1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/aio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 70 #include <asm/uaccess.h> 71 #include <asm/pgtable.h> 72 73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 75 76 /* Pretend that each entry is of this size in directory's i_size */ 77 #define BOGO_DIRENT_SIZE 20 78 79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 80 #define SHORT_SYMLINK_LEN 128 81 82 /* 83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 84 * inode->i_private (with i_mutex making sure that it has only one user at 85 * a time): we would prefer not to enlarge the shmem inode just for that. 86 */ 87 struct shmem_falloc { 88 int mode; /* FALLOC_FL mode currently operating */ 89 pgoff_t start; /* start of range currently being fallocated */ 90 pgoff_t next; /* the next page offset to be fallocated */ 91 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 93 }; 94 95 /* Flag allocation requirements to shmem_getpage */ 96 enum sgp_type { 97 SGP_READ, /* don't exceed i_size, don't allocate page */ 98 SGP_CACHE, /* don't exceed i_size, may allocate page */ 99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 102 }; 103 104 #ifdef CONFIG_TMPFS 105 static unsigned long shmem_default_max_blocks(void) 106 { 107 return totalram_pages / 2; 108 } 109 110 static unsigned long shmem_default_max_inodes(void) 111 { 112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 113 } 114 #endif 115 116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 117 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 118 struct shmem_inode_info *info, pgoff_t index); 119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 121 122 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, int *fault_type) 124 { 125 return shmem_getpage_gfp(inode, index, pagep, sgp, 126 mapping_gfp_mask(inode->i_mapping), fault_type); 127 } 128 129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 130 { 131 return sb->s_fs_info; 132 } 133 134 /* 135 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 136 * for shared memory and for shared anonymous (/dev/zero) mappings 137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 138 * consistent with the pre-accounting of private mappings ... 139 */ 140 static inline int shmem_acct_size(unsigned long flags, loff_t size) 141 { 142 return (flags & VM_NORESERVE) ? 143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 144 } 145 146 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 147 { 148 if (!(flags & VM_NORESERVE)) 149 vm_unacct_memory(VM_ACCT(size)); 150 } 151 152 /* 153 * ... whereas tmpfs objects are accounted incrementally as 154 * pages are allocated, in order to allow huge sparse files. 155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 157 */ 158 static inline int shmem_acct_block(unsigned long flags) 159 { 160 return (flags & VM_NORESERVE) ? 161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 162 } 163 164 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 165 { 166 if (flags & VM_NORESERVE) 167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 168 } 169 170 static const struct super_operations shmem_ops; 171 static const struct address_space_operations shmem_aops; 172 static const struct file_operations shmem_file_operations; 173 static const struct inode_operations shmem_inode_operations; 174 static const struct inode_operations shmem_dir_inode_operations; 175 static const struct inode_operations shmem_special_inode_operations; 176 static const struct vm_operations_struct shmem_vm_ops; 177 178 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 179 .ra_pages = 0, /* No readahead */ 180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 181 }; 182 183 static LIST_HEAD(shmem_swaplist); 184 static DEFINE_MUTEX(shmem_swaplist_mutex); 185 186 static int shmem_reserve_inode(struct super_block *sb) 187 { 188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 189 if (sbinfo->max_inodes) { 190 spin_lock(&sbinfo->stat_lock); 191 if (!sbinfo->free_inodes) { 192 spin_unlock(&sbinfo->stat_lock); 193 return -ENOSPC; 194 } 195 sbinfo->free_inodes--; 196 spin_unlock(&sbinfo->stat_lock); 197 } 198 return 0; 199 } 200 201 static void shmem_free_inode(struct super_block *sb) 202 { 203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 204 if (sbinfo->max_inodes) { 205 spin_lock(&sbinfo->stat_lock); 206 sbinfo->free_inodes++; 207 spin_unlock(&sbinfo->stat_lock); 208 } 209 } 210 211 /** 212 * shmem_recalc_inode - recalculate the block usage of an inode 213 * @inode: inode to recalc 214 * 215 * We have to calculate the free blocks since the mm can drop 216 * undirtied hole pages behind our back. 217 * 218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 220 * 221 * It has to be called with the spinlock held. 222 */ 223 static void shmem_recalc_inode(struct inode *inode) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 long freed; 227 228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 229 if (freed > 0) { 230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 231 if (sbinfo->max_blocks) 232 percpu_counter_add(&sbinfo->used_blocks, -freed); 233 info->alloced -= freed; 234 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 235 shmem_unacct_blocks(info->flags, freed); 236 } 237 } 238 239 /* 240 * Replace item expected in radix tree by a new item, while holding tree lock. 241 */ 242 static int shmem_radix_tree_replace(struct address_space *mapping, 243 pgoff_t index, void *expected, void *replacement) 244 { 245 void **pslot; 246 void *item; 247 248 VM_BUG_ON(!expected); 249 VM_BUG_ON(!replacement); 250 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 251 if (!pslot) 252 return -ENOENT; 253 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 254 if (item != expected) 255 return -ENOENT; 256 radix_tree_replace_slot(pslot, replacement); 257 return 0; 258 } 259 260 /* 261 * Sometimes, before we decide whether to proceed or to fail, we must check 262 * that an entry was not already brought back from swap by a racing thread. 263 * 264 * Checking page is not enough: by the time a SwapCache page is locked, it 265 * might be reused, and again be SwapCache, using the same swap as before. 266 */ 267 static bool shmem_confirm_swap(struct address_space *mapping, 268 pgoff_t index, swp_entry_t swap) 269 { 270 void *item; 271 272 rcu_read_lock(); 273 item = radix_tree_lookup(&mapping->page_tree, index); 274 rcu_read_unlock(); 275 return item == swp_to_radix_entry(swap); 276 } 277 278 /* 279 * Like add_to_page_cache_locked, but error if expected item has gone. 280 */ 281 static int shmem_add_to_page_cache(struct page *page, 282 struct address_space *mapping, 283 pgoff_t index, gfp_t gfp, void *expected) 284 { 285 int error; 286 287 VM_BUG_ON_PAGE(!PageLocked(page), page); 288 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 289 290 page_cache_get(page); 291 page->mapping = mapping; 292 page->index = index; 293 294 spin_lock_irq(&mapping->tree_lock); 295 if (!expected) 296 error = radix_tree_insert(&mapping->page_tree, index, page); 297 else 298 error = shmem_radix_tree_replace(mapping, index, expected, 299 page); 300 if (!error) { 301 mapping->nrpages++; 302 __inc_zone_page_state(page, NR_FILE_PAGES); 303 __inc_zone_page_state(page, NR_SHMEM); 304 spin_unlock_irq(&mapping->tree_lock); 305 } else { 306 page->mapping = NULL; 307 spin_unlock_irq(&mapping->tree_lock); 308 page_cache_release(page); 309 } 310 return error; 311 } 312 313 /* 314 * Like delete_from_page_cache, but substitutes swap for page. 315 */ 316 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 317 { 318 struct address_space *mapping = page->mapping; 319 int error; 320 321 spin_lock_irq(&mapping->tree_lock); 322 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 323 page->mapping = NULL; 324 mapping->nrpages--; 325 __dec_zone_page_state(page, NR_FILE_PAGES); 326 __dec_zone_page_state(page, NR_SHMEM); 327 spin_unlock_irq(&mapping->tree_lock); 328 page_cache_release(page); 329 BUG_ON(error); 330 } 331 332 /* 333 * Remove swap entry from radix tree, free the swap and its page cache. 334 */ 335 static int shmem_free_swap(struct address_space *mapping, 336 pgoff_t index, void *radswap) 337 { 338 void *old; 339 340 spin_lock_irq(&mapping->tree_lock); 341 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 342 spin_unlock_irq(&mapping->tree_lock); 343 if (old != radswap) 344 return -ENOENT; 345 free_swap_and_cache(radix_to_swp_entry(radswap)); 346 return 0; 347 } 348 349 /* 350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 351 */ 352 void shmem_unlock_mapping(struct address_space *mapping) 353 { 354 struct pagevec pvec; 355 pgoff_t indices[PAGEVEC_SIZE]; 356 pgoff_t index = 0; 357 358 pagevec_init(&pvec, 0); 359 /* 360 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 361 */ 362 while (!mapping_unevictable(mapping)) { 363 /* 364 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 365 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 366 */ 367 pvec.nr = find_get_entries(mapping, index, 368 PAGEVEC_SIZE, pvec.pages, indices); 369 if (!pvec.nr) 370 break; 371 index = indices[pvec.nr - 1] + 1; 372 pagevec_remove_exceptionals(&pvec); 373 check_move_unevictable_pages(pvec.pages, pvec.nr); 374 pagevec_release(&pvec); 375 cond_resched(); 376 } 377 } 378 379 /* 380 * Remove range of pages and swap entries from radix tree, and free them. 381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 382 */ 383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 384 bool unfalloc) 385 { 386 struct address_space *mapping = inode->i_mapping; 387 struct shmem_inode_info *info = SHMEM_I(inode); 388 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 389 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 390 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 391 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 392 struct pagevec pvec; 393 pgoff_t indices[PAGEVEC_SIZE]; 394 long nr_swaps_freed = 0; 395 pgoff_t index; 396 int i; 397 398 if (lend == -1) 399 end = -1; /* unsigned, so actually very big */ 400 401 pagevec_init(&pvec, 0); 402 index = start; 403 while (index < end) { 404 pvec.nr = find_get_entries(mapping, index, 405 min(end - index, (pgoff_t)PAGEVEC_SIZE), 406 pvec.pages, indices); 407 if (!pvec.nr) 408 break; 409 mem_cgroup_uncharge_start(); 410 for (i = 0; i < pagevec_count(&pvec); i++) { 411 struct page *page = pvec.pages[i]; 412 413 index = indices[i]; 414 if (index >= end) 415 break; 416 417 if (radix_tree_exceptional_entry(page)) { 418 if (unfalloc) 419 continue; 420 nr_swaps_freed += !shmem_free_swap(mapping, 421 index, page); 422 continue; 423 } 424 425 if (!trylock_page(page)) 426 continue; 427 if (!unfalloc || !PageUptodate(page)) { 428 if (page->mapping == mapping) { 429 VM_BUG_ON_PAGE(PageWriteback(page), page); 430 truncate_inode_page(mapping, page); 431 } 432 } 433 unlock_page(page); 434 } 435 pagevec_remove_exceptionals(&pvec); 436 pagevec_release(&pvec); 437 mem_cgroup_uncharge_end(); 438 cond_resched(); 439 index++; 440 } 441 442 if (partial_start) { 443 struct page *page = NULL; 444 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 445 if (page) { 446 unsigned int top = PAGE_CACHE_SIZE; 447 if (start > end) { 448 top = partial_end; 449 partial_end = 0; 450 } 451 zero_user_segment(page, partial_start, top); 452 set_page_dirty(page); 453 unlock_page(page); 454 page_cache_release(page); 455 } 456 } 457 if (partial_end) { 458 struct page *page = NULL; 459 shmem_getpage(inode, end, &page, SGP_READ, NULL); 460 if (page) { 461 zero_user_segment(page, 0, partial_end); 462 set_page_dirty(page); 463 unlock_page(page); 464 page_cache_release(page); 465 } 466 } 467 if (start >= end) 468 return; 469 470 index = start; 471 for ( ; ; ) { 472 cond_resched(); 473 474 pvec.nr = find_get_entries(mapping, index, 475 min(end - index, (pgoff_t)PAGEVEC_SIZE), 476 pvec.pages, indices); 477 if (!pvec.nr) { 478 if (index == start || unfalloc) 479 break; 480 index = start; 481 continue; 482 } 483 if ((index == start || unfalloc) && indices[0] >= end) { 484 pagevec_remove_exceptionals(&pvec); 485 pagevec_release(&pvec); 486 break; 487 } 488 mem_cgroup_uncharge_start(); 489 for (i = 0; i < pagevec_count(&pvec); i++) { 490 struct page *page = pvec.pages[i]; 491 492 index = indices[i]; 493 if (index >= end) 494 break; 495 496 if (radix_tree_exceptional_entry(page)) { 497 if (unfalloc) 498 continue; 499 nr_swaps_freed += !shmem_free_swap(mapping, 500 index, page); 501 continue; 502 } 503 504 lock_page(page); 505 if (!unfalloc || !PageUptodate(page)) { 506 if (page->mapping == mapping) { 507 VM_BUG_ON_PAGE(PageWriteback(page), page); 508 truncate_inode_page(mapping, page); 509 } 510 } 511 unlock_page(page); 512 } 513 pagevec_remove_exceptionals(&pvec); 514 pagevec_release(&pvec); 515 mem_cgroup_uncharge_end(); 516 index++; 517 } 518 519 spin_lock(&info->lock); 520 info->swapped -= nr_swaps_freed; 521 shmem_recalc_inode(inode); 522 spin_unlock(&info->lock); 523 } 524 525 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 526 { 527 shmem_undo_range(inode, lstart, lend, false); 528 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 529 } 530 EXPORT_SYMBOL_GPL(shmem_truncate_range); 531 532 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 533 { 534 struct inode *inode = dentry->d_inode; 535 int error; 536 537 error = inode_change_ok(inode, attr); 538 if (error) 539 return error; 540 541 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 542 loff_t oldsize = inode->i_size; 543 loff_t newsize = attr->ia_size; 544 545 if (newsize != oldsize) { 546 i_size_write(inode, newsize); 547 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 548 } 549 if (newsize < oldsize) { 550 loff_t holebegin = round_up(newsize, PAGE_SIZE); 551 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 552 shmem_truncate_range(inode, newsize, (loff_t)-1); 553 /* unmap again to remove racily COWed private pages */ 554 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 555 } 556 } 557 558 setattr_copy(inode, attr); 559 if (attr->ia_valid & ATTR_MODE) 560 error = posix_acl_chmod(inode, inode->i_mode); 561 return error; 562 } 563 564 static void shmem_evict_inode(struct inode *inode) 565 { 566 struct shmem_inode_info *info = SHMEM_I(inode); 567 568 if (inode->i_mapping->a_ops == &shmem_aops) { 569 shmem_unacct_size(info->flags, inode->i_size); 570 inode->i_size = 0; 571 shmem_truncate_range(inode, 0, (loff_t)-1); 572 if (!list_empty(&info->swaplist)) { 573 mutex_lock(&shmem_swaplist_mutex); 574 list_del_init(&info->swaplist); 575 mutex_unlock(&shmem_swaplist_mutex); 576 } 577 } else 578 kfree(info->symlink); 579 580 simple_xattrs_free(&info->xattrs); 581 WARN_ON(inode->i_blocks); 582 shmem_free_inode(inode->i_sb); 583 clear_inode(inode); 584 } 585 586 /* 587 * If swap found in inode, free it and move page from swapcache to filecache. 588 */ 589 static int shmem_unuse_inode(struct shmem_inode_info *info, 590 swp_entry_t swap, struct page **pagep) 591 { 592 struct address_space *mapping = info->vfs_inode.i_mapping; 593 void *radswap; 594 pgoff_t index; 595 gfp_t gfp; 596 int error = 0; 597 598 radswap = swp_to_radix_entry(swap); 599 index = radix_tree_locate_item(&mapping->page_tree, radswap); 600 if (index == -1) 601 return 0; 602 603 /* 604 * Move _head_ to start search for next from here. 605 * But be careful: shmem_evict_inode checks list_empty without taking 606 * mutex, and there's an instant in list_move_tail when info->swaplist 607 * would appear empty, if it were the only one on shmem_swaplist. 608 */ 609 if (shmem_swaplist.next != &info->swaplist) 610 list_move_tail(&shmem_swaplist, &info->swaplist); 611 612 gfp = mapping_gfp_mask(mapping); 613 if (shmem_should_replace_page(*pagep, gfp)) { 614 mutex_unlock(&shmem_swaplist_mutex); 615 error = shmem_replace_page(pagep, gfp, info, index); 616 mutex_lock(&shmem_swaplist_mutex); 617 /* 618 * We needed to drop mutex to make that restrictive page 619 * allocation, but the inode might have been freed while we 620 * dropped it: although a racing shmem_evict_inode() cannot 621 * complete without emptying the radix_tree, our page lock 622 * on this swapcache page is not enough to prevent that - 623 * free_swap_and_cache() of our swap entry will only 624 * trylock_page(), removing swap from radix_tree whatever. 625 * 626 * We must not proceed to shmem_add_to_page_cache() if the 627 * inode has been freed, but of course we cannot rely on 628 * inode or mapping or info to check that. However, we can 629 * safely check if our swap entry is still in use (and here 630 * it can't have got reused for another page): if it's still 631 * in use, then the inode cannot have been freed yet, and we 632 * can safely proceed (if it's no longer in use, that tells 633 * nothing about the inode, but we don't need to unuse swap). 634 */ 635 if (!page_swapcount(*pagep)) 636 error = -ENOENT; 637 } 638 639 /* 640 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 641 * but also to hold up shmem_evict_inode(): so inode cannot be freed 642 * beneath us (pagelock doesn't help until the page is in pagecache). 643 */ 644 if (!error) 645 error = shmem_add_to_page_cache(*pagep, mapping, index, 646 GFP_NOWAIT, radswap); 647 if (error != -ENOMEM) { 648 /* 649 * Truncation and eviction use free_swap_and_cache(), which 650 * only does trylock page: if we raced, best clean up here. 651 */ 652 delete_from_swap_cache(*pagep); 653 set_page_dirty(*pagep); 654 if (!error) { 655 spin_lock(&info->lock); 656 info->swapped--; 657 spin_unlock(&info->lock); 658 swap_free(swap); 659 } 660 error = 1; /* not an error, but entry was found */ 661 } 662 return error; 663 } 664 665 /* 666 * Search through swapped inodes to find and replace swap by page. 667 */ 668 int shmem_unuse(swp_entry_t swap, struct page *page) 669 { 670 struct list_head *this, *next; 671 struct shmem_inode_info *info; 672 int found = 0; 673 int error = 0; 674 675 /* 676 * There's a faint possibility that swap page was replaced before 677 * caller locked it: caller will come back later with the right page. 678 */ 679 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 680 goto out; 681 682 /* 683 * Charge page using GFP_KERNEL while we can wait, before taking 684 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 685 * Charged back to the user (not to caller) when swap account is used. 686 */ 687 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL); 688 if (error) 689 goto out; 690 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 691 692 mutex_lock(&shmem_swaplist_mutex); 693 list_for_each_safe(this, next, &shmem_swaplist) { 694 info = list_entry(this, struct shmem_inode_info, swaplist); 695 if (info->swapped) 696 found = shmem_unuse_inode(info, swap, &page); 697 else 698 list_del_init(&info->swaplist); 699 cond_resched(); 700 if (found) 701 break; 702 } 703 mutex_unlock(&shmem_swaplist_mutex); 704 705 if (found < 0) 706 error = found; 707 out: 708 unlock_page(page); 709 page_cache_release(page); 710 return error; 711 } 712 713 /* 714 * Move the page from the page cache to the swap cache. 715 */ 716 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 717 { 718 struct shmem_inode_info *info; 719 struct address_space *mapping; 720 struct inode *inode; 721 swp_entry_t swap; 722 pgoff_t index; 723 724 BUG_ON(!PageLocked(page)); 725 mapping = page->mapping; 726 index = page->index; 727 inode = mapping->host; 728 info = SHMEM_I(inode); 729 if (info->flags & VM_LOCKED) 730 goto redirty; 731 if (!total_swap_pages) 732 goto redirty; 733 734 /* 735 * shmem_backing_dev_info's capabilities prevent regular writeback or 736 * sync from ever calling shmem_writepage; but a stacking filesystem 737 * might use ->writepage of its underlying filesystem, in which case 738 * tmpfs should write out to swap only in response to memory pressure, 739 * and not for the writeback threads or sync. 740 */ 741 if (!wbc->for_reclaim) { 742 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 743 goto redirty; 744 } 745 746 /* 747 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 748 * value into swapfile.c, the only way we can correctly account for a 749 * fallocated page arriving here is now to initialize it and write it. 750 * 751 * That's okay for a page already fallocated earlier, but if we have 752 * not yet completed the fallocation, then (a) we want to keep track 753 * of this page in case we have to undo it, and (b) it may not be a 754 * good idea to continue anyway, once we're pushing into swap. So 755 * reactivate the page, and let shmem_fallocate() quit when too many. 756 */ 757 if (!PageUptodate(page)) { 758 if (inode->i_private) { 759 struct shmem_falloc *shmem_falloc; 760 spin_lock(&inode->i_lock); 761 shmem_falloc = inode->i_private; 762 if (shmem_falloc && 763 !shmem_falloc->mode && 764 index >= shmem_falloc->start && 765 index < shmem_falloc->next) 766 shmem_falloc->nr_unswapped++; 767 else 768 shmem_falloc = NULL; 769 spin_unlock(&inode->i_lock); 770 if (shmem_falloc) 771 goto redirty; 772 } 773 clear_highpage(page); 774 flush_dcache_page(page); 775 SetPageUptodate(page); 776 } 777 778 swap = get_swap_page(); 779 if (!swap.val) 780 goto redirty; 781 782 /* 783 * Add inode to shmem_unuse()'s list of swapped-out inodes, 784 * if it's not already there. Do it now before the page is 785 * moved to swap cache, when its pagelock no longer protects 786 * the inode from eviction. But don't unlock the mutex until 787 * we've incremented swapped, because shmem_unuse_inode() will 788 * prune a !swapped inode from the swaplist under this mutex. 789 */ 790 mutex_lock(&shmem_swaplist_mutex); 791 if (list_empty(&info->swaplist)) 792 list_add_tail(&info->swaplist, &shmem_swaplist); 793 794 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 795 swap_shmem_alloc(swap); 796 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 797 798 spin_lock(&info->lock); 799 info->swapped++; 800 shmem_recalc_inode(inode); 801 spin_unlock(&info->lock); 802 803 mutex_unlock(&shmem_swaplist_mutex); 804 BUG_ON(page_mapped(page)); 805 swap_writepage(page, wbc); 806 return 0; 807 } 808 809 mutex_unlock(&shmem_swaplist_mutex); 810 swapcache_free(swap, NULL); 811 redirty: 812 set_page_dirty(page); 813 if (wbc->for_reclaim) 814 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 815 unlock_page(page); 816 return 0; 817 } 818 819 #ifdef CONFIG_NUMA 820 #ifdef CONFIG_TMPFS 821 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 822 { 823 char buffer[64]; 824 825 if (!mpol || mpol->mode == MPOL_DEFAULT) 826 return; /* show nothing */ 827 828 mpol_to_str(buffer, sizeof(buffer), mpol); 829 830 seq_printf(seq, ",mpol=%s", buffer); 831 } 832 833 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 834 { 835 struct mempolicy *mpol = NULL; 836 if (sbinfo->mpol) { 837 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 838 mpol = sbinfo->mpol; 839 mpol_get(mpol); 840 spin_unlock(&sbinfo->stat_lock); 841 } 842 return mpol; 843 } 844 #endif /* CONFIG_TMPFS */ 845 846 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 847 struct shmem_inode_info *info, pgoff_t index) 848 { 849 struct vm_area_struct pvma; 850 struct page *page; 851 852 /* Create a pseudo vma that just contains the policy */ 853 pvma.vm_start = 0; 854 /* Bias interleave by inode number to distribute better across nodes */ 855 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 856 pvma.vm_ops = NULL; 857 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 858 859 page = swapin_readahead(swap, gfp, &pvma, 0); 860 861 /* Drop reference taken by mpol_shared_policy_lookup() */ 862 mpol_cond_put(pvma.vm_policy); 863 864 return page; 865 } 866 867 static struct page *shmem_alloc_page(gfp_t gfp, 868 struct shmem_inode_info *info, pgoff_t index) 869 { 870 struct vm_area_struct pvma; 871 struct page *page; 872 873 /* Create a pseudo vma that just contains the policy */ 874 pvma.vm_start = 0; 875 /* Bias interleave by inode number to distribute better across nodes */ 876 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 877 pvma.vm_ops = NULL; 878 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 879 880 page = alloc_page_vma(gfp, &pvma, 0); 881 882 /* Drop reference taken by mpol_shared_policy_lookup() */ 883 mpol_cond_put(pvma.vm_policy); 884 885 return page; 886 } 887 #else /* !CONFIG_NUMA */ 888 #ifdef CONFIG_TMPFS 889 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 890 { 891 } 892 #endif /* CONFIG_TMPFS */ 893 894 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 895 struct shmem_inode_info *info, pgoff_t index) 896 { 897 return swapin_readahead(swap, gfp, NULL, 0); 898 } 899 900 static inline struct page *shmem_alloc_page(gfp_t gfp, 901 struct shmem_inode_info *info, pgoff_t index) 902 { 903 return alloc_page(gfp); 904 } 905 #endif /* CONFIG_NUMA */ 906 907 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 908 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 909 { 910 return NULL; 911 } 912 #endif 913 914 /* 915 * When a page is moved from swapcache to shmem filecache (either by the 916 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 917 * shmem_unuse_inode()), it may have been read in earlier from swap, in 918 * ignorance of the mapping it belongs to. If that mapping has special 919 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 920 * we may need to copy to a suitable page before moving to filecache. 921 * 922 * In a future release, this may well be extended to respect cpuset and 923 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 924 * but for now it is a simple matter of zone. 925 */ 926 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 927 { 928 return page_zonenum(page) > gfp_zone(gfp); 929 } 930 931 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 932 struct shmem_inode_info *info, pgoff_t index) 933 { 934 struct page *oldpage, *newpage; 935 struct address_space *swap_mapping; 936 pgoff_t swap_index; 937 int error; 938 939 oldpage = *pagep; 940 swap_index = page_private(oldpage); 941 swap_mapping = page_mapping(oldpage); 942 943 /* 944 * We have arrived here because our zones are constrained, so don't 945 * limit chance of success by further cpuset and node constraints. 946 */ 947 gfp &= ~GFP_CONSTRAINT_MASK; 948 newpage = shmem_alloc_page(gfp, info, index); 949 if (!newpage) 950 return -ENOMEM; 951 952 page_cache_get(newpage); 953 copy_highpage(newpage, oldpage); 954 flush_dcache_page(newpage); 955 956 __set_page_locked(newpage); 957 SetPageUptodate(newpage); 958 SetPageSwapBacked(newpage); 959 set_page_private(newpage, swap_index); 960 SetPageSwapCache(newpage); 961 962 /* 963 * Our caller will very soon move newpage out of swapcache, but it's 964 * a nice clean interface for us to replace oldpage by newpage there. 965 */ 966 spin_lock_irq(&swap_mapping->tree_lock); 967 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 968 newpage); 969 if (!error) { 970 __inc_zone_page_state(newpage, NR_FILE_PAGES); 971 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 972 } 973 spin_unlock_irq(&swap_mapping->tree_lock); 974 975 if (unlikely(error)) { 976 /* 977 * Is this possible? I think not, now that our callers check 978 * both PageSwapCache and page_private after getting page lock; 979 * but be defensive. Reverse old to newpage for clear and free. 980 */ 981 oldpage = newpage; 982 } else { 983 mem_cgroup_replace_page_cache(oldpage, newpage); 984 lru_cache_add_anon(newpage); 985 *pagep = newpage; 986 } 987 988 ClearPageSwapCache(oldpage); 989 set_page_private(oldpage, 0); 990 991 unlock_page(oldpage); 992 page_cache_release(oldpage); 993 page_cache_release(oldpage); 994 return error; 995 } 996 997 /* 998 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 999 * 1000 * If we allocate a new one we do not mark it dirty. That's up to the 1001 * vm. If we swap it in we mark it dirty since we also free the swap 1002 * entry since a page cannot live in both the swap and page cache 1003 */ 1004 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1005 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1006 { 1007 struct address_space *mapping = inode->i_mapping; 1008 struct shmem_inode_info *info; 1009 struct shmem_sb_info *sbinfo; 1010 struct page *page; 1011 swp_entry_t swap; 1012 int error; 1013 int once = 0; 1014 int alloced = 0; 1015 1016 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1017 return -EFBIG; 1018 repeat: 1019 swap.val = 0; 1020 page = find_lock_entry(mapping, index); 1021 if (radix_tree_exceptional_entry(page)) { 1022 swap = radix_to_swp_entry(page); 1023 page = NULL; 1024 } 1025 1026 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1027 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1028 error = -EINVAL; 1029 goto failed; 1030 } 1031 1032 /* fallocated page? */ 1033 if (page && !PageUptodate(page)) { 1034 if (sgp != SGP_READ) 1035 goto clear; 1036 unlock_page(page); 1037 page_cache_release(page); 1038 page = NULL; 1039 } 1040 if (page || (sgp == SGP_READ && !swap.val)) { 1041 *pagep = page; 1042 return 0; 1043 } 1044 1045 /* 1046 * Fast cache lookup did not find it: 1047 * bring it back from swap or allocate. 1048 */ 1049 info = SHMEM_I(inode); 1050 sbinfo = SHMEM_SB(inode->i_sb); 1051 1052 if (swap.val) { 1053 /* Look it up and read it in.. */ 1054 page = lookup_swap_cache(swap); 1055 if (!page) { 1056 /* here we actually do the io */ 1057 if (fault_type) 1058 *fault_type |= VM_FAULT_MAJOR; 1059 page = shmem_swapin(swap, gfp, info, index); 1060 if (!page) { 1061 error = -ENOMEM; 1062 goto failed; 1063 } 1064 } 1065 1066 /* We have to do this with page locked to prevent races */ 1067 lock_page(page); 1068 if (!PageSwapCache(page) || page_private(page) != swap.val || 1069 !shmem_confirm_swap(mapping, index, swap)) { 1070 error = -EEXIST; /* try again */ 1071 goto unlock; 1072 } 1073 if (!PageUptodate(page)) { 1074 error = -EIO; 1075 goto failed; 1076 } 1077 wait_on_page_writeback(page); 1078 1079 if (shmem_should_replace_page(page, gfp)) { 1080 error = shmem_replace_page(&page, gfp, info, index); 1081 if (error) 1082 goto failed; 1083 } 1084 1085 error = mem_cgroup_charge_file(page, current->mm, 1086 gfp & GFP_RECLAIM_MASK); 1087 if (!error) { 1088 error = shmem_add_to_page_cache(page, mapping, index, 1089 gfp, swp_to_radix_entry(swap)); 1090 /* 1091 * We already confirmed swap under page lock, and make 1092 * no memory allocation here, so usually no possibility 1093 * of error; but free_swap_and_cache() only trylocks a 1094 * page, so it is just possible that the entry has been 1095 * truncated or holepunched since swap was confirmed. 1096 * shmem_undo_range() will have done some of the 1097 * unaccounting, now delete_from_swap_cache() will do 1098 * the rest (including mem_cgroup_uncharge_swapcache). 1099 * Reset swap.val? No, leave it so "failed" goes back to 1100 * "repeat": reading a hole and writing should succeed. 1101 */ 1102 if (error) 1103 delete_from_swap_cache(page); 1104 } 1105 if (error) 1106 goto failed; 1107 1108 spin_lock(&info->lock); 1109 info->swapped--; 1110 shmem_recalc_inode(inode); 1111 spin_unlock(&info->lock); 1112 1113 delete_from_swap_cache(page); 1114 set_page_dirty(page); 1115 swap_free(swap); 1116 1117 } else { 1118 if (shmem_acct_block(info->flags)) { 1119 error = -ENOSPC; 1120 goto failed; 1121 } 1122 if (sbinfo->max_blocks) { 1123 if (percpu_counter_compare(&sbinfo->used_blocks, 1124 sbinfo->max_blocks) >= 0) { 1125 error = -ENOSPC; 1126 goto unacct; 1127 } 1128 percpu_counter_inc(&sbinfo->used_blocks); 1129 } 1130 1131 page = shmem_alloc_page(gfp, info, index); 1132 if (!page) { 1133 error = -ENOMEM; 1134 goto decused; 1135 } 1136 1137 __SetPageSwapBacked(page); 1138 __set_page_locked(page); 1139 error = mem_cgroup_charge_file(page, current->mm, 1140 gfp & GFP_RECLAIM_MASK); 1141 if (error) 1142 goto decused; 1143 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1144 if (!error) { 1145 error = shmem_add_to_page_cache(page, mapping, index, 1146 gfp, NULL); 1147 radix_tree_preload_end(); 1148 } 1149 if (error) { 1150 mem_cgroup_uncharge_cache_page(page); 1151 goto decused; 1152 } 1153 lru_cache_add_anon(page); 1154 1155 spin_lock(&info->lock); 1156 info->alloced++; 1157 inode->i_blocks += BLOCKS_PER_PAGE; 1158 shmem_recalc_inode(inode); 1159 spin_unlock(&info->lock); 1160 alloced = true; 1161 1162 /* 1163 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1164 */ 1165 if (sgp == SGP_FALLOC) 1166 sgp = SGP_WRITE; 1167 clear: 1168 /* 1169 * Let SGP_WRITE caller clear ends if write does not fill page; 1170 * but SGP_FALLOC on a page fallocated earlier must initialize 1171 * it now, lest undo on failure cancel our earlier guarantee. 1172 */ 1173 if (sgp != SGP_WRITE) { 1174 clear_highpage(page); 1175 flush_dcache_page(page); 1176 SetPageUptodate(page); 1177 } 1178 if (sgp == SGP_DIRTY) 1179 set_page_dirty(page); 1180 } 1181 1182 /* Perhaps the file has been truncated since we checked */ 1183 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1184 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1185 error = -EINVAL; 1186 if (alloced) 1187 goto trunc; 1188 else 1189 goto failed; 1190 } 1191 *pagep = page; 1192 return 0; 1193 1194 /* 1195 * Error recovery. 1196 */ 1197 trunc: 1198 info = SHMEM_I(inode); 1199 ClearPageDirty(page); 1200 delete_from_page_cache(page); 1201 spin_lock(&info->lock); 1202 info->alloced--; 1203 inode->i_blocks -= BLOCKS_PER_PAGE; 1204 spin_unlock(&info->lock); 1205 decused: 1206 sbinfo = SHMEM_SB(inode->i_sb); 1207 if (sbinfo->max_blocks) 1208 percpu_counter_add(&sbinfo->used_blocks, -1); 1209 unacct: 1210 shmem_unacct_blocks(info->flags, 1); 1211 failed: 1212 if (swap.val && error != -EINVAL && 1213 !shmem_confirm_swap(mapping, index, swap)) 1214 error = -EEXIST; 1215 unlock: 1216 if (page) { 1217 unlock_page(page); 1218 page_cache_release(page); 1219 } 1220 if (error == -ENOSPC && !once++) { 1221 info = SHMEM_I(inode); 1222 spin_lock(&info->lock); 1223 shmem_recalc_inode(inode); 1224 spin_unlock(&info->lock); 1225 goto repeat; 1226 } 1227 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1228 goto repeat; 1229 return error; 1230 } 1231 1232 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1233 { 1234 struct inode *inode = file_inode(vma->vm_file); 1235 int error; 1236 int ret = VM_FAULT_LOCKED; 1237 1238 /* 1239 * Trinity finds that probing a hole which tmpfs is punching can 1240 * prevent the hole-punch from ever completing: which in turn 1241 * locks writers out with its hold on i_mutex. So refrain from 1242 * faulting pages into the hole while it's being punched, and 1243 * wait on i_mutex to be released if vmf->flags permits. 1244 */ 1245 if (unlikely(inode->i_private)) { 1246 struct shmem_falloc *shmem_falloc; 1247 1248 spin_lock(&inode->i_lock); 1249 shmem_falloc = inode->i_private; 1250 if (!shmem_falloc || 1251 shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE || 1252 vmf->pgoff < shmem_falloc->start || 1253 vmf->pgoff >= shmem_falloc->next) 1254 shmem_falloc = NULL; 1255 spin_unlock(&inode->i_lock); 1256 /* 1257 * i_lock has protected us from taking shmem_falloc seriously 1258 * once return from shmem_fallocate() went back up that stack. 1259 * i_lock does not serialize with i_mutex at all, but it does 1260 * not matter if sometimes we wait unnecessarily, or sometimes 1261 * miss out on waiting: we just need to make those cases rare. 1262 */ 1263 if (shmem_falloc) { 1264 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1265 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1266 up_read(&vma->vm_mm->mmap_sem); 1267 mutex_lock(&inode->i_mutex); 1268 mutex_unlock(&inode->i_mutex); 1269 return VM_FAULT_RETRY; 1270 } 1271 /* cond_resched? Leave that to GUP or return to user */ 1272 return VM_FAULT_NOPAGE; 1273 } 1274 } 1275 1276 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1277 if (error) 1278 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1279 1280 if (ret & VM_FAULT_MAJOR) { 1281 count_vm_event(PGMAJFAULT); 1282 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1283 } 1284 return ret; 1285 } 1286 1287 #ifdef CONFIG_NUMA 1288 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1289 { 1290 struct inode *inode = file_inode(vma->vm_file); 1291 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1292 } 1293 1294 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1295 unsigned long addr) 1296 { 1297 struct inode *inode = file_inode(vma->vm_file); 1298 pgoff_t index; 1299 1300 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1301 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1302 } 1303 #endif 1304 1305 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1306 { 1307 struct inode *inode = file_inode(file); 1308 struct shmem_inode_info *info = SHMEM_I(inode); 1309 int retval = -ENOMEM; 1310 1311 spin_lock(&info->lock); 1312 if (lock && !(info->flags & VM_LOCKED)) { 1313 if (!user_shm_lock(inode->i_size, user)) 1314 goto out_nomem; 1315 info->flags |= VM_LOCKED; 1316 mapping_set_unevictable(file->f_mapping); 1317 } 1318 if (!lock && (info->flags & VM_LOCKED) && user) { 1319 user_shm_unlock(inode->i_size, user); 1320 info->flags &= ~VM_LOCKED; 1321 mapping_clear_unevictable(file->f_mapping); 1322 } 1323 retval = 0; 1324 1325 out_nomem: 1326 spin_unlock(&info->lock); 1327 return retval; 1328 } 1329 1330 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1331 { 1332 file_accessed(file); 1333 vma->vm_ops = &shmem_vm_ops; 1334 return 0; 1335 } 1336 1337 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1338 umode_t mode, dev_t dev, unsigned long flags) 1339 { 1340 struct inode *inode; 1341 struct shmem_inode_info *info; 1342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1343 1344 if (shmem_reserve_inode(sb)) 1345 return NULL; 1346 1347 inode = new_inode(sb); 1348 if (inode) { 1349 inode->i_ino = get_next_ino(); 1350 inode_init_owner(inode, dir, mode); 1351 inode->i_blocks = 0; 1352 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1353 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1354 inode->i_generation = get_seconds(); 1355 info = SHMEM_I(inode); 1356 memset(info, 0, (char *)inode - (char *)info); 1357 spin_lock_init(&info->lock); 1358 info->flags = flags & VM_NORESERVE; 1359 INIT_LIST_HEAD(&info->swaplist); 1360 simple_xattrs_init(&info->xattrs); 1361 cache_no_acl(inode); 1362 1363 switch (mode & S_IFMT) { 1364 default: 1365 inode->i_op = &shmem_special_inode_operations; 1366 init_special_inode(inode, mode, dev); 1367 break; 1368 case S_IFREG: 1369 inode->i_mapping->a_ops = &shmem_aops; 1370 inode->i_op = &shmem_inode_operations; 1371 inode->i_fop = &shmem_file_operations; 1372 mpol_shared_policy_init(&info->policy, 1373 shmem_get_sbmpol(sbinfo)); 1374 break; 1375 case S_IFDIR: 1376 inc_nlink(inode); 1377 /* Some things misbehave if size == 0 on a directory */ 1378 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1379 inode->i_op = &shmem_dir_inode_operations; 1380 inode->i_fop = &simple_dir_operations; 1381 break; 1382 case S_IFLNK: 1383 /* 1384 * Must not load anything in the rbtree, 1385 * mpol_free_shared_policy will not be called. 1386 */ 1387 mpol_shared_policy_init(&info->policy, NULL); 1388 break; 1389 } 1390 } else 1391 shmem_free_inode(sb); 1392 return inode; 1393 } 1394 1395 bool shmem_mapping(struct address_space *mapping) 1396 { 1397 return mapping->backing_dev_info == &shmem_backing_dev_info; 1398 } 1399 1400 #ifdef CONFIG_TMPFS 1401 static const struct inode_operations shmem_symlink_inode_operations; 1402 static const struct inode_operations shmem_short_symlink_operations; 1403 1404 #ifdef CONFIG_TMPFS_XATTR 1405 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1406 #else 1407 #define shmem_initxattrs NULL 1408 #endif 1409 1410 static int 1411 shmem_write_begin(struct file *file, struct address_space *mapping, 1412 loff_t pos, unsigned len, unsigned flags, 1413 struct page **pagep, void **fsdata) 1414 { 1415 int ret; 1416 struct inode *inode = mapping->host; 1417 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1418 ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1419 if (ret == 0 && *pagep) 1420 init_page_accessed(*pagep); 1421 return ret; 1422 } 1423 1424 static int 1425 shmem_write_end(struct file *file, struct address_space *mapping, 1426 loff_t pos, unsigned len, unsigned copied, 1427 struct page *page, void *fsdata) 1428 { 1429 struct inode *inode = mapping->host; 1430 1431 if (pos + copied > inode->i_size) 1432 i_size_write(inode, pos + copied); 1433 1434 if (!PageUptodate(page)) { 1435 if (copied < PAGE_CACHE_SIZE) { 1436 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1437 zero_user_segments(page, 0, from, 1438 from + copied, PAGE_CACHE_SIZE); 1439 } 1440 SetPageUptodate(page); 1441 } 1442 set_page_dirty(page); 1443 unlock_page(page); 1444 page_cache_release(page); 1445 1446 return copied; 1447 } 1448 1449 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1450 { 1451 struct file *file = iocb->ki_filp; 1452 struct inode *inode = file_inode(file); 1453 struct address_space *mapping = inode->i_mapping; 1454 pgoff_t index; 1455 unsigned long offset; 1456 enum sgp_type sgp = SGP_READ; 1457 int error = 0; 1458 ssize_t retval = 0; 1459 loff_t *ppos = &iocb->ki_pos; 1460 1461 /* 1462 * Might this read be for a stacking filesystem? Then when reading 1463 * holes of a sparse file, we actually need to allocate those pages, 1464 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1465 */ 1466 if (segment_eq(get_fs(), KERNEL_DS)) 1467 sgp = SGP_DIRTY; 1468 1469 index = *ppos >> PAGE_CACHE_SHIFT; 1470 offset = *ppos & ~PAGE_CACHE_MASK; 1471 1472 for (;;) { 1473 struct page *page = NULL; 1474 pgoff_t end_index; 1475 unsigned long nr, ret; 1476 loff_t i_size = i_size_read(inode); 1477 1478 end_index = i_size >> PAGE_CACHE_SHIFT; 1479 if (index > end_index) 1480 break; 1481 if (index == end_index) { 1482 nr = i_size & ~PAGE_CACHE_MASK; 1483 if (nr <= offset) 1484 break; 1485 } 1486 1487 error = shmem_getpage(inode, index, &page, sgp, NULL); 1488 if (error) { 1489 if (error == -EINVAL) 1490 error = 0; 1491 break; 1492 } 1493 if (page) 1494 unlock_page(page); 1495 1496 /* 1497 * We must evaluate after, since reads (unlike writes) 1498 * are called without i_mutex protection against truncate 1499 */ 1500 nr = PAGE_CACHE_SIZE; 1501 i_size = i_size_read(inode); 1502 end_index = i_size >> PAGE_CACHE_SHIFT; 1503 if (index == end_index) { 1504 nr = i_size & ~PAGE_CACHE_MASK; 1505 if (nr <= offset) { 1506 if (page) 1507 page_cache_release(page); 1508 break; 1509 } 1510 } 1511 nr -= offset; 1512 1513 if (page) { 1514 /* 1515 * If users can be writing to this page using arbitrary 1516 * virtual addresses, take care about potential aliasing 1517 * before reading the page on the kernel side. 1518 */ 1519 if (mapping_writably_mapped(mapping)) 1520 flush_dcache_page(page); 1521 /* 1522 * Mark the page accessed if we read the beginning. 1523 */ 1524 if (!offset) 1525 mark_page_accessed(page); 1526 } else { 1527 page = ZERO_PAGE(0); 1528 page_cache_get(page); 1529 } 1530 1531 /* 1532 * Ok, we have the page, and it's up-to-date, so 1533 * now we can copy it to user space... 1534 */ 1535 ret = copy_page_to_iter(page, offset, nr, to); 1536 retval += ret; 1537 offset += ret; 1538 index += offset >> PAGE_CACHE_SHIFT; 1539 offset &= ~PAGE_CACHE_MASK; 1540 1541 page_cache_release(page); 1542 if (!iov_iter_count(to)) 1543 break; 1544 if (ret < nr) { 1545 error = -EFAULT; 1546 break; 1547 } 1548 cond_resched(); 1549 } 1550 1551 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1552 file_accessed(file); 1553 return retval ? retval : error; 1554 } 1555 1556 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1557 struct pipe_inode_info *pipe, size_t len, 1558 unsigned int flags) 1559 { 1560 struct address_space *mapping = in->f_mapping; 1561 struct inode *inode = mapping->host; 1562 unsigned int loff, nr_pages, req_pages; 1563 struct page *pages[PIPE_DEF_BUFFERS]; 1564 struct partial_page partial[PIPE_DEF_BUFFERS]; 1565 struct page *page; 1566 pgoff_t index, end_index; 1567 loff_t isize, left; 1568 int error, page_nr; 1569 struct splice_pipe_desc spd = { 1570 .pages = pages, 1571 .partial = partial, 1572 .nr_pages_max = PIPE_DEF_BUFFERS, 1573 .flags = flags, 1574 .ops = &page_cache_pipe_buf_ops, 1575 .spd_release = spd_release_page, 1576 }; 1577 1578 isize = i_size_read(inode); 1579 if (unlikely(*ppos >= isize)) 1580 return 0; 1581 1582 left = isize - *ppos; 1583 if (unlikely(left < len)) 1584 len = left; 1585 1586 if (splice_grow_spd(pipe, &spd)) 1587 return -ENOMEM; 1588 1589 index = *ppos >> PAGE_CACHE_SHIFT; 1590 loff = *ppos & ~PAGE_CACHE_MASK; 1591 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1592 nr_pages = min(req_pages, spd.nr_pages_max); 1593 1594 spd.nr_pages = find_get_pages_contig(mapping, index, 1595 nr_pages, spd.pages); 1596 index += spd.nr_pages; 1597 error = 0; 1598 1599 while (spd.nr_pages < nr_pages) { 1600 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1601 if (error) 1602 break; 1603 unlock_page(page); 1604 spd.pages[spd.nr_pages++] = page; 1605 index++; 1606 } 1607 1608 index = *ppos >> PAGE_CACHE_SHIFT; 1609 nr_pages = spd.nr_pages; 1610 spd.nr_pages = 0; 1611 1612 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1613 unsigned int this_len; 1614 1615 if (!len) 1616 break; 1617 1618 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1619 page = spd.pages[page_nr]; 1620 1621 if (!PageUptodate(page) || page->mapping != mapping) { 1622 error = shmem_getpage(inode, index, &page, 1623 SGP_CACHE, NULL); 1624 if (error) 1625 break; 1626 unlock_page(page); 1627 page_cache_release(spd.pages[page_nr]); 1628 spd.pages[page_nr] = page; 1629 } 1630 1631 isize = i_size_read(inode); 1632 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1633 if (unlikely(!isize || index > end_index)) 1634 break; 1635 1636 if (end_index == index) { 1637 unsigned int plen; 1638 1639 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1640 if (plen <= loff) 1641 break; 1642 1643 this_len = min(this_len, plen - loff); 1644 len = this_len; 1645 } 1646 1647 spd.partial[page_nr].offset = loff; 1648 spd.partial[page_nr].len = this_len; 1649 len -= this_len; 1650 loff = 0; 1651 spd.nr_pages++; 1652 index++; 1653 } 1654 1655 while (page_nr < nr_pages) 1656 page_cache_release(spd.pages[page_nr++]); 1657 1658 if (spd.nr_pages) 1659 error = splice_to_pipe(pipe, &spd); 1660 1661 splice_shrink_spd(&spd); 1662 1663 if (error > 0) { 1664 *ppos += error; 1665 file_accessed(in); 1666 } 1667 return error; 1668 } 1669 1670 /* 1671 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1672 */ 1673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1674 pgoff_t index, pgoff_t end, int whence) 1675 { 1676 struct page *page; 1677 struct pagevec pvec; 1678 pgoff_t indices[PAGEVEC_SIZE]; 1679 bool done = false; 1680 int i; 1681 1682 pagevec_init(&pvec, 0); 1683 pvec.nr = 1; /* start small: we may be there already */ 1684 while (!done) { 1685 pvec.nr = find_get_entries(mapping, index, 1686 pvec.nr, pvec.pages, indices); 1687 if (!pvec.nr) { 1688 if (whence == SEEK_DATA) 1689 index = end; 1690 break; 1691 } 1692 for (i = 0; i < pvec.nr; i++, index++) { 1693 if (index < indices[i]) { 1694 if (whence == SEEK_HOLE) { 1695 done = true; 1696 break; 1697 } 1698 index = indices[i]; 1699 } 1700 page = pvec.pages[i]; 1701 if (page && !radix_tree_exceptional_entry(page)) { 1702 if (!PageUptodate(page)) 1703 page = NULL; 1704 } 1705 if (index >= end || 1706 (page && whence == SEEK_DATA) || 1707 (!page && whence == SEEK_HOLE)) { 1708 done = true; 1709 break; 1710 } 1711 } 1712 pagevec_remove_exceptionals(&pvec); 1713 pagevec_release(&pvec); 1714 pvec.nr = PAGEVEC_SIZE; 1715 cond_resched(); 1716 } 1717 return index; 1718 } 1719 1720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1721 { 1722 struct address_space *mapping = file->f_mapping; 1723 struct inode *inode = mapping->host; 1724 pgoff_t start, end; 1725 loff_t new_offset; 1726 1727 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1728 return generic_file_llseek_size(file, offset, whence, 1729 MAX_LFS_FILESIZE, i_size_read(inode)); 1730 mutex_lock(&inode->i_mutex); 1731 /* We're holding i_mutex so we can access i_size directly */ 1732 1733 if (offset < 0) 1734 offset = -EINVAL; 1735 else if (offset >= inode->i_size) 1736 offset = -ENXIO; 1737 else { 1738 start = offset >> PAGE_CACHE_SHIFT; 1739 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1740 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1741 new_offset <<= PAGE_CACHE_SHIFT; 1742 if (new_offset > offset) { 1743 if (new_offset < inode->i_size) 1744 offset = new_offset; 1745 else if (whence == SEEK_DATA) 1746 offset = -ENXIO; 1747 else 1748 offset = inode->i_size; 1749 } 1750 } 1751 1752 if (offset >= 0) 1753 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1754 mutex_unlock(&inode->i_mutex); 1755 return offset; 1756 } 1757 1758 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1759 loff_t len) 1760 { 1761 struct inode *inode = file_inode(file); 1762 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1763 struct shmem_falloc shmem_falloc; 1764 pgoff_t start, index, end; 1765 int error; 1766 1767 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 1768 return -EOPNOTSUPP; 1769 1770 mutex_lock(&inode->i_mutex); 1771 1772 shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE; 1773 1774 if (mode & FALLOC_FL_PUNCH_HOLE) { 1775 struct address_space *mapping = file->f_mapping; 1776 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1777 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1778 1779 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 1780 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 1781 spin_lock(&inode->i_lock); 1782 inode->i_private = &shmem_falloc; 1783 spin_unlock(&inode->i_lock); 1784 1785 if ((u64)unmap_end > (u64)unmap_start) 1786 unmap_mapping_range(mapping, unmap_start, 1787 1 + unmap_end - unmap_start, 0); 1788 shmem_truncate_range(inode, offset, offset + len - 1); 1789 /* No need to unmap again: hole-punching leaves COWed pages */ 1790 error = 0; 1791 goto undone; 1792 } 1793 1794 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 1795 error = inode_newsize_ok(inode, offset + len); 1796 if (error) 1797 goto out; 1798 1799 start = offset >> PAGE_CACHE_SHIFT; 1800 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1801 /* Try to avoid a swapstorm if len is impossible to satisfy */ 1802 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 1803 error = -ENOSPC; 1804 goto out; 1805 } 1806 1807 shmem_falloc.start = start; 1808 shmem_falloc.next = start; 1809 shmem_falloc.nr_falloced = 0; 1810 shmem_falloc.nr_unswapped = 0; 1811 spin_lock(&inode->i_lock); 1812 inode->i_private = &shmem_falloc; 1813 spin_unlock(&inode->i_lock); 1814 1815 for (index = start; index < end; index++) { 1816 struct page *page; 1817 1818 /* 1819 * Good, the fallocate(2) manpage permits EINTR: we may have 1820 * been interrupted because we are using up too much memory. 1821 */ 1822 if (signal_pending(current)) 1823 error = -EINTR; 1824 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 1825 error = -ENOMEM; 1826 else 1827 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 1828 NULL); 1829 if (error) { 1830 /* Remove the !PageUptodate pages we added */ 1831 shmem_undo_range(inode, 1832 (loff_t)start << PAGE_CACHE_SHIFT, 1833 (loff_t)index << PAGE_CACHE_SHIFT, true); 1834 goto undone; 1835 } 1836 1837 /* 1838 * Inform shmem_writepage() how far we have reached. 1839 * No need for lock or barrier: we have the page lock. 1840 */ 1841 shmem_falloc.next++; 1842 if (!PageUptodate(page)) 1843 shmem_falloc.nr_falloced++; 1844 1845 /* 1846 * If !PageUptodate, leave it that way so that freeable pages 1847 * can be recognized if we need to rollback on error later. 1848 * But set_page_dirty so that memory pressure will swap rather 1849 * than free the pages we are allocating (and SGP_CACHE pages 1850 * might still be clean: we now need to mark those dirty too). 1851 */ 1852 set_page_dirty(page); 1853 unlock_page(page); 1854 page_cache_release(page); 1855 cond_resched(); 1856 } 1857 1858 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 1859 i_size_write(inode, offset + len); 1860 inode->i_ctime = CURRENT_TIME; 1861 undone: 1862 spin_lock(&inode->i_lock); 1863 inode->i_private = NULL; 1864 spin_unlock(&inode->i_lock); 1865 out: 1866 mutex_unlock(&inode->i_mutex); 1867 return error; 1868 } 1869 1870 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1871 { 1872 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1873 1874 buf->f_type = TMPFS_MAGIC; 1875 buf->f_bsize = PAGE_CACHE_SIZE; 1876 buf->f_namelen = NAME_MAX; 1877 if (sbinfo->max_blocks) { 1878 buf->f_blocks = sbinfo->max_blocks; 1879 buf->f_bavail = 1880 buf->f_bfree = sbinfo->max_blocks - 1881 percpu_counter_sum(&sbinfo->used_blocks); 1882 } 1883 if (sbinfo->max_inodes) { 1884 buf->f_files = sbinfo->max_inodes; 1885 buf->f_ffree = sbinfo->free_inodes; 1886 } 1887 /* else leave those fields 0 like simple_statfs */ 1888 return 0; 1889 } 1890 1891 /* 1892 * File creation. Allocate an inode, and we're done.. 1893 */ 1894 static int 1895 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1896 { 1897 struct inode *inode; 1898 int error = -ENOSPC; 1899 1900 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1901 if (inode) { 1902 error = simple_acl_create(dir, inode); 1903 if (error) 1904 goto out_iput; 1905 error = security_inode_init_security(inode, dir, 1906 &dentry->d_name, 1907 shmem_initxattrs, NULL); 1908 if (error && error != -EOPNOTSUPP) 1909 goto out_iput; 1910 1911 error = 0; 1912 dir->i_size += BOGO_DIRENT_SIZE; 1913 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1914 d_instantiate(dentry, inode); 1915 dget(dentry); /* Extra count - pin the dentry in core */ 1916 } 1917 return error; 1918 out_iput: 1919 iput(inode); 1920 return error; 1921 } 1922 1923 static int 1924 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 1925 { 1926 struct inode *inode; 1927 int error = -ENOSPC; 1928 1929 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 1930 if (inode) { 1931 error = security_inode_init_security(inode, dir, 1932 NULL, 1933 shmem_initxattrs, NULL); 1934 if (error && error != -EOPNOTSUPP) 1935 goto out_iput; 1936 error = simple_acl_create(dir, inode); 1937 if (error) 1938 goto out_iput; 1939 d_tmpfile(dentry, inode); 1940 } 1941 return error; 1942 out_iput: 1943 iput(inode); 1944 return error; 1945 } 1946 1947 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1948 { 1949 int error; 1950 1951 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1952 return error; 1953 inc_nlink(dir); 1954 return 0; 1955 } 1956 1957 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1958 bool excl) 1959 { 1960 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1961 } 1962 1963 /* 1964 * Link a file.. 1965 */ 1966 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1967 { 1968 struct inode *inode = old_dentry->d_inode; 1969 int ret; 1970 1971 /* 1972 * No ordinary (disk based) filesystem counts links as inodes; 1973 * but each new link needs a new dentry, pinning lowmem, and 1974 * tmpfs dentries cannot be pruned until they are unlinked. 1975 */ 1976 ret = shmem_reserve_inode(inode->i_sb); 1977 if (ret) 1978 goto out; 1979 1980 dir->i_size += BOGO_DIRENT_SIZE; 1981 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1982 inc_nlink(inode); 1983 ihold(inode); /* New dentry reference */ 1984 dget(dentry); /* Extra pinning count for the created dentry */ 1985 d_instantiate(dentry, inode); 1986 out: 1987 return ret; 1988 } 1989 1990 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1991 { 1992 struct inode *inode = dentry->d_inode; 1993 1994 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1995 shmem_free_inode(inode->i_sb); 1996 1997 dir->i_size -= BOGO_DIRENT_SIZE; 1998 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1999 drop_nlink(inode); 2000 dput(dentry); /* Undo the count from "create" - this does all the work */ 2001 return 0; 2002 } 2003 2004 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2005 { 2006 if (!simple_empty(dentry)) 2007 return -ENOTEMPTY; 2008 2009 drop_nlink(dentry->d_inode); 2010 drop_nlink(dir); 2011 return shmem_unlink(dir, dentry); 2012 } 2013 2014 /* 2015 * The VFS layer already does all the dentry stuff for rename, 2016 * we just have to decrement the usage count for the target if 2017 * it exists so that the VFS layer correctly free's it when it 2018 * gets overwritten. 2019 */ 2020 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2021 { 2022 struct inode *inode = old_dentry->d_inode; 2023 int they_are_dirs = S_ISDIR(inode->i_mode); 2024 2025 if (!simple_empty(new_dentry)) 2026 return -ENOTEMPTY; 2027 2028 if (new_dentry->d_inode) { 2029 (void) shmem_unlink(new_dir, new_dentry); 2030 if (they_are_dirs) 2031 drop_nlink(old_dir); 2032 } else if (they_are_dirs) { 2033 drop_nlink(old_dir); 2034 inc_nlink(new_dir); 2035 } 2036 2037 old_dir->i_size -= BOGO_DIRENT_SIZE; 2038 new_dir->i_size += BOGO_DIRENT_SIZE; 2039 old_dir->i_ctime = old_dir->i_mtime = 2040 new_dir->i_ctime = new_dir->i_mtime = 2041 inode->i_ctime = CURRENT_TIME; 2042 return 0; 2043 } 2044 2045 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2046 { 2047 int error; 2048 int len; 2049 struct inode *inode; 2050 struct page *page; 2051 char *kaddr; 2052 struct shmem_inode_info *info; 2053 2054 len = strlen(symname) + 1; 2055 if (len > PAGE_CACHE_SIZE) 2056 return -ENAMETOOLONG; 2057 2058 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2059 if (!inode) 2060 return -ENOSPC; 2061 2062 error = security_inode_init_security(inode, dir, &dentry->d_name, 2063 shmem_initxattrs, NULL); 2064 if (error) { 2065 if (error != -EOPNOTSUPP) { 2066 iput(inode); 2067 return error; 2068 } 2069 error = 0; 2070 } 2071 2072 info = SHMEM_I(inode); 2073 inode->i_size = len-1; 2074 if (len <= SHORT_SYMLINK_LEN) { 2075 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2076 if (!info->symlink) { 2077 iput(inode); 2078 return -ENOMEM; 2079 } 2080 inode->i_op = &shmem_short_symlink_operations; 2081 } else { 2082 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2083 if (error) { 2084 iput(inode); 2085 return error; 2086 } 2087 inode->i_mapping->a_ops = &shmem_aops; 2088 inode->i_op = &shmem_symlink_inode_operations; 2089 kaddr = kmap_atomic(page); 2090 memcpy(kaddr, symname, len); 2091 kunmap_atomic(kaddr); 2092 SetPageUptodate(page); 2093 set_page_dirty(page); 2094 unlock_page(page); 2095 page_cache_release(page); 2096 } 2097 dir->i_size += BOGO_DIRENT_SIZE; 2098 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2099 d_instantiate(dentry, inode); 2100 dget(dentry); 2101 return 0; 2102 } 2103 2104 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2105 { 2106 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 2107 return NULL; 2108 } 2109 2110 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2111 { 2112 struct page *page = NULL; 2113 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2114 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2115 if (page) 2116 unlock_page(page); 2117 return page; 2118 } 2119 2120 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2121 { 2122 if (!IS_ERR(nd_get_link(nd))) { 2123 struct page *page = cookie; 2124 kunmap(page); 2125 mark_page_accessed(page); 2126 page_cache_release(page); 2127 } 2128 } 2129 2130 #ifdef CONFIG_TMPFS_XATTR 2131 /* 2132 * Superblocks without xattr inode operations may get some security.* xattr 2133 * support from the LSM "for free". As soon as we have any other xattrs 2134 * like ACLs, we also need to implement the security.* handlers at 2135 * filesystem level, though. 2136 */ 2137 2138 /* 2139 * Callback for security_inode_init_security() for acquiring xattrs. 2140 */ 2141 static int shmem_initxattrs(struct inode *inode, 2142 const struct xattr *xattr_array, 2143 void *fs_info) 2144 { 2145 struct shmem_inode_info *info = SHMEM_I(inode); 2146 const struct xattr *xattr; 2147 struct simple_xattr *new_xattr; 2148 size_t len; 2149 2150 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2151 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2152 if (!new_xattr) 2153 return -ENOMEM; 2154 2155 len = strlen(xattr->name) + 1; 2156 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2157 GFP_KERNEL); 2158 if (!new_xattr->name) { 2159 kfree(new_xattr); 2160 return -ENOMEM; 2161 } 2162 2163 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2164 XATTR_SECURITY_PREFIX_LEN); 2165 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2166 xattr->name, len); 2167 2168 simple_xattr_list_add(&info->xattrs, new_xattr); 2169 } 2170 2171 return 0; 2172 } 2173 2174 static const struct xattr_handler *shmem_xattr_handlers[] = { 2175 #ifdef CONFIG_TMPFS_POSIX_ACL 2176 &posix_acl_access_xattr_handler, 2177 &posix_acl_default_xattr_handler, 2178 #endif 2179 NULL 2180 }; 2181 2182 static int shmem_xattr_validate(const char *name) 2183 { 2184 struct { const char *prefix; size_t len; } arr[] = { 2185 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2186 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2187 }; 2188 int i; 2189 2190 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2191 size_t preflen = arr[i].len; 2192 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2193 if (!name[preflen]) 2194 return -EINVAL; 2195 return 0; 2196 } 2197 } 2198 return -EOPNOTSUPP; 2199 } 2200 2201 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2202 void *buffer, size_t size) 2203 { 2204 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2205 int err; 2206 2207 /* 2208 * If this is a request for a synthetic attribute in the system.* 2209 * namespace use the generic infrastructure to resolve a handler 2210 * for it via sb->s_xattr. 2211 */ 2212 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2213 return generic_getxattr(dentry, name, buffer, size); 2214 2215 err = shmem_xattr_validate(name); 2216 if (err) 2217 return err; 2218 2219 return simple_xattr_get(&info->xattrs, name, buffer, size); 2220 } 2221 2222 static int shmem_setxattr(struct dentry *dentry, const char *name, 2223 const void *value, size_t size, int flags) 2224 { 2225 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2226 int err; 2227 2228 /* 2229 * If this is a request for a synthetic attribute in the system.* 2230 * namespace use the generic infrastructure to resolve a handler 2231 * for it via sb->s_xattr. 2232 */ 2233 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2234 return generic_setxattr(dentry, name, value, size, flags); 2235 2236 err = shmem_xattr_validate(name); 2237 if (err) 2238 return err; 2239 2240 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2241 } 2242 2243 static int shmem_removexattr(struct dentry *dentry, const char *name) 2244 { 2245 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2246 int err; 2247 2248 /* 2249 * If this is a request for a synthetic attribute in the system.* 2250 * namespace use the generic infrastructure to resolve a handler 2251 * for it via sb->s_xattr. 2252 */ 2253 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2254 return generic_removexattr(dentry, name); 2255 2256 err = shmem_xattr_validate(name); 2257 if (err) 2258 return err; 2259 2260 return simple_xattr_remove(&info->xattrs, name); 2261 } 2262 2263 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2264 { 2265 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); 2266 return simple_xattr_list(&info->xattrs, buffer, size); 2267 } 2268 #endif /* CONFIG_TMPFS_XATTR */ 2269 2270 static const struct inode_operations shmem_short_symlink_operations = { 2271 .readlink = generic_readlink, 2272 .follow_link = shmem_follow_short_symlink, 2273 #ifdef CONFIG_TMPFS_XATTR 2274 .setxattr = shmem_setxattr, 2275 .getxattr = shmem_getxattr, 2276 .listxattr = shmem_listxattr, 2277 .removexattr = shmem_removexattr, 2278 #endif 2279 }; 2280 2281 static const struct inode_operations shmem_symlink_inode_operations = { 2282 .readlink = generic_readlink, 2283 .follow_link = shmem_follow_link, 2284 .put_link = shmem_put_link, 2285 #ifdef CONFIG_TMPFS_XATTR 2286 .setxattr = shmem_setxattr, 2287 .getxattr = shmem_getxattr, 2288 .listxattr = shmem_listxattr, 2289 .removexattr = shmem_removexattr, 2290 #endif 2291 }; 2292 2293 static struct dentry *shmem_get_parent(struct dentry *child) 2294 { 2295 return ERR_PTR(-ESTALE); 2296 } 2297 2298 static int shmem_match(struct inode *ino, void *vfh) 2299 { 2300 __u32 *fh = vfh; 2301 __u64 inum = fh[2]; 2302 inum = (inum << 32) | fh[1]; 2303 return ino->i_ino == inum && fh[0] == ino->i_generation; 2304 } 2305 2306 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2307 struct fid *fid, int fh_len, int fh_type) 2308 { 2309 struct inode *inode; 2310 struct dentry *dentry = NULL; 2311 u64 inum; 2312 2313 if (fh_len < 3) 2314 return NULL; 2315 2316 inum = fid->raw[2]; 2317 inum = (inum << 32) | fid->raw[1]; 2318 2319 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2320 shmem_match, fid->raw); 2321 if (inode) { 2322 dentry = d_find_alias(inode); 2323 iput(inode); 2324 } 2325 2326 return dentry; 2327 } 2328 2329 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2330 struct inode *parent) 2331 { 2332 if (*len < 3) { 2333 *len = 3; 2334 return FILEID_INVALID; 2335 } 2336 2337 if (inode_unhashed(inode)) { 2338 /* Unfortunately insert_inode_hash is not idempotent, 2339 * so as we hash inodes here rather than at creation 2340 * time, we need a lock to ensure we only try 2341 * to do it once 2342 */ 2343 static DEFINE_SPINLOCK(lock); 2344 spin_lock(&lock); 2345 if (inode_unhashed(inode)) 2346 __insert_inode_hash(inode, 2347 inode->i_ino + inode->i_generation); 2348 spin_unlock(&lock); 2349 } 2350 2351 fh[0] = inode->i_generation; 2352 fh[1] = inode->i_ino; 2353 fh[2] = ((__u64)inode->i_ino) >> 32; 2354 2355 *len = 3; 2356 return 1; 2357 } 2358 2359 static const struct export_operations shmem_export_ops = { 2360 .get_parent = shmem_get_parent, 2361 .encode_fh = shmem_encode_fh, 2362 .fh_to_dentry = shmem_fh_to_dentry, 2363 }; 2364 2365 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2366 bool remount) 2367 { 2368 char *this_char, *value, *rest; 2369 struct mempolicy *mpol = NULL; 2370 uid_t uid; 2371 gid_t gid; 2372 2373 while (options != NULL) { 2374 this_char = options; 2375 for (;;) { 2376 /* 2377 * NUL-terminate this option: unfortunately, 2378 * mount options form a comma-separated list, 2379 * but mpol's nodelist may also contain commas. 2380 */ 2381 options = strchr(options, ','); 2382 if (options == NULL) 2383 break; 2384 options++; 2385 if (!isdigit(*options)) { 2386 options[-1] = '\0'; 2387 break; 2388 } 2389 } 2390 if (!*this_char) 2391 continue; 2392 if ((value = strchr(this_char,'=')) != NULL) { 2393 *value++ = 0; 2394 } else { 2395 printk(KERN_ERR 2396 "tmpfs: No value for mount option '%s'\n", 2397 this_char); 2398 goto error; 2399 } 2400 2401 if (!strcmp(this_char,"size")) { 2402 unsigned long long size; 2403 size = memparse(value,&rest); 2404 if (*rest == '%') { 2405 size <<= PAGE_SHIFT; 2406 size *= totalram_pages; 2407 do_div(size, 100); 2408 rest++; 2409 } 2410 if (*rest) 2411 goto bad_val; 2412 sbinfo->max_blocks = 2413 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2414 } else if (!strcmp(this_char,"nr_blocks")) { 2415 sbinfo->max_blocks = memparse(value, &rest); 2416 if (*rest) 2417 goto bad_val; 2418 } else if (!strcmp(this_char,"nr_inodes")) { 2419 sbinfo->max_inodes = memparse(value, &rest); 2420 if (*rest) 2421 goto bad_val; 2422 } else if (!strcmp(this_char,"mode")) { 2423 if (remount) 2424 continue; 2425 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2426 if (*rest) 2427 goto bad_val; 2428 } else if (!strcmp(this_char,"uid")) { 2429 if (remount) 2430 continue; 2431 uid = simple_strtoul(value, &rest, 0); 2432 if (*rest) 2433 goto bad_val; 2434 sbinfo->uid = make_kuid(current_user_ns(), uid); 2435 if (!uid_valid(sbinfo->uid)) 2436 goto bad_val; 2437 } else if (!strcmp(this_char,"gid")) { 2438 if (remount) 2439 continue; 2440 gid = simple_strtoul(value, &rest, 0); 2441 if (*rest) 2442 goto bad_val; 2443 sbinfo->gid = make_kgid(current_user_ns(), gid); 2444 if (!gid_valid(sbinfo->gid)) 2445 goto bad_val; 2446 } else if (!strcmp(this_char,"mpol")) { 2447 mpol_put(mpol); 2448 mpol = NULL; 2449 if (mpol_parse_str(value, &mpol)) 2450 goto bad_val; 2451 } else { 2452 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2453 this_char); 2454 goto error; 2455 } 2456 } 2457 sbinfo->mpol = mpol; 2458 return 0; 2459 2460 bad_val: 2461 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2462 value, this_char); 2463 error: 2464 mpol_put(mpol); 2465 return 1; 2466 2467 } 2468 2469 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2470 { 2471 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2472 struct shmem_sb_info config = *sbinfo; 2473 unsigned long inodes; 2474 int error = -EINVAL; 2475 2476 config.mpol = NULL; 2477 if (shmem_parse_options(data, &config, true)) 2478 return error; 2479 2480 spin_lock(&sbinfo->stat_lock); 2481 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2482 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2483 goto out; 2484 if (config.max_inodes < inodes) 2485 goto out; 2486 /* 2487 * Those tests disallow limited->unlimited while any are in use; 2488 * but we must separately disallow unlimited->limited, because 2489 * in that case we have no record of how much is already in use. 2490 */ 2491 if (config.max_blocks && !sbinfo->max_blocks) 2492 goto out; 2493 if (config.max_inodes && !sbinfo->max_inodes) 2494 goto out; 2495 2496 error = 0; 2497 sbinfo->max_blocks = config.max_blocks; 2498 sbinfo->max_inodes = config.max_inodes; 2499 sbinfo->free_inodes = config.max_inodes - inodes; 2500 2501 /* 2502 * Preserve previous mempolicy unless mpol remount option was specified. 2503 */ 2504 if (config.mpol) { 2505 mpol_put(sbinfo->mpol); 2506 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2507 } 2508 out: 2509 spin_unlock(&sbinfo->stat_lock); 2510 return error; 2511 } 2512 2513 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2514 { 2515 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2516 2517 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2518 seq_printf(seq, ",size=%luk", 2519 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2520 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2521 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2522 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2523 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2524 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2525 seq_printf(seq, ",uid=%u", 2526 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2527 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2528 seq_printf(seq, ",gid=%u", 2529 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2530 shmem_show_mpol(seq, sbinfo->mpol); 2531 return 0; 2532 } 2533 #endif /* CONFIG_TMPFS */ 2534 2535 static void shmem_put_super(struct super_block *sb) 2536 { 2537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2538 2539 percpu_counter_destroy(&sbinfo->used_blocks); 2540 mpol_put(sbinfo->mpol); 2541 kfree(sbinfo); 2542 sb->s_fs_info = NULL; 2543 } 2544 2545 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2546 { 2547 struct inode *inode; 2548 struct shmem_sb_info *sbinfo; 2549 int err = -ENOMEM; 2550 2551 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2552 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2553 L1_CACHE_BYTES), GFP_KERNEL); 2554 if (!sbinfo) 2555 return -ENOMEM; 2556 2557 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2558 sbinfo->uid = current_fsuid(); 2559 sbinfo->gid = current_fsgid(); 2560 sb->s_fs_info = sbinfo; 2561 2562 #ifdef CONFIG_TMPFS 2563 /* 2564 * Per default we only allow half of the physical ram per 2565 * tmpfs instance, limiting inodes to one per page of lowmem; 2566 * but the internal instance is left unlimited. 2567 */ 2568 if (!(sb->s_flags & MS_KERNMOUNT)) { 2569 sbinfo->max_blocks = shmem_default_max_blocks(); 2570 sbinfo->max_inodes = shmem_default_max_inodes(); 2571 if (shmem_parse_options(data, sbinfo, false)) { 2572 err = -EINVAL; 2573 goto failed; 2574 } 2575 } else { 2576 sb->s_flags |= MS_NOUSER; 2577 } 2578 sb->s_export_op = &shmem_export_ops; 2579 sb->s_flags |= MS_NOSEC; 2580 #else 2581 sb->s_flags |= MS_NOUSER; 2582 #endif 2583 2584 spin_lock_init(&sbinfo->stat_lock); 2585 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2586 goto failed; 2587 sbinfo->free_inodes = sbinfo->max_inodes; 2588 2589 sb->s_maxbytes = MAX_LFS_FILESIZE; 2590 sb->s_blocksize = PAGE_CACHE_SIZE; 2591 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2592 sb->s_magic = TMPFS_MAGIC; 2593 sb->s_op = &shmem_ops; 2594 sb->s_time_gran = 1; 2595 #ifdef CONFIG_TMPFS_XATTR 2596 sb->s_xattr = shmem_xattr_handlers; 2597 #endif 2598 #ifdef CONFIG_TMPFS_POSIX_ACL 2599 sb->s_flags |= MS_POSIXACL; 2600 #endif 2601 2602 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2603 if (!inode) 2604 goto failed; 2605 inode->i_uid = sbinfo->uid; 2606 inode->i_gid = sbinfo->gid; 2607 sb->s_root = d_make_root(inode); 2608 if (!sb->s_root) 2609 goto failed; 2610 return 0; 2611 2612 failed: 2613 shmem_put_super(sb); 2614 return err; 2615 } 2616 2617 static struct kmem_cache *shmem_inode_cachep; 2618 2619 static struct inode *shmem_alloc_inode(struct super_block *sb) 2620 { 2621 struct shmem_inode_info *info; 2622 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2623 if (!info) 2624 return NULL; 2625 return &info->vfs_inode; 2626 } 2627 2628 static void shmem_destroy_callback(struct rcu_head *head) 2629 { 2630 struct inode *inode = container_of(head, struct inode, i_rcu); 2631 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2632 } 2633 2634 static void shmem_destroy_inode(struct inode *inode) 2635 { 2636 if (S_ISREG(inode->i_mode)) 2637 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2638 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2639 } 2640 2641 static void shmem_init_inode(void *foo) 2642 { 2643 struct shmem_inode_info *info = foo; 2644 inode_init_once(&info->vfs_inode); 2645 } 2646 2647 static int shmem_init_inodecache(void) 2648 { 2649 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2650 sizeof(struct shmem_inode_info), 2651 0, SLAB_PANIC, shmem_init_inode); 2652 return 0; 2653 } 2654 2655 static void shmem_destroy_inodecache(void) 2656 { 2657 kmem_cache_destroy(shmem_inode_cachep); 2658 } 2659 2660 static const struct address_space_operations shmem_aops = { 2661 .writepage = shmem_writepage, 2662 .set_page_dirty = __set_page_dirty_no_writeback, 2663 #ifdef CONFIG_TMPFS 2664 .write_begin = shmem_write_begin, 2665 .write_end = shmem_write_end, 2666 #endif 2667 .migratepage = migrate_page, 2668 .error_remove_page = generic_error_remove_page, 2669 }; 2670 2671 static const struct file_operations shmem_file_operations = { 2672 .mmap = shmem_mmap, 2673 #ifdef CONFIG_TMPFS 2674 .llseek = shmem_file_llseek, 2675 .read = new_sync_read, 2676 .write = new_sync_write, 2677 .read_iter = shmem_file_read_iter, 2678 .write_iter = generic_file_write_iter, 2679 .fsync = noop_fsync, 2680 .splice_read = shmem_file_splice_read, 2681 .splice_write = iter_file_splice_write, 2682 .fallocate = shmem_fallocate, 2683 #endif 2684 }; 2685 2686 static const struct inode_operations shmem_inode_operations = { 2687 .setattr = shmem_setattr, 2688 #ifdef CONFIG_TMPFS_XATTR 2689 .setxattr = shmem_setxattr, 2690 .getxattr = shmem_getxattr, 2691 .listxattr = shmem_listxattr, 2692 .removexattr = shmem_removexattr, 2693 .set_acl = simple_set_acl, 2694 #endif 2695 }; 2696 2697 static const struct inode_operations shmem_dir_inode_operations = { 2698 #ifdef CONFIG_TMPFS 2699 .create = shmem_create, 2700 .lookup = simple_lookup, 2701 .link = shmem_link, 2702 .unlink = shmem_unlink, 2703 .symlink = shmem_symlink, 2704 .mkdir = shmem_mkdir, 2705 .rmdir = shmem_rmdir, 2706 .mknod = shmem_mknod, 2707 .rename = shmem_rename, 2708 .tmpfile = shmem_tmpfile, 2709 #endif 2710 #ifdef CONFIG_TMPFS_XATTR 2711 .setxattr = shmem_setxattr, 2712 .getxattr = shmem_getxattr, 2713 .listxattr = shmem_listxattr, 2714 .removexattr = shmem_removexattr, 2715 #endif 2716 #ifdef CONFIG_TMPFS_POSIX_ACL 2717 .setattr = shmem_setattr, 2718 .set_acl = simple_set_acl, 2719 #endif 2720 }; 2721 2722 static const struct inode_operations shmem_special_inode_operations = { 2723 #ifdef CONFIG_TMPFS_XATTR 2724 .setxattr = shmem_setxattr, 2725 .getxattr = shmem_getxattr, 2726 .listxattr = shmem_listxattr, 2727 .removexattr = shmem_removexattr, 2728 #endif 2729 #ifdef CONFIG_TMPFS_POSIX_ACL 2730 .setattr = shmem_setattr, 2731 .set_acl = simple_set_acl, 2732 #endif 2733 }; 2734 2735 static const struct super_operations shmem_ops = { 2736 .alloc_inode = shmem_alloc_inode, 2737 .destroy_inode = shmem_destroy_inode, 2738 #ifdef CONFIG_TMPFS 2739 .statfs = shmem_statfs, 2740 .remount_fs = shmem_remount_fs, 2741 .show_options = shmem_show_options, 2742 #endif 2743 .evict_inode = shmem_evict_inode, 2744 .drop_inode = generic_delete_inode, 2745 .put_super = shmem_put_super, 2746 }; 2747 2748 static const struct vm_operations_struct shmem_vm_ops = { 2749 .fault = shmem_fault, 2750 .map_pages = filemap_map_pages, 2751 #ifdef CONFIG_NUMA 2752 .set_policy = shmem_set_policy, 2753 .get_policy = shmem_get_policy, 2754 #endif 2755 .remap_pages = generic_file_remap_pages, 2756 }; 2757 2758 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2759 int flags, const char *dev_name, void *data) 2760 { 2761 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2762 } 2763 2764 static struct file_system_type shmem_fs_type = { 2765 .owner = THIS_MODULE, 2766 .name = "tmpfs", 2767 .mount = shmem_mount, 2768 .kill_sb = kill_litter_super, 2769 .fs_flags = FS_USERNS_MOUNT, 2770 }; 2771 2772 int __init shmem_init(void) 2773 { 2774 int error; 2775 2776 /* If rootfs called this, don't re-init */ 2777 if (shmem_inode_cachep) 2778 return 0; 2779 2780 error = bdi_init(&shmem_backing_dev_info); 2781 if (error) 2782 goto out4; 2783 2784 error = shmem_init_inodecache(); 2785 if (error) 2786 goto out3; 2787 2788 error = register_filesystem(&shmem_fs_type); 2789 if (error) { 2790 printk(KERN_ERR "Could not register tmpfs\n"); 2791 goto out2; 2792 } 2793 2794 shm_mnt = kern_mount(&shmem_fs_type); 2795 if (IS_ERR(shm_mnt)) { 2796 error = PTR_ERR(shm_mnt); 2797 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2798 goto out1; 2799 } 2800 return 0; 2801 2802 out1: 2803 unregister_filesystem(&shmem_fs_type); 2804 out2: 2805 shmem_destroy_inodecache(); 2806 out3: 2807 bdi_destroy(&shmem_backing_dev_info); 2808 out4: 2809 shm_mnt = ERR_PTR(error); 2810 return error; 2811 } 2812 2813 #else /* !CONFIG_SHMEM */ 2814 2815 /* 2816 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2817 * 2818 * This is intended for small system where the benefits of the full 2819 * shmem code (swap-backed and resource-limited) are outweighed by 2820 * their complexity. On systems without swap this code should be 2821 * effectively equivalent, but much lighter weight. 2822 */ 2823 2824 static struct file_system_type shmem_fs_type = { 2825 .name = "tmpfs", 2826 .mount = ramfs_mount, 2827 .kill_sb = kill_litter_super, 2828 .fs_flags = FS_USERNS_MOUNT, 2829 }; 2830 2831 int __init shmem_init(void) 2832 { 2833 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2834 2835 shm_mnt = kern_mount(&shmem_fs_type); 2836 BUG_ON(IS_ERR(shm_mnt)); 2837 2838 return 0; 2839 } 2840 2841 int shmem_unuse(swp_entry_t swap, struct page *page) 2842 { 2843 return 0; 2844 } 2845 2846 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2847 { 2848 return 0; 2849 } 2850 2851 void shmem_unlock_mapping(struct address_space *mapping) 2852 { 2853 } 2854 2855 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2856 { 2857 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2858 } 2859 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2860 2861 #define shmem_vm_ops generic_file_vm_ops 2862 #define shmem_file_operations ramfs_file_operations 2863 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2864 #define shmem_acct_size(flags, size) 0 2865 #define shmem_unacct_size(flags, size) do {} while (0) 2866 2867 #endif /* CONFIG_SHMEM */ 2868 2869 /* common code */ 2870 2871 static struct dentry_operations anon_ops = { 2872 .d_dname = simple_dname 2873 }; 2874 2875 static struct file *__shmem_file_setup(const char *name, loff_t size, 2876 unsigned long flags, unsigned int i_flags) 2877 { 2878 struct file *res; 2879 struct inode *inode; 2880 struct path path; 2881 struct super_block *sb; 2882 struct qstr this; 2883 2884 if (IS_ERR(shm_mnt)) 2885 return ERR_CAST(shm_mnt); 2886 2887 if (size < 0 || size > MAX_LFS_FILESIZE) 2888 return ERR_PTR(-EINVAL); 2889 2890 if (shmem_acct_size(flags, size)) 2891 return ERR_PTR(-ENOMEM); 2892 2893 res = ERR_PTR(-ENOMEM); 2894 this.name = name; 2895 this.len = strlen(name); 2896 this.hash = 0; /* will go */ 2897 sb = shm_mnt->mnt_sb; 2898 path.dentry = d_alloc_pseudo(sb, &this); 2899 if (!path.dentry) 2900 goto put_memory; 2901 d_set_d_op(path.dentry, &anon_ops); 2902 path.mnt = mntget(shm_mnt); 2903 2904 res = ERR_PTR(-ENOSPC); 2905 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 2906 if (!inode) 2907 goto put_dentry; 2908 2909 inode->i_flags |= i_flags; 2910 d_instantiate(path.dentry, inode); 2911 inode->i_size = size; 2912 clear_nlink(inode); /* It is unlinked */ 2913 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 2914 if (IS_ERR(res)) 2915 goto put_dentry; 2916 2917 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 2918 &shmem_file_operations); 2919 if (IS_ERR(res)) 2920 goto put_dentry; 2921 2922 return res; 2923 2924 put_dentry: 2925 path_put(&path); 2926 put_memory: 2927 shmem_unacct_size(flags, size); 2928 return res; 2929 } 2930 2931 /** 2932 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 2933 * kernel internal. There will be NO LSM permission checks against the 2934 * underlying inode. So users of this interface must do LSM checks at a 2935 * higher layer. The one user is the big_key implementation. LSM checks 2936 * are provided at the key level rather than the inode level. 2937 * @name: name for dentry (to be seen in /proc/<pid>/maps 2938 * @size: size to be set for the file 2939 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2940 */ 2941 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 2942 { 2943 return __shmem_file_setup(name, size, flags, S_PRIVATE); 2944 } 2945 2946 /** 2947 * shmem_file_setup - get an unlinked file living in tmpfs 2948 * @name: name for dentry (to be seen in /proc/<pid>/maps 2949 * @size: size to be set for the file 2950 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2951 */ 2952 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2953 { 2954 return __shmem_file_setup(name, size, flags, 0); 2955 } 2956 EXPORT_SYMBOL_GPL(shmem_file_setup); 2957 2958 /** 2959 * shmem_zero_setup - setup a shared anonymous mapping 2960 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2961 */ 2962 int shmem_zero_setup(struct vm_area_struct *vma) 2963 { 2964 struct file *file; 2965 loff_t size = vma->vm_end - vma->vm_start; 2966 2967 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2968 if (IS_ERR(file)) 2969 return PTR_ERR(file); 2970 2971 if (vma->vm_file) 2972 fput(vma->vm_file); 2973 vma->vm_file = file; 2974 vma->vm_ops = &shmem_vm_ops; 2975 return 0; 2976 } 2977 2978 /** 2979 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 2980 * @mapping: the page's address_space 2981 * @index: the page index 2982 * @gfp: the page allocator flags to use if allocating 2983 * 2984 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 2985 * with any new page allocations done using the specified allocation flags. 2986 * But read_cache_page_gfp() uses the ->readpage() method: which does not 2987 * suit tmpfs, since it may have pages in swapcache, and needs to find those 2988 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 2989 * 2990 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 2991 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 2992 */ 2993 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 2994 pgoff_t index, gfp_t gfp) 2995 { 2996 #ifdef CONFIG_SHMEM 2997 struct inode *inode = mapping->host; 2998 struct page *page; 2999 int error; 3000 3001 BUG_ON(mapping->a_ops != &shmem_aops); 3002 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3003 if (error) 3004 page = ERR_PTR(error); 3005 else 3006 unlock_page(page); 3007 return page; 3008 #else 3009 /* 3010 * The tiny !SHMEM case uses ramfs without swap 3011 */ 3012 return read_cache_page_gfp(mapping, index, gfp); 3013 #endif 3014 } 3015 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3016