1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * tiny-shmem: 18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 19 * 20 * This file is released under the GPL. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/vfs.h> 26 #include <linux/mount.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/percpu_counter.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/security.h> 55 #include <linux/swapops.h> 56 #include <linux/mempolicy.h> 57 #include <linux/namei.h> 58 #include <linux/ctype.h> 59 #include <linux/migrate.h> 60 #include <linux/highmem.h> 61 #include <linux/seq_file.h> 62 #include <linux/magic.h> 63 64 #include <asm/uaccess.h> 65 #include <asm/div64.h> 66 #include <asm/pgtable.h> 67 68 /* 69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of 70 * its triple-indirect swap vector - see illustration at shmem_swp_entry(). 71 * 72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel, 73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum 74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel, 75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout. 76 * 77 * We use / and * instead of shifts in the definitions below, so that the swap 78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE. 79 */ 80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 82 83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT) 85 86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE) 87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT)) 88 89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 93 #define SHMEM_PAGEIN VM_READ 94 #define SHMEM_TRUNCATE VM_WRITE 95 96 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 97 #define LATENCY_LIMIT 64 98 99 /* Pretend that each entry is of this size in directory's i_size */ 100 #define BOGO_DIRENT_SIZE 20 101 102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 103 enum sgp_type { 104 SGP_READ, /* don't exceed i_size, don't allocate page */ 105 SGP_CACHE, /* don't exceed i_size, may allocate page */ 106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 107 SGP_WRITE, /* may exceed i_size, may allocate page */ 108 }; 109 110 #ifdef CONFIG_TMPFS 111 static unsigned long shmem_default_max_blocks(void) 112 { 113 return totalram_pages / 2; 114 } 115 116 static unsigned long shmem_default_max_inodes(void) 117 { 118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 119 } 120 #endif 121 122 static int shmem_getpage(struct inode *inode, unsigned long idx, 123 struct page **pagep, enum sgp_type sgp, int *type); 124 125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 126 { 127 /* 128 * The above definition of ENTRIES_PER_PAGE, and the use of 129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 130 * might be reconsidered if it ever diverges from PAGE_SIZE. 131 * 132 * Mobility flags are masked out as swap vectors cannot move 133 */ 134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, 135 PAGE_CACHE_SHIFT-PAGE_SHIFT); 136 } 137 138 static inline void shmem_dir_free(struct page *page) 139 { 140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 141 } 142 143 static struct page **shmem_dir_map(struct page *page) 144 { 145 return (struct page **)kmap_atomic(page, KM_USER0); 146 } 147 148 static inline void shmem_dir_unmap(struct page **dir) 149 { 150 kunmap_atomic(dir, KM_USER0); 151 } 152 153 static swp_entry_t *shmem_swp_map(struct page *page) 154 { 155 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 156 } 157 158 static inline void shmem_swp_balance_unmap(void) 159 { 160 /* 161 * When passing a pointer to an i_direct entry, to code which 162 * also handles indirect entries and so will shmem_swp_unmap, 163 * we must arrange for the preempt count to remain in balance. 164 * What kmap_atomic of a lowmem page does depends on config 165 * and architecture, so pretend to kmap_atomic some lowmem page. 166 */ 167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 168 } 169 170 static inline void shmem_swp_unmap(swp_entry_t *entry) 171 { 172 kunmap_atomic(entry, KM_USER1); 173 } 174 175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 176 { 177 return sb->s_fs_info; 178 } 179 180 /* 181 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 182 * for shared memory and for shared anonymous (/dev/zero) mappings 183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 184 * consistent with the pre-accounting of private mappings ... 185 */ 186 static inline int shmem_acct_size(unsigned long flags, loff_t size) 187 { 188 return (flags & VM_NORESERVE) ? 189 0 : security_vm_enough_memory_kern(VM_ACCT(size)); 190 } 191 192 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 193 { 194 if (!(flags & VM_NORESERVE)) 195 vm_unacct_memory(VM_ACCT(size)); 196 } 197 198 /* 199 * ... whereas tmpfs objects are accounted incrementally as 200 * pages are allocated, in order to allow huge sparse files. 201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 203 */ 204 static inline int shmem_acct_block(unsigned long flags) 205 { 206 return (flags & VM_NORESERVE) ? 207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0; 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 214 } 215 216 static const struct super_operations shmem_ops; 217 static const struct address_space_operations shmem_aops; 218 static const struct file_operations shmem_file_operations; 219 static const struct inode_operations shmem_inode_operations; 220 static const struct inode_operations shmem_dir_inode_operations; 221 static const struct inode_operations shmem_special_inode_operations; 222 static const struct vm_operations_struct shmem_vm_ops; 223 224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 225 .ra_pages = 0, /* No readahead */ 226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 227 .unplug_io_fn = default_unplug_io_fn, 228 }; 229 230 static LIST_HEAD(shmem_swaplist); 231 static DEFINE_MUTEX(shmem_swaplist_mutex); 232 233 static void shmem_free_blocks(struct inode *inode, long pages) 234 { 235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 236 if (sbinfo->max_blocks) { 237 percpu_counter_add(&sbinfo->used_blocks, -pages); 238 spin_lock(&inode->i_lock); 239 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 240 spin_unlock(&inode->i_lock); 241 } 242 } 243 244 static int shmem_reserve_inode(struct super_block *sb) 245 { 246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 247 if (sbinfo->max_inodes) { 248 spin_lock(&sbinfo->stat_lock); 249 if (!sbinfo->free_inodes) { 250 spin_unlock(&sbinfo->stat_lock); 251 return -ENOSPC; 252 } 253 sbinfo->free_inodes--; 254 spin_unlock(&sbinfo->stat_lock); 255 } 256 return 0; 257 } 258 259 static void shmem_free_inode(struct super_block *sb) 260 { 261 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 262 if (sbinfo->max_inodes) { 263 spin_lock(&sbinfo->stat_lock); 264 sbinfo->free_inodes++; 265 spin_unlock(&sbinfo->stat_lock); 266 } 267 } 268 269 /** 270 * shmem_recalc_inode - recalculate the size of an inode 271 * @inode: inode to recalc 272 * 273 * We have to calculate the free blocks since the mm can drop 274 * undirtied hole pages behind our back. 275 * 276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 278 * 279 * It has to be called with the spinlock held. 280 */ 281 static void shmem_recalc_inode(struct inode *inode) 282 { 283 struct shmem_inode_info *info = SHMEM_I(inode); 284 long freed; 285 286 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 287 if (freed > 0) { 288 info->alloced -= freed; 289 shmem_unacct_blocks(info->flags, freed); 290 shmem_free_blocks(inode, freed); 291 } 292 } 293 294 /** 295 * shmem_swp_entry - find the swap vector position in the info structure 296 * @info: info structure for the inode 297 * @index: index of the page to find 298 * @page: optional page to add to the structure. Has to be preset to 299 * all zeros 300 * 301 * If there is no space allocated yet it will return NULL when 302 * page is NULL, else it will use the page for the needed block, 303 * setting it to NULL on return to indicate that it has been used. 304 * 305 * The swap vector is organized the following way: 306 * 307 * There are SHMEM_NR_DIRECT entries directly stored in the 308 * shmem_inode_info structure. So small files do not need an addional 309 * allocation. 310 * 311 * For pages with index > SHMEM_NR_DIRECT there is the pointer 312 * i_indirect which points to a page which holds in the first half 313 * doubly indirect blocks, in the second half triple indirect blocks: 314 * 315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 316 * following layout (for SHMEM_NR_DIRECT == 16): 317 * 318 * i_indirect -> dir --> 16-19 319 * | +-> 20-23 320 * | 321 * +-->dir2 --> 24-27 322 * | +-> 28-31 323 * | +-> 32-35 324 * | +-> 36-39 325 * | 326 * +-->dir3 --> 40-43 327 * +-> 44-47 328 * +-> 48-51 329 * +-> 52-55 330 */ 331 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 332 { 333 unsigned long offset; 334 struct page **dir; 335 struct page *subdir; 336 337 if (index < SHMEM_NR_DIRECT) { 338 shmem_swp_balance_unmap(); 339 return info->i_direct+index; 340 } 341 if (!info->i_indirect) { 342 if (page) { 343 info->i_indirect = *page; 344 *page = NULL; 345 } 346 return NULL; /* need another page */ 347 } 348 349 index -= SHMEM_NR_DIRECT; 350 offset = index % ENTRIES_PER_PAGE; 351 index /= ENTRIES_PER_PAGE; 352 dir = shmem_dir_map(info->i_indirect); 353 354 if (index >= ENTRIES_PER_PAGE/2) { 355 index -= ENTRIES_PER_PAGE/2; 356 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 357 index %= ENTRIES_PER_PAGE; 358 subdir = *dir; 359 if (!subdir) { 360 if (page) { 361 *dir = *page; 362 *page = NULL; 363 } 364 shmem_dir_unmap(dir); 365 return NULL; /* need another page */ 366 } 367 shmem_dir_unmap(dir); 368 dir = shmem_dir_map(subdir); 369 } 370 371 dir += index; 372 subdir = *dir; 373 if (!subdir) { 374 if (!page || !(subdir = *page)) { 375 shmem_dir_unmap(dir); 376 return NULL; /* need a page */ 377 } 378 *dir = subdir; 379 *page = NULL; 380 } 381 shmem_dir_unmap(dir); 382 return shmem_swp_map(subdir) + offset; 383 } 384 385 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 386 { 387 long incdec = value? 1: -1; 388 389 entry->val = value; 390 info->swapped += incdec; 391 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 392 struct page *page = kmap_atomic_to_page(entry); 393 set_page_private(page, page_private(page) + incdec); 394 } 395 } 396 397 /** 398 * shmem_swp_alloc - get the position of the swap entry for the page. 399 * @info: info structure for the inode 400 * @index: index of the page to find 401 * @sgp: check and recheck i_size? skip allocation? 402 * 403 * If the entry does not exist, allocate it. 404 */ 405 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 406 { 407 struct inode *inode = &info->vfs_inode; 408 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 409 struct page *page = NULL; 410 swp_entry_t *entry; 411 412 if (sgp != SGP_WRITE && 413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 414 return ERR_PTR(-EINVAL); 415 416 while (!(entry = shmem_swp_entry(info, index, &page))) { 417 if (sgp == SGP_READ) 418 return shmem_swp_map(ZERO_PAGE(0)); 419 /* 420 * Test used_blocks against 1 less max_blocks, since we have 1 data 421 * page (and perhaps indirect index pages) yet to allocate: 422 * a waste to allocate index if we cannot allocate data. 423 */ 424 if (sbinfo->max_blocks) { 425 if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0) 426 return ERR_PTR(-ENOSPC); 427 percpu_counter_inc(&sbinfo->used_blocks); 428 spin_lock(&inode->i_lock); 429 inode->i_blocks += BLOCKS_PER_PAGE; 430 spin_unlock(&inode->i_lock); 431 } 432 433 spin_unlock(&info->lock); 434 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 435 spin_lock(&info->lock); 436 437 if (!page) { 438 shmem_free_blocks(inode, 1); 439 return ERR_PTR(-ENOMEM); 440 } 441 if (sgp != SGP_WRITE && 442 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 443 entry = ERR_PTR(-EINVAL); 444 break; 445 } 446 if (info->next_index <= index) 447 info->next_index = index + 1; 448 } 449 if (page) { 450 /* another task gave its page, or truncated the file */ 451 shmem_free_blocks(inode, 1); 452 shmem_dir_free(page); 453 } 454 if (info->next_index <= index && !IS_ERR(entry)) 455 info->next_index = index + 1; 456 return entry; 457 } 458 459 /** 460 * shmem_free_swp - free some swap entries in a directory 461 * @dir: pointer to the directory 462 * @edir: pointer after last entry of the directory 463 * @punch_lock: pointer to spinlock when needed for the holepunch case 464 */ 465 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 466 spinlock_t *punch_lock) 467 { 468 spinlock_t *punch_unlock = NULL; 469 swp_entry_t *ptr; 470 int freed = 0; 471 472 for (ptr = dir; ptr < edir; ptr++) { 473 if (ptr->val) { 474 if (unlikely(punch_lock)) { 475 punch_unlock = punch_lock; 476 punch_lock = NULL; 477 spin_lock(punch_unlock); 478 if (!ptr->val) 479 continue; 480 } 481 free_swap_and_cache(*ptr); 482 *ptr = (swp_entry_t){0}; 483 freed++; 484 } 485 } 486 if (punch_unlock) 487 spin_unlock(punch_unlock); 488 return freed; 489 } 490 491 static int shmem_map_and_free_swp(struct page *subdir, int offset, 492 int limit, struct page ***dir, spinlock_t *punch_lock) 493 { 494 swp_entry_t *ptr; 495 int freed = 0; 496 497 ptr = shmem_swp_map(subdir); 498 for (; offset < limit; offset += LATENCY_LIMIT) { 499 int size = limit - offset; 500 if (size > LATENCY_LIMIT) 501 size = LATENCY_LIMIT; 502 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 503 punch_lock); 504 if (need_resched()) { 505 shmem_swp_unmap(ptr); 506 if (*dir) { 507 shmem_dir_unmap(*dir); 508 *dir = NULL; 509 } 510 cond_resched(); 511 ptr = shmem_swp_map(subdir); 512 } 513 } 514 shmem_swp_unmap(ptr); 515 return freed; 516 } 517 518 static void shmem_free_pages(struct list_head *next) 519 { 520 struct page *page; 521 int freed = 0; 522 523 do { 524 page = container_of(next, struct page, lru); 525 next = next->next; 526 shmem_dir_free(page); 527 freed++; 528 if (freed >= LATENCY_LIMIT) { 529 cond_resched(); 530 freed = 0; 531 } 532 } while (next); 533 } 534 535 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 536 { 537 struct shmem_inode_info *info = SHMEM_I(inode); 538 unsigned long idx; 539 unsigned long size; 540 unsigned long limit; 541 unsigned long stage; 542 unsigned long diroff; 543 struct page **dir; 544 struct page *topdir; 545 struct page *middir; 546 struct page *subdir; 547 swp_entry_t *ptr; 548 LIST_HEAD(pages_to_free); 549 long nr_pages_to_free = 0; 550 long nr_swaps_freed = 0; 551 int offset; 552 int freed; 553 int punch_hole; 554 spinlock_t *needs_lock; 555 spinlock_t *punch_lock; 556 unsigned long upper_limit; 557 558 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 559 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 560 if (idx >= info->next_index) 561 return; 562 563 spin_lock(&info->lock); 564 info->flags |= SHMEM_TRUNCATE; 565 if (likely(end == (loff_t) -1)) { 566 limit = info->next_index; 567 upper_limit = SHMEM_MAX_INDEX; 568 info->next_index = idx; 569 needs_lock = NULL; 570 punch_hole = 0; 571 } else { 572 if (end + 1 >= inode->i_size) { /* we may free a little more */ 573 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 574 PAGE_CACHE_SHIFT; 575 upper_limit = SHMEM_MAX_INDEX; 576 } else { 577 limit = (end + 1) >> PAGE_CACHE_SHIFT; 578 upper_limit = limit; 579 } 580 needs_lock = &info->lock; 581 punch_hole = 1; 582 } 583 584 topdir = info->i_indirect; 585 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 586 info->i_indirect = NULL; 587 nr_pages_to_free++; 588 list_add(&topdir->lru, &pages_to_free); 589 } 590 spin_unlock(&info->lock); 591 592 if (info->swapped && idx < SHMEM_NR_DIRECT) { 593 ptr = info->i_direct; 594 size = limit; 595 if (size > SHMEM_NR_DIRECT) 596 size = SHMEM_NR_DIRECT; 597 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 598 } 599 600 /* 601 * If there are no indirect blocks or we are punching a hole 602 * below indirect blocks, nothing to be done. 603 */ 604 if (!topdir || limit <= SHMEM_NR_DIRECT) 605 goto done2; 606 607 /* 608 * The truncation case has already dropped info->lock, and we're safe 609 * because i_size and next_index have already been lowered, preventing 610 * access beyond. But in the punch_hole case, we still need to take 611 * the lock when updating the swap directory, because there might be 612 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 613 * shmem_writepage. However, whenever we find we can remove a whole 614 * directory page (not at the misaligned start or end of the range), 615 * we first NULLify its pointer in the level above, and then have no 616 * need to take the lock when updating its contents: needs_lock and 617 * punch_lock (either pointing to info->lock or NULL) manage this. 618 */ 619 620 upper_limit -= SHMEM_NR_DIRECT; 621 limit -= SHMEM_NR_DIRECT; 622 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 623 offset = idx % ENTRIES_PER_PAGE; 624 idx -= offset; 625 626 dir = shmem_dir_map(topdir); 627 stage = ENTRIES_PER_PAGEPAGE/2; 628 if (idx < ENTRIES_PER_PAGEPAGE/2) { 629 middir = topdir; 630 diroff = idx/ENTRIES_PER_PAGE; 631 } else { 632 dir += ENTRIES_PER_PAGE/2; 633 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 634 while (stage <= idx) 635 stage += ENTRIES_PER_PAGEPAGE; 636 middir = *dir; 637 if (*dir) { 638 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 639 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 640 if (!diroff && !offset && upper_limit >= stage) { 641 if (needs_lock) { 642 spin_lock(needs_lock); 643 *dir = NULL; 644 spin_unlock(needs_lock); 645 needs_lock = NULL; 646 } else 647 *dir = NULL; 648 nr_pages_to_free++; 649 list_add(&middir->lru, &pages_to_free); 650 } 651 shmem_dir_unmap(dir); 652 dir = shmem_dir_map(middir); 653 } else { 654 diroff = 0; 655 offset = 0; 656 idx = stage; 657 } 658 } 659 660 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 661 if (unlikely(idx == stage)) { 662 shmem_dir_unmap(dir); 663 dir = shmem_dir_map(topdir) + 664 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 665 while (!*dir) { 666 dir++; 667 idx += ENTRIES_PER_PAGEPAGE; 668 if (idx >= limit) 669 goto done1; 670 } 671 stage = idx + ENTRIES_PER_PAGEPAGE; 672 middir = *dir; 673 if (punch_hole) 674 needs_lock = &info->lock; 675 if (upper_limit >= stage) { 676 if (needs_lock) { 677 spin_lock(needs_lock); 678 *dir = NULL; 679 spin_unlock(needs_lock); 680 needs_lock = NULL; 681 } else 682 *dir = NULL; 683 nr_pages_to_free++; 684 list_add(&middir->lru, &pages_to_free); 685 } 686 shmem_dir_unmap(dir); 687 cond_resched(); 688 dir = shmem_dir_map(middir); 689 diroff = 0; 690 } 691 punch_lock = needs_lock; 692 subdir = dir[diroff]; 693 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 694 if (needs_lock) { 695 spin_lock(needs_lock); 696 dir[diroff] = NULL; 697 spin_unlock(needs_lock); 698 punch_lock = NULL; 699 } else 700 dir[diroff] = NULL; 701 nr_pages_to_free++; 702 list_add(&subdir->lru, &pages_to_free); 703 } 704 if (subdir && page_private(subdir) /* has swap entries */) { 705 size = limit - idx; 706 if (size > ENTRIES_PER_PAGE) 707 size = ENTRIES_PER_PAGE; 708 freed = shmem_map_and_free_swp(subdir, 709 offset, size, &dir, punch_lock); 710 if (!dir) 711 dir = shmem_dir_map(middir); 712 nr_swaps_freed += freed; 713 if (offset || punch_lock) { 714 spin_lock(&info->lock); 715 set_page_private(subdir, 716 page_private(subdir) - freed); 717 spin_unlock(&info->lock); 718 } else 719 BUG_ON(page_private(subdir) != freed); 720 } 721 offset = 0; 722 } 723 done1: 724 shmem_dir_unmap(dir); 725 done2: 726 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 727 /* 728 * Call truncate_inode_pages again: racing shmem_unuse_inode 729 * may have swizzled a page in from swap since 730 * truncate_pagecache or generic_delete_inode did it, before we 731 * lowered next_index. Also, though shmem_getpage checks 732 * i_size before adding to cache, no recheck after: so fix the 733 * narrow window there too. 734 * 735 * Recalling truncate_inode_pages_range and unmap_mapping_range 736 * every time for punch_hole (which never got a chance to clear 737 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 738 * yet hardly ever necessary: try to optimize them out later. 739 */ 740 truncate_inode_pages_range(inode->i_mapping, start, end); 741 if (punch_hole) 742 unmap_mapping_range(inode->i_mapping, start, 743 end - start, 1); 744 } 745 746 spin_lock(&info->lock); 747 info->flags &= ~SHMEM_TRUNCATE; 748 info->swapped -= nr_swaps_freed; 749 if (nr_pages_to_free) 750 shmem_free_blocks(inode, nr_pages_to_free); 751 shmem_recalc_inode(inode); 752 spin_unlock(&info->lock); 753 754 /* 755 * Empty swap vector directory pages to be freed? 756 */ 757 if (!list_empty(&pages_to_free)) { 758 pages_to_free.prev->next = NULL; 759 shmem_free_pages(pages_to_free.next); 760 } 761 } 762 763 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 764 { 765 struct inode *inode = dentry->d_inode; 766 loff_t newsize = attr->ia_size; 767 int error; 768 769 error = inode_change_ok(inode, attr); 770 if (error) 771 return error; 772 773 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE) 774 && newsize != inode->i_size) { 775 struct page *page = NULL; 776 777 if (newsize < inode->i_size) { 778 /* 779 * If truncating down to a partial page, then 780 * if that page is already allocated, hold it 781 * in memory until the truncation is over, so 782 * truncate_partial_page cannot miss it were 783 * it assigned to swap. 784 */ 785 if (newsize & (PAGE_CACHE_SIZE-1)) { 786 (void) shmem_getpage(inode, 787 newsize >> PAGE_CACHE_SHIFT, 788 &page, SGP_READ, NULL); 789 if (page) 790 unlock_page(page); 791 } 792 /* 793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 794 * detect if any pages might have been added to cache 795 * after truncate_inode_pages. But we needn't bother 796 * if it's being fully truncated to zero-length: the 797 * nrpages check is efficient enough in that case. 798 */ 799 if (newsize) { 800 struct shmem_inode_info *info = SHMEM_I(inode); 801 spin_lock(&info->lock); 802 info->flags &= ~SHMEM_PAGEIN; 803 spin_unlock(&info->lock); 804 } 805 } 806 807 /* XXX(truncate): truncate_setsize should be called last */ 808 truncate_setsize(inode, newsize); 809 if (page) 810 page_cache_release(page); 811 shmem_truncate_range(inode, newsize, (loff_t)-1); 812 } 813 814 setattr_copy(inode, attr); 815 #ifdef CONFIG_TMPFS_POSIX_ACL 816 if (attr->ia_valid & ATTR_MODE) 817 error = generic_acl_chmod(inode); 818 #endif 819 return error; 820 } 821 822 static void shmem_evict_inode(struct inode *inode) 823 { 824 struct shmem_inode_info *info = SHMEM_I(inode); 825 826 if (inode->i_mapping->a_ops == &shmem_aops) { 827 truncate_inode_pages(inode->i_mapping, 0); 828 shmem_unacct_size(info->flags, inode->i_size); 829 inode->i_size = 0; 830 shmem_truncate_range(inode, 0, (loff_t)-1); 831 if (!list_empty(&info->swaplist)) { 832 mutex_lock(&shmem_swaplist_mutex); 833 list_del_init(&info->swaplist); 834 mutex_unlock(&shmem_swaplist_mutex); 835 } 836 } 837 BUG_ON(inode->i_blocks); 838 shmem_free_inode(inode->i_sb); 839 end_writeback(inode); 840 } 841 842 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 843 { 844 swp_entry_t *ptr; 845 846 for (ptr = dir; ptr < edir; ptr++) { 847 if (ptr->val == entry.val) 848 return ptr - dir; 849 } 850 return -1; 851 } 852 853 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 854 { 855 struct inode *inode; 856 unsigned long idx; 857 unsigned long size; 858 unsigned long limit; 859 unsigned long stage; 860 struct page **dir; 861 struct page *subdir; 862 swp_entry_t *ptr; 863 int offset; 864 int error; 865 866 idx = 0; 867 ptr = info->i_direct; 868 spin_lock(&info->lock); 869 if (!info->swapped) { 870 list_del_init(&info->swaplist); 871 goto lost2; 872 } 873 limit = info->next_index; 874 size = limit; 875 if (size > SHMEM_NR_DIRECT) 876 size = SHMEM_NR_DIRECT; 877 offset = shmem_find_swp(entry, ptr, ptr+size); 878 if (offset >= 0) 879 goto found; 880 if (!info->i_indirect) 881 goto lost2; 882 883 dir = shmem_dir_map(info->i_indirect); 884 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 885 886 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 887 if (unlikely(idx == stage)) { 888 shmem_dir_unmap(dir-1); 889 if (cond_resched_lock(&info->lock)) { 890 /* check it has not been truncated */ 891 if (limit > info->next_index) { 892 limit = info->next_index; 893 if (idx >= limit) 894 goto lost2; 895 } 896 } 897 dir = shmem_dir_map(info->i_indirect) + 898 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 899 while (!*dir) { 900 dir++; 901 idx += ENTRIES_PER_PAGEPAGE; 902 if (idx >= limit) 903 goto lost1; 904 } 905 stage = idx + ENTRIES_PER_PAGEPAGE; 906 subdir = *dir; 907 shmem_dir_unmap(dir); 908 dir = shmem_dir_map(subdir); 909 } 910 subdir = *dir; 911 if (subdir && page_private(subdir)) { 912 ptr = shmem_swp_map(subdir); 913 size = limit - idx; 914 if (size > ENTRIES_PER_PAGE) 915 size = ENTRIES_PER_PAGE; 916 offset = shmem_find_swp(entry, ptr, ptr+size); 917 shmem_swp_unmap(ptr); 918 if (offset >= 0) { 919 shmem_dir_unmap(dir); 920 goto found; 921 } 922 } 923 } 924 lost1: 925 shmem_dir_unmap(dir-1); 926 lost2: 927 spin_unlock(&info->lock); 928 return 0; 929 found: 930 idx += offset; 931 inode = igrab(&info->vfs_inode); 932 spin_unlock(&info->lock); 933 934 /* 935 * Move _head_ to start search for next from here. 936 * But be careful: shmem_evict_inode checks list_empty without taking 937 * mutex, and there's an instant in list_move_tail when info->swaplist 938 * would appear empty, if it were the only one on shmem_swaplist. We 939 * could avoid doing it if inode NULL; or use this minor optimization. 940 */ 941 if (shmem_swaplist.next != &info->swaplist) 942 list_move_tail(&shmem_swaplist, &info->swaplist); 943 mutex_unlock(&shmem_swaplist_mutex); 944 945 error = 1; 946 if (!inode) 947 goto out; 948 /* 949 * Charge page using GFP_KERNEL while we can wait. 950 * Charged back to the user(not to caller) when swap account is used. 951 * add_to_page_cache() will be called with GFP_NOWAIT. 952 */ 953 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 954 if (error) 955 goto out; 956 error = radix_tree_preload(GFP_KERNEL); 957 if (error) { 958 mem_cgroup_uncharge_cache_page(page); 959 goto out; 960 } 961 error = 1; 962 963 spin_lock(&info->lock); 964 ptr = shmem_swp_entry(info, idx, NULL); 965 if (ptr && ptr->val == entry.val) { 966 error = add_to_page_cache_locked(page, inode->i_mapping, 967 idx, GFP_NOWAIT); 968 /* does mem_cgroup_uncharge_cache_page on error */ 969 } else /* we must compensate for our precharge above */ 970 mem_cgroup_uncharge_cache_page(page); 971 972 if (error == -EEXIST) { 973 struct page *filepage = find_get_page(inode->i_mapping, idx); 974 error = 1; 975 if (filepage) { 976 /* 977 * There might be a more uptodate page coming down 978 * from a stacked writepage: forget our swappage if so. 979 */ 980 if (PageUptodate(filepage)) 981 error = 0; 982 page_cache_release(filepage); 983 } 984 } 985 if (!error) { 986 delete_from_swap_cache(page); 987 set_page_dirty(page); 988 info->flags |= SHMEM_PAGEIN; 989 shmem_swp_set(info, ptr, 0); 990 swap_free(entry); 991 error = 1; /* not an error, but entry was found */ 992 } 993 if (ptr) 994 shmem_swp_unmap(ptr); 995 spin_unlock(&info->lock); 996 radix_tree_preload_end(); 997 out: 998 unlock_page(page); 999 page_cache_release(page); 1000 iput(inode); /* allows for NULL */ 1001 return error; 1002 } 1003 1004 /* 1005 * shmem_unuse() search for an eventually swapped out shmem page. 1006 */ 1007 int shmem_unuse(swp_entry_t entry, struct page *page) 1008 { 1009 struct list_head *p, *next; 1010 struct shmem_inode_info *info; 1011 int found = 0; 1012 1013 mutex_lock(&shmem_swaplist_mutex); 1014 list_for_each_safe(p, next, &shmem_swaplist) { 1015 info = list_entry(p, struct shmem_inode_info, swaplist); 1016 found = shmem_unuse_inode(info, entry, page); 1017 cond_resched(); 1018 if (found) 1019 goto out; 1020 } 1021 mutex_unlock(&shmem_swaplist_mutex); 1022 /* 1023 * Can some race bring us here? We've been holding page lock, 1024 * so I think not; but would rather try again later than BUG() 1025 */ 1026 unlock_page(page); 1027 page_cache_release(page); 1028 out: 1029 return (found < 0) ? found : 0; 1030 } 1031 1032 /* 1033 * Move the page from the page cache to the swap cache. 1034 */ 1035 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1036 { 1037 struct shmem_inode_info *info; 1038 swp_entry_t *entry, swap; 1039 struct address_space *mapping; 1040 unsigned long index; 1041 struct inode *inode; 1042 1043 BUG_ON(!PageLocked(page)); 1044 mapping = page->mapping; 1045 index = page->index; 1046 inode = mapping->host; 1047 info = SHMEM_I(inode); 1048 if (info->flags & VM_LOCKED) 1049 goto redirty; 1050 if (!total_swap_pages) 1051 goto redirty; 1052 1053 /* 1054 * shmem_backing_dev_info's capabilities prevent regular writeback or 1055 * sync from ever calling shmem_writepage; but a stacking filesystem 1056 * may use the ->writepage of its underlying filesystem, in which case 1057 * tmpfs should write out to swap only in response to memory pressure, 1058 * and not for the writeback threads or sync. However, in those cases, 1059 * we do still want to check if there's a redundant swappage to be 1060 * discarded. 1061 */ 1062 if (wbc->for_reclaim) 1063 swap = get_swap_page(); 1064 else 1065 swap.val = 0; 1066 1067 spin_lock(&info->lock); 1068 if (index >= info->next_index) { 1069 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 1070 goto unlock; 1071 } 1072 entry = shmem_swp_entry(info, index, NULL); 1073 if (entry->val) { 1074 /* 1075 * The more uptodate page coming down from a stacked 1076 * writepage should replace our old swappage. 1077 */ 1078 free_swap_and_cache(*entry); 1079 shmem_swp_set(info, entry, 0); 1080 } 1081 shmem_recalc_inode(inode); 1082 1083 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1084 delete_from_page_cache(page); 1085 shmem_swp_set(info, entry, swap.val); 1086 shmem_swp_unmap(entry); 1087 if (list_empty(&info->swaplist)) 1088 inode = igrab(inode); 1089 else 1090 inode = NULL; 1091 spin_unlock(&info->lock); 1092 swap_shmem_alloc(swap); 1093 BUG_ON(page_mapped(page)); 1094 swap_writepage(page, wbc); 1095 if (inode) { 1096 mutex_lock(&shmem_swaplist_mutex); 1097 /* move instead of add in case we're racing */ 1098 list_move_tail(&info->swaplist, &shmem_swaplist); 1099 mutex_unlock(&shmem_swaplist_mutex); 1100 iput(inode); 1101 } 1102 return 0; 1103 } 1104 1105 shmem_swp_unmap(entry); 1106 unlock: 1107 spin_unlock(&info->lock); 1108 /* 1109 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 1110 * clear SWAP_HAS_CACHE flag. 1111 */ 1112 swapcache_free(swap, NULL); 1113 redirty: 1114 set_page_dirty(page); 1115 if (wbc->for_reclaim) 1116 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1117 unlock_page(page); 1118 return 0; 1119 } 1120 1121 #ifdef CONFIG_NUMA 1122 #ifdef CONFIG_TMPFS 1123 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1124 { 1125 char buffer[64]; 1126 1127 if (!mpol || mpol->mode == MPOL_DEFAULT) 1128 return; /* show nothing */ 1129 1130 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 1131 1132 seq_printf(seq, ",mpol=%s", buffer); 1133 } 1134 1135 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1136 { 1137 struct mempolicy *mpol = NULL; 1138 if (sbinfo->mpol) { 1139 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1140 mpol = sbinfo->mpol; 1141 mpol_get(mpol); 1142 spin_unlock(&sbinfo->stat_lock); 1143 } 1144 return mpol; 1145 } 1146 #endif /* CONFIG_TMPFS */ 1147 1148 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1149 struct shmem_inode_info *info, unsigned long idx) 1150 { 1151 struct mempolicy mpol, *spol; 1152 struct vm_area_struct pvma; 1153 struct page *page; 1154 1155 spol = mpol_cond_copy(&mpol, 1156 mpol_shared_policy_lookup(&info->policy, idx)); 1157 1158 /* Create a pseudo vma that just contains the policy */ 1159 pvma.vm_start = 0; 1160 pvma.vm_pgoff = idx; 1161 pvma.vm_ops = NULL; 1162 pvma.vm_policy = spol; 1163 page = swapin_readahead(entry, gfp, &pvma, 0); 1164 return page; 1165 } 1166 1167 static struct page *shmem_alloc_page(gfp_t gfp, 1168 struct shmem_inode_info *info, unsigned long idx) 1169 { 1170 struct vm_area_struct pvma; 1171 1172 /* Create a pseudo vma that just contains the policy */ 1173 pvma.vm_start = 0; 1174 pvma.vm_pgoff = idx; 1175 pvma.vm_ops = NULL; 1176 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1177 1178 /* 1179 * alloc_page_vma() will drop the shared policy reference 1180 */ 1181 return alloc_page_vma(gfp, &pvma, 0); 1182 } 1183 #else /* !CONFIG_NUMA */ 1184 #ifdef CONFIG_TMPFS 1185 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) 1186 { 1187 } 1188 #endif /* CONFIG_TMPFS */ 1189 1190 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1191 struct shmem_inode_info *info, unsigned long idx) 1192 { 1193 return swapin_readahead(entry, gfp, NULL, 0); 1194 } 1195 1196 static inline struct page *shmem_alloc_page(gfp_t gfp, 1197 struct shmem_inode_info *info, unsigned long idx) 1198 { 1199 return alloc_page(gfp); 1200 } 1201 #endif /* CONFIG_NUMA */ 1202 1203 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1204 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1205 { 1206 return NULL; 1207 } 1208 #endif 1209 1210 /* 1211 * shmem_getpage - either get the page from swap or allocate a new one 1212 * 1213 * If we allocate a new one we do not mark it dirty. That's up to the 1214 * vm. If we swap it in we mark it dirty since we also free the swap 1215 * entry since a page cannot live in both the swap and page cache 1216 */ 1217 static int shmem_getpage(struct inode *inode, unsigned long idx, 1218 struct page **pagep, enum sgp_type sgp, int *type) 1219 { 1220 struct address_space *mapping = inode->i_mapping; 1221 struct shmem_inode_info *info = SHMEM_I(inode); 1222 struct shmem_sb_info *sbinfo; 1223 struct page *filepage = *pagep; 1224 struct page *swappage; 1225 struct page *prealloc_page = NULL; 1226 swp_entry_t *entry; 1227 swp_entry_t swap; 1228 gfp_t gfp; 1229 int error; 1230 1231 if (idx >= SHMEM_MAX_INDEX) 1232 return -EFBIG; 1233 1234 if (type) 1235 *type = 0; 1236 1237 /* 1238 * Normally, filepage is NULL on entry, and either found 1239 * uptodate immediately, or allocated and zeroed, or read 1240 * in under swappage, which is then assigned to filepage. 1241 * But shmem_readpage (required for splice) passes in a locked 1242 * filepage, which may be found not uptodate by other callers 1243 * too, and may need to be copied from the swappage read in. 1244 */ 1245 repeat: 1246 if (!filepage) 1247 filepage = find_lock_page(mapping, idx); 1248 if (filepage && PageUptodate(filepage)) 1249 goto done; 1250 gfp = mapping_gfp_mask(mapping); 1251 if (!filepage) { 1252 /* 1253 * Try to preload while we can wait, to not make a habit of 1254 * draining atomic reserves; but don't latch on to this cpu. 1255 */ 1256 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); 1257 if (error) 1258 goto failed; 1259 radix_tree_preload_end(); 1260 if (sgp != SGP_READ && !prealloc_page) { 1261 /* We don't care if this fails */ 1262 prealloc_page = shmem_alloc_page(gfp, info, idx); 1263 if (prealloc_page) { 1264 if (mem_cgroup_cache_charge(prealloc_page, 1265 current->mm, GFP_KERNEL)) { 1266 page_cache_release(prealloc_page); 1267 prealloc_page = NULL; 1268 } 1269 } 1270 } 1271 } 1272 error = 0; 1273 1274 spin_lock(&info->lock); 1275 shmem_recalc_inode(inode); 1276 entry = shmem_swp_alloc(info, idx, sgp); 1277 if (IS_ERR(entry)) { 1278 spin_unlock(&info->lock); 1279 error = PTR_ERR(entry); 1280 goto failed; 1281 } 1282 swap = *entry; 1283 1284 if (swap.val) { 1285 /* Look it up and read it in.. */ 1286 swappage = lookup_swap_cache(swap); 1287 if (!swappage) { 1288 shmem_swp_unmap(entry); 1289 /* here we actually do the io */ 1290 if (type && !(*type & VM_FAULT_MAJOR)) { 1291 __count_vm_event(PGMAJFAULT); 1292 *type |= VM_FAULT_MAJOR; 1293 } 1294 spin_unlock(&info->lock); 1295 swappage = shmem_swapin(swap, gfp, info, idx); 1296 if (!swappage) { 1297 spin_lock(&info->lock); 1298 entry = shmem_swp_alloc(info, idx, sgp); 1299 if (IS_ERR(entry)) 1300 error = PTR_ERR(entry); 1301 else { 1302 if (entry->val == swap.val) 1303 error = -ENOMEM; 1304 shmem_swp_unmap(entry); 1305 } 1306 spin_unlock(&info->lock); 1307 if (error) 1308 goto failed; 1309 goto repeat; 1310 } 1311 wait_on_page_locked(swappage); 1312 page_cache_release(swappage); 1313 goto repeat; 1314 } 1315 1316 /* We have to do this with page locked to prevent races */ 1317 if (!trylock_page(swappage)) { 1318 shmem_swp_unmap(entry); 1319 spin_unlock(&info->lock); 1320 wait_on_page_locked(swappage); 1321 page_cache_release(swappage); 1322 goto repeat; 1323 } 1324 if (PageWriteback(swappage)) { 1325 shmem_swp_unmap(entry); 1326 spin_unlock(&info->lock); 1327 wait_on_page_writeback(swappage); 1328 unlock_page(swappage); 1329 page_cache_release(swappage); 1330 goto repeat; 1331 } 1332 if (!PageUptodate(swappage)) { 1333 shmem_swp_unmap(entry); 1334 spin_unlock(&info->lock); 1335 unlock_page(swappage); 1336 page_cache_release(swappage); 1337 error = -EIO; 1338 goto failed; 1339 } 1340 1341 if (filepage) { 1342 shmem_swp_set(info, entry, 0); 1343 shmem_swp_unmap(entry); 1344 delete_from_swap_cache(swappage); 1345 spin_unlock(&info->lock); 1346 copy_highpage(filepage, swappage); 1347 unlock_page(swappage); 1348 page_cache_release(swappage); 1349 flush_dcache_page(filepage); 1350 SetPageUptodate(filepage); 1351 set_page_dirty(filepage); 1352 swap_free(swap); 1353 } else if (!(error = add_to_page_cache_locked(swappage, mapping, 1354 idx, GFP_NOWAIT))) { 1355 info->flags |= SHMEM_PAGEIN; 1356 shmem_swp_set(info, entry, 0); 1357 shmem_swp_unmap(entry); 1358 delete_from_swap_cache(swappage); 1359 spin_unlock(&info->lock); 1360 filepage = swappage; 1361 set_page_dirty(filepage); 1362 swap_free(swap); 1363 } else { 1364 shmem_swp_unmap(entry); 1365 spin_unlock(&info->lock); 1366 if (error == -ENOMEM) { 1367 /* 1368 * reclaim from proper memory cgroup and 1369 * call memcg's OOM if needed. 1370 */ 1371 error = mem_cgroup_shmem_charge_fallback( 1372 swappage, 1373 current->mm, 1374 gfp); 1375 if (error) { 1376 unlock_page(swappage); 1377 page_cache_release(swappage); 1378 goto failed; 1379 } 1380 } 1381 unlock_page(swappage); 1382 page_cache_release(swappage); 1383 goto repeat; 1384 } 1385 } else if (sgp == SGP_READ && !filepage) { 1386 shmem_swp_unmap(entry); 1387 filepage = find_get_page(mapping, idx); 1388 if (filepage && 1389 (!PageUptodate(filepage) || !trylock_page(filepage))) { 1390 spin_unlock(&info->lock); 1391 wait_on_page_locked(filepage); 1392 page_cache_release(filepage); 1393 filepage = NULL; 1394 goto repeat; 1395 } 1396 spin_unlock(&info->lock); 1397 } else { 1398 shmem_swp_unmap(entry); 1399 sbinfo = SHMEM_SB(inode->i_sb); 1400 if (sbinfo->max_blocks) { 1401 if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) || 1402 shmem_acct_block(info->flags)) { 1403 spin_unlock(&info->lock); 1404 error = -ENOSPC; 1405 goto failed; 1406 } 1407 percpu_counter_inc(&sbinfo->used_blocks); 1408 spin_lock(&inode->i_lock); 1409 inode->i_blocks += BLOCKS_PER_PAGE; 1410 spin_unlock(&inode->i_lock); 1411 } else if (shmem_acct_block(info->flags)) { 1412 spin_unlock(&info->lock); 1413 error = -ENOSPC; 1414 goto failed; 1415 } 1416 1417 if (!filepage) { 1418 int ret; 1419 1420 if (!prealloc_page) { 1421 spin_unlock(&info->lock); 1422 filepage = shmem_alloc_page(gfp, info, idx); 1423 if (!filepage) { 1424 shmem_unacct_blocks(info->flags, 1); 1425 shmem_free_blocks(inode, 1); 1426 error = -ENOMEM; 1427 goto failed; 1428 } 1429 SetPageSwapBacked(filepage); 1430 1431 /* 1432 * Precharge page while we can wait, compensate 1433 * after 1434 */ 1435 error = mem_cgroup_cache_charge(filepage, 1436 current->mm, GFP_KERNEL); 1437 if (error) { 1438 page_cache_release(filepage); 1439 shmem_unacct_blocks(info->flags, 1); 1440 shmem_free_blocks(inode, 1); 1441 filepage = NULL; 1442 goto failed; 1443 } 1444 1445 spin_lock(&info->lock); 1446 } else { 1447 filepage = prealloc_page; 1448 prealloc_page = NULL; 1449 SetPageSwapBacked(filepage); 1450 } 1451 1452 entry = shmem_swp_alloc(info, idx, sgp); 1453 if (IS_ERR(entry)) 1454 error = PTR_ERR(entry); 1455 else { 1456 swap = *entry; 1457 shmem_swp_unmap(entry); 1458 } 1459 ret = error || swap.val; 1460 if (ret) 1461 mem_cgroup_uncharge_cache_page(filepage); 1462 else 1463 ret = add_to_page_cache_lru(filepage, mapping, 1464 idx, GFP_NOWAIT); 1465 /* 1466 * At add_to_page_cache_lru() failure, uncharge will 1467 * be done automatically. 1468 */ 1469 if (ret) { 1470 spin_unlock(&info->lock); 1471 page_cache_release(filepage); 1472 shmem_unacct_blocks(info->flags, 1); 1473 shmem_free_blocks(inode, 1); 1474 filepage = NULL; 1475 if (error) 1476 goto failed; 1477 goto repeat; 1478 } 1479 info->flags |= SHMEM_PAGEIN; 1480 } 1481 1482 info->alloced++; 1483 spin_unlock(&info->lock); 1484 clear_highpage(filepage); 1485 flush_dcache_page(filepage); 1486 SetPageUptodate(filepage); 1487 if (sgp == SGP_DIRTY) 1488 set_page_dirty(filepage); 1489 } 1490 done: 1491 *pagep = filepage; 1492 error = 0; 1493 goto out; 1494 1495 failed: 1496 if (*pagep != filepage) { 1497 unlock_page(filepage); 1498 page_cache_release(filepage); 1499 } 1500 out: 1501 if (prealloc_page) { 1502 mem_cgroup_uncharge_cache_page(prealloc_page); 1503 page_cache_release(prealloc_page); 1504 } 1505 return error; 1506 } 1507 1508 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1509 { 1510 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1511 int error; 1512 int ret; 1513 1514 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1515 return VM_FAULT_SIGBUS; 1516 1517 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1518 if (error) 1519 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1520 1521 return ret | VM_FAULT_LOCKED; 1522 } 1523 1524 #ifdef CONFIG_NUMA 1525 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1526 { 1527 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1528 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1529 } 1530 1531 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1532 unsigned long addr) 1533 { 1534 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1535 unsigned long idx; 1536 1537 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1538 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1539 } 1540 #endif 1541 1542 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1543 { 1544 struct inode *inode = file->f_path.dentry->d_inode; 1545 struct shmem_inode_info *info = SHMEM_I(inode); 1546 int retval = -ENOMEM; 1547 1548 spin_lock(&info->lock); 1549 if (lock && !(info->flags & VM_LOCKED)) { 1550 if (!user_shm_lock(inode->i_size, user)) 1551 goto out_nomem; 1552 info->flags |= VM_LOCKED; 1553 mapping_set_unevictable(file->f_mapping); 1554 } 1555 if (!lock && (info->flags & VM_LOCKED) && user) { 1556 user_shm_unlock(inode->i_size, user); 1557 info->flags &= ~VM_LOCKED; 1558 mapping_clear_unevictable(file->f_mapping); 1559 scan_mapping_unevictable_pages(file->f_mapping); 1560 } 1561 retval = 0; 1562 1563 out_nomem: 1564 spin_unlock(&info->lock); 1565 return retval; 1566 } 1567 1568 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1569 { 1570 file_accessed(file); 1571 vma->vm_ops = &shmem_vm_ops; 1572 vma->vm_flags |= VM_CAN_NONLINEAR; 1573 return 0; 1574 } 1575 1576 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1577 int mode, dev_t dev, unsigned long flags) 1578 { 1579 struct inode *inode; 1580 struct shmem_inode_info *info; 1581 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1582 1583 if (shmem_reserve_inode(sb)) 1584 return NULL; 1585 1586 inode = new_inode(sb); 1587 if (inode) { 1588 inode->i_ino = get_next_ino(); 1589 inode_init_owner(inode, dir, mode); 1590 inode->i_blocks = 0; 1591 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1592 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1593 inode->i_generation = get_seconds(); 1594 info = SHMEM_I(inode); 1595 memset(info, 0, (char *)inode - (char *)info); 1596 spin_lock_init(&info->lock); 1597 info->flags = flags & VM_NORESERVE; 1598 INIT_LIST_HEAD(&info->swaplist); 1599 cache_no_acl(inode); 1600 1601 switch (mode & S_IFMT) { 1602 default: 1603 inode->i_op = &shmem_special_inode_operations; 1604 init_special_inode(inode, mode, dev); 1605 break; 1606 case S_IFREG: 1607 inode->i_mapping->a_ops = &shmem_aops; 1608 inode->i_op = &shmem_inode_operations; 1609 inode->i_fop = &shmem_file_operations; 1610 mpol_shared_policy_init(&info->policy, 1611 shmem_get_sbmpol(sbinfo)); 1612 break; 1613 case S_IFDIR: 1614 inc_nlink(inode); 1615 /* Some things misbehave if size == 0 on a directory */ 1616 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1617 inode->i_op = &shmem_dir_inode_operations; 1618 inode->i_fop = &simple_dir_operations; 1619 break; 1620 case S_IFLNK: 1621 /* 1622 * Must not load anything in the rbtree, 1623 * mpol_free_shared_policy will not be called. 1624 */ 1625 mpol_shared_policy_init(&info->policy, NULL); 1626 break; 1627 } 1628 } else 1629 shmem_free_inode(sb); 1630 return inode; 1631 } 1632 1633 #ifdef CONFIG_TMPFS 1634 static const struct inode_operations shmem_symlink_inode_operations; 1635 static const struct inode_operations shmem_symlink_inline_operations; 1636 1637 /* 1638 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; 1639 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1640 * below the loop driver, in the generic fashion that many filesystems support. 1641 */ 1642 static int shmem_readpage(struct file *file, struct page *page) 1643 { 1644 struct inode *inode = page->mapping->host; 1645 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1646 unlock_page(page); 1647 return error; 1648 } 1649 1650 static int 1651 shmem_write_begin(struct file *file, struct address_space *mapping, 1652 loff_t pos, unsigned len, unsigned flags, 1653 struct page **pagep, void **fsdata) 1654 { 1655 struct inode *inode = mapping->host; 1656 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1657 *pagep = NULL; 1658 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1659 } 1660 1661 static int 1662 shmem_write_end(struct file *file, struct address_space *mapping, 1663 loff_t pos, unsigned len, unsigned copied, 1664 struct page *page, void *fsdata) 1665 { 1666 struct inode *inode = mapping->host; 1667 1668 if (pos + copied > inode->i_size) 1669 i_size_write(inode, pos + copied); 1670 1671 set_page_dirty(page); 1672 unlock_page(page); 1673 page_cache_release(page); 1674 1675 return copied; 1676 } 1677 1678 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1679 { 1680 struct inode *inode = filp->f_path.dentry->d_inode; 1681 struct address_space *mapping = inode->i_mapping; 1682 unsigned long index, offset; 1683 enum sgp_type sgp = SGP_READ; 1684 1685 /* 1686 * Might this read be for a stacking filesystem? Then when reading 1687 * holes of a sparse file, we actually need to allocate those pages, 1688 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1689 */ 1690 if (segment_eq(get_fs(), KERNEL_DS)) 1691 sgp = SGP_DIRTY; 1692 1693 index = *ppos >> PAGE_CACHE_SHIFT; 1694 offset = *ppos & ~PAGE_CACHE_MASK; 1695 1696 for (;;) { 1697 struct page *page = NULL; 1698 unsigned long end_index, nr, ret; 1699 loff_t i_size = i_size_read(inode); 1700 1701 end_index = i_size >> PAGE_CACHE_SHIFT; 1702 if (index > end_index) 1703 break; 1704 if (index == end_index) { 1705 nr = i_size & ~PAGE_CACHE_MASK; 1706 if (nr <= offset) 1707 break; 1708 } 1709 1710 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1711 if (desc->error) { 1712 if (desc->error == -EINVAL) 1713 desc->error = 0; 1714 break; 1715 } 1716 if (page) 1717 unlock_page(page); 1718 1719 /* 1720 * We must evaluate after, since reads (unlike writes) 1721 * are called without i_mutex protection against truncate 1722 */ 1723 nr = PAGE_CACHE_SIZE; 1724 i_size = i_size_read(inode); 1725 end_index = i_size >> PAGE_CACHE_SHIFT; 1726 if (index == end_index) { 1727 nr = i_size & ~PAGE_CACHE_MASK; 1728 if (nr <= offset) { 1729 if (page) 1730 page_cache_release(page); 1731 break; 1732 } 1733 } 1734 nr -= offset; 1735 1736 if (page) { 1737 /* 1738 * If users can be writing to this page using arbitrary 1739 * virtual addresses, take care about potential aliasing 1740 * before reading the page on the kernel side. 1741 */ 1742 if (mapping_writably_mapped(mapping)) 1743 flush_dcache_page(page); 1744 /* 1745 * Mark the page accessed if we read the beginning. 1746 */ 1747 if (!offset) 1748 mark_page_accessed(page); 1749 } else { 1750 page = ZERO_PAGE(0); 1751 page_cache_get(page); 1752 } 1753 1754 /* 1755 * Ok, we have the page, and it's up-to-date, so 1756 * now we can copy it to user space... 1757 * 1758 * The actor routine returns how many bytes were actually used.. 1759 * NOTE! This may not be the same as how much of a user buffer 1760 * we filled up (we may be padding etc), so we can only update 1761 * "pos" here (the actor routine has to update the user buffer 1762 * pointers and the remaining count). 1763 */ 1764 ret = actor(desc, page, offset, nr); 1765 offset += ret; 1766 index += offset >> PAGE_CACHE_SHIFT; 1767 offset &= ~PAGE_CACHE_MASK; 1768 1769 page_cache_release(page); 1770 if (ret != nr || !desc->count) 1771 break; 1772 1773 cond_resched(); 1774 } 1775 1776 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1777 file_accessed(filp); 1778 } 1779 1780 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1781 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1782 { 1783 struct file *filp = iocb->ki_filp; 1784 ssize_t retval; 1785 unsigned long seg; 1786 size_t count; 1787 loff_t *ppos = &iocb->ki_pos; 1788 1789 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1790 if (retval) 1791 return retval; 1792 1793 for (seg = 0; seg < nr_segs; seg++) { 1794 read_descriptor_t desc; 1795 1796 desc.written = 0; 1797 desc.arg.buf = iov[seg].iov_base; 1798 desc.count = iov[seg].iov_len; 1799 if (desc.count == 0) 1800 continue; 1801 desc.error = 0; 1802 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1803 retval += desc.written; 1804 if (desc.error) { 1805 retval = retval ?: desc.error; 1806 break; 1807 } 1808 if (desc.count > 0) 1809 break; 1810 } 1811 return retval; 1812 } 1813 1814 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1815 { 1816 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1817 1818 buf->f_type = TMPFS_MAGIC; 1819 buf->f_bsize = PAGE_CACHE_SIZE; 1820 buf->f_namelen = NAME_MAX; 1821 if (sbinfo->max_blocks) { 1822 buf->f_blocks = sbinfo->max_blocks; 1823 buf->f_bavail = buf->f_bfree = 1824 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks); 1825 } 1826 if (sbinfo->max_inodes) { 1827 buf->f_files = sbinfo->max_inodes; 1828 buf->f_ffree = sbinfo->free_inodes; 1829 } 1830 /* else leave those fields 0 like simple_statfs */ 1831 return 0; 1832 } 1833 1834 /* 1835 * File creation. Allocate an inode, and we're done.. 1836 */ 1837 static int 1838 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1839 { 1840 struct inode *inode; 1841 int error = -ENOSPC; 1842 1843 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1844 if (inode) { 1845 error = security_inode_init_security(inode, dir, 1846 &dentry->d_name, NULL, 1847 NULL, NULL); 1848 if (error) { 1849 if (error != -EOPNOTSUPP) { 1850 iput(inode); 1851 return error; 1852 } 1853 } 1854 #ifdef CONFIG_TMPFS_POSIX_ACL 1855 error = generic_acl_init(inode, dir); 1856 if (error) { 1857 iput(inode); 1858 return error; 1859 } 1860 #else 1861 error = 0; 1862 #endif 1863 dir->i_size += BOGO_DIRENT_SIZE; 1864 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1865 d_instantiate(dentry, inode); 1866 dget(dentry); /* Extra count - pin the dentry in core */ 1867 } 1868 return error; 1869 } 1870 1871 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1872 { 1873 int error; 1874 1875 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1876 return error; 1877 inc_nlink(dir); 1878 return 0; 1879 } 1880 1881 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1882 struct nameidata *nd) 1883 { 1884 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1885 } 1886 1887 /* 1888 * Link a file.. 1889 */ 1890 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1891 { 1892 struct inode *inode = old_dentry->d_inode; 1893 int ret; 1894 1895 /* 1896 * No ordinary (disk based) filesystem counts links as inodes; 1897 * but each new link needs a new dentry, pinning lowmem, and 1898 * tmpfs dentries cannot be pruned until they are unlinked. 1899 */ 1900 ret = shmem_reserve_inode(inode->i_sb); 1901 if (ret) 1902 goto out; 1903 1904 dir->i_size += BOGO_DIRENT_SIZE; 1905 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1906 inc_nlink(inode); 1907 ihold(inode); /* New dentry reference */ 1908 dget(dentry); /* Extra pinning count for the created dentry */ 1909 d_instantiate(dentry, inode); 1910 out: 1911 return ret; 1912 } 1913 1914 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1915 { 1916 struct inode *inode = dentry->d_inode; 1917 1918 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1919 shmem_free_inode(inode->i_sb); 1920 1921 dir->i_size -= BOGO_DIRENT_SIZE; 1922 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1923 drop_nlink(inode); 1924 dput(dentry); /* Undo the count from "create" - this does all the work */ 1925 return 0; 1926 } 1927 1928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1929 { 1930 if (!simple_empty(dentry)) 1931 return -ENOTEMPTY; 1932 1933 drop_nlink(dentry->d_inode); 1934 drop_nlink(dir); 1935 return shmem_unlink(dir, dentry); 1936 } 1937 1938 /* 1939 * The VFS layer already does all the dentry stuff for rename, 1940 * we just have to decrement the usage count for the target if 1941 * it exists so that the VFS layer correctly free's it when it 1942 * gets overwritten. 1943 */ 1944 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1945 { 1946 struct inode *inode = old_dentry->d_inode; 1947 int they_are_dirs = S_ISDIR(inode->i_mode); 1948 1949 if (!simple_empty(new_dentry)) 1950 return -ENOTEMPTY; 1951 1952 if (new_dentry->d_inode) { 1953 (void) shmem_unlink(new_dir, new_dentry); 1954 if (they_are_dirs) 1955 drop_nlink(old_dir); 1956 } else if (they_are_dirs) { 1957 drop_nlink(old_dir); 1958 inc_nlink(new_dir); 1959 } 1960 1961 old_dir->i_size -= BOGO_DIRENT_SIZE; 1962 new_dir->i_size += BOGO_DIRENT_SIZE; 1963 old_dir->i_ctime = old_dir->i_mtime = 1964 new_dir->i_ctime = new_dir->i_mtime = 1965 inode->i_ctime = CURRENT_TIME; 1966 return 0; 1967 } 1968 1969 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1970 { 1971 int error; 1972 int len; 1973 struct inode *inode; 1974 struct page *page = NULL; 1975 char *kaddr; 1976 struct shmem_inode_info *info; 1977 1978 len = strlen(symname) + 1; 1979 if (len > PAGE_CACHE_SIZE) 1980 return -ENAMETOOLONG; 1981 1982 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 1983 if (!inode) 1984 return -ENOSPC; 1985 1986 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL, 1987 NULL, NULL); 1988 if (error) { 1989 if (error != -EOPNOTSUPP) { 1990 iput(inode); 1991 return error; 1992 } 1993 error = 0; 1994 } 1995 1996 info = SHMEM_I(inode); 1997 inode->i_size = len-1; 1998 if (len <= (char *)inode - (char *)info) { 1999 /* do it inline */ 2000 memcpy(info, symname, len); 2001 inode->i_op = &shmem_symlink_inline_operations; 2002 } else { 2003 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2004 if (error) { 2005 iput(inode); 2006 return error; 2007 } 2008 inode->i_mapping->a_ops = &shmem_aops; 2009 inode->i_op = &shmem_symlink_inode_operations; 2010 kaddr = kmap_atomic(page, KM_USER0); 2011 memcpy(kaddr, symname, len); 2012 kunmap_atomic(kaddr, KM_USER0); 2013 set_page_dirty(page); 2014 unlock_page(page); 2015 page_cache_release(page); 2016 } 2017 dir->i_size += BOGO_DIRENT_SIZE; 2018 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2019 d_instantiate(dentry, inode); 2020 dget(dentry); 2021 return 0; 2022 } 2023 2024 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 2025 { 2026 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 2027 return NULL; 2028 } 2029 2030 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2031 { 2032 struct page *page = NULL; 2033 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2034 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 2035 if (page) 2036 unlock_page(page); 2037 return page; 2038 } 2039 2040 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2041 { 2042 if (!IS_ERR(nd_get_link(nd))) { 2043 struct page *page = cookie; 2044 kunmap(page); 2045 mark_page_accessed(page); 2046 page_cache_release(page); 2047 } 2048 } 2049 2050 static const struct inode_operations shmem_symlink_inline_operations = { 2051 .readlink = generic_readlink, 2052 .follow_link = shmem_follow_link_inline, 2053 }; 2054 2055 static const struct inode_operations shmem_symlink_inode_operations = { 2056 .readlink = generic_readlink, 2057 .follow_link = shmem_follow_link, 2058 .put_link = shmem_put_link, 2059 }; 2060 2061 #ifdef CONFIG_TMPFS_POSIX_ACL 2062 /* 2063 * Superblocks without xattr inode operations will get security.* xattr 2064 * support from the VFS "for free". As soon as we have any other xattrs 2065 * like ACLs, we also need to implement the security.* handlers at 2066 * filesystem level, though. 2067 */ 2068 2069 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list, 2070 size_t list_len, const char *name, 2071 size_t name_len, int handler_flags) 2072 { 2073 return security_inode_listsecurity(dentry->d_inode, list, list_len); 2074 } 2075 2076 static int shmem_xattr_security_get(struct dentry *dentry, const char *name, 2077 void *buffer, size_t size, int handler_flags) 2078 { 2079 if (strcmp(name, "") == 0) 2080 return -EINVAL; 2081 return xattr_getsecurity(dentry->d_inode, name, buffer, size); 2082 } 2083 2084 static int shmem_xattr_security_set(struct dentry *dentry, const char *name, 2085 const void *value, size_t size, int flags, int handler_flags) 2086 { 2087 if (strcmp(name, "") == 0) 2088 return -EINVAL; 2089 return security_inode_setsecurity(dentry->d_inode, name, value, 2090 size, flags); 2091 } 2092 2093 static const struct xattr_handler shmem_xattr_security_handler = { 2094 .prefix = XATTR_SECURITY_PREFIX, 2095 .list = shmem_xattr_security_list, 2096 .get = shmem_xattr_security_get, 2097 .set = shmem_xattr_security_set, 2098 }; 2099 2100 static const struct xattr_handler *shmem_xattr_handlers[] = { 2101 &generic_acl_access_handler, 2102 &generic_acl_default_handler, 2103 &shmem_xattr_security_handler, 2104 NULL 2105 }; 2106 #endif 2107 2108 static struct dentry *shmem_get_parent(struct dentry *child) 2109 { 2110 return ERR_PTR(-ESTALE); 2111 } 2112 2113 static int shmem_match(struct inode *ino, void *vfh) 2114 { 2115 __u32 *fh = vfh; 2116 __u64 inum = fh[2]; 2117 inum = (inum << 32) | fh[1]; 2118 return ino->i_ino == inum && fh[0] == ino->i_generation; 2119 } 2120 2121 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2122 struct fid *fid, int fh_len, int fh_type) 2123 { 2124 struct inode *inode; 2125 struct dentry *dentry = NULL; 2126 u64 inum = fid->raw[2]; 2127 inum = (inum << 32) | fid->raw[1]; 2128 2129 if (fh_len < 3) 2130 return NULL; 2131 2132 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2133 shmem_match, fid->raw); 2134 if (inode) { 2135 dentry = d_find_alias(inode); 2136 iput(inode); 2137 } 2138 2139 return dentry; 2140 } 2141 2142 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2143 int connectable) 2144 { 2145 struct inode *inode = dentry->d_inode; 2146 2147 if (*len < 3) { 2148 *len = 3; 2149 return 255; 2150 } 2151 2152 if (inode_unhashed(inode)) { 2153 /* Unfortunately insert_inode_hash is not idempotent, 2154 * so as we hash inodes here rather than at creation 2155 * time, we need a lock to ensure we only try 2156 * to do it once 2157 */ 2158 static DEFINE_SPINLOCK(lock); 2159 spin_lock(&lock); 2160 if (inode_unhashed(inode)) 2161 __insert_inode_hash(inode, 2162 inode->i_ino + inode->i_generation); 2163 spin_unlock(&lock); 2164 } 2165 2166 fh[0] = inode->i_generation; 2167 fh[1] = inode->i_ino; 2168 fh[2] = ((__u64)inode->i_ino) >> 32; 2169 2170 *len = 3; 2171 return 1; 2172 } 2173 2174 static const struct export_operations shmem_export_ops = { 2175 .get_parent = shmem_get_parent, 2176 .encode_fh = shmem_encode_fh, 2177 .fh_to_dentry = shmem_fh_to_dentry, 2178 }; 2179 2180 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2181 bool remount) 2182 { 2183 char *this_char, *value, *rest; 2184 2185 while (options != NULL) { 2186 this_char = options; 2187 for (;;) { 2188 /* 2189 * NUL-terminate this option: unfortunately, 2190 * mount options form a comma-separated list, 2191 * but mpol's nodelist may also contain commas. 2192 */ 2193 options = strchr(options, ','); 2194 if (options == NULL) 2195 break; 2196 options++; 2197 if (!isdigit(*options)) { 2198 options[-1] = '\0'; 2199 break; 2200 } 2201 } 2202 if (!*this_char) 2203 continue; 2204 if ((value = strchr(this_char,'=')) != NULL) { 2205 *value++ = 0; 2206 } else { 2207 printk(KERN_ERR 2208 "tmpfs: No value for mount option '%s'\n", 2209 this_char); 2210 return 1; 2211 } 2212 2213 if (!strcmp(this_char,"size")) { 2214 unsigned long long size; 2215 size = memparse(value,&rest); 2216 if (*rest == '%') { 2217 size <<= PAGE_SHIFT; 2218 size *= totalram_pages; 2219 do_div(size, 100); 2220 rest++; 2221 } 2222 if (*rest) 2223 goto bad_val; 2224 sbinfo->max_blocks = 2225 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2226 } else if (!strcmp(this_char,"nr_blocks")) { 2227 sbinfo->max_blocks = memparse(value, &rest); 2228 if (*rest) 2229 goto bad_val; 2230 } else if (!strcmp(this_char,"nr_inodes")) { 2231 sbinfo->max_inodes = memparse(value, &rest); 2232 if (*rest) 2233 goto bad_val; 2234 } else if (!strcmp(this_char,"mode")) { 2235 if (remount) 2236 continue; 2237 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2238 if (*rest) 2239 goto bad_val; 2240 } else if (!strcmp(this_char,"uid")) { 2241 if (remount) 2242 continue; 2243 sbinfo->uid = simple_strtoul(value, &rest, 0); 2244 if (*rest) 2245 goto bad_val; 2246 } else if (!strcmp(this_char,"gid")) { 2247 if (remount) 2248 continue; 2249 sbinfo->gid = simple_strtoul(value, &rest, 0); 2250 if (*rest) 2251 goto bad_val; 2252 } else if (!strcmp(this_char,"mpol")) { 2253 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2254 goto bad_val; 2255 } else { 2256 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2257 this_char); 2258 return 1; 2259 } 2260 } 2261 return 0; 2262 2263 bad_val: 2264 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2265 value, this_char); 2266 return 1; 2267 2268 } 2269 2270 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2271 { 2272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2273 struct shmem_sb_info config = *sbinfo; 2274 unsigned long inodes; 2275 int error = -EINVAL; 2276 2277 if (shmem_parse_options(data, &config, true)) 2278 return error; 2279 2280 spin_lock(&sbinfo->stat_lock); 2281 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2282 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2283 goto out; 2284 if (config.max_inodes < inodes) 2285 goto out; 2286 /* 2287 * Those tests also disallow limited->unlimited while any are in 2288 * use, so i_blocks will always be zero when max_blocks is zero; 2289 * but we must separately disallow unlimited->limited, because 2290 * in that case we have no record of how much is already in use. 2291 */ 2292 if (config.max_blocks && !sbinfo->max_blocks) 2293 goto out; 2294 if (config.max_inodes && !sbinfo->max_inodes) 2295 goto out; 2296 2297 error = 0; 2298 sbinfo->max_blocks = config.max_blocks; 2299 sbinfo->max_inodes = config.max_inodes; 2300 sbinfo->free_inodes = config.max_inodes - inodes; 2301 2302 mpol_put(sbinfo->mpol); 2303 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2304 out: 2305 spin_unlock(&sbinfo->stat_lock); 2306 return error; 2307 } 2308 2309 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) 2310 { 2311 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); 2312 2313 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2314 seq_printf(seq, ",size=%luk", 2315 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2316 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2317 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2318 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2319 seq_printf(seq, ",mode=%03o", sbinfo->mode); 2320 if (sbinfo->uid != 0) 2321 seq_printf(seq, ",uid=%u", sbinfo->uid); 2322 if (sbinfo->gid != 0) 2323 seq_printf(seq, ",gid=%u", sbinfo->gid); 2324 shmem_show_mpol(seq, sbinfo->mpol); 2325 return 0; 2326 } 2327 #endif /* CONFIG_TMPFS */ 2328 2329 static void shmem_put_super(struct super_block *sb) 2330 { 2331 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2332 2333 percpu_counter_destroy(&sbinfo->used_blocks); 2334 kfree(sbinfo); 2335 sb->s_fs_info = NULL; 2336 } 2337 2338 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2339 { 2340 struct inode *inode; 2341 struct dentry *root; 2342 struct shmem_sb_info *sbinfo; 2343 int err = -ENOMEM; 2344 2345 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2346 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2347 L1_CACHE_BYTES), GFP_KERNEL); 2348 if (!sbinfo) 2349 return -ENOMEM; 2350 2351 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2352 sbinfo->uid = current_fsuid(); 2353 sbinfo->gid = current_fsgid(); 2354 sb->s_fs_info = sbinfo; 2355 2356 #ifdef CONFIG_TMPFS 2357 /* 2358 * Per default we only allow half of the physical ram per 2359 * tmpfs instance, limiting inodes to one per page of lowmem; 2360 * but the internal instance is left unlimited. 2361 */ 2362 if (!(sb->s_flags & MS_NOUSER)) { 2363 sbinfo->max_blocks = shmem_default_max_blocks(); 2364 sbinfo->max_inodes = shmem_default_max_inodes(); 2365 if (shmem_parse_options(data, sbinfo, false)) { 2366 err = -EINVAL; 2367 goto failed; 2368 } 2369 } 2370 sb->s_export_op = &shmem_export_ops; 2371 #else 2372 sb->s_flags |= MS_NOUSER; 2373 #endif 2374 2375 spin_lock_init(&sbinfo->stat_lock); 2376 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2377 goto failed; 2378 sbinfo->free_inodes = sbinfo->max_inodes; 2379 2380 sb->s_maxbytes = SHMEM_MAX_BYTES; 2381 sb->s_blocksize = PAGE_CACHE_SIZE; 2382 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2383 sb->s_magic = TMPFS_MAGIC; 2384 sb->s_op = &shmem_ops; 2385 sb->s_time_gran = 1; 2386 #ifdef CONFIG_TMPFS_POSIX_ACL 2387 sb->s_xattr = shmem_xattr_handlers; 2388 sb->s_flags |= MS_POSIXACL; 2389 #endif 2390 2391 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2392 if (!inode) 2393 goto failed; 2394 inode->i_uid = sbinfo->uid; 2395 inode->i_gid = sbinfo->gid; 2396 root = d_alloc_root(inode); 2397 if (!root) 2398 goto failed_iput; 2399 sb->s_root = root; 2400 return 0; 2401 2402 failed_iput: 2403 iput(inode); 2404 failed: 2405 shmem_put_super(sb); 2406 return err; 2407 } 2408 2409 static struct kmem_cache *shmem_inode_cachep; 2410 2411 static struct inode *shmem_alloc_inode(struct super_block *sb) 2412 { 2413 struct shmem_inode_info *p; 2414 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2415 if (!p) 2416 return NULL; 2417 return &p->vfs_inode; 2418 } 2419 2420 static void shmem_i_callback(struct rcu_head *head) 2421 { 2422 struct inode *inode = container_of(head, struct inode, i_rcu); 2423 INIT_LIST_HEAD(&inode->i_dentry); 2424 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2425 } 2426 2427 static void shmem_destroy_inode(struct inode *inode) 2428 { 2429 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2430 /* only struct inode is valid if it's an inline symlink */ 2431 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2432 } 2433 call_rcu(&inode->i_rcu, shmem_i_callback); 2434 } 2435 2436 static void init_once(void *foo) 2437 { 2438 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2439 2440 inode_init_once(&p->vfs_inode); 2441 } 2442 2443 static int init_inodecache(void) 2444 { 2445 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2446 sizeof(struct shmem_inode_info), 2447 0, SLAB_PANIC, init_once); 2448 return 0; 2449 } 2450 2451 static void destroy_inodecache(void) 2452 { 2453 kmem_cache_destroy(shmem_inode_cachep); 2454 } 2455 2456 static const struct address_space_operations shmem_aops = { 2457 .writepage = shmem_writepage, 2458 .set_page_dirty = __set_page_dirty_no_writeback, 2459 #ifdef CONFIG_TMPFS 2460 .readpage = shmem_readpage, 2461 .write_begin = shmem_write_begin, 2462 .write_end = shmem_write_end, 2463 #endif 2464 .migratepage = migrate_page, 2465 .error_remove_page = generic_error_remove_page, 2466 }; 2467 2468 static const struct file_operations shmem_file_operations = { 2469 .mmap = shmem_mmap, 2470 #ifdef CONFIG_TMPFS 2471 .llseek = generic_file_llseek, 2472 .read = do_sync_read, 2473 .write = do_sync_write, 2474 .aio_read = shmem_file_aio_read, 2475 .aio_write = generic_file_aio_write, 2476 .fsync = noop_fsync, 2477 .splice_read = generic_file_splice_read, 2478 .splice_write = generic_file_splice_write, 2479 #endif 2480 }; 2481 2482 static const struct inode_operations shmem_inode_operations = { 2483 .setattr = shmem_notify_change, 2484 .truncate_range = shmem_truncate_range, 2485 #ifdef CONFIG_TMPFS_POSIX_ACL 2486 .setxattr = generic_setxattr, 2487 .getxattr = generic_getxattr, 2488 .listxattr = generic_listxattr, 2489 .removexattr = generic_removexattr, 2490 .check_acl = generic_check_acl, 2491 #endif 2492 2493 }; 2494 2495 static const struct inode_operations shmem_dir_inode_operations = { 2496 #ifdef CONFIG_TMPFS 2497 .create = shmem_create, 2498 .lookup = simple_lookup, 2499 .link = shmem_link, 2500 .unlink = shmem_unlink, 2501 .symlink = shmem_symlink, 2502 .mkdir = shmem_mkdir, 2503 .rmdir = shmem_rmdir, 2504 .mknod = shmem_mknod, 2505 .rename = shmem_rename, 2506 #endif 2507 #ifdef CONFIG_TMPFS_POSIX_ACL 2508 .setattr = shmem_notify_change, 2509 .setxattr = generic_setxattr, 2510 .getxattr = generic_getxattr, 2511 .listxattr = generic_listxattr, 2512 .removexattr = generic_removexattr, 2513 .check_acl = generic_check_acl, 2514 #endif 2515 }; 2516 2517 static const struct inode_operations shmem_special_inode_operations = { 2518 #ifdef CONFIG_TMPFS_POSIX_ACL 2519 .setattr = shmem_notify_change, 2520 .setxattr = generic_setxattr, 2521 .getxattr = generic_getxattr, 2522 .listxattr = generic_listxattr, 2523 .removexattr = generic_removexattr, 2524 .check_acl = generic_check_acl, 2525 #endif 2526 }; 2527 2528 static const struct super_operations shmem_ops = { 2529 .alloc_inode = shmem_alloc_inode, 2530 .destroy_inode = shmem_destroy_inode, 2531 #ifdef CONFIG_TMPFS 2532 .statfs = shmem_statfs, 2533 .remount_fs = shmem_remount_fs, 2534 .show_options = shmem_show_options, 2535 #endif 2536 .evict_inode = shmem_evict_inode, 2537 .drop_inode = generic_delete_inode, 2538 .put_super = shmem_put_super, 2539 }; 2540 2541 static const struct vm_operations_struct shmem_vm_ops = { 2542 .fault = shmem_fault, 2543 #ifdef CONFIG_NUMA 2544 .set_policy = shmem_set_policy, 2545 .get_policy = shmem_get_policy, 2546 #endif 2547 }; 2548 2549 2550 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2551 int flags, const char *dev_name, void *data) 2552 { 2553 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2554 } 2555 2556 static struct file_system_type tmpfs_fs_type = { 2557 .owner = THIS_MODULE, 2558 .name = "tmpfs", 2559 .mount = shmem_mount, 2560 .kill_sb = kill_litter_super, 2561 }; 2562 2563 int __init init_tmpfs(void) 2564 { 2565 int error; 2566 2567 error = bdi_init(&shmem_backing_dev_info); 2568 if (error) 2569 goto out4; 2570 2571 error = init_inodecache(); 2572 if (error) 2573 goto out3; 2574 2575 error = register_filesystem(&tmpfs_fs_type); 2576 if (error) { 2577 printk(KERN_ERR "Could not register tmpfs\n"); 2578 goto out2; 2579 } 2580 2581 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2582 tmpfs_fs_type.name, NULL); 2583 if (IS_ERR(shm_mnt)) { 2584 error = PTR_ERR(shm_mnt); 2585 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2586 goto out1; 2587 } 2588 return 0; 2589 2590 out1: 2591 unregister_filesystem(&tmpfs_fs_type); 2592 out2: 2593 destroy_inodecache(); 2594 out3: 2595 bdi_destroy(&shmem_backing_dev_info); 2596 out4: 2597 shm_mnt = ERR_PTR(error); 2598 return error; 2599 } 2600 2601 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 2602 /** 2603 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file 2604 * @inode: the inode to be searched 2605 * @pgoff: the offset to be searched 2606 * @pagep: the pointer for the found page to be stored 2607 * @ent: the pointer for the found swap entry to be stored 2608 * 2609 * If a page is found, refcount of it is incremented. Callers should handle 2610 * these refcount. 2611 */ 2612 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff, 2613 struct page **pagep, swp_entry_t *ent) 2614 { 2615 swp_entry_t entry = { .val = 0 }, *ptr; 2616 struct page *page = NULL; 2617 struct shmem_inode_info *info = SHMEM_I(inode); 2618 2619 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 2620 goto out; 2621 2622 spin_lock(&info->lock); 2623 ptr = shmem_swp_entry(info, pgoff, NULL); 2624 #ifdef CONFIG_SWAP 2625 if (ptr && ptr->val) { 2626 entry.val = ptr->val; 2627 page = find_get_page(&swapper_space, entry.val); 2628 } else 2629 #endif 2630 page = find_get_page(inode->i_mapping, pgoff); 2631 if (ptr) 2632 shmem_swp_unmap(ptr); 2633 spin_unlock(&info->lock); 2634 out: 2635 *pagep = page; 2636 *ent = entry; 2637 } 2638 #endif 2639 2640 #else /* !CONFIG_SHMEM */ 2641 2642 /* 2643 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2644 * 2645 * This is intended for small system where the benefits of the full 2646 * shmem code (swap-backed and resource-limited) are outweighed by 2647 * their complexity. On systems without swap this code should be 2648 * effectively equivalent, but much lighter weight. 2649 */ 2650 2651 #include <linux/ramfs.h> 2652 2653 static struct file_system_type tmpfs_fs_type = { 2654 .name = "tmpfs", 2655 .mount = ramfs_mount, 2656 .kill_sb = kill_litter_super, 2657 }; 2658 2659 int __init init_tmpfs(void) 2660 { 2661 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0); 2662 2663 shm_mnt = kern_mount(&tmpfs_fs_type); 2664 BUG_ON(IS_ERR(shm_mnt)); 2665 2666 return 0; 2667 } 2668 2669 int shmem_unuse(swp_entry_t entry, struct page *page) 2670 { 2671 return 0; 2672 } 2673 2674 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2675 { 2676 return 0; 2677 } 2678 2679 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 2680 /** 2681 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file 2682 * @inode: the inode to be searched 2683 * @pgoff: the offset to be searched 2684 * @pagep: the pointer for the found page to be stored 2685 * @ent: the pointer for the found swap entry to be stored 2686 * 2687 * If a page is found, refcount of it is incremented. Callers should handle 2688 * these refcount. 2689 */ 2690 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff, 2691 struct page **pagep, swp_entry_t *ent) 2692 { 2693 struct page *page = NULL; 2694 2695 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 2696 goto out; 2697 page = find_get_page(inode->i_mapping, pgoff); 2698 out: 2699 *pagep = page; 2700 *ent = (swp_entry_t){ .val = 0 }; 2701 } 2702 #endif 2703 2704 #define shmem_vm_ops generic_file_vm_ops 2705 #define shmem_file_operations ramfs_file_operations 2706 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2707 #define shmem_acct_size(flags, size) 0 2708 #define shmem_unacct_size(flags, size) do {} while (0) 2709 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE 2710 2711 #endif /* CONFIG_SHMEM */ 2712 2713 /* common code */ 2714 2715 /** 2716 * shmem_file_setup - get an unlinked file living in tmpfs 2717 * @name: name for dentry (to be seen in /proc/<pid>/maps 2718 * @size: size to be set for the file 2719 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2720 */ 2721 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2722 { 2723 int error; 2724 struct file *file; 2725 struct inode *inode; 2726 struct path path; 2727 struct dentry *root; 2728 struct qstr this; 2729 2730 if (IS_ERR(shm_mnt)) 2731 return (void *)shm_mnt; 2732 2733 if (size < 0 || size > SHMEM_MAX_BYTES) 2734 return ERR_PTR(-EINVAL); 2735 2736 if (shmem_acct_size(flags, size)) 2737 return ERR_PTR(-ENOMEM); 2738 2739 error = -ENOMEM; 2740 this.name = name; 2741 this.len = strlen(name); 2742 this.hash = 0; /* will go */ 2743 root = shm_mnt->mnt_root; 2744 path.dentry = d_alloc(root, &this); 2745 if (!path.dentry) 2746 goto put_memory; 2747 path.mnt = mntget(shm_mnt); 2748 2749 error = -ENOSPC; 2750 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2751 if (!inode) 2752 goto put_dentry; 2753 2754 d_instantiate(path.dentry, inode); 2755 inode->i_size = size; 2756 inode->i_nlink = 0; /* It is unlinked */ 2757 #ifndef CONFIG_MMU 2758 error = ramfs_nommu_expand_for_mapping(inode, size); 2759 if (error) 2760 goto put_dentry; 2761 #endif 2762 2763 error = -ENFILE; 2764 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2765 &shmem_file_operations); 2766 if (!file) 2767 goto put_dentry; 2768 2769 return file; 2770 2771 put_dentry: 2772 path_put(&path); 2773 put_memory: 2774 shmem_unacct_size(flags, size); 2775 return ERR_PTR(error); 2776 } 2777 EXPORT_SYMBOL_GPL(shmem_file_setup); 2778 2779 /** 2780 * shmem_zero_setup - setup a shared anonymous mapping 2781 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2782 */ 2783 int shmem_zero_setup(struct vm_area_struct *vma) 2784 { 2785 struct file *file; 2786 loff_t size = vma->vm_end - vma->vm_start; 2787 2788 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2789 if (IS_ERR(file)) 2790 return PTR_ERR(file); 2791 2792 if (vma->vm_file) 2793 fput(vma->vm_file); 2794 vma->vm_file = file; 2795 vma->vm_ops = &shmem_vm_ops; 2796 vma->vm_flags |= VM_CAN_NONLINEAR; 2797 return 0; 2798 } 2799