1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 struct shmem_options { 111 unsigned long long blocks; 112 unsigned long long inodes; 113 struct mempolicy *mpol; 114 kuid_t uid; 115 kgid_t gid; 116 umode_t mode; 117 bool full_inums; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 #define SHMEM_SEEN_INUMS 8 124 }; 125 126 #ifdef CONFIG_TMPFS 127 static unsigned long shmem_default_max_blocks(void) 128 { 129 return totalram_pages() / 2; 130 } 131 132 static unsigned long shmem_default_max_inodes(void) 133 { 134 unsigned long nr_pages = totalram_pages(); 135 136 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 137 } 138 #endif 139 140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 141 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 142 struct shmem_inode_info *info, pgoff_t index); 143 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 vm_fault_t *fault_type); 147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp, 149 gfp_t gfp, struct vm_area_struct *vma, 150 struct vm_fault *vmf, vm_fault_t *fault_type); 151 152 int shmem_getpage(struct inode *inode, pgoff_t index, 153 struct page **pagep, enum sgp_type sgp) 154 { 155 return shmem_getpage_gfp(inode, index, pagep, sgp, 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 157 } 158 159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 160 { 161 return sb->s_fs_info; 162 } 163 164 /* 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 166 * for shared memory and for shared anonymous (/dev/zero) mappings 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 168 * consistent with the pre-accounting of private mappings ... 169 */ 170 static inline int shmem_acct_size(unsigned long flags, loff_t size) 171 { 172 return (flags & VM_NORESERVE) ? 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 174 } 175 176 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 177 { 178 if (!(flags & VM_NORESERVE)) 179 vm_unacct_memory(VM_ACCT(size)); 180 } 181 182 static inline int shmem_reacct_size(unsigned long flags, 183 loff_t oldsize, loff_t newsize) 184 { 185 if (!(flags & VM_NORESERVE)) { 186 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 187 return security_vm_enough_memory_mm(current->mm, 188 VM_ACCT(newsize) - VM_ACCT(oldsize)); 189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 191 } 192 return 0; 193 } 194 195 /* 196 * ... whereas tmpfs objects are accounted incrementally as 197 * pages are allocated, in order to allow large sparse files. 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 200 */ 201 static inline int shmem_acct_block(unsigned long flags, long pages) 202 { 203 if (!(flags & VM_NORESERVE)) 204 return 0; 205 206 return security_vm_enough_memory_mm(current->mm, 207 pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 217 { 218 struct shmem_inode_info *info = SHMEM_I(inode); 219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 220 221 if (shmem_acct_block(info->flags, pages)) 222 return false; 223 224 if (sbinfo->max_blocks) { 225 if (percpu_counter_compare(&sbinfo->used_blocks, 226 sbinfo->max_blocks - pages) > 0) 227 goto unacct; 228 percpu_counter_add(&sbinfo->used_blocks, pages); 229 } 230 231 return true; 232 233 unacct: 234 shmem_unacct_blocks(info->flags, pages); 235 return false; 236 } 237 238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 239 { 240 struct shmem_inode_info *info = SHMEM_I(inode); 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 243 if (sbinfo->max_blocks) 244 percpu_counter_sub(&sbinfo->used_blocks, pages); 245 shmem_unacct_blocks(info->flags, pages); 246 } 247 248 static const struct super_operations shmem_ops; 249 static const struct address_space_operations shmem_aops; 250 static const struct file_operations shmem_file_operations; 251 static const struct inode_operations shmem_inode_operations; 252 static const struct inode_operations shmem_dir_inode_operations; 253 static const struct inode_operations shmem_special_inode_operations; 254 static const struct vm_operations_struct shmem_vm_ops; 255 static struct file_system_type shmem_fs_type; 256 257 bool vma_is_shmem(struct vm_area_struct *vma) 258 { 259 return vma->vm_ops == &shmem_vm_ops; 260 } 261 262 static LIST_HEAD(shmem_swaplist); 263 static DEFINE_MUTEX(shmem_swaplist_mutex); 264 265 /* 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 267 * produces a novel ino for the newly allocated inode. 268 * 269 * It may also be called when making a hard link to permit the space needed by 270 * each dentry. However, in that case, no new inode number is needed since that 271 * internally draws from another pool of inode numbers (currently global 272 * get_next_ino()). This case is indicated by passing NULL as inop. 273 */ 274 #define SHMEM_INO_BATCH 1024 275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 276 { 277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 278 ino_t ino; 279 280 if (!(sb->s_flags & SB_KERNMOUNT)) { 281 spin_lock(&sbinfo->stat_lock); 282 if (!sbinfo->free_inodes) { 283 spin_unlock(&sbinfo->stat_lock); 284 return -ENOSPC; 285 } 286 sbinfo->free_inodes--; 287 if (inop) { 288 ino = sbinfo->next_ino++; 289 if (unlikely(is_zero_ino(ino))) 290 ino = sbinfo->next_ino++; 291 if (unlikely(!sbinfo->full_inums && 292 ino > UINT_MAX)) { 293 /* 294 * Emulate get_next_ino uint wraparound for 295 * compatibility 296 */ 297 if (IS_ENABLED(CONFIG_64BIT)) 298 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 299 __func__, MINOR(sb->s_dev)); 300 sbinfo->next_ino = 1; 301 ino = sbinfo->next_ino++; 302 } 303 *inop = ino; 304 } 305 spin_unlock(&sbinfo->stat_lock); 306 } else if (inop) { 307 /* 308 * __shmem_file_setup, one of our callers, is lock-free: it 309 * doesn't hold stat_lock in shmem_reserve_inode since 310 * max_inodes is always 0, and is called from potentially 311 * unknown contexts. As such, use a per-cpu batched allocator 312 * which doesn't require the per-sb stat_lock unless we are at 313 * the batch boundary. 314 * 315 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 316 * shmem mounts are not exposed to userspace, so we don't need 317 * to worry about things like glibc compatibility. 318 */ 319 ino_t *next_ino; 320 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 321 ino = *next_ino; 322 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 323 spin_lock(&sbinfo->stat_lock); 324 ino = sbinfo->next_ino; 325 sbinfo->next_ino += SHMEM_INO_BATCH; 326 spin_unlock(&sbinfo->stat_lock); 327 if (unlikely(is_zero_ino(ino))) 328 ino++; 329 } 330 *inop = ino; 331 *next_ino = ++ino; 332 put_cpu(); 333 } 334 335 return 0; 336 } 337 338 static void shmem_free_inode(struct super_block *sb) 339 { 340 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 341 if (sbinfo->max_inodes) { 342 spin_lock(&sbinfo->stat_lock); 343 sbinfo->free_inodes++; 344 spin_unlock(&sbinfo->stat_lock); 345 } 346 } 347 348 /** 349 * shmem_recalc_inode - recalculate the block usage of an inode 350 * @inode: inode to recalc 351 * 352 * We have to calculate the free blocks since the mm can drop 353 * undirtied hole pages behind our back. 354 * 355 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 356 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 357 * 358 * It has to be called with the spinlock held. 359 */ 360 static void shmem_recalc_inode(struct inode *inode) 361 { 362 struct shmem_inode_info *info = SHMEM_I(inode); 363 long freed; 364 365 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 366 if (freed > 0) { 367 info->alloced -= freed; 368 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 369 shmem_inode_unacct_blocks(inode, freed); 370 } 371 } 372 373 bool shmem_charge(struct inode *inode, long pages) 374 { 375 struct shmem_inode_info *info = SHMEM_I(inode); 376 unsigned long flags; 377 378 if (!shmem_inode_acct_block(inode, pages)) 379 return false; 380 381 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 382 inode->i_mapping->nrpages += pages; 383 384 spin_lock_irqsave(&info->lock, flags); 385 info->alloced += pages; 386 inode->i_blocks += pages * BLOCKS_PER_PAGE; 387 shmem_recalc_inode(inode); 388 spin_unlock_irqrestore(&info->lock, flags); 389 390 return true; 391 } 392 393 void shmem_uncharge(struct inode *inode, long pages) 394 { 395 struct shmem_inode_info *info = SHMEM_I(inode); 396 unsigned long flags; 397 398 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 399 400 spin_lock_irqsave(&info->lock, flags); 401 info->alloced -= pages; 402 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 403 shmem_recalc_inode(inode); 404 spin_unlock_irqrestore(&info->lock, flags); 405 406 shmem_inode_unacct_blocks(inode, pages); 407 } 408 409 /* 410 * Replace item expected in xarray by a new item, while holding xa_lock. 411 */ 412 static int shmem_replace_entry(struct address_space *mapping, 413 pgoff_t index, void *expected, void *replacement) 414 { 415 XA_STATE(xas, &mapping->i_pages, index); 416 void *item; 417 418 VM_BUG_ON(!expected); 419 VM_BUG_ON(!replacement); 420 item = xas_load(&xas); 421 if (item != expected) 422 return -ENOENT; 423 xas_store(&xas, replacement); 424 return 0; 425 } 426 427 /* 428 * Sometimes, before we decide whether to proceed or to fail, we must check 429 * that an entry was not already brought back from swap by a racing thread. 430 * 431 * Checking page is not enough: by the time a SwapCache page is locked, it 432 * might be reused, and again be SwapCache, using the same swap as before. 433 */ 434 static bool shmem_confirm_swap(struct address_space *mapping, 435 pgoff_t index, swp_entry_t swap) 436 { 437 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 438 } 439 440 /* 441 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 442 * 443 * SHMEM_HUGE_NEVER: 444 * disables huge pages for the mount; 445 * SHMEM_HUGE_ALWAYS: 446 * enables huge pages for the mount; 447 * SHMEM_HUGE_WITHIN_SIZE: 448 * only allocate huge pages if the page will be fully within i_size, 449 * also respect fadvise()/madvise() hints; 450 * SHMEM_HUGE_ADVISE: 451 * only allocate huge pages if requested with fadvise()/madvise(); 452 */ 453 454 #define SHMEM_HUGE_NEVER 0 455 #define SHMEM_HUGE_ALWAYS 1 456 #define SHMEM_HUGE_WITHIN_SIZE 2 457 #define SHMEM_HUGE_ADVISE 3 458 459 /* 460 * Special values. 461 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 462 * 463 * SHMEM_HUGE_DENY: 464 * disables huge on shm_mnt and all mounts, for emergency use; 465 * SHMEM_HUGE_FORCE: 466 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 467 * 468 */ 469 #define SHMEM_HUGE_DENY (-1) 470 #define SHMEM_HUGE_FORCE (-2) 471 472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 473 /* ifdef here to avoid bloating shmem.o when not necessary */ 474 475 static int shmem_huge __read_mostly; 476 477 #if defined(CONFIG_SYSFS) 478 static int shmem_parse_huge(const char *str) 479 { 480 if (!strcmp(str, "never")) 481 return SHMEM_HUGE_NEVER; 482 if (!strcmp(str, "always")) 483 return SHMEM_HUGE_ALWAYS; 484 if (!strcmp(str, "within_size")) 485 return SHMEM_HUGE_WITHIN_SIZE; 486 if (!strcmp(str, "advise")) 487 return SHMEM_HUGE_ADVISE; 488 if (!strcmp(str, "deny")) 489 return SHMEM_HUGE_DENY; 490 if (!strcmp(str, "force")) 491 return SHMEM_HUGE_FORCE; 492 return -EINVAL; 493 } 494 #endif 495 496 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 497 static const char *shmem_format_huge(int huge) 498 { 499 switch (huge) { 500 case SHMEM_HUGE_NEVER: 501 return "never"; 502 case SHMEM_HUGE_ALWAYS: 503 return "always"; 504 case SHMEM_HUGE_WITHIN_SIZE: 505 return "within_size"; 506 case SHMEM_HUGE_ADVISE: 507 return "advise"; 508 case SHMEM_HUGE_DENY: 509 return "deny"; 510 case SHMEM_HUGE_FORCE: 511 return "force"; 512 default: 513 VM_BUG_ON(1); 514 return "bad_val"; 515 } 516 } 517 #endif 518 519 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 520 struct shrink_control *sc, unsigned long nr_to_split) 521 { 522 LIST_HEAD(list), *pos, *next; 523 LIST_HEAD(to_remove); 524 struct inode *inode; 525 struct shmem_inode_info *info; 526 struct page *page; 527 unsigned long batch = sc ? sc->nr_to_scan : 128; 528 int removed = 0, split = 0; 529 530 if (list_empty(&sbinfo->shrinklist)) 531 return SHRINK_STOP; 532 533 spin_lock(&sbinfo->shrinklist_lock); 534 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 535 info = list_entry(pos, struct shmem_inode_info, shrinklist); 536 537 /* pin the inode */ 538 inode = igrab(&info->vfs_inode); 539 540 /* inode is about to be evicted */ 541 if (!inode) { 542 list_del_init(&info->shrinklist); 543 removed++; 544 goto next; 545 } 546 547 /* Check if there's anything to gain */ 548 if (round_up(inode->i_size, PAGE_SIZE) == 549 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 550 list_move(&info->shrinklist, &to_remove); 551 removed++; 552 goto next; 553 } 554 555 list_move(&info->shrinklist, &list); 556 next: 557 if (!--batch) 558 break; 559 } 560 spin_unlock(&sbinfo->shrinklist_lock); 561 562 list_for_each_safe(pos, next, &to_remove) { 563 info = list_entry(pos, struct shmem_inode_info, shrinklist); 564 inode = &info->vfs_inode; 565 list_del_init(&info->shrinklist); 566 iput(inode); 567 } 568 569 list_for_each_safe(pos, next, &list) { 570 int ret; 571 572 info = list_entry(pos, struct shmem_inode_info, shrinklist); 573 inode = &info->vfs_inode; 574 575 if (nr_to_split && split >= nr_to_split) 576 goto leave; 577 578 page = find_get_page(inode->i_mapping, 579 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 580 if (!page) 581 goto drop; 582 583 /* No huge page at the end of the file: nothing to split */ 584 if (!PageTransHuge(page)) { 585 put_page(page); 586 goto drop; 587 } 588 589 /* 590 * Leave the inode on the list if we failed to lock 591 * the page at this time. 592 * 593 * Waiting for the lock may lead to deadlock in the 594 * reclaim path. 595 */ 596 if (!trylock_page(page)) { 597 put_page(page); 598 goto leave; 599 } 600 601 ret = split_huge_page(page); 602 unlock_page(page); 603 put_page(page); 604 605 /* If split failed leave the inode on the list */ 606 if (ret) 607 goto leave; 608 609 split++; 610 drop: 611 list_del_init(&info->shrinklist); 612 removed++; 613 leave: 614 iput(inode); 615 } 616 617 spin_lock(&sbinfo->shrinklist_lock); 618 list_splice_tail(&list, &sbinfo->shrinklist); 619 sbinfo->shrinklist_len -= removed; 620 spin_unlock(&sbinfo->shrinklist_lock); 621 622 return split; 623 } 624 625 static long shmem_unused_huge_scan(struct super_block *sb, 626 struct shrink_control *sc) 627 { 628 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 629 630 if (!READ_ONCE(sbinfo->shrinklist_len)) 631 return SHRINK_STOP; 632 633 return shmem_unused_huge_shrink(sbinfo, sc, 0); 634 } 635 636 static long shmem_unused_huge_count(struct super_block *sb, 637 struct shrink_control *sc) 638 { 639 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 640 return READ_ONCE(sbinfo->shrinklist_len); 641 } 642 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 643 644 #define shmem_huge SHMEM_HUGE_DENY 645 646 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 647 struct shrink_control *sc, unsigned long nr_to_split) 648 { 649 return 0; 650 } 651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 652 653 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 654 { 655 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 656 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 657 shmem_huge != SHMEM_HUGE_DENY) 658 return true; 659 return false; 660 } 661 662 /* 663 * Like add_to_page_cache_locked, but error if expected item has gone. 664 */ 665 static int shmem_add_to_page_cache(struct page *page, 666 struct address_space *mapping, 667 pgoff_t index, void *expected, gfp_t gfp, 668 struct mm_struct *charge_mm) 669 { 670 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 671 unsigned long i = 0; 672 unsigned long nr = compound_nr(page); 673 int error; 674 675 VM_BUG_ON_PAGE(PageTail(page), page); 676 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 677 VM_BUG_ON_PAGE(!PageLocked(page), page); 678 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 679 VM_BUG_ON(expected && PageTransHuge(page)); 680 681 page_ref_add(page, nr); 682 page->mapping = mapping; 683 page->index = index; 684 685 if (!PageSwapCache(page)) { 686 error = mem_cgroup_charge(page, charge_mm, gfp); 687 if (error) { 688 if (PageTransHuge(page)) { 689 count_vm_event(THP_FILE_FALLBACK); 690 count_vm_event(THP_FILE_FALLBACK_CHARGE); 691 } 692 goto error; 693 } 694 } 695 cgroup_throttle_swaprate(page, gfp); 696 697 do { 698 void *entry; 699 xas_lock_irq(&xas); 700 entry = xas_find_conflict(&xas); 701 if (entry != expected) 702 xas_set_err(&xas, -EEXIST); 703 xas_create_range(&xas); 704 if (xas_error(&xas)) 705 goto unlock; 706 next: 707 xas_store(&xas, page); 708 if (++i < nr) { 709 xas_next(&xas); 710 goto next; 711 } 712 if (PageTransHuge(page)) { 713 count_vm_event(THP_FILE_ALLOC); 714 __inc_node_page_state(page, NR_SHMEM_THPS); 715 } 716 mapping->nrpages += nr; 717 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 718 __mod_lruvec_page_state(page, NR_SHMEM, nr); 719 unlock: 720 xas_unlock_irq(&xas); 721 } while (xas_nomem(&xas, gfp)); 722 723 if (xas_error(&xas)) { 724 error = xas_error(&xas); 725 goto error; 726 } 727 728 return 0; 729 error: 730 page->mapping = NULL; 731 page_ref_sub(page, nr); 732 return error; 733 } 734 735 /* 736 * Like delete_from_page_cache, but substitutes swap for page. 737 */ 738 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 739 { 740 struct address_space *mapping = page->mapping; 741 int error; 742 743 VM_BUG_ON_PAGE(PageCompound(page), page); 744 745 xa_lock_irq(&mapping->i_pages); 746 error = shmem_replace_entry(mapping, page->index, page, radswap); 747 page->mapping = NULL; 748 mapping->nrpages--; 749 __dec_lruvec_page_state(page, NR_FILE_PAGES); 750 __dec_lruvec_page_state(page, NR_SHMEM); 751 xa_unlock_irq(&mapping->i_pages); 752 put_page(page); 753 BUG_ON(error); 754 } 755 756 /* 757 * Remove swap entry from page cache, free the swap and its page cache. 758 */ 759 static int shmem_free_swap(struct address_space *mapping, 760 pgoff_t index, void *radswap) 761 { 762 void *old; 763 764 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 765 if (old != radswap) 766 return -ENOENT; 767 free_swap_and_cache(radix_to_swp_entry(radswap)); 768 return 0; 769 } 770 771 /* 772 * Determine (in bytes) how many of the shmem object's pages mapped by the 773 * given offsets are swapped out. 774 * 775 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 776 * as long as the inode doesn't go away and racy results are not a problem. 777 */ 778 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 779 pgoff_t start, pgoff_t end) 780 { 781 XA_STATE(xas, &mapping->i_pages, start); 782 struct page *page; 783 unsigned long swapped = 0; 784 785 rcu_read_lock(); 786 xas_for_each(&xas, page, end - 1) { 787 if (xas_retry(&xas, page)) 788 continue; 789 if (xa_is_value(page)) 790 swapped++; 791 792 if (need_resched()) { 793 xas_pause(&xas); 794 cond_resched_rcu(); 795 } 796 } 797 798 rcu_read_unlock(); 799 800 return swapped << PAGE_SHIFT; 801 } 802 803 /* 804 * Determine (in bytes) how many of the shmem object's pages mapped by the 805 * given vma is swapped out. 806 * 807 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 808 * as long as the inode doesn't go away and racy results are not a problem. 809 */ 810 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 811 { 812 struct inode *inode = file_inode(vma->vm_file); 813 struct shmem_inode_info *info = SHMEM_I(inode); 814 struct address_space *mapping = inode->i_mapping; 815 unsigned long swapped; 816 817 /* Be careful as we don't hold info->lock */ 818 swapped = READ_ONCE(info->swapped); 819 820 /* 821 * The easier cases are when the shmem object has nothing in swap, or 822 * the vma maps it whole. Then we can simply use the stats that we 823 * already track. 824 */ 825 if (!swapped) 826 return 0; 827 828 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 829 return swapped << PAGE_SHIFT; 830 831 /* Here comes the more involved part */ 832 return shmem_partial_swap_usage(mapping, 833 linear_page_index(vma, vma->vm_start), 834 linear_page_index(vma, vma->vm_end)); 835 } 836 837 /* 838 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 839 */ 840 void shmem_unlock_mapping(struct address_space *mapping) 841 { 842 struct pagevec pvec; 843 pgoff_t indices[PAGEVEC_SIZE]; 844 pgoff_t index = 0; 845 846 pagevec_init(&pvec); 847 /* 848 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 849 */ 850 while (!mapping_unevictable(mapping)) { 851 /* 852 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 853 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 854 */ 855 pvec.nr = find_get_entries(mapping, index, 856 PAGEVEC_SIZE, pvec.pages, indices); 857 if (!pvec.nr) 858 break; 859 index = indices[pvec.nr - 1] + 1; 860 pagevec_remove_exceptionals(&pvec); 861 check_move_unevictable_pages(&pvec); 862 pagevec_release(&pvec); 863 cond_resched(); 864 } 865 } 866 867 /* 868 * Check whether a hole-punch or truncation needs to split a huge page, 869 * returning true if no split was required, or the split has been successful. 870 * 871 * Eviction (or truncation to 0 size) should never need to split a huge page; 872 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 873 * head, and then succeeded to trylock on tail. 874 * 875 * A split can only succeed when there are no additional references on the 876 * huge page: so the split below relies upon find_get_entries() having stopped 877 * when it found a subpage of the huge page, without getting further references. 878 */ 879 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 880 { 881 if (!PageTransCompound(page)) 882 return true; 883 884 /* Just proceed to delete a huge page wholly within the range punched */ 885 if (PageHead(page) && 886 page->index >= start && page->index + HPAGE_PMD_NR <= end) 887 return true; 888 889 /* Try to split huge page, so we can truly punch the hole or truncate */ 890 return split_huge_page(page) >= 0; 891 } 892 893 /* 894 * Remove range of pages and swap entries from page cache, and free them. 895 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 896 */ 897 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 898 bool unfalloc) 899 { 900 struct address_space *mapping = inode->i_mapping; 901 struct shmem_inode_info *info = SHMEM_I(inode); 902 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 903 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 904 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 905 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 906 struct pagevec pvec; 907 pgoff_t indices[PAGEVEC_SIZE]; 908 long nr_swaps_freed = 0; 909 pgoff_t index; 910 int i; 911 912 if (lend == -1) 913 end = -1; /* unsigned, so actually very big */ 914 915 pagevec_init(&pvec); 916 index = start; 917 while (index < end) { 918 pvec.nr = find_get_entries(mapping, index, 919 min(end - index, (pgoff_t)PAGEVEC_SIZE), 920 pvec.pages, indices); 921 if (!pvec.nr) 922 break; 923 for (i = 0; i < pagevec_count(&pvec); i++) { 924 struct page *page = pvec.pages[i]; 925 926 index = indices[i]; 927 if (index >= end) 928 break; 929 930 if (xa_is_value(page)) { 931 if (unfalloc) 932 continue; 933 nr_swaps_freed += !shmem_free_swap(mapping, 934 index, page); 935 continue; 936 } 937 938 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 939 940 if (!trylock_page(page)) 941 continue; 942 943 if ((!unfalloc || !PageUptodate(page)) && 944 page_mapping(page) == mapping) { 945 VM_BUG_ON_PAGE(PageWriteback(page), page); 946 if (shmem_punch_compound(page, start, end)) 947 truncate_inode_page(mapping, page); 948 } 949 unlock_page(page); 950 } 951 pagevec_remove_exceptionals(&pvec); 952 pagevec_release(&pvec); 953 cond_resched(); 954 index++; 955 } 956 957 if (partial_start) { 958 struct page *page = NULL; 959 shmem_getpage(inode, start - 1, &page, SGP_READ); 960 if (page) { 961 unsigned int top = PAGE_SIZE; 962 if (start > end) { 963 top = partial_end; 964 partial_end = 0; 965 } 966 zero_user_segment(page, partial_start, top); 967 set_page_dirty(page); 968 unlock_page(page); 969 put_page(page); 970 } 971 } 972 if (partial_end) { 973 struct page *page = NULL; 974 shmem_getpage(inode, end, &page, SGP_READ); 975 if (page) { 976 zero_user_segment(page, 0, partial_end); 977 set_page_dirty(page); 978 unlock_page(page); 979 put_page(page); 980 } 981 } 982 if (start >= end) 983 return; 984 985 index = start; 986 while (index < end) { 987 cond_resched(); 988 989 pvec.nr = find_get_entries(mapping, index, 990 min(end - index, (pgoff_t)PAGEVEC_SIZE), 991 pvec.pages, indices); 992 if (!pvec.nr) { 993 /* If all gone or hole-punch or unfalloc, we're done */ 994 if (index == start || end != -1) 995 break; 996 /* But if truncating, restart to make sure all gone */ 997 index = start; 998 continue; 999 } 1000 for (i = 0; i < pagevec_count(&pvec); i++) { 1001 struct page *page = pvec.pages[i]; 1002 1003 index = indices[i]; 1004 if (index >= end) 1005 break; 1006 1007 if (xa_is_value(page)) { 1008 if (unfalloc) 1009 continue; 1010 if (shmem_free_swap(mapping, index, page)) { 1011 /* Swap was replaced by page: retry */ 1012 index--; 1013 break; 1014 } 1015 nr_swaps_freed++; 1016 continue; 1017 } 1018 1019 lock_page(page); 1020 1021 if (!unfalloc || !PageUptodate(page)) { 1022 if (page_mapping(page) != mapping) { 1023 /* Page was replaced by swap: retry */ 1024 unlock_page(page); 1025 index--; 1026 break; 1027 } 1028 VM_BUG_ON_PAGE(PageWriteback(page), page); 1029 if (shmem_punch_compound(page, start, end)) 1030 truncate_inode_page(mapping, page); 1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1032 /* Wipe the page and don't get stuck */ 1033 clear_highpage(page); 1034 flush_dcache_page(page); 1035 set_page_dirty(page); 1036 if (index < 1037 round_up(start, HPAGE_PMD_NR)) 1038 start = index + 1; 1039 } 1040 } 1041 unlock_page(page); 1042 } 1043 pagevec_remove_exceptionals(&pvec); 1044 pagevec_release(&pvec); 1045 index++; 1046 } 1047 1048 spin_lock_irq(&info->lock); 1049 info->swapped -= nr_swaps_freed; 1050 shmem_recalc_inode(inode); 1051 spin_unlock_irq(&info->lock); 1052 } 1053 1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1055 { 1056 shmem_undo_range(inode, lstart, lend, false); 1057 inode->i_ctime = inode->i_mtime = current_time(inode); 1058 } 1059 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1060 1061 static int shmem_getattr(const struct path *path, struct kstat *stat, 1062 u32 request_mask, unsigned int query_flags) 1063 { 1064 struct inode *inode = path->dentry->d_inode; 1065 struct shmem_inode_info *info = SHMEM_I(inode); 1066 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1067 1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1069 spin_lock_irq(&info->lock); 1070 shmem_recalc_inode(inode); 1071 spin_unlock_irq(&info->lock); 1072 } 1073 generic_fillattr(inode, stat); 1074 1075 if (is_huge_enabled(sb_info)) 1076 stat->blksize = HPAGE_PMD_SIZE; 1077 1078 return 0; 1079 } 1080 1081 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1082 { 1083 struct inode *inode = d_inode(dentry); 1084 struct shmem_inode_info *info = SHMEM_I(inode); 1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1086 int error; 1087 1088 error = setattr_prepare(dentry, attr); 1089 if (error) 1090 return error; 1091 1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1093 loff_t oldsize = inode->i_size; 1094 loff_t newsize = attr->ia_size; 1095 1096 /* protected by i_mutex */ 1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1098 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1099 return -EPERM; 1100 1101 if (newsize != oldsize) { 1102 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1103 oldsize, newsize); 1104 if (error) 1105 return error; 1106 i_size_write(inode, newsize); 1107 inode->i_ctime = inode->i_mtime = current_time(inode); 1108 } 1109 if (newsize <= oldsize) { 1110 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1111 if (oldsize > holebegin) 1112 unmap_mapping_range(inode->i_mapping, 1113 holebegin, 0, 1); 1114 if (info->alloced) 1115 shmem_truncate_range(inode, 1116 newsize, (loff_t)-1); 1117 /* unmap again to remove racily COWed private pages */ 1118 if (oldsize > holebegin) 1119 unmap_mapping_range(inode->i_mapping, 1120 holebegin, 0, 1); 1121 1122 /* 1123 * Part of the huge page can be beyond i_size: subject 1124 * to shrink under memory pressure. 1125 */ 1126 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1127 spin_lock(&sbinfo->shrinklist_lock); 1128 /* 1129 * _careful to defend against unlocked access to 1130 * ->shrink_list in shmem_unused_huge_shrink() 1131 */ 1132 if (list_empty_careful(&info->shrinklist)) { 1133 list_add_tail(&info->shrinklist, 1134 &sbinfo->shrinklist); 1135 sbinfo->shrinklist_len++; 1136 } 1137 spin_unlock(&sbinfo->shrinklist_lock); 1138 } 1139 } 1140 } 1141 1142 setattr_copy(inode, attr); 1143 if (attr->ia_valid & ATTR_MODE) 1144 error = posix_acl_chmod(inode, inode->i_mode); 1145 return error; 1146 } 1147 1148 static void shmem_evict_inode(struct inode *inode) 1149 { 1150 struct shmem_inode_info *info = SHMEM_I(inode); 1151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1152 1153 if (inode->i_mapping->a_ops == &shmem_aops) { 1154 shmem_unacct_size(info->flags, inode->i_size); 1155 inode->i_size = 0; 1156 shmem_truncate_range(inode, 0, (loff_t)-1); 1157 if (!list_empty(&info->shrinklist)) { 1158 spin_lock(&sbinfo->shrinklist_lock); 1159 if (!list_empty(&info->shrinklist)) { 1160 list_del_init(&info->shrinklist); 1161 sbinfo->shrinklist_len--; 1162 } 1163 spin_unlock(&sbinfo->shrinklist_lock); 1164 } 1165 while (!list_empty(&info->swaplist)) { 1166 /* Wait while shmem_unuse() is scanning this inode... */ 1167 wait_var_event(&info->stop_eviction, 1168 !atomic_read(&info->stop_eviction)); 1169 mutex_lock(&shmem_swaplist_mutex); 1170 /* ...but beware of the race if we peeked too early */ 1171 if (!atomic_read(&info->stop_eviction)) 1172 list_del_init(&info->swaplist); 1173 mutex_unlock(&shmem_swaplist_mutex); 1174 } 1175 } 1176 1177 simple_xattrs_free(&info->xattrs); 1178 WARN_ON(inode->i_blocks); 1179 shmem_free_inode(inode->i_sb); 1180 clear_inode(inode); 1181 } 1182 1183 extern struct swap_info_struct *swap_info[]; 1184 1185 static int shmem_find_swap_entries(struct address_space *mapping, 1186 pgoff_t start, unsigned int nr_entries, 1187 struct page **entries, pgoff_t *indices, 1188 unsigned int type, bool frontswap) 1189 { 1190 XA_STATE(xas, &mapping->i_pages, start); 1191 struct page *page; 1192 swp_entry_t entry; 1193 unsigned int ret = 0; 1194 1195 if (!nr_entries) 1196 return 0; 1197 1198 rcu_read_lock(); 1199 xas_for_each(&xas, page, ULONG_MAX) { 1200 if (xas_retry(&xas, page)) 1201 continue; 1202 1203 if (!xa_is_value(page)) 1204 continue; 1205 1206 entry = radix_to_swp_entry(page); 1207 if (swp_type(entry) != type) 1208 continue; 1209 if (frontswap && 1210 !frontswap_test(swap_info[type], swp_offset(entry))) 1211 continue; 1212 1213 indices[ret] = xas.xa_index; 1214 entries[ret] = page; 1215 1216 if (need_resched()) { 1217 xas_pause(&xas); 1218 cond_resched_rcu(); 1219 } 1220 if (++ret == nr_entries) 1221 break; 1222 } 1223 rcu_read_unlock(); 1224 1225 return ret; 1226 } 1227 1228 /* 1229 * Move the swapped pages for an inode to page cache. Returns the count 1230 * of pages swapped in, or the error in case of failure. 1231 */ 1232 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1233 pgoff_t *indices) 1234 { 1235 int i = 0; 1236 int ret = 0; 1237 int error = 0; 1238 struct address_space *mapping = inode->i_mapping; 1239 1240 for (i = 0; i < pvec.nr; i++) { 1241 struct page *page = pvec.pages[i]; 1242 1243 if (!xa_is_value(page)) 1244 continue; 1245 error = shmem_swapin_page(inode, indices[i], 1246 &page, SGP_CACHE, 1247 mapping_gfp_mask(mapping), 1248 NULL, NULL); 1249 if (error == 0) { 1250 unlock_page(page); 1251 put_page(page); 1252 ret++; 1253 } 1254 if (error == -ENOMEM) 1255 break; 1256 error = 0; 1257 } 1258 return error ? error : ret; 1259 } 1260 1261 /* 1262 * If swap found in inode, free it and move page from swapcache to filecache. 1263 */ 1264 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1265 bool frontswap, unsigned long *fs_pages_to_unuse) 1266 { 1267 struct address_space *mapping = inode->i_mapping; 1268 pgoff_t start = 0; 1269 struct pagevec pvec; 1270 pgoff_t indices[PAGEVEC_SIZE]; 1271 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1272 int ret = 0; 1273 1274 pagevec_init(&pvec); 1275 do { 1276 unsigned int nr_entries = PAGEVEC_SIZE; 1277 1278 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1279 nr_entries = *fs_pages_to_unuse; 1280 1281 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1282 pvec.pages, indices, 1283 type, frontswap); 1284 if (pvec.nr == 0) { 1285 ret = 0; 1286 break; 1287 } 1288 1289 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1290 if (ret < 0) 1291 break; 1292 1293 if (frontswap_partial) { 1294 *fs_pages_to_unuse -= ret; 1295 if (*fs_pages_to_unuse == 0) { 1296 ret = FRONTSWAP_PAGES_UNUSED; 1297 break; 1298 } 1299 } 1300 1301 start = indices[pvec.nr - 1]; 1302 } while (true); 1303 1304 return ret; 1305 } 1306 1307 /* 1308 * Read all the shared memory data that resides in the swap 1309 * device 'type' back into memory, so the swap device can be 1310 * unused. 1311 */ 1312 int shmem_unuse(unsigned int type, bool frontswap, 1313 unsigned long *fs_pages_to_unuse) 1314 { 1315 struct shmem_inode_info *info, *next; 1316 int error = 0; 1317 1318 if (list_empty(&shmem_swaplist)) 1319 return 0; 1320 1321 mutex_lock(&shmem_swaplist_mutex); 1322 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1323 if (!info->swapped) { 1324 list_del_init(&info->swaplist); 1325 continue; 1326 } 1327 /* 1328 * Drop the swaplist mutex while searching the inode for swap; 1329 * but before doing so, make sure shmem_evict_inode() will not 1330 * remove placeholder inode from swaplist, nor let it be freed 1331 * (igrab() would protect from unlink, but not from unmount). 1332 */ 1333 atomic_inc(&info->stop_eviction); 1334 mutex_unlock(&shmem_swaplist_mutex); 1335 1336 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1337 fs_pages_to_unuse); 1338 cond_resched(); 1339 1340 mutex_lock(&shmem_swaplist_mutex); 1341 next = list_next_entry(info, swaplist); 1342 if (!info->swapped) 1343 list_del_init(&info->swaplist); 1344 if (atomic_dec_and_test(&info->stop_eviction)) 1345 wake_up_var(&info->stop_eviction); 1346 if (error) 1347 break; 1348 } 1349 mutex_unlock(&shmem_swaplist_mutex); 1350 1351 return error; 1352 } 1353 1354 /* 1355 * Move the page from the page cache to the swap cache. 1356 */ 1357 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1358 { 1359 struct shmem_inode_info *info; 1360 struct address_space *mapping; 1361 struct inode *inode; 1362 swp_entry_t swap; 1363 pgoff_t index; 1364 1365 VM_BUG_ON_PAGE(PageCompound(page), page); 1366 BUG_ON(!PageLocked(page)); 1367 mapping = page->mapping; 1368 index = page->index; 1369 inode = mapping->host; 1370 info = SHMEM_I(inode); 1371 if (info->flags & VM_LOCKED) 1372 goto redirty; 1373 if (!total_swap_pages) 1374 goto redirty; 1375 1376 /* 1377 * Our capabilities prevent regular writeback or sync from ever calling 1378 * shmem_writepage; but a stacking filesystem might use ->writepage of 1379 * its underlying filesystem, in which case tmpfs should write out to 1380 * swap only in response to memory pressure, and not for the writeback 1381 * threads or sync. 1382 */ 1383 if (!wbc->for_reclaim) { 1384 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1385 goto redirty; 1386 } 1387 1388 /* 1389 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1390 * value into swapfile.c, the only way we can correctly account for a 1391 * fallocated page arriving here is now to initialize it and write it. 1392 * 1393 * That's okay for a page already fallocated earlier, but if we have 1394 * not yet completed the fallocation, then (a) we want to keep track 1395 * of this page in case we have to undo it, and (b) it may not be a 1396 * good idea to continue anyway, once we're pushing into swap. So 1397 * reactivate the page, and let shmem_fallocate() quit when too many. 1398 */ 1399 if (!PageUptodate(page)) { 1400 if (inode->i_private) { 1401 struct shmem_falloc *shmem_falloc; 1402 spin_lock(&inode->i_lock); 1403 shmem_falloc = inode->i_private; 1404 if (shmem_falloc && 1405 !shmem_falloc->waitq && 1406 index >= shmem_falloc->start && 1407 index < shmem_falloc->next) 1408 shmem_falloc->nr_unswapped++; 1409 else 1410 shmem_falloc = NULL; 1411 spin_unlock(&inode->i_lock); 1412 if (shmem_falloc) 1413 goto redirty; 1414 } 1415 clear_highpage(page); 1416 flush_dcache_page(page); 1417 SetPageUptodate(page); 1418 } 1419 1420 swap = get_swap_page(page); 1421 if (!swap.val) 1422 goto redirty; 1423 1424 /* 1425 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1426 * if it's not already there. Do it now before the page is 1427 * moved to swap cache, when its pagelock no longer protects 1428 * the inode from eviction. But don't unlock the mutex until 1429 * we've incremented swapped, because shmem_unuse_inode() will 1430 * prune a !swapped inode from the swaplist under this mutex. 1431 */ 1432 mutex_lock(&shmem_swaplist_mutex); 1433 if (list_empty(&info->swaplist)) 1434 list_add(&info->swaplist, &shmem_swaplist); 1435 1436 if (add_to_swap_cache(page, swap, 1437 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1438 NULL) == 0) { 1439 spin_lock_irq(&info->lock); 1440 shmem_recalc_inode(inode); 1441 info->swapped++; 1442 spin_unlock_irq(&info->lock); 1443 1444 swap_shmem_alloc(swap); 1445 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1446 1447 mutex_unlock(&shmem_swaplist_mutex); 1448 BUG_ON(page_mapped(page)); 1449 swap_writepage(page, wbc); 1450 return 0; 1451 } 1452 1453 mutex_unlock(&shmem_swaplist_mutex); 1454 put_swap_page(page, swap); 1455 redirty: 1456 set_page_dirty(page); 1457 if (wbc->for_reclaim) 1458 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1459 unlock_page(page); 1460 return 0; 1461 } 1462 1463 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1464 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1465 { 1466 char buffer[64]; 1467 1468 if (!mpol || mpol->mode == MPOL_DEFAULT) 1469 return; /* show nothing */ 1470 1471 mpol_to_str(buffer, sizeof(buffer), mpol); 1472 1473 seq_printf(seq, ",mpol=%s", buffer); 1474 } 1475 1476 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1477 { 1478 struct mempolicy *mpol = NULL; 1479 if (sbinfo->mpol) { 1480 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1481 mpol = sbinfo->mpol; 1482 mpol_get(mpol); 1483 spin_unlock(&sbinfo->stat_lock); 1484 } 1485 return mpol; 1486 } 1487 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1488 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1489 { 1490 } 1491 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1492 { 1493 return NULL; 1494 } 1495 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1496 #ifndef CONFIG_NUMA 1497 #define vm_policy vm_private_data 1498 #endif 1499 1500 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1501 struct shmem_inode_info *info, pgoff_t index) 1502 { 1503 /* Create a pseudo vma that just contains the policy */ 1504 vma_init(vma, NULL); 1505 /* Bias interleave by inode number to distribute better across nodes */ 1506 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1507 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1508 } 1509 1510 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1511 { 1512 /* Drop reference taken by mpol_shared_policy_lookup() */ 1513 mpol_cond_put(vma->vm_policy); 1514 } 1515 1516 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1517 struct shmem_inode_info *info, pgoff_t index) 1518 { 1519 struct vm_area_struct pvma; 1520 struct page *page; 1521 struct vm_fault vmf; 1522 1523 shmem_pseudo_vma_init(&pvma, info, index); 1524 vmf.vma = &pvma; 1525 vmf.address = 0; 1526 page = swap_cluster_readahead(swap, gfp, &vmf); 1527 shmem_pseudo_vma_destroy(&pvma); 1528 1529 return page; 1530 } 1531 1532 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1533 struct shmem_inode_info *info, pgoff_t index) 1534 { 1535 struct vm_area_struct pvma; 1536 struct address_space *mapping = info->vfs_inode.i_mapping; 1537 pgoff_t hindex; 1538 struct page *page; 1539 1540 hindex = round_down(index, HPAGE_PMD_NR); 1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1542 XA_PRESENT)) 1543 return NULL; 1544 1545 shmem_pseudo_vma_init(&pvma, info, hindex); 1546 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1547 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1548 shmem_pseudo_vma_destroy(&pvma); 1549 if (page) 1550 prep_transhuge_page(page); 1551 else 1552 count_vm_event(THP_FILE_FALLBACK); 1553 return page; 1554 } 1555 1556 static struct page *shmem_alloc_page(gfp_t gfp, 1557 struct shmem_inode_info *info, pgoff_t index) 1558 { 1559 struct vm_area_struct pvma; 1560 struct page *page; 1561 1562 shmem_pseudo_vma_init(&pvma, info, index); 1563 page = alloc_page_vma(gfp, &pvma, 0); 1564 shmem_pseudo_vma_destroy(&pvma); 1565 1566 return page; 1567 } 1568 1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1570 struct inode *inode, 1571 pgoff_t index, bool huge) 1572 { 1573 struct shmem_inode_info *info = SHMEM_I(inode); 1574 struct page *page; 1575 int nr; 1576 int err = -ENOSPC; 1577 1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1579 huge = false; 1580 nr = huge ? HPAGE_PMD_NR : 1; 1581 1582 if (!shmem_inode_acct_block(inode, nr)) 1583 goto failed; 1584 1585 if (huge) 1586 page = shmem_alloc_hugepage(gfp, info, index); 1587 else 1588 page = shmem_alloc_page(gfp, info, index); 1589 if (page) { 1590 __SetPageLocked(page); 1591 __SetPageSwapBacked(page); 1592 return page; 1593 } 1594 1595 err = -ENOMEM; 1596 shmem_inode_unacct_blocks(inode, nr); 1597 failed: 1598 return ERR_PTR(err); 1599 } 1600 1601 /* 1602 * When a page is moved from swapcache to shmem filecache (either by the 1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1605 * ignorance of the mapping it belongs to. If that mapping has special 1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1607 * we may need to copy to a suitable page before moving to filecache. 1608 * 1609 * In a future release, this may well be extended to respect cpuset and 1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1611 * but for now it is a simple matter of zone. 1612 */ 1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1614 { 1615 return page_zonenum(page) > gfp_zone(gfp); 1616 } 1617 1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1619 struct shmem_inode_info *info, pgoff_t index) 1620 { 1621 struct page *oldpage, *newpage; 1622 struct address_space *swap_mapping; 1623 swp_entry_t entry; 1624 pgoff_t swap_index; 1625 int error; 1626 1627 oldpage = *pagep; 1628 entry.val = page_private(oldpage); 1629 swap_index = swp_offset(entry); 1630 swap_mapping = page_mapping(oldpage); 1631 1632 /* 1633 * We have arrived here because our zones are constrained, so don't 1634 * limit chance of success by further cpuset and node constraints. 1635 */ 1636 gfp &= ~GFP_CONSTRAINT_MASK; 1637 newpage = shmem_alloc_page(gfp, info, index); 1638 if (!newpage) 1639 return -ENOMEM; 1640 1641 get_page(newpage); 1642 copy_highpage(newpage, oldpage); 1643 flush_dcache_page(newpage); 1644 1645 __SetPageLocked(newpage); 1646 __SetPageSwapBacked(newpage); 1647 SetPageUptodate(newpage); 1648 set_page_private(newpage, entry.val); 1649 SetPageSwapCache(newpage); 1650 1651 /* 1652 * Our caller will very soon move newpage out of swapcache, but it's 1653 * a nice clean interface for us to replace oldpage by newpage there. 1654 */ 1655 xa_lock_irq(&swap_mapping->i_pages); 1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1657 if (!error) { 1658 mem_cgroup_migrate(oldpage, newpage); 1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1661 } 1662 xa_unlock_irq(&swap_mapping->i_pages); 1663 1664 if (unlikely(error)) { 1665 /* 1666 * Is this possible? I think not, now that our callers check 1667 * both PageSwapCache and page_private after getting page lock; 1668 * but be defensive. Reverse old to newpage for clear and free. 1669 */ 1670 oldpage = newpage; 1671 } else { 1672 lru_cache_add(newpage); 1673 *pagep = newpage; 1674 } 1675 1676 ClearPageSwapCache(oldpage); 1677 set_page_private(oldpage, 0); 1678 1679 unlock_page(oldpage); 1680 put_page(oldpage); 1681 put_page(oldpage); 1682 return error; 1683 } 1684 1685 /* 1686 * Swap in the page pointed to by *pagep. 1687 * Caller has to make sure that *pagep contains a valid swapped page. 1688 * Returns 0 and the page in pagep if success. On failure, returns the 1689 * error code and NULL in *pagep. 1690 */ 1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1692 struct page **pagep, enum sgp_type sgp, 1693 gfp_t gfp, struct vm_area_struct *vma, 1694 vm_fault_t *fault_type) 1695 { 1696 struct address_space *mapping = inode->i_mapping; 1697 struct shmem_inode_info *info = SHMEM_I(inode); 1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1699 struct page *page; 1700 swp_entry_t swap; 1701 int error; 1702 1703 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1704 swap = radix_to_swp_entry(*pagep); 1705 *pagep = NULL; 1706 1707 /* Look it up and read it in.. */ 1708 page = lookup_swap_cache(swap, NULL, 0); 1709 if (!page) { 1710 /* Or update major stats only when swapin succeeds?? */ 1711 if (fault_type) { 1712 *fault_type |= VM_FAULT_MAJOR; 1713 count_vm_event(PGMAJFAULT); 1714 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1715 } 1716 /* Here we actually start the io */ 1717 page = shmem_swapin(swap, gfp, info, index); 1718 if (!page) { 1719 error = -ENOMEM; 1720 goto failed; 1721 } 1722 } 1723 1724 /* We have to do this with page locked to prevent races */ 1725 lock_page(page); 1726 if (!PageSwapCache(page) || page_private(page) != swap.val || 1727 !shmem_confirm_swap(mapping, index, swap)) { 1728 error = -EEXIST; 1729 goto unlock; 1730 } 1731 if (!PageUptodate(page)) { 1732 error = -EIO; 1733 goto failed; 1734 } 1735 wait_on_page_writeback(page); 1736 1737 if (shmem_should_replace_page(page, gfp)) { 1738 error = shmem_replace_page(&page, gfp, info, index); 1739 if (error) 1740 goto failed; 1741 } 1742 1743 error = shmem_add_to_page_cache(page, mapping, index, 1744 swp_to_radix_entry(swap), gfp, 1745 charge_mm); 1746 if (error) 1747 goto failed; 1748 1749 spin_lock_irq(&info->lock); 1750 info->swapped--; 1751 shmem_recalc_inode(inode); 1752 spin_unlock_irq(&info->lock); 1753 1754 if (sgp == SGP_WRITE) 1755 mark_page_accessed(page); 1756 1757 delete_from_swap_cache(page); 1758 set_page_dirty(page); 1759 swap_free(swap); 1760 1761 *pagep = page; 1762 return 0; 1763 failed: 1764 if (!shmem_confirm_swap(mapping, index, swap)) 1765 error = -EEXIST; 1766 unlock: 1767 if (page) { 1768 unlock_page(page); 1769 put_page(page); 1770 } 1771 1772 return error; 1773 } 1774 1775 /* 1776 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1777 * 1778 * If we allocate a new one we do not mark it dirty. That's up to the 1779 * vm. If we swap it in we mark it dirty since we also free the swap 1780 * entry since a page cannot live in both the swap and page cache. 1781 * 1782 * vmf and fault_type are only supplied by shmem_fault: 1783 * otherwise they are NULL. 1784 */ 1785 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1786 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1787 struct vm_area_struct *vma, struct vm_fault *vmf, 1788 vm_fault_t *fault_type) 1789 { 1790 struct address_space *mapping = inode->i_mapping; 1791 struct shmem_inode_info *info = SHMEM_I(inode); 1792 struct shmem_sb_info *sbinfo; 1793 struct mm_struct *charge_mm; 1794 struct page *page; 1795 enum sgp_type sgp_huge = sgp; 1796 pgoff_t hindex = index; 1797 int error; 1798 int once = 0; 1799 int alloced = 0; 1800 1801 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1802 return -EFBIG; 1803 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1804 sgp = SGP_CACHE; 1805 repeat: 1806 if (sgp <= SGP_CACHE && 1807 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1808 return -EINVAL; 1809 } 1810 1811 sbinfo = SHMEM_SB(inode->i_sb); 1812 charge_mm = vma ? vma->vm_mm : current->mm; 1813 1814 page = find_lock_entry(mapping, index); 1815 if (xa_is_value(page)) { 1816 error = shmem_swapin_page(inode, index, &page, 1817 sgp, gfp, vma, fault_type); 1818 if (error == -EEXIST) 1819 goto repeat; 1820 1821 *pagep = page; 1822 return error; 1823 } 1824 1825 if (page && sgp == SGP_WRITE) 1826 mark_page_accessed(page); 1827 1828 /* fallocated page? */ 1829 if (page && !PageUptodate(page)) { 1830 if (sgp != SGP_READ) 1831 goto clear; 1832 unlock_page(page); 1833 put_page(page); 1834 page = NULL; 1835 } 1836 if (page || sgp == SGP_READ) { 1837 *pagep = page; 1838 return 0; 1839 } 1840 1841 /* 1842 * Fast cache lookup did not find it: 1843 * bring it back from swap or allocate. 1844 */ 1845 1846 if (vma && userfaultfd_missing(vma)) { 1847 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1848 return 0; 1849 } 1850 1851 /* shmem_symlink() */ 1852 if (mapping->a_ops != &shmem_aops) 1853 goto alloc_nohuge; 1854 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1855 goto alloc_nohuge; 1856 if (shmem_huge == SHMEM_HUGE_FORCE) 1857 goto alloc_huge; 1858 switch (sbinfo->huge) { 1859 case SHMEM_HUGE_NEVER: 1860 goto alloc_nohuge; 1861 case SHMEM_HUGE_WITHIN_SIZE: { 1862 loff_t i_size; 1863 pgoff_t off; 1864 1865 off = round_up(index, HPAGE_PMD_NR); 1866 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1867 if (i_size >= HPAGE_PMD_SIZE && 1868 i_size >> PAGE_SHIFT >= off) 1869 goto alloc_huge; 1870 1871 fallthrough; 1872 } 1873 case SHMEM_HUGE_ADVISE: 1874 if (sgp_huge == SGP_HUGE) 1875 goto alloc_huge; 1876 /* TODO: implement fadvise() hints */ 1877 goto alloc_nohuge; 1878 } 1879 1880 alloc_huge: 1881 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1882 if (IS_ERR(page)) { 1883 alloc_nohuge: 1884 page = shmem_alloc_and_acct_page(gfp, inode, 1885 index, false); 1886 } 1887 if (IS_ERR(page)) { 1888 int retry = 5; 1889 1890 error = PTR_ERR(page); 1891 page = NULL; 1892 if (error != -ENOSPC) 1893 goto unlock; 1894 /* 1895 * Try to reclaim some space by splitting a huge page 1896 * beyond i_size on the filesystem. 1897 */ 1898 while (retry--) { 1899 int ret; 1900 1901 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1902 if (ret == SHRINK_STOP) 1903 break; 1904 if (ret) 1905 goto alloc_nohuge; 1906 } 1907 goto unlock; 1908 } 1909 1910 if (PageTransHuge(page)) 1911 hindex = round_down(index, HPAGE_PMD_NR); 1912 else 1913 hindex = index; 1914 1915 if (sgp == SGP_WRITE) 1916 __SetPageReferenced(page); 1917 1918 error = shmem_add_to_page_cache(page, mapping, hindex, 1919 NULL, gfp & GFP_RECLAIM_MASK, 1920 charge_mm); 1921 if (error) 1922 goto unacct; 1923 lru_cache_add(page); 1924 1925 spin_lock_irq(&info->lock); 1926 info->alloced += compound_nr(page); 1927 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1928 shmem_recalc_inode(inode); 1929 spin_unlock_irq(&info->lock); 1930 alloced = true; 1931 1932 if (PageTransHuge(page) && 1933 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1934 hindex + HPAGE_PMD_NR - 1) { 1935 /* 1936 * Part of the huge page is beyond i_size: subject 1937 * to shrink under memory pressure. 1938 */ 1939 spin_lock(&sbinfo->shrinklist_lock); 1940 /* 1941 * _careful to defend against unlocked access to 1942 * ->shrink_list in shmem_unused_huge_shrink() 1943 */ 1944 if (list_empty_careful(&info->shrinklist)) { 1945 list_add_tail(&info->shrinklist, 1946 &sbinfo->shrinklist); 1947 sbinfo->shrinklist_len++; 1948 } 1949 spin_unlock(&sbinfo->shrinklist_lock); 1950 } 1951 1952 /* 1953 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1954 */ 1955 if (sgp == SGP_FALLOC) 1956 sgp = SGP_WRITE; 1957 clear: 1958 /* 1959 * Let SGP_WRITE caller clear ends if write does not fill page; 1960 * but SGP_FALLOC on a page fallocated earlier must initialize 1961 * it now, lest undo on failure cancel our earlier guarantee. 1962 */ 1963 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1964 struct page *head = compound_head(page); 1965 int i; 1966 1967 for (i = 0; i < compound_nr(head); i++) { 1968 clear_highpage(head + i); 1969 flush_dcache_page(head + i); 1970 } 1971 SetPageUptodate(head); 1972 } 1973 1974 /* Perhaps the file has been truncated since we checked */ 1975 if (sgp <= SGP_CACHE && 1976 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1977 if (alloced) { 1978 ClearPageDirty(page); 1979 delete_from_page_cache(page); 1980 spin_lock_irq(&info->lock); 1981 shmem_recalc_inode(inode); 1982 spin_unlock_irq(&info->lock); 1983 } 1984 error = -EINVAL; 1985 goto unlock; 1986 } 1987 *pagep = page + index - hindex; 1988 return 0; 1989 1990 /* 1991 * Error recovery. 1992 */ 1993 unacct: 1994 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1995 1996 if (PageTransHuge(page)) { 1997 unlock_page(page); 1998 put_page(page); 1999 goto alloc_nohuge; 2000 } 2001 unlock: 2002 if (page) { 2003 unlock_page(page); 2004 put_page(page); 2005 } 2006 if (error == -ENOSPC && !once++) { 2007 spin_lock_irq(&info->lock); 2008 shmem_recalc_inode(inode); 2009 spin_unlock_irq(&info->lock); 2010 goto repeat; 2011 } 2012 if (error == -EEXIST) 2013 goto repeat; 2014 return error; 2015 } 2016 2017 /* 2018 * This is like autoremove_wake_function, but it removes the wait queue 2019 * entry unconditionally - even if something else had already woken the 2020 * target. 2021 */ 2022 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2023 { 2024 int ret = default_wake_function(wait, mode, sync, key); 2025 list_del_init(&wait->entry); 2026 return ret; 2027 } 2028 2029 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2030 { 2031 struct vm_area_struct *vma = vmf->vma; 2032 struct inode *inode = file_inode(vma->vm_file); 2033 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2034 enum sgp_type sgp; 2035 int err; 2036 vm_fault_t ret = VM_FAULT_LOCKED; 2037 2038 /* 2039 * Trinity finds that probing a hole which tmpfs is punching can 2040 * prevent the hole-punch from ever completing: which in turn 2041 * locks writers out with its hold on i_mutex. So refrain from 2042 * faulting pages into the hole while it's being punched. Although 2043 * shmem_undo_range() does remove the additions, it may be unable to 2044 * keep up, as each new page needs its own unmap_mapping_range() call, 2045 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2046 * 2047 * It does not matter if we sometimes reach this check just before the 2048 * hole-punch begins, so that one fault then races with the punch: 2049 * we just need to make racing faults a rare case. 2050 * 2051 * The implementation below would be much simpler if we just used a 2052 * standard mutex or completion: but we cannot take i_mutex in fault, 2053 * and bloating every shmem inode for this unlikely case would be sad. 2054 */ 2055 if (unlikely(inode->i_private)) { 2056 struct shmem_falloc *shmem_falloc; 2057 2058 spin_lock(&inode->i_lock); 2059 shmem_falloc = inode->i_private; 2060 if (shmem_falloc && 2061 shmem_falloc->waitq && 2062 vmf->pgoff >= shmem_falloc->start && 2063 vmf->pgoff < shmem_falloc->next) { 2064 struct file *fpin; 2065 wait_queue_head_t *shmem_falloc_waitq; 2066 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2067 2068 ret = VM_FAULT_NOPAGE; 2069 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2070 if (fpin) 2071 ret = VM_FAULT_RETRY; 2072 2073 shmem_falloc_waitq = shmem_falloc->waitq; 2074 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2075 TASK_UNINTERRUPTIBLE); 2076 spin_unlock(&inode->i_lock); 2077 schedule(); 2078 2079 /* 2080 * shmem_falloc_waitq points into the shmem_fallocate() 2081 * stack of the hole-punching task: shmem_falloc_waitq 2082 * is usually invalid by the time we reach here, but 2083 * finish_wait() does not dereference it in that case; 2084 * though i_lock needed lest racing with wake_up_all(). 2085 */ 2086 spin_lock(&inode->i_lock); 2087 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2088 spin_unlock(&inode->i_lock); 2089 2090 if (fpin) 2091 fput(fpin); 2092 return ret; 2093 } 2094 spin_unlock(&inode->i_lock); 2095 } 2096 2097 sgp = SGP_CACHE; 2098 2099 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2100 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2101 sgp = SGP_NOHUGE; 2102 else if (vma->vm_flags & VM_HUGEPAGE) 2103 sgp = SGP_HUGE; 2104 2105 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2106 gfp, vma, vmf, &ret); 2107 if (err) 2108 return vmf_error(err); 2109 return ret; 2110 } 2111 2112 unsigned long shmem_get_unmapped_area(struct file *file, 2113 unsigned long uaddr, unsigned long len, 2114 unsigned long pgoff, unsigned long flags) 2115 { 2116 unsigned long (*get_area)(struct file *, 2117 unsigned long, unsigned long, unsigned long, unsigned long); 2118 unsigned long addr; 2119 unsigned long offset; 2120 unsigned long inflated_len; 2121 unsigned long inflated_addr; 2122 unsigned long inflated_offset; 2123 2124 if (len > TASK_SIZE) 2125 return -ENOMEM; 2126 2127 get_area = current->mm->get_unmapped_area; 2128 addr = get_area(file, uaddr, len, pgoff, flags); 2129 2130 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2131 return addr; 2132 if (IS_ERR_VALUE(addr)) 2133 return addr; 2134 if (addr & ~PAGE_MASK) 2135 return addr; 2136 if (addr > TASK_SIZE - len) 2137 return addr; 2138 2139 if (shmem_huge == SHMEM_HUGE_DENY) 2140 return addr; 2141 if (len < HPAGE_PMD_SIZE) 2142 return addr; 2143 if (flags & MAP_FIXED) 2144 return addr; 2145 /* 2146 * Our priority is to support MAP_SHARED mapped hugely; 2147 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2148 * But if caller specified an address hint and we allocated area there 2149 * successfully, respect that as before. 2150 */ 2151 if (uaddr == addr) 2152 return addr; 2153 2154 if (shmem_huge != SHMEM_HUGE_FORCE) { 2155 struct super_block *sb; 2156 2157 if (file) { 2158 VM_BUG_ON(file->f_op != &shmem_file_operations); 2159 sb = file_inode(file)->i_sb; 2160 } else { 2161 /* 2162 * Called directly from mm/mmap.c, or drivers/char/mem.c 2163 * for "/dev/zero", to create a shared anonymous object. 2164 */ 2165 if (IS_ERR(shm_mnt)) 2166 return addr; 2167 sb = shm_mnt->mnt_sb; 2168 } 2169 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2170 return addr; 2171 } 2172 2173 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2174 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2175 return addr; 2176 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2177 return addr; 2178 2179 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2180 if (inflated_len > TASK_SIZE) 2181 return addr; 2182 if (inflated_len < len) 2183 return addr; 2184 2185 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2186 if (IS_ERR_VALUE(inflated_addr)) 2187 return addr; 2188 if (inflated_addr & ~PAGE_MASK) 2189 return addr; 2190 2191 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2192 inflated_addr += offset - inflated_offset; 2193 if (inflated_offset > offset) 2194 inflated_addr += HPAGE_PMD_SIZE; 2195 2196 if (inflated_addr > TASK_SIZE - len) 2197 return addr; 2198 return inflated_addr; 2199 } 2200 2201 #ifdef CONFIG_NUMA 2202 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2203 { 2204 struct inode *inode = file_inode(vma->vm_file); 2205 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2206 } 2207 2208 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2209 unsigned long addr) 2210 { 2211 struct inode *inode = file_inode(vma->vm_file); 2212 pgoff_t index; 2213 2214 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2215 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2216 } 2217 #endif 2218 2219 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2220 { 2221 struct inode *inode = file_inode(file); 2222 struct shmem_inode_info *info = SHMEM_I(inode); 2223 int retval = -ENOMEM; 2224 2225 /* 2226 * What serializes the accesses to info->flags? 2227 * ipc_lock_object() when called from shmctl_do_lock(), 2228 * no serialization needed when called from shm_destroy(). 2229 */ 2230 if (lock && !(info->flags & VM_LOCKED)) { 2231 if (!user_shm_lock(inode->i_size, user)) 2232 goto out_nomem; 2233 info->flags |= VM_LOCKED; 2234 mapping_set_unevictable(file->f_mapping); 2235 } 2236 if (!lock && (info->flags & VM_LOCKED) && user) { 2237 user_shm_unlock(inode->i_size, user); 2238 info->flags &= ~VM_LOCKED; 2239 mapping_clear_unevictable(file->f_mapping); 2240 } 2241 retval = 0; 2242 2243 out_nomem: 2244 return retval; 2245 } 2246 2247 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2248 { 2249 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2250 2251 if (info->seals & F_SEAL_FUTURE_WRITE) { 2252 /* 2253 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2254 * "future write" seal active. 2255 */ 2256 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2257 return -EPERM; 2258 2259 /* 2260 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2261 * MAP_SHARED and read-only, take care to not allow mprotect to 2262 * revert protections on such mappings. Do this only for shared 2263 * mappings. For private mappings, don't need to mask 2264 * VM_MAYWRITE as we still want them to be COW-writable. 2265 */ 2266 if (vma->vm_flags & VM_SHARED) 2267 vma->vm_flags &= ~(VM_MAYWRITE); 2268 } 2269 2270 file_accessed(file); 2271 vma->vm_ops = &shmem_vm_ops; 2272 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2273 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2274 (vma->vm_end & HPAGE_PMD_MASK)) { 2275 khugepaged_enter(vma, vma->vm_flags); 2276 } 2277 return 0; 2278 } 2279 2280 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2281 umode_t mode, dev_t dev, unsigned long flags) 2282 { 2283 struct inode *inode; 2284 struct shmem_inode_info *info; 2285 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2286 ino_t ino; 2287 2288 if (shmem_reserve_inode(sb, &ino)) 2289 return NULL; 2290 2291 inode = new_inode(sb); 2292 if (inode) { 2293 inode->i_ino = ino; 2294 inode_init_owner(inode, dir, mode); 2295 inode->i_blocks = 0; 2296 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2297 inode->i_generation = prandom_u32(); 2298 info = SHMEM_I(inode); 2299 memset(info, 0, (char *)inode - (char *)info); 2300 spin_lock_init(&info->lock); 2301 atomic_set(&info->stop_eviction, 0); 2302 info->seals = F_SEAL_SEAL; 2303 info->flags = flags & VM_NORESERVE; 2304 INIT_LIST_HEAD(&info->shrinklist); 2305 INIT_LIST_HEAD(&info->swaplist); 2306 simple_xattrs_init(&info->xattrs); 2307 cache_no_acl(inode); 2308 2309 switch (mode & S_IFMT) { 2310 default: 2311 inode->i_op = &shmem_special_inode_operations; 2312 init_special_inode(inode, mode, dev); 2313 break; 2314 case S_IFREG: 2315 inode->i_mapping->a_ops = &shmem_aops; 2316 inode->i_op = &shmem_inode_operations; 2317 inode->i_fop = &shmem_file_operations; 2318 mpol_shared_policy_init(&info->policy, 2319 shmem_get_sbmpol(sbinfo)); 2320 break; 2321 case S_IFDIR: 2322 inc_nlink(inode); 2323 /* Some things misbehave if size == 0 on a directory */ 2324 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2325 inode->i_op = &shmem_dir_inode_operations; 2326 inode->i_fop = &simple_dir_operations; 2327 break; 2328 case S_IFLNK: 2329 /* 2330 * Must not load anything in the rbtree, 2331 * mpol_free_shared_policy will not be called. 2332 */ 2333 mpol_shared_policy_init(&info->policy, NULL); 2334 break; 2335 } 2336 2337 lockdep_annotate_inode_mutex_key(inode); 2338 } else 2339 shmem_free_inode(sb); 2340 return inode; 2341 } 2342 2343 bool shmem_mapping(struct address_space *mapping) 2344 { 2345 return mapping->a_ops == &shmem_aops; 2346 } 2347 2348 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2349 pmd_t *dst_pmd, 2350 struct vm_area_struct *dst_vma, 2351 unsigned long dst_addr, 2352 unsigned long src_addr, 2353 bool zeropage, 2354 struct page **pagep) 2355 { 2356 struct inode *inode = file_inode(dst_vma->vm_file); 2357 struct shmem_inode_info *info = SHMEM_I(inode); 2358 struct address_space *mapping = inode->i_mapping; 2359 gfp_t gfp = mapping_gfp_mask(mapping); 2360 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2361 spinlock_t *ptl; 2362 void *page_kaddr; 2363 struct page *page; 2364 pte_t _dst_pte, *dst_pte; 2365 int ret; 2366 pgoff_t offset, max_off; 2367 2368 ret = -ENOMEM; 2369 if (!shmem_inode_acct_block(inode, 1)) 2370 goto out; 2371 2372 if (!*pagep) { 2373 page = shmem_alloc_page(gfp, info, pgoff); 2374 if (!page) 2375 goto out_unacct_blocks; 2376 2377 if (!zeropage) { /* mcopy_atomic */ 2378 page_kaddr = kmap_atomic(page); 2379 ret = copy_from_user(page_kaddr, 2380 (const void __user *)src_addr, 2381 PAGE_SIZE); 2382 kunmap_atomic(page_kaddr); 2383 2384 /* fallback to copy_from_user outside mmap_lock */ 2385 if (unlikely(ret)) { 2386 *pagep = page; 2387 shmem_inode_unacct_blocks(inode, 1); 2388 /* don't free the page */ 2389 return -ENOENT; 2390 } 2391 } else { /* mfill_zeropage_atomic */ 2392 clear_highpage(page); 2393 } 2394 } else { 2395 page = *pagep; 2396 *pagep = NULL; 2397 } 2398 2399 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2400 __SetPageLocked(page); 2401 __SetPageSwapBacked(page); 2402 __SetPageUptodate(page); 2403 2404 ret = -EFAULT; 2405 offset = linear_page_index(dst_vma, dst_addr); 2406 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2407 if (unlikely(offset >= max_off)) 2408 goto out_release; 2409 2410 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2411 gfp & GFP_RECLAIM_MASK, dst_mm); 2412 if (ret) 2413 goto out_release; 2414 2415 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2416 if (dst_vma->vm_flags & VM_WRITE) 2417 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2418 else { 2419 /* 2420 * We don't set the pte dirty if the vma has no 2421 * VM_WRITE permission, so mark the page dirty or it 2422 * could be freed from under us. We could do it 2423 * unconditionally before unlock_page(), but doing it 2424 * only if VM_WRITE is not set is faster. 2425 */ 2426 set_page_dirty(page); 2427 } 2428 2429 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2430 2431 ret = -EFAULT; 2432 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2433 if (unlikely(offset >= max_off)) 2434 goto out_release_unlock; 2435 2436 ret = -EEXIST; 2437 if (!pte_none(*dst_pte)) 2438 goto out_release_unlock; 2439 2440 lru_cache_add(page); 2441 2442 spin_lock_irq(&info->lock); 2443 info->alloced++; 2444 inode->i_blocks += BLOCKS_PER_PAGE; 2445 shmem_recalc_inode(inode); 2446 spin_unlock_irq(&info->lock); 2447 2448 inc_mm_counter(dst_mm, mm_counter_file(page)); 2449 page_add_file_rmap(page, false); 2450 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2451 2452 /* No need to invalidate - it was non-present before */ 2453 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2454 pte_unmap_unlock(dst_pte, ptl); 2455 unlock_page(page); 2456 ret = 0; 2457 out: 2458 return ret; 2459 out_release_unlock: 2460 pte_unmap_unlock(dst_pte, ptl); 2461 ClearPageDirty(page); 2462 delete_from_page_cache(page); 2463 out_release: 2464 unlock_page(page); 2465 put_page(page); 2466 out_unacct_blocks: 2467 shmem_inode_unacct_blocks(inode, 1); 2468 goto out; 2469 } 2470 2471 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2472 pmd_t *dst_pmd, 2473 struct vm_area_struct *dst_vma, 2474 unsigned long dst_addr, 2475 unsigned long src_addr, 2476 struct page **pagep) 2477 { 2478 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2479 dst_addr, src_addr, false, pagep); 2480 } 2481 2482 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2483 pmd_t *dst_pmd, 2484 struct vm_area_struct *dst_vma, 2485 unsigned long dst_addr) 2486 { 2487 struct page *page = NULL; 2488 2489 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2490 dst_addr, 0, true, &page); 2491 } 2492 2493 #ifdef CONFIG_TMPFS 2494 static const struct inode_operations shmem_symlink_inode_operations; 2495 static const struct inode_operations shmem_short_symlink_operations; 2496 2497 #ifdef CONFIG_TMPFS_XATTR 2498 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2499 #else 2500 #define shmem_initxattrs NULL 2501 #endif 2502 2503 static int 2504 shmem_write_begin(struct file *file, struct address_space *mapping, 2505 loff_t pos, unsigned len, unsigned flags, 2506 struct page **pagep, void **fsdata) 2507 { 2508 struct inode *inode = mapping->host; 2509 struct shmem_inode_info *info = SHMEM_I(inode); 2510 pgoff_t index = pos >> PAGE_SHIFT; 2511 2512 /* i_mutex is held by caller */ 2513 if (unlikely(info->seals & (F_SEAL_GROW | 2514 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2515 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2516 return -EPERM; 2517 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2518 return -EPERM; 2519 } 2520 2521 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2522 } 2523 2524 static int 2525 shmem_write_end(struct file *file, struct address_space *mapping, 2526 loff_t pos, unsigned len, unsigned copied, 2527 struct page *page, void *fsdata) 2528 { 2529 struct inode *inode = mapping->host; 2530 2531 if (pos + copied > inode->i_size) 2532 i_size_write(inode, pos + copied); 2533 2534 if (!PageUptodate(page)) { 2535 struct page *head = compound_head(page); 2536 if (PageTransCompound(page)) { 2537 int i; 2538 2539 for (i = 0; i < HPAGE_PMD_NR; i++) { 2540 if (head + i == page) 2541 continue; 2542 clear_highpage(head + i); 2543 flush_dcache_page(head + i); 2544 } 2545 } 2546 if (copied < PAGE_SIZE) { 2547 unsigned from = pos & (PAGE_SIZE - 1); 2548 zero_user_segments(page, 0, from, 2549 from + copied, PAGE_SIZE); 2550 } 2551 SetPageUptodate(head); 2552 } 2553 set_page_dirty(page); 2554 unlock_page(page); 2555 put_page(page); 2556 2557 return copied; 2558 } 2559 2560 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2561 { 2562 struct file *file = iocb->ki_filp; 2563 struct inode *inode = file_inode(file); 2564 struct address_space *mapping = inode->i_mapping; 2565 pgoff_t index; 2566 unsigned long offset; 2567 enum sgp_type sgp = SGP_READ; 2568 int error = 0; 2569 ssize_t retval = 0; 2570 loff_t *ppos = &iocb->ki_pos; 2571 2572 /* 2573 * Might this read be for a stacking filesystem? Then when reading 2574 * holes of a sparse file, we actually need to allocate those pages, 2575 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2576 */ 2577 if (!iter_is_iovec(to)) 2578 sgp = SGP_CACHE; 2579 2580 index = *ppos >> PAGE_SHIFT; 2581 offset = *ppos & ~PAGE_MASK; 2582 2583 for (;;) { 2584 struct page *page = NULL; 2585 pgoff_t end_index; 2586 unsigned long nr, ret; 2587 loff_t i_size = i_size_read(inode); 2588 2589 end_index = i_size >> PAGE_SHIFT; 2590 if (index > end_index) 2591 break; 2592 if (index == end_index) { 2593 nr = i_size & ~PAGE_MASK; 2594 if (nr <= offset) 2595 break; 2596 } 2597 2598 error = shmem_getpage(inode, index, &page, sgp); 2599 if (error) { 2600 if (error == -EINVAL) 2601 error = 0; 2602 break; 2603 } 2604 if (page) { 2605 if (sgp == SGP_CACHE) 2606 set_page_dirty(page); 2607 unlock_page(page); 2608 } 2609 2610 /* 2611 * We must evaluate after, since reads (unlike writes) 2612 * are called without i_mutex protection against truncate 2613 */ 2614 nr = PAGE_SIZE; 2615 i_size = i_size_read(inode); 2616 end_index = i_size >> PAGE_SHIFT; 2617 if (index == end_index) { 2618 nr = i_size & ~PAGE_MASK; 2619 if (nr <= offset) { 2620 if (page) 2621 put_page(page); 2622 break; 2623 } 2624 } 2625 nr -= offset; 2626 2627 if (page) { 2628 /* 2629 * If users can be writing to this page using arbitrary 2630 * virtual addresses, take care about potential aliasing 2631 * before reading the page on the kernel side. 2632 */ 2633 if (mapping_writably_mapped(mapping)) 2634 flush_dcache_page(page); 2635 /* 2636 * Mark the page accessed if we read the beginning. 2637 */ 2638 if (!offset) 2639 mark_page_accessed(page); 2640 } else { 2641 page = ZERO_PAGE(0); 2642 get_page(page); 2643 } 2644 2645 /* 2646 * Ok, we have the page, and it's up-to-date, so 2647 * now we can copy it to user space... 2648 */ 2649 ret = copy_page_to_iter(page, offset, nr, to); 2650 retval += ret; 2651 offset += ret; 2652 index += offset >> PAGE_SHIFT; 2653 offset &= ~PAGE_MASK; 2654 2655 put_page(page); 2656 if (!iov_iter_count(to)) 2657 break; 2658 if (ret < nr) { 2659 error = -EFAULT; 2660 break; 2661 } 2662 cond_resched(); 2663 } 2664 2665 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2666 file_accessed(file); 2667 return retval ? retval : error; 2668 } 2669 2670 /* 2671 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2672 */ 2673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2674 pgoff_t index, pgoff_t end, int whence) 2675 { 2676 struct page *page; 2677 struct pagevec pvec; 2678 pgoff_t indices[PAGEVEC_SIZE]; 2679 bool done = false; 2680 int i; 2681 2682 pagevec_init(&pvec); 2683 pvec.nr = 1; /* start small: we may be there already */ 2684 while (!done) { 2685 pvec.nr = find_get_entries(mapping, index, 2686 pvec.nr, pvec.pages, indices); 2687 if (!pvec.nr) { 2688 if (whence == SEEK_DATA) 2689 index = end; 2690 break; 2691 } 2692 for (i = 0; i < pvec.nr; i++, index++) { 2693 if (index < indices[i]) { 2694 if (whence == SEEK_HOLE) { 2695 done = true; 2696 break; 2697 } 2698 index = indices[i]; 2699 } 2700 page = pvec.pages[i]; 2701 if (page && !xa_is_value(page)) { 2702 if (!PageUptodate(page)) 2703 page = NULL; 2704 } 2705 if (index >= end || 2706 (page && whence == SEEK_DATA) || 2707 (!page && whence == SEEK_HOLE)) { 2708 done = true; 2709 break; 2710 } 2711 } 2712 pagevec_remove_exceptionals(&pvec); 2713 pagevec_release(&pvec); 2714 pvec.nr = PAGEVEC_SIZE; 2715 cond_resched(); 2716 } 2717 return index; 2718 } 2719 2720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2721 { 2722 struct address_space *mapping = file->f_mapping; 2723 struct inode *inode = mapping->host; 2724 pgoff_t start, end; 2725 loff_t new_offset; 2726 2727 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2728 return generic_file_llseek_size(file, offset, whence, 2729 MAX_LFS_FILESIZE, i_size_read(inode)); 2730 inode_lock(inode); 2731 /* We're holding i_mutex so we can access i_size directly */ 2732 2733 if (offset < 0 || offset >= inode->i_size) 2734 offset = -ENXIO; 2735 else { 2736 start = offset >> PAGE_SHIFT; 2737 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2738 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2739 new_offset <<= PAGE_SHIFT; 2740 if (new_offset > offset) { 2741 if (new_offset < inode->i_size) 2742 offset = new_offset; 2743 else if (whence == SEEK_DATA) 2744 offset = -ENXIO; 2745 else 2746 offset = inode->i_size; 2747 } 2748 } 2749 2750 if (offset >= 0) 2751 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2752 inode_unlock(inode); 2753 return offset; 2754 } 2755 2756 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2757 loff_t len) 2758 { 2759 struct inode *inode = file_inode(file); 2760 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2761 struct shmem_inode_info *info = SHMEM_I(inode); 2762 struct shmem_falloc shmem_falloc; 2763 pgoff_t start, index, end; 2764 int error; 2765 2766 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2767 return -EOPNOTSUPP; 2768 2769 inode_lock(inode); 2770 2771 if (mode & FALLOC_FL_PUNCH_HOLE) { 2772 struct address_space *mapping = file->f_mapping; 2773 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2774 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2775 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2776 2777 /* protected by i_mutex */ 2778 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2779 error = -EPERM; 2780 goto out; 2781 } 2782 2783 shmem_falloc.waitq = &shmem_falloc_waitq; 2784 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2785 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2786 spin_lock(&inode->i_lock); 2787 inode->i_private = &shmem_falloc; 2788 spin_unlock(&inode->i_lock); 2789 2790 if ((u64)unmap_end > (u64)unmap_start) 2791 unmap_mapping_range(mapping, unmap_start, 2792 1 + unmap_end - unmap_start, 0); 2793 shmem_truncate_range(inode, offset, offset + len - 1); 2794 /* No need to unmap again: hole-punching leaves COWed pages */ 2795 2796 spin_lock(&inode->i_lock); 2797 inode->i_private = NULL; 2798 wake_up_all(&shmem_falloc_waitq); 2799 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2800 spin_unlock(&inode->i_lock); 2801 error = 0; 2802 goto out; 2803 } 2804 2805 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2806 error = inode_newsize_ok(inode, offset + len); 2807 if (error) 2808 goto out; 2809 2810 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2811 error = -EPERM; 2812 goto out; 2813 } 2814 2815 start = offset >> PAGE_SHIFT; 2816 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2817 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2818 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2819 error = -ENOSPC; 2820 goto out; 2821 } 2822 2823 shmem_falloc.waitq = NULL; 2824 shmem_falloc.start = start; 2825 shmem_falloc.next = start; 2826 shmem_falloc.nr_falloced = 0; 2827 shmem_falloc.nr_unswapped = 0; 2828 spin_lock(&inode->i_lock); 2829 inode->i_private = &shmem_falloc; 2830 spin_unlock(&inode->i_lock); 2831 2832 for (index = start; index < end; index++) { 2833 struct page *page; 2834 2835 /* 2836 * Good, the fallocate(2) manpage permits EINTR: we may have 2837 * been interrupted because we are using up too much memory. 2838 */ 2839 if (signal_pending(current)) 2840 error = -EINTR; 2841 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2842 error = -ENOMEM; 2843 else 2844 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2845 if (error) { 2846 /* Remove the !PageUptodate pages we added */ 2847 if (index > start) { 2848 shmem_undo_range(inode, 2849 (loff_t)start << PAGE_SHIFT, 2850 ((loff_t)index << PAGE_SHIFT) - 1, true); 2851 } 2852 goto undone; 2853 } 2854 2855 /* 2856 * Inform shmem_writepage() how far we have reached. 2857 * No need for lock or barrier: we have the page lock. 2858 */ 2859 shmem_falloc.next++; 2860 if (!PageUptodate(page)) 2861 shmem_falloc.nr_falloced++; 2862 2863 /* 2864 * If !PageUptodate, leave it that way so that freeable pages 2865 * can be recognized if we need to rollback on error later. 2866 * But set_page_dirty so that memory pressure will swap rather 2867 * than free the pages we are allocating (and SGP_CACHE pages 2868 * might still be clean: we now need to mark those dirty too). 2869 */ 2870 set_page_dirty(page); 2871 unlock_page(page); 2872 put_page(page); 2873 cond_resched(); 2874 } 2875 2876 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2877 i_size_write(inode, offset + len); 2878 inode->i_ctime = current_time(inode); 2879 undone: 2880 spin_lock(&inode->i_lock); 2881 inode->i_private = NULL; 2882 spin_unlock(&inode->i_lock); 2883 out: 2884 inode_unlock(inode); 2885 return error; 2886 } 2887 2888 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2889 { 2890 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2891 2892 buf->f_type = TMPFS_MAGIC; 2893 buf->f_bsize = PAGE_SIZE; 2894 buf->f_namelen = NAME_MAX; 2895 if (sbinfo->max_blocks) { 2896 buf->f_blocks = sbinfo->max_blocks; 2897 buf->f_bavail = 2898 buf->f_bfree = sbinfo->max_blocks - 2899 percpu_counter_sum(&sbinfo->used_blocks); 2900 } 2901 if (sbinfo->max_inodes) { 2902 buf->f_files = sbinfo->max_inodes; 2903 buf->f_ffree = sbinfo->free_inodes; 2904 } 2905 /* else leave those fields 0 like simple_statfs */ 2906 return 0; 2907 } 2908 2909 /* 2910 * File creation. Allocate an inode, and we're done.. 2911 */ 2912 static int 2913 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2914 { 2915 struct inode *inode; 2916 int error = -ENOSPC; 2917 2918 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2919 if (inode) { 2920 error = simple_acl_create(dir, inode); 2921 if (error) 2922 goto out_iput; 2923 error = security_inode_init_security(inode, dir, 2924 &dentry->d_name, 2925 shmem_initxattrs, NULL); 2926 if (error && error != -EOPNOTSUPP) 2927 goto out_iput; 2928 2929 error = 0; 2930 dir->i_size += BOGO_DIRENT_SIZE; 2931 dir->i_ctime = dir->i_mtime = current_time(dir); 2932 d_instantiate(dentry, inode); 2933 dget(dentry); /* Extra count - pin the dentry in core */ 2934 } 2935 return error; 2936 out_iput: 2937 iput(inode); 2938 return error; 2939 } 2940 2941 static int 2942 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2943 { 2944 struct inode *inode; 2945 int error = -ENOSPC; 2946 2947 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2948 if (inode) { 2949 error = security_inode_init_security(inode, dir, 2950 NULL, 2951 shmem_initxattrs, NULL); 2952 if (error && error != -EOPNOTSUPP) 2953 goto out_iput; 2954 error = simple_acl_create(dir, inode); 2955 if (error) 2956 goto out_iput; 2957 d_tmpfile(dentry, inode); 2958 } 2959 return error; 2960 out_iput: 2961 iput(inode); 2962 return error; 2963 } 2964 2965 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2966 { 2967 int error; 2968 2969 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2970 return error; 2971 inc_nlink(dir); 2972 return 0; 2973 } 2974 2975 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2976 bool excl) 2977 { 2978 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2979 } 2980 2981 /* 2982 * Link a file.. 2983 */ 2984 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2985 { 2986 struct inode *inode = d_inode(old_dentry); 2987 int ret = 0; 2988 2989 /* 2990 * No ordinary (disk based) filesystem counts links as inodes; 2991 * but each new link needs a new dentry, pinning lowmem, and 2992 * tmpfs dentries cannot be pruned until they are unlinked. 2993 * But if an O_TMPFILE file is linked into the tmpfs, the 2994 * first link must skip that, to get the accounting right. 2995 */ 2996 if (inode->i_nlink) { 2997 ret = shmem_reserve_inode(inode->i_sb, NULL); 2998 if (ret) 2999 goto out; 3000 } 3001 3002 dir->i_size += BOGO_DIRENT_SIZE; 3003 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3004 inc_nlink(inode); 3005 ihold(inode); /* New dentry reference */ 3006 dget(dentry); /* Extra pinning count for the created dentry */ 3007 d_instantiate(dentry, inode); 3008 out: 3009 return ret; 3010 } 3011 3012 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3013 { 3014 struct inode *inode = d_inode(dentry); 3015 3016 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3017 shmem_free_inode(inode->i_sb); 3018 3019 dir->i_size -= BOGO_DIRENT_SIZE; 3020 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3021 drop_nlink(inode); 3022 dput(dentry); /* Undo the count from "create" - this does all the work */ 3023 return 0; 3024 } 3025 3026 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3027 { 3028 if (!simple_empty(dentry)) 3029 return -ENOTEMPTY; 3030 3031 drop_nlink(d_inode(dentry)); 3032 drop_nlink(dir); 3033 return shmem_unlink(dir, dentry); 3034 } 3035 3036 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3037 { 3038 bool old_is_dir = d_is_dir(old_dentry); 3039 bool new_is_dir = d_is_dir(new_dentry); 3040 3041 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3042 if (old_is_dir) { 3043 drop_nlink(old_dir); 3044 inc_nlink(new_dir); 3045 } else { 3046 drop_nlink(new_dir); 3047 inc_nlink(old_dir); 3048 } 3049 } 3050 old_dir->i_ctime = old_dir->i_mtime = 3051 new_dir->i_ctime = new_dir->i_mtime = 3052 d_inode(old_dentry)->i_ctime = 3053 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3054 3055 return 0; 3056 } 3057 3058 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3059 { 3060 struct dentry *whiteout; 3061 int error; 3062 3063 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3064 if (!whiteout) 3065 return -ENOMEM; 3066 3067 error = shmem_mknod(old_dir, whiteout, 3068 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3069 dput(whiteout); 3070 if (error) 3071 return error; 3072 3073 /* 3074 * Cheat and hash the whiteout while the old dentry is still in 3075 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3076 * 3077 * d_lookup() will consistently find one of them at this point, 3078 * not sure which one, but that isn't even important. 3079 */ 3080 d_rehash(whiteout); 3081 return 0; 3082 } 3083 3084 /* 3085 * The VFS layer already does all the dentry stuff for rename, 3086 * we just have to decrement the usage count for the target if 3087 * it exists so that the VFS layer correctly free's it when it 3088 * gets overwritten. 3089 */ 3090 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3091 { 3092 struct inode *inode = d_inode(old_dentry); 3093 int they_are_dirs = S_ISDIR(inode->i_mode); 3094 3095 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3096 return -EINVAL; 3097 3098 if (flags & RENAME_EXCHANGE) 3099 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3100 3101 if (!simple_empty(new_dentry)) 3102 return -ENOTEMPTY; 3103 3104 if (flags & RENAME_WHITEOUT) { 3105 int error; 3106 3107 error = shmem_whiteout(old_dir, old_dentry); 3108 if (error) 3109 return error; 3110 } 3111 3112 if (d_really_is_positive(new_dentry)) { 3113 (void) shmem_unlink(new_dir, new_dentry); 3114 if (they_are_dirs) { 3115 drop_nlink(d_inode(new_dentry)); 3116 drop_nlink(old_dir); 3117 } 3118 } else if (they_are_dirs) { 3119 drop_nlink(old_dir); 3120 inc_nlink(new_dir); 3121 } 3122 3123 old_dir->i_size -= BOGO_DIRENT_SIZE; 3124 new_dir->i_size += BOGO_DIRENT_SIZE; 3125 old_dir->i_ctime = old_dir->i_mtime = 3126 new_dir->i_ctime = new_dir->i_mtime = 3127 inode->i_ctime = current_time(old_dir); 3128 return 0; 3129 } 3130 3131 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3132 { 3133 int error; 3134 int len; 3135 struct inode *inode; 3136 struct page *page; 3137 3138 len = strlen(symname) + 1; 3139 if (len > PAGE_SIZE) 3140 return -ENAMETOOLONG; 3141 3142 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3143 VM_NORESERVE); 3144 if (!inode) 3145 return -ENOSPC; 3146 3147 error = security_inode_init_security(inode, dir, &dentry->d_name, 3148 shmem_initxattrs, NULL); 3149 if (error && error != -EOPNOTSUPP) { 3150 iput(inode); 3151 return error; 3152 } 3153 3154 inode->i_size = len-1; 3155 if (len <= SHORT_SYMLINK_LEN) { 3156 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3157 if (!inode->i_link) { 3158 iput(inode); 3159 return -ENOMEM; 3160 } 3161 inode->i_op = &shmem_short_symlink_operations; 3162 } else { 3163 inode_nohighmem(inode); 3164 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3165 if (error) { 3166 iput(inode); 3167 return error; 3168 } 3169 inode->i_mapping->a_ops = &shmem_aops; 3170 inode->i_op = &shmem_symlink_inode_operations; 3171 memcpy(page_address(page), symname, len); 3172 SetPageUptodate(page); 3173 set_page_dirty(page); 3174 unlock_page(page); 3175 put_page(page); 3176 } 3177 dir->i_size += BOGO_DIRENT_SIZE; 3178 dir->i_ctime = dir->i_mtime = current_time(dir); 3179 d_instantiate(dentry, inode); 3180 dget(dentry); 3181 return 0; 3182 } 3183 3184 static void shmem_put_link(void *arg) 3185 { 3186 mark_page_accessed(arg); 3187 put_page(arg); 3188 } 3189 3190 static const char *shmem_get_link(struct dentry *dentry, 3191 struct inode *inode, 3192 struct delayed_call *done) 3193 { 3194 struct page *page = NULL; 3195 int error; 3196 if (!dentry) { 3197 page = find_get_page(inode->i_mapping, 0); 3198 if (!page) 3199 return ERR_PTR(-ECHILD); 3200 if (!PageUptodate(page)) { 3201 put_page(page); 3202 return ERR_PTR(-ECHILD); 3203 } 3204 } else { 3205 error = shmem_getpage(inode, 0, &page, SGP_READ); 3206 if (error) 3207 return ERR_PTR(error); 3208 unlock_page(page); 3209 } 3210 set_delayed_call(done, shmem_put_link, page); 3211 return page_address(page); 3212 } 3213 3214 #ifdef CONFIG_TMPFS_XATTR 3215 /* 3216 * Superblocks without xattr inode operations may get some security.* xattr 3217 * support from the LSM "for free". As soon as we have any other xattrs 3218 * like ACLs, we also need to implement the security.* handlers at 3219 * filesystem level, though. 3220 */ 3221 3222 /* 3223 * Callback for security_inode_init_security() for acquiring xattrs. 3224 */ 3225 static int shmem_initxattrs(struct inode *inode, 3226 const struct xattr *xattr_array, 3227 void *fs_info) 3228 { 3229 struct shmem_inode_info *info = SHMEM_I(inode); 3230 const struct xattr *xattr; 3231 struct simple_xattr *new_xattr; 3232 size_t len; 3233 3234 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3235 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3236 if (!new_xattr) 3237 return -ENOMEM; 3238 3239 len = strlen(xattr->name) + 1; 3240 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3241 GFP_KERNEL); 3242 if (!new_xattr->name) { 3243 kvfree(new_xattr); 3244 return -ENOMEM; 3245 } 3246 3247 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3248 XATTR_SECURITY_PREFIX_LEN); 3249 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3250 xattr->name, len); 3251 3252 simple_xattr_list_add(&info->xattrs, new_xattr); 3253 } 3254 3255 return 0; 3256 } 3257 3258 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3259 struct dentry *unused, struct inode *inode, 3260 const char *name, void *buffer, size_t size) 3261 { 3262 struct shmem_inode_info *info = SHMEM_I(inode); 3263 3264 name = xattr_full_name(handler, name); 3265 return simple_xattr_get(&info->xattrs, name, buffer, size); 3266 } 3267 3268 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3269 struct dentry *unused, struct inode *inode, 3270 const char *name, const void *value, 3271 size_t size, int flags) 3272 { 3273 struct shmem_inode_info *info = SHMEM_I(inode); 3274 3275 name = xattr_full_name(handler, name); 3276 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3277 } 3278 3279 static const struct xattr_handler shmem_security_xattr_handler = { 3280 .prefix = XATTR_SECURITY_PREFIX, 3281 .get = shmem_xattr_handler_get, 3282 .set = shmem_xattr_handler_set, 3283 }; 3284 3285 static const struct xattr_handler shmem_trusted_xattr_handler = { 3286 .prefix = XATTR_TRUSTED_PREFIX, 3287 .get = shmem_xattr_handler_get, 3288 .set = shmem_xattr_handler_set, 3289 }; 3290 3291 static const struct xattr_handler *shmem_xattr_handlers[] = { 3292 #ifdef CONFIG_TMPFS_POSIX_ACL 3293 &posix_acl_access_xattr_handler, 3294 &posix_acl_default_xattr_handler, 3295 #endif 3296 &shmem_security_xattr_handler, 3297 &shmem_trusted_xattr_handler, 3298 NULL 3299 }; 3300 3301 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3302 { 3303 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3304 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3305 } 3306 #endif /* CONFIG_TMPFS_XATTR */ 3307 3308 static const struct inode_operations shmem_short_symlink_operations = { 3309 .get_link = simple_get_link, 3310 #ifdef CONFIG_TMPFS_XATTR 3311 .listxattr = shmem_listxattr, 3312 #endif 3313 }; 3314 3315 static const struct inode_operations shmem_symlink_inode_operations = { 3316 .get_link = shmem_get_link, 3317 #ifdef CONFIG_TMPFS_XATTR 3318 .listxattr = shmem_listxattr, 3319 #endif 3320 }; 3321 3322 static struct dentry *shmem_get_parent(struct dentry *child) 3323 { 3324 return ERR_PTR(-ESTALE); 3325 } 3326 3327 static int shmem_match(struct inode *ino, void *vfh) 3328 { 3329 __u32 *fh = vfh; 3330 __u64 inum = fh[2]; 3331 inum = (inum << 32) | fh[1]; 3332 return ino->i_ino == inum && fh[0] == ino->i_generation; 3333 } 3334 3335 /* Find any alias of inode, but prefer a hashed alias */ 3336 static struct dentry *shmem_find_alias(struct inode *inode) 3337 { 3338 struct dentry *alias = d_find_alias(inode); 3339 3340 return alias ?: d_find_any_alias(inode); 3341 } 3342 3343 3344 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3345 struct fid *fid, int fh_len, int fh_type) 3346 { 3347 struct inode *inode; 3348 struct dentry *dentry = NULL; 3349 u64 inum; 3350 3351 if (fh_len < 3) 3352 return NULL; 3353 3354 inum = fid->raw[2]; 3355 inum = (inum << 32) | fid->raw[1]; 3356 3357 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3358 shmem_match, fid->raw); 3359 if (inode) { 3360 dentry = shmem_find_alias(inode); 3361 iput(inode); 3362 } 3363 3364 return dentry; 3365 } 3366 3367 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3368 struct inode *parent) 3369 { 3370 if (*len < 3) { 3371 *len = 3; 3372 return FILEID_INVALID; 3373 } 3374 3375 if (inode_unhashed(inode)) { 3376 /* Unfortunately insert_inode_hash is not idempotent, 3377 * so as we hash inodes here rather than at creation 3378 * time, we need a lock to ensure we only try 3379 * to do it once 3380 */ 3381 static DEFINE_SPINLOCK(lock); 3382 spin_lock(&lock); 3383 if (inode_unhashed(inode)) 3384 __insert_inode_hash(inode, 3385 inode->i_ino + inode->i_generation); 3386 spin_unlock(&lock); 3387 } 3388 3389 fh[0] = inode->i_generation; 3390 fh[1] = inode->i_ino; 3391 fh[2] = ((__u64)inode->i_ino) >> 32; 3392 3393 *len = 3; 3394 return 1; 3395 } 3396 3397 static const struct export_operations shmem_export_ops = { 3398 .get_parent = shmem_get_parent, 3399 .encode_fh = shmem_encode_fh, 3400 .fh_to_dentry = shmem_fh_to_dentry, 3401 }; 3402 3403 enum shmem_param { 3404 Opt_gid, 3405 Opt_huge, 3406 Opt_mode, 3407 Opt_mpol, 3408 Opt_nr_blocks, 3409 Opt_nr_inodes, 3410 Opt_size, 3411 Opt_uid, 3412 Opt_inode32, 3413 Opt_inode64, 3414 }; 3415 3416 static const struct constant_table shmem_param_enums_huge[] = { 3417 {"never", SHMEM_HUGE_NEVER }, 3418 {"always", SHMEM_HUGE_ALWAYS }, 3419 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3420 {"advise", SHMEM_HUGE_ADVISE }, 3421 {} 3422 }; 3423 3424 const struct fs_parameter_spec shmem_fs_parameters[] = { 3425 fsparam_u32 ("gid", Opt_gid), 3426 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3427 fsparam_u32oct("mode", Opt_mode), 3428 fsparam_string("mpol", Opt_mpol), 3429 fsparam_string("nr_blocks", Opt_nr_blocks), 3430 fsparam_string("nr_inodes", Opt_nr_inodes), 3431 fsparam_string("size", Opt_size), 3432 fsparam_u32 ("uid", Opt_uid), 3433 fsparam_flag ("inode32", Opt_inode32), 3434 fsparam_flag ("inode64", Opt_inode64), 3435 {} 3436 }; 3437 3438 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3439 { 3440 struct shmem_options *ctx = fc->fs_private; 3441 struct fs_parse_result result; 3442 unsigned long long size; 3443 char *rest; 3444 int opt; 3445 3446 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3447 if (opt < 0) 3448 return opt; 3449 3450 switch (opt) { 3451 case Opt_size: 3452 size = memparse(param->string, &rest); 3453 if (*rest == '%') { 3454 size <<= PAGE_SHIFT; 3455 size *= totalram_pages(); 3456 do_div(size, 100); 3457 rest++; 3458 } 3459 if (*rest) 3460 goto bad_value; 3461 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3462 ctx->seen |= SHMEM_SEEN_BLOCKS; 3463 break; 3464 case Opt_nr_blocks: 3465 ctx->blocks = memparse(param->string, &rest); 3466 if (*rest) 3467 goto bad_value; 3468 ctx->seen |= SHMEM_SEEN_BLOCKS; 3469 break; 3470 case Opt_nr_inodes: 3471 ctx->inodes = memparse(param->string, &rest); 3472 if (*rest) 3473 goto bad_value; 3474 ctx->seen |= SHMEM_SEEN_INODES; 3475 break; 3476 case Opt_mode: 3477 ctx->mode = result.uint_32 & 07777; 3478 break; 3479 case Opt_uid: 3480 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3481 if (!uid_valid(ctx->uid)) 3482 goto bad_value; 3483 break; 3484 case Opt_gid: 3485 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3486 if (!gid_valid(ctx->gid)) 3487 goto bad_value; 3488 break; 3489 case Opt_huge: 3490 ctx->huge = result.uint_32; 3491 if (ctx->huge != SHMEM_HUGE_NEVER && 3492 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3493 has_transparent_hugepage())) 3494 goto unsupported_parameter; 3495 ctx->seen |= SHMEM_SEEN_HUGE; 3496 break; 3497 case Opt_mpol: 3498 if (IS_ENABLED(CONFIG_NUMA)) { 3499 mpol_put(ctx->mpol); 3500 ctx->mpol = NULL; 3501 if (mpol_parse_str(param->string, &ctx->mpol)) 3502 goto bad_value; 3503 break; 3504 } 3505 goto unsupported_parameter; 3506 case Opt_inode32: 3507 ctx->full_inums = false; 3508 ctx->seen |= SHMEM_SEEN_INUMS; 3509 break; 3510 case Opt_inode64: 3511 if (sizeof(ino_t) < 8) { 3512 return invalfc(fc, 3513 "Cannot use inode64 with <64bit inums in kernel\n"); 3514 } 3515 ctx->full_inums = true; 3516 ctx->seen |= SHMEM_SEEN_INUMS; 3517 break; 3518 } 3519 return 0; 3520 3521 unsupported_parameter: 3522 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3523 bad_value: 3524 return invalfc(fc, "Bad value for '%s'", param->key); 3525 } 3526 3527 static int shmem_parse_options(struct fs_context *fc, void *data) 3528 { 3529 char *options = data; 3530 3531 if (options) { 3532 int err = security_sb_eat_lsm_opts(options, &fc->security); 3533 if (err) 3534 return err; 3535 } 3536 3537 while (options != NULL) { 3538 char *this_char = options; 3539 for (;;) { 3540 /* 3541 * NUL-terminate this option: unfortunately, 3542 * mount options form a comma-separated list, 3543 * but mpol's nodelist may also contain commas. 3544 */ 3545 options = strchr(options, ','); 3546 if (options == NULL) 3547 break; 3548 options++; 3549 if (!isdigit(*options)) { 3550 options[-1] = '\0'; 3551 break; 3552 } 3553 } 3554 if (*this_char) { 3555 char *value = strchr(this_char,'='); 3556 size_t len = 0; 3557 int err; 3558 3559 if (value) { 3560 *value++ = '\0'; 3561 len = strlen(value); 3562 } 3563 err = vfs_parse_fs_string(fc, this_char, value, len); 3564 if (err < 0) 3565 return err; 3566 } 3567 } 3568 return 0; 3569 } 3570 3571 /* 3572 * Reconfigure a shmem filesystem. 3573 * 3574 * Note that we disallow change from limited->unlimited blocks/inodes while any 3575 * are in use; but we must separately disallow unlimited->limited, because in 3576 * that case we have no record of how much is already in use. 3577 */ 3578 static int shmem_reconfigure(struct fs_context *fc) 3579 { 3580 struct shmem_options *ctx = fc->fs_private; 3581 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3582 unsigned long inodes; 3583 const char *err; 3584 3585 spin_lock(&sbinfo->stat_lock); 3586 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3587 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3588 if (!sbinfo->max_blocks) { 3589 err = "Cannot retroactively limit size"; 3590 goto out; 3591 } 3592 if (percpu_counter_compare(&sbinfo->used_blocks, 3593 ctx->blocks) > 0) { 3594 err = "Too small a size for current use"; 3595 goto out; 3596 } 3597 } 3598 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3599 if (!sbinfo->max_inodes) { 3600 err = "Cannot retroactively limit inodes"; 3601 goto out; 3602 } 3603 if (ctx->inodes < inodes) { 3604 err = "Too few inodes for current use"; 3605 goto out; 3606 } 3607 } 3608 3609 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3610 sbinfo->next_ino > UINT_MAX) { 3611 err = "Current inum too high to switch to 32-bit inums"; 3612 goto out; 3613 } 3614 3615 if (ctx->seen & SHMEM_SEEN_HUGE) 3616 sbinfo->huge = ctx->huge; 3617 if (ctx->seen & SHMEM_SEEN_INUMS) 3618 sbinfo->full_inums = ctx->full_inums; 3619 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3620 sbinfo->max_blocks = ctx->blocks; 3621 if (ctx->seen & SHMEM_SEEN_INODES) { 3622 sbinfo->max_inodes = ctx->inodes; 3623 sbinfo->free_inodes = ctx->inodes - inodes; 3624 } 3625 3626 /* 3627 * Preserve previous mempolicy unless mpol remount option was specified. 3628 */ 3629 if (ctx->mpol) { 3630 mpol_put(sbinfo->mpol); 3631 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3632 ctx->mpol = NULL; 3633 } 3634 spin_unlock(&sbinfo->stat_lock); 3635 return 0; 3636 out: 3637 spin_unlock(&sbinfo->stat_lock); 3638 return invalfc(fc, "%s", err); 3639 } 3640 3641 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3642 { 3643 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3644 3645 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3646 seq_printf(seq, ",size=%luk", 3647 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3648 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3649 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3650 if (sbinfo->mode != (0777 | S_ISVTX)) 3651 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3652 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3653 seq_printf(seq, ",uid=%u", 3654 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3655 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3656 seq_printf(seq, ",gid=%u", 3657 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3658 3659 /* 3660 * Showing inode{64,32} might be useful even if it's the system default, 3661 * since then people don't have to resort to checking both here and 3662 * /proc/config.gz to confirm 64-bit inums were successfully applied 3663 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3664 * 3665 * We hide it when inode64 isn't the default and we are using 32-bit 3666 * inodes, since that probably just means the feature isn't even under 3667 * consideration. 3668 * 3669 * As such: 3670 * 3671 * +-----------------+-----------------+ 3672 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3673 * +------------------+-----------------+-----------------+ 3674 * | full_inums=true | show | show | 3675 * | full_inums=false | show | hide | 3676 * +------------------+-----------------+-----------------+ 3677 * 3678 */ 3679 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3680 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3682 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3683 if (sbinfo->huge) 3684 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3685 #endif 3686 shmem_show_mpol(seq, sbinfo->mpol); 3687 return 0; 3688 } 3689 3690 #endif /* CONFIG_TMPFS */ 3691 3692 static void shmem_put_super(struct super_block *sb) 3693 { 3694 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3695 3696 free_percpu(sbinfo->ino_batch); 3697 percpu_counter_destroy(&sbinfo->used_blocks); 3698 mpol_put(sbinfo->mpol); 3699 kfree(sbinfo); 3700 sb->s_fs_info = NULL; 3701 } 3702 3703 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3704 { 3705 struct shmem_options *ctx = fc->fs_private; 3706 struct inode *inode; 3707 struct shmem_sb_info *sbinfo; 3708 int err = -ENOMEM; 3709 3710 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3711 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3712 L1_CACHE_BYTES), GFP_KERNEL); 3713 if (!sbinfo) 3714 return -ENOMEM; 3715 3716 sb->s_fs_info = sbinfo; 3717 3718 #ifdef CONFIG_TMPFS 3719 /* 3720 * Per default we only allow half of the physical ram per 3721 * tmpfs instance, limiting inodes to one per page of lowmem; 3722 * but the internal instance is left unlimited. 3723 */ 3724 if (!(sb->s_flags & SB_KERNMOUNT)) { 3725 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3726 ctx->blocks = shmem_default_max_blocks(); 3727 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3728 ctx->inodes = shmem_default_max_inodes(); 3729 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3730 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3731 } else { 3732 sb->s_flags |= SB_NOUSER; 3733 } 3734 sb->s_export_op = &shmem_export_ops; 3735 sb->s_flags |= SB_NOSEC; 3736 #else 3737 sb->s_flags |= SB_NOUSER; 3738 #endif 3739 sbinfo->max_blocks = ctx->blocks; 3740 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3741 if (sb->s_flags & SB_KERNMOUNT) { 3742 sbinfo->ino_batch = alloc_percpu(ino_t); 3743 if (!sbinfo->ino_batch) 3744 goto failed; 3745 } 3746 sbinfo->uid = ctx->uid; 3747 sbinfo->gid = ctx->gid; 3748 sbinfo->full_inums = ctx->full_inums; 3749 sbinfo->mode = ctx->mode; 3750 sbinfo->huge = ctx->huge; 3751 sbinfo->mpol = ctx->mpol; 3752 ctx->mpol = NULL; 3753 3754 spin_lock_init(&sbinfo->stat_lock); 3755 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3756 goto failed; 3757 spin_lock_init(&sbinfo->shrinklist_lock); 3758 INIT_LIST_HEAD(&sbinfo->shrinklist); 3759 3760 sb->s_maxbytes = MAX_LFS_FILESIZE; 3761 sb->s_blocksize = PAGE_SIZE; 3762 sb->s_blocksize_bits = PAGE_SHIFT; 3763 sb->s_magic = TMPFS_MAGIC; 3764 sb->s_op = &shmem_ops; 3765 sb->s_time_gran = 1; 3766 #ifdef CONFIG_TMPFS_XATTR 3767 sb->s_xattr = shmem_xattr_handlers; 3768 #endif 3769 #ifdef CONFIG_TMPFS_POSIX_ACL 3770 sb->s_flags |= SB_POSIXACL; 3771 #endif 3772 uuid_gen(&sb->s_uuid); 3773 3774 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3775 if (!inode) 3776 goto failed; 3777 inode->i_uid = sbinfo->uid; 3778 inode->i_gid = sbinfo->gid; 3779 sb->s_root = d_make_root(inode); 3780 if (!sb->s_root) 3781 goto failed; 3782 return 0; 3783 3784 failed: 3785 shmem_put_super(sb); 3786 return err; 3787 } 3788 3789 static int shmem_get_tree(struct fs_context *fc) 3790 { 3791 return get_tree_nodev(fc, shmem_fill_super); 3792 } 3793 3794 static void shmem_free_fc(struct fs_context *fc) 3795 { 3796 struct shmem_options *ctx = fc->fs_private; 3797 3798 if (ctx) { 3799 mpol_put(ctx->mpol); 3800 kfree(ctx); 3801 } 3802 } 3803 3804 static const struct fs_context_operations shmem_fs_context_ops = { 3805 .free = shmem_free_fc, 3806 .get_tree = shmem_get_tree, 3807 #ifdef CONFIG_TMPFS 3808 .parse_monolithic = shmem_parse_options, 3809 .parse_param = shmem_parse_one, 3810 .reconfigure = shmem_reconfigure, 3811 #endif 3812 }; 3813 3814 static struct kmem_cache *shmem_inode_cachep; 3815 3816 static struct inode *shmem_alloc_inode(struct super_block *sb) 3817 { 3818 struct shmem_inode_info *info; 3819 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3820 if (!info) 3821 return NULL; 3822 return &info->vfs_inode; 3823 } 3824 3825 static void shmem_free_in_core_inode(struct inode *inode) 3826 { 3827 if (S_ISLNK(inode->i_mode)) 3828 kfree(inode->i_link); 3829 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3830 } 3831 3832 static void shmem_destroy_inode(struct inode *inode) 3833 { 3834 if (S_ISREG(inode->i_mode)) 3835 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3836 } 3837 3838 static void shmem_init_inode(void *foo) 3839 { 3840 struct shmem_inode_info *info = foo; 3841 inode_init_once(&info->vfs_inode); 3842 } 3843 3844 static void shmem_init_inodecache(void) 3845 { 3846 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3847 sizeof(struct shmem_inode_info), 3848 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3849 } 3850 3851 static void shmem_destroy_inodecache(void) 3852 { 3853 kmem_cache_destroy(shmem_inode_cachep); 3854 } 3855 3856 static const struct address_space_operations shmem_aops = { 3857 .writepage = shmem_writepage, 3858 .set_page_dirty = __set_page_dirty_no_writeback, 3859 #ifdef CONFIG_TMPFS 3860 .write_begin = shmem_write_begin, 3861 .write_end = shmem_write_end, 3862 #endif 3863 #ifdef CONFIG_MIGRATION 3864 .migratepage = migrate_page, 3865 #endif 3866 .error_remove_page = generic_error_remove_page, 3867 }; 3868 3869 static const struct file_operations shmem_file_operations = { 3870 .mmap = shmem_mmap, 3871 .get_unmapped_area = shmem_get_unmapped_area, 3872 #ifdef CONFIG_TMPFS 3873 .llseek = shmem_file_llseek, 3874 .read_iter = shmem_file_read_iter, 3875 .write_iter = generic_file_write_iter, 3876 .fsync = noop_fsync, 3877 .splice_read = generic_file_splice_read, 3878 .splice_write = iter_file_splice_write, 3879 .fallocate = shmem_fallocate, 3880 #endif 3881 }; 3882 3883 static const struct inode_operations shmem_inode_operations = { 3884 .getattr = shmem_getattr, 3885 .setattr = shmem_setattr, 3886 #ifdef CONFIG_TMPFS_XATTR 3887 .listxattr = shmem_listxattr, 3888 .set_acl = simple_set_acl, 3889 #endif 3890 }; 3891 3892 static const struct inode_operations shmem_dir_inode_operations = { 3893 #ifdef CONFIG_TMPFS 3894 .create = shmem_create, 3895 .lookup = simple_lookup, 3896 .link = shmem_link, 3897 .unlink = shmem_unlink, 3898 .symlink = shmem_symlink, 3899 .mkdir = shmem_mkdir, 3900 .rmdir = shmem_rmdir, 3901 .mknod = shmem_mknod, 3902 .rename = shmem_rename2, 3903 .tmpfile = shmem_tmpfile, 3904 #endif 3905 #ifdef CONFIG_TMPFS_XATTR 3906 .listxattr = shmem_listxattr, 3907 #endif 3908 #ifdef CONFIG_TMPFS_POSIX_ACL 3909 .setattr = shmem_setattr, 3910 .set_acl = simple_set_acl, 3911 #endif 3912 }; 3913 3914 static const struct inode_operations shmem_special_inode_operations = { 3915 #ifdef CONFIG_TMPFS_XATTR 3916 .listxattr = shmem_listxattr, 3917 #endif 3918 #ifdef CONFIG_TMPFS_POSIX_ACL 3919 .setattr = shmem_setattr, 3920 .set_acl = simple_set_acl, 3921 #endif 3922 }; 3923 3924 static const struct super_operations shmem_ops = { 3925 .alloc_inode = shmem_alloc_inode, 3926 .free_inode = shmem_free_in_core_inode, 3927 .destroy_inode = shmem_destroy_inode, 3928 #ifdef CONFIG_TMPFS 3929 .statfs = shmem_statfs, 3930 .show_options = shmem_show_options, 3931 #endif 3932 .evict_inode = shmem_evict_inode, 3933 .drop_inode = generic_delete_inode, 3934 .put_super = shmem_put_super, 3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3936 .nr_cached_objects = shmem_unused_huge_count, 3937 .free_cached_objects = shmem_unused_huge_scan, 3938 #endif 3939 }; 3940 3941 static const struct vm_operations_struct shmem_vm_ops = { 3942 .fault = shmem_fault, 3943 .map_pages = filemap_map_pages, 3944 #ifdef CONFIG_NUMA 3945 .set_policy = shmem_set_policy, 3946 .get_policy = shmem_get_policy, 3947 #endif 3948 }; 3949 3950 int shmem_init_fs_context(struct fs_context *fc) 3951 { 3952 struct shmem_options *ctx; 3953 3954 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3955 if (!ctx) 3956 return -ENOMEM; 3957 3958 ctx->mode = 0777 | S_ISVTX; 3959 ctx->uid = current_fsuid(); 3960 ctx->gid = current_fsgid(); 3961 3962 fc->fs_private = ctx; 3963 fc->ops = &shmem_fs_context_ops; 3964 return 0; 3965 } 3966 3967 static struct file_system_type shmem_fs_type = { 3968 .owner = THIS_MODULE, 3969 .name = "tmpfs", 3970 .init_fs_context = shmem_init_fs_context, 3971 #ifdef CONFIG_TMPFS 3972 .parameters = shmem_fs_parameters, 3973 #endif 3974 .kill_sb = kill_litter_super, 3975 .fs_flags = FS_USERNS_MOUNT, 3976 }; 3977 3978 int __init shmem_init(void) 3979 { 3980 int error; 3981 3982 shmem_init_inodecache(); 3983 3984 error = register_filesystem(&shmem_fs_type); 3985 if (error) { 3986 pr_err("Could not register tmpfs\n"); 3987 goto out2; 3988 } 3989 3990 shm_mnt = kern_mount(&shmem_fs_type); 3991 if (IS_ERR(shm_mnt)) { 3992 error = PTR_ERR(shm_mnt); 3993 pr_err("Could not kern_mount tmpfs\n"); 3994 goto out1; 3995 } 3996 3997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3998 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3999 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4000 else 4001 shmem_huge = 0; /* just in case it was patched */ 4002 #endif 4003 return 0; 4004 4005 out1: 4006 unregister_filesystem(&shmem_fs_type); 4007 out2: 4008 shmem_destroy_inodecache(); 4009 shm_mnt = ERR_PTR(error); 4010 return error; 4011 } 4012 4013 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4014 static ssize_t shmem_enabled_show(struct kobject *kobj, 4015 struct kobj_attribute *attr, char *buf) 4016 { 4017 static const int values[] = { 4018 SHMEM_HUGE_ALWAYS, 4019 SHMEM_HUGE_WITHIN_SIZE, 4020 SHMEM_HUGE_ADVISE, 4021 SHMEM_HUGE_NEVER, 4022 SHMEM_HUGE_DENY, 4023 SHMEM_HUGE_FORCE, 4024 }; 4025 int i, count; 4026 4027 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4028 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4029 4030 count += sprintf(buf + count, fmt, 4031 shmem_format_huge(values[i])); 4032 } 4033 buf[count - 1] = '\n'; 4034 return count; 4035 } 4036 4037 static ssize_t shmem_enabled_store(struct kobject *kobj, 4038 struct kobj_attribute *attr, const char *buf, size_t count) 4039 { 4040 char tmp[16]; 4041 int huge; 4042 4043 if (count + 1 > sizeof(tmp)) 4044 return -EINVAL; 4045 memcpy(tmp, buf, count); 4046 tmp[count] = '\0'; 4047 if (count && tmp[count - 1] == '\n') 4048 tmp[count - 1] = '\0'; 4049 4050 huge = shmem_parse_huge(tmp); 4051 if (huge == -EINVAL) 4052 return -EINVAL; 4053 if (!has_transparent_hugepage() && 4054 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4055 return -EINVAL; 4056 4057 shmem_huge = huge; 4058 if (shmem_huge > SHMEM_HUGE_DENY) 4059 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4060 return count; 4061 } 4062 4063 struct kobj_attribute shmem_enabled_attr = 4064 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4065 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4066 4067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4068 bool shmem_huge_enabled(struct vm_area_struct *vma) 4069 { 4070 struct inode *inode = file_inode(vma->vm_file); 4071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4072 loff_t i_size; 4073 pgoff_t off; 4074 4075 if ((vma->vm_flags & VM_NOHUGEPAGE) || 4076 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 4077 return false; 4078 if (shmem_huge == SHMEM_HUGE_FORCE) 4079 return true; 4080 if (shmem_huge == SHMEM_HUGE_DENY) 4081 return false; 4082 switch (sbinfo->huge) { 4083 case SHMEM_HUGE_NEVER: 4084 return false; 4085 case SHMEM_HUGE_ALWAYS: 4086 return true; 4087 case SHMEM_HUGE_WITHIN_SIZE: 4088 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4089 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4090 if (i_size >= HPAGE_PMD_SIZE && 4091 i_size >> PAGE_SHIFT >= off) 4092 return true; 4093 fallthrough; 4094 case SHMEM_HUGE_ADVISE: 4095 /* TODO: implement fadvise() hints */ 4096 return (vma->vm_flags & VM_HUGEPAGE); 4097 default: 4098 VM_BUG_ON(1); 4099 return false; 4100 } 4101 } 4102 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4103 4104 #else /* !CONFIG_SHMEM */ 4105 4106 /* 4107 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4108 * 4109 * This is intended for small system where the benefits of the full 4110 * shmem code (swap-backed and resource-limited) are outweighed by 4111 * their complexity. On systems without swap this code should be 4112 * effectively equivalent, but much lighter weight. 4113 */ 4114 4115 static struct file_system_type shmem_fs_type = { 4116 .name = "tmpfs", 4117 .init_fs_context = ramfs_init_fs_context, 4118 .parameters = ramfs_fs_parameters, 4119 .kill_sb = kill_litter_super, 4120 .fs_flags = FS_USERNS_MOUNT, 4121 }; 4122 4123 int __init shmem_init(void) 4124 { 4125 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4126 4127 shm_mnt = kern_mount(&shmem_fs_type); 4128 BUG_ON(IS_ERR(shm_mnt)); 4129 4130 return 0; 4131 } 4132 4133 int shmem_unuse(unsigned int type, bool frontswap, 4134 unsigned long *fs_pages_to_unuse) 4135 { 4136 return 0; 4137 } 4138 4139 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4140 { 4141 return 0; 4142 } 4143 4144 void shmem_unlock_mapping(struct address_space *mapping) 4145 { 4146 } 4147 4148 #ifdef CONFIG_MMU 4149 unsigned long shmem_get_unmapped_area(struct file *file, 4150 unsigned long addr, unsigned long len, 4151 unsigned long pgoff, unsigned long flags) 4152 { 4153 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4154 } 4155 #endif 4156 4157 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4158 { 4159 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4160 } 4161 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4162 4163 #define shmem_vm_ops generic_file_vm_ops 4164 #define shmem_file_operations ramfs_file_operations 4165 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4166 #define shmem_acct_size(flags, size) 0 4167 #define shmem_unacct_size(flags, size) do {} while (0) 4168 4169 #endif /* CONFIG_SHMEM */ 4170 4171 /* common code */ 4172 4173 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4174 unsigned long flags, unsigned int i_flags) 4175 { 4176 struct inode *inode; 4177 struct file *res; 4178 4179 if (IS_ERR(mnt)) 4180 return ERR_CAST(mnt); 4181 4182 if (size < 0 || size > MAX_LFS_FILESIZE) 4183 return ERR_PTR(-EINVAL); 4184 4185 if (shmem_acct_size(flags, size)) 4186 return ERR_PTR(-ENOMEM); 4187 4188 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4189 flags); 4190 if (unlikely(!inode)) { 4191 shmem_unacct_size(flags, size); 4192 return ERR_PTR(-ENOSPC); 4193 } 4194 inode->i_flags |= i_flags; 4195 inode->i_size = size; 4196 clear_nlink(inode); /* It is unlinked */ 4197 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4198 if (!IS_ERR(res)) 4199 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4200 &shmem_file_operations); 4201 if (IS_ERR(res)) 4202 iput(inode); 4203 return res; 4204 } 4205 4206 /** 4207 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4208 * kernel internal. There will be NO LSM permission checks against the 4209 * underlying inode. So users of this interface must do LSM checks at a 4210 * higher layer. The users are the big_key and shm implementations. LSM 4211 * checks are provided at the key or shm level rather than the inode. 4212 * @name: name for dentry (to be seen in /proc/<pid>/maps 4213 * @size: size to be set for the file 4214 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4215 */ 4216 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4217 { 4218 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4219 } 4220 4221 /** 4222 * shmem_file_setup - get an unlinked file living in tmpfs 4223 * @name: name for dentry (to be seen in /proc/<pid>/maps 4224 * @size: size to be set for the file 4225 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4226 */ 4227 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4228 { 4229 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4230 } 4231 EXPORT_SYMBOL_GPL(shmem_file_setup); 4232 4233 /** 4234 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4235 * @mnt: the tmpfs mount where the file will be created 4236 * @name: name for dentry (to be seen in /proc/<pid>/maps 4237 * @size: size to be set for the file 4238 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4239 */ 4240 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4241 loff_t size, unsigned long flags) 4242 { 4243 return __shmem_file_setup(mnt, name, size, flags, 0); 4244 } 4245 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4246 4247 /** 4248 * shmem_zero_setup - setup a shared anonymous mapping 4249 * @vma: the vma to be mmapped is prepared by do_mmap 4250 */ 4251 int shmem_zero_setup(struct vm_area_struct *vma) 4252 { 4253 struct file *file; 4254 loff_t size = vma->vm_end - vma->vm_start; 4255 4256 /* 4257 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4258 * between XFS directory reading and selinux: since this file is only 4259 * accessible to the user through its mapping, use S_PRIVATE flag to 4260 * bypass file security, in the same way as shmem_kernel_file_setup(). 4261 */ 4262 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4263 if (IS_ERR(file)) 4264 return PTR_ERR(file); 4265 4266 if (vma->vm_file) 4267 fput(vma->vm_file); 4268 vma->vm_file = file; 4269 vma->vm_ops = &shmem_vm_ops; 4270 4271 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4272 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4273 (vma->vm_end & HPAGE_PMD_MASK)) { 4274 khugepaged_enter(vma, vma->vm_flags); 4275 } 4276 4277 return 0; 4278 } 4279 4280 /** 4281 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4282 * @mapping: the page's address_space 4283 * @index: the page index 4284 * @gfp: the page allocator flags to use if allocating 4285 * 4286 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4287 * with any new page allocations done using the specified allocation flags. 4288 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4289 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4290 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4291 * 4292 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4293 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4294 */ 4295 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4296 pgoff_t index, gfp_t gfp) 4297 { 4298 #ifdef CONFIG_SHMEM 4299 struct inode *inode = mapping->host; 4300 struct page *page; 4301 int error; 4302 4303 BUG_ON(mapping->a_ops != &shmem_aops); 4304 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4305 gfp, NULL, NULL, NULL); 4306 if (error) 4307 page = ERR_PTR(error); 4308 else 4309 unlock_page(page); 4310 return page; 4311 #else 4312 /* 4313 * The tiny !SHMEM case uses ramfs without swap 4314 */ 4315 return read_cache_page_gfp(mapping, index, gfp); 4316 #endif 4317 } 4318 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4319