xref: /openbmc/linux/mm/shmem.c (revision 4a3a9904)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72 
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81 
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88 	int	mode;		/* FALLOC_FL mode currently operating */
89 	pgoff_t start;		/* start of range currently being fallocated */
90 	pgoff_t next;		/* the next page offset to be fallocated */
91 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
92 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
93 };
94 
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 	SGP_READ,	/* don't exceed i_size, don't allocate page */
98 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
99 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
100 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
101 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
102 };
103 
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 	return totalram_pages / 2;
108 }
109 
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115 
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 				struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121 
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 	return shmem_getpage_gfp(inode, index, pagep, sgp,
126 			mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128 
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 	return sb->s_fs_info;
132 }
133 
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 	return (flags & VM_NORESERVE) ?
143 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145 
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 	if (!(flags & VM_NORESERVE))
149 		vm_unacct_memory(VM_ACCT(size));
150 }
151 
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160 	return (flags & VM_NORESERVE) ?
161 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163 
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166 	if (flags & VM_NORESERVE)
167 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169 
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177 
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179 	.ra_pages	= 0,	/* No readahead */
180 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182 
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185 
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 	if (sbinfo->max_inodes) {
190 		spin_lock(&sbinfo->stat_lock);
191 		if (!sbinfo->free_inodes) {
192 			spin_unlock(&sbinfo->stat_lock);
193 			return -ENOSPC;
194 		}
195 		sbinfo->free_inodes--;
196 		spin_unlock(&sbinfo->stat_lock);
197 	}
198 	return 0;
199 }
200 
201 static void shmem_free_inode(struct super_block *sb)
202 {
203 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 	if (sbinfo->max_inodes) {
205 		spin_lock(&sbinfo->stat_lock);
206 		sbinfo->free_inodes++;
207 		spin_unlock(&sbinfo->stat_lock);
208 	}
209 }
210 
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	long freed;
227 
228 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 	if (freed > 0) {
230 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 		if (sbinfo->max_blocks)
232 			percpu_counter_add(&sbinfo->used_blocks, -freed);
233 		info->alloced -= freed;
234 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 		shmem_unacct_blocks(info->flags, freed);
236 	}
237 }
238 
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 			pgoff_t index, void *expected, void *replacement)
244 {
245 	void **pslot;
246 	void *item;
247 
248 	VM_BUG_ON(!expected);
249 	VM_BUG_ON(!replacement);
250 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251 	if (!pslot)
252 		return -ENOENT;
253 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254 	if (item != expected)
255 		return -ENOENT;
256 	radix_tree_replace_slot(pslot, replacement);
257 	return 0;
258 }
259 
260 /*
261  * Sometimes, before we decide whether to proceed or to fail, we must check
262  * that an entry was not already brought back from swap by a racing thread.
263  *
264  * Checking page is not enough: by the time a SwapCache page is locked, it
265  * might be reused, and again be SwapCache, using the same swap as before.
266  */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268 			       pgoff_t index, swp_entry_t swap)
269 {
270 	void *item;
271 
272 	rcu_read_lock();
273 	item = radix_tree_lookup(&mapping->page_tree, index);
274 	rcu_read_unlock();
275 	return item == swp_to_radix_entry(swap);
276 }
277 
278 /*
279  * Like add_to_page_cache_locked, but error if expected item has gone.
280  */
281 static int shmem_add_to_page_cache(struct page *page,
282 				   struct address_space *mapping,
283 				   pgoff_t index, gfp_t gfp, void *expected)
284 {
285 	int error;
286 
287 	VM_BUG_ON_PAGE(!PageLocked(page), page);
288 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289 
290 	page_cache_get(page);
291 	page->mapping = mapping;
292 	page->index = index;
293 
294 	spin_lock_irq(&mapping->tree_lock);
295 	if (!expected)
296 		error = radix_tree_insert(&mapping->page_tree, index, page);
297 	else
298 		error = shmem_radix_tree_replace(mapping, index, expected,
299 								 page);
300 	if (!error) {
301 		mapping->nrpages++;
302 		__inc_zone_page_state(page, NR_FILE_PAGES);
303 		__inc_zone_page_state(page, NR_SHMEM);
304 		spin_unlock_irq(&mapping->tree_lock);
305 	} else {
306 		page->mapping = NULL;
307 		spin_unlock_irq(&mapping->tree_lock);
308 		page_cache_release(page);
309 	}
310 	return error;
311 }
312 
313 /*
314  * Like delete_from_page_cache, but substitutes swap for page.
315  */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318 	struct address_space *mapping = page->mapping;
319 	int error;
320 
321 	spin_lock_irq(&mapping->tree_lock);
322 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 	page->mapping = NULL;
324 	mapping->nrpages--;
325 	__dec_zone_page_state(page, NR_FILE_PAGES);
326 	__dec_zone_page_state(page, NR_SHMEM);
327 	spin_unlock_irq(&mapping->tree_lock);
328 	page_cache_release(page);
329 	BUG_ON(error);
330 }
331 
332 /*
333  * Remove swap entry from radix tree, free the swap and its page cache.
334  */
335 static int shmem_free_swap(struct address_space *mapping,
336 			   pgoff_t index, void *radswap)
337 {
338 	void *old;
339 
340 	spin_lock_irq(&mapping->tree_lock);
341 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342 	spin_unlock_irq(&mapping->tree_lock);
343 	if (old != radswap)
344 		return -ENOENT;
345 	free_swap_and_cache(radix_to_swp_entry(radswap));
346 	return 0;
347 }
348 
349 /*
350  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351  */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354 	struct pagevec pvec;
355 	pgoff_t indices[PAGEVEC_SIZE];
356 	pgoff_t index = 0;
357 
358 	pagevec_init(&pvec, 0);
359 	/*
360 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 	 */
362 	while (!mapping_unevictable(mapping)) {
363 		/*
364 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 		 */
367 		pvec.nr = find_get_entries(mapping, index,
368 					   PAGEVEC_SIZE, pvec.pages, indices);
369 		if (!pvec.nr)
370 			break;
371 		index = indices[pvec.nr - 1] + 1;
372 		pagevec_remove_exceptionals(&pvec);
373 		check_move_unevictable_pages(pvec.pages, pvec.nr);
374 		pagevec_release(&pvec);
375 		cond_resched();
376 	}
377 }
378 
379 /*
380  * Remove range of pages and swap entries from radix tree, and free them.
381  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382  */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384 								 bool unfalloc)
385 {
386 	struct address_space *mapping = inode->i_mapping;
387 	struct shmem_inode_info *info = SHMEM_I(inode);
388 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392 	struct pagevec pvec;
393 	pgoff_t indices[PAGEVEC_SIZE];
394 	long nr_swaps_freed = 0;
395 	pgoff_t index;
396 	int i;
397 
398 	if (lend == -1)
399 		end = -1;	/* unsigned, so actually very big */
400 
401 	pagevec_init(&pvec, 0);
402 	index = start;
403 	while (index < end) {
404 		pvec.nr = find_get_entries(mapping, index,
405 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 			pvec.pages, indices);
407 		if (!pvec.nr)
408 			break;
409 		mem_cgroup_uncharge_start();
410 		for (i = 0; i < pagevec_count(&pvec); i++) {
411 			struct page *page = pvec.pages[i];
412 
413 			index = indices[i];
414 			if (index >= end)
415 				break;
416 
417 			if (radix_tree_exceptional_entry(page)) {
418 				if (unfalloc)
419 					continue;
420 				nr_swaps_freed += !shmem_free_swap(mapping,
421 								index, page);
422 				continue;
423 			}
424 
425 			if (!trylock_page(page))
426 				continue;
427 			if (!unfalloc || !PageUptodate(page)) {
428 				if (page->mapping == mapping) {
429 					VM_BUG_ON_PAGE(PageWriteback(page), page);
430 					truncate_inode_page(mapping, page);
431 				}
432 			}
433 			unlock_page(page);
434 		}
435 		pagevec_remove_exceptionals(&pvec);
436 		pagevec_release(&pvec);
437 		mem_cgroup_uncharge_end();
438 		cond_resched();
439 		index++;
440 	}
441 
442 	if (partial_start) {
443 		struct page *page = NULL;
444 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445 		if (page) {
446 			unsigned int top = PAGE_CACHE_SIZE;
447 			if (start > end) {
448 				top = partial_end;
449 				partial_end = 0;
450 			}
451 			zero_user_segment(page, partial_start, top);
452 			set_page_dirty(page);
453 			unlock_page(page);
454 			page_cache_release(page);
455 		}
456 	}
457 	if (partial_end) {
458 		struct page *page = NULL;
459 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
460 		if (page) {
461 			zero_user_segment(page, 0, partial_end);
462 			set_page_dirty(page);
463 			unlock_page(page);
464 			page_cache_release(page);
465 		}
466 	}
467 	if (start >= end)
468 		return;
469 
470 	index = start;
471 	for ( ; ; ) {
472 		cond_resched();
473 
474 		pvec.nr = find_get_entries(mapping, index,
475 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
476 				pvec.pages, indices);
477 		if (!pvec.nr) {
478 			if (index == start || unfalloc)
479 				break;
480 			index = start;
481 			continue;
482 		}
483 		if ((index == start || unfalloc) && indices[0] >= end) {
484 			pagevec_remove_exceptionals(&pvec);
485 			pagevec_release(&pvec);
486 			break;
487 		}
488 		mem_cgroup_uncharge_start();
489 		for (i = 0; i < pagevec_count(&pvec); i++) {
490 			struct page *page = pvec.pages[i];
491 
492 			index = indices[i];
493 			if (index >= end)
494 				break;
495 
496 			if (radix_tree_exceptional_entry(page)) {
497 				if (unfalloc)
498 					continue;
499 				nr_swaps_freed += !shmem_free_swap(mapping,
500 								index, page);
501 				continue;
502 			}
503 
504 			lock_page(page);
505 			if (!unfalloc || !PageUptodate(page)) {
506 				if (page->mapping == mapping) {
507 					VM_BUG_ON_PAGE(PageWriteback(page), page);
508 					truncate_inode_page(mapping, page);
509 				}
510 			}
511 			unlock_page(page);
512 		}
513 		pagevec_remove_exceptionals(&pvec);
514 		pagevec_release(&pvec);
515 		mem_cgroup_uncharge_end();
516 		index++;
517 	}
518 
519 	spin_lock(&info->lock);
520 	info->swapped -= nr_swaps_freed;
521 	shmem_recalc_inode(inode);
522 	spin_unlock(&info->lock);
523 }
524 
525 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526 {
527 	shmem_undo_range(inode, lstart, lend, false);
528 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
529 }
530 EXPORT_SYMBOL_GPL(shmem_truncate_range);
531 
532 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
533 {
534 	struct inode *inode = dentry->d_inode;
535 	int error;
536 
537 	error = inode_change_ok(inode, attr);
538 	if (error)
539 		return error;
540 
541 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542 		loff_t oldsize = inode->i_size;
543 		loff_t newsize = attr->ia_size;
544 
545 		if (newsize != oldsize) {
546 			i_size_write(inode, newsize);
547 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 		}
549 		if (newsize < oldsize) {
550 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
551 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552 			shmem_truncate_range(inode, newsize, (loff_t)-1);
553 			/* unmap again to remove racily COWed private pages */
554 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555 		}
556 	}
557 
558 	setattr_copy(inode, attr);
559 	if (attr->ia_valid & ATTR_MODE)
560 		error = posix_acl_chmod(inode, inode->i_mode);
561 	return error;
562 }
563 
564 static void shmem_evict_inode(struct inode *inode)
565 {
566 	struct shmem_inode_info *info = SHMEM_I(inode);
567 
568 	if (inode->i_mapping->a_ops == &shmem_aops) {
569 		shmem_unacct_size(info->flags, inode->i_size);
570 		inode->i_size = 0;
571 		shmem_truncate_range(inode, 0, (loff_t)-1);
572 		if (!list_empty(&info->swaplist)) {
573 			mutex_lock(&shmem_swaplist_mutex);
574 			list_del_init(&info->swaplist);
575 			mutex_unlock(&shmem_swaplist_mutex);
576 		}
577 	} else
578 		kfree(info->symlink);
579 
580 	simple_xattrs_free(&info->xattrs);
581 	WARN_ON(inode->i_blocks);
582 	shmem_free_inode(inode->i_sb);
583 	clear_inode(inode);
584 }
585 
586 /*
587  * If swap found in inode, free it and move page from swapcache to filecache.
588  */
589 static int shmem_unuse_inode(struct shmem_inode_info *info,
590 			     swp_entry_t swap, struct page **pagep)
591 {
592 	struct address_space *mapping = info->vfs_inode.i_mapping;
593 	void *radswap;
594 	pgoff_t index;
595 	gfp_t gfp;
596 	int error = 0;
597 
598 	radswap = swp_to_radix_entry(swap);
599 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
600 	if (index == -1)
601 		return 0;
602 
603 	/*
604 	 * Move _head_ to start search for next from here.
605 	 * But be careful: shmem_evict_inode checks list_empty without taking
606 	 * mutex, and there's an instant in list_move_tail when info->swaplist
607 	 * would appear empty, if it were the only one on shmem_swaplist.
608 	 */
609 	if (shmem_swaplist.next != &info->swaplist)
610 		list_move_tail(&shmem_swaplist, &info->swaplist);
611 
612 	gfp = mapping_gfp_mask(mapping);
613 	if (shmem_should_replace_page(*pagep, gfp)) {
614 		mutex_unlock(&shmem_swaplist_mutex);
615 		error = shmem_replace_page(pagep, gfp, info, index);
616 		mutex_lock(&shmem_swaplist_mutex);
617 		/*
618 		 * We needed to drop mutex to make that restrictive page
619 		 * allocation, but the inode might have been freed while we
620 		 * dropped it: although a racing shmem_evict_inode() cannot
621 		 * complete without emptying the radix_tree, our page lock
622 		 * on this swapcache page is not enough to prevent that -
623 		 * free_swap_and_cache() of our swap entry will only
624 		 * trylock_page(), removing swap from radix_tree whatever.
625 		 *
626 		 * We must not proceed to shmem_add_to_page_cache() if the
627 		 * inode has been freed, but of course we cannot rely on
628 		 * inode or mapping or info to check that.  However, we can
629 		 * safely check if our swap entry is still in use (and here
630 		 * it can't have got reused for another page): if it's still
631 		 * in use, then the inode cannot have been freed yet, and we
632 		 * can safely proceed (if it's no longer in use, that tells
633 		 * nothing about the inode, but we don't need to unuse swap).
634 		 */
635 		if (!page_swapcount(*pagep))
636 			error = -ENOENT;
637 	}
638 
639 	/*
640 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
642 	 * beneath us (pagelock doesn't help until the page is in pagecache).
643 	 */
644 	if (!error)
645 		error = shmem_add_to_page_cache(*pagep, mapping, index,
646 						GFP_NOWAIT, radswap);
647 	if (error != -ENOMEM) {
648 		/*
649 		 * Truncation and eviction use free_swap_and_cache(), which
650 		 * only does trylock page: if we raced, best clean up here.
651 		 */
652 		delete_from_swap_cache(*pagep);
653 		set_page_dirty(*pagep);
654 		if (!error) {
655 			spin_lock(&info->lock);
656 			info->swapped--;
657 			spin_unlock(&info->lock);
658 			swap_free(swap);
659 		}
660 		error = 1;	/* not an error, but entry was found */
661 	}
662 	return error;
663 }
664 
665 /*
666  * Search through swapped inodes to find and replace swap by page.
667  */
668 int shmem_unuse(swp_entry_t swap, struct page *page)
669 {
670 	struct list_head *this, *next;
671 	struct shmem_inode_info *info;
672 	int found = 0;
673 	int error = 0;
674 
675 	/*
676 	 * There's a faint possibility that swap page was replaced before
677 	 * caller locked it: caller will come back later with the right page.
678 	 */
679 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
680 		goto out;
681 
682 	/*
683 	 * Charge page using GFP_KERNEL while we can wait, before taking
684 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
685 	 * Charged back to the user (not to caller) when swap account is used.
686 	 */
687 	error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
688 	if (error)
689 		goto out;
690 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
691 
692 	mutex_lock(&shmem_swaplist_mutex);
693 	list_for_each_safe(this, next, &shmem_swaplist) {
694 		info = list_entry(this, struct shmem_inode_info, swaplist);
695 		if (info->swapped)
696 			found = shmem_unuse_inode(info, swap, &page);
697 		else
698 			list_del_init(&info->swaplist);
699 		cond_resched();
700 		if (found)
701 			break;
702 	}
703 	mutex_unlock(&shmem_swaplist_mutex);
704 
705 	if (found < 0)
706 		error = found;
707 out:
708 	unlock_page(page);
709 	page_cache_release(page);
710 	return error;
711 }
712 
713 /*
714  * Move the page from the page cache to the swap cache.
715  */
716 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717 {
718 	struct shmem_inode_info *info;
719 	struct address_space *mapping;
720 	struct inode *inode;
721 	swp_entry_t swap;
722 	pgoff_t index;
723 
724 	BUG_ON(!PageLocked(page));
725 	mapping = page->mapping;
726 	index = page->index;
727 	inode = mapping->host;
728 	info = SHMEM_I(inode);
729 	if (info->flags & VM_LOCKED)
730 		goto redirty;
731 	if (!total_swap_pages)
732 		goto redirty;
733 
734 	/*
735 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
736 	 * sync from ever calling shmem_writepage; but a stacking filesystem
737 	 * might use ->writepage of its underlying filesystem, in which case
738 	 * tmpfs should write out to swap only in response to memory pressure,
739 	 * and not for the writeback threads or sync.
740 	 */
741 	if (!wbc->for_reclaim) {
742 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
743 		goto redirty;
744 	}
745 
746 	/*
747 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748 	 * value into swapfile.c, the only way we can correctly account for a
749 	 * fallocated page arriving here is now to initialize it and write it.
750 	 *
751 	 * That's okay for a page already fallocated earlier, but if we have
752 	 * not yet completed the fallocation, then (a) we want to keep track
753 	 * of this page in case we have to undo it, and (b) it may not be a
754 	 * good idea to continue anyway, once we're pushing into swap.  So
755 	 * reactivate the page, and let shmem_fallocate() quit when too many.
756 	 */
757 	if (!PageUptodate(page)) {
758 		if (inode->i_private) {
759 			struct shmem_falloc *shmem_falloc;
760 			spin_lock(&inode->i_lock);
761 			shmem_falloc = inode->i_private;
762 			if (shmem_falloc &&
763 			    !shmem_falloc->mode &&
764 			    index >= shmem_falloc->start &&
765 			    index < shmem_falloc->next)
766 				shmem_falloc->nr_unswapped++;
767 			else
768 				shmem_falloc = NULL;
769 			spin_unlock(&inode->i_lock);
770 			if (shmem_falloc)
771 				goto redirty;
772 		}
773 		clear_highpage(page);
774 		flush_dcache_page(page);
775 		SetPageUptodate(page);
776 	}
777 
778 	swap = get_swap_page();
779 	if (!swap.val)
780 		goto redirty;
781 
782 	/*
783 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
784 	 * if it's not already there.  Do it now before the page is
785 	 * moved to swap cache, when its pagelock no longer protects
786 	 * the inode from eviction.  But don't unlock the mutex until
787 	 * we've incremented swapped, because shmem_unuse_inode() will
788 	 * prune a !swapped inode from the swaplist under this mutex.
789 	 */
790 	mutex_lock(&shmem_swaplist_mutex);
791 	if (list_empty(&info->swaplist))
792 		list_add_tail(&info->swaplist, &shmem_swaplist);
793 
794 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
795 		swap_shmem_alloc(swap);
796 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797 
798 		spin_lock(&info->lock);
799 		info->swapped++;
800 		shmem_recalc_inode(inode);
801 		spin_unlock(&info->lock);
802 
803 		mutex_unlock(&shmem_swaplist_mutex);
804 		BUG_ON(page_mapped(page));
805 		swap_writepage(page, wbc);
806 		return 0;
807 	}
808 
809 	mutex_unlock(&shmem_swaplist_mutex);
810 	swapcache_free(swap, NULL);
811 redirty:
812 	set_page_dirty(page);
813 	if (wbc->for_reclaim)
814 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
815 	unlock_page(page);
816 	return 0;
817 }
818 
819 #ifdef CONFIG_NUMA
820 #ifdef CONFIG_TMPFS
821 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
822 {
823 	char buffer[64];
824 
825 	if (!mpol || mpol->mode == MPOL_DEFAULT)
826 		return;		/* show nothing */
827 
828 	mpol_to_str(buffer, sizeof(buffer), mpol);
829 
830 	seq_printf(seq, ",mpol=%s", buffer);
831 }
832 
833 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834 {
835 	struct mempolicy *mpol = NULL;
836 	if (sbinfo->mpol) {
837 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
838 		mpol = sbinfo->mpol;
839 		mpol_get(mpol);
840 		spin_unlock(&sbinfo->stat_lock);
841 	}
842 	return mpol;
843 }
844 #endif /* CONFIG_TMPFS */
845 
846 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847 			struct shmem_inode_info *info, pgoff_t index)
848 {
849 	struct vm_area_struct pvma;
850 	struct page *page;
851 
852 	/* Create a pseudo vma that just contains the policy */
853 	pvma.vm_start = 0;
854 	/* Bias interleave by inode number to distribute better across nodes */
855 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
856 	pvma.vm_ops = NULL;
857 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858 
859 	page = swapin_readahead(swap, gfp, &pvma, 0);
860 
861 	/* Drop reference taken by mpol_shared_policy_lookup() */
862 	mpol_cond_put(pvma.vm_policy);
863 
864 	return page;
865 }
866 
867 static struct page *shmem_alloc_page(gfp_t gfp,
868 			struct shmem_inode_info *info, pgoff_t index)
869 {
870 	struct vm_area_struct pvma;
871 	struct page *page;
872 
873 	/* Create a pseudo vma that just contains the policy */
874 	pvma.vm_start = 0;
875 	/* Bias interleave by inode number to distribute better across nodes */
876 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
877 	pvma.vm_ops = NULL;
878 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
879 
880 	page = alloc_page_vma(gfp, &pvma, 0);
881 
882 	/* Drop reference taken by mpol_shared_policy_lookup() */
883 	mpol_cond_put(pvma.vm_policy);
884 
885 	return page;
886 }
887 #else /* !CONFIG_NUMA */
888 #ifdef CONFIG_TMPFS
889 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
890 {
891 }
892 #endif /* CONFIG_TMPFS */
893 
894 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895 			struct shmem_inode_info *info, pgoff_t index)
896 {
897 	return swapin_readahead(swap, gfp, NULL, 0);
898 }
899 
900 static inline struct page *shmem_alloc_page(gfp_t gfp,
901 			struct shmem_inode_info *info, pgoff_t index)
902 {
903 	return alloc_page(gfp);
904 }
905 #endif /* CONFIG_NUMA */
906 
907 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910 	return NULL;
911 }
912 #endif
913 
914 /*
915  * When a page is moved from swapcache to shmem filecache (either by the
916  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917  * shmem_unuse_inode()), it may have been read in earlier from swap, in
918  * ignorance of the mapping it belongs to.  If that mapping has special
919  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920  * we may need to copy to a suitable page before moving to filecache.
921  *
922  * In a future release, this may well be extended to respect cpuset and
923  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924  * but for now it is a simple matter of zone.
925  */
926 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927 {
928 	return page_zonenum(page) > gfp_zone(gfp);
929 }
930 
931 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932 				struct shmem_inode_info *info, pgoff_t index)
933 {
934 	struct page *oldpage, *newpage;
935 	struct address_space *swap_mapping;
936 	pgoff_t swap_index;
937 	int error;
938 
939 	oldpage = *pagep;
940 	swap_index = page_private(oldpage);
941 	swap_mapping = page_mapping(oldpage);
942 
943 	/*
944 	 * We have arrived here because our zones are constrained, so don't
945 	 * limit chance of success by further cpuset and node constraints.
946 	 */
947 	gfp &= ~GFP_CONSTRAINT_MASK;
948 	newpage = shmem_alloc_page(gfp, info, index);
949 	if (!newpage)
950 		return -ENOMEM;
951 
952 	page_cache_get(newpage);
953 	copy_highpage(newpage, oldpage);
954 	flush_dcache_page(newpage);
955 
956 	__set_page_locked(newpage);
957 	SetPageUptodate(newpage);
958 	SetPageSwapBacked(newpage);
959 	set_page_private(newpage, swap_index);
960 	SetPageSwapCache(newpage);
961 
962 	/*
963 	 * Our caller will very soon move newpage out of swapcache, but it's
964 	 * a nice clean interface for us to replace oldpage by newpage there.
965 	 */
966 	spin_lock_irq(&swap_mapping->tree_lock);
967 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968 								   newpage);
969 	if (!error) {
970 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
971 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
972 	}
973 	spin_unlock_irq(&swap_mapping->tree_lock);
974 
975 	if (unlikely(error)) {
976 		/*
977 		 * Is this possible?  I think not, now that our callers check
978 		 * both PageSwapCache and page_private after getting page lock;
979 		 * but be defensive.  Reverse old to newpage for clear and free.
980 		 */
981 		oldpage = newpage;
982 	} else {
983 		mem_cgroup_replace_page_cache(oldpage, newpage);
984 		lru_cache_add_anon(newpage);
985 		*pagep = newpage;
986 	}
987 
988 	ClearPageSwapCache(oldpage);
989 	set_page_private(oldpage, 0);
990 
991 	unlock_page(oldpage);
992 	page_cache_release(oldpage);
993 	page_cache_release(oldpage);
994 	return error;
995 }
996 
997 /*
998  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
999  *
1000  * If we allocate a new one we do not mark it dirty. That's up to the
1001  * vm. If we swap it in we mark it dirty since we also free the swap
1002  * entry since a page cannot live in both the swap and page cache
1003  */
1004 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1005 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1006 {
1007 	struct address_space *mapping = inode->i_mapping;
1008 	struct shmem_inode_info *info;
1009 	struct shmem_sb_info *sbinfo;
1010 	struct page *page;
1011 	swp_entry_t swap;
1012 	int error;
1013 	int once = 0;
1014 	int alloced = 0;
1015 
1016 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1017 		return -EFBIG;
1018 repeat:
1019 	swap.val = 0;
1020 	page = find_lock_entry(mapping, index);
1021 	if (radix_tree_exceptional_entry(page)) {
1022 		swap = radix_to_swp_entry(page);
1023 		page = NULL;
1024 	}
1025 
1026 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1027 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028 		error = -EINVAL;
1029 		goto failed;
1030 	}
1031 
1032 	/* fallocated page? */
1033 	if (page && !PageUptodate(page)) {
1034 		if (sgp != SGP_READ)
1035 			goto clear;
1036 		unlock_page(page);
1037 		page_cache_release(page);
1038 		page = NULL;
1039 	}
1040 	if (page || (sgp == SGP_READ && !swap.val)) {
1041 		*pagep = page;
1042 		return 0;
1043 	}
1044 
1045 	/*
1046 	 * Fast cache lookup did not find it:
1047 	 * bring it back from swap or allocate.
1048 	 */
1049 	info = SHMEM_I(inode);
1050 	sbinfo = SHMEM_SB(inode->i_sb);
1051 
1052 	if (swap.val) {
1053 		/* Look it up and read it in.. */
1054 		page = lookup_swap_cache(swap);
1055 		if (!page) {
1056 			/* here we actually do the io */
1057 			if (fault_type)
1058 				*fault_type |= VM_FAULT_MAJOR;
1059 			page = shmem_swapin(swap, gfp, info, index);
1060 			if (!page) {
1061 				error = -ENOMEM;
1062 				goto failed;
1063 			}
1064 		}
1065 
1066 		/* We have to do this with page locked to prevent races */
1067 		lock_page(page);
1068 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1069 		    !shmem_confirm_swap(mapping, index, swap)) {
1070 			error = -EEXIST;	/* try again */
1071 			goto unlock;
1072 		}
1073 		if (!PageUptodate(page)) {
1074 			error = -EIO;
1075 			goto failed;
1076 		}
1077 		wait_on_page_writeback(page);
1078 
1079 		if (shmem_should_replace_page(page, gfp)) {
1080 			error = shmem_replace_page(&page, gfp, info, index);
1081 			if (error)
1082 				goto failed;
1083 		}
1084 
1085 		error = mem_cgroup_charge_file(page, current->mm,
1086 						gfp & GFP_RECLAIM_MASK);
1087 		if (!error) {
1088 			error = shmem_add_to_page_cache(page, mapping, index,
1089 						gfp, swp_to_radix_entry(swap));
1090 			/*
1091 			 * We already confirmed swap under page lock, and make
1092 			 * no memory allocation here, so usually no possibility
1093 			 * of error; but free_swap_and_cache() only trylocks a
1094 			 * page, so it is just possible that the entry has been
1095 			 * truncated or holepunched since swap was confirmed.
1096 			 * shmem_undo_range() will have done some of the
1097 			 * unaccounting, now delete_from_swap_cache() will do
1098 			 * the rest (including mem_cgroup_uncharge_swapcache).
1099 			 * Reset swap.val? No, leave it so "failed" goes back to
1100 			 * "repeat": reading a hole and writing should succeed.
1101 			 */
1102 			if (error)
1103 				delete_from_swap_cache(page);
1104 		}
1105 		if (error)
1106 			goto failed;
1107 
1108 		spin_lock(&info->lock);
1109 		info->swapped--;
1110 		shmem_recalc_inode(inode);
1111 		spin_unlock(&info->lock);
1112 
1113 		delete_from_swap_cache(page);
1114 		set_page_dirty(page);
1115 		swap_free(swap);
1116 
1117 	} else {
1118 		if (shmem_acct_block(info->flags)) {
1119 			error = -ENOSPC;
1120 			goto failed;
1121 		}
1122 		if (sbinfo->max_blocks) {
1123 			if (percpu_counter_compare(&sbinfo->used_blocks,
1124 						sbinfo->max_blocks) >= 0) {
1125 				error = -ENOSPC;
1126 				goto unacct;
1127 			}
1128 			percpu_counter_inc(&sbinfo->used_blocks);
1129 		}
1130 
1131 		page = shmem_alloc_page(gfp, info, index);
1132 		if (!page) {
1133 			error = -ENOMEM;
1134 			goto decused;
1135 		}
1136 
1137 		__SetPageSwapBacked(page);
1138 		__set_page_locked(page);
1139 		error = mem_cgroup_charge_file(page, current->mm,
1140 						gfp & GFP_RECLAIM_MASK);
1141 		if (error)
1142 			goto decused;
1143 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1144 		if (!error) {
1145 			error = shmem_add_to_page_cache(page, mapping, index,
1146 							gfp, NULL);
1147 			radix_tree_preload_end();
1148 		}
1149 		if (error) {
1150 			mem_cgroup_uncharge_cache_page(page);
1151 			goto decused;
1152 		}
1153 		lru_cache_add_anon(page);
1154 
1155 		spin_lock(&info->lock);
1156 		info->alloced++;
1157 		inode->i_blocks += BLOCKS_PER_PAGE;
1158 		shmem_recalc_inode(inode);
1159 		spin_unlock(&info->lock);
1160 		alloced = true;
1161 
1162 		/*
1163 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1164 		 */
1165 		if (sgp == SGP_FALLOC)
1166 			sgp = SGP_WRITE;
1167 clear:
1168 		/*
1169 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1170 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1171 		 * it now, lest undo on failure cancel our earlier guarantee.
1172 		 */
1173 		if (sgp != SGP_WRITE) {
1174 			clear_highpage(page);
1175 			flush_dcache_page(page);
1176 			SetPageUptodate(page);
1177 		}
1178 		if (sgp == SGP_DIRTY)
1179 			set_page_dirty(page);
1180 	}
1181 
1182 	/* Perhaps the file has been truncated since we checked */
1183 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1184 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1185 		error = -EINVAL;
1186 		if (alloced)
1187 			goto trunc;
1188 		else
1189 			goto failed;
1190 	}
1191 	*pagep = page;
1192 	return 0;
1193 
1194 	/*
1195 	 * Error recovery.
1196 	 */
1197 trunc:
1198 	info = SHMEM_I(inode);
1199 	ClearPageDirty(page);
1200 	delete_from_page_cache(page);
1201 	spin_lock(&info->lock);
1202 	info->alloced--;
1203 	inode->i_blocks -= BLOCKS_PER_PAGE;
1204 	spin_unlock(&info->lock);
1205 decused:
1206 	sbinfo = SHMEM_SB(inode->i_sb);
1207 	if (sbinfo->max_blocks)
1208 		percpu_counter_add(&sbinfo->used_blocks, -1);
1209 unacct:
1210 	shmem_unacct_blocks(info->flags, 1);
1211 failed:
1212 	if (swap.val && error != -EINVAL &&
1213 	    !shmem_confirm_swap(mapping, index, swap))
1214 		error = -EEXIST;
1215 unlock:
1216 	if (page) {
1217 		unlock_page(page);
1218 		page_cache_release(page);
1219 	}
1220 	if (error == -ENOSPC && !once++) {
1221 		info = SHMEM_I(inode);
1222 		spin_lock(&info->lock);
1223 		shmem_recalc_inode(inode);
1224 		spin_unlock(&info->lock);
1225 		goto repeat;
1226 	}
1227 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1228 		goto repeat;
1229 	return error;
1230 }
1231 
1232 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1233 {
1234 	struct inode *inode = file_inode(vma->vm_file);
1235 	int error;
1236 	int ret = VM_FAULT_LOCKED;
1237 
1238 	/*
1239 	 * Trinity finds that probing a hole which tmpfs is punching can
1240 	 * prevent the hole-punch from ever completing: which in turn
1241 	 * locks writers out with its hold on i_mutex.  So refrain from
1242 	 * faulting pages into the hole while it's being punched, and
1243 	 * wait on i_mutex to be released if vmf->flags permits.
1244 	 */
1245 	if (unlikely(inode->i_private)) {
1246 		struct shmem_falloc *shmem_falloc;
1247 
1248 		spin_lock(&inode->i_lock);
1249 		shmem_falloc = inode->i_private;
1250 		if (!shmem_falloc ||
1251 		    shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE ||
1252 		    vmf->pgoff < shmem_falloc->start ||
1253 		    vmf->pgoff >= shmem_falloc->next)
1254 			shmem_falloc = NULL;
1255 		spin_unlock(&inode->i_lock);
1256 		/*
1257 		 * i_lock has protected us from taking shmem_falloc seriously
1258 		 * once return from shmem_fallocate() went back up that stack.
1259 		 * i_lock does not serialize with i_mutex at all, but it does
1260 		 * not matter if sometimes we wait unnecessarily, or sometimes
1261 		 * miss out on waiting: we just need to make those cases rare.
1262 		 */
1263 		if (shmem_falloc) {
1264 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1265 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1266 				up_read(&vma->vm_mm->mmap_sem);
1267 				mutex_lock(&inode->i_mutex);
1268 				mutex_unlock(&inode->i_mutex);
1269 				return VM_FAULT_RETRY;
1270 			}
1271 			/* cond_resched? Leave that to GUP or return to user */
1272 			return VM_FAULT_NOPAGE;
1273 		}
1274 	}
1275 
1276 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1277 	if (error)
1278 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1279 
1280 	if (ret & VM_FAULT_MAJOR) {
1281 		count_vm_event(PGMAJFAULT);
1282 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1283 	}
1284 	return ret;
1285 }
1286 
1287 #ifdef CONFIG_NUMA
1288 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1289 {
1290 	struct inode *inode = file_inode(vma->vm_file);
1291 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1292 }
1293 
1294 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1295 					  unsigned long addr)
1296 {
1297 	struct inode *inode = file_inode(vma->vm_file);
1298 	pgoff_t index;
1299 
1300 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1301 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1302 }
1303 #endif
1304 
1305 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1306 {
1307 	struct inode *inode = file_inode(file);
1308 	struct shmem_inode_info *info = SHMEM_I(inode);
1309 	int retval = -ENOMEM;
1310 
1311 	spin_lock(&info->lock);
1312 	if (lock && !(info->flags & VM_LOCKED)) {
1313 		if (!user_shm_lock(inode->i_size, user))
1314 			goto out_nomem;
1315 		info->flags |= VM_LOCKED;
1316 		mapping_set_unevictable(file->f_mapping);
1317 	}
1318 	if (!lock && (info->flags & VM_LOCKED) && user) {
1319 		user_shm_unlock(inode->i_size, user);
1320 		info->flags &= ~VM_LOCKED;
1321 		mapping_clear_unevictable(file->f_mapping);
1322 	}
1323 	retval = 0;
1324 
1325 out_nomem:
1326 	spin_unlock(&info->lock);
1327 	return retval;
1328 }
1329 
1330 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1331 {
1332 	file_accessed(file);
1333 	vma->vm_ops = &shmem_vm_ops;
1334 	return 0;
1335 }
1336 
1337 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1338 				     umode_t mode, dev_t dev, unsigned long flags)
1339 {
1340 	struct inode *inode;
1341 	struct shmem_inode_info *info;
1342 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1343 
1344 	if (shmem_reserve_inode(sb))
1345 		return NULL;
1346 
1347 	inode = new_inode(sb);
1348 	if (inode) {
1349 		inode->i_ino = get_next_ino();
1350 		inode_init_owner(inode, dir, mode);
1351 		inode->i_blocks = 0;
1352 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1353 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1354 		inode->i_generation = get_seconds();
1355 		info = SHMEM_I(inode);
1356 		memset(info, 0, (char *)inode - (char *)info);
1357 		spin_lock_init(&info->lock);
1358 		info->flags = flags & VM_NORESERVE;
1359 		INIT_LIST_HEAD(&info->swaplist);
1360 		simple_xattrs_init(&info->xattrs);
1361 		cache_no_acl(inode);
1362 
1363 		switch (mode & S_IFMT) {
1364 		default:
1365 			inode->i_op = &shmem_special_inode_operations;
1366 			init_special_inode(inode, mode, dev);
1367 			break;
1368 		case S_IFREG:
1369 			inode->i_mapping->a_ops = &shmem_aops;
1370 			inode->i_op = &shmem_inode_operations;
1371 			inode->i_fop = &shmem_file_operations;
1372 			mpol_shared_policy_init(&info->policy,
1373 						 shmem_get_sbmpol(sbinfo));
1374 			break;
1375 		case S_IFDIR:
1376 			inc_nlink(inode);
1377 			/* Some things misbehave if size == 0 on a directory */
1378 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1379 			inode->i_op = &shmem_dir_inode_operations;
1380 			inode->i_fop = &simple_dir_operations;
1381 			break;
1382 		case S_IFLNK:
1383 			/*
1384 			 * Must not load anything in the rbtree,
1385 			 * mpol_free_shared_policy will not be called.
1386 			 */
1387 			mpol_shared_policy_init(&info->policy, NULL);
1388 			break;
1389 		}
1390 	} else
1391 		shmem_free_inode(sb);
1392 	return inode;
1393 }
1394 
1395 bool shmem_mapping(struct address_space *mapping)
1396 {
1397 	return mapping->backing_dev_info == &shmem_backing_dev_info;
1398 }
1399 
1400 #ifdef CONFIG_TMPFS
1401 static const struct inode_operations shmem_symlink_inode_operations;
1402 static const struct inode_operations shmem_short_symlink_operations;
1403 
1404 #ifdef CONFIG_TMPFS_XATTR
1405 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1406 #else
1407 #define shmem_initxattrs NULL
1408 #endif
1409 
1410 static int
1411 shmem_write_begin(struct file *file, struct address_space *mapping,
1412 			loff_t pos, unsigned len, unsigned flags,
1413 			struct page **pagep, void **fsdata)
1414 {
1415 	int ret;
1416 	struct inode *inode = mapping->host;
1417 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1418 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1419 	if (ret == 0 && *pagep)
1420 		init_page_accessed(*pagep);
1421 	return ret;
1422 }
1423 
1424 static int
1425 shmem_write_end(struct file *file, struct address_space *mapping,
1426 			loff_t pos, unsigned len, unsigned copied,
1427 			struct page *page, void *fsdata)
1428 {
1429 	struct inode *inode = mapping->host;
1430 
1431 	if (pos + copied > inode->i_size)
1432 		i_size_write(inode, pos + copied);
1433 
1434 	if (!PageUptodate(page)) {
1435 		if (copied < PAGE_CACHE_SIZE) {
1436 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1437 			zero_user_segments(page, 0, from,
1438 					from + copied, PAGE_CACHE_SIZE);
1439 		}
1440 		SetPageUptodate(page);
1441 	}
1442 	set_page_dirty(page);
1443 	unlock_page(page);
1444 	page_cache_release(page);
1445 
1446 	return copied;
1447 }
1448 
1449 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1450 {
1451 	struct file *file = iocb->ki_filp;
1452 	struct inode *inode = file_inode(file);
1453 	struct address_space *mapping = inode->i_mapping;
1454 	pgoff_t index;
1455 	unsigned long offset;
1456 	enum sgp_type sgp = SGP_READ;
1457 	int error = 0;
1458 	ssize_t retval = 0;
1459 	loff_t *ppos = &iocb->ki_pos;
1460 
1461 	/*
1462 	 * Might this read be for a stacking filesystem?  Then when reading
1463 	 * holes of a sparse file, we actually need to allocate those pages,
1464 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1465 	 */
1466 	if (segment_eq(get_fs(), KERNEL_DS))
1467 		sgp = SGP_DIRTY;
1468 
1469 	index = *ppos >> PAGE_CACHE_SHIFT;
1470 	offset = *ppos & ~PAGE_CACHE_MASK;
1471 
1472 	for (;;) {
1473 		struct page *page = NULL;
1474 		pgoff_t end_index;
1475 		unsigned long nr, ret;
1476 		loff_t i_size = i_size_read(inode);
1477 
1478 		end_index = i_size >> PAGE_CACHE_SHIFT;
1479 		if (index > end_index)
1480 			break;
1481 		if (index == end_index) {
1482 			nr = i_size & ~PAGE_CACHE_MASK;
1483 			if (nr <= offset)
1484 				break;
1485 		}
1486 
1487 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1488 		if (error) {
1489 			if (error == -EINVAL)
1490 				error = 0;
1491 			break;
1492 		}
1493 		if (page)
1494 			unlock_page(page);
1495 
1496 		/*
1497 		 * We must evaluate after, since reads (unlike writes)
1498 		 * are called without i_mutex protection against truncate
1499 		 */
1500 		nr = PAGE_CACHE_SIZE;
1501 		i_size = i_size_read(inode);
1502 		end_index = i_size >> PAGE_CACHE_SHIFT;
1503 		if (index == end_index) {
1504 			nr = i_size & ~PAGE_CACHE_MASK;
1505 			if (nr <= offset) {
1506 				if (page)
1507 					page_cache_release(page);
1508 				break;
1509 			}
1510 		}
1511 		nr -= offset;
1512 
1513 		if (page) {
1514 			/*
1515 			 * If users can be writing to this page using arbitrary
1516 			 * virtual addresses, take care about potential aliasing
1517 			 * before reading the page on the kernel side.
1518 			 */
1519 			if (mapping_writably_mapped(mapping))
1520 				flush_dcache_page(page);
1521 			/*
1522 			 * Mark the page accessed if we read the beginning.
1523 			 */
1524 			if (!offset)
1525 				mark_page_accessed(page);
1526 		} else {
1527 			page = ZERO_PAGE(0);
1528 			page_cache_get(page);
1529 		}
1530 
1531 		/*
1532 		 * Ok, we have the page, and it's up-to-date, so
1533 		 * now we can copy it to user space...
1534 		 */
1535 		ret = copy_page_to_iter(page, offset, nr, to);
1536 		retval += ret;
1537 		offset += ret;
1538 		index += offset >> PAGE_CACHE_SHIFT;
1539 		offset &= ~PAGE_CACHE_MASK;
1540 
1541 		page_cache_release(page);
1542 		if (!iov_iter_count(to))
1543 			break;
1544 		if (ret < nr) {
1545 			error = -EFAULT;
1546 			break;
1547 		}
1548 		cond_resched();
1549 	}
1550 
1551 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1552 	file_accessed(file);
1553 	return retval ? retval : error;
1554 }
1555 
1556 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1557 				struct pipe_inode_info *pipe, size_t len,
1558 				unsigned int flags)
1559 {
1560 	struct address_space *mapping = in->f_mapping;
1561 	struct inode *inode = mapping->host;
1562 	unsigned int loff, nr_pages, req_pages;
1563 	struct page *pages[PIPE_DEF_BUFFERS];
1564 	struct partial_page partial[PIPE_DEF_BUFFERS];
1565 	struct page *page;
1566 	pgoff_t index, end_index;
1567 	loff_t isize, left;
1568 	int error, page_nr;
1569 	struct splice_pipe_desc spd = {
1570 		.pages = pages,
1571 		.partial = partial,
1572 		.nr_pages_max = PIPE_DEF_BUFFERS,
1573 		.flags = flags,
1574 		.ops = &page_cache_pipe_buf_ops,
1575 		.spd_release = spd_release_page,
1576 	};
1577 
1578 	isize = i_size_read(inode);
1579 	if (unlikely(*ppos >= isize))
1580 		return 0;
1581 
1582 	left = isize - *ppos;
1583 	if (unlikely(left < len))
1584 		len = left;
1585 
1586 	if (splice_grow_spd(pipe, &spd))
1587 		return -ENOMEM;
1588 
1589 	index = *ppos >> PAGE_CACHE_SHIFT;
1590 	loff = *ppos & ~PAGE_CACHE_MASK;
1591 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1592 	nr_pages = min(req_pages, spd.nr_pages_max);
1593 
1594 	spd.nr_pages = find_get_pages_contig(mapping, index,
1595 						nr_pages, spd.pages);
1596 	index += spd.nr_pages;
1597 	error = 0;
1598 
1599 	while (spd.nr_pages < nr_pages) {
1600 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1601 		if (error)
1602 			break;
1603 		unlock_page(page);
1604 		spd.pages[spd.nr_pages++] = page;
1605 		index++;
1606 	}
1607 
1608 	index = *ppos >> PAGE_CACHE_SHIFT;
1609 	nr_pages = spd.nr_pages;
1610 	spd.nr_pages = 0;
1611 
1612 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1613 		unsigned int this_len;
1614 
1615 		if (!len)
1616 			break;
1617 
1618 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1619 		page = spd.pages[page_nr];
1620 
1621 		if (!PageUptodate(page) || page->mapping != mapping) {
1622 			error = shmem_getpage(inode, index, &page,
1623 							SGP_CACHE, NULL);
1624 			if (error)
1625 				break;
1626 			unlock_page(page);
1627 			page_cache_release(spd.pages[page_nr]);
1628 			spd.pages[page_nr] = page;
1629 		}
1630 
1631 		isize = i_size_read(inode);
1632 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1633 		if (unlikely(!isize || index > end_index))
1634 			break;
1635 
1636 		if (end_index == index) {
1637 			unsigned int plen;
1638 
1639 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1640 			if (plen <= loff)
1641 				break;
1642 
1643 			this_len = min(this_len, plen - loff);
1644 			len = this_len;
1645 		}
1646 
1647 		spd.partial[page_nr].offset = loff;
1648 		spd.partial[page_nr].len = this_len;
1649 		len -= this_len;
1650 		loff = 0;
1651 		spd.nr_pages++;
1652 		index++;
1653 	}
1654 
1655 	while (page_nr < nr_pages)
1656 		page_cache_release(spd.pages[page_nr++]);
1657 
1658 	if (spd.nr_pages)
1659 		error = splice_to_pipe(pipe, &spd);
1660 
1661 	splice_shrink_spd(&spd);
1662 
1663 	if (error > 0) {
1664 		*ppos += error;
1665 		file_accessed(in);
1666 	}
1667 	return error;
1668 }
1669 
1670 /*
1671  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1672  */
1673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1674 				    pgoff_t index, pgoff_t end, int whence)
1675 {
1676 	struct page *page;
1677 	struct pagevec pvec;
1678 	pgoff_t indices[PAGEVEC_SIZE];
1679 	bool done = false;
1680 	int i;
1681 
1682 	pagevec_init(&pvec, 0);
1683 	pvec.nr = 1;		/* start small: we may be there already */
1684 	while (!done) {
1685 		pvec.nr = find_get_entries(mapping, index,
1686 					pvec.nr, pvec.pages, indices);
1687 		if (!pvec.nr) {
1688 			if (whence == SEEK_DATA)
1689 				index = end;
1690 			break;
1691 		}
1692 		for (i = 0; i < pvec.nr; i++, index++) {
1693 			if (index < indices[i]) {
1694 				if (whence == SEEK_HOLE) {
1695 					done = true;
1696 					break;
1697 				}
1698 				index = indices[i];
1699 			}
1700 			page = pvec.pages[i];
1701 			if (page && !radix_tree_exceptional_entry(page)) {
1702 				if (!PageUptodate(page))
1703 					page = NULL;
1704 			}
1705 			if (index >= end ||
1706 			    (page && whence == SEEK_DATA) ||
1707 			    (!page && whence == SEEK_HOLE)) {
1708 				done = true;
1709 				break;
1710 			}
1711 		}
1712 		pagevec_remove_exceptionals(&pvec);
1713 		pagevec_release(&pvec);
1714 		pvec.nr = PAGEVEC_SIZE;
1715 		cond_resched();
1716 	}
1717 	return index;
1718 }
1719 
1720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1721 {
1722 	struct address_space *mapping = file->f_mapping;
1723 	struct inode *inode = mapping->host;
1724 	pgoff_t start, end;
1725 	loff_t new_offset;
1726 
1727 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1728 		return generic_file_llseek_size(file, offset, whence,
1729 					MAX_LFS_FILESIZE, i_size_read(inode));
1730 	mutex_lock(&inode->i_mutex);
1731 	/* We're holding i_mutex so we can access i_size directly */
1732 
1733 	if (offset < 0)
1734 		offset = -EINVAL;
1735 	else if (offset >= inode->i_size)
1736 		offset = -ENXIO;
1737 	else {
1738 		start = offset >> PAGE_CACHE_SHIFT;
1739 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1740 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1741 		new_offset <<= PAGE_CACHE_SHIFT;
1742 		if (new_offset > offset) {
1743 			if (new_offset < inode->i_size)
1744 				offset = new_offset;
1745 			else if (whence == SEEK_DATA)
1746 				offset = -ENXIO;
1747 			else
1748 				offset = inode->i_size;
1749 		}
1750 	}
1751 
1752 	if (offset >= 0)
1753 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1754 	mutex_unlock(&inode->i_mutex);
1755 	return offset;
1756 }
1757 
1758 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1759 							 loff_t len)
1760 {
1761 	struct inode *inode = file_inode(file);
1762 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1763 	struct shmem_falloc shmem_falloc;
1764 	pgoff_t start, index, end;
1765 	int error;
1766 
1767 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1768 		return -EOPNOTSUPP;
1769 
1770 	mutex_lock(&inode->i_mutex);
1771 
1772 	shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE;
1773 
1774 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1775 		struct address_space *mapping = file->f_mapping;
1776 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1777 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1778 
1779 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1780 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1781 		spin_lock(&inode->i_lock);
1782 		inode->i_private = &shmem_falloc;
1783 		spin_unlock(&inode->i_lock);
1784 
1785 		if ((u64)unmap_end > (u64)unmap_start)
1786 			unmap_mapping_range(mapping, unmap_start,
1787 					    1 + unmap_end - unmap_start, 0);
1788 		shmem_truncate_range(inode, offset, offset + len - 1);
1789 		/* No need to unmap again: hole-punching leaves COWed pages */
1790 		error = 0;
1791 		goto undone;
1792 	}
1793 
1794 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1795 	error = inode_newsize_ok(inode, offset + len);
1796 	if (error)
1797 		goto out;
1798 
1799 	start = offset >> PAGE_CACHE_SHIFT;
1800 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1801 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1802 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1803 		error = -ENOSPC;
1804 		goto out;
1805 	}
1806 
1807 	shmem_falloc.start = start;
1808 	shmem_falloc.next  = start;
1809 	shmem_falloc.nr_falloced = 0;
1810 	shmem_falloc.nr_unswapped = 0;
1811 	spin_lock(&inode->i_lock);
1812 	inode->i_private = &shmem_falloc;
1813 	spin_unlock(&inode->i_lock);
1814 
1815 	for (index = start; index < end; index++) {
1816 		struct page *page;
1817 
1818 		/*
1819 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1820 		 * been interrupted because we are using up too much memory.
1821 		 */
1822 		if (signal_pending(current))
1823 			error = -EINTR;
1824 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1825 			error = -ENOMEM;
1826 		else
1827 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1828 									NULL);
1829 		if (error) {
1830 			/* Remove the !PageUptodate pages we added */
1831 			shmem_undo_range(inode,
1832 				(loff_t)start << PAGE_CACHE_SHIFT,
1833 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1834 			goto undone;
1835 		}
1836 
1837 		/*
1838 		 * Inform shmem_writepage() how far we have reached.
1839 		 * No need for lock or barrier: we have the page lock.
1840 		 */
1841 		shmem_falloc.next++;
1842 		if (!PageUptodate(page))
1843 			shmem_falloc.nr_falloced++;
1844 
1845 		/*
1846 		 * If !PageUptodate, leave it that way so that freeable pages
1847 		 * can be recognized if we need to rollback on error later.
1848 		 * But set_page_dirty so that memory pressure will swap rather
1849 		 * than free the pages we are allocating (and SGP_CACHE pages
1850 		 * might still be clean: we now need to mark those dirty too).
1851 		 */
1852 		set_page_dirty(page);
1853 		unlock_page(page);
1854 		page_cache_release(page);
1855 		cond_resched();
1856 	}
1857 
1858 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1859 		i_size_write(inode, offset + len);
1860 	inode->i_ctime = CURRENT_TIME;
1861 undone:
1862 	spin_lock(&inode->i_lock);
1863 	inode->i_private = NULL;
1864 	spin_unlock(&inode->i_lock);
1865 out:
1866 	mutex_unlock(&inode->i_mutex);
1867 	return error;
1868 }
1869 
1870 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1871 {
1872 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1873 
1874 	buf->f_type = TMPFS_MAGIC;
1875 	buf->f_bsize = PAGE_CACHE_SIZE;
1876 	buf->f_namelen = NAME_MAX;
1877 	if (sbinfo->max_blocks) {
1878 		buf->f_blocks = sbinfo->max_blocks;
1879 		buf->f_bavail =
1880 		buf->f_bfree  = sbinfo->max_blocks -
1881 				percpu_counter_sum(&sbinfo->used_blocks);
1882 	}
1883 	if (sbinfo->max_inodes) {
1884 		buf->f_files = sbinfo->max_inodes;
1885 		buf->f_ffree = sbinfo->free_inodes;
1886 	}
1887 	/* else leave those fields 0 like simple_statfs */
1888 	return 0;
1889 }
1890 
1891 /*
1892  * File creation. Allocate an inode, and we're done..
1893  */
1894 static int
1895 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1896 {
1897 	struct inode *inode;
1898 	int error = -ENOSPC;
1899 
1900 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1901 	if (inode) {
1902 		error = simple_acl_create(dir, inode);
1903 		if (error)
1904 			goto out_iput;
1905 		error = security_inode_init_security(inode, dir,
1906 						     &dentry->d_name,
1907 						     shmem_initxattrs, NULL);
1908 		if (error && error != -EOPNOTSUPP)
1909 			goto out_iput;
1910 
1911 		error = 0;
1912 		dir->i_size += BOGO_DIRENT_SIZE;
1913 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1914 		d_instantiate(dentry, inode);
1915 		dget(dentry); /* Extra count - pin the dentry in core */
1916 	}
1917 	return error;
1918 out_iput:
1919 	iput(inode);
1920 	return error;
1921 }
1922 
1923 static int
1924 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1925 {
1926 	struct inode *inode;
1927 	int error = -ENOSPC;
1928 
1929 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1930 	if (inode) {
1931 		error = security_inode_init_security(inode, dir,
1932 						     NULL,
1933 						     shmem_initxattrs, NULL);
1934 		if (error && error != -EOPNOTSUPP)
1935 			goto out_iput;
1936 		error = simple_acl_create(dir, inode);
1937 		if (error)
1938 			goto out_iput;
1939 		d_tmpfile(dentry, inode);
1940 	}
1941 	return error;
1942 out_iput:
1943 	iput(inode);
1944 	return error;
1945 }
1946 
1947 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1948 {
1949 	int error;
1950 
1951 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1952 		return error;
1953 	inc_nlink(dir);
1954 	return 0;
1955 }
1956 
1957 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1958 		bool excl)
1959 {
1960 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1961 }
1962 
1963 /*
1964  * Link a file..
1965  */
1966 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1967 {
1968 	struct inode *inode = old_dentry->d_inode;
1969 	int ret;
1970 
1971 	/*
1972 	 * No ordinary (disk based) filesystem counts links as inodes;
1973 	 * but each new link needs a new dentry, pinning lowmem, and
1974 	 * tmpfs dentries cannot be pruned until they are unlinked.
1975 	 */
1976 	ret = shmem_reserve_inode(inode->i_sb);
1977 	if (ret)
1978 		goto out;
1979 
1980 	dir->i_size += BOGO_DIRENT_SIZE;
1981 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1982 	inc_nlink(inode);
1983 	ihold(inode);	/* New dentry reference */
1984 	dget(dentry);		/* Extra pinning count for the created dentry */
1985 	d_instantiate(dentry, inode);
1986 out:
1987 	return ret;
1988 }
1989 
1990 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1991 {
1992 	struct inode *inode = dentry->d_inode;
1993 
1994 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1995 		shmem_free_inode(inode->i_sb);
1996 
1997 	dir->i_size -= BOGO_DIRENT_SIZE;
1998 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1999 	drop_nlink(inode);
2000 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2001 	return 0;
2002 }
2003 
2004 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2005 {
2006 	if (!simple_empty(dentry))
2007 		return -ENOTEMPTY;
2008 
2009 	drop_nlink(dentry->d_inode);
2010 	drop_nlink(dir);
2011 	return shmem_unlink(dir, dentry);
2012 }
2013 
2014 /*
2015  * The VFS layer already does all the dentry stuff for rename,
2016  * we just have to decrement the usage count for the target if
2017  * it exists so that the VFS layer correctly free's it when it
2018  * gets overwritten.
2019  */
2020 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2021 {
2022 	struct inode *inode = old_dentry->d_inode;
2023 	int they_are_dirs = S_ISDIR(inode->i_mode);
2024 
2025 	if (!simple_empty(new_dentry))
2026 		return -ENOTEMPTY;
2027 
2028 	if (new_dentry->d_inode) {
2029 		(void) shmem_unlink(new_dir, new_dentry);
2030 		if (they_are_dirs)
2031 			drop_nlink(old_dir);
2032 	} else if (they_are_dirs) {
2033 		drop_nlink(old_dir);
2034 		inc_nlink(new_dir);
2035 	}
2036 
2037 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2038 	new_dir->i_size += BOGO_DIRENT_SIZE;
2039 	old_dir->i_ctime = old_dir->i_mtime =
2040 	new_dir->i_ctime = new_dir->i_mtime =
2041 	inode->i_ctime = CURRENT_TIME;
2042 	return 0;
2043 }
2044 
2045 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2046 {
2047 	int error;
2048 	int len;
2049 	struct inode *inode;
2050 	struct page *page;
2051 	char *kaddr;
2052 	struct shmem_inode_info *info;
2053 
2054 	len = strlen(symname) + 1;
2055 	if (len > PAGE_CACHE_SIZE)
2056 		return -ENAMETOOLONG;
2057 
2058 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2059 	if (!inode)
2060 		return -ENOSPC;
2061 
2062 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2063 					     shmem_initxattrs, NULL);
2064 	if (error) {
2065 		if (error != -EOPNOTSUPP) {
2066 			iput(inode);
2067 			return error;
2068 		}
2069 		error = 0;
2070 	}
2071 
2072 	info = SHMEM_I(inode);
2073 	inode->i_size = len-1;
2074 	if (len <= SHORT_SYMLINK_LEN) {
2075 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2076 		if (!info->symlink) {
2077 			iput(inode);
2078 			return -ENOMEM;
2079 		}
2080 		inode->i_op = &shmem_short_symlink_operations;
2081 	} else {
2082 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2083 		if (error) {
2084 			iput(inode);
2085 			return error;
2086 		}
2087 		inode->i_mapping->a_ops = &shmem_aops;
2088 		inode->i_op = &shmem_symlink_inode_operations;
2089 		kaddr = kmap_atomic(page);
2090 		memcpy(kaddr, symname, len);
2091 		kunmap_atomic(kaddr);
2092 		SetPageUptodate(page);
2093 		set_page_dirty(page);
2094 		unlock_page(page);
2095 		page_cache_release(page);
2096 	}
2097 	dir->i_size += BOGO_DIRENT_SIZE;
2098 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2099 	d_instantiate(dentry, inode);
2100 	dget(dentry);
2101 	return 0;
2102 }
2103 
2104 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2105 {
2106 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2107 	return NULL;
2108 }
2109 
2110 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2111 {
2112 	struct page *page = NULL;
2113 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2114 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2115 	if (page)
2116 		unlock_page(page);
2117 	return page;
2118 }
2119 
2120 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2121 {
2122 	if (!IS_ERR(nd_get_link(nd))) {
2123 		struct page *page = cookie;
2124 		kunmap(page);
2125 		mark_page_accessed(page);
2126 		page_cache_release(page);
2127 	}
2128 }
2129 
2130 #ifdef CONFIG_TMPFS_XATTR
2131 /*
2132  * Superblocks without xattr inode operations may get some security.* xattr
2133  * support from the LSM "for free". As soon as we have any other xattrs
2134  * like ACLs, we also need to implement the security.* handlers at
2135  * filesystem level, though.
2136  */
2137 
2138 /*
2139  * Callback for security_inode_init_security() for acquiring xattrs.
2140  */
2141 static int shmem_initxattrs(struct inode *inode,
2142 			    const struct xattr *xattr_array,
2143 			    void *fs_info)
2144 {
2145 	struct shmem_inode_info *info = SHMEM_I(inode);
2146 	const struct xattr *xattr;
2147 	struct simple_xattr *new_xattr;
2148 	size_t len;
2149 
2150 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2151 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2152 		if (!new_xattr)
2153 			return -ENOMEM;
2154 
2155 		len = strlen(xattr->name) + 1;
2156 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2157 					  GFP_KERNEL);
2158 		if (!new_xattr->name) {
2159 			kfree(new_xattr);
2160 			return -ENOMEM;
2161 		}
2162 
2163 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2164 		       XATTR_SECURITY_PREFIX_LEN);
2165 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2166 		       xattr->name, len);
2167 
2168 		simple_xattr_list_add(&info->xattrs, new_xattr);
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 static const struct xattr_handler *shmem_xattr_handlers[] = {
2175 #ifdef CONFIG_TMPFS_POSIX_ACL
2176 	&posix_acl_access_xattr_handler,
2177 	&posix_acl_default_xattr_handler,
2178 #endif
2179 	NULL
2180 };
2181 
2182 static int shmem_xattr_validate(const char *name)
2183 {
2184 	struct { const char *prefix; size_t len; } arr[] = {
2185 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2186 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2187 	};
2188 	int i;
2189 
2190 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2191 		size_t preflen = arr[i].len;
2192 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2193 			if (!name[preflen])
2194 				return -EINVAL;
2195 			return 0;
2196 		}
2197 	}
2198 	return -EOPNOTSUPP;
2199 }
2200 
2201 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2202 			      void *buffer, size_t size)
2203 {
2204 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2205 	int err;
2206 
2207 	/*
2208 	 * If this is a request for a synthetic attribute in the system.*
2209 	 * namespace use the generic infrastructure to resolve a handler
2210 	 * for it via sb->s_xattr.
2211 	 */
2212 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2213 		return generic_getxattr(dentry, name, buffer, size);
2214 
2215 	err = shmem_xattr_validate(name);
2216 	if (err)
2217 		return err;
2218 
2219 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2220 }
2221 
2222 static int shmem_setxattr(struct dentry *dentry, const char *name,
2223 			  const void *value, size_t size, int flags)
2224 {
2225 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2226 	int err;
2227 
2228 	/*
2229 	 * If this is a request for a synthetic attribute in the system.*
2230 	 * namespace use the generic infrastructure to resolve a handler
2231 	 * for it via sb->s_xattr.
2232 	 */
2233 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2234 		return generic_setxattr(dentry, name, value, size, flags);
2235 
2236 	err = shmem_xattr_validate(name);
2237 	if (err)
2238 		return err;
2239 
2240 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2241 }
2242 
2243 static int shmem_removexattr(struct dentry *dentry, const char *name)
2244 {
2245 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2246 	int err;
2247 
2248 	/*
2249 	 * If this is a request for a synthetic attribute in the system.*
2250 	 * namespace use the generic infrastructure to resolve a handler
2251 	 * for it via sb->s_xattr.
2252 	 */
2253 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2254 		return generic_removexattr(dentry, name);
2255 
2256 	err = shmem_xattr_validate(name);
2257 	if (err)
2258 		return err;
2259 
2260 	return simple_xattr_remove(&info->xattrs, name);
2261 }
2262 
2263 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2264 {
2265 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2266 	return simple_xattr_list(&info->xattrs, buffer, size);
2267 }
2268 #endif /* CONFIG_TMPFS_XATTR */
2269 
2270 static const struct inode_operations shmem_short_symlink_operations = {
2271 	.readlink	= generic_readlink,
2272 	.follow_link	= shmem_follow_short_symlink,
2273 #ifdef CONFIG_TMPFS_XATTR
2274 	.setxattr	= shmem_setxattr,
2275 	.getxattr	= shmem_getxattr,
2276 	.listxattr	= shmem_listxattr,
2277 	.removexattr	= shmem_removexattr,
2278 #endif
2279 };
2280 
2281 static const struct inode_operations shmem_symlink_inode_operations = {
2282 	.readlink	= generic_readlink,
2283 	.follow_link	= shmem_follow_link,
2284 	.put_link	= shmem_put_link,
2285 #ifdef CONFIG_TMPFS_XATTR
2286 	.setxattr	= shmem_setxattr,
2287 	.getxattr	= shmem_getxattr,
2288 	.listxattr	= shmem_listxattr,
2289 	.removexattr	= shmem_removexattr,
2290 #endif
2291 };
2292 
2293 static struct dentry *shmem_get_parent(struct dentry *child)
2294 {
2295 	return ERR_PTR(-ESTALE);
2296 }
2297 
2298 static int shmem_match(struct inode *ino, void *vfh)
2299 {
2300 	__u32 *fh = vfh;
2301 	__u64 inum = fh[2];
2302 	inum = (inum << 32) | fh[1];
2303 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2304 }
2305 
2306 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2307 		struct fid *fid, int fh_len, int fh_type)
2308 {
2309 	struct inode *inode;
2310 	struct dentry *dentry = NULL;
2311 	u64 inum;
2312 
2313 	if (fh_len < 3)
2314 		return NULL;
2315 
2316 	inum = fid->raw[2];
2317 	inum = (inum << 32) | fid->raw[1];
2318 
2319 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2320 			shmem_match, fid->raw);
2321 	if (inode) {
2322 		dentry = d_find_alias(inode);
2323 		iput(inode);
2324 	}
2325 
2326 	return dentry;
2327 }
2328 
2329 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2330 				struct inode *parent)
2331 {
2332 	if (*len < 3) {
2333 		*len = 3;
2334 		return FILEID_INVALID;
2335 	}
2336 
2337 	if (inode_unhashed(inode)) {
2338 		/* Unfortunately insert_inode_hash is not idempotent,
2339 		 * so as we hash inodes here rather than at creation
2340 		 * time, we need a lock to ensure we only try
2341 		 * to do it once
2342 		 */
2343 		static DEFINE_SPINLOCK(lock);
2344 		spin_lock(&lock);
2345 		if (inode_unhashed(inode))
2346 			__insert_inode_hash(inode,
2347 					    inode->i_ino + inode->i_generation);
2348 		spin_unlock(&lock);
2349 	}
2350 
2351 	fh[0] = inode->i_generation;
2352 	fh[1] = inode->i_ino;
2353 	fh[2] = ((__u64)inode->i_ino) >> 32;
2354 
2355 	*len = 3;
2356 	return 1;
2357 }
2358 
2359 static const struct export_operations shmem_export_ops = {
2360 	.get_parent     = shmem_get_parent,
2361 	.encode_fh      = shmem_encode_fh,
2362 	.fh_to_dentry	= shmem_fh_to_dentry,
2363 };
2364 
2365 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2366 			       bool remount)
2367 {
2368 	char *this_char, *value, *rest;
2369 	struct mempolicy *mpol = NULL;
2370 	uid_t uid;
2371 	gid_t gid;
2372 
2373 	while (options != NULL) {
2374 		this_char = options;
2375 		for (;;) {
2376 			/*
2377 			 * NUL-terminate this option: unfortunately,
2378 			 * mount options form a comma-separated list,
2379 			 * but mpol's nodelist may also contain commas.
2380 			 */
2381 			options = strchr(options, ',');
2382 			if (options == NULL)
2383 				break;
2384 			options++;
2385 			if (!isdigit(*options)) {
2386 				options[-1] = '\0';
2387 				break;
2388 			}
2389 		}
2390 		if (!*this_char)
2391 			continue;
2392 		if ((value = strchr(this_char,'=')) != NULL) {
2393 			*value++ = 0;
2394 		} else {
2395 			printk(KERN_ERR
2396 			    "tmpfs: No value for mount option '%s'\n",
2397 			    this_char);
2398 			goto error;
2399 		}
2400 
2401 		if (!strcmp(this_char,"size")) {
2402 			unsigned long long size;
2403 			size = memparse(value,&rest);
2404 			if (*rest == '%') {
2405 				size <<= PAGE_SHIFT;
2406 				size *= totalram_pages;
2407 				do_div(size, 100);
2408 				rest++;
2409 			}
2410 			if (*rest)
2411 				goto bad_val;
2412 			sbinfo->max_blocks =
2413 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2414 		} else if (!strcmp(this_char,"nr_blocks")) {
2415 			sbinfo->max_blocks = memparse(value, &rest);
2416 			if (*rest)
2417 				goto bad_val;
2418 		} else if (!strcmp(this_char,"nr_inodes")) {
2419 			sbinfo->max_inodes = memparse(value, &rest);
2420 			if (*rest)
2421 				goto bad_val;
2422 		} else if (!strcmp(this_char,"mode")) {
2423 			if (remount)
2424 				continue;
2425 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2426 			if (*rest)
2427 				goto bad_val;
2428 		} else if (!strcmp(this_char,"uid")) {
2429 			if (remount)
2430 				continue;
2431 			uid = simple_strtoul(value, &rest, 0);
2432 			if (*rest)
2433 				goto bad_val;
2434 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2435 			if (!uid_valid(sbinfo->uid))
2436 				goto bad_val;
2437 		} else if (!strcmp(this_char,"gid")) {
2438 			if (remount)
2439 				continue;
2440 			gid = simple_strtoul(value, &rest, 0);
2441 			if (*rest)
2442 				goto bad_val;
2443 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2444 			if (!gid_valid(sbinfo->gid))
2445 				goto bad_val;
2446 		} else if (!strcmp(this_char,"mpol")) {
2447 			mpol_put(mpol);
2448 			mpol = NULL;
2449 			if (mpol_parse_str(value, &mpol))
2450 				goto bad_val;
2451 		} else {
2452 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2453 			       this_char);
2454 			goto error;
2455 		}
2456 	}
2457 	sbinfo->mpol = mpol;
2458 	return 0;
2459 
2460 bad_val:
2461 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2462 	       value, this_char);
2463 error:
2464 	mpol_put(mpol);
2465 	return 1;
2466 
2467 }
2468 
2469 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2470 {
2471 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2472 	struct shmem_sb_info config = *sbinfo;
2473 	unsigned long inodes;
2474 	int error = -EINVAL;
2475 
2476 	config.mpol = NULL;
2477 	if (shmem_parse_options(data, &config, true))
2478 		return error;
2479 
2480 	spin_lock(&sbinfo->stat_lock);
2481 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2482 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2483 		goto out;
2484 	if (config.max_inodes < inodes)
2485 		goto out;
2486 	/*
2487 	 * Those tests disallow limited->unlimited while any are in use;
2488 	 * but we must separately disallow unlimited->limited, because
2489 	 * in that case we have no record of how much is already in use.
2490 	 */
2491 	if (config.max_blocks && !sbinfo->max_blocks)
2492 		goto out;
2493 	if (config.max_inodes && !sbinfo->max_inodes)
2494 		goto out;
2495 
2496 	error = 0;
2497 	sbinfo->max_blocks  = config.max_blocks;
2498 	sbinfo->max_inodes  = config.max_inodes;
2499 	sbinfo->free_inodes = config.max_inodes - inodes;
2500 
2501 	/*
2502 	 * Preserve previous mempolicy unless mpol remount option was specified.
2503 	 */
2504 	if (config.mpol) {
2505 		mpol_put(sbinfo->mpol);
2506 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2507 	}
2508 out:
2509 	spin_unlock(&sbinfo->stat_lock);
2510 	return error;
2511 }
2512 
2513 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2514 {
2515 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2516 
2517 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2518 		seq_printf(seq, ",size=%luk",
2519 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2520 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2521 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2522 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2523 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2524 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2525 		seq_printf(seq, ",uid=%u",
2526 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2527 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2528 		seq_printf(seq, ",gid=%u",
2529 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2530 	shmem_show_mpol(seq, sbinfo->mpol);
2531 	return 0;
2532 }
2533 #endif /* CONFIG_TMPFS */
2534 
2535 static void shmem_put_super(struct super_block *sb)
2536 {
2537 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2538 
2539 	percpu_counter_destroy(&sbinfo->used_blocks);
2540 	mpol_put(sbinfo->mpol);
2541 	kfree(sbinfo);
2542 	sb->s_fs_info = NULL;
2543 }
2544 
2545 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2546 {
2547 	struct inode *inode;
2548 	struct shmem_sb_info *sbinfo;
2549 	int err = -ENOMEM;
2550 
2551 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2552 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2553 				L1_CACHE_BYTES), GFP_KERNEL);
2554 	if (!sbinfo)
2555 		return -ENOMEM;
2556 
2557 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2558 	sbinfo->uid = current_fsuid();
2559 	sbinfo->gid = current_fsgid();
2560 	sb->s_fs_info = sbinfo;
2561 
2562 #ifdef CONFIG_TMPFS
2563 	/*
2564 	 * Per default we only allow half of the physical ram per
2565 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2566 	 * but the internal instance is left unlimited.
2567 	 */
2568 	if (!(sb->s_flags & MS_KERNMOUNT)) {
2569 		sbinfo->max_blocks = shmem_default_max_blocks();
2570 		sbinfo->max_inodes = shmem_default_max_inodes();
2571 		if (shmem_parse_options(data, sbinfo, false)) {
2572 			err = -EINVAL;
2573 			goto failed;
2574 		}
2575 	} else {
2576 		sb->s_flags |= MS_NOUSER;
2577 	}
2578 	sb->s_export_op = &shmem_export_ops;
2579 	sb->s_flags |= MS_NOSEC;
2580 #else
2581 	sb->s_flags |= MS_NOUSER;
2582 #endif
2583 
2584 	spin_lock_init(&sbinfo->stat_lock);
2585 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2586 		goto failed;
2587 	sbinfo->free_inodes = sbinfo->max_inodes;
2588 
2589 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2590 	sb->s_blocksize = PAGE_CACHE_SIZE;
2591 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2592 	sb->s_magic = TMPFS_MAGIC;
2593 	sb->s_op = &shmem_ops;
2594 	sb->s_time_gran = 1;
2595 #ifdef CONFIG_TMPFS_XATTR
2596 	sb->s_xattr = shmem_xattr_handlers;
2597 #endif
2598 #ifdef CONFIG_TMPFS_POSIX_ACL
2599 	sb->s_flags |= MS_POSIXACL;
2600 #endif
2601 
2602 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2603 	if (!inode)
2604 		goto failed;
2605 	inode->i_uid = sbinfo->uid;
2606 	inode->i_gid = sbinfo->gid;
2607 	sb->s_root = d_make_root(inode);
2608 	if (!sb->s_root)
2609 		goto failed;
2610 	return 0;
2611 
2612 failed:
2613 	shmem_put_super(sb);
2614 	return err;
2615 }
2616 
2617 static struct kmem_cache *shmem_inode_cachep;
2618 
2619 static struct inode *shmem_alloc_inode(struct super_block *sb)
2620 {
2621 	struct shmem_inode_info *info;
2622 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2623 	if (!info)
2624 		return NULL;
2625 	return &info->vfs_inode;
2626 }
2627 
2628 static void shmem_destroy_callback(struct rcu_head *head)
2629 {
2630 	struct inode *inode = container_of(head, struct inode, i_rcu);
2631 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2632 }
2633 
2634 static void shmem_destroy_inode(struct inode *inode)
2635 {
2636 	if (S_ISREG(inode->i_mode))
2637 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2638 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2639 }
2640 
2641 static void shmem_init_inode(void *foo)
2642 {
2643 	struct shmem_inode_info *info = foo;
2644 	inode_init_once(&info->vfs_inode);
2645 }
2646 
2647 static int shmem_init_inodecache(void)
2648 {
2649 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2650 				sizeof(struct shmem_inode_info),
2651 				0, SLAB_PANIC, shmem_init_inode);
2652 	return 0;
2653 }
2654 
2655 static void shmem_destroy_inodecache(void)
2656 {
2657 	kmem_cache_destroy(shmem_inode_cachep);
2658 }
2659 
2660 static const struct address_space_operations shmem_aops = {
2661 	.writepage	= shmem_writepage,
2662 	.set_page_dirty	= __set_page_dirty_no_writeback,
2663 #ifdef CONFIG_TMPFS
2664 	.write_begin	= shmem_write_begin,
2665 	.write_end	= shmem_write_end,
2666 #endif
2667 	.migratepage	= migrate_page,
2668 	.error_remove_page = generic_error_remove_page,
2669 };
2670 
2671 static const struct file_operations shmem_file_operations = {
2672 	.mmap		= shmem_mmap,
2673 #ifdef CONFIG_TMPFS
2674 	.llseek		= shmem_file_llseek,
2675 	.read		= new_sync_read,
2676 	.write		= new_sync_write,
2677 	.read_iter	= shmem_file_read_iter,
2678 	.write_iter	= generic_file_write_iter,
2679 	.fsync		= noop_fsync,
2680 	.splice_read	= shmem_file_splice_read,
2681 	.splice_write	= iter_file_splice_write,
2682 	.fallocate	= shmem_fallocate,
2683 #endif
2684 };
2685 
2686 static const struct inode_operations shmem_inode_operations = {
2687 	.setattr	= shmem_setattr,
2688 #ifdef CONFIG_TMPFS_XATTR
2689 	.setxattr	= shmem_setxattr,
2690 	.getxattr	= shmem_getxattr,
2691 	.listxattr	= shmem_listxattr,
2692 	.removexattr	= shmem_removexattr,
2693 	.set_acl	= simple_set_acl,
2694 #endif
2695 };
2696 
2697 static const struct inode_operations shmem_dir_inode_operations = {
2698 #ifdef CONFIG_TMPFS
2699 	.create		= shmem_create,
2700 	.lookup		= simple_lookup,
2701 	.link		= shmem_link,
2702 	.unlink		= shmem_unlink,
2703 	.symlink	= shmem_symlink,
2704 	.mkdir		= shmem_mkdir,
2705 	.rmdir		= shmem_rmdir,
2706 	.mknod		= shmem_mknod,
2707 	.rename		= shmem_rename,
2708 	.tmpfile	= shmem_tmpfile,
2709 #endif
2710 #ifdef CONFIG_TMPFS_XATTR
2711 	.setxattr	= shmem_setxattr,
2712 	.getxattr	= shmem_getxattr,
2713 	.listxattr	= shmem_listxattr,
2714 	.removexattr	= shmem_removexattr,
2715 #endif
2716 #ifdef CONFIG_TMPFS_POSIX_ACL
2717 	.setattr	= shmem_setattr,
2718 	.set_acl	= simple_set_acl,
2719 #endif
2720 };
2721 
2722 static const struct inode_operations shmem_special_inode_operations = {
2723 #ifdef CONFIG_TMPFS_XATTR
2724 	.setxattr	= shmem_setxattr,
2725 	.getxattr	= shmem_getxattr,
2726 	.listxattr	= shmem_listxattr,
2727 	.removexattr	= shmem_removexattr,
2728 #endif
2729 #ifdef CONFIG_TMPFS_POSIX_ACL
2730 	.setattr	= shmem_setattr,
2731 	.set_acl	= simple_set_acl,
2732 #endif
2733 };
2734 
2735 static const struct super_operations shmem_ops = {
2736 	.alloc_inode	= shmem_alloc_inode,
2737 	.destroy_inode	= shmem_destroy_inode,
2738 #ifdef CONFIG_TMPFS
2739 	.statfs		= shmem_statfs,
2740 	.remount_fs	= shmem_remount_fs,
2741 	.show_options	= shmem_show_options,
2742 #endif
2743 	.evict_inode	= shmem_evict_inode,
2744 	.drop_inode	= generic_delete_inode,
2745 	.put_super	= shmem_put_super,
2746 };
2747 
2748 static const struct vm_operations_struct shmem_vm_ops = {
2749 	.fault		= shmem_fault,
2750 	.map_pages	= filemap_map_pages,
2751 #ifdef CONFIG_NUMA
2752 	.set_policy     = shmem_set_policy,
2753 	.get_policy     = shmem_get_policy,
2754 #endif
2755 	.remap_pages	= generic_file_remap_pages,
2756 };
2757 
2758 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2759 	int flags, const char *dev_name, void *data)
2760 {
2761 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2762 }
2763 
2764 static struct file_system_type shmem_fs_type = {
2765 	.owner		= THIS_MODULE,
2766 	.name		= "tmpfs",
2767 	.mount		= shmem_mount,
2768 	.kill_sb	= kill_litter_super,
2769 	.fs_flags	= FS_USERNS_MOUNT,
2770 };
2771 
2772 int __init shmem_init(void)
2773 {
2774 	int error;
2775 
2776 	/* If rootfs called this, don't re-init */
2777 	if (shmem_inode_cachep)
2778 		return 0;
2779 
2780 	error = bdi_init(&shmem_backing_dev_info);
2781 	if (error)
2782 		goto out4;
2783 
2784 	error = shmem_init_inodecache();
2785 	if (error)
2786 		goto out3;
2787 
2788 	error = register_filesystem(&shmem_fs_type);
2789 	if (error) {
2790 		printk(KERN_ERR "Could not register tmpfs\n");
2791 		goto out2;
2792 	}
2793 
2794 	shm_mnt = kern_mount(&shmem_fs_type);
2795 	if (IS_ERR(shm_mnt)) {
2796 		error = PTR_ERR(shm_mnt);
2797 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2798 		goto out1;
2799 	}
2800 	return 0;
2801 
2802 out1:
2803 	unregister_filesystem(&shmem_fs_type);
2804 out2:
2805 	shmem_destroy_inodecache();
2806 out3:
2807 	bdi_destroy(&shmem_backing_dev_info);
2808 out4:
2809 	shm_mnt = ERR_PTR(error);
2810 	return error;
2811 }
2812 
2813 #else /* !CONFIG_SHMEM */
2814 
2815 /*
2816  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2817  *
2818  * This is intended for small system where the benefits of the full
2819  * shmem code (swap-backed and resource-limited) are outweighed by
2820  * their complexity. On systems without swap this code should be
2821  * effectively equivalent, but much lighter weight.
2822  */
2823 
2824 static struct file_system_type shmem_fs_type = {
2825 	.name		= "tmpfs",
2826 	.mount		= ramfs_mount,
2827 	.kill_sb	= kill_litter_super,
2828 	.fs_flags	= FS_USERNS_MOUNT,
2829 };
2830 
2831 int __init shmem_init(void)
2832 {
2833 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2834 
2835 	shm_mnt = kern_mount(&shmem_fs_type);
2836 	BUG_ON(IS_ERR(shm_mnt));
2837 
2838 	return 0;
2839 }
2840 
2841 int shmem_unuse(swp_entry_t swap, struct page *page)
2842 {
2843 	return 0;
2844 }
2845 
2846 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2847 {
2848 	return 0;
2849 }
2850 
2851 void shmem_unlock_mapping(struct address_space *mapping)
2852 {
2853 }
2854 
2855 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2856 {
2857 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2858 }
2859 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2860 
2861 #define shmem_vm_ops				generic_file_vm_ops
2862 #define shmem_file_operations			ramfs_file_operations
2863 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2864 #define shmem_acct_size(flags, size)		0
2865 #define shmem_unacct_size(flags, size)		do {} while (0)
2866 
2867 #endif /* CONFIG_SHMEM */
2868 
2869 /* common code */
2870 
2871 static struct dentry_operations anon_ops = {
2872 	.d_dname = simple_dname
2873 };
2874 
2875 static struct file *__shmem_file_setup(const char *name, loff_t size,
2876 				       unsigned long flags, unsigned int i_flags)
2877 {
2878 	struct file *res;
2879 	struct inode *inode;
2880 	struct path path;
2881 	struct super_block *sb;
2882 	struct qstr this;
2883 
2884 	if (IS_ERR(shm_mnt))
2885 		return ERR_CAST(shm_mnt);
2886 
2887 	if (size < 0 || size > MAX_LFS_FILESIZE)
2888 		return ERR_PTR(-EINVAL);
2889 
2890 	if (shmem_acct_size(flags, size))
2891 		return ERR_PTR(-ENOMEM);
2892 
2893 	res = ERR_PTR(-ENOMEM);
2894 	this.name = name;
2895 	this.len = strlen(name);
2896 	this.hash = 0; /* will go */
2897 	sb = shm_mnt->mnt_sb;
2898 	path.dentry = d_alloc_pseudo(sb, &this);
2899 	if (!path.dentry)
2900 		goto put_memory;
2901 	d_set_d_op(path.dentry, &anon_ops);
2902 	path.mnt = mntget(shm_mnt);
2903 
2904 	res = ERR_PTR(-ENOSPC);
2905 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2906 	if (!inode)
2907 		goto put_dentry;
2908 
2909 	inode->i_flags |= i_flags;
2910 	d_instantiate(path.dentry, inode);
2911 	inode->i_size = size;
2912 	clear_nlink(inode);	/* It is unlinked */
2913 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2914 	if (IS_ERR(res))
2915 		goto put_dentry;
2916 
2917 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2918 		  &shmem_file_operations);
2919 	if (IS_ERR(res))
2920 		goto put_dentry;
2921 
2922 	return res;
2923 
2924 put_dentry:
2925 	path_put(&path);
2926 put_memory:
2927 	shmem_unacct_size(flags, size);
2928 	return res;
2929 }
2930 
2931 /**
2932  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2933  * 	kernel internal.  There will be NO LSM permission checks against the
2934  * 	underlying inode.  So users of this interface must do LSM checks at a
2935  * 	higher layer.  The one user is the big_key implementation.  LSM checks
2936  * 	are provided at the key level rather than the inode level.
2937  * @name: name for dentry (to be seen in /proc/<pid>/maps
2938  * @size: size to be set for the file
2939  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2940  */
2941 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2942 {
2943 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2944 }
2945 
2946 /**
2947  * shmem_file_setup - get an unlinked file living in tmpfs
2948  * @name: name for dentry (to be seen in /proc/<pid>/maps
2949  * @size: size to be set for the file
2950  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2951  */
2952 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2953 {
2954 	return __shmem_file_setup(name, size, flags, 0);
2955 }
2956 EXPORT_SYMBOL_GPL(shmem_file_setup);
2957 
2958 /**
2959  * shmem_zero_setup - setup a shared anonymous mapping
2960  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2961  */
2962 int shmem_zero_setup(struct vm_area_struct *vma)
2963 {
2964 	struct file *file;
2965 	loff_t size = vma->vm_end - vma->vm_start;
2966 
2967 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2968 	if (IS_ERR(file))
2969 		return PTR_ERR(file);
2970 
2971 	if (vma->vm_file)
2972 		fput(vma->vm_file);
2973 	vma->vm_file = file;
2974 	vma->vm_ops = &shmem_vm_ops;
2975 	return 0;
2976 }
2977 
2978 /**
2979  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2980  * @mapping:	the page's address_space
2981  * @index:	the page index
2982  * @gfp:	the page allocator flags to use if allocating
2983  *
2984  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2985  * with any new page allocations done using the specified allocation flags.
2986  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2987  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2988  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2989  *
2990  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2991  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2992  */
2993 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2994 					 pgoff_t index, gfp_t gfp)
2995 {
2996 #ifdef CONFIG_SHMEM
2997 	struct inode *inode = mapping->host;
2998 	struct page *page;
2999 	int error;
3000 
3001 	BUG_ON(mapping->a_ops != &shmem_aops);
3002 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3003 	if (error)
3004 		page = ERR_PTR(error);
3005 	else
3006 		unlock_page(page);
3007 	return page;
3008 #else
3009 	/*
3010 	 * The tiny !SHMEM case uses ramfs without swap
3011 	 */
3012 	return read_cache_page_gfp(mapping, index, gfp);
3013 #endif
3014 }
3015 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3016