actually do the io */ 1094 if (fault_type) 1095 *fault_type |= VM_FAULT_MAJOR; 1096 page = shmem_swapin(swap, gfp, info, index); 1097 if (!page) { 1098 error = -ENOMEM; 1099 goto failed; 1100 } 1101 } 1102 1103 /* We have to do this with page locked to prevent races */ 1104 lock_page(page); 1105 if (!PageSwapCache(page) || page_private(page) != swap.val || 1106 !shmem_confirm_swap(mapping, index, swap)) { 1107 error = -EEXIST; /* try again */ 1108 goto unlock; 1109 } 1110 if (!PageUptodate(page)) { 1111 error = -EIO; 1112 goto failed; 1113 } 1114 wait_on_page_writeback(page); 1115 1116 if (shmem_should_replace_page(page, gfp)) { 1117 error = shmem_replace_page(&page, gfp, info, index); 1118 if (error) 1119 goto failed; 1120 } 1121 1122 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1123 if (!error) { 1124 error = shmem_add_to_page_cache(page, mapping, index, 1125 swp_to_radix_entry(swap)); 1126 /* 1127 * We already confirmed swap under page lock, and make 1128 * no memory allocation here, so usually no possibility 1129 * of error; but free_swap_and_cache() only trylocks a 1130 * page, so it is just possible that the entry has been 1131 * truncated or holepunched since swap was confirmed. 1132 * shmem_undo_range() will have done some of the 1133 * unaccounting, now delete_from_swap_cache() will do 1134 * the rest (including mem_cgroup_uncharge_swapcache). 1135 * Reset swap.val? No, leave it so "failed" goes back to 1136 * "repeat": reading a hole and writing should succeed. 1137 */ 1138 if (error) { 1139 mem_cgroup_cancel_charge(page, memcg); 1140 delete_from_swap_cache(page); 1141 } 1142 } 1143 if (error) 1144 goto failed; 1145 1146 mem_cgroup_commit_charge(page, memcg, true); 1147 1148 spin_lock(&info->lock); 1149 info->swapped--; 1150 shmem_recalc_inode(inode); 1151 spin_unlock(&info->lock); 1152 1153 if (sgp == SGP_WRITE) 1154 mark_page_accessed(page); 1155 1156 delete_from_swap_cache(page); 1157 set_page_dirty(page); 1158 swap_free(swap); 1159 1160 } else { 1161 if (shmem_acct_block(info->flags)) { 1162 error = -ENOSPC; 1163 goto failed; 1164 } 1165 if (sbinfo->max_blocks) { 1166 if (percpu_counter_compare(&sbinfo->used_blocks, 1167 sbinfo->max_blocks) >= 0) { 1168 error = -ENOSPC; 1169 goto unacct; 1170 } 1171 percpu_counter_inc(&sbinfo->used_blocks); 1172 } 1173 1174 page = shmem_alloc_page(gfp, info, index); 1175 if (!page) { 1176 error = -ENOMEM; 1177 goto decused; 1178 } 1179 1180 __SetPageSwapBacked(page); 1181 __set_page_locked(page); 1182 if (sgp == SGP_WRITE) 1183 __SetPageReferenced(page); 1184 1185 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1186 if (error) 1187 goto decused; 1188 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1189 if (!error) { 1190 error = shmem_add_to_page_cache(page, mapping, index, 1191 NULL); 1192 radix_tree_preload_end(); 1193 } 1194 if (error) { 1195 mem_cgroup_cancel_charge(page, memcg); 1196 goto decused; 1197 } 1198 mem_cgroup_commit_charge(page, memcg, false); 1199 lru_cache_add_anon(page); 1200 1201 spin_lock(&info->lock); 1202 info->alloced++; 1203 inode->i_blocks += BLOCKS_PER_PAGE; 1204 shmem_recalc_inode(inode); 1205 spin_unlock(&info->lock); 1206 alloced = true; 1207 1208 /* 1209 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1210 */ 1211 if (sgp == SGP_FALLOC) 1212 sgp = SGP_WRITE; 1213 clear: 1214 /* 1215 * Let SGP_WRITE caller clear ends if write does not fill page; 1216 * but SGP_FALLOC on a page fallocated earlier must initialize 1217 * it now, lest undo on failure cancel our earlier guarantee. 1218 */ 1219 if (sgp != SGP_WRITE) { 1220 clear_highpage(page); 1221 flush_dcache_page(page); 1222 SetPageUptodate(page); 1223 } 1224 if (sgp == SGP_DIRTY) 1225 set_page_dirty(page); 1226 } 1227 1228 /* Perhaps the file has been truncated since we checked */ 1229 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1230 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1231 error = -EINVAL; 1232 if (alloced) 1233 goto trunc; 1234 else 1235 goto failed; 1236 } 1237 *pagep = page; 1238 return 0; 1239 1240 /* 1241 * Error recovery. 1242 */ 1243 trunc: 1244 info = SHMEM_I(inode); 1245 ClearPageDirty(page); 1246 delete_from_page_cache(page); 1247 spin_lock(&info->lock); 1248 info->alloced--; 1249 inode->i_blocks -= BLOCKS_PER_PAGE; 1250 spin_unlock(&info->lock); 1251 decused: 1252 sbinfo = SHMEM_SB(inode->i_sb); 1253 if (sbinfo->max_blocks) 1254 percpu_counter_add(&sbinfo->used_blocks, -1); 1255 unacct: 1256 shmem_unacct_blocks(info->flags, 1); 1257 failed: 1258 if (swap.val && error != -EINVAL && 1259 !shmem_confirm_swap(mapping, index, swap)) 1260 error = -EEXIST; 1261 unlock: 1262 if (page) { 1263 unlock_page(page); 1264 page_cache_release(page); 1265 } 1266 if (error == -ENOSPC && !once++) { 1267 info = SHMEM_I(inode); 1268 spin_lock(&info->lock); 1269 shmem_recalc_inode(inode); 1270 spin_unlock(&info->lock); 1271 goto repeat; 1272 } 1273 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1274 goto repeat; 1275 return error; 1276 } 1277 1278 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1279 { 1280 struct inode *inode = file_inode(vma->vm_file); 1281 int error; 1282 int ret = VM_FAULT_LOCKED; 1283 1284 /* 1285 * Trinity finds that probing a hole which tmpfs is punching can 1286 * prevent the hole-punch from ever completing: which in turn 1287 * locks writers out with its hold on i_mutex. So refrain from 1288 * faulting pages into the hole while it's being punched. Although 1289 * shmem_undo_range() does remove the additions, it may be unable to 1290 * keep up, as each new page needs its own unmap_mapping_range() call, 1291 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1292 * 1293 * It does not matter if we sometimes reach this check just before the 1294 * hole-punch begins, so that one fault then races with the punch: 1295 * we just need to make racing faults a rare case. 1296 * 1297 * The implementation below would be much simpler if we just used a 1298 * standard mutex or completion: but we cannot take i_mutex in fault, 1299 * and bloating every shmem inode for this unlikely case would be sad. 1300 */ 1301 if (unlikely(inode->i_private)) { 1302 struct shmem_falloc *shmem_falloc; 1303 1304 spin_lock(&inode->i_lock); 1305 shmem_falloc = inode->i_private; 1306 if (shmem_falloc && 1307 shmem_falloc->waitq && 1308 vmf->pgoff >= shmem_falloc->start && 1309 vmf->pgoff < shmem_falloc->next) { 1310 wait_queue_head_t *shmem_falloc_waitq; 1311 DEFINE_WAIT(shmem_fault_wait); 1312 1313 ret = VM_FAULT_NOPAGE; 1314 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1315 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1316 /* It's polite to up mmap_sem if we can */ 1317 up_read(&vma->vm_mm->mmap_sem); 1318 ret = VM_FAULT_RETRY; 1319 } 1320 1321 shmem_falloc_waitq = shmem_falloc->waitq; 1322 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1323 TASK_UNINTERRUPTIBLE); 1324 spin_unlock(&inode->i_lock); 1325 schedule(); 1326 1327 /* 1328 * shmem_falloc_waitq points into the shmem_fallocate() 1329 * stack of the hole-punching task: shmem_falloc_waitq 1330 * is usually invalid by the time we reach here, but 1331 * finish_wait() does not dereference it in that case; 1332 * though i_lock needed lest racing with wake_up_all(). 1333 */ 1334 spin_lock(&inode->i_lock); 1335 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1336 spin_unlock(&inode->i_lock); 1337 return ret; 1338 } 1339 spin_unlock(&inode->i_lock); 1340 } 1341 1342 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1343 if (error) 1344 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1345 1346 if (ret & VM_FAULT_MAJOR) { 1347 count_vm_event(PGMAJFAULT); 1348 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1349 } 1350 return ret; 1351 } 1352 1353 #ifdef CONFIG_NUMA 1354 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1355 { 1356 struct inode *inode = file_inode(vma->vm_file); 1357 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1358 } 1359 1360 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1361 unsigned long addr) 1362 { 1363 struct inode *inode = file_inode(vma->vm_file); 1364 pgoff_t index; 1365 1366 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1367 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1368 } 1369 #endif 1370 1371 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1372 { 1373 struct inode *inode = file_inode(file); 1374 struct shmem_inode_info *info = SHMEM_I(inode); 1375 int retval = -ENOMEM; 1376 1377 spin_lock(&info->lock); 1378 if (lock && !(info->flags & VM_LOCKED)) { 1379 if (!user_shm_lock(inode->i_size, user)) 1380 goto out_nomem; 1381 info->flags |= VM_LOCKED; 1382 mapping_set_unevictable(file->f_mapping); 1383 } 1384 if (!lock && (info->flags & VM_LOCKED) && user) { 1385 user_shm_unlock(inode->i_size, user); 1386 info->flags &= ~VM_LOCKED; 1387 mapping_clear_unevictable(file->f_mapping); 1388 } 1389 retval = 0; 1390 1391 out_nomem: 1392 spin_unlock(&info->lock); 1393 return retval; 1394 } 1395 1396 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1397 { 1398 file_accessed(file); 1399 vma->vm_ops = &shmem_vm_ops; 1400 return 0; 1401 } 1402 1403 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1404 umode_t mode, dev_t dev, unsigned long flags) 1405 { 1406 struct inode *inode; 1407 struct shmem_inode_info *info; 1408 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1409 1410 if (shmem_reserve_inode(sb)) 1411 return NULL; 1412 1413 inode = new_inode(sb); 1414 if (inode) { 1415 inode->i_ino = get_next_ino(); 1416 inode_init_owner(inode, dir, mode); 1417 inode->i_blocks = 0; 1418 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1419 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1420 inode->i_generation = get_seconds(); 1421 info = SHMEM_I(inode); 1422 memset(info, 0, (char *)inode - (char *)info); 1423 spin_lock_init(&info->lock); 1424 info->seals = F_SEAL_SEAL; 1425 info->flags = flags & VM_NORESERVE; 1426 INIT_LIST_HEAD(&info->swaplist); 1427 simple_xattrs_init(&info->xattrs); 1428 cache_no_acl(inode); 1429 1430 switch (mode & S_IFMT) { 1431 default: 1432 inode->i_op = &shmem_special_inode_operations; 1433 init_special_inode(inode, mode, dev); 1434 break; 1435 case S_IFREG: 1436 inode->i_mapping->a_ops = &shmem_aops; 1437 inode->i_op = &shmem_inode_operations; 1438 inode->i_fop = &shmem_file_operations; 1439 mpol_shared_policy_init(&info->policy, 1440 shmem_get_sbmpol(sbinfo)); 1441 break; 1442 case S_IFDIR: 1443 inc_nlink(inode); 1444 /* Some things misbehave if size == 0 on a directory */ 1445 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1446 inode->i_op = &shmem_dir_inode_operations; 1447 inode->i_fop = &simple_dir_operations; 1448 break; 1449 case S_IFLNK: 1450 /* 1451 * Must not load anything in the rbtree, 1452 * mpol_free_shared_policy will not be called. 1453 */ 1454 mpol_shared_policy_init(&info->policy, NULL); 1455 break; 1456 } 1457 } else 1458 shmem_free_inode(sb); 1459 return inode; 1460 } 1461 1462 bool shmem_mapping(struct address_space *mapping) 1463 { 1464 return mapping->backing_dev_info == &shmem_backing_dev_info; 1465 } 1466 1467 #ifdef CONFIG_TMPFS 1468 static const struct inode_operations shmem_symlink_inode_operations; 1469 static const struct inode_operations shmem_short_symlink_operations; 1470 1471 #ifdef CONFIG_TMPFS_XATTR 1472 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1473 #else 1474 #define shmem_initxattrs NULL 1475 #endif 1476 1477 static int 1478 shmem_write_begin(struct file *file, struct address_space *mapping, 1479 loff_t pos, unsigned len, unsigned flags, 1480 struct page **pagep, void **fsdata) 1481 { 1482 struct inode *inode = mapping->host; 1483 struct shmem_inode_info *info = SHMEM_I(inode); 1484 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1485 1486 /* i_mutex is held by caller */ 1487 if (unlikely(info->seals)) { 1488 if (info->seals & F_SEAL_WRITE) 1489 return -EPERM; 1490 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1491 return -EPERM; 1492 } 1493 1494 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1495 } 1496 1497 static int 1498 shmem_write_end(struct file *file, struct address_space *mapping, 1499 loff_t pos, unsigned len, unsigned copied, 1500 struct page *page, void *fsdata) 1501 { 1502 struct inode *inode = mapping->host; 1503 1504 if (pos + copied > inode->i_size) 1505 i_size_write(inode, pos + copied); 1506 1507 if (!PageUptodate(page)) { 1508 if (copied < PAGE_CACHE_SIZE) { 1509 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1510 zero_user_segments(page, 0, from, 1511 from + copied, PAGE_CACHE_SIZE); 1512 } 1513 SetPageUptodate(page); 1514 } 1515 set_page_dirty(page); 1516 unlock_page(page); 1517 page_cache_release(page); 1518 1519 return copied; 1520 } 1521 1522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1523 { 1524 struct file *file = iocb->ki_filp; 1525 struct inode *inode = file_inode(file); 1526 struct address_space *mapping = inode->i_mapping; 1527 pgoff_t index; 1528 unsigned long offset; 1529 enum sgp_type sgp = SGP_READ; 1530 int error = 0; 1531 ssize_t retval = 0; 1532 loff_t *ppos = &iocb->ki_pos; 1533 1534 /* 1535 * Might this read be for a stacking filesystem? Then when reading 1536 * holes of a sparse file, we actually need to allocate those pages, 1537 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1538 */ 1539 if (segment_eq(get_fs(), KERNEL_DS)) 1540 sgp = SGP_DIRTY; 1541 1542 index = *ppos >> PAGE_CACHE_SHIFT; 1543 offset = *ppos & ~PAGE_CACHE_MASK; 1544 1545 for (;;) { 1546 struct page *page = NULL; 1547 pgoff_t end_index; 1548 unsigned long nr, ret; 1549 loff_t i_size = i_size_read(inode); 1550 1551 end_index = i_size >> PAGE_CACHE_SHIFT; 1552 if (index > end_index) 1553 break; 1554 if (index == end_index) { 1555 nr = i_size & ~PAGE_CACHE_MASK; 1556 if (nr <= offset) 1557 break; 1558 } 1559 1560 error = shmem_getpage(inode, index, &page, sgp, NULL); 1561 if (error) { 1562 if (error == -EINVAL) 1563 error = 0; 1564 break; 1565 } 1566 if (page) 1567 unlock_page(page); 1568 1569 /* 1570 * We must evaluate after, since reads (unlike writes) 1571 * are called without i_mutex protection against truncate 1572 */ 1573 nr = PAGE_CACHE_SIZE; 1574 i_size = i_size_read(inode); 1575 end_index = i_size >> PAGE_CACHE_SHIFT; 1576 if (index == end_index) { 1577 nr = i_size & ~PAGE_CACHE_MASK; 1578 if (nr <= offset) { 1579 if (page) 1580 page_cache_release(page); 1581 break; 1582 } 1583 } 1584 nr -= offset; 1585 1586 if (page) { 1587 /* 1588 * If users can be writing to this page using arbitrary 1589 * virtual addresses, take care about potential aliasing 1590 * before reading the page on the kernel side. 1591 */ 1592 if (mapping_writably_mapped(mapping)) 1593 flush_dcache_page(page); 1594 /* 1595 * Mark the page accessed if we read the beginning. 1596 */ 1597 if (!offset) 1598 mark_page_accessed(page); 1599 } else { 1600 page = ZERO_PAGE(0); 1601 page_cache_get(page); 1602 } 1603 1604 /* 1605 * Ok, we have the page, and it's up-to-date, so 1606 * now we can copy it to user space... 1607 */ 1608 ret = copy_page_to_iter(page, offset, nr, to); 1609 retval += ret; 1610 offset += ret; 1611 index += offset >> PAGE_CACHE_SHIFT; 1612 offset &= ~PAGE_CACHE_MASK; 1613 1614 page_cache_release(page); 1615 if (!iov_iter_count(to)) 1616 break; 1617 if (ret < nr) { 1618 error = -EFAULT; 1619 break; 1620 } 1621 cond_resched(); 1622 } 1623 1624 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1625 file_accessed(file); 1626 return retval ? retval : error; 1627 } 1628 1629 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1630 struct pipe_inode_info *pipe, size_t len, 1631 unsigned int flags) 1632 { 1633 struct address_space *mapping = in->f_mapping; 1634 struct inode *inode = mapping->host; 1635 unsigned int loff, nr_pages, req_pages; 1636 struct page *pages[PIPE_DEF_BUFFERS]; 1637 struct partial_page partial[PIPE_DEF_BUFFERS]; 1638 struct page *page; 1639 pgoff_t index, end_index; 1640 loff_t isize, left; 1641 int error, page_nr; 1642 struct splice_pipe_desc spd = { 1643 .pages = pages, 1644 .partial = partial, 1645 .nr_pages_max = PIPE_DEF_BUFFERS, 1646 .flags = flags, 1647 .ops = &page_cache_pipe_buf_ops, 1648 .spd_release = spd_release_page, 1649 }; 1650 1651 isize = i_size_read(inode); 1652 if (unlikely(*ppos >= isize)) 1653 return 0; 1654 1655 left = isize - *ppos; 1656 if (unlikely(left < len)) 1657 len = left; 1658 1659 if (splice_grow_spd(pipe, &spd)) 1660 return -ENOMEM; 1661 1662 index = *ppos >> PAGE_CACHE_SHIFT; 1663 loff = *ppos & ~PAGE_CACHE_MASK; 1664 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1665 nr_pages = min(req_pages, spd.nr_pages_max); 1666 1667 spd.nr_pages = find_get_pages_contig(mapping, index, 1668 nr_pages, spd.pages); 1669 index += spd.nr_pages; 1670 error = 0; 1671 1672 while (spd.nr_pages < nr_pages) { 1673 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1674 if (error) 1675 break; 1676 unlock_page(page); 1677 spd.pages[spd.nr_pages++] = page; 1678 index++; 1679 } 1680 1681 index = *ppos >> PAGE_CACHE_SHIFT; 1682 nr_pages = spd.nr_pages; 1683 spd.nr_pages = 0; 1684 1685 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1686 unsigned int this_len; 1687 1688 if (!len) 1689 break; 1690 1691 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1692 page = spd.pages[page_nr]; 1693 1694 if (!PageUptodate(page) || page->mapping != mapping) { 1695 error = shmem_getpage(inode, index, &page, 1696 SGP_CACHE, NULL); 1697 if (error) 1698 break; 1699 unlock_page(page); 1700 page_cache_release(spd.pages[page_nr]); 1701 spd.pages[page_nr] = page; 1702 } 1703 1704 isize = i_size_read(inode); 1705 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1706 if (unlikely(!isize || index > end_index)) 1707 break; 1708 1709 if (end_index == index) { 1710 unsigned int plen; 1711 1712 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1713 if (plen <= loff) 1714 break; 1715 1716 this_len = min(this_len, plen - loff); 1717 len = this_len; 1718 } 1719 1720 spd.partial[page_nr].offset = loff; 1721 spd.partial[page_nr].len = this_len; 1722 len -= this_len; 1723 loff = 0; 1724 spd.nr_pages++; 1725 index++; 1726 } 1727 1728 while (page_nr < nr_pages) 1729 page_cache_release(spd.pages[page_nr++]); 1730 1731 if (spd.nr_pages) 1732 error = splice_to_pipe(pipe, &spd); 1733 1734 splice_shrink_spd(&spd); 1735 1736 if (error > 0) { 1737 *ppos += error; 1738 file_accessed(in); 1739 } 1740 return error; 1741 } 1742 1743 /* 1744 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1745 */ 1746 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1747 pgoff_t index, pgoff_t end, int whence) 1748 { 1749 struct page *page; 1750 struct pagevec pvec; 1751 pgoff_t indices[PAGEVEC_SIZE]; 1752 bool done = false; 1753 int i; 1754 1755 pagevec_init(&pvec, 0); 1756 pvec.nr = 1; /* start small: we may be there already */ 1757 while (!done) { 1758 pvec.nr = find_get_entries(mapping, index, 1759 pvec.nr, pvec.pages, indices); 1760 if (!pvec.nr) { 1761 if (whence == SEEK_DATA) 1762 index = end; 1763 break; 1764 } 1765 for (i = 0; i < pvec.nr; i++, index++) { 1766 if (index < indices[i]) { 1767 if (whence == SEEK_HOLE) { 1768 done = true; 1769 break; 1770 } 1771 index = indices[i]; 1772 } 1773 page = pvec.pages[i]; 1774 if (page && !radix_tree_exceptional_entry(page)) { 1775 if (!PageUptodate(page)) 1776 page = NULL; 1777 } 1778 if (index >= end || 1779 (page && whence == SEEK_DATA) || 1780 (!page && whence == SEEK_HOLE)) { 1781 done = true; 1782 break; 1783 } 1784 } 1785 pagevec_remove_exceptionals(&pvec); 1786 pagevec_release(&pvec); 1787 pvec.nr = PAGEVEC_SIZE; 1788 cond_resched(); 1789 } 1790 return index; 1791 } 1792 1793 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1794 { 1795 struct address_space *mapping = file->f_mapping; 1796 struct inode *inode = mapping->host; 1797 pgoff_t start, end; 1798 loff_t new_offset; 1799 1800 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1801 return generic_file_llseek_size(file, offset, whence, 1802 MAX_LFS_FILESIZE, i_size_read(inode)); 1803 mutex_lock(&inode->i_mutex); 1804 /* We're holding i_mutex so we can access i_size directly */ 1805 1806 if (offset < 0) 1807 offset = -EINVAL; 1808 else if (offset >= inode->i_size) 1809 offset = -ENXIO; 1810 else { 1811 start = offset >> PAGE_CACHE_SHIFT; 1812 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1813 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1814 new_offset <<= PAGE_CACHE_SHIFT; 1815 if (new_offset > offset) { 1816 if (new_offset < inode->i_size) 1817 offset = new_offset; 1818 else if (whence == SEEK_DATA) 1819 offset = -ENXIO; 1820 else 1821 offset = inode->i_size; 1822 } 1823 } 1824 1825 if (offset >= 0) 1826 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1827 mutex_unlock(&inode->i_mutex); 1828 return offset; 1829 } 1830 1831 /* 1832 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1833 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1834 */ 1835 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1836 #define LAST_SCAN 4 /* about 150ms max */ 1837 1838 static void shmem_tag_pins(struct address_space *mapping) 1839 { 1840 struct radix_tree_iter iter; 1841 void **slot; 1842 pgoff_t start; 1843 struct page *page; 1844 1845 lru_add_drain(); 1846 start = 0; 1847 rcu_read_lock(); 1848 1849 restart: 1850 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1851 page = radix_tree_deref_slot(slot); 1852 if (!page || radix_tree_exception(page)) { 1853 if (radix_tree_deref_retry(page)) 1854 goto restart; 1855 } else if (page_count(page) - page_mapcount(page) > 1) { 1856 spin_lock_irq(&mapping->tree_lock); 1857 radix_tree_tag_set(&mapping->page_tree, iter.index, 1858 SHMEM_TAG_PINNED); 1859 spin_unlock_irq(&mapping->tree_lock); 1860 } 1861 1862 if (need_resched()) { 1863 cond_resched_rcu(); 1864 start = iter.index + 1; 1865 goto restart; 1866 } 1867 } 1868 rcu_read_unlock(); 1869 } 1870 1871 /* 1872 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1873 * via get_user_pages(), drivers might have some pending I/O without any active 1874 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1875 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1876 * them to be dropped. 1877 * The caller must guarantee that no new user will acquire writable references 1878 * to those pages to avoid races. 1879 */ 1880 static int shmem_wait_for_pins(struct address_space *mapping) 1881 { 1882 struct radix_tree_iter iter; 1883 void **slot; 1884 pgoff_t start; 1885 struct page *page; 1886 int error, scan; 1887 1888 shmem_tag_pins(mapping); 1889 1890 error = 0; 1891 for (scan = 0; scan <= LAST_SCAN; scan++) { 1892 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1893 break; 1894 1895 if (!scan) 1896 lru_add_drain_all(); 1897 else if (schedule_timeout_killable((HZ << scan) / 200)) 1898 scan = LAST_SCAN; 1899 1900 start = 0; 1901 rcu_read_lock(); 1902 restart: 1903 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1904 start, SHMEM_TAG_PINNED) { 1905 1906 page = radix_tree_deref_slot(slot); 1907 if (radix_tree_exception(page)) { 1908 if (radix_tree_deref_retry(page)) 1909 goto restart; 1910 1911 page = NULL; 1912 } 1913 1914 if (page && 1915 page_count(page) - page_mapcount(page) != 1) { 1916 if (scan < LAST_SCAN) 1917 goto continue_resched; 1918 1919 /* 1920 * On the last scan, we clean up all those tags 1921 * we inserted; but make a note that we still 1922 * found pages pinned. 1923 */ 1924 error = -EBUSY; 1925 } 1926 1927 spin_lock_irq(&mapping->tree_lock); 1928 radix_tree_tag_clear(&mapping->page_tree, 1929 iter.index, SHMEM_TAG_PINNED); 1930 spin_unlock_irq(&mapping->tree_lock); 1931 continue_resched: 1932 if (need_resched()) { 1933 cond_resched_rcu(); 1934 start = iter.index + 1; 1935 goto restart; 1936 } 1937 } 1938 rcu_read_unlock(); 1939 } 1940 1941 return error; 1942 } 1943 1944 #define F_ALL_SEALS (F_SEAL_SEAL | \ 1945 F_SEAL_SHRINK | \ 1946 F_SEAL_GROW | \ 1947 F_SEAL_WRITE) 1948 1949 int shmem_add_seals(struct file *file, unsigned int seals) 1950 { 1951 struct inode *inode = file_inode(file); 1952 struct shmem_inode_info *info = SHMEM_I(inode); 1953 int error; 1954 1955 /* 1956 * SEALING 1957 * Sealing allows multiple parties to share a shmem-file but restrict 1958 * access to a specific subset of file operations. Seals can only be 1959 * added, but never removed. This way, mutually untrusted parties can 1960 * share common memory regions with a well-defined policy. A malicious 1961 * peer can thus never perform unwanted operations on a shared object. 1962 * 1963 * Seals are only supported on special shmem-files and always affect 1964 * the whole underlying inode. Once a seal is set, it may prevent some 1965 * kinds of access to the file. Currently, the following seals are 1966 * defined: 1967 * SEAL_SEAL: Prevent further seals from being set on this file 1968 * SEAL_SHRINK: Prevent the file from shrinking 1969 * SEAL_GROW: Prevent the file from growing 1970 * SEAL_WRITE: Prevent write access to the file 1971 * 1972 * As we don't require any trust relationship between two parties, we 1973 * must prevent seals from being removed. Therefore, sealing a file 1974 * only adds a given set of seals to the file, it never touches 1975 * existing seals. Furthermore, the "setting seals"-operation can be 1976 * sealed itself, which basically prevents any further seal from being 1977 * added. 1978 * 1979 * Semantics of sealing are only defined on volatile files. Only 1980 * anonymous shmem files support sealing. More importantly, seals are 1981 * never written to disk. Therefore, there's no plan to support it on 1982 * other file types. 1983 */ 1984 1985 if (file->f_op != &shmem_file_operations) 1986 return -EINVAL; 1987 if (!(file->f_mode & FMODE_WRITE)) 1988 return -EPERM; 1989 if (seals & ~(unsigned int)F_ALL_SEALS) 1990 return -EINVAL; 1991 1992 mutex_lock(&inode->i_mutex); 1993 1994 if (info->seals & F_SEAL_SEAL) { 1995 error = -EPERM; 1996 goto unlock; 1997 } 1998 1999 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2000 error = mapping_deny_writable(file->f_mapping); 2001 if (error) 2002 goto unlock; 2003 2004 error = shmem_wait_for_pins(file->f_mapping); 2005 if (error) { 2006 mapping_allow_writable(file->f_mapping); 2007 goto unlock; 2008 } 2009 } 2010 2011 info->seals |= seals; 2012 error = 0; 2013 2014 unlock: 2015 mutex_unlock(&inode->i_mutex); 2016 return error; 2017 } 2018 EXPORT_SYMBOL_GPL(shmem_add_seals); 2019 2020 int shmem_get_seals(struct file *file) 2021 { 2022 if (file->f_op != &shmem_file_operations) 2023 return -EINVAL; 2024 2025 return SHMEM_I(file_inode(file))->seals; 2026 } 2027 EXPORT_SYMBOL_GPL(shmem_get_seals); 2028 2029 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2030 { 2031 long error; 2032 2033 switch (cmd) { 2034 case F_ADD_SEALS: 2035 /* disallow upper 32bit */ 2036 if (arg > UINT_MAX) 2037 return -EINVAL; 2038 2039 error = shmem_add_seals(file, arg); 2040 break; 2041 case F_GET_SEALS: 2042 error = shmem_get_seals(file); 2043 break; 2044 default: 2045 error = -EINVAL; 2046 break; 2047 } 2048 2049 return error; 2050 } 2051 2052 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2053 loff_t len) 2054 { 2055 struct inode *inode = file_inode(file); 2056 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2057 struct shmem_inode_info *info = SHMEM_I(inode); 2058 struct shmem_falloc shmem_falloc; 2059 pgoff_t start, index, end; 2060 int error; 2061 2062 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2063 return -EOPNOTSUPP; 2064 2065 mutex_lock(&inode->i_mutex); 2066 2067 if (mode & FALLOC_FL_PUNCH_HOLE) { 2068 struct address_space *mapping = file->f_mapping; 2069 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2070 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2071 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2072 2073 /* protected by i_mutex */ 2074 if (info->seals & F_SEAL_WRITE) { 2075 error = -EPERM; 2076 goto out; 2077 } 2078 2079 shmem_falloc.waitq = &shmem_falloc_waitq; 2080 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2081 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2082 spin_lock(&inode->i_lock); 2083 inode->i_private = &shmem_falloc; 2084 spin_unlock(&inode->i_lock); 2085 2086 if ((u64)unmap_end > (u64)unmap_start) 2087 unmap_mapping_range(mapping, unmap_start, 2088 1 + unmap_end - unmap_start, 0); 2089 shmem_truncate_range(inode, offset, offset + len - 1); 2090 /* No need to unmap again: hole-punching leaves COWed pages */ 2091 2092 spin_lock(&inode->i_lock); 2093 inode->i_private = NULL; 2094 wake_up_all(&shmem_falloc_waitq); 2095 spin_unlock(&inode->i_lock); 2096 error = 0; 2097 goto out; 2098 } 2099 2100 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2101 error = inode_newsize_ok(inode, offset + len); 2102 if (error) 2103 goto out; 2104 2105 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2106 error = -EPERM; 2107 goto out; 2108 } 2109 2110 start = offset >> PAGE_CACHE_SHIFT; 2111 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2112 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2113 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2114 error = -ENOSPC; 2115 goto out; 2116 } 2117 2118 shmem_falloc.waitq = NULL; 2119 shmem_falloc.start = start; 2120 shmem_falloc.next = start; 2121 shmem_falloc.nr_falloced = 0; 2122 shmem_falloc.nr_unswapped = 0; 2123 spin_lock(&inode->i_lock); 2124 inode->i_private = &shmem_falloc; 2125 spin_unlock(&inode->i_lock); 2126 2127 for (index = start; index < end; index++) { 2128 struct page *page; 2129 2130 /* 2131 * Good, the fallocate(2) manpage permits EINTR: we may have 2132 * been interrupted because we are using up too much memory. 2133 */ 2134 if (signal_pending(current)) 2135 error = -EINTR; 2136 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2137 error = -ENOMEM; 2138 else 2139 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2140 NULL); 2141 if (error) { 2142 /* Remove the !PageUptodate pages we added */ 2143 shmem_undo_range(inode, 2144 (loff_t)start << PAGE_CACHE_SHIFT, 2145 (loff_t)index << PAGE_CACHE_SHIFT, true); 2146 goto undone; 2147 } 2148 2149 /* 2150 * Inform shmem_writepage() how far we have reached. 2151 * No need for lock or barrier: we have the page lock. 2152 */ 2153 shmem_falloc.next++; 2154 if (!PageUptodate(page)) 2155 shmem_falloc.nr_falloced++; 2156 2157 /* 2158 * If !PageUptodate, leave it that way so that freeable pages 2159 * can be recognized if we need to rollback on error later. 2160 * But set_page_dirty so that memory pressure will swap rather 2161 * than free the pages we are allocating (and SGP_CACHE pages 2162 * might still be clean: we now need to mark those dirty too). 2163 */ 2164 set_page_dirty(page); 2165 unlock_page(page); 2166 page_cache_release(page); 2167 cond_resched(); 2168 } 2169 2170 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2171 i_size_write(inode, offset + len); 2172 inode->i_ctime = CURRENT_TIME; 2173 undone: 2174 spin_lock(&inode->i_lock); 2175 inode->i_private = NULL; 2176 spin_unlock(&inode->i_lock); 2177 out: 2178 mutex_unlock(&inode->i_mutex); 2179 return error; 2180 } 2181 2182 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2183 { 2184 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2185 2186 buf->f_type = TMPFS_MAGIC; 2187 buf->f_bsize = PAGE_CACHE_SIZE; 2188 buf->f_namelen = NAME_MAX; 2189 if (sbinfo->max_blocks) { 2190 buf->f_blocks = sbinfo->max_blocks; 2191 buf->f_bavail = 2192 buf->f_bfree = sbinfo->max_blocks - 2193 percpu_counter_sum(&sbinfo->used_blocks); 2194 } 2195 if (sbinfo->max_inodes) { 2196 buf->f_files = sbinfo->max_inodes; 2197 buf->f_ffree = sbinfo->free_inodes; 2198 } 2199 /* else leave those fields 0 like simple_statfs */ 2200 return 0; 2201 } 2202 2203 /* 2204 * File creation. Allocate an inode, and we're done.. 2205 */ 2206 static int 2207 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2208 { 2209 struct inode *inode; 2210 int error = -ENOSPC; 2211 2212 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2213 if (inode) { 2214 error = simple_acl_create(dir, inode); 2215 if (error) 2216 goto out_iput; 2217 error = security_inode_init_security(inode, dir, 2218 &dentry->d_name, 2219 shmem_initxattrs, NULL); 2220 if (error && error != -EOPNOTSUPP) 2221 goto out_iput; 2222 2223 error = 0; 2224 dir->i_size += BOGO_DIRENT_SIZE; 2225 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2226 d_instantiate(dentry, inode); 2227 dget(dentry); /* Extra count - pin the dentry in core */ 2228 } 2229 return error; 2230 out_iput: 2231 iput(inode); 2232 return error; 2233 } 2234 2235 static int 2236 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2237 { 2238 struct inode *inode; 2239 int error = -ENOSPC; 2240 2241 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2242 if (inode) { 2243 error = security_inode_init_security(inode, dir, 2244 NULL, 2245 shmem_initxattrs, NULL); 2246 if (error && error != -EOPNOTSUPP) 2247 goto out_iput; 2248 error = simple_acl_create(dir, inode); 2249 if (error) 2250 goto out_iput; 2251 d_tmpfile(dentry, inode); 2252 } 2253 return error; 2254 out_iput: 2255 iput(inode); 2256 return error; 2257 } 2258 2259 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2260 { 2261 int error; 2262 2263 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2264 return error; 2265 inc_nlink(dir); 2266 return 0; 2267 } 2268 2269 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2270 bool excl) 2271 { 2272 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2273 } 2274 2275 /* 2276 * Link a file.. 2277 */ 2278 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2279 { 2280 struct inode *inode = old_dentry->d_inode; 2281 int ret; 2282 2283 /* 2284 * No ordinary (disk based) filesystem counts links as inodes; 2285 * but each new link needs a new dentry, pinning lowmem, and 2286 * tmpfs dentries cannot be pruned until they are unlinked. 2287 */ 2288 ret = shmem_reserve_inode(inode->i_sb); 2289 if (ret) 2290 goto out; 2291 2292 dir->i_size += BOGO_DIRENT_SIZE; 2293 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2294 inc_nlink(inode); 2295 ihold(inode); /* New dentry reference */ 2296 dget(dentry); /* Extra pinning count for the created dentry */ 2297 d_instantiate(dentry, inode); 2298 out: 2299 return ret; 2300 } 2301 2302 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2303 { 2304 struct inode *inode = dentry->d_inode; 2305 2306 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2307 shmem_free_inode(inode->i_sb); 2308 2309 dir->i_size -= BOGO_DIRENT_SIZE; 2310 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2311 drop_nlink(inode); 2312 dput(dentry); /* Undo the count from "create" - this does all the work */ 2313 return 0; 2314 } 2315 2316 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2317 { 2318 if (!simple_empty(dentry)) 2319 return -ENOTEMPTY; 2320 2321 drop_nlink(dentry->d_inode); 2322 drop_nlink(dir); 2323 return shmem_unlink(dir, dentry); 2324 } 2325 2326 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2327 { 2328 bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2329 bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 2330 2331 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2332 if (old_is_dir) { 2333 drop_nlink(old_dir); 2334 inc_nlink(new_dir); 2335 } else { 2336 drop_nlink(new_dir); 2337 inc_nlink(old_dir); 2338 } 2339 } 2340 old_dir->i_ctime = old_dir->i_mtime = 2341 new_dir->i_ctime = new_dir->i_mtime = 2342 old_dentry->d_inode->i_ctime = 2343 new_dentry->d_inode->i_ctime = CURRENT_TIME; 2344 2345 return 0; 2346 } 2347 2348 /* 2349 * The VFS layer already does all the dentry stuff for rename, 2350 * we just have to decrement the usage count for the target if 2351 * it exists so that the VFS layer correctly free's it when it 2352 * gets overwritten. 2353 */ 2354 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2355 { 2356 struct inode *inode = old_dentry->d_inode; 2357 int they_are_dirs = S_ISDIR(inode->i_mode); 2358 2359 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 2360 return -EINVAL; 2361 2362 if (flags & RENAME_EXCHANGE) 2363 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2364 2365 if (!simple_empty(new_dentry)) 2366 return -ENOTEMPTY; 2367 2368 if (new_dentry->d_inode) { 2369 (void) shmem_unlink(new_dir, new_dentry); 2370 if (they_are_dirs) { 2371 drop_nlink(new_dentry->d_inode); 2372 drop_nlink(old_dir); 2373 } 2374 } else if (they_are_dirs) { 2375 drop_nlink(old_dir); 2376 inc_nlink(new_dir); 2377 } 2378 2379 old_dir->i_size -= BOGO_DIRENT_SIZE; 2380 new_dir->i_size += BOGO_DIRENT_SIZE; 2381 old_dir->i_ctime = old_dir->i_mtime = 2382 new_dir->i_ctime = new_dir->i_mtime = 2383 inode->i_ctime = CURRENT_TIME; 2384 return 0; 2385 } 2386 2387 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2388 { 2389 int error; 2390 int len; 2391 struct inode *inode; 2392 struct page *page; 2393 char *kaddr; 2394 struct shmem_inode_info *info; 2395 2396 len = strlen(symname) + 1; 2397 if (len > PAGE_CACHE_SIZE) 2398 return -ENAMETOOLONG; 2399 2400 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2401 if (!inode) 2402 return -ENOSPC; 2403 2404 error = security_inode_init_security(inode, dir, &dentry->d_name, 2405 shmem_initxattrs, NULL); 2406 if (error) { 2407 if (error != -EOPNOTSUPP) { 2408 iput(inode); 2409 return error; 2410 } 2411 error = 0; 2412 } 2413 2414 info = SHMEM_I(inode); 2415 inode->i_size = len-1; 2416 if (len <= SHORT_SYMLINK_LEN) { 2417 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2418 if (!info->symlink) { 2419 iput(inode); 2420 return -ENOMEM; 2421 } 2422 inode->i_op = &shmem_short_symlink_operations; 2423 } else { 2424 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2425 if (error) { 2426 iput(inode); 2427 return error; 2428 } 2429 inode->i_mapping->a_ops = &shmem_aops; 2430 inode->i_op = &shmem_symlink_inode_operations; 2431 kaddr = kmap_atomic(page); 2432 memcpy(kaddr, symname, len); 2433 kunmap_atomic(kaddr); 2434 SetPageUptodate(page); 2435 set_page_dirty(page); 2436 unlock_page(page); 2437 page_cache_release(page); 2438 } 2439 dir->i_size += BOGO_DIRENT_SIZE; 2440 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2441 d_instantiate(dentry, inode); 2442 dget(dentry); 2443 return 0; 2444 } 2445 2446 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2447 { 2448 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 2449 return NULL; 2450 } 2451 2452 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2453 { 2454 struct page *page = NULL; 2455 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2456 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2457 if (page) 2458 unlock_page(page); 2459 return page; 2460 } 2461 2462 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2463 { 2464 if (!IS_ERR(nd_get_link(nd))) { 2465 struct page *page = cookie; 2466 kunmap(page); 2467 mark_page_accessed(page); 2468 page_cache_release(page); 2469 } 2470 } 2471 2472 #ifdef CONFIG_TMPFS_XATTR 2473 /* 2474 * Superblocks without xattr inode operations may get some security.* xattr 2475 * support from the LSM "for free". As soon as we have any other xattrs 2476 * like ACLs, we also need to implement the security.* handlers at 2477 * filesystem level, though. 2478 */ 2479 2480 /* 2481 * Callback for security_inode_init_security() for acquiring xattrs. 2482 */ 2483 static int shmem_initxattrs(struct inode *inode, 2484 const struct xattr *xattr_array, 2485 void *fs_info) 2486 { 2487 struct shmem_inode_info *info = SHMEM_I(inode); 2488 const struct xattr *xattr; 2489 struct simple_xattr *new_xattr; 2490 size_t len; 2491 2492 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2493 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2494 if (!new_xattr) 2495 return -ENOMEM; 2496 2497 len = strlen(xattr->name) + 1; 2498 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2499 GFP_KERNEL); 2500 if (!new_xattr->name) { 2501 kfree(new_xattr); 2502 return -ENOMEM; 2503 } 2504 2505 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2506 XATTR_SECURITY_PREFIX_LEN); 2507 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2508 xattr->name, len); 2509 2510 simple_xattr_list_add(&info->xattrs, new_xattr); 2511 } 2512 2513 return 0; 2514 } 2515 2516 static const struct xattr_handler *shmem_xattr_handlers[] = { 2517 #ifdef CONFIG_TMPFS_POSIX_ACL 2518 &posix_acl_access_xattr_handler, 2519 &posix_acl_default_xattr_handler, 2520 #endif 2521 NULL 2522 }; 2523 2524 static int shmem_xattr_validate(const char *name) 2525 { 2526 struct { const char *prefix; size_t len; } arr[] = { 2527 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2528 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2529 }; 2530 int i; 2531 2532 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2533 size_t preflen = arr[i].len; 2534 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2535 if (!name[preflen]) 2536 return -EINVAL; 2537 return 0; 2538 } 2539 } 2540 return -EOPNOTSUPP; 2541 } 2542 2543 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2544 void *buffer, size_t size) 2545 { 2546 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2547 int err; 2548 2549 /* 2550 * If this is a request for a synthetic attribute in the system.* 2551 * namespace use the generic infrastructure to resolve a handler 2552 * for it via sb->s_xattr. 2553 */ 2554 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2555 return generic_getxattr(dentry, name, buffer, size); 2556 2557 err = shmem_xattr_validate(name); 2558 if (err) 2559 return err; 2560 2561 return simple_xattr_get(&info->xattrs, name, buffer, size); 2562 } 2563 2564 static int shmem_setxattr(struct dentry *dentry, const char *name, 2565 const void *value, size_t size, int flags) 2566 { 2567 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2568 int err; 2569 2570 /* 2571 * If this is a request for a synthetic attribute in the system.* 2572 * namespace use the generic infrastructure to resolve a handler 2573 * for it via sb->s_xattr. 2574 */ 2575 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2576 return generic_setxattr(dentry, name, value, size, flags); 2577 2578 err = shmem_xattr_validate(name); 2579 if (err) 2580 return err; 2581 2582 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2583 } 2584 2585 static int shmem_removexattr(struct dentry *dentry, const char *name) 2586 { 2587 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2588 int err; 2589 2590 /* 2591 * If this is a request for a synthetic attribute in the system.* 2592 * namespace use the generic infrastructure to resolve a handler 2593 * for it via sb->s_xattr. 2594 */ 2595 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2596 return generic_removexattr(dentry, name); 2597 2598 err = shmem_xattr_validate(name); 2599 if (err) 2600 return err; 2601 2602 return simple_xattr_remove(&info->xattrs, name); 2603 } 2604 2605 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2606 { 2607 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2608 return simple_xattr_list(&info->xattrs, buffer, size); 2609 } 2610 #endif /* CONFIG_TMPFS_XATTR */ 2611 2612 static const struct inode_operations shmem_short_symlink_operations = { 2613 .readlink = generic_readlink, 2614 .follow_link = shmem_follow_short_symlink, 2615 #ifdef CONFIG_TMPFS_XATTR 2616 .setxattr = shmem_setxattr, 2617 .getxattr = shmem_getxattr, 2618 .listxattr = shmem_listxattr, 2619 .removexattr = shmem_removexattr, 2620 #endif 2621 }; 2622 2623 static const struct inode_operations shmem_symlink_inode_operations = { 2624 .readlink = generic_readlink, 2625 .follow_link = shmem_follow_link, 2626 .put_link = shmem_put_link, 2627 #ifdef CONFIG_TMPFS_XATTR 2628 .setxattr = shmem_setxattr, 2629 .getxattr = shmem_getxattr, 2630 .listxattr = shmem_listxattr, 2631 .removexattr = shmem_removexattr, 2632 #endif 2633 }; 2634 2635 static struct dentry *shmem_get_parent(struct dentry *child) 2636 { 2637 return ERR_PTR(-ESTALE); 2638 } 2639 2640 static int shmem_match(struct inode *ino, void *vfh) 2641 { 2642 __u32 *fh = vfh; 2643 __u64 inum = fh[2]; 2644 inum = (inum << 32) | fh[1]; 2645 return ino->i_ino == inum && fh[0] == ino->i_generation; 2646 } 2647 2648 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2649 struct fid *fid, int fh_len, int fh_type) 2650 { 2651 struct inode *inode; 2652 struct dentry *dentry = NULL; 2653 u64 inum; 2654 2655 if (fh_len < 3) 2656 return NULL; 2657 2658 inum = fid->raw[2]; 2659 inum = (inum << 32) | fid->raw[1]; 2660 2661 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2662 shmem_match, fid->raw); 2663 if (inode) { 2664 dentry = d_find_alias(inode); 2665 iput(inode); 2666 } 2667 2668 return dentry; 2669 } 2670 2671 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2672 struct inode *parent) 2673 { 2674 if (*len < 3) { 2675 *len = 3; 2676 return FILEID_INVALID; 2677 } 2678 2679 if (inode_unhashed(inode)) { 2680 /* Unfortunately insert_inode_hash is not idempotent, 2681 * so as we hash inodes here rather than at creation 2682 * time, we need a lock to ensure we only try 2683 * to do it once 2684 */ 2685 static DEFINE_SPINLOCK(lock); 2686 spin_lock(&lock); 2687 if (inode_unhashed(inode)) 2688 __insert_inode_hash(inode, 2689 inode->i_ino + inode->i_generation); 2690 spin_unlock(&lock); 2691 } 2692 2693 fh[0] = inode->i_generation; 2694 fh[1] = inode->i_ino; 2695 fh[2] = ((__u64)inode->i_ino) >> 32; 2696 2697 *len = 3; 2698 return 1; 2699 } 2700 2701 static const struct export_operations shmem_export_ops = { 2702 .get_parent = shmem_get_parent, 2703 .encode_fh = shmem_encode_fh, 2704 .fh_to_dentry = shmem_fh_to_dentry, 2705 }; 2706 2707 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2708 bool remount) 2709 { 2710 char *this_char, *value, *rest; 2711 struct mempolicy *mpol = NULL; 2712 uid_t uid; 2713 gid_t gid; 2714 2715 while (options != NULL) { 2716 this_char = options; 2717 for (;;) { 2718 /* 2719 * NUL-terminate this option: unfortunately, 2720 * mount options form a comma-separated list, 2721 * but mpol's nodelist may also contain commas. 2722 */ 2723 options = strchr(options, ','); 2724 if (options == NULL) 2725 break; 2726 options++; 2727 if (!isdigit(*options)) { 2728 options[-1] = '\0'; 2729 break; 2730 } 2731 } 2732 if (!*this_char) 2733 continue; 2734 if ((value = strchr(this_char,'=')) != NULL) { 2735 *value++ = 0; 2736 } else { 2737 printk(KERN_ERR 2738 "tmpfs: No value for mount option '%s'\n", 2739 this_char); 2740 goto error; 2741 } 2742 2743 if (!strcmp(this_char,"size")) { 2744 unsigned long long size; 2745 size = memparse(value,&rest); 2746 if (*rest == '%') { 2747 size <<= PAGE_SHIFT; 2748 size *= totalram_pages; 2749 do_div(size, 100); 2750 rest++; 2751 } 2752 if (*rest) 2753 goto bad_val; 2754 sbinfo->max_blocks = 2755 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2756 } else if (!strcmp(this_char,"nr_blocks")) { 2757 sbinfo->max_blocks = memparse(value, &rest); 2758 if (*rest) 2759 goto bad_val; 2760 } else if (!strcmp(this_char,"nr_inodes")) { 2761 sbinfo->max_inodes = memparse(value, &rest); 2762 if (*rest) 2763 goto bad_val; 2764 } else if (!strcmp(this_char,"mode")) { 2765 if (remount) 2766 continue; 2767 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2768 if (*rest) 2769 goto bad_val; 2770 } else if (!strcmp(this_char,"uid")) { 2771 if (remount) 2772 continue; 2773 uid = simple_strtoul(value, &rest, 0); 2774 if (*rest) 2775 goto bad_val; 2776 sbinfo->uid = make_kuid(current_user_ns(), uid); 2777 if (!uid_valid(sbinfo->uid)) 2778 goto bad_val; 2779 } else if (!strcmp(this_char,"gid")) { 2780 if (remount) 2781 continue; 2782 gid = simple_strtoul(value, &rest, 0); 2783 if (*rest) 2784 goto bad_val; 2785 sbinfo->gid = make_kgid(current_user_ns(), gid); 2786 if (!gid_valid(sbinfo->gid)) 2787 goto bad_val; 2788 } else if (!strcmp(this_char,"mpol")) { 2789 mpol_put(mpol); 2790 mpol = NULL; 2791 if (mpol_parse_str(value, &mpol)) 2792 goto bad_val; 2793 } else { 2794 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2795 this_char); 2796 goto error; 2797 } 2798 } 2799 sbinfo->mpol = mpol; 2800 return 0; 2801 2802 bad_val: 2803 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2804 value, this_char); 2805 error: 2806 mpol_put(mpol); 2807 return 1; 2808 2809 } 2810 2811 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2812 { 2813 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2814 struct shmem_sb_info config = *sbinfo; 2815 unsigned long inodes; 2816 int error = -EINVAL; 2817 2818 config.mpol = NULL; 2819 if (shmem_parse_options(data, &config, true)) 2820 return error; 2821 2822 spin_lock(&sbinfo->stat_lock); 2823 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2824 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2825 goto out; 2826 if (config.max_inodes < inodes) 2827 goto out; 2828 /* 2829 * Those tests disallow limited->unlimited while any are in use; 2830 * but we must separately disallow unlimited->limited, because 2831 * in that case we have no record of how much is already in use. 2832 */ 2833 if (config.max_blocks && !sbinfo->max_blocks) 2834 goto out; 2835 if (config.max_inodes && !sbinfo->max_inodes) 2836 goto out; 2837 2838 error = 0; 2839 sbinfo->max_blocks = config.max_blocks; 2840 sbinfo->max_inodes = config.max_inodes; 2841 sbinfo->free_inodes = config.max_inodes - inodes; 2842 2843 /* 2844 * Preserve previous mempolicy unless mpol remount option was specified. 2845 */ 2846 if (config.mpol) { 2847 mpol_put(sbinfo->mpol); 2848 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2849 } 2850 out: 2851 spin_unlock(&sbinfo->stat_lock); 2852 return error; 2853 } 2854 2855 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2856 { 2857 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2858 2859 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2860 seq_printf(seq, ",size=%luk", 2861 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2862 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2863 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2864 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2865 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2866 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2867 seq_printf(seq, ",uid=%u", 2868 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2869 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2870 seq_printf(seq, ",gid=%u", 2871 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2872 shmem_show_mpol(seq, sbinfo->mpol); 2873 return 0; 2874 } 2875 2876 #define MFD_NAME_PREFIX "memfd:" 2877 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2878 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2879 2880 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2881 2882 SYSCALL_DEFINE2(memfd_create, 2883 const char __user *, uname, 2884 unsigned int, flags) 2885 { 2886 struct shmem_inode_info *info; 2887 struct file *file; 2888 int fd, error; 2889 char *name; 2890 long len; 2891 2892 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2893 return -EINVAL; 2894 2895 /* length includes terminating zero */ 2896 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2897 if (len <= 0) 2898 return -EFAULT; 2899 if (len > MFD_NAME_MAX_LEN + 1) 2900 return -EINVAL; 2901 2902 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2903 if (!name) 2904 return -ENOMEM; 2905 2906 strcpy(name, MFD_NAME_PREFIX); 2907 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2908 error = -EFAULT; 2909 goto err_name; 2910 } 2911 2912 /* terminating-zero may have changed after strnlen_user() returned */ 2913 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2914 error = -EFAULT; 2915 goto err_name; 2916 } 2917 2918 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 2919 if (fd < 0) { 2920 error = fd; 2921 goto err_name; 2922 } 2923 2924 file = shmem_file_setup(name, 0, VM_NORESERVE); 2925 if (IS_ERR(file)) { 2926 error = PTR_ERR(file); 2927 goto err_fd; 2928 } 2929 info = SHMEM_I(file_inode(file)); 2930 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 2931 file->f_flags |= O_RDWR | O_LARGEFILE; 2932 if (flags & MFD_ALLOW_SEALING) 2933 info->seals &= ~F_SEAL_SEAL; 2934 2935 fd_install(fd, file); 2936 kfree(name); 2937 return fd; 2938 2939 err_fd: 2940 put_unused_fd(fd); 2941 err_name: 2942 kfree(name); 2943 return error; 2944 } 2945 2946 #endif /* CONFIG_TMPFS */ 2947 2948 static void shmem_put_super(struct super_block *sb) 2949 { 2950 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2951 2952 percpu_counter_destroy(&sbinfo->used_blocks); 2953 mpol_put(sbinfo->mpol); 2954 kfree(sbinfo); 2955 sb->s_fs_info = NULL; 2956 } 2957 2958 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2959 { 2960 struct inode *inode; 2961 struct shmem_sb_info *sbinfo; 2962 int err = -ENOMEM; 2963 2964 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2965 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2966 L1_CACHE_BYTES), GFP_KERNEL); 2967 if (!sbinfo) 2968 return -ENOMEM; 2969 2970 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2971 sbinfo->uid = current_fsuid(); 2972 sbinfo->gid = current_fsgid(); 2973 sb->s_fs_info = sbinfo; 2974 2975 #ifdef CONFIG_TMPFS 2976 /* 2977 * Per default we only allow half of the physical ram per 2978 * tmpfs instance, limiting inodes to one per page of lowmem; 2979 * but the internal instance is left unlimited. 2980 */ 2981 if (!(sb->s_flags & MS_KERNMOUNT)) { 2982 sbinfo->max_blocks = shmem_default_max_blocks(); 2983 sbinfo->max_inodes = shmem_default_max_inodes(); 2984 if (shmem_parse_options(data, sbinfo, false)) { 2985 err = -EINVAL; 2986 goto failed; 2987 } 2988 } else { 2989 sb->s_flags |= MS_NOUSER; 2990 } 2991 sb->s_export_op = &shmem_export_ops; 2992 sb->s_flags |= MS_NOSEC; 2993 #else 2994 sb->s_flags |= MS_NOUSER; 2995 #endif 2996 2997 spin_lock_init(&sbinfo->stat_lock); 2998 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 2999 goto failed; 3000 sbinfo->free_inodes = sbinfo->max_inodes; 3001 3002 sb->s_maxbytes = MAX_LFS_FILESIZE; 3003 sb->s_blocksize = PAGE_CACHE_SIZE; 3004 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3005 sb->s_magic = TMPFS_MAGIC; 3006 sb->s_op = &shmem_ops; 3007 sb->s_time_gran = 1; 3008 #ifdef CONFIG_TMPFS_XATTR 3009 sb->s_xattr = shmem_xattr_handlers; 3010 #endif 3011 #ifdef CONFIG_TMPFS_POSIX_ACL 3012 sb->s_flags |= MS_POSIXACL; 3013 #endif 3014 3015 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3016 if (!inode) 3017 goto failed; 3018 inode->i_uid = sbinfo->uid; 3019 inode->i_gid = sbinfo->gid; 3020 sb->s_root = d_make_root(inode); 3021 if (!sb->s_root) 3022 goto failed; 3023 return 0; 3024 3025 failed: 3026 shmem_put_super(sb); 3027 return err; 3028 } 3029 3030 static struct kmem_cache *shmem_inode_cachep; 3031 3032 static struct inode *shmem_alloc_inode(struct super_block *sb) 3033 { 3034 struct shmem_inode_info *info; 3035 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3036 if (!info) 3037 return NULL; 3038 return &info->vfs_inode; 3039 } 3040 3041 static void shmem_destroy_callback(struct rcu_head *head) 3042 { 3043 struct inode *inode = container_of(head, struct inode, i_rcu); 3044 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3045 } 3046 3047 static void shmem_destroy_inode(struct inode *inode) 3048 { 3049 if (S_ISREG(inode->i_mode)) 3050 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3051 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3052 } 3053 3054 static void shmem_init_inode(void *foo) 3055 { 3056 struct shmem_inode_info *info = foo; 3057 inode_init_once(&info->vfs_inode); 3058 } 3059 3060 static int shmem_init_inodecache(void) 3061 { 3062 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3063 sizeof(struct shmem_inode_info), 3064 0, SLAB_PANIC, shmem_init_inode); 3065 return 0; 3066 } 3067 3068 static void shmem_destroy_inodecache(void) 3069 { 3070 kmem_cache_destroy(shmem_inode_cachep); 3071 } 3072 3073 static const struct address_space_operations shmem_aops = { 3074 .writepage = shmem_writepage, 3075 .set_page_dirty = __set_page_dirty_no_writeback, 3076 #ifdef CONFIG_TMPFS 3077 .write_begin = shmem_write_begin, 3078 .write_end = shmem_write_end, 3079 #endif 3080 #ifdef CONFIG_MIGRATION 3081 .migratepage = migrate_page, 3082 #endif 3083 .error_remove_page = generic_error_remove_page, 3084 }; 3085 3086 static const struct file_operations shmem_file_operations = { 3087 .mmap = shmem_mmap, 3088 #ifdef CONFIG_TMPFS 3089 .llseek = shmem_file_llseek, 3090 .read = new_sync_read, 3091 .write = new_sync_write, 3092 .read_iter = shmem_file_read_iter, 3093 .write_iter = generic_file_write_iter, 3094 .fsync = noop_fsync, 3095 .splice_read = shmem_file_splice_read, 3096 .splice_write = iter_file_splice_write, 3097 .fallocate = shmem_fallocate, 3098 #endif 3099 }; 3100 3101 static const struct inode_operations shmem_inode_operations = { 3102 .setattr = shmem_setattr, 3103 #ifdef CONFIG_TMPFS_XATTR 3104 .setxattr = shmem_setxattr, 3105 .getxattr = shmem_getxattr, 3106 .listxattr = shmem_listxattr, 3107 .removexattr = shmem_removexattr, 3108 .set_acl = simple_set_acl, 3109 #endif 3110 }; 3111 3112 static const struct inode_operations shmem_dir_inode_operations = { 3113 #ifdef CONFIG_TMPFS 3114 .create = shmem_create, 3115 .lookup = simple_lookup, 3116 .link = shmem_link, 3117 .unlink = shmem_unlink, 3118 .symlink = shmem_symlink, 3119 .mkdir = shmem_mkdir, 3120 .rmdir = shmem_rmdir, 3121 .mknod = shmem_mknod, 3122 .rename2 = shmem_rename2, 3123 .tmpfile = shmem_tmpfile, 3124 #endif 3125 #ifdef CONFIG_TMPFS_XATTR 3126 .setxattr = shmem_setxattr, 3127 .getxattr = shmem_getxattr, 3128 .listxattr = shmem_listxattr, 3129 .removexattr = shmem_removexattr, 3130 #endif 3131 #ifdef CONFIG_TMPFS_POSIX_ACL 3132 .setattr = shmem_setattr, 3133 .set_acl = simple_set_acl, 3134 #endif 3135 }; 3136 3137 static const struct inode_operations shmem_special_inode_operations = { 3138 #ifdef CONFIG_TMPFS_XATTR 3139 .setxattr = shmem_setxattr, 3140 .getxattr = shmem_getxattr, 3141 .listxattr = shmem_listxattr, 3142 .removexattr = shmem_removexattr, 3143 #endif 3144 #ifdef CONFIG_TMPFS_POSIX_ACL 3145 .setattr = shmem_setattr, 3146 .set_acl = simple_set_acl, 3147 #endif 3148 }; 3149 3150 static const struct super_operations shmem_ops = { 3151 .alloc_inode = shmem_alloc_inode, 3152 .destroy_inode = shmem_destroy_inode, 3153 #ifdef CONFIG_TMPFS 3154 .statfs = shmem_statfs, 3155 .remount_fs = shmem_remount_fs, 3156 .show_options = shmem_show_options, 3157 #endif 3158 .evict_inode = shmem_evict_inode, 3159 .drop_inode = generic_delete_inode, 3160 .put_super = shmem_put_super, 3161 }; 3162 3163 static const struct vm_operations_struct shmem_vm_ops = { 3164 .fault = shmem_fault, 3165 .map_pages = filemap_map_pages, 3166 #ifdef CONFIG_NUMA 3167 .set_policy = shmem_set_policy, 3168 .get_policy = shmem_get_policy, 3169 #endif 3170 .remap_pages = generic_file_remap_pages, 3171 }; 3172 3173 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3174 int flags, const char *dev_name, void *data) 3175 { 3176 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3177 } 3178 3179 static struct file_system_type shmem_fs_type = { 3180 .owner = THIS_MODULE, 3181 .name = "tmpfs", 3182 .mount = shmem_mount, 3183 .kill_sb = kill_litter_super, 3184 .fs_flags = FS_USERNS_MOUNT, 3185 }; 3186 3187 int __init shmem_init(void) 3188 { 3189 int error; 3190 3191 /* If rootfs called this, don't re-init */ 3192 if (shmem_inode_cachep) 3193 return 0; 3194 3195 error = bdi_init(&shmem_backing_dev_info); 3196 if (error) 3197 goto out4; 3198 3199 error = shmem_init_inodecache(); 3200 if (error) 3201 goto out3; 3202 3203 error = register_filesystem(&shmem_fs_type); 3204 if (error) { 3205 printk(KERN_ERR "Could not register tmpfs\n"); 3206 goto out2; 3207 } 3208 3209 shm_mnt = kern_mount(&shmem_fs_type); 3210 if (IS_ERR(shm_mnt)) { 3211 error = PTR_ERR(shm_mnt); 3212 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 3213 goto out1; 3214 } 3215 return 0; 3216 3217 out1: 3218 unregister_filesystem(&shmem_fs_type); 3219 out2: 3220 shmem_destroy_inodecache(); 3221 out3: 3222 bdi_destroy(&shmem_backing_dev_info); 3223 out4: 3224 shm_mnt = ERR_PTR(error); 3225 return error; 3226 } 3227 3228 #else /* !CONFIG_SHMEM */ 3229 3230 /* 3231 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3232 * 3233 * This is intended for small system where the benefits of the full 3234 * shmem code (swap-backed and resource-limited) are outweighed by 3235 * their complexity. On systems without swap this code should be 3236 * effectively equivalent, but much lighter weight. 3237 */ 3238 3239 static struct file_system_type shmem_fs_type = { 3240 .name = "tmpfs", 3241 .mount = ramfs_mount, 3242 .kill_sb = kill_litter_super, 3243 .fs_flags = FS_USERNS_MOUNT, 3244 }; 3245 3246 int __init shmem_init(void) 3247 { 3248 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3249 3250 shm_mnt = kern_mount(&shmem_fs_type); 3251 BUG_ON(IS_ERR(shm_mnt)); 3252 3253 return 0; 3254 } 3255 3256 int shmem_unuse(swp_entry_t swap, struct page *page) 3257 { 3258 return 0; 3259 } 3260 3261 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3262 { 3263 return 0; 3264 } 3265 3266 void shmem_unlock_mapping(struct address_space *mapping) 3267 { 3268 } 3269 3270 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3271 { 3272 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3273 } 3274 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3275 3276 #define shmem_vm_ops generic_file_vm_ops 3277 #define shmem_file_operations ramfs_file_operations 3278 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3279 #define shmem_acct_size(flags, size) 0 3280 #define shmem_unacct_size(flags, size) do {} while (0) 3281 3282 #endif /* CONFIG_SHMEM */ 3283 3284 /* common code */ 3285 3286 static struct dentry_operations anon_ops = { 3287 .d_dname = simple_dname 3288 }; 3289 3290 static struct file *__shmem_file_setup(const char *name, loff_t size, 3291 unsigned long flags, unsigned int i_flags) 3292 { 3293 struct file *res; 3294 struct inode *inode; 3295 struct path path; 3296 struct super_block *sb; 3297 struct qstr this; 3298 3299 if (IS_ERR(shm_mnt)) 3300 return ERR_CAST(shm_mnt); 3301 3302 if (size < 0 || size > MAX_LFS_FILESIZE) 3303 return ERR_PTR(-EINVAL); 3304 3305 if (shmem_acct_size(flags, size)) 3306 return ERR_PTR(-ENOMEM); 3307 3308 res = ERR_PTR(-ENOMEM); 3309 this.name = name; 3310 this.len = strlen(name); 3311 this.hash = 0; /* will go */ 3312 sb = shm_mnt->mnt_sb; 3313 path.mnt = mntget(shm_mnt); 3314 path.dentry = d_alloc_pseudo(sb, &this); 3315 if (!path.dentry) 3316 goto put_memory; 3317 d_set_d_op(path.dentry, &anon_ops); 3318 3319 res = ERR_PTR(-ENOSPC); 3320 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3321 if (!inode) 3322 goto put_memory; 3323 3324 inode->i_flags |= i_flags; 3325 d_instantiate(path.dentry, inode); 3326 inode->i_size = size; 3327 clear_nlink(inode); /* It is unlinked */ 3328 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3329 if (IS_ERR(res)) 3330 goto put_path; 3331 3332 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3333 &shmem_file_operations); 3334 if (IS_ERR(res)) 3335 goto put_path; 3336 3337 return res; 3338 3339 put_memory: 3340 shmem_unacct_size(flags, size); 3341 put_path: 3342 path_put(&path); 3343 return res; 3344 } 3345 3346 /** 3347 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3348 * kernel internal. There will be NO LSM permission checks against the 3349 * underlying inode. So users of this interface must do LSM checks at a 3350 * higher layer. The one user is the big_key implementation. LSM checks 3351 * are provided at the key level rather than the inode level. 3352 * @name: name for dentry (to be seen in /proc/<pid>/maps 3353 * @size: size to be set for the file 3354 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3355 */ 3356 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3357 { 3358 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3359 } 3360 3361 /** 3362 * shmem_file_setup - get an unlinked file living in tmpfs 3363 * @name: name for dentry (to be seen in /proc/<pid>/maps 3364 * @size: size to be set for the file 3365 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3366 */ 3367 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3368 { 3369 return __shmem_file_setup(name, size, flags, 0); 3370 } 3371 EXPORT_SYMBOL_GPL(shmem_file_setup); 3372 3373 /** 3374 * shmem_zero_setup - setup a shared anonymous mapping 3375 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3376 */ 3377 int shmem_zero_setup(struct vm_area_struct *vma) 3378 { 3379 struct file *file; 3380 loff_t size = vma->vm_end - vma->vm_start; 3381 3382 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 3383 if (IS_ERR(file)) 3384 return PTR_ERR(file); 3385 3386 if (vma->vm_file) 3387 fput(vma->vm_file); 3388 vma->vm_file = file; 3389 vma->vm_ops = &shmem_vm_ops; 3390 return 0; 3391 } 3392 3393 /** 3394 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3395 * @mapping: the page's address_space 3396 * @index: the page index 3397 * @gfp: the page allocator flags to use if allocating 3398 * 3399 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3400 * with any new page allocations done using the specified allocation flags. 3401 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3402 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3403 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3404 * 3405 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3406 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3407 */ 3408 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3409 pgoff_t index, gfp_t gfp) 3410 { 3411 #ifdef CONFIG_SHMEM 3412 struct inode *inode = mapping->host; 3413 struct page *page; 3414 int error; 3415 3416 BUG_ON(mapping->a_ops != &shmem_aops); 3417 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3418 if (error) 3419 page = ERR_PTR(error); 3420 else 3421 unlock_page(page); 3422 return page; 3423 #else 3424 /* 3425 * The tiny !SHMEM case uses ramfs without swap 3426 */ 3427 return read_cache_page_gfp(mapping, index, gfp); 3428 #endif 3429 } 3430 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3431