1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 41 42 static struct vfsmount *shm_mnt; 43 44 #ifdef CONFIG_SHMEM 45 /* 46 * This virtual memory filesystem is heavily based on the ramfs. It 47 * extends ramfs by the ability to use swap and honor resource limits 48 * which makes it a completely usable filesystem. 49 */ 50 51 #include <linux/xattr.h> 52 #include <linux/exportfs.h> 53 #include <linux/posix_acl.h> 54 #include <linux/posix_acl_xattr.h> 55 #include <linux/mman.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/backing-dev.h> 59 #include <linux/shmem_fs.h> 60 #include <linux/writeback.h> 61 #include <linux/blkdev.h> 62 #include <linux/pagevec.h> 63 #include <linux/percpu_counter.h> 64 #include <linux/falloc.h> 65 #include <linux/splice.h> 66 #include <linux/security.h> 67 #include <linux/swapops.h> 68 #include <linux/mempolicy.h> 69 #include <linux/namei.h> 70 #include <linux/ctype.h> 71 #include <linux/migrate.h> 72 #include <linux/highmem.h> 73 #include <linux/seq_file.h> 74 #include <linux/magic.h> 75 #include <linux/syscalls.h> 76 #include <linux/fcntl.h> 77 #include <uapi/linux/memfd.h> 78 #include <linux/userfaultfd_k.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 82 #include <linux/uaccess.h> 83 #include <asm/pgtable.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_mutex making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 122 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 123 struct shmem_inode_info *info, pgoff_t index); 124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 125 struct page **pagep, enum sgp_type sgp, 126 gfp_t gfp, struct vm_area_struct *vma, 127 struct vm_fault *vmf, vm_fault_t *fault_type); 128 129 int shmem_getpage(struct inode *inode, pgoff_t index, 130 struct page **pagep, enum sgp_type sgp) 131 { 132 return shmem_getpage_gfp(inode, index, pagep, sgp, 133 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 134 } 135 136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 137 { 138 return sb->s_fs_info; 139 } 140 141 /* 142 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 143 * for shared memory and for shared anonymous (/dev/zero) mappings 144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 145 * consistent with the pre-accounting of private mappings ... 146 */ 147 static inline int shmem_acct_size(unsigned long flags, loff_t size) 148 { 149 return (flags & VM_NORESERVE) ? 150 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 151 } 152 153 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 154 { 155 if (!(flags & VM_NORESERVE)) 156 vm_unacct_memory(VM_ACCT(size)); 157 } 158 159 static inline int shmem_reacct_size(unsigned long flags, 160 loff_t oldsize, loff_t newsize) 161 { 162 if (!(flags & VM_NORESERVE)) { 163 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 164 return security_vm_enough_memory_mm(current->mm, 165 VM_ACCT(newsize) - VM_ACCT(oldsize)); 166 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 167 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 168 } 169 return 0; 170 } 171 172 /* 173 * ... whereas tmpfs objects are accounted incrementally as 174 * pages are allocated, in order to allow large sparse files. 175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 177 */ 178 static inline int shmem_acct_block(unsigned long flags, long pages) 179 { 180 if (!(flags & VM_NORESERVE)) 181 return 0; 182 183 return security_vm_enough_memory_mm(current->mm, 184 pages * VM_ACCT(PAGE_SIZE)); 185 } 186 187 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 188 { 189 if (flags & VM_NORESERVE) 190 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 191 } 192 193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 194 { 195 struct shmem_inode_info *info = SHMEM_I(inode); 196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 197 198 if (shmem_acct_block(info->flags, pages)) 199 return false; 200 201 if (sbinfo->max_blocks) { 202 if (percpu_counter_compare(&sbinfo->used_blocks, 203 sbinfo->max_blocks - pages) > 0) 204 goto unacct; 205 percpu_counter_add(&sbinfo->used_blocks, pages); 206 } 207 208 return true; 209 210 unacct: 211 shmem_unacct_blocks(info->flags, pages); 212 return false; 213 } 214 215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 216 { 217 struct shmem_inode_info *info = SHMEM_I(inode); 218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 219 220 if (sbinfo->max_blocks) 221 percpu_counter_sub(&sbinfo->used_blocks, pages); 222 shmem_unacct_blocks(info->flags, pages); 223 } 224 225 static const struct super_operations shmem_ops; 226 static const struct address_space_operations shmem_aops; 227 static const struct file_operations shmem_file_operations; 228 static const struct inode_operations shmem_inode_operations; 229 static const struct inode_operations shmem_dir_inode_operations; 230 static const struct inode_operations shmem_special_inode_operations; 231 static const struct vm_operations_struct shmem_vm_ops; 232 static struct file_system_type shmem_fs_type; 233 234 bool vma_is_shmem(struct vm_area_struct *vma) 235 { 236 return vma->vm_ops == &shmem_vm_ops; 237 } 238 239 static LIST_HEAD(shmem_swaplist); 240 static DEFINE_MUTEX(shmem_swaplist_mutex); 241 242 static int shmem_reserve_inode(struct super_block *sb) 243 { 244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 245 if (sbinfo->max_inodes) { 246 spin_lock(&sbinfo->stat_lock); 247 if (!sbinfo->free_inodes) { 248 spin_unlock(&sbinfo->stat_lock); 249 return -ENOSPC; 250 } 251 sbinfo->free_inodes--; 252 spin_unlock(&sbinfo->stat_lock); 253 } 254 return 0; 255 } 256 257 static void shmem_free_inode(struct super_block *sb) 258 { 259 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 260 if (sbinfo->max_inodes) { 261 spin_lock(&sbinfo->stat_lock); 262 sbinfo->free_inodes++; 263 spin_unlock(&sbinfo->stat_lock); 264 } 265 } 266 267 /** 268 * shmem_recalc_inode - recalculate the block usage of an inode 269 * @inode: inode to recalc 270 * 271 * We have to calculate the free blocks since the mm can drop 272 * undirtied hole pages behind our back. 273 * 274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 276 * 277 * It has to be called with the spinlock held. 278 */ 279 static void shmem_recalc_inode(struct inode *inode) 280 { 281 struct shmem_inode_info *info = SHMEM_I(inode); 282 long freed; 283 284 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 285 if (freed > 0) { 286 info->alloced -= freed; 287 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 288 shmem_inode_unacct_blocks(inode, freed); 289 } 290 } 291 292 bool shmem_charge(struct inode *inode, long pages) 293 { 294 struct shmem_inode_info *info = SHMEM_I(inode); 295 unsigned long flags; 296 297 if (!shmem_inode_acct_block(inode, pages)) 298 return false; 299 300 spin_lock_irqsave(&info->lock, flags); 301 info->alloced += pages; 302 inode->i_blocks += pages * BLOCKS_PER_PAGE; 303 shmem_recalc_inode(inode); 304 spin_unlock_irqrestore(&info->lock, flags); 305 inode->i_mapping->nrpages += pages; 306 307 return true; 308 } 309 310 void shmem_uncharge(struct inode *inode, long pages) 311 { 312 struct shmem_inode_info *info = SHMEM_I(inode); 313 unsigned long flags; 314 315 spin_lock_irqsave(&info->lock, flags); 316 info->alloced -= pages; 317 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 318 shmem_recalc_inode(inode); 319 spin_unlock_irqrestore(&info->lock, flags); 320 321 shmem_inode_unacct_blocks(inode, pages); 322 } 323 324 /* 325 * Replace item expected in radix tree by a new item, while holding tree lock. 326 */ 327 static int shmem_radix_tree_replace(struct address_space *mapping, 328 pgoff_t index, void *expected, void *replacement) 329 { 330 struct radix_tree_node *node; 331 void __rcu **pslot; 332 void *item; 333 334 VM_BUG_ON(!expected); 335 VM_BUG_ON(!replacement); 336 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot); 337 if (!item) 338 return -ENOENT; 339 if (item != expected) 340 return -ENOENT; 341 __radix_tree_replace(&mapping->i_pages, node, pslot, 342 replacement, NULL); 343 return 0; 344 } 345 346 /* 347 * Sometimes, before we decide whether to proceed or to fail, we must check 348 * that an entry was not already brought back from swap by a racing thread. 349 * 350 * Checking page is not enough: by the time a SwapCache page is locked, it 351 * might be reused, and again be SwapCache, using the same swap as before. 352 */ 353 static bool shmem_confirm_swap(struct address_space *mapping, 354 pgoff_t index, swp_entry_t swap) 355 { 356 void *item; 357 358 rcu_read_lock(); 359 item = radix_tree_lookup(&mapping->i_pages, index); 360 rcu_read_unlock(); 361 return item == swp_to_radix_entry(swap); 362 } 363 364 /* 365 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 366 * 367 * SHMEM_HUGE_NEVER: 368 * disables huge pages for the mount; 369 * SHMEM_HUGE_ALWAYS: 370 * enables huge pages for the mount; 371 * SHMEM_HUGE_WITHIN_SIZE: 372 * only allocate huge pages if the page will be fully within i_size, 373 * also respect fadvise()/madvise() hints; 374 * SHMEM_HUGE_ADVISE: 375 * only allocate huge pages if requested with fadvise()/madvise(); 376 */ 377 378 #define SHMEM_HUGE_NEVER 0 379 #define SHMEM_HUGE_ALWAYS 1 380 #define SHMEM_HUGE_WITHIN_SIZE 2 381 #define SHMEM_HUGE_ADVISE 3 382 383 /* 384 * Special values. 385 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 386 * 387 * SHMEM_HUGE_DENY: 388 * disables huge on shm_mnt and all mounts, for emergency use; 389 * SHMEM_HUGE_FORCE: 390 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 391 * 392 */ 393 #define SHMEM_HUGE_DENY (-1) 394 #define SHMEM_HUGE_FORCE (-2) 395 396 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 397 /* ifdef here to avoid bloating shmem.o when not necessary */ 398 399 static int shmem_huge __read_mostly; 400 401 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 402 static int shmem_parse_huge(const char *str) 403 { 404 if (!strcmp(str, "never")) 405 return SHMEM_HUGE_NEVER; 406 if (!strcmp(str, "always")) 407 return SHMEM_HUGE_ALWAYS; 408 if (!strcmp(str, "within_size")) 409 return SHMEM_HUGE_WITHIN_SIZE; 410 if (!strcmp(str, "advise")) 411 return SHMEM_HUGE_ADVISE; 412 if (!strcmp(str, "deny")) 413 return SHMEM_HUGE_DENY; 414 if (!strcmp(str, "force")) 415 return SHMEM_HUGE_FORCE; 416 return -EINVAL; 417 } 418 419 static const char *shmem_format_huge(int huge) 420 { 421 switch (huge) { 422 case SHMEM_HUGE_NEVER: 423 return "never"; 424 case SHMEM_HUGE_ALWAYS: 425 return "always"; 426 case SHMEM_HUGE_WITHIN_SIZE: 427 return "within_size"; 428 case SHMEM_HUGE_ADVISE: 429 return "advise"; 430 case SHMEM_HUGE_DENY: 431 return "deny"; 432 case SHMEM_HUGE_FORCE: 433 return "force"; 434 default: 435 VM_BUG_ON(1); 436 return "bad_val"; 437 } 438 } 439 #endif 440 441 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 442 struct shrink_control *sc, unsigned long nr_to_split) 443 { 444 LIST_HEAD(list), *pos, *next; 445 LIST_HEAD(to_remove); 446 struct inode *inode; 447 struct shmem_inode_info *info; 448 struct page *page; 449 unsigned long batch = sc ? sc->nr_to_scan : 128; 450 int removed = 0, split = 0; 451 452 if (list_empty(&sbinfo->shrinklist)) 453 return SHRINK_STOP; 454 455 spin_lock(&sbinfo->shrinklist_lock); 456 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 457 info = list_entry(pos, struct shmem_inode_info, shrinklist); 458 459 /* pin the inode */ 460 inode = igrab(&info->vfs_inode); 461 462 /* inode is about to be evicted */ 463 if (!inode) { 464 list_del_init(&info->shrinklist); 465 removed++; 466 goto next; 467 } 468 469 /* Check if there's anything to gain */ 470 if (round_up(inode->i_size, PAGE_SIZE) == 471 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 472 list_move(&info->shrinklist, &to_remove); 473 removed++; 474 goto next; 475 } 476 477 list_move(&info->shrinklist, &list); 478 next: 479 if (!--batch) 480 break; 481 } 482 spin_unlock(&sbinfo->shrinklist_lock); 483 484 list_for_each_safe(pos, next, &to_remove) { 485 info = list_entry(pos, struct shmem_inode_info, shrinklist); 486 inode = &info->vfs_inode; 487 list_del_init(&info->shrinklist); 488 iput(inode); 489 } 490 491 list_for_each_safe(pos, next, &list) { 492 int ret; 493 494 info = list_entry(pos, struct shmem_inode_info, shrinklist); 495 inode = &info->vfs_inode; 496 497 if (nr_to_split && split >= nr_to_split) 498 goto leave; 499 500 page = find_get_page(inode->i_mapping, 501 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 502 if (!page) 503 goto drop; 504 505 /* No huge page at the end of the file: nothing to split */ 506 if (!PageTransHuge(page)) { 507 put_page(page); 508 goto drop; 509 } 510 511 /* 512 * Leave the inode on the list if we failed to lock 513 * the page at this time. 514 * 515 * Waiting for the lock may lead to deadlock in the 516 * reclaim path. 517 */ 518 if (!trylock_page(page)) { 519 put_page(page); 520 goto leave; 521 } 522 523 ret = split_huge_page(page); 524 unlock_page(page); 525 put_page(page); 526 527 /* If split failed leave the inode on the list */ 528 if (ret) 529 goto leave; 530 531 split++; 532 drop: 533 list_del_init(&info->shrinklist); 534 removed++; 535 leave: 536 iput(inode); 537 } 538 539 spin_lock(&sbinfo->shrinklist_lock); 540 list_splice_tail(&list, &sbinfo->shrinklist); 541 sbinfo->shrinklist_len -= removed; 542 spin_unlock(&sbinfo->shrinklist_lock); 543 544 return split; 545 } 546 547 static long shmem_unused_huge_scan(struct super_block *sb, 548 struct shrink_control *sc) 549 { 550 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 551 552 if (!READ_ONCE(sbinfo->shrinklist_len)) 553 return SHRINK_STOP; 554 555 return shmem_unused_huge_shrink(sbinfo, sc, 0); 556 } 557 558 static long shmem_unused_huge_count(struct super_block *sb, 559 struct shrink_control *sc) 560 { 561 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 562 return READ_ONCE(sbinfo->shrinklist_len); 563 } 564 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 565 566 #define shmem_huge SHMEM_HUGE_DENY 567 568 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 569 struct shrink_control *sc, unsigned long nr_to_split) 570 { 571 return 0; 572 } 573 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 574 575 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 576 { 577 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 578 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 579 shmem_huge != SHMEM_HUGE_DENY) 580 return true; 581 return false; 582 } 583 584 /* 585 * Like add_to_page_cache_locked, but error if expected item has gone. 586 */ 587 static int shmem_add_to_page_cache(struct page *page, 588 struct address_space *mapping, 589 pgoff_t index, void *expected) 590 { 591 int error, nr = hpage_nr_pages(page); 592 593 VM_BUG_ON_PAGE(PageTail(page), page); 594 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 595 VM_BUG_ON_PAGE(!PageLocked(page), page); 596 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 597 VM_BUG_ON(expected && PageTransHuge(page)); 598 599 page_ref_add(page, nr); 600 page->mapping = mapping; 601 page->index = index; 602 603 xa_lock_irq(&mapping->i_pages); 604 if (PageTransHuge(page)) { 605 void __rcu **results; 606 pgoff_t idx; 607 int i; 608 609 error = 0; 610 if (radix_tree_gang_lookup_slot(&mapping->i_pages, 611 &results, &idx, index, 1) && 612 idx < index + HPAGE_PMD_NR) { 613 error = -EEXIST; 614 } 615 616 if (!error) { 617 for (i = 0; i < HPAGE_PMD_NR; i++) { 618 error = radix_tree_insert(&mapping->i_pages, 619 index + i, page + i); 620 VM_BUG_ON(error); 621 } 622 count_vm_event(THP_FILE_ALLOC); 623 } 624 } else if (!expected) { 625 error = radix_tree_insert(&mapping->i_pages, index, page); 626 } else { 627 error = shmem_radix_tree_replace(mapping, index, expected, 628 page); 629 } 630 631 if (!error) { 632 mapping->nrpages += nr; 633 if (PageTransHuge(page)) 634 __inc_node_page_state(page, NR_SHMEM_THPS); 635 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 636 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 637 xa_unlock_irq(&mapping->i_pages); 638 } else { 639 page->mapping = NULL; 640 xa_unlock_irq(&mapping->i_pages); 641 page_ref_sub(page, nr); 642 } 643 return error; 644 } 645 646 /* 647 * Like delete_from_page_cache, but substitutes swap for page. 648 */ 649 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 650 { 651 struct address_space *mapping = page->mapping; 652 int error; 653 654 VM_BUG_ON_PAGE(PageCompound(page), page); 655 656 xa_lock_irq(&mapping->i_pages); 657 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 658 page->mapping = NULL; 659 mapping->nrpages--; 660 __dec_node_page_state(page, NR_FILE_PAGES); 661 __dec_node_page_state(page, NR_SHMEM); 662 xa_unlock_irq(&mapping->i_pages); 663 put_page(page); 664 BUG_ON(error); 665 } 666 667 /* 668 * Remove swap entry from radix tree, free the swap and its page cache. 669 */ 670 static int shmem_free_swap(struct address_space *mapping, 671 pgoff_t index, void *radswap) 672 { 673 void *old; 674 675 xa_lock_irq(&mapping->i_pages); 676 old = radix_tree_delete_item(&mapping->i_pages, index, radswap); 677 xa_unlock_irq(&mapping->i_pages); 678 if (old != radswap) 679 return -ENOENT; 680 free_swap_and_cache(radix_to_swp_entry(radswap)); 681 return 0; 682 } 683 684 /* 685 * Determine (in bytes) how many of the shmem object's pages mapped by the 686 * given offsets are swapped out. 687 * 688 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 689 * as long as the inode doesn't go away and racy results are not a problem. 690 */ 691 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 692 pgoff_t start, pgoff_t end) 693 { 694 struct radix_tree_iter iter; 695 void __rcu **slot; 696 struct page *page; 697 unsigned long swapped = 0; 698 699 rcu_read_lock(); 700 701 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 702 if (iter.index >= end) 703 break; 704 705 page = radix_tree_deref_slot(slot); 706 707 if (radix_tree_deref_retry(page)) { 708 slot = radix_tree_iter_retry(&iter); 709 continue; 710 } 711 712 if (radix_tree_exceptional_entry(page)) 713 swapped++; 714 715 if (need_resched()) { 716 slot = radix_tree_iter_resume(slot, &iter); 717 cond_resched_rcu(); 718 } 719 } 720 721 rcu_read_unlock(); 722 723 return swapped << PAGE_SHIFT; 724 } 725 726 /* 727 * Determine (in bytes) how many of the shmem object's pages mapped by the 728 * given vma is swapped out. 729 * 730 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 731 * as long as the inode doesn't go away and racy results are not a problem. 732 */ 733 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 734 { 735 struct inode *inode = file_inode(vma->vm_file); 736 struct shmem_inode_info *info = SHMEM_I(inode); 737 struct address_space *mapping = inode->i_mapping; 738 unsigned long swapped; 739 740 /* Be careful as we don't hold info->lock */ 741 swapped = READ_ONCE(info->swapped); 742 743 /* 744 * The easier cases are when the shmem object has nothing in swap, or 745 * the vma maps it whole. Then we can simply use the stats that we 746 * already track. 747 */ 748 if (!swapped) 749 return 0; 750 751 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 752 return swapped << PAGE_SHIFT; 753 754 /* Here comes the more involved part */ 755 return shmem_partial_swap_usage(mapping, 756 linear_page_index(vma, vma->vm_start), 757 linear_page_index(vma, vma->vm_end)); 758 } 759 760 /* 761 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 762 */ 763 void shmem_unlock_mapping(struct address_space *mapping) 764 { 765 struct pagevec pvec; 766 pgoff_t indices[PAGEVEC_SIZE]; 767 pgoff_t index = 0; 768 769 pagevec_init(&pvec); 770 /* 771 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 772 */ 773 while (!mapping_unevictable(mapping)) { 774 /* 775 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 776 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 777 */ 778 pvec.nr = find_get_entries(mapping, index, 779 PAGEVEC_SIZE, pvec.pages, indices); 780 if (!pvec.nr) 781 break; 782 index = indices[pvec.nr - 1] + 1; 783 pagevec_remove_exceptionals(&pvec); 784 check_move_unevictable_pages(pvec.pages, pvec.nr); 785 pagevec_release(&pvec); 786 cond_resched(); 787 } 788 } 789 790 /* 791 * Remove range of pages and swap entries from radix tree, and free them. 792 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 793 */ 794 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 795 bool unfalloc) 796 { 797 struct address_space *mapping = inode->i_mapping; 798 struct shmem_inode_info *info = SHMEM_I(inode); 799 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 800 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 801 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 802 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 803 struct pagevec pvec; 804 pgoff_t indices[PAGEVEC_SIZE]; 805 long nr_swaps_freed = 0; 806 pgoff_t index; 807 int i; 808 809 if (lend == -1) 810 end = -1; /* unsigned, so actually very big */ 811 812 pagevec_init(&pvec); 813 index = start; 814 while (index < end) { 815 pvec.nr = find_get_entries(mapping, index, 816 min(end - index, (pgoff_t)PAGEVEC_SIZE), 817 pvec.pages, indices); 818 if (!pvec.nr) 819 break; 820 for (i = 0; i < pagevec_count(&pvec); i++) { 821 struct page *page = pvec.pages[i]; 822 823 index = indices[i]; 824 if (index >= end) 825 break; 826 827 if (radix_tree_exceptional_entry(page)) { 828 if (unfalloc) 829 continue; 830 nr_swaps_freed += !shmem_free_swap(mapping, 831 index, page); 832 continue; 833 } 834 835 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 836 837 if (!trylock_page(page)) 838 continue; 839 840 if (PageTransTail(page)) { 841 /* Middle of THP: zero out the page */ 842 clear_highpage(page); 843 unlock_page(page); 844 continue; 845 } else if (PageTransHuge(page)) { 846 if (index == round_down(end, HPAGE_PMD_NR)) { 847 /* 848 * Range ends in the middle of THP: 849 * zero out the page 850 */ 851 clear_highpage(page); 852 unlock_page(page); 853 continue; 854 } 855 index += HPAGE_PMD_NR - 1; 856 i += HPAGE_PMD_NR - 1; 857 } 858 859 if (!unfalloc || !PageUptodate(page)) { 860 VM_BUG_ON_PAGE(PageTail(page), page); 861 if (page_mapping(page) == mapping) { 862 VM_BUG_ON_PAGE(PageWriteback(page), page); 863 truncate_inode_page(mapping, page); 864 } 865 } 866 unlock_page(page); 867 } 868 pagevec_remove_exceptionals(&pvec); 869 pagevec_release(&pvec); 870 cond_resched(); 871 index++; 872 } 873 874 if (partial_start) { 875 struct page *page = NULL; 876 shmem_getpage(inode, start - 1, &page, SGP_READ); 877 if (page) { 878 unsigned int top = PAGE_SIZE; 879 if (start > end) { 880 top = partial_end; 881 partial_end = 0; 882 } 883 zero_user_segment(page, partial_start, top); 884 set_page_dirty(page); 885 unlock_page(page); 886 put_page(page); 887 } 888 } 889 if (partial_end) { 890 struct page *page = NULL; 891 shmem_getpage(inode, end, &page, SGP_READ); 892 if (page) { 893 zero_user_segment(page, 0, partial_end); 894 set_page_dirty(page); 895 unlock_page(page); 896 put_page(page); 897 } 898 } 899 if (start >= end) 900 return; 901 902 index = start; 903 while (index < end) { 904 cond_resched(); 905 906 pvec.nr = find_get_entries(mapping, index, 907 min(end - index, (pgoff_t)PAGEVEC_SIZE), 908 pvec.pages, indices); 909 if (!pvec.nr) { 910 /* If all gone or hole-punch or unfalloc, we're done */ 911 if (index == start || end != -1) 912 break; 913 /* But if truncating, restart to make sure all gone */ 914 index = start; 915 continue; 916 } 917 for (i = 0; i < pagevec_count(&pvec); i++) { 918 struct page *page = pvec.pages[i]; 919 920 index = indices[i]; 921 if (index >= end) 922 break; 923 924 if (radix_tree_exceptional_entry(page)) { 925 if (unfalloc) 926 continue; 927 if (shmem_free_swap(mapping, index, page)) { 928 /* Swap was replaced by page: retry */ 929 index--; 930 break; 931 } 932 nr_swaps_freed++; 933 continue; 934 } 935 936 lock_page(page); 937 938 if (PageTransTail(page)) { 939 /* Middle of THP: zero out the page */ 940 clear_highpage(page); 941 unlock_page(page); 942 /* 943 * Partial thp truncate due 'start' in middle 944 * of THP: don't need to look on these pages 945 * again on !pvec.nr restart. 946 */ 947 if (index != round_down(end, HPAGE_PMD_NR)) 948 start++; 949 continue; 950 } else if (PageTransHuge(page)) { 951 if (index == round_down(end, HPAGE_PMD_NR)) { 952 /* 953 * Range ends in the middle of THP: 954 * zero out the page 955 */ 956 clear_highpage(page); 957 unlock_page(page); 958 continue; 959 } 960 index += HPAGE_PMD_NR - 1; 961 i += HPAGE_PMD_NR - 1; 962 } 963 964 if (!unfalloc || !PageUptodate(page)) { 965 VM_BUG_ON_PAGE(PageTail(page), page); 966 if (page_mapping(page) == mapping) { 967 VM_BUG_ON_PAGE(PageWriteback(page), page); 968 truncate_inode_page(mapping, page); 969 } else { 970 /* Page was replaced by swap: retry */ 971 unlock_page(page); 972 index--; 973 break; 974 } 975 } 976 unlock_page(page); 977 } 978 pagevec_remove_exceptionals(&pvec); 979 pagevec_release(&pvec); 980 index++; 981 } 982 983 spin_lock_irq(&info->lock); 984 info->swapped -= nr_swaps_freed; 985 shmem_recalc_inode(inode); 986 spin_unlock_irq(&info->lock); 987 } 988 989 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 990 { 991 shmem_undo_range(inode, lstart, lend, false); 992 inode->i_ctime = inode->i_mtime = current_time(inode); 993 } 994 EXPORT_SYMBOL_GPL(shmem_truncate_range); 995 996 static int shmem_getattr(const struct path *path, struct kstat *stat, 997 u32 request_mask, unsigned int query_flags) 998 { 999 struct inode *inode = path->dentry->d_inode; 1000 struct shmem_inode_info *info = SHMEM_I(inode); 1001 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1002 1003 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1004 spin_lock_irq(&info->lock); 1005 shmem_recalc_inode(inode); 1006 spin_unlock_irq(&info->lock); 1007 } 1008 generic_fillattr(inode, stat); 1009 1010 if (is_huge_enabled(sb_info)) 1011 stat->blksize = HPAGE_PMD_SIZE; 1012 1013 return 0; 1014 } 1015 1016 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1017 { 1018 struct inode *inode = d_inode(dentry); 1019 struct shmem_inode_info *info = SHMEM_I(inode); 1020 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1021 int error; 1022 1023 error = setattr_prepare(dentry, attr); 1024 if (error) 1025 return error; 1026 1027 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1028 loff_t oldsize = inode->i_size; 1029 loff_t newsize = attr->ia_size; 1030 1031 /* protected by i_mutex */ 1032 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1033 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1034 return -EPERM; 1035 1036 if (newsize != oldsize) { 1037 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1038 oldsize, newsize); 1039 if (error) 1040 return error; 1041 i_size_write(inode, newsize); 1042 inode->i_ctime = inode->i_mtime = current_time(inode); 1043 } 1044 if (newsize <= oldsize) { 1045 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1046 if (oldsize > holebegin) 1047 unmap_mapping_range(inode->i_mapping, 1048 holebegin, 0, 1); 1049 if (info->alloced) 1050 shmem_truncate_range(inode, 1051 newsize, (loff_t)-1); 1052 /* unmap again to remove racily COWed private pages */ 1053 if (oldsize > holebegin) 1054 unmap_mapping_range(inode->i_mapping, 1055 holebegin, 0, 1); 1056 1057 /* 1058 * Part of the huge page can be beyond i_size: subject 1059 * to shrink under memory pressure. 1060 */ 1061 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1062 spin_lock(&sbinfo->shrinklist_lock); 1063 /* 1064 * _careful to defend against unlocked access to 1065 * ->shrink_list in shmem_unused_huge_shrink() 1066 */ 1067 if (list_empty_careful(&info->shrinklist)) { 1068 list_add_tail(&info->shrinklist, 1069 &sbinfo->shrinklist); 1070 sbinfo->shrinklist_len++; 1071 } 1072 spin_unlock(&sbinfo->shrinklist_lock); 1073 } 1074 } 1075 } 1076 1077 setattr_copy(inode, attr); 1078 if (attr->ia_valid & ATTR_MODE) 1079 error = posix_acl_chmod(inode, inode->i_mode); 1080 return error; 1081 } 1082 1083 static void shmem_evict_inode(struct inode *inode) 1084 { 1085 struct shmem_inode_info *info = SHMEM_I(inode); 1086 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1087 1088 if (inode->i_mapping->a_ops == &shmem_aops) { 1089 shmem_unacct_size(info->flags, inode->i_size); 1090 inode->i_size = 0; 1091 shmem_truncate_range(inode, 0, (loff_t)-1); 1092 if (!list_empty(&info->shrinklist)) { 1093 spin_lock(&sbinfo->shrinklist_lock); 1094 if (!list_empty(&info->shrinklist)) { 1095 list_del_init(&info->shrinklist); 1096 sbinfo->shrinklist_len--; 1097 } 1098 spin_unlock(&sbinfo->shrinklist_lock); 1099 } 1100 if (!list_empty(&info->swaplist)) { 1101 mutex_lock(&shmem_swaplist_mutex); 1102 list_del_init(&info->swaplist); 1103 mutex_unlock(&shmem_swaplist_mutex); 1104 } 1105 } 1106 1107 simple_xattrs_free(&info->xattrs); 1108 WARN_ON(inode->i_blocks); 1109 shmem_free_inode(inode->i_sb); 1110 clear_inode(inode); 1111 } 1112 1113 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1114 { 1115 struct radix_tree_iter iter; 1116 void __rcu **slot; 1117 unsigned long found = -1; 1118 unsigned int checked = 0; 1119 1120 rcu_read_lock(); 1121 radix_tree_for_each_slot(slot, root, &iter, 0) { 1122 void *entry = radix_tree_deref_slot(slot); 1123 1124 if (radix_tree_deref_retry(entry)) { 1125 slot = radix_tree_iter_retry(&iter); 1126 continue; 1127 } 1128 if (entry == item) { 1129 found = iter.index; 1130 break; 1131 } 1132 checked++; 1133 if ((checked % 4096) != 0) 1134 continue; 1135 slot = radix_tree_iter_resume(slot, &iter); 1136 cond_resched_rcu(); 1137 } 1138 1139 rcu_read_unlock(); 1140 return found; 1141 } 1142 1143 /* 1144 * If swap found in inode, free it and move page from swapcache to filecache. 1145 */ 1146 static int shmem_unuse_inode(struct shmem_inode_info *info, 1147 swp_entry_t swap, struct page **pagep) 1148 { 1149 struct address_space *mapping = info->vfs_inode.i_mapping; 1150 void *radswap; 1151 pgoff_t index; 1152 gfp_t gfp; 1153 int error = 0; 1154 1155 radswap = swp_to_radix_entry(swap); 1156 index = find_swap_entry(&mapping->i_pages, radswap); 1157 if (index == -1) 1158 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1159 1160 /* 1161 * Move _head_ to start search for next from here. 1162 * But be careful: shmem_evict_inode checks list_empty without taking 1163 * mutex, and there's an instant in list_move_tail when info->swaplist 1164 * would appear empty, if it were the only one on shmem_swaplist. 1165 */ 1166 if (shmem_swaplist.next != &info->swaplist) 1167 list_move_tail(&shmem_swaplist, &info->swaplist); 1168 1169 gfp = mapping_gfp_mask(mapping); 1170 if (shmem_should_replace_page(*pagep, gfp)) { 1171 mutex_unlock(&shmem_swaplist_mutex); 1172 error = shmem_replace_page(pagep, gfp, info, index); 1173 mutex_lock(&shmem_swaplist_mutex); 1174 /* 1175 * We needed to drop mutex to make that restrictive page 1176 * allocation, but the inode might have been freed while we 1177 * dropped it: although a racing shmem_evict_inode() cannot 1178 * complete without emptying the radix_tree, our page lock 1179 * on this swapcache page is not enough to prevent that - 1180 * free_swap_and_cache() of our swap entry will only 1181 * trylock_page(), removing swap from radix_tree whatever. 1182 * 1183 * We must not proceed to shmem_add_to_page_cache() if the 1184 * inode has been freed, but of course we cannot rely on 1185 * inode or mapping or info to check that. However, we can 1186 * safely check if our swap entry is still in use (and here 1187 * it can't have got reused for another page): if it's still 1188 * in use, then the inode cannot have been freed yet, and we 1189 * can safely proceed (if it's no longer in use, that tells 1190 * nothing about the inode, but we don't need to unuse swap). 1191 */ 1192 if (!page_swapcount(*pagep)) 1193 error = -ENOENT; 1194 } 1195 1196 /* 1197 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1198 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1199 * beneath us (pagelock doesn't help until the page is in pagecache). 1200 */ 1201 if (!error) 1202 error = shmem_add_to_page_cache(*pagep, mapping, index, 1203 radswap); 1204 if (error != -ENOMEM) { 1205 /* 1206 * Truncation and eviction use free_swap_and_cache(), which 1207 * only does trylock page: if we raced, best clean up here. 1208 */ 1209 delete_from_swap_cache(*pagep); 1210 set_page_dirty(*pagep); 1211 if (!error) { 1212 spin_lock_irq(&info->lock); 1213 info->swapped--; 1214 spin_unlock_irq(&info->lock); 1215 swap_free(swap); 1216 } 1217 } 1218 return error; 1219 } 1220 1221 /* 1222 * Search through swapped inodes to find and replace swap by page. 1223 */ 1224 int shmem_unuse(swp_entry_t swap, struct page *page) 1225 { 1226 struct list_head *this, *next; 1227 struct shmem_inode_info *info; 1228 struct mem_cgroup *memcg; 1229 int error = 0; 1230 1231 /* 1232 * There's a faint possibility that swap page was replaced before 1233 * caller locked it: caller will come back later with the right page. 1234 */ 1235 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1236 goto out; 1237 1238 /* 1239 * Charge page using GFP_KERNEL while we can wait, before taking 1240 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1241 * Charged back to the user (not to caller) when swap account is used. 1242 */ 1243 error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL, 1244 &memcg, false); 1245 if (error) 1246 goto out; 1247 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1248 error = -EAGAIN; 1249 1250 mutex_lock(&shmem_swaplist_mutex); 1251 list_for_each_safe(this, next, &shmem_swaplist) { 1252 info = list_entry(this, struct shmem_inode_info, swaplist); 1253 if (info->swapped) 1254 error = shmem_unuse_inode(info, swap, &page); 1255 else 1256 list_del_init(&info->swaplist); 1257 cond_resched(); 1258 if (error != -EAGAIN) 1259 break; 1260 /* found nothing in this: move on to search the next */ 1261 } 1262 mutex_unlock(&shmem_swaplist_mutex); 1263 1264 if (error) { 1265 if (error != -ENOMEM) 1266 error = 0; 1267 mem_cgroup_cancel_charge(page, memcg, false); 1268 } else 1269 mem_cgroup_commit_charge(page, memcg, true, false); 1270 out: 1271 unlock_page(page); 1272 put_page(page); 1273 return error; 1274 } 1275 1276 /* 1277 * Move the page from the page cache to the swap cache. 1278 */ 1279 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1280 { 1281 struct shmem_inode_info *info; 1282 struct address_space *mapping; 1283 struct inode *inode; 1284 swp_entry_t swap; 1285 pgoff_t index; 1286 1287 VM_BUG_ON_PAGE(PageCompound(page), page); 1288 BUG_ON(!PageLocked(page)); 1289 mapping = page->mapping; 1290 index = page->index; 1291 inode = mapping->host; 1292 info = SHMEM_I(inode); 1293 if (info->flags & VM_LOCKED) 1294 goto redirty; 1295 if (!total_swap_pages) 1296 goto redirty; 1297 1298 /* 1299 * Our capabilities prevent regular writeback or sync from ever calling 1300 * shmem_writepage; but a stacking filesystem might use ->writepage of 1301 * its underlying filesystem, in which case tmpfs should write out to 1302 * swap only in response to memory pressure, and not for the writeback 1303 * threads or sync. 1304 */ 1305 if (!wbc->for_reclaim) { 1306 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1307 goto redirty; 1308 } 1309 1310 /* 1311 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1312 * value into swapfile.c, the only way we can correctly account for a 1313 * fallocated page arriving here is now to initialize it and write it. 1314 * 1315 * That's okay for a page already fallocated earlier, but if we have 1316 * not yet completed the fallocation, then (a) we want to keep track 1317 * of this page in case we have to undo it, and (b) it may not be a 1318 * good idea to continue anyway, once we're pushing into swap. So 1319 * reactivate the page, and let shmem_fallocate() quit when too many. 1320 */ 1321 if (!PageUptodate(page)) { 1322 if (inode->i_private) { 1323 struct shmem_falloc *shmem_falloc; 1324 spin_lock(&inode->i_lock); 1325 shmem_falloc = inode->i_private; 1326 if (shmem_falloc && 1327 !shmem_falloc->waitq && 1328 index >= shmem_falloc->start && 1329 index < shmem_falloc->next) 1330 shmem_falloc->nr_unswapped++; 1331 else 1332 shmem_falloc = NULL; 1333 spin_unlock(&inode->i_lock); 1334 if (shmem_falloc) 1335 goto redirty; 1336 } 1337 clear_highpage(page); 1338 flush_dcache_page(page); 1339 SetPageUptodate(page); 1340 } 1341 1342 swap = get_swap_page(page); 1343 if (!swap.val) 1344 goto redirty; 1345 1346 /* 1347 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1348 * if it's not already there. Do it now before the page is 1349 * moved to swap cache, when its pagelock no longer protects 1350 * the inode from eviction. But don't unlock the mutex until 1351 * we've incremented swapped, because shmem_unuse_inode() will 1352 * prune a !swapped inode from the swaplist under this mutex. 1353 */ 1354 mutex_lock(&shmem_swaplist_mutex); 1355 if (list_empty(&info->swaplist)) 1356 list_add_tail(&info->swaplist, &shmem_swaplist); 1357 1358 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1359 spin_lock_irq(&info->lock); 1360 shmem_recalc_inode(inode); 1361 info->swapped++; 1362 spin_unlock_irq(&info->lock); 1363 1364 swap_shmem_alloc(swap); 1365 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1366 1367 mutex_unlock(&shmem_swaplist_mutex); 1368 BUG_ON(page_mapped(page)); 1369 swap_writepage(page, wbc); 1370 return 0; 1371 } 1372 1373 mutex_unlock(&shmem_swaplist_mutex); 1374 put_swap_page(page, swap); 1375 redirty: 1376 set_page_dirty(page); 1377 if (wbc->for_reclaim) 1378 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1379 unlock_page(page); 1380 return 0; 1381 } 1382 1383 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1384 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1385 { 1386 char buffer[64]; 1387 1388 if (!mpol || mpol->mode == MPOL_DEFAULT) 1389 return; /* show nothing */ 1390 1391 mpol_to_str(buffer, sizeof(buffer), mpol); 1392 1393 seq_printf(seq, ",mpol=%s", buffer); 1394 } 1395 1396 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1397 { 1398 struct mempolicy *mpol = NULL; 1399 if (sbinfo->mpol) { 1400 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1401 mpol = sbinfo->mpol; 1402 mpol_get(mpol); 1403 spin_unlock(&sbinfo->stat_lock); 1404 } 1405 return mpol; 1406 } 1407 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1408 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1409 { 1410 } 1411 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1412 { 1413 return NULL; 1414 } 1415 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1416 #ifndef CONFIG_NUMA 1417 #define vm_policy vm_private_data 1418 #endif 1419 1420 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1421 struct shmem_inode_info *info, pgoff_t index) 1422 { 1423 /* Create a pseudo vma that just contains the policy */ 1424 vma_init(vma, NULL); 1425 /* Bias interleave by inode number to distribute better across nodes */ 1426 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1427 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1428 } 1429 1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1431 { 1432 /* Drop reference taken by mpol_shared_policy_lookup() */ 1433 mpol_cond_put(vma->vm_policy); 1434 } 1435 1436 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1437 struct shmem_inode_info *info, pgoff_t index) 1438 { 1439 struct vm_area_struct pvma; 1440 struct page *page; 1441 struct vm_fault vmf; 1442 1443 shmem_pseudo_vma_init(&pvma, info, index); 1444 vmf.vma = &pvma; 1445 vmf.address = 0; 1446 page = swap_cluster_readahead(swap, gfp, &vmf); 1447 shmem_pseudo_vma_destroy(&pvma); 1448 1449 return page; 1450 } 1451 1452 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1453 struct shmem_inode_info *info, pgoff_t index) 1454 { 1455 struct vm_area_struct pvma; 1456 struct inode *inode = &info->vfs_inode; 1457 struct address_space *mapping = inode->i_mapping; 1458 pgoff_t idx, hindex; 1459 void __rcu **results; 1460 struct page *page; 1461 1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1463 return NULL; 1464 1465 hindex = round_down(index, HPAGE_PMD_NR); 1466 rcu_read_lock(); 1467 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx, 1468 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1469 rcu_read_unlock(); 1470 return NULL; 1471 } 1472 rcu_read_unlock(); 1473 1474 shmem_pseudo_vma_init(&pvma, info, hindex); 1475 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1476 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1477 shmem_pseudo_vma_destroy(&pvma); 1478 if (page) 1479 prep_transhuge_page(page); 1480 return page; 1481 } 1482 1483 static struct page *shmem_alloc_page(gfp_t gfp, 1484 struct shmem_inode_info *info, pgoff_t index) 1485 { 1486 struct vm_area_struct pvma; 1487 struct page *page; 1488 1489 shmem_pseudo_vma_init(&pvma, info, index); 1490 page = alloc_page_vma(gfp, &pvma, 0); 1491 shmem_pseudo_vma_destroy(&pvma); 1492 1493 return page; 1494 } 1495 1496 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1497 struct inode *inode, 1498 pgoff_t index, bool huge) 1499 { 1500 struct shmem_inode_info *info = SHMEM_I(inode); 1501 struct page *page; 1502 int nr; 1503 int err = -ENOSPC; 1504 1505 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1506 huge = false; 1507 nr = huge ? HPAGE_PMD_NR : 1; 1508 1509 if (!shmem_inode_acct_block(inode, nr)) 1510 goto failed; 1511 1512 if (huge) 1513 page = shmem_alloc_hugepage(gfp, info, index); 1514 else 1515 page = shmem_alloc_page(gfp, info, index); 1516 if (page) { 1517 __SetPageLocked(page); 1518 __SetPageSwapBacked(page); 1519 return page; 1520 } 1521 1522 err = -ENOMEM; 1523 shmem_inode_unacct_blocks(inode, nr); 1524 failed: 1525 return ERR_PTR(err); 1526 } 1527 1528 /* 1529 * When a page is moved from swapcache to shmem filecache (either by the 1530 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1531 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1532 * ignorance of the mapping it belongs to. If that mapping has special 1533 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1534 * we may need to copy to a suitable page before moving to filecache. 1535 * 1536 * In a future release, this may well be extended to respect cpuset and 1537 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1538 * but for now it is a simple matter of zone. 1539 */ 1540 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1541 { 1542 return page_zonenum(page) > gfp_zone(gfp); 1543 } 1544 1545 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1546 struct shmem_inode_info *info, pgoff_t index) 1547 { 1548 struct page *oldpage, *newpage; 1549 struct address_space *swap_mapping; 1550 pgoff_t swap_index; 1551 int error; 1552 1553 oldpage = *pagep; 1554 swap_index = page_private(oldpage); 1555 swap_mapping = page_mapping(oldpage); 1556 1557 /* 1558 * We have arrived here because our zones are constrained, so don't 1559 * limit chance of success by further cpuset and node constraints. 1560 */ 1561 gfp &= ~GFP_CONSTRAINT_MASK; 1562 newpage = shmem_alloc_page(gfp, info, index); 1563 if (!newpage) 1564 return -ENOMEM; 1565 1566 get_page(newpage); 1567 copy_highpage(newpage, oldpage); 1568 flush_dcache_page(newpage); 1569 1570 __SetPageLocked(newpage); 1571 __SetPageSwapBacked(newpage); 1572 SetPageUptodate(newpage); 1573 set_page_private(newpage, swap_index); 1574 SetPageSwapCache(newpage); 1575 1576 /* 1577 * Our caller will very soon move newpage out of swapcache, but it's 1578 * a nice clean interface for us to replace oldpage by newpage there. 1579 */ 1580 xa_lock_irq(&swap_mapping->i_pages); 1581 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1582 newpage); 1583 if (!error) { 1584 __inc_node_page_state(newpage, NR_FILE_PAGES); 1585 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1586 } 1587 xa_unlock_irq(&swap_mapping->i_pages); 1588 1589 if (unlikely(error)) { 1590 /* 1591 * Is this possible? I think not, now that our callers check 1592 * both PageSwapCache and page_private after getting page lock; 1593 * but be defensive. Reverse old to newpage for clear and free. 1594 */ 1595 oldpage = newpage; 1596 } else { 1597 mem_cgroup_migrate(oldpage, newpage); 1598 lru_cache_add_anon(newpage); 1599 *pagep = newpage; 1600 } 1601 1602 ClearPageSwapCache(oldpage); 1603 set_page_private(oldpage, 0); 1604 1605 unlock_page(oldpage); 1606 put_page(oldpage); 1607 put_page(oldpage); 1608 return error; 1609 } 1610 1611 /* 1612 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1613 * 1614 * If we allocate a new one we do not mark it dirty. That's up to the 1615 * vm. If we swap it in we mark it dirty since we also free the swap 1616 * entry since a page cannot live in both the swap and page cache. 1617 * 1618 * fault_mm and fault_type are only supplied by shmem_fault: 1619 * otherwise they are NULL. 1620 */ 1621 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1622 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1623 struct vm_area_struct *vma, struct vm_fault *vmf, 1624 vm_fault_t *fault_type) 1625 { 1626 struct address_space *mapping = inode->i_mapping; 1627 struct shmem_inode_info *info = SHMEM_I(inode); 1628 struct shmem_sb_info *sbinfo; 1629 struct mm_struct *charge_mm; 1630 struct mem_cgroup *memcg; 1631 struct page *page; 1632 swp_entry_t swap; 1633 enum sgp_type sgp_huge = sgp; 1634 pgoff_t hindex = index; 1635 int error; 1636 int once = 0; 1637 int alloced = 0; 1638 1639 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1640 return -EFBIG; 1641 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1642 sgp = SGP_CACHE; 1643 repeat: 1644 swap.val = 0; 1645 page = find_lock_entry(mapping, index); 1646 if (radix_tree_exceptional_entry(page)) { 1647 swap = radix_to_swp_entry(page); 1648 page = NULL; 1649 } 1650 1651 if (sgp <= SGP_CACHE && 1652 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1653 error = -EINVAL; 1654 goto unlock; 1655 } 1656 1657 if (page && sgp == SGP_WRITE) 1658 mark_page_accessed(page); 1659 1660 /* fallocated page? */ 1661 if (page && !PageUptodate(page)) { 1662 if (sgp != SGP_READ) 1663 goto clear; 1664 unlock_page(page); 1665 put_page(page); 1666 page = NULL; 1667 } 1668 if (page || (sgp == SGP_READ && !swap.val)) { 1669 *pagep = page; 1670 return 0; 1671 } 1672 1673 /* 1674 * Fast cache lookup did not find it: 1675 * bring it back from swap or allocate. 1676 */ 1677 sbinfo = SHMEM_SB(inode->i_sb); 1678 charge_mm = vma ? vma->vm_mm : current->mm; 1679 1680 if (swap.val) { 1681 /* Look it up and read it in.. */ 1682 page = lookup_swap_cache(swap, NULL, 0); 1683 if (!page) { 1684 /* Or update major stats only when swapin succeeds?? */ 1685 if (fault_type) { 1686 *fault_type |= VM_FAULT_MAJOR; 1687 count_vm_event(PGMAJFAULT); 1688 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1689 } 1690 /* Here we actually start the io */ 1691 page = shmem_swapin(swap, gfp, info, index); 1692 if (!page) { 1693 error = -ENOMEM; 1694 goto failed; 1695 } 1696 } 1697 1698 /* We have to do this with page locked to prevent races */ 1699 lock_page(page); 1700 if (!PageSwapCache(page) || page_private(page) != swap.val || 1701 !shmem_confirm_swap(mapping, index, swap)) { 1702 error = -EEXIST; /* try again */ 1703 goto unlock; 1704 } 1705 if (!PageUptodate(page)) { 1706 error = -EIO; 1707 goto failed; 1708 } 1709 wait_on_page_writeback(page); 1710 1711 if (shmem_should_replace_page(page, gfp)) { 1712 error = shmem_replace_page(&page, gfp, info, index); 1713 if (error) 1714 goto failed; 1715 } 1716 1717 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1718 false); 1719 if (!error) { 1720 error = shmem_add_to_page_cache(page, mapping, index, 1721 swp_to_radix_entry(swap)); 1722 /* 1723 * We already confirmed swap under page lock, and make 1724 * no memory allocation here, so usually no possibility 1725 * of error; but free_swap_and_cache() only trylocks a 1726 * page, so it is just possible that the entry has been 1727 * truncated or holepunched since swap was confirmed. 1728 * shmem_undo_range() will have done some of the 1729 * unaccounting, now delete_from_swap_cache() will do 1730 * the rest. 1731 * Reset swap.val? No, leave it so "failed" goes back to 1732 * "repeat": reading a hole and writing should succeed. 1733 */ 1734 if (error) { 1735 mem_cgroup_cancel_charge(page, memcg, false); 1736 delete_from_swap_cache(page); 1737 } 1738 } 1739 if (error) 1740 goto failed; 1741 1742 mem_cgroup_commit_charge(page, memcg, true, false); 1743 1744 spin_lock_irq(&info->lock); 1745 info->swapped--; 1746 shmem_recalc_inode(inode); 1747 spin_unlock_irq(&info->lock); 1748 1749 if (sgp == SGP_WRITE) 1750 mark_page_accessed(page); 1751 1752 delete_from_swap_cache(page); 1753 set_page_dirty(page); 1754 swap_free(swap); 1755 1756 } else { 1757 if (vma && userfaultfd_missing(vma)) { 1758 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1759 return 0; 1760 } 1761 1762 /* shmem_symlink() */ 1763 if (mapping->a_ops != &shmem_aops) 1764 goto alloc_nohuge; 1765 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1766 goto alloc_nohuge; 1767 if (shmem_huge == SHMEM_HUGE_FORCE) 1768 goto alloc_huge; 1769 switch (sbinfo->huge) { 1770 loff_t i_size; 1771 pgoff_t off; 1772 case SHMEM_HUGE_NEVER: 1773 goto alloc_nohuge; 1774 case SHMEM_HUGE_WITHIN_SIZE: 1775 off = round_up(index, HPAGE_PMD_NR); 1776 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1777 if (i_size >= HPAGE_PMD_SIZE && 1778 i_size >> PAGE_SHIFT >= off) 1779 goto alloc_huge; 1780 /* fallthrough */ 1781 case SHMEM_HUGE_ADVISE: 1782 if (sgp_huge == SGP_HUGE) 1783 goto alloc_huge; 1784 /* TODO: implement fadvise() hints */ 1785 goto alloc_nohuge; 1786 } 1787 1788 alloc_huge: 1789 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1790 if (IS_ERR(page)) { 1791 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, 1792 index, false); 1793 } 1794 if (IS_ERR(page)) { 1795 int retry = 5; 1796 error = PTR_ERR(page); 1797 page = NULL; 1798 if (error != -ENOSPC) 1799 goto failed; 1800 /* 1801 * Try to reclaim some spece by splitting a huge page 1802 * beyond i_size on the filesystem. 1803 */ 1804 while (retry--) { 1805 int ret; 1806 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1807 if (ret == SHRINK_STOP) 1808 break; 1809 if (ret) 1810 goto alloc_nohuge; 1811 } 1812 goto failed; 1813 } 1814 1815 if (PageTransHuge(page)) 1816 hindex = round_down(index, HPAGE_PMD_NR); 1817 else 1818 hindex = index; 1819 1820 if (sgp == SGP_WRITE) 1821 __SetPageReferenced(page); 1822 1823 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1824 PageTransHuge(page)); 1825 if (error) 1826 goto unacct; 1827 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1828 compound_order(page)); 1829 if (!error) { 1830 error = shmem_add_to_page_cache(page, mapping, hindex, 1831 NULL); 1832 radix_tree_preload_end(); 1833 } 1834 if (error) { 1835 mem_cgroup_cancel_charge(page, memcg, 1836 PageTransHuge(page)); 1837 goto unacct; 1838 } 1839 mem_cgroup_commit_charge(page, memcg, false, 1840 PageTransHuge(page)); 1841 lru_cache_add_anon(page); 1842 1843 spin_lock_irq(&info->lock); 1844 info->alloced += 1 << compound_order(page); 1845 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1846 shmem_recalc_inode(inode); 1847 spin_unlock_irq(&info->lock); 1848 alloced = true; 1849 1850 if (PageTransHuge(page) && 1851 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1852 hindex + HPAGE_PMD_NR - 1) { 1853 /* 1854 * Part of the huge page is beyond i_size: subject 1855 * to shrink under memory pressure. 1856 */ 1857 spin_lock(&sbinfo->shrinklist_lock); 1858 /* 1859 * _careful to defend against unlocked access to 1860 * ->shrink_list in shmem_unused_huge_shrink() 1861 */ 1862 if (list_empty_careful(&info->shrinklist)) { 1863 list_add_tail(&info->shrinklist, 1864 &sbinfo->shrinklist); 1865 sbinfo->shrinklist_len++; 1866 } 1867 spin_unlock(&sbinfo->shrinklist_lock); 1868 } 1869 1870 /* 1871 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1872 */ 1873 if (sgp == SGP_FALLOC) 1874 sgp = SGP_WRITE; 1875 clear: 1876 /* 1877 * Let SGP_WRITE caller clear ends if write does not fill page; 1878 * but SGP_FALLOC on a page fallocated earlier must initialize 1879 * it now, lest undo on failure cancel our earlier guarantee. 1880 */ 1881 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1882 struct page *head = compound_head(page); 1883 int i; 1884 1885 for (i = 0; i < (1 << compound_order(head)); i++) { 1886 clear_highpage(head + i); 1887 flush_dcache_page(head + i); 1888 } 1889 SetPageUptodate(head); 1890 } 1891 } 1892 1893 /* Perhaps the file has been truncated since we checked */ 1894 if (sgp <= SGP_CACHE && 1895 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1896 if (alloced) { 1897 ClearPageDirty(page); 1898 delete_from_page_cache(page); 1899 spin_lock_irq(&info->lock); 1900 shmem_recalc_inode(inode); 1901 spin_unlock_irq(&info->lock); 1902 } 1903 error = -EINVAL; 1904 goto unlock; 1905 } 1906 *pagep = page + index - hindex; 1907 return 0; 1908 1909 /* 1910 * Error recovery. 1911 */ 1912 unacct: 1913 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1914 1915 if (PageTransHuge(page)) { 1916 unlock_page(page); 1917 put_page(page); 1918 goto alloc_nohuge; 1919 } 1920 failed: 1921 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1922 error = -EEXIST; 1923 unlock: 1924 if (page) { 1925 unlock_page(page); 1926 put_page(page); 1927 } 1928 if (error == -ENOSPC && !once++) { 1929 spin_lock_irq(&info->lock); 1930 shmem_recalc_inode(inode); 1931 spin_unlock_irq(&info->lock); 1932 goto repeat; 1933 } 1934 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1935 goto repeat; 1936 return error; 1937 } 1938 1939 /* 1940 * This is like autoremove_wake_function, but it removes the wait queue 1941 * entry unconditionally - even if something else had already woken the 1942 * target. 1943 */ 1944 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1945 { 1946 int ret = default_wake_function(wait, mode, sync, key); 1947 list_del_init(&wait->entry); 1948 return ret; 1949 } 1950 1951 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1952 { 1953 struct vm_area_struct *vma = vmf->vma; 1954 struct inode *inode = file_inode(vma->vm_file); 1955 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1956 enum sgp_type sgp; 1957 int err; 1958 vm_fault_t ret = VM_FAULT_LOCKED; 1959 1960 /* 1961 * Trinity finds that probing a hole which tmpfs is punching can 1962 * prevent the hole-punch from ever completing: which in turn 1963 * locks writers out with its hold on i_mutex. So refrain from 1964 * faulting pages into the hole while it's being punched. Although 1965 * shmem_undo_range() does remove the additions, it may be unable to 1966 * keep up, as each new page needs its own unmap_mapping_range() call, 1967 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1968 * 1969 * It does not matter if we sometimes reach this check just before the 1970 * hole-punch begins, so that one fault then races with the punch: 1971 * we just need to make racing faults a rare case. 1972 * 1973 * The implementation below would be much simpler if we just used a 1974 * standard mutex or completion: but we cannot take i_mutex in fault, 1975 * and bloating every shmem inode for this unlikely case would be sad. 1976 */ 1977 if (unlikely(inode->i_private)) { 1978 struct shmem_falloc *shmem_falloc; 1979 1980 spin_lock(&inode->i_lock); 1981 shmem_falloc = inode->i_private; 1982 if (shmem_falloc && 1983 shmem_falloc->waitq && 1984 vmf->pgoff >= shmem_falloc->start && 1985 vmf->pgoff < shmem_falloc->next) { 1986 wait_queue_head_t *shmem_falloc_waitq; 1987 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1988 1989 ret = VM_FAULT_NOPAGE; 1990 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1991 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1992 /* It's polite to up mmap_sem if we can */ 1993 up_read(&vma->vm_mm->mmap_sem); 1994 ret = VM_FAULT_RETRY; 1995 } 1996 1997 shmem_falloc_waitq = shmem_falloc->waitq; 1998 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1999 TASK_UNINTERRUPTIBLE); 2000 spin_unlock(&inode->i_lock); 2001 schedule(); 2002 2003 /* 2004 * shmem_falloc_waitq points into the shmem_fallocate() 2005 * stack of the hole-punching task: shmem_falloc_waitq 2006 * is usually invalid by the time we reach here, but 2007 * finish_wait() does not dereference it in that case; 2008 * though i_lock needed lest racing with wake_up_all(). 2009 */ 2010 spin_lock(&inode->i_lock); 2011 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2012 spin_unlock(&inode->i_lock); 2013 return ret; 2014 } 2015 spin_unlock(&inode->i_lock); 2016 } 2017 2018 sgp = SGP_CACHE; 2019 2020 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2021 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2022 sgp = SGP_NOHUGE; 2023 else if (vma->vm_flags & VM_HUGEPAGE) 2024 sgp = SGP_HUGE; 2025 2026 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2027 gfp, vma, vmf, &ret); 2028 if (err) 2029 return vmf_error(err); 2030 return ret; 2031 } 2032 2033 unsigned long shmem_get_unmapped_area(struct file *file, 2034 unsigned long uaddr, unsigned long len, 2035 unsigned long pgoff, unsigned long flags) 2036 { 2037 unsigned long (*get_area)(struct file *, 2038 unsigned long, unsigned long, unsigned long, unsigned long); 2039 unsigned long addr; 2040 unsigned long offset; 2041 unsigned long inflated_len; 2042 unsigned long inflated_addr; 2043 unsigned long inflated_offset; 2044 2045 if (len > TASK_SIZE) 2046 return -ENOMEM; 2047 2048 get_area = current->mm->get_unmapped_area; 2049 addr = get_area(file, uaddr, len, pgoff, flags); 2050 2051 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2052 return addr; 2053 if (IS_ERR_VALUE(addr)) 2054 return addr; 2055 if (addr & ~PAGE_MASK) 2056 return addr; 2057 if (addr > TASK_SIZE - len) 2058 return addr; 2059 2060 if (shmem_huge == SHMEM_HUGE_DENY) 2061 return addr; 2062 if (len < HPAGE_PMD_SIZE) 2063 return addr; 2064 if (flags & MAP_FIXED) 2065 return addr; 2066 /* 2067 * Our priority is to support MAP_SHARED mapped hugely; 2068 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2069 * But if caller specified an address hint, respect that as before. 2070 */ 2071 if (uaddr) 2072 return addr; 2073 2074 if (shmem_huge != SHMEM_HUGE_FORCE) { 2075 struct super_block *sb; 2076 2077 if (file) { 2078 VM_BUG_ON(file->f_op != &shmem_file_operations); 2079 sb = file_inode(file)->i_sb; 2080 } else { 2081 /* 2082 * Called directly from mm/mmap.c, or drivers/char/mem.c 2083 * for "/dev/zero", to create a shared anonymous object. 2084 */ 2085 if (IS_ERR(shm_mnt)) 2086 return addr; 2087 sb = shm_mnt->mnt_sb; 2088 } 2089 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2090 return addr; 2091 } 2092 2093 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2094 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2095 return addr; 2096 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2097 return addr; 2098 2099 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2100 if (inflated_len > TASK_SIZE) 2101 return addr; 2102 if (inflated_len < len) 2103 return addr; 2104 2105 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2106 if (IS_ERR_VALUE(inflated_addr)) 2107 return addr; 2108 if (inflated_addr & ~PAGE_MASK) 2109 return addr; 2110 2111 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2112 inflated_addr += offset - inflated_offset; 2113 if (inflated_offset > offset) 2114 inflated_addr += HPAGE_PMD_SIZE; 2115 2116 if (inflated_addr > TASK_SIZE - len) 2117 return addr; 2118 return inflated_addr; 2119 } 2120 2121 #ifdef CONFIG_NUMA 2122 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2123 { 2124 struct inode *inode = file_inode(vma->vm_file); 2125 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2126 } 2127 2128 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2129 unsigned long addr) 2130 { 2131 struct inode *inode = file_inode(vma->vm_file); 2132 pgoff_t index; 2133 2134 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2135 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2136 } 2137 #endif 2138 2139 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2140 { 2141 struct inode *inode = file_inode(file); 2142 struct shmem_inode_info *info = SHMEM_I(inode); 2143 int retval = -ENOMEM; 2144 2145 spin_lock_irq(&info->lock); 2146 if (lock && !(info->flags & VM_LOCKED)) { 2147 if (!user_shm_lock(inode->i_size, user)) 2148 goto out_nomem; 2149 info->flags |= VM_LOCKED; 2150 mapping_set_unevictable(file->f_mapping); 2151 } 2152 if (!lock && (info->flags & VM_LOCKED) && user) { 2153 user_shm_unlock(inode->i_size, user); 2154 info->flags &= ~VM_LOCKED; 2155 mapping_clear_unevictable(file->f_mapping); 2156 } 2157 retval = 0; 2158 2159 out_nomem: 2160 spin_unlock_irq(&info->lock); 2161 return retval; 2162 } 2163 2164 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2165 { 2166 file_accessed(file); 2167 vma->vm_ops = &shmem_vm_ops; 2168 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2169 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2170 (vma->vm_end & HPAGE_PMD_MASK)) { 2171 khugepaged_enter(vma, vma->vm_flags); 2172 } 2173 return 0; 2174 } 2175 2176 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2177 umode_t mode, dev_t dev, unsigned long flags) 2178 { 2179 struct inode *inode; 2180 struct shmem_inode_info *info; 2181 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2182 2183 if (shmem_reserve_inode(sb)) 2184 return NULL; 2185 2186 inode = new_inode(sb); 2187 if (inode) { 2188 inode->i_ino = get_next_ino(); 2189 inode_init_owner(inode, dir, mode); 2190 inode->i_blocks = 0; 2191 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2192 inode->i_generation = prandom_u32(); 2193 info = SHMEM_I(inode); 2194 memset(info, 0, (char *)inode - (char *)info); 2195 spin_lock_init(&info->lock); 2196 info->seals = F_SEAL_SEAL; 2197 info->flags = flags & VM_NORESERVE; 2198 INIT_LIST_HEAD(&info->shrinklist); 2199 INIT_LIST_HEAD(&info->swaplist); 2200 simple_xattrs_init(&info->xattrs); 2201 cache_no_acl(inode); 2202 2203 switch (mode & S_IFMT) { 2204 default: 2205 inode->i_op = &shmem_special_inode_operations; 2206 init_special_inode(inode, mode, dev); 2207 break; 2208 case S_IFREG: 2209 inode->i_mapping->a_ops = &shmem_aops; 2210 inode->i_op = &shmem_inode_operations; 2211 inode->i_fop = &shmem_file_operations; 2212 mpol_shared_policy_init(&info->policy, 2213 shmem_get_sbmpol(sbinfo)); 2214 break; 2215 case S_IFDIR: 2216 inc_nlink(inode); 2217 /* Some things misbehave if size == 0 on a directory */ 2218 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2219 inode->i_op = &shmem_dir_inode_operations; 2220 inode->i_fop = &simple_dir_operations; 2221 break; 2222 case S_IFLNK: 2223 /* 2224 * Must not load anything in the rbtree, 2225 * mpol_free_shared_policy will not be called. 2226 */ 2227 mpol_shared_policy_init(&info->policy, NULL); 2228 break; 2229 } 2230 } else 2231 shmem_free_inode(sb); 2232 return inode; 2233 } 2234 2235 bool shmem_mapping(struct address_space *mapping) 2236 { 2237 return mapping->a_ops == &shmem_aops; 2238 } 2239 2240 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2241 pmd_t *dst_pmd, 2242 struct vm_area_struct *dst_vma, 2243 unsigned long dst_addr, 2244 unsigned long src_addr, 2245 bool zeropage, 2246 struct page **pagep) 2247 { 2248 struct inode *inode = file_inode(dst_vma->vm_file); 2249 struct shmem_inode_info *info = SHMEM_I(inode); 2250 struct address_space *mapping = inode->i_mapping; 2251 gfp_t gfp = mapping_gfp_mask(mapping); 2252 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2253 struct mem_cgroup *memcg; 2254 spinlock_t *ptl; 2255 void *page_kaddr; 2256 struct page *page; 2257 pte_t _dst_pte, *dst_pte; 2258 int ret; 2259 2260 ret = -ENOMEM; 2261 if (!shmem_inode_acct_block(inode, 1)) 2262 goto out; 2263 2264 if (!*pagep) { 2265 page = shmem_alloc_page(gfp, info, pgoff); 2266 if (!page) 2267 goto out_unacct_blocks; 2268 2269 if (!zeropage) { /* mcopy_atomic */ 2270 page_kaddr = kmap_atomic(page); 2271 ret = copy_from_user(page_kaddr, 2272 (const void __user *)src_addr, 2273 PAGE_SIZE); 2274 kunmap_atomic(page_kaddr); 2275 2276 /* fallback to copy_from_user outside mmap_sem */ 2277 if (unlikely(ret)) { 2278 *pagep = page; 2279 shmem_inode_unacct_blocks(inode, 1); 2280 /* don't free the page */ 2281 return -EFAULT; 2282 } 2283 } else { /* mfill_zeropage_atomic */ 2284 clear_highpage(page); 2285 } 2286 } else { 2287 page = *pagep; 2288 *pagep = NULL; 2289 } 2290 2291 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2292 __SetPageLocked(page); 2293 __SetPageSwapBacked(page); 2294 __SetPageUptodate(page); 2295 2296 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2297 if (ret) 2298 goto out_release; 2299 2300 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2301 if (!ret) { 2302 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2303 radix_tree_preload_end(); 2304 } 2305 if (ret) 2306 goto out_release_uncharge; 2307 2308 mem_cgroup_commit_charge(page, memcg, false, false); 2309 2310 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2311 if (dst_vma->vm_flags & VM_WRITE) 2312 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2313 2314 ret = -EEXIST; 2315 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2316 if (!pte_none(*dst_pte)) 2317 goto out_release_uncharge_unlock; 2318 2319 lru_cache_add_anon(page); 2320 2321 spin_lock(&info->lock); 2322 info->alloced++; 2323 inode->i_blocks += BLOCKS_PER_PAGE; 2324 shmem_recalc_inode(inode); 2325 spin_unlock(&info->lock); 2326 2327 inc_mm_counter(dst_mm, mm_counter_file(page)); 2328 page_add_file_rmap(page, false); 2329 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2330 2331 /* No need to invalidate - it was non-present before */ 2332 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2333 unlock_page(page); 2334 pte_unmap_unlock(dst_pte, ptl); 2335 ret = 0; 2336 out: 2337 return ret; 2338 out_release_uncharge_unlock: 2339 pte_unmap_unlock(dst_pte, ptl); 2340 out_release_uncharge: 2341 mem_cgroup_cancel_charge(page, memcg, false); 2342 out_release: 2343 unlock_page(page); 2344 put_page(page); 2345 out_unacct_blocks: 2346 shmem_inode_unacct_blocks(inode, 1); 2347 goto out; 2348 } 2349 2350 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2351 pmd_t *dst_pmd, 2352 struct vm_area_struct *dst_vma, 2353 unsigned long dst_addr, 2354 unsigned long src_addr, 2355 struct page **pagep) 2356 { 2357 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2358 dst_addr, src_addr, false, pagep); 2359 } 2360 2361 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2362 pmd_t *dst_pmd, 2363 struct vm_area_struct *dst_vma, 2364 unsigned long dst_addr) 2365 { 2366 struct page *page = NULL; 2367 2368 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2369 dst_addr, 0, true, &page); 2370 } 2371 2372 #ifdef CONFIG_TMPFS 2373 static const struct inode_operations shmem_symlink_inode_operations; 2374 static const struct inode_operations shmem_short_symlink_operations; 2375 2376 #ifdef CONFIG_TMPFS_XATTR 2377 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2378 #else 2379 #define shmem_initxattrs NULL 2380 #endif 2381 2382 static int 2383 shmem_write_begin(struct file *file, struct address_space *mapping, 2384 loff_t pos, unsigned len, unsigned flags, 2385 struct page **pagep, void **fsdata) 2386 { 2387 struct inode *inode = mapping->host; 2388 struct shmem_inode_info *info = SHMEM_I(inode); 2389 pgoff_t index = pos >> PAGE_SHIFT; 2390 2391 /* i_mutex is held by caller */ 2392 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2393 if (info->seals & F_SEAL_WRITE) 2394 return -EPERM; 2395 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2396 return -EPERM; 2397 } 2398 2399 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2400 } 2401 2402 static int 2403 shmem_write_end(struct file *file, struct address_space *mapping, 2404 loff_t pos, unsigned len, unsigned copied, 2405 struct page *page, void *fsdata) 2406 { 2407 struct inode *inode = mapping->host; 2408 2409 if (pos + copied > inode->i_size) 2410 i_size_write(inode, pos + copied); 2411 2412 if (!PageUptodate(page)) { 2413 struct page *head = compound_head(page); 2414 if (PageTransCompound(page)) { 2415 int i; 2416 2417 for (i = 0; i < HPAGE_PMD_NR; i++) { 2418 if (head + i == page) 2419 continue; 2420 clear_highpage(head + i); 2421 flush_dcache_page(head + i); 2422 } 2423 } 2424 if (copied < PAGE_SIZE) { 2425 unsigned from = pos & (PAGE_SIZE - 1); 2426 zero_user_segments(page, 0, from, 2427 from + copied, PAGE_SIZE); 2428 } 2429 SetPageUptodate(head); 2430 } 2431 set_page_dirty(page); 2432 unlock_page(page); 2433 put_page(page); 2434 2435 return copied; 2436 } 2437 2438 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2439 { 2440 struct file *file = iocb->ki_filp; 2441 struct inode *inode = file_inode(file); 2442 struct address_space *mapping = inode->i_mapping; 2443 pgoff_t index; 2444 unsigned long offset; 2445 enum sgp_type sgp = SGP_READ; 2446 int error = 0; 2447 ssize_t retval = 0; 2448 loff_t *ppos = &iocb->ki_pos; 2449 2450 /* 2451 * Might this read be for a stacking filesystem? Then when reading 2452 * holes of a sparse file, we actually need to allocate those pages, 2453 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2454 */ 2455 if (!iter_is_iovec(to)) 2456 sgp = SGP_CACHE; 2457 2458 index = *ppos >> PAGE_SHIFT; 2459 offset = *ppos & ~PAGE_MASK; 2460 2461 for (;;) { 2462 struct page *page = NULL; 2463 pgoff_t end_index; 2464 unsigned long nr, ret; 2465 loff_t i_size = i_size_read(inode); 2466 2467 end_index = i_size >> PAGE_SHIFT; 2468 if (index > end_index) 2469 break; 2470 if (index == end_index) { 2471 nr = i_size & ~PAGE_MASK; 2472 if (nr <= offset) 2473 break; 2474 } 2475 2476 error = shmem_getpage(inode, index, &page, sgp); 2477 if (error) { 2478 if (error == -EINVAL) 2479 error = 0; 2480 break; 2481 } 2482 if (page) { 2483 if (sgp == SGP_CACHE) 2484 set_page_dirty(page); 2485 unlock_page(page); 2486 } 2487 2488 /* 2489 * We must evaluate after, since reads (unlike writes) 2490 * are called without i_mutex protection against truncate 2491 */ 2492 nr = PAGE_SIZE; 2493 i_size = i_size_read(inode); 2494 end_index = i_size >> PAGE_SHIFT; 2495 if (index == end_index) { 2496 nr = i_size & ~PAGE_MASK; 2497 if (nr <= offset) { 2498 if (page) 2499 put_page(page); 2500 break; 2501 } 2502 } 2503 nr -= offset; 2504 2505 if (page) { 2506 /* 2507 * If users can be writing to this page using arbitrary 2508 * virtual addresses, take care about potential aliasing 2509 * before reading the page on the kernel side. 2510 */ 2511 if (mapping_writably_mapped(mapping)) 2512 flush_dcache_page(page); 2513 /* 2514 * Mark the page accessed if we read the beginning. 2515 */ 2516 if (!offset) 2517 mark_page_accessed(page); 2518 } else { 2519 page = ZERO_PAGE(0); 2520 get_page(page); 2521 } 2522 2523 /* 2524 * Ok, we have the page, and it's up-to-date, so 2525 * now we can copy it to user space... 2526 */ 2527 ret = copy_page_to_iter(page, offset, nr, to); 2528 retval += ret; 2529 offset += ret; 2530 index += offset >> PAGE_SHIFT; 2531 offset &= ~PAGE_MASK; 2532 2533 put_page(page); 2534 if (!iov_iter_count(to)) 2535 break; 2536 if (ret < nr) { 2537 error = -EFAULT; 2538 break; 2539 } 2540 cond_resched(); 2541 } 2542 2543 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2544 file_accessed(file); 2545 return retval ? retval : error; 2546 } 2547 2548 /* 2549 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2550 */ 2551 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2552 pgoff_t index, pgoff_t end, int whence) 2553 { 2554 struct page *page; 2555 struct pagevec pvec; 2556 pgoff_t indices[PAGEVEC_SIZE]; 2557 bool done = false; 2558 int i; 2559 2560 pagevec_init(&pvec); 2561 pvec.nr = 1; /* start small: we may be there already */ 2562 while (!done) { 2563 pvec.nr = find_get_entries(mapping, index, 2564 pvec.nr, pvec.pages, indices); 2565 if (!pvec.nr) { 2566 if (whence == SEEK_DATA) 2567 index = end; 2568 break; 2569 } 2570 for (i = 0; i < pvec.nr; i++, index++) { 2571 if (index < indices[i]) { 2572 if (whence == SEEK_HOLE) { 2573 done = true; 2574 break; 2575 } 2576 index = indices[i]; 2577 } 2578 page = pvec.pages[i]; 2579 if (page && !radix_tree_exceptional_entry(page)) { 2580 if (!PageUptodate(page)) 2581 page = NULL; 2582 } 2583 if (index >= end || 2584 (page && whence == SEEK_DATA) || 2585 (!page && whence == SEEK_HOLE)) { 2586 done = true; 2587 break; 2588 } 2589 } 2590 pagevec_remove_exceptionals(&pvec); 2591 pagevec_release(&pvec); 2592 pvec.nr = PAGEVEC_SIZE; 2593 cond_resched(); 2594 } 2595 return index; 2596 } 2597 2598 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2599 { 2600 struct address_space *mapping = file->f_mapping; 2601 struct inode *inode = mapping->host; 2602 pgoff_t start, end; 2603 loff_t new_offset; 2604 2605 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2606 return generic_file_llseek_size(file, offset, whence, 2607 MAX_LFS_FILESIZE, i_size_read(inode)); 2608 inode_lock(inode); 2609 /* We're holding i_mutex so we can access i_size directly */ 2610 2611 if (offset < 0) 2612 offset = -EINVAL; 2613 else if (offset >= inode->i_size) 2614 offset = -ENXIO; 2615 else { 2616 start = offset >> PAGE_SHIFT; 2617 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2618 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2619 new_offset <<= PAGE_SHIFT; 2620 if (new_offset > offset) { 2621 if (new_offset < inode->i_size) 2622 offset = new_offset; 2623 else if (whence == SEEK_DATA) 2624 offset = -ENXIO; 2625 else 2626 offset = inode->i_size; 2627 } 2628 } 2629 2630 if (offset >= 0) 2631 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2632 inode_unlock(inode); 2633 return offset; 2634 } 2635 2636 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2637 loff_t len) 2638 { 2639 struct inode *inode = file_inode(file); 2640 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2641 struct shmem_inode_info *info = SHMEM_I(inode); 2642 struct shmem_falloc shmem_falloc; 2643 pgoff_t start, index, end; 2644 int error; 2645 2646 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2647 return -EOPNOTSUPP; 2648 2649 inode_lock(inode); 2650 2651 if (mode & FALLOC_FL_PUNCH_HOLE) { 2652 struct address_space *mapping = file->f_mapping; 2653 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2654 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2655 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2656 2657 /* protected by i_mutex */ 2658 if (info->seals & F_SEAL_WRITE) { 2659 error = -EPERM; 2660 goto out; 2661 } 2662 2663 shmem_falloc.waitq = &shmem_falloc_waitq; 2664 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2665 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2666 spin_lock(&inode->i_lock); 2667 inode->i_private = &shmem_falloc; 2668 spin_unlock(&inode->i_lock); 2669 2670 if ((u64)unmap_end > (u64)unmap_start) 2671 unmap_mapping_range(mapping, unmap_start, 2672 1 + unmap_end - unmap_start, 0); 2673 shmem_truncate_range(inode, offset, offset + len - 1); 2674 /* No need to unmap again: hole-punching leaves COWed pages */ 2675 2676 spin_lock(&inode->i_lock); 2677 inode->i_private = NULL; 2678 wake_up_all(&shmem_falloc_waitq); 2679 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2680 spin_unlock(&inode->i_lock); 2681 error = 0; 2682 goto out; 2683 } 2684 2685 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2686 error = inode_newsize_ok(inode, offset + len); 2687 if (error) 2688 goto out; 2689 2690 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2691 error = -EPERM; 2692 goto out; 2693 } 2694 2695 start = offset >> PAGE_SHIFT; 2696 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2697 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2698 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2699 error = -ENOSPC; 2700 goto out; 2701 } 2702 2703 shmem_falloc.waitq = NULL; 2704 shmem_falloc.start = start; 2705 shmem_falloc.next = start; 2706 shmem_falloc.nr_falloced = 0; 2707 shmem_falloc.nr_unswapped = 0; 2708 spin_lock(&inode->i_lock); 2709 inode->i_private = &shmem_falloc; 2710 spin_unlock(&inode->i_lock); 2711 2712 for (index = start; index < end; index++) { 2713 struct page *page; 2714 2715 /* 2716 * Good, the fallocate(2) manpage permits EINTR: we may have 2717 * been interrupted because we are using up too much memory. 2718 */ 2719 if (signal_pending(current)) 2720 error = -EINTR; 2721 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2722 error = -ENOMEM; 2723 else 2724 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2725 if (error) { 2726 /* Remove the !PageUptodate pages we added */ 2727 if (index > start) { 2728 shmem_undo_range(inode, 2729 (loff_t)start << PAGE_SHIFT, 2730 ((loff_t)index << PAGE_SHIFT) - 1, true); 2731 } 2732 goto undone; 2733 } 2734 2735 /* 2736 * Inform shmem_writepage() how far we have reached. 2737 * No need for lock or barrier: we have the page lock. 2738 */ 2739 shmem_falloc.next++; 2740 if (!PageUptodate(page)) 2741 shmem_falloc.nr_falloced++; 2742 2743 /* 2744 * If !PageUptodate, leave it that way so that freeable pages 2745 * can be recognized if we need to rollback on error later. 2746 * But set_page_dirty so that memory pressure will swap rather 2747 * than free the pages we are allocating (and SGP_CACHE pages 2748 * might still be clean: we now need to mark those dirty too). 2749 */ 2750 set_page_dirty(page); 2751 unlock_page(page); 2752 put_page(page); 2753 cond_resched(); 2754 } 2755 2756 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2757 i_size_write(inode, offset + len); 2758 inode->i_ctime = current_time(inode); 2759 undone: 2760 spin_lock(&inode->i_lock); 2761 inode->i_private = NULL; 2762 spin_unlock(&inode->i_lock); 2763 out: 2764 inode_unlock(inode); 2765 return error; 2766 } 2767 2768 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2769 { 2770 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2771 2772 buf->f_type = TMPFS_MAGIC; 2773 buf->f_bsize = PAGE_SIZE; 2774 buf->f_namelen = NAME_MAX; 2775 if (sbinfo->max_blocks) { 2776 buf->f_blocks = sbinfo->max_blocks; 2777 buf->f_bavail = 2778 buf->f_bfree = sbinfo->max_blocks - 2779 percpu_counter_sum(&sbinfo->used_blocks); 2780 } 2781 if (sbinfo->max_inodes) { 2782 buf->f_files = sbinfo->max_inodes; 2783 buf->f_ffree = sbinfo->free_inodes; 2784 } 2785 /* else leave those fields 0 like simple_statfs */ 2786 return 0; 2787 } 2788 2789 /* 2790 * File creation. Allocate an inode, and we're done.. 2791 */ 2792 static int 2793 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2794 { 2795 struct inode *inode; 2796 int error = -ENOSPC; 2797 2798 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2799 if (inode) { 2800 error = simple_acl_create(dir, inode); 2801 if (error) 2802 goto out_iput; 2803 error = security_inode_init_security(inode, dir, 2804 &dentry->d_name, 2805 shmem_initxattrs, NULL); 2806 if (error && error != -EOPNOTSUPP) 2807 goto out_iput; 2808 2809 error = 0; 2810 dir->i_size += BOGO_DIRENT_SIZE; 2811 dir->i_ctime = dir->i_mtime = current_time(dir); 2812 d_instantiate(dentry, inode); 2813 dget(dentry); /* Extra count - pin the dentry in core */ 2814 } 2815 return error; 2816 out_iput: 2817 iput(inode); 2818 return error; 2819 } 2820 2821 static int 2822 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2823 { 2824 struct inode *inode; 2825 int error = -ENOSPC; 2826 2827 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2828 if (inode) { 2829 error = security_inode_init_security(inode, dir, 2830 NULL, 2831 shmem_initxattrs, NULL); 2832 if (error && error != -EOPNOTSUPP) 2833 goto out_iput; 2834 error = simple_acl_create(dir, inode); 2835 if (error) 2836 goto out_iput; 2837 d_tmpfile(dentry, inode); 2838 } 2839 return error; 2840 out_iput: 2841 iput(inode); 2842 return error; 2843 } 2844 2845 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2846 { 2847 int error; 2848 2849 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2850 return error; 2851 inc_nlink(dir); 2852 return 0; 2853 } 2854 2855 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2856 bool excl) 2857 { 2858 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2859 } 2860 2861 /* 2862 * Link a file.. 2863 */ 2864 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2865 { 2866 struct inode *inode = d_inode(old_dentry); 2867 int ret; 2868 2869 /* 2870 * No ordinary (disk based) filesystem counts links as inodes; 2871 * but each new link needs a new dentry, pinning lowmem, and 2872 * tmpfs dentries cannot be pruned until they are unlinked. 2873 */ 2874 ret = shmem_reserve_inode(inode->i_sb); 2875 if (ret) 2876 goto out; 2877 2878 dir->i_size += BOGO_DIRENT_SIZE; 2879 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2880 inc_nlink(inode); 2881 ihold(inode); /* New dentry reference */ 2882 dget(dentry); /* Extra pinning count for the created dentry */ 2883 d_instantiate(dentry, inode); 2884 out: 2885 return ret; 2886 } 2887 2888 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2889 { 2890 struct inode *inode = d_inode(dentry); 2891 2892 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2893 shmem_free_inode(inode->i_sb); 2894 2895 dir->i_size -= BOGO_DIRENT_SIZE; 2896 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2897 drop_nlink(inode); 2898 dput(dentry); /* Undo the count from "create" - this does all the work */ 2899 return 0; 2900 } 2901 2902 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2903 { 2904 if (!simple_empty(dentry)) 2905 return -ENOTEMPTY; 2906 2907 drop_nlink(d_inode(dentry)); 2908 drop_nlink(dir); 2909 return shmem_unlink(dir, dentry); 2910 } 2911 2912 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2913 { 2914 bool old_is_dir = d_is_dir(old_dentry); 2915 bool new_is_dir = d_is_dir(new_dentry); 2916 2917 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2918 if (old_is_dir) { 2919 drop_nlink(old_dir); 2920 inc_nlink(new_dir); 2921 } else { 2922 drop_nlink(new_dir); 2923 inc_nlink(old_dir); 2924 } 2925 } 2926 old_dir->i_ctime = old_dir->i_mtime = 2927 new_dir->i_ctime = new_dir->i_mtime = 2928 d_inode(old_dentry)->i_ctime = 2929 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2930 2931 return 0; 2932 } 2933 2934 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2935 { 2936 struct dentry *whiteout; 2937 int error; 2938 2939 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2940 if (!whiteout) 2941 return -ENOMEM; 2942 2943 error = shmem_mknod(old_dir, whiteout, 2944 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2945 dput(whiteout); 2946 if (error) 2947 return error; 2948 2949 /* 2950 * Cheat and hash the whiteout while the old dentry is still in 2951 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2952 * 2953 * d_lookup() will consistently find one of them at this point, 2954 * not sure which one, but that isn't even important. 2955 */ 2956 d_rehash(whiteout); 2957 return 0; 2958 } 2959 2960 /* 2961 * The VFS layer already does all the dentry stuff for rename, 2962 * we just have to decrement the usage count for the target if 2963 * it exists so that the VFS layer correctly free's it when it 2964 * gets overwritten. 2965 */ 2966 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2967 { 2968 struct inode *inode = d_inode(old_dentry); 2969 int they_are_dirs = S_ISDIR(inode->i_mode); 2970 2971 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2972 return -EINVAL; 2973 2974 if (flags & RENAME_EXCHANGE) 2975 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2976 2977 if (!simple_empty(new_dentry)) 2978 return -ENOTEMPTY; 2979 2980 if (flags & RENAME_WHITEOUT) { 2981 int error; 2982 2983 error = shmem_whiteout(old_dir, old_dentry); 2984 if (error) 2985 return error; 2986 } 2987 2988 if (d_really_is_positive(new_dentry)) { 2989 (void) shmem_unlink(new_dir, new_dentry); 2990 if (they_are_dirs) { 2991 drop_nlink(d_inode(new_dentry)); 2992 drop_nlink(old_dir); 2993 } 2994 } else if (they_are_dirs) { 2995 drop_nlink(old_dir); 2996 inc_nlink(new_dir); 2997 } 2998 2999 old_dir->i_size -= BOGO_DIRENT_SIZE; 3000 new_dir->i_size += BOGO_DIRENT_SIZE; 3001 old_dir->i_ctime = old_dir->i_mtime = 3002 new_dir->i_ctime = new_dir->i_mtime = 3003 inode->i_ctime = current_time(old_dir); 3004 return 0; 3005 } 3006 3007 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3008 { 3009 int error; 3010 int len; 3011 struct inode *inode; 3012 struct page *page; 3013 3014 len = strlen(symname) + 1; 3015 if (len > PAGE_SIZE) 3016 return -ENAMETOOLONG; 3017 3018 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3019 VM_NORESERVE); 3020 if (!inode) 3021 return -ENOSPC; 3022 3023 error = security_inode_init_security(inode, dir, &dentry->d_name, 3024 shmem_initxattrs, NULL); 3025 if (error) { 3026 if (error != -EOPNOTSUPP) { 3027 iput(inode); 3028 return error; 3029 } 3030 error = 0; 3031 } 3032 3033 inode->i_size = len-1; 3034 if (len <= SHORT_SYMLINK_LEN) { 3035 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3036 if (!inode->i_link) { 3037 iput(inode); 3038 return -ENOMEM; 3039 } 3040 inode->i_op = &shmem_short_symlink_operations; 3041 } else { 3042 inode_nohighmem(inode); 3043 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3044 if (error) { 3045 iput(inode); 3046 return error; 3047 } 3048 inode->i_mapping->a_ops = &shmem_aops; 3049 inode->i_op = &shmem_symlink_inode_operations; 3050 memcpy(page_address(page), symname, len); 3051 SetPageUptodate(page); 3052 set_page_dirty(page); 3053 unlock_page(page); 3054 put_page(page); 3055 } 3056 dir->i_size += BOGO_DIRENT_SIZE; 3057 dir->i_ctime = dir->i_mtime = current_time(dir); 3058 d_instantiate(dentry, inode); 3059 dget(dentry); 3060 return 0; 3061 } 3062 3063 static void shmem_put_link(void *arg) 3064 { 3065 mark_page_accessed(arg); 3066 put_page(arg); 3067 } 3068 3069 static const char *shmem_get_link(struct dentry *dentry, 3070 struct inode *inode, 3071 struct delayed_call *done) 3072 { 3073 struct page *page = NULL; 3074 int error; 3075 if (!dentry) { 3076 page = find_get_page(inode->i_mapping, 0); 3077 if (!page) 3078 return ERR_PTR(-ECHILD); 3079 if (!PageUptodate(page)) { 3080 put_page(page); 3081 return ERR_PTR(-ECHILD); 3082 } 3083 } else { 3084 error = shmem_getpage(inode, 0, &page, SGP_READ); 3085 if (error) 3086 return ERR_PTR(error); 3087 unlock_page(page); 3088 } 3089 set_delayed_call(done, shmem_put_link, page); 3090 return page_address(page); 3091 } 3092 3093 #ifdef CONFIG_TMPFS_XATTR 3094 /* 3095 * Superblocks without xattr inode operations may get some security.* xattr 3096 * support from the LSM "for free". As soon as we have any other xattrs 3097 * like ACLs, we also need to implement the security.* handlers at 3098 * filesystem level, though. 3099 */ 3100 3101 /* 3102 * Callback for security_inode_init_security() for acquiring xattrs. 3103 */ 3104 static int shmem_initxattrs(struct inode *inode, 3105 const struct xattr *xattr_array, 3106 void *fs_info) 3107 { 3108 struct shmem_inode_info *info = SHMEM_I(inode); 3109 const struct xattr *xattr; 3110 struct simple_xattr *new_xattr; 3111 size_t len; 3112 3113 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3114 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3115 if (!new_xattr) 3116 return -ENOMEM; 3117 3118 len = strlen(xattr->name) + 1; 3119 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3120 GFP_KERNEL); 3121 if (!new_xattr->name) { 3122 kfree(new_xattr); 3123 return -ENOMEM; 3124 } 3125 3126 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3127 XATTR_SECURITY_PREFIX_LEN); 3128 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3129 xattr->name, len); 3130 3131 simple_xattr_list_add(&info->xattrs, new_xattr); 3132 } 3133 3134 return 0; 3135 } 3136 3137 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3138 struct dentry *unused, struct inode *inode, 3139 const char *name, void *buffer, size_t size) 3140 { 3141 struct shmem_inode_info *info = SHMEM_I(inode); 3142 3143 name = xattr_full_name(handler, name); 3144 return simple_xattr_get(&info->xattrs, name, buffer, size); 3145 } 3146 3147 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3148 struct dentry *unused, struct inode *inode, 3149 const char *name, const void *value, 3150 size_t size, int flags) 3151 { 3152 struct shmem_inode_info *info = SHMEM_I(inode); 3153 3154 name = xattr_full_name(handler, name); 3155 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3156 } 3157 3158 static const struct xattr_handler shmem_security_xattr_handler = { 3159 .prefix = XATTR_SECURITY_PREFIX, 3160 .get = shmem_xattr_handler_get, 3161 .set = shmem_xattr_handler_set, 3162 }; 3163 3164 static const struct xattr_handler shmem_trusted_xattr_handler = { 3165 .prefix = XATTR_TRUSTED_PREFIX, 3166 .get = shmem_xattr_handler_get, 3167 .set = shmem_xattr_handler_set, 3168 }; 3169 3170 static const struct xattr_handler *shmem_xattr_handlers[] = { 3171 #ifdef CONFIG_TMPFS_POSIX_ACL 3172 &posix_acl_access_xattr_handler, 3173 &posix_acl_default_xattr_handler, 3174 #endif 3175 &shmem_security_xattr_handler, 3176 &shmem_trusted_xattr_handler, 3177 NULL 3178 }; 3179 3180 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3181 { 3182 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3183 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3184 } 3185 #endif /* CONFIG_TMPFS_XATTR */ 3186 3187 static const struct inode_operations shmem_short_symlink_operations = { 3188 .get_link = simple_get_link, 3189 #ifdef CONFIG_TMPFS_XATTR 3190 .listxattr = shmem_listxattr, 3191 #endif 3192 }; 3193 3194 static const struct inode_operations shmem_symlink_inode_operations = { 3195 .get_link = shmem_get_link, 3196 #ifdef CONFIG_TMPFS_XATTR 3197 .listxattr = shmem_listxattr, 3198 #endif 3199 }; 3200 3201 static struct dentry *shmem_get_parent(struct dentry *child) 3202 { 3203 return ERR_PTR(-ESTALE); 3204 } 3205 3206 static int shmem_match(struct inode *ino, void *vfh) 3207 { 3208 __u32 *fh = vfh; 3209 __u64 inum = fh[2]; 3210 inum = (inum << 32) | fh[1]; 3211 return ino->i_ino == inum && fh[0] == ino->i_generation; 3212 } 3213 3214 /* Find any alias of inode, but prefer a hashed alias */ 3215 static struct dentry *shmem_find_alias(struct inode *inode) 3216 { 3217 struct dentry *alias = d_find_alias(inode); 3218 3219 return alias ?: d_find_any_alias(inode); 3220 } 3221 3222 3223 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3224 struct fid *fid, int fh_len, int fh_type) 3225 { 3226 struct inode *inode; 3227 struct dentry *dentry = NULL; 3228 u64 inum; 3229 3230 if (fh_len < 3) 3231 return NULL; 3232 3233 inum = fid->raw[2]; 3234 inum = (inum << 32) | fid->raw[1]; 3235 3236 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3237 shmem_match, fid->raw); 3238 if (inode) { 3239 dentry = shmem_find_alias(inode); 3240 iput(inode); 3241 } 3242 3243 return dentry; 3244 } 3245 3246 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3247 struct inode *parent) 3248 { 3249 if (*len < 3) { 3250 *len = 3; 3251 return FILEID_INVALID; 3252 } 3253 3254 if (inode_unhashed(inode)) { 3255 /* Unfortunately insert_inode_hash is not idempotent, 3256 * so as we hash inodes here rather than at creation 3257 * time, we need a lock to ensure we only try 3258 * to do it once 3259 */ 3260 static DEFINE_SPINLOCK(lock); 3261 spin_lock(&lock); 3262 if (inode_unhashed(inode)) 3263 __insert_inode_hash(inode, 3264 inode->i_ino + inode->i_generation); 3265 spin_unlock(&lock); 3266 } 3267 3268 fh[0] = inode->i_generation; 3269 fh[1] = inode->i_ino; 3270 fh[2] = ((__u64)inode->i_ino) >> 32; 3271 3272 *len = 3; 3273 return 1; 3274 } 3275 3276 static const struct export_operations shmem_export_ops = { 3277 .get_parent = shmem_get_parent, 3278 .encode_fh = shmem_encode_fh, 3279 .fh_to_dentry = shmem_fh_to_dentry, 3280 }; 3281 3282 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3283 bool remount) 3284 { 3285 char *this_char, *value, *rest; 3286 struct mempolicy *mpol = NULL; 3287 uid_t uid; 3288 gid_t gid; 3289 3290 while (options != NULL) { 3291 this_char = options; 3292 for (;;) { 3293 /* 3294 * NUL-terminate this option: unfortunately, 3295 * mount options form a comma-separated list, 3296 * but mpol's nodelist may also contain commas. 3297 */ 3298 options = strchr(options, ','); 3299 if (options == NULL) 3300 break; 3301 options++; 3302 if (!isdigit(*options)) { 3303 options[-1] = '\0'; 3304 break; 3305 } 3306 } 3307 if (!*this_char) 3308 continue; 3309 if ((value = strchr(this_char,'=')) != NULL) { 3310 *value++ = 0; 3311 } else { 3312 pr_err("tmpfs: No value for mount option '%s'\n", 3313 this_char); 3314 goto error; 3315 } 3316 3317 if (!strcmp(this_char,"size")) { 3318 unsigned long long size; 3319 size = memparse(value,&rest); 3320 if (*rest == '%') { 3321 size <<= PAGE_SHIFT; 3322 size *= totalram_pages; 3323 do_div(size, 100); 3324 rest++; 3325 } 3326 if (*rest) 3327 goto bad_val; 3328 sbinfo->max_blocks = 3329 DIV_ROUND_UP(size, PAGE_SIZE); 3330 } else if (!strcmp(this_char,"nr_blocks")) { 3331 sbinfo->max_blocks = memparse(value, &rest); 3332 if (*rest) 3333 goto bad_val; 3334 } else if (!strcmp(this_char,"nr_inodes")) { 3335 sbinfo->max_inodes = memparse(value, &rest); 3336 if (*rest) 3337 goto bad_val; 3338 } else if (!strcmp(this_char,"mode")) { 3339 if (remount) 3340 continue; 3341 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3342 if (*rest) 3343 goto bad_val; 3344 } else if (!strcmp(this_char,"uid")) { 3345 if (remount) 3346 continue; 3347 uid = simple_strtoul(value, &rest, 0); 3348 if (*rest) 3349 goto bad_val; 3350 sbinfo->uid = make_kuid(current_user_ns(), uid); 3351 if (!uid_valid(sbinfo->uid)) 3352 goto bad_val; 3353 } else if (!strcmp(this_char,"gid")) { 3354 if (remount) 3355 continue; 3356 gid = simple_strtoul(value, &rest, 0); 3357 if (*rest) 3358 goto bad_val; 3359 sbinfo->gid = make_kgid(current_user_ns(), gid); 3360 if (!gid_valid(sbinfo->gid)) 3361 goto bad_val; 3362 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3363 } else if (!strcmp(this_char, "huge")) { 3364 int huge; 3365 huge = shmem_parse_huge(value); 3366 if (huge < 0) 3367 goto bad_val; 3368 if (!has_transparent_hugepage() && 3369 huge != SHMEM_HUGE_NEVER) 3370 goto bad_val; 3371 sbinfo->huge = huge; 3372 #endif 3373 #ifdef CONFIG_NUMA 3374 } else if (!strcmp(this_char,"mpol")) { 3375 mpol_put(mpol); 3376 mpol = NULL; 3377 if (mpol_parse_str(value, &mpol)) 3378 goto bad_val; 3379 #endif 3380 } else { 3381 pr_err("tmpfs: Bad mount option %s\n", this_char); 3382 goto error; 3383 } 3384 } 3385 sbinfo->mpol = mpol; 3386 return 0; 3387 3388 bad_val: 3389 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3390 value, this_char); 3391 error: 3392 mpol_put(mpol); 3393 return 1; 3394 3395 } 3396 3397 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3398 { 3399 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3400 struct shmem_sb_info config = *sbinfo; 3401 unsigned long inodes; 3402 int error = -EINVAL; 3403 3404 config.mpol = NULL; 3405 if (shmem_parse_options(data, &config, true)) 3406 return error; 3407 3408 spin_lock(&sbinfo->stat_lock); 3409 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3410 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3411 goto out; 3412 if (config.max_inodes < inodes) 3413 goto out; 3414 /* 3415 * Those tests disallow limited->unlimited while any are in use; 3416 * but we must separately disallow unlimited->limited, because 3417 * in that case we have no record of how much is already in use. 3418 */ 3419 if (config.max_blocks && !sbinfo->max_blocks) 3420 goto out; 3421 if (config.max_inodes && !sbinfo->max_inodes) 3422 goto out; 3423 3424 error = 0; 3425 sbinfo->huge = config.huge; 3426 sbinfo->max_blocks = config.max_blocks; 3427 sbinfo->max_inodes = config.max_inodes; 3428 sbinfo->free_inodes = config.max_inodes - inodes; 3429 3430 /* 3431 * Preserve previous mempolicy unless mpol remount option was specified. 3432 */ 3433 if (config.mpol) { 3434 mpol_put(sbinfo->mpol); 3435 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3436 } 3437 out: 3438 spin_unlock(&sbinfo->stat_lock); 3439 return error; 3440 } 3441 3442 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3443 { 3444 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3445 3446 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3447 seq_printf(seq, ",size=%luk", 3448 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3449 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3450 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3451 if (sbinfo->mode != (0777 | S_ISVTX)) 3452 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3453 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3454 seq_printf(seq, ",uid=%u", 3455 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3456 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3457 seq_printf(seq, ",gid=%u", 3458 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3459 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3460 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3461 if (sbinfo->huge) 3462 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3463 #endif 3464 shmem_show_mpol(seq, sbinfo->mpol); 3465 return 0; 3466 } 3467 3468 #endif /* CONFIG_TMPFS */ 3469 3470 static void shmem_put_super(struct super_block *sb) 3471 { 3472 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3473 3474 percpu_counter_destroy(&sbinfo->used_blocks); 3475 mpol_put(sbinfo->mpol); 3476 kfree(sbinfo); 3477 sb->s_fs_info = NULL; 3478 } 3479 3480 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3481 { 3482 struct inode *inode; 3483 struct shmem_sb_info *sbinfo; 3484 int err = -ENOMEM; 3485 3486 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3487 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3488 L1_CACHE_BYTES), GFP_KERNEL); 3489 if (!sbinfo) 3490 return -ENOMEM; 3491 3492 sbinfo->mode = 0777 | S_ISVTX; 3493 sbinfo->uid = current_fsuid(); 3494 sbinfo->gid = current_fsgid(); 3495 sb->s_fs_info = sbinfo; 3496 3497 #ifdef CONFIG_TMPFS 3498 /* 3499 * Per default we only allow half of the physical ram per 3500 * tmpfs instance, limiting inodes to one per page of lowmem; 3501 * but the internal instance is left unlimited. 3502 */ 3503 if (!(sb->s_flags & SB_KERNMOUNT)) { 3504 sbinfo->max_blocks = shmem_default_max_blocks(); 3505 sbinfo->max_inodes = shmem_default_max_inodes(); 3506 if (shmem_parse_options(data, sbinfo, false)) { 3507 err = -EINVAL; 3508 goto failed; 3509 } 3510 } else { 3511 sb->s_flags |= SB_NOUSER; 3512 } 3513 sb->s_export_op = &shmem_export_ops; 3514 sb->s_flags |= SB_NOSEC; 3515 #else 3516 sb->s_flags |= SB_NOUSER; 3517 #endif 3518 3519 spin_lock_init(&sbinfo->stat_lock); 3520 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3521 goto failed; 3522 sbinfo->free_inodes = sbinfo->max_inodes; 3523 spin_lock_init(&sbinfo->shrinklist_lock); 3524 INIT_LIST_HEAD(&sbinfo->shrinklist); 3525 3526 sb->s_maxbytes = MAX_LFS_FILESIZE; 3527 sb->s_blocksize = PAGE_SIZE; 3528 sb->s_blocksize_bits = PAGE_SHIFT; 3529 sb->s_magic = TMPFS_MAGIC; 3530 sb->s_op = &shmem_ops; 3531 sb->s_time_gran = 1; 3532 #ifdef CONFIG_TMPFS_XATTR 3533 sb->s_xattr = shmem_xattr_handlers; 3534 #endif 3535 #ifdef CONFIG_TMPFS_POSIX_ACL 3536 sb->s_flags |= SB_POSIXACL; 3537 #endif 3538 uuid_gen(&sb->s_uuid); 3539 3540 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3541 if (!inode) 3542 goto failed; 3543 inode->i_uid = sbinfo->uid; 3544 inode->i_gid = sbinfo->gid; 3545 sb->s_root = d_make_root(inode); 3546 if (!sb->s_root) 3547 goto failed; 3548 return 0; 3549 3550 failed: 3551 shmem_put_super(sb); 3552 return err; 3553 } 3554 3555 static struct kmem_cache *shmem_inode_cachep; 3556 3557 static struct inode *shmem_alloc_inode(struct super_block *sb) 3558 { 3559 struct shmem_inode_info *info; 3560 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3561 if (!info) 3562 return NULL; 3563 return &info->vfs_inode; 3564 } 3565 3566 static void shmem_destroy_callback(struct rcu_head *head) 3567 { 3568 struct inode *inode = container_of(head, struct inode, i_rcu); 3569 if (S_ISLNK(inode->i_mode)) 3570 kfree(inode->i_link); 3571 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3572 } 3573 3574 static void shmem_destroy_inode(struct inode *inode) 3575 { 3576 if (S_ISREG(inode->i_mode)) 3577 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3578 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3579 } 3580 3581 static void shmem_init_inode(void *foo) 3582 { 3583 struct shmem_inode_info *info = foo; 3584 inode_init_once(&info->vfs_inode); 3585 } 3586 3587 static void shmem_init_inodecache(void) 3588 { 3589 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3590 sizeof(struct shmem_inode_info), 3591 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3592 } 3593 3594 static void shmem_destroy_inodecache(void) 3595 { 3596 kmem_cache_destroy(shmem_inode_cachep); 3597 } 3598 3599 static const struct address_space_operations shmem_aops = { 3600 .writepage = shmem_writepage, 3601 .set_page_dirty = __set_page_dirty_no_writeback, 3602 #ifdef CONFIG_TMPFS 3603 .write_begin = shmem_write_begin, 3604 .write_end = shmem_write_end, 3605 #endif 3606 #ifdef CONFIG_MIGRATION 3607 .migratepage = migrate_page, 3608 #endif 3609 .error_remove_page = generic_error_remove_page, 3610 }; 3611 3612 static const struct file_operations shmem_file_operations = { 3613 .mmap = shmem_mmap, 3614 .get_unmapped_area = shmem_get_unmapped_area, 3615 #ifdef CONFIG_TMPFS 3616 .llseek = shmem_file_llseek, 3617 .read_iter = shmem_file_read_iter, 3618 .write_iter = generic_file_write_iter, 3619 .fsync = noop_fsync, 3620 .splice_read = generic_file_splice_read, 3621 .splice_write = iter_file_splice_write, 3622 .fallocate = shmem_fallocate, 3623 #endif 3624 }; 3625 3626 static const struct inode_operations shmem_inode_operations = { 3627 .getattr = shmem_getattr, 3628 .setattr = shmem_setattr, 3629 #ifdef CONFIG_TMPFS_XATTR 3630 .listxattr = shmem_listxattr, 3631 .set_acl = simple_set_acl, 3632 #endif 3633 }; 3634 3635 static const struct inode_operations shmem_dir_inode_operations = { 3636 #ifdef CONFIG_TMPFS 3637 .create = shmem_create, 3638 .lookup = simple_lookup, 3639 .link = shmem_link, 3640 .unlink = shmem_unlink, 3641 .symlink = shmem_symlink, 3642 .mkdir = shmem_mkdir, 3643 .rmdir = shmem_rmdir, 3644 .mknod = shmem_mknod, 3645 .rename = shmem_rename2, 3646 .tmpfile = shmem_tmpfile, 3647 #endif 3648 #ifdef CONFIG_TMPFS_XATTR 3649 .listxattr = shmem_listxattr, 3650 #endif 3651 #ifdef CONFIG_TMPFS_POSIX_ACL 3652 .setattr = shmem_setattr, 3653 .set_acl = simple_set_acl, 3654 #endif 3655 }; 3656 3657 static const struct inode_operations shmem_special_inode_operations = { 3658 #ifdef CONFIG_TMPFS_XATTR 3659 .listxattr = shmem_listxattr, 3660 #endif 3661 #ifdef CONFIG_TMPFS_POSIX_ACL 3662 .setattr = shmem_setattr, 3663 .set_acl = simple_set_acl, 3664 #endif 3665 }; 3666 3667 static const struct super_operations shmem_ops = { 3668 .alloc_inode = shmem_alloc_inode, 3669 .destroy_inode = shmem_destroy_inode, 3670 #ifdef CONFIG_TMPFS 3671 .statfs = shmem_statfs, 3672 .remount_fs = shmem_remount_fs, 3673 .show_options = shmem_show_options, 3674 #endif 3675 .evict_inode = shmem_evict_inode, 3676 .drop_inode = generic_delete_inode, 3677 .put_super = shmem_put_super, 3678 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3679 .nr_cached_objects = shmem_unused_huge_count, 3680 .free_cached_objects = shmem_unused_huge_scan, 3681 #endif 3682 }; 3683 3684 static const struct vm_operations_struct shmem_vm_ops = { 3685 .fault = shmem_fault, 3686 .map_pages = filemap_map_pages, 3687 #ifdef CONFIG_NUMA 3688 .set_policy = shmem_set_policy, 3689 .get_policy = shmem_get_policy, 3690 #endif 3691 }; 3692 3693 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3694 int flags, const char *dev_name, void *data) 3695 { 3696 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3697 } 3698 3699 static struct file_system_type shmem_fs_type = { 3700 .owner = THIS_MODULE, 3701 .name = "tmpfs", 3702 .mount = shmem_mount, 3703 .kill_sb = kill_litter_super, 3704 .fs_flags = FS_USERNS_MOUNT, 3705 }; 3706 3707 int __init shmem_init(void) 3708 { 3709 int error; 3710 3711 /* If rootfs called this, don't re-init */ 3712 if (shmem_inode_cachep) 3713 return 0; 3714 3715 shmem_init_inodecache(); 3716 3717 error = register_filesystem(&shmem_fs_type); 3718 if (error) { 3719 pr_err("Could not register tmpfs\n"); 3720 goto out2; 3721 } 3722 3723 shm_mnt = kern_mount(&shmem_fs_type); 3724 if (IS_ERR(shm_mnt)) { 3725 error = PTR_ERR(shm_mnt); 3726 pr_err("Could not kern_mount tmpfs\n"); 3727 goto out1; 3728 } 3729 3730 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3731 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3732 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3733 else 3734 shmem_huge = 0; /* just in case it was patched */ 3735 #endif 3736 return 0; 3737 3738 out1: 3739 unregister_filesystem(&shmem_fs_type); 3740 out2: 3741 shmem_destroy_inodecache(); 3742 shm_mnt = ERR_PTR(error); 3743 return error; 3744 } 3745 3746 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3747 static ssize_t shmem_enabled_show(struct kobject *kobj, 3748 struct kobj_attribute *attr, char *buf) 3749 { 3750 int values[] = { 3751 SHMEM_HUGE_ALWAYS, 3752 SHMEM_HUGE_WITHIN_SIZE, 3753 SHMEM_HUGE_ADVISE, 3754 SHMEM_HUGE_NEVER, 3755 SHMEM_HUGE_DENY, 3756 SHMEM_HUGE_FORCE, 3757 }; 3758 int i, count; 3759 3760 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3761 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3762 3763 count += sprintf(buf + count, fmt, 3764 shmem_format_huge(values[i])); 3765 } 3766 buf[count - 1] = '\n'; 3767 return count; 3768 } 3769 3770 static ssize_t shmem_enabled_store(struct kobject *kobj, 3771 struct kobj_attribute *attr, const char *buf, size_t count) 3772 { 3773 char tmp[16]; 3774 int huge; 3775 3776 if (count + 1 > sizeof(tmp)) 3777 return -EINVAL; 3778 memcpy(tmp, buf, count); 3779 tmp[count] = '\0'; 3780 if (count && tmp[count - 1] == '\n') 3781 tmp[count - 1] = '\0'; 3782 3783 huge = shmem_parse_huge(tmp); 3784 if (huge == -EINVAL) 3785 return -EINVAL; 3786 if (!has_transparent_hugepage() && 3787 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3788 return -EINVAL; 3789 3790 shmem_huge = huge; 3791 if (shmem_huge > SHMEM_HUGE_DENY) 3792 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3793 return count; 3794 } 3795 3796 struct kobj_attribute shmem_enabled_attr = 3797 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3798 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3799 3800 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3801 bool shmem_huge_enabled(struct vm_area_struct *vma) 3802 { 3803 struct inode *inode = file_inode(vma->vm_file); 3804 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3805 loff_t i_size; 3806 pgoff_t off; 3807 3808 if (shmem_huge == SHMEM_HUGE_FORCE) 3809 return true; 3810 if (shmem_huge == SHMEM_HUGE_DENY) 3811 return false; 3812 switch (sbinfo->huge) { 3813 case SHMEM_HUGE_NEVER: 3814 return false; 3815 case SHMEM_HUGE_ALWAYS: 3816 return true; 3817 case SHMEM_HUGE_WITHIN_SIZE: 3818 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3819 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3820 if (i_size >= HPAGE_PMD_SIZE && 3821 i_size >> PAGE_SHIFT >= off) 3822 return true; 3823 /* fall through */ 3824 case SHMEM_HUGE_ADVISE: 3825 /* TODO: implement fadvise() hints */ 3826 return (vma->vm_flags & VM_HUGEPAGE); 3827 default: 3828 VM_BUG_ON(1); 3829 return false; 3830 } 3831 } 3832 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3833 3834 #else /* !CONFIG_SHMEM */ 3835 3836 /* 3837 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3838 * 3839 * This is intended for small system where the benefits of the full 3840 * shmem code (swap-backed and resource-limited) are outweighed by 3841 * their complexity. On systems without swap this code should be 3842 * effectively equivalent, but much lighter weight. 3843 */ 3844 3845 static struct file_system_type shmem_fs_type = { 3846 .name = "tmpfs", 3847 .mount = ramfs_mount, 3848 .kill_sb = kill_litter_super, 3849 .fs_flags = FS_USERNS_MOUNT, 3850 }; 3851 3852 int __init shmem_init(void) 3853 { 3854 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3855 3856 shm_mnt = kern_mount(&shmem_fs_type); 3857 BUG_ON(IS_ERR(shm_mnt)); 3858 3859 return 0; 3860 } 3861 3862 int shmem_unuse(swp_entry_t swap, struct page *page) 3863 { 3864 return 0; 3865 } 3866 3867 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3868 { 3869 return 0; 3870 } 3871 3872 void shmem_unlock_mapping(struct address_space *mapping) 3873 { 3874 } 3875 3876 #ifdef CONFIG_MMU 3877 unsigned long shmem_get_unmapped_area(struct file *file, 3878 unsigned long addr, unsigned long len, 3879 unsigned long pgoff, unsigned long flags) 3880 { 3881 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3882 } 3883 #endif 3884 3885 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3886 { 3887 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3888 } 3889 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3890 3891 #define shmem_vm_ops generic_file_vm_ops 3892 #define shmem_file_operations ramfs_file_operations 3893 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3894 #define shmem_acct_size(flags, size) 0 3895 #define shmem_unacct_size(flags, size) do {} while (0) 3896 3897 #endif /* CONFIG_SHMEM */ 3898 3899 /* common code */ 3900 3901 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 3902 unsigned long flags, unsigned int i_flags) 3903 { 3904 struct inode *inode; 3905 struct file *res; 3906 3907 if (IS_ERR(mnt)) 3908 return ERR_CAST(mnt); 3909 3910 if (size < 0 || size > MAX_LFS_FILESIZE) 3911 return ERR_PTR(-EINVAL); 3912 3913 if (shmem_acct_size(flags, size)) 3914 return ERR_PTR(-ENOMEM); 3915 3916 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 3917 flags); 3918 if (unlikely(!inode)) { 3919 shmem_unacct_size(flags, size); 3920 return ERR_PTR(-ENOSPC); 3921 } 3922 inode->i_flags |= i_flags; 3923 inode->i_size = size; 3924 clear_nlink(inode); /* It is unlinked */ 3925 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3926 if (!IS_ERR(res)) 3927 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 3928 &shmem_file_operations); 3929 if (IS_ERR(res)) 3930 iput(inode); 3931 return res; 3932 } 3933 3934 /** 3935 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3936 * kernel internal. There will be NO LSM permission checks against the 3937 * underlying inode. So users of this interface must do LSM checks at a 3938 * higher layer. The users are the big_key and shm implementations. LSM 3939 * checks are provided at the key or shm level rather than the inode. 3940 * @name: name for dentry (to be seen in /proc/<pid>/maps 3941 * @size: size to be set for the file 3942 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3943 */ 3944 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3945 { 3946 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 3947 } 3948 3949 /** 3950 * shmem_file_setup - get an unlinked file living in tmpfs 3951 * @name: name for dentry (to be seen in /proc/<pid>/maps 3952 * @size: size to be set for the file 3953 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3954 */ 3955 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3956 { 3957 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 3958 } 3959 EXPORT_SYMBOL_GPL(shmem_file_setup); 3960 3961 /** 3962 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 3963 * @mnt: the tmpfs mount where the file will be created 3964 * @name: name for dentry (to be seen in /proc/<pid>/maps 3965 * @size: size to be set for the file 3966 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3967 */ 3968 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 3969 loff_t size, unsigned long flags) 3970 { 3971 return __shmem_file_setup(mnt, name, size, flags, 0); 3972 } 3973 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 3974 3975 /** 3976 * shmem_zero_setup - setup a shared anonymous mapping 3977 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3978 */ 3979 int shmem_zero_setup(struct vm_area_struct *vma) 3980 { 3981 struct file *file; 3982 loff_t size = vma->vm_end - vma->vm_start; 3983 3984 /* 3985 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3986 * between XFS directory reading and selinux: since this file is only 3987 * accessible to the user through its mapping, use S_PRIVATE flag to 3988 * bypass file security, in the same way as shmem_kernel_file_setup(). 3989 */ 3990 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 3991 if (IS_ERR(file)) 3992 return PTR_ERR(file); 3993 3994 if (vma->vm_file) 3995 fput(vma->vm_file); 3996 vma->vm_file = file; 3997 vma->vm_ops = &shmem_vm_ops; 3998 3999 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4000 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4001 (vma->vm_end & HPAGE_PMD_MASK)) { 4002 khugepaged_enter(vma, vma->vm_flags); 4003 } 4004 4005 return 0; 4006 } 4007 4008 /** 4009 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4010 * @mapping: the page's address_space 4011 * @index: the page index 4012 * @gfp: the page allocator flags to use if allocating 4013 * 4014 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4015 * with any new page allocations done using the specified allocation flags. 4016 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4017 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4018 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4019 * 4020 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4021 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4022 */ 4023 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4024 pgoff_t index, gfp_t gfp) 4025 { 4026 #ifdef CONFIG_SHMEM 4027 struct inode *inode = mapping->host; 4028 struct page *page; 4029 int error; 4030 4031 BUG_ON(mapping->a_ops != &shmem_aops); 4032 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4033 gfp, NULL, NULL, NULL); 4034 if (error) 4035 page = ERR_PTR(error); 4036 else 4037 unlock_page(page); 4038 return page; 4039 #else 4040 /* 4041 * The tiny !SHMEM case uses ramfs without swap 4042 */ 4043 return read_cache_page_gfp(mapping, index, gfp); 4044 #endif 4045 } 4046 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4047