xref: /openbmc/linux/mm/shmem.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95 
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98 
99 /*
100  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101  * inode->i_private (with i_rwsem making sure that it has only one user at
102  * a time): we would prefer not to enlarge the shmem inode just for that.
103  */
104 struct shmem_falloc {
105 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 	pgoff_t start;		/* start of range currently being fallocated */
107 	pgoff_t next;		/* the next page offset to be fallocated */
108 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
109 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
110 };
111 
112 struct shmem_options {
113 	unsigned long long blocks;
114 	unsigned long long inodes;
115 	struct mempolicy *mpol;
116 	kuid_t uid;
117 	kgid_t gid;
118 	umode_t mode;
119 	bool full_inums;
120 	int huge;
121 	int seen;
122 	bool noswap;
123 	unsigned short quota_types;
124 	struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132 
133 #ifdef CONFIG_TMPFS
134 static unsigned long shmem_default_max_blocks(void)
135 {
136 	return totalram_pages() / 2;
137 }
138 
139 static unsigned long shmem_default_max_inodes(void)
140 {
141 	unsigned long nr_pages = totalram_pages();
142 
143 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 			ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147 
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 			     struct folio **foliop, enum sgp_type sgp,
150 			     gfp_t gfp, struct vm_area_struct *vma,
151 			     vm_fault_t *fault_type);
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	int err = -ENOSPC;
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return err;
218 
219 	might_sleep();	/* when quotas */
220 	if (sbinfo->max_blocks) {
221 		if (percpu_counter_compare(&sbinfo->used_blocks,
222 					   sbinfo->max_blocks - pages) > 0)
223 			goto unacct;
224 
225 		err = dquot_alloc_block_nodirty(inode, pages);
226 		if (err)
227 			goto unacct;
228 
229 		percpu_counter_add(&sbinfo->used_blocks, pages);
230 	} else {
231 		err = dquot_alloc_block_nodirty(inode, pages);
232 		if (err)
233 			goto unacct;
234 	}
235 
236 	return 0;
237 
238 unacct:
239 	shmem_unacct_blocks(info->flags, pages);
240 	return err;
241 }
242 
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 
248 	might_sleep();	/* when quotas */
249 	dquot_free_block_nodirty(inode, pages);
250 
251 	if (sbinfo->max_blocks)
252 		percpu_counter_sub(&sbinfo->used_blocks, pages);
253 	shmem_unacct_blocks(info->flags, pages);
254 }
255 
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265 
266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 	return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270 
271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275 
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278 
279 #ifdef CONFIG_TMPFS_QUOTA
280 
281 static int shmem_enable_quotas(struct super_block *sb,
282 			       unsigned short quota_types)
283 {
284 	int type, err = 0;
285 
286 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 		if (!(quota_types & (1 << type)))
289 			continue;
290 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 					  DQUOT_USAGE_ENABLED |
292 					  DQUOT_LIMITS_ENABLED);
293 		if (err)
294 			goto out_err;
295 	}
296 	return 0;
297 
298 out_err:
299 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 		type, err);
301 	for (type--; type >= 0; type--)
302 		dquot_quota_off(sb, type);
303 	return err;
304 }
305 
306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 	int type;
309 
310 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 		dquot_quota_off(sb, type);
312 }
313 
314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
315 {
316 	return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319 
320 /*
321  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322  * produces a novel ino for the newly allocated inode.
323  *
324  * It may also be called when making a hard link to permit the space needed by
325  * each dentry. However, in that case, no new inode number is needed since that
326  * internally draws from another pool of inode numbers (currently global
327  * get_next_ino()). This case is indicated by passing NULL as inop.
328  */
329 #define SHMEM_INO_BATCH 1024
330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 	ino_t ino;
334 
335 	if (!(sb->s_flags & SB_KERNMOUNT)) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		if (sbinfo->max_inodes) {
338 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 				raw_spin_unlock(&sbinfo->stat_lock);
340 				return -ENOSPC;
341 			}
342 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 		}
344 		if (inop) {
345 			ino = sbinfo->next_ino++;
346 			if (unlikely(is_zero_ino(ino)))
347 				ino = sbinfo->next_ino++;
348 			if (unlikely(!sbinfo->full_inums &&
349 				     ino > UINT_MAX)) {
350 				/*
351 				 * Emulate get_next_ino uint wraparound for
352 				 * compatibility
353 				 */
354 				if (IS_ENABLED(CONFIG_64BIT))
355 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 						__func__, MINOR(sb->s_dev));
357 				sbinfo->next_ino = 1;
358 				ino = sbinfo->next_ino++;
359 			}
360 			*inop = ino;
361 		}
362 		raw_spin_unlock(&sbinfo->stat_lock);
363 	} else if (inop) {
364 		/*
365 		 * __shmem_file_setup, one of our callers, is lock-free: it
366 		 * doesn't hold stat_lock in shmem_reserve_inode since
367 		 * max_inodes is always 0, and is called from potentially
368 		 * unknown contexts. As such, use a per-cpu batched allocator
369 		 * which doesn't require the per-sb stat_lock unless we are at
370 		 * the batch boundary.
371 		 *
372 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 		 * shmem mounts are not exposed to userspace, so we don't need
374 		 * to worry about things like glibc compatibility.
375 		 */
376 		ino_t *next_ino;
377 
378 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 		ino = *next_ino;
380 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 			raw_spin_lock(&sbinfo->stat_lock);
382 			ino = sbinfo->next_ino;
383 			sbinfo->next_ino += SHMEM_INO_BATCH;
384 			raw_spin_unlock(&sbinfo->stat_lock);
385 			if (unlikely(is_zero_ino(ino)))
386 				ino++;
387 		}
388 		*inop = ino;
389 		*next_ino = ++ino;
390 		put_cpu();
391 	}
392 
393 	return 0;
394 }
395 
396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 	if (sbinfo->max_inodes) {
400 		raw_spin_lock(&sbinfo->stat_lock);
401 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 		raw_spin_unlock(&sbinfo->stat_lock);
403 	}
404 }
405 
406 /**
407  * shmem_recalc_inode - recalculate the block usage of an inode
408  * @inode: inode to recalc
409  * @alloced: the change in number of pages allocated to inode
410  * @swapped: the change in number of pages swapped from inode
411  *
412  * We have to calculate the free blocks since the mm can drop
413  * undirtied hole pages behind our back.
414  *
415  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
416  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417  */
418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 	struct shmem_inode_info *info = SHMEM_I(inode);
421 	long freed;
422 
423 	spin_lock(&info->lock);
424 	info->alloced += alloced;
425 	info->swapped += swapped;
426 	freed = info->alloced - info->swapped -
427 		READ_ONCE(inode->i_mapping->nrpages);
428 	/*
429 	 * Special case: whereas normally shmem_recalc_inode() is called
430 	 * after i_mapping->nrpages has already been adjusted (up or down),
431 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 	 * been freed.  Compensate here, to avoid the need for a followup call.
434 	 */
435 	if (swapped > 0)
436 		freed += swapped;
437 	if (freed > 0)
438 		info->alloced -= freed;
439 	spin_unlock(&info->lock);
440 
441 	/* The quota case may block */
442 	if (freed > 0)
443 		shmem_inode_unacct_blocks(inode, freed);
444 }
445 
446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 
450 	if (shmem_inode_acct_block(inode, pages))
451 		return false;
452 
453 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 	xa_lock_irq(&mapping->i_pages);
455 	mapping->nrpages += pages;
456 	xa_unlock_irq(&mapping->i_pages);
457 
458 	shmem_recalc_inode(inode, pages, 0);
459 	return true;
460 }
461 
462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 	/* pages argument is currently unused: keep it to help debugging */
465 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
466 
467 	shmem_recalc_inode(inode, 0, 0);
468 }
469 
470 /*
471  * Replace item expected in xarray by a new item, while holding xa_lock.
472  */
473 static int shmem_replace_entry(struct address_space *mapping,
474 			pgoff_t index, void *expected, void *replacement)
475 {
476 	XA_STATE(xas, &mapping->i_pages, index);
477 	void *item;
478 
479 	VM_BUG_ON(!expected);
480 	VM_BUG_ON(!replacement);
481 	item = xas_load(&xas);
482 	if (item != expected)
483 		return -ENOENT;
484 	xas_store(&xas, replacement);
485 	return 0;
486 }
487 
488 /*
489  * Sometimes, before we decide whether to proceed or to fail, we must check
490  * that an entry was not already brought back from swap by a racing thread.
491  *
492  * Checking page is not enough: by the time a SwapCache page is locked, it
493  * might be reused, and again be SwapCache, using the same swap as before.
494  */
495 static bool shmem_confirm_swap(struct address_space *mapping,
496 			       pgoff_t index, swp_entry_t swap)
497 {
498 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500 
501 /*
502  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503  *
504  * SHMEM_HUGE_NEVER:
505  *	disables huge pages for the mount;
506  * SHMEM_HUGE_ALWAYS:
507  *	enables huge pages for the mount;
508  * SHMEM_HUGE_WITHIN_SIZE:
509  *	only allocate huge pages if the page will be fully within i_size,
510  *	also respect fadvise()/madvise() hints;
511  * SHMEM_HUGE_ADVISE:
512  *	only allocate huge pages if requested with fadvise()/madvise();
513  */
514 
515 #define SHMEM_HUGE_NEVER	0
516 #define SHMEM_HUGE_ALWAYS	1
517 #define SHMEM_HUGE_WITHIN_SIZE	2
518 #define SHMEM_HUGE_ADVISE	3
519 
520 /*
521  * Special values.
522  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523  *
524  * SHMEM_HUGE_DENY:
525  *	disables huge on shm_mnt and all mounts, for emergency use;
526  * SHMEM_HUGE_FORCE:
527  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528  *
529  */
530 #define SHMEM_HUGE_DENY		(-1)
531 #define SHMEM_HUGE_FORCE	(-2)
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535 
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537 
538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index,
539 			    bool shmem_huge_force, struct mm_struct *mm,
540 			    unsigned long vm_flags)
541 {
542 	loff_t i_size;
543 
544 	if (!S_ISREG(inode->i_mode))
545 		return false;
546 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
547 		return false;
548 	if (shmem_huge == SHMEM_HUGE_DENY)
549 		return false;
550 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
551 		return true;
552 
553 	switch (SHMEM_SB(inode->i_sb)->huge) {
554 	case SHMEM_HUGE_ALWAYS:
555 		return true;
556 	case SHMEM_HUGE_WITHIN_SIZE:
557 		index = round_up(index + 1, HPAGE_PMD_NR);
558 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
559 		if (i_size >> PAGE_SHIFT >= index)
560 			return true;
561 		fallthrough;
562 	case SHMEM_HUGE_ADVISE:
563 		if (mm && (vm_flags & VM_HUGEPAGE))
564 			return true;
565 		fallthrough;
566 	default:
567 		return false;
568 	}
569 }
570 
571 bool shmem_is_huge(struct inode *inode, pgoff_t index,
572 		   bool shmem_huge_force, struct mm_struct *mm,
573 		   unsigned long vm_flags)
574 {
575 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
576 		return false;
577 
578 	return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags);
579 }
580 
581 #if defined(CONFIG_SYSFS)
582 static int shmem_parse_huge(const char *str)
583 {
584 	if (!strcmp(str, "never"))
585 		return SHMEM_HUGE_NEVER;
586 	if (!strcmp(str, "always"))
587 		return SHMEM_HUGE_ALWAYS;
588 	if (!strcmp(str, "within_size"))
589 		return SHMEM_HUGE_WITHIN_SIZE;
590 	if (!strcmp(str, "advise"))
591 		return SHMEM_HUGE_ADVISE;
592 	if (!strcmp(str, "deny"))
593 		return SHMEM_HUGE_DENY;
594 	if (!strcmp(str, "force"))
595 		return SHMEM_HUGE_FORCE;
596 	return -EINVAL;
597 }
598 #endif
599 
600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
601 static const char *shmem_format_huge(int huge)
602 {
603 	switch (huge) {
604 	case SHMEM_HUGE_NEVER:
605 		return "never";
606 	case SHMEM_HUGE_ALWAYS:
607 		return "always";
608 	case SHMEM_HUGE_WITHIN_SIZE:
609 		return "within_size";
610 	case SHMEM_HUGE_ADVISE:
611 		return "advise";
612 	case SHMEM_HUGE_DENY:
613 		return "deny";
614 	case SHMEM_HUGE_FORCE:
615 		return "force";
616 	default:
617 		VM_BUG_ON(1);
618 		return "bad_val";
619 	}
620 }
621 #endif
622 
623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
624 		struct shrink_control *sc, unsigned long nr_to_split)
625 {
626 	LIST_HEAD(list), *pos, *next;
627 	LIST_HEAD(to_remove);
628 	struct inode *inode;
629 	struct shmem_inode_info *info;
630 	struct folio *folio;
631 	unsigned long batch = sc ? sc->nr_to_scan : 128;
632 	int split = 0;
633 
634 	if (list_empty(&sbinfo->shrinklist))
635 		return SHRINK_STOP;
636 
637 	spin_lock(&sbinfo->shrinklist_lock);
638 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
639 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
640 
641 		/* pin the inode */
642 		inode = igrab(&info->vfs_inode);
643 
644 		/* inode is about to be evicted */
645 		if (!inode) {
646 			list_del_init(&info->shrinklist);
647 			goto next;
648 		}
649 
650 		/* Check if there's anything to gain */
651 		if (round_up(inode->i_size, PAGE_SIZE) ==
652 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
653 			list_move(&info->shrinklist, &to_remove);
654 			goto next;
655 		}
656 
657 		list_move(&info->shrinklist, &list);
658 next:
659 		sbinfo->shrinklist_len--;
660 		if (!--batch)
661 			break;
662 	}
663 	spin_unlock(&sbinfo->shrinklist_lock);
664 
665 	list_for_each_safe(pos, next, &to_remove) {
666 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
667 		inode = &info->vfs_inode;
668 		list_del_init(&info->shrinklist);
669 		iput(inode);
670 	}
671 
672 	list_for_each_safe(pos, next, &list) {
673 		int ret;
674 		pgoff_t index;
675 
676 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
677 		inode = &info->vfs_inode;
678 
679 		if (nr_to_split && split >= nr_to_split)
680 			goto move_back;
681 
682 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
683 		folio = filemap_get_folio(inode->i_mapping, index);
684 		if (IS_ERR(folio))
685 			goto drop;
686 
687 		/* No huge page at the end of the file: nothing to split */
688 		if (!folio_test_large(folio)) {
689 			folio_put(folio);
690 			goto drop;
691 		}
692 
693 		/*
694 		 * Move the inode on the list back to shrinklist if we failed
695 		 * to lock the page at this time.
696 		 *
697 		 * Waiting for the lock may lead to deadlock in the
698 		 * reclaim path.
699 		 */
700 		if (!folio_trylock(folio)) {
701 			folio_put(folio);
702 			goto move_back;
703 		}
704 
705 		ret = split_folio(folio);
706 		folio_unlock(folio);
707 		folio_put(folio);
708 
709 		/* If split failed move the inode on the list back to shrinklist */
710 		if (ret)
711 			goto move_back;
712 
713 		split++;
714 drop:
715 		list_del_init(&info->shrinklist);
716 		goto put;
717 move_back:
718 		/*
719 		 * Make sure the inode is either on the global list or deleted
720 		 * from any local list before iput() since it could be deleted
721 		 * in another thread once we put the inode (then the local list
722 		 * is corrupted).
723 		 */
724 		spin_lock(&sbinfo->shrinklist_lock);
725 		list_move(&info->shrinklist, &sbinfo->shrinklist);
726 		sbinfo->shrinklist_len++;
727 		spin_unlock(&sbinfo->shrinklist_lock);
728 put:
729 		iput(inode);
730 	}
731 
732 	return split;
733 }
734 
735 static long shmem_unused_huge_scan(struct super_block *sb,
736 		struct shrink_control *sc)
737 {
738 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739 
740 	if (!READ_ONCE(sbinfo->shrinklist_len))
741 		return SHRINK_STOP;
742 
743 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
744 }
745 
746 static long shmem_unused_huge_count(struct super_block *sb,
747 		struct shrink_control *sc)
748 {
749 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
750 	return READ_ONCE(sbinfo->shrinklist_len);
751 }
752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
753 
754 #define shmem_huge SHMEM_HUGE_DENY
755 
756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
757 		struct shrink_control *sc, unsigned long nr_to_split)
758 {
759 	return 0;
760 }
761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
762 
763 /*
764  * Like filemap_add_folio, but error if expected item has gone.
765  */
766 static int shmem_add_to_page_cache(struct folio *folio,
767 				   struct address_space *mapping,
768 				   pgoff_t index, void *expected, gfp_t gfp,
769 				   struct mm_struct *charge_mm)
770 {
771 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
772 	long nr = folio_nr_pages(folio);
773 	int error;
774 
775 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
776 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
777 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
778 	VM_BUG_ON(expected && folio_test_large(folio));
779 
780 	folio_ref_add(folio, nr);
781 	folio->mapping = mapping;
782 	folio->index = index;
783 
784 	if (!folio_test_swapcache(folio)) {
785 		error = mem_cgroup_charge(folio, charge_mm, gfp);
786 		if (error) {
787 			if (folio_test_pmd_mappable(folio)) {
788 				count_vm_event(THP_FILE_FALLBACK);
789 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
790 			}
791 			goto error;
792 		}
793 	}
794 	folio_throttle_swaprate(folio, gfp);
795 
796 	do {
797 		xas_lock_irq(&xas);
798 		if (expected != xas_find_conflict(&xas)) {
799 			xas_set_err(&xas, -EEXIST);
800 			goto unlock;
801 		}
802 		if (expected && xas_find_conflict(&xas)) {
803 			xas_set_err(&xas, -EEXIST);
804 			goto unlock;
805 		}
806 		xas_store(&xas, folio);
807 		if (xas_error(&xas))
808 			goto unlock;
809 		if (folio_test_pmd_mappable(folio)) {
810 			count_vm_event(THP_FILE_ALLOC);
811 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
812 		}
813 		mapping->nrpages += nr;
814 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
815 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
816 unlock:
817 		xas_unlock_irq(&xas);
818 	} while (xas_nomem(&xas, gfp));
819 
820 	if (xas_error(&xas)) {
821 		error = xas_error(&xas);
822 		goto error;
823 	}
824 
825 	return 0;
826 error:
827 	folio->mapping = NULL;
828 	folio_ref_sub(folio, nr);
829 	return error;
830 }
831 
832 /*
833  * Like delete_from_page_cache, but substitutes swap for @folio.
834  */
835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
836 {
837 	struct address_space *mapping = folio->mapping;
838 	long nr = folio_nr_pages(folio);
839 	int error;
840 
841 	xa_lock_irq(&mapping->i_pages);
842 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
843 	folio->mapping = NULL;
844 	mapping->nrpages -= nr;
845 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
846 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
847 	xa_unlock_irq(&mapping->i_pages);
848 	folio_put(folio);
849 	BUG_ON(error);
850 }
851 
852 /*
853  * Remove swap entry from page cache, free the swap and its page cache.
854  */
855 static int shmem_free_swap(struct address_space *mapping,
856 			   pgoff_t index, void *radswap)
857 {
858 	void *old;
859 
860 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
861 	if (old != radswap)
862 		return -ENOENT;
863 	free_swap_and_cache(radix_to_swp_entry(radswap));
864 	return 0;
865 }
866 
867 /*
868  * Determine (in bytes) how many of the shmem object's pages mapped by the
869  * given offsets are swapped out.
870  *
871  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
872  * as long as the inode doesn't go away and racy results are not a problem.
873  */
874 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
875 						pgoff_t start, pgoff_t end)
876 {
877 	XA_STATE(xas, &mapping->i_pages, start);
878 	struct page *page;
879 	unsigned long swapped = 0;
880 	unsigned long max = end - 1;
881 
882 	rcu_read_lock();
883 	xas_for_each(&xas, page, max) {
884 		if (xas_retry(&xas, page))
885 			continue;
886 		if (xa_is_value(page))
887 			swapped++;
888 		if (xas.xa_index == max)
889 			break;
890 		if (need_resched()) {
891 			xas_pause(&xas);
892 			cond_resched_rcu();
893 		}
894 	}
895 
896 	rcu_read_unlock();
897 
898 	return swapped << PAGE_SHIFT;
899 }
900 
901 /*
902  * Determine (in bytes) how many of the shmem object's pages mapped by the
903  * given vma is swapped out.
904  *
905  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
906  * as long as the inode doesn't go away and racy results are not a problem.
907  */
908 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
909 {
910 	struct inode *inode = file_inode(vma->vm_file);
911 	struct shmem_inode_info *info = SHMEM_I(inode);
912 	struct address_space *mapping = inode->i_mapping;
913 	unsigned long swapped;
914 
915 	/* Be careful as we don't hold info->lock */
916 	swapped = READ_ONCE(info->swapped);
917 
918 	/*
919 	 * The easier cases are when the shmem object has nothing in swap, or
920 	 * the vma maps it whole. Then we can simply use the stats that we
921 	 * already track.
922 	 */
923 	if (!swapped)
924 		return 0;
925 
926 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
927 		return swapped << PAGE_SHIFT;
928 
929 	/* Here comes the more involved part */
930 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
931 					vma->vm_pgoff + vma_pages(vma));
932 }
933 
934 /*
935  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
936  */
937 void shmem_unlock_mapping(struct address_space *mapping)
938 {
939 	struct folio_batch fbatch;
940 	pgoff_t index = 0;
941 
942 	folio_batch_init(&fbatch);
943 	/*
944 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
945 	 */
946 	while (!mapping_unevictable(mapping) &&
947 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
948 		check_move_unevictable_folios(&fbatch);
949 		folio_batch_release(&fbatch);
950 		cond_resched();
951 	}
952 }
953 
954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
955 {
956 	struct folio *folio;
957 
958 	/*
959 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
960 	 * beyond i_size, and reports fallocated folios as holes.
961 	 */
962 	folio = filemap_get_entry(inode->i_mapping, index);
963 	if (!folio)
964 		return folio;
965 	if (!xa_is_value(folio)) {
966 		folio_lock(folio);
967 		if (folio->mapping == inode->i_mapping)
968 			return folio;
969 		/* The folio has been swapped out */
970 		folio_unlock(folio);
971 		folio_put(folio);
972 	}
973 	/*
974 	 * But read a folio back from swap if any of it is within i_size
975 	 * (although in some cases this is just a waste of time).
976 	 */
977 	folio = NULL;
978 	shmem_get_folio(inode, index, &folio, SGP_READ);
979 	return folio;
980 }
981 
982 /*
983  * Remove range of pages and swap entries from page cache, and free them.
984  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
985  */
986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
987 								 bool unfalloc)
988 {
989 	struct address_space *mapping = inode->i_mapping;
990 	struct shmem_inode_info *info = SHMEM_I(inode);
991 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
992 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
993 	struct folio_batch fbatch;
994 	pgoff_t indices[PAGEVEC_SIZE];
995 	struct folio *folio;
996 	bool same_folio;
997 	long nr_swaps_freed = 0;
998 	pgoff_t index;
999 	int i;
1000 
1001 	if (lend == -1)
1002 		end = -1;	/* unsigned, so actually very big */
1003 
1004 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1005 		info->fallocend = start;
1006 
1007 	folio_batch_init(&fbatch);
1008 	index = start;
1009 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1010 			&fbatch, indices)) {
1011 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1012 			folio = fbatch.folios[i];
1013 
1014 			if (xa_is_value(folio)) {
1015 				if (unfalloc)
1016 					continue;
1017 				nr_swaps_freed += !shmem_free_swap(mapping,
1018 							indices[i], folio);
1019 				continue;
1020 			}
1021 
1022 			if (!unfalloc || !folio_test_uptodate(folio))
1023 				truncate_inode_folio(mapping, folio);
1024 			folio_unlock(folio);
1025 		}
1026 		folio_batch_remove_exceptionals(&fbatch);
1027 		folio_batch_release(&fbatch);
1028 		cond_resched();
1029 	}
1030 
1031 	/*
1032 	 * When undoing a failed fallocate, we want none of the partial folio
1033 	 * zeroing and splitting below, but shall want to truncate the whole
1034 	 * folio when !uptodate indicates that it was added by this fallocate,
1035 	 * even when [lstart, lend] covers only a part of the folio.
1036 	 */
1037 	if (unfalloc)
1038 		goto whole_folios;
1039 
1040 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1041 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1042 	if (folio) {
1043 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1044 		folio_mark_dirty(folio);
1045 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1046 			start = folio_next_index(folio);
1047 			if (same_folio)
1048 				end = folio->index;
1049 		}
1050 		folio_unlock(folio);
1051 		folio_put(folio);
1052 		folio = NULL;
1053 	}
1054 
1055 	if (!same_folio)
1056 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1057 	if (folio) {
1058 		folio_mark_dirty(folio);
1059 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1060 			end = folio->index;
1061 		folio_unlock(folio);
1062 		folio_put(folio);
1063 	}
1064 
1065 whole_folios:
1066 
1067 	index = start;
1068 	while (index < end) {
1069 		cond_resched();
1070 
1071 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1072 				indices)) {
1073 			/* If all gone or hole-punch or unfalloc, we're done */
1074 			if (index == start || end != -1)
1075 				break;
1076 			/* But if truncating, restart to make sure all gone */
1077 			index = start;
1078 			continue;
1079 		}
1080 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1081 			folio = fbatch.folios[i];
1082 
1083 			if (xa_is_value(folio)) {
1084 				if (unfalloc)
1085 					continue;
1086 				if (shmem_free_swap(mapping, indices[i], folio)) {
1087 					/* Swap was replaced by page: retry */
1088 					index = indices[i];
1089 					break;
1090 				}
1091 				nr_swaps_freed++;
1092 				continue;
1093 			}
1094 
1095 			folio_lock(folio);
1096 
1097 			if (!unfalloc || !folio_test_uptodate(folio)) {
1098 				if (folio_mapping(folio) != mapping) {
1099 					/* Page was replaced by swap: retry */
1100 					folio_unlock(folio);
1101 					index = indices[i];
1102 					break;
1103 				}
1104 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1105 						folio);
1106 
1107 				if (!folio_test_large(folio)) {
1108 					truncate_inode_folio(mapping, folio);
1109 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1110 					/*
1111 					 * If we split a page, reset the loop so
1112 					 * that we pick up the new sub pages.
1113 					 * Otherwise the THP was entirely
1114 					 * dropped or the target range was
1115 					 * zeroed, so just continue the loop as
1116 					 * is.
1117 					 */
1118 					if (!folio_test_large(folio)) {
1119 						folio_unlock(folio);
1120 						index = start;
1121 						break;
1122 					}
1123 				}
1124 			}
1125 			folio_unlock(folio);
1126 		}
1127 		folio_batch_remove_exceptionals(&fbatch);
1128 		folio_batch_release(&fbatch);
1129 	}
1130 
1131 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1132 }
1133 
1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1135 {
1136 	shmem_undo_range(inode, lstart, lend, false);
1137 	inode->i_mtime = inode_set_ctime_current(inode);
1138 	inode_inc_iversion(inode);
1139 }
1140 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1141 
1142 static int shmem_getattr(struct mnt_idmap *idmap,
1143 			 const struct path *path, struct kstat *stat,
1144 			 u32 request_mask, unsigned int query_flags)
1145 {
1146 	struct inode *inode = path->dentry->d_inode;
1147 	struct shmem_inode_info *info = SHMEM_I(inode);
1148 
1149 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1150 		shmem_recalc_inode(inode, 0, 0);
1151 
1152 	if (info->fsflags & FS_APPEND_FL)
1153 		stat->attributes |= STATX_ATTR_APPEND;
1154 	if (info->fsflags & FS_IMMUTABLE_FL)
1155 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1156 	if (info->fsflags & FS_NODUMP_FL)
1157 		stat->attributes |= STATX_ATTR_NODUMP;
1158 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1159 			STATX_ATTR_IMMUTABLE |
1160 			STATX_ATTR_NODUMP);
1161 	generic_fillattr(idmap, request_mask, inode, stat);
1162 
1163 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1164 		stat->blksize = HPAGE_PMD_SIZE;
1165 
1166 	if (request_mask & STATX_BTIME) {
1167 		stat->result_mask |= STATX_BTIME;
1168 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1169 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static int shmem_setattr(struct mnt_idmap *idmap,
1176 			 struct dentry *dentry, struct iattr *attr)
1177 {
1178 	struct inode *inode = d_inode(dentry);
1179 	struct shmem_inode_info *info = SHMEM_I(inode);
1180 	int error;
1181 	bool update_mtime = false;
1182 	bool update_ctime = true;
1183 
1184 	error = setattr_prepare(idmap, dentry, attr);
1185 	if (error)
1186 		return error;
1187 
1188 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1189 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1190 			return -EPERM;
1191 		}
1192 	}
1193 
1194 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1195 		loff_t oldsize = inode->i_size;
1196 		loff_t newsize = attr->ia_size;
1197 
1198 		/* protected by i_rwsem */
1199 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1200 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1201 			return -EPERM;
1202 
1203 		if (newsize != oldsize) {
1204 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1205 					oldsize, newsize);
1206 			if (error)
1207 				return error;
1208 			i_size_write(inode, newsize);
1209 			update_mtime = true;
1210 		} else {
1211 			update_ctime = false;
1212 		}
1213 		if (newsize <= oldsize) {
1214 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1215 			if (oldsize > holebegin)
1216 				unmap_mapping_range(inode->i_mapping,
1217 							holebegin, 0, 1);
1218 			if (info->alloced)
1219 				shmem_truncate_range(inode,
1220 							newsize, (loff_t)-1);
1221 			/* unmap again to remove racily COWed private pages */
1222 			if (oldsize > holebegin)
1223 				unmap_mapping_range(inode->i_mapping,
1224 							holebegin, 0, 1);
1225 		}
1226 	}
1227 
1228 	if (is_quota_modification(idmap, inode, attr)) {
1229 		error = dquot_initialize(inode);
1230 		if (error)
1231 			return error;
1232 	}
1233 
1234 	/* Transfer quota accounting */
1235 	if (i_uid_needs_update(idmap, attr, inode) ||
1236 	    i_gid_needs_update(idmap, attr, inode)) {
1237 		error = dquot_transfer(idmap, inode, attr);
1238 
1239 		if (error)
1240 			return error;
1241 	}
1242 
1243 	setattr_copy(idmap, inode, attr);
1244 	if (attr->ia_valid & ATTR_MODE)
1245 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1246 	if (!error && update_ctime) {
1247 		inode_set_ctime_current(inode);
1248 		if (update_mtime)
1249 			inode->i_mtime = inode_get_ctime(inode);
1250 		inode_inc_iversion(inode);
1251 	}
1252 	return error;
1253 }
1254 
1255 static void shmem_evict_inode(struct inode *inode)
1256 {
1257 	struct shmem_inode_info *info = SHMEM_I(inode);
1258 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1259 	size_t freed = 0;
1260 
1261 	if (shmem_mapping(inode->i_mapping)) {
1262 		shmem_unacct_size(info->flags, inode->i_size);
1263 		inode->i_size = 0;
1264 		mapping_set_exiting(inode->i_mapping);
1265 		shmem_truncate_range(inode, 0, (loff_t)-1);
1266 		if (!list_empty(&info->shrinklist)) {
1267 			spin_lock(&sbinfo->shrinklist_lock);
1268 			if (!list_empty(&info->shrinklist)) {
1269 				list_del_init(&info->shrinklist);
1270 				sbinfo->shrinklist_len--;
1271 			}
1272 			spin_unlock(&sbinfo->shrinklist_lock);
1273 		}
1274 		while (!list_empty(&info->swaplist)) {
1275 			/* Wait while shmem_unuse() is scanning this inode... */
1276 			wait_var_event(&info->stop_eviction,
1277 				       !atomic_read(&info->stop_eviction));
1278 			mutex_lock(&shmem_swaplist_mutex);
1279 			/* ...but beware of the race if we peeked too early */
1280 			if (!atomic_read(&info->stop_eviction))
1281 				list_del_init(&info->swaplist);
1282 			mutex_unlock(&shmem_swaplist_mutex);
1283 		}
1284 	}
1285 
1286 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1287 	shmem_free_inode(inode->i_sb, freed);
1288 	WARN_ON(inode->i_blocks);
1289 	clear_inode(inode);
1290 #ifdef CONFIG_TMPFS_QUOTA
1291 	dquot_free_inode(inode);
1292 	dquot_drop(inode);
1293 #endif
1294 }
1295 
1296 static int shmem_find_swap_entries(struct address_space *mapping,
1297 				   pgoff_t start, struct folio_batch *fbatch,
1298 				   pgoff_t *indices, unsigned int type)
1299 {
1300 	XA_STATE(xas, &mapping->i_pages, start);
1301 	struct folio *folio;
1302 	swp_entry_t entry;
1303 
1304 	rcu_read_lock();
1305 	xas_for_each(&xas, folio, ULONG_MAX) {
1306 		if (xas_retry(&xas, folio))
1307 			continue;
1308 
1309 		if (!xa_is_value(folio))
1310 			continue;
1311 
1312 		entry = radix_to_swp_entry(folio);
1313 		/*
1314 		 * swapin error entries can be found in the mapping. But they're
1315 		 * deliberately ignored here as we've done everything we can do.
1316 		 */
1317 		if (swp_type(entry) != type)
1318 			continue;
1319 
1320 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1321 		if (!folio_batch_add(fbatch, folio))
1322 			break;
1323 
1324 		if (need_resched()) {
1325 			xas_pause(&xas);
1326 			cond_resched_rcu();
1327 		}
1328 	}
1329 	rcu_read_unlock();
1330 
1331 	return xas.xa_index;
1332 }
1333 
1334 /*
1335  * Move the swapped pages for an inode to page cache. Returns the count
1336  * of pages swapped in, or the error in case of failure.
1337  */
1338 static int shmem_unuse_swap_entries(struct inode *inode,
1339 		struct folio_batch *fbatch, pgoff_t *indices)
1340 {
1341 	int i = 0;
1342 	int ret = 0;
1343 	int error = 0;
1344 	struct address_space *mapping = inode->i_mapping;
1345 
1346 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1347 		struct folio *folio = fbatch->folios[i];
1348 
1349 		if (!xa_is_value(folio))
1350 			continue;
1351 		error = shmem_swapin_folio(inode, indices[i],
1352 					  &folio, SGP_CACHE,
1353 					  mapping_gfp_mask(mapping),
1354 					  NULL, NULL);
1355 		if (error == 0) {
1356 			folio_unlock(folio);
1357 			folio_put(folio);
1358 			ret++;
1359 		}
1360 		if (error == -ENOMEM)
1361 			break;
1362 		error = 0;
1363 	}
1364 	return error ? error : ret;
1365 }
1366 
1367 /*
1368  * If swap found in inode, free it and move page from swapcache to filecache.
1369  */
1370 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1371 {
1372 	struct address_space *mapping = inode->i_mapping;
1373 	pgoff_t start = 0;
1374 	struct folio_batch fbatch;
1375 	pgoff_t indices[PAGEVEC_SIZE];
1376 	int ret = 0;
1377 
1378 	do {
1379 		folio_batch_init(&fbatch);
1380 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1381 		if (folio_batch_count(&fbatch) == 0) {
1382 			ret = 0;
1383 			break;
1384 		}
1385 
1386 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1387 		if (ret < 0)
1388 			break;
1389 
1390 		start = indices[folio_batch_count(&fbatch) - 1];
1391 	} while (true);
1392 
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Read all the shared memory data that resides in the swap
1398  * device 'type' back into memory, so the swap device can be
1399  * unused.
1400  */
1401 int shmem_unuse(unsigned int type)
1402 {
1403 	struct shmem_inode_info *info, *next;
1404 	int error = 0;
1405 
1406 	if (list_empty(&shmem_swaplist))
1407 		return 0;
1408 
1409 	mutex_lock(&shmem_swaplist_mutex);
1410 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1411 		if (!info->swapped) {
1412 			list_del_init(&info->swaplist);
1413 			continue;
1414 		}
1415 		/*
1416 		 * Drop the swaplist mutex while searching the inode for swap;
1417 		 * but before doing so, make sure shmem_evict_inode() will not
1418 		 * remove placeholder inode from swaplist, nor let it be freed
1419 		 * (igrab() would protect from unlink, but not from unmount).
1420 		 */
1421 		atomic_inc(&info->stop_eviction);
1422 		mutex_unlock(&shmem_swaplist_mutex);
1423 
1424 		error = shmem_unuse_inode(&info->vfs_inode, type);
1425 		cond_resched();
1426 
1427 		mutex_lock(&shmem_swaplist_mutex);
1428 		next = list_next_entry(info, swaplist);
1429 		if (!info->swapped)
1430 			list_del_init(&info->swaplist);
1431 		if (atomic_dec_and_test(&info->stop_eviction))
1432 			wake_up_var(&info->stop_eviction);
1433 		if (error)
1434 			break;
1435 	}
1436 	mutex_unlock(&shmem_swaplist_mutex);
1437 
1438 	return error;
1439 }
1440 
1441 /*
1442  * Move the page from the page cache to the swap cache.
1443  */
1444 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1445 {
1446 	struct folio *folio = page_folio(page);
1447 	struct address_space *mapping = folio->mapping;
1448 	struct inode *inode = mapping->host;
1449 	struct shmem_inode_info *info = SHMEM_I(inode);
1450 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1451 	swp_entry_t swap;
1452 	pgoff_t index;
1453 
1454 	/*
1455 	 * Our capabilities prevent regular writeback or sync from ever calling
1456 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1457 	 * its underlying filesystem, in which case tmpfs should write out to
1458 	 * swap only in response to memory pressure, and not for the writeback
1459 	 * threads or sync.
1460 	 */
1461 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1462 		goto redirty;
1463 
1464 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1465 		goto redirty;
1466 
1467 	if (!total_swap_pages)
1468 		goto redirty;
1469 
1470 	/*
1471 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1472 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1473 	 * and its shmem_writeback() needs them to be split when swapping.
1474 	 */
1475 	if (folio_test_large(folio)) {
1476 		/* Ensure the subpages are still dirty */
1477 		folio_test_set_dirty(folio);
1478 		if (split_huge_page(page) < 0)
1479 			goto redirty;
1480 		folio = page_folio(page);
1481 		folio_clear_dirty(folio);
1482 	}
1483 
1484 	index = folio->index;
1485 
1486 	/*
1487 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1488 	 * value into swapfile.c, the only way we can correctly account for a
1489 	 * fallocated folio arriving here is now to initialize it and write it.
1490 	 *
1491 	 * That's okay for a folio already fallocated earlier, but if we have
1492 	 * not yet completed the fallocation, then (a) we want to keep track
1493 	 * of this folio in case we have to undo it, and (b) it may not be a
1494 	 * good idea to continue anyway, once we're pushing into swap.  So
1495 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1496 	 */
1497 	if (!folio_test_uptodate(folio)) {
1498 		if (inode->i_private) {
1499 			struct shmem_falloc *shmem_falloc;
1500 			spin_lock(&inode->i_lock);
1501 			shmem_falloc = inode->i_private;
1502 			if (shmem_falloc &&
1503 			    !shmem_falloc->waitq &&
1504 			    index >= shmem_falloc->start &&
1505 			    index < shmem_falloc->next)
1506 				shmem_falloc->nr_unswapped++;
1507 			else
1508 				shmem_falloc = NULL;
1509 			spin_unlock(&inode->i_lock);
1510 			if (shmem_falloc)
1511 				goto redirty;
1512 		}
1513 		folio_zero_range(folio, 0, folio_size(folio));
1514 		flush_dcache_folio(folio);
1515 		folio_mark_uptodate(folio);
1516 	}
1517 
1518 	swap = folio_alloc_swap(folio);
1519 	if (!swap.val)
1520 		goto redirty;
1521 
1522 	/*
1523 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1524 	 * if it's not already there.  Do it now before the folio is
1525 	 * moved to swap cache, when its pagelock no longer protects
1526 	 * the inode from eviction.  But don't unlock the mutex until
1527 	 * we've incremented swapped, because shmem_unuse_inode() will
1528 	 * prune a !swapped inode from the swaplist under this mutex.
1529 	 */
1530 	mutex_lock(&shmem_swaplist_mutex);
1531 	if (list_empty(&info->swaplist))
1532 		list_add(&info->swaplist, &shmem_swaplist);
1533 
1534 	if (add_to_swap_cache(folio, swap,
1535 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1536 			NULL) == 0) {
1537 		shmem_recalc_inode(inode, 0, 1);
1538 		swap_shmem_alloc(swap);
1539 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1540 
1541 		mutex_unlock(&shmem_swaplist_mutex);
1542 		BUG_ON(folio_mapped(folio));
1543 		swap_writepage(&folio->page, wbc);
1544 		return 0;
1545 	}
1546 
1547 	mutex_unlock(&shmem_swaplist_mutex);
1548 	put_swap_folio(folio, swap);
1549 redirty:
1550 	folio_mark_dirty(folio);
1551 	if (wbc->for_reclaim)
1552 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1553 	folio_unlock(folio);
1554 	return 0;
1555 }
1556 
1557 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1558 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1559 {
1560 	char buffer[64];
1561 
1562 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1563 		return;		/* show nothing */
1564 
1565 	mpol_to_str(buffer, sizeof(buffer), mpol);
1566 
1567 	seq_printf(seq, ",mpol=%s", buffer);
1568 }
1569 
1570 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1571 {
1572 	struct mempolicy *mpol = NULL;
1573 	if (sbinfo->mpol) {
1574 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1575 		mpol = sbinfo->mpol;
1576 		mpol_get(mpol);
1577 		raw_spin_unlock(&sbinfo->stat_lock);
1578 	}
1579 	return mpol;
1580 }
1581 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1582 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1583 {
1584 }
1585 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1586 {
1587 	return NULL;
1588 }
1589 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1590 #ifndef CONFIG_NUMA
1591 #define vm_policy vm_private_data
1592 #endif
1593 
1594 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1595 		struct shmem_inode_info *info, pgoff_t index)
1596 {
1597 	/* Create a pseudo vma that just contains the policy */
1598 	vma_init(vma, NULL);
1599 	/* Bias interleave by inode number to distribute better across nodes */
1600 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1601 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1602 }
1603 
1604 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1605 {
1606 	/* Drop reference taken by mpol_shared_policy_lookup() */
1607 	mpol_cond_put(vma->vm_policy);
1608 }
1609 
1610 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1611 			struct shmem_inode_info *info, pgoff_t index)
1612 {
1613 	struct vm_area_struct pvma;
1614 	struct page *page;
1615 	struct vm_fault vmf = {
1616 		.vma = &pvma,
1617 	};
1618 
1619 	shmem_pseudo_vma_init(&pvma, info, index);
1620 	page = swap_cluster_readahead(swap, gfp, &vmf);
1621 	shmem_pseudo_vma_destroy(&pvma);
1622 
1623 	if (!page)
1624 		return NULL;
1625 	return page_folio(page);
1626 }
1627 
1628 /*
1629  * Make sure huge_gfp is always more limited than limit_gfp.
1630  * Some of the flags set permissions, while others set limitations.
1631  */
1632 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1633 {
1634 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1635 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1636 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1637 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1638 
1639 	/* Allow allocations only from the originally specified zones. */
1640 	result |= zoneflags;
1641 
1642 	/*
1643 	 * Minimize the result gfp by taking the union with the deny flags,
1644 	 * and the intersection of the allow flags.
1645 	 */
1646 	result |= (limit_gfp & denyflags);
1647 	result |= (huge_gfp & limit_gfp) & allowflags;
1648 
1649 	return result;
1650 }
1651 
1652 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1653 		struct shmem_inode_info *info, pgoff_t index)
1654 {
1655 	struct vm_area_struct pvma;
1656 	struct address_space *mapping = info->vfs_inode.i_mapping;
1657 	pgoff_t hindex;
1658 	struct folio *folio;
1659 
1660 	hindex = round_down(index, HPAGE_PMD_NR);
1661 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1662 								XA_PRESENT))
1663 		return NULL;
1664 
1665 	shmem_pseudo_vma_init(&pvma, info, hindex);
1666 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1667 	shmem_pseudo_vma_destroy(&pvma);
1668 	if (!folio)
1669 		count_vm_event(THP_FILE_FALLBACK);
1670 	return folio;
1671 }
1672 
1673 static struct folio *shmem_alloc_folio(gfp_t gfp,
1674 			struct shmem_inode_info *info, pgoff_t index)
1675 {
1676 	struct vm_area_struct pvma;
1677 	struct folio *folio;
1678 
1679 	shmem_pseudo_vma_init(&pvma, info, index);
1680 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1681 	shmem_pseudo_vma_destroy(&pvma);
1682 
1683 	return folio;
1684 }
1685 
1686 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1687 		pgoff_t index, bool huge)
1688 {
1689 	struct shmem_inode_info *info = SHMEM_I(inode);
1690 	struct folio *folio;
1691 	int nr;
1692 	int err;
1693 
1694 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1695 		huge = false;
1696 	nr = huge ? HPAGE_PMD_NR : 1;
1697 
1698 	err = shmem_inode_acct_block(inode, nr);
1699 	if (err)
1700 		goto failed;
1701 
1702 	if (huge)
1703 		folio = shmem_alloc_hugefolio(gfp, info, index);
1704 	else
1705 		folio = shmem_alloc_folio(gfp, info, index);
1706 	if (folio) {
1707 		__folio_set_locked(folio);
1708 		__folio_set_swapbacked(folio);
1709 		return folio;
1710 	}
1711 
1712 	err = -ENOMEM;
1713 	shmem_inode_unacct_blocks(inode, nr);
1714 failed:
1715 	return ERR_PTR(err);
1716 }
1717 
1718 /*
1719  * When a page is moved from swapcache to shmem filecache (either by the
1720  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1721  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1722  * ignorance of the mapping it belongs to.  If that mapping has special
1723  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1724  * we may need to copy to a suitable page before moving to filecache.
1725  *
1726  * In a future release, this may well be extended to respect cpuset and
1727  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1728  * but for now it is a simple matter of zone.
1729  */
1730 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1731 {
1732 	return folio_zonenum(folio) > gfp_zone(gfp);
1733 }
1734 
1735 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1736 				struct shmem_inode_info *info, pgoff_t index)
1737 {
1738 	struct folio *old, *new;
1739 	struct address_space *swap_mapping;
1740 	swp_entry_t entry;
1741 	pgoff_t swap_index;
1742 	int error;
1743 
1744 	old = *foliop;
1745 	entry = old->swap;
1746 	swap_index = swp_offset(entry);
1747 	swap_mapping = swap_address_space(entry);
1748 
1749 	/*
1750 	 * We have arrived here because our zones are constrained, so don't
1751 	 * limit chance of success by further cpuset and node constraints.
1752 	 */
1753 	gfp &= ~GFP_CONSTRAINT_MASK;
1754 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1755 	new = shmem_alloc_folio(gfp, info, index);
1756 	if (!new)
1757 		return -ENOMEM;
1758 
1759 	folio_get(new);
1760 	folio_copy(new, old);
1761 	flush_dcache_folio(new);
1762 
1763 	__folio_set_locked(new);
1764 	__folio_set_swapbacked(new);
1765 	folio_mark_uptodate(new);
1766 	new->swap = entry;
1767 	folio_set_swapcache(new);
1768 
1769 	/*
1770 	 * Our caller will very soon move newpage out of swapcache, but it's
1771 	 * a nice clean interface for us to replace oldpage by newpage there.
1772 	 */
1773 	xa_lock_irq(&swap_mapping->i_pages);
1774 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1775 	if (!error) {
1776 		mem_cgroup_migrate(old, new);
1777 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1778 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1779 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1780 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1781 	}
1782 	xa_unlock_irq(&swap_mapping->i_pages);
1783 
1784 	if (unlikely(error)) {
1785 		/*
1786 		 * Is this possible?  I think not, now that our callers check
1787 		 * both PageSwapCache and page_private after getting page lock;
1788 		 * but be defensive.  Reverse old to newpage for clear and free.
1789 		 */
1790 		old = new;
1791 	} else {
1792 		folio_add_lru(new);
1793 		*foliop = new;
1794 	}
1795 
1796 	folio_clear_swapcache(old);
1797 	old->private = NULL;
1798 
1799 	folio_unlock(old);
1800 	folio_put_refs(old, 2);
1801 	return error;
1802 }
1803 
1804 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1805 					 struct folio *folio, swp_entry_t swap)
1806 {
1807 	struct address_space *mapping = inode->i_mapping;
1808 	swp_entry_t swapin_error;
1809 	void *old;
1810 
1811 	swapin_error = make_poisoned_swp_entry();
1812 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1813 			     swp_to_radix_entry(swap),
1814 			     swp_to_radix_entry(swapin_error), 0);
1815 	if (old != swp_to_radix_entry(swap))
1816 		return;
1817 
1818 	folio_wait_writeback(folio);
1819 	delete_from_swap_cache(folio);
1820 	/*
1821 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1822 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1823 	 * in shmem_evict_inode().
1824 	 */
1825 	shmem_recalc_inode(inode, -1, -1);
1826 	swap_free(swap);
1827 }
1828 
1829 /*
1830  * Swap in the folio pointed to by *foliop.
1831  * Caller has to make sure that *foliop contains a valid swapped folio.
1832  * Returns 0 and the folio in foliop if success. On failure, returns the
1833  * error code and NULL in *foliop.
1834  */
1835 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1836 			     struct folio **foliop, enum sgp_type sgp,
1837 			     gfp_t gfp, struct vm_area_struct *vma,
1838 			     vm_fault_t *fault_type)
1839 {
1840 	struct address_space *mapping = inode->i_mapping;
1841 	struct shmem_inode_info *info = SHMEM_I(inode);
1842 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1843 	struct swap_info_struct *si;
1844 	struct folio *folio = NULL;
1845 	swp_entry_t swap;
1846 	int error;
1847 
1848 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1849 	swap = radix_to_swp_entry(*foliop);
1850 	*foliop = NULL;
1851 
1852 	if (is_poisoned_swp_entry(swap))
1853 		return -EIO;
1854 
1855 	si = get_swap_device(swap);
1856 	if (!si) {
1857 		if (!shmem_confirm_swap(mapping, index, swap))
1858 			return -EEXIST;
1859 		else
1860 			return -EINVAL;
1861 	}
1862 
1863 	/* Look it up and read it in.. */
1864 	folio = swap_cache_get_folio(swap, NULL, 0);
1865 	if (!folio) {
1866 		/* Or update major stats only when swapin succeeds?? */
1867 		if (fault_type) {
1868 			*fault_type |= VM_FAULT_MAJOR;
1869 			count_vm_event(PGMAJFAULT);
1870 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1871 		}
1872 		/* Here we actually start the io */
1873 		folio = shmem_swapin(swap, gfp, info, index);
1874 		if (!folio) {
1875 			error = -ENOMEM;
1876 			goto failed;
1877 		}
1878 	}
1879 
1880 	/* We have to do this with folio locked to prevent races */
1881 	folio_lock(folio);
1882 	if (!folio_test_swapcache(folio) ||
1883 	    folio->swap.val != swap.val ||
1884 	    !shmem_confirm_swap(mapping, index, swap)) {
1885 		error = -EEXIST;
1886 		goto unlock;
1887 	}
1888 	if (!folio_test_uptodate(folio)) {
1889 		error = -EIO;
1890 		goto failed;
1891 	}
1892 	folio_wait_writeback(folio);
1893 
1894 	/*
1895 	 * Some architectures may have to restore extra metadata to the
1896 	 * folio after reading from swap.
1897 	 */
1898 	arch_swap_restore(swap, folio);
1899 
1900 	if (shmem_should_replace_folio(folio, gfp)) {
1901 		error = shmem_replace_folio(&folio, gfp, info, index);
1902 		if (error)
1903 			goto failed;
1904 	}
1905 
1906 	error = shmem_add_to_page_cache(folio, mapping, index,
1907 					swp_to_radix_entry(swap), gfp,
1908 					charge_mm);
1909 	if (error)
1910 		goto failed;
1911 
1912 	shmem_recalc_inode(inode, 0, -1);
1913 
1914 	if (sgp == SGP_WRITE)
1915 		folio_mark_accessed(folio);
1916 
1917 	delete_from_swap_cache(folio);
1918 	folio_mark_dirty(folio);
1919 	swap_free(swap);
1920 	put_swap_device(si);
1921 
1922 	*foliop = folio;
1923 	return 0;
1924 failed:
1925 	if (!shmem_confirm_swap(mapping, index, swap))
1926 		error = -EEXIST;
1927 	if (error == -EIO)
1928 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1929 unlock:
1930 	if (folio) {
1931 		folio_unlock(folio);
1932 		folio_put(folio);
1933 	}
1934 	put_swap_device(si);
1935 
1936 	return error;
1937 }
1938 
1939 /*
1940  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1941  *
1942  * If we allocate a new one we do not mark it dirty. That's up to the
1943  * vm. If we swap it in we mark it dirty since we also free the swap
1944  * entry since a page cannot live in both the swap and page cache.
1945  *
1946  * vma, vmf, and fault_type are only supplied by shmem_fault:
1947  * otherwise they are NULL.
1948  */
1949 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1950 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1951 		struct vm_area_struct *vma, struct vm_fault *vmf,
1952 		vm_fault_t *fault_type)
1953 {
1954 	struct address_space *mapping = inode->i_mapping;
1955 	struct shmem_inode_info *info = SHMEM_I(inode);
1956 	struct shmem_sb_info *sbinfo;
1957 	struct mm_struct *charge_mm;
1958 	struct folio *folio;
1959 	pgoff_t hindex;
1960 	gfp_t huge_gfp;
1961 	int error;
1962 	int once = 0;
1963 	int alloced = 0;
1964 
1965 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1966 		return -EFBIG;
1967 repeat:
1968 	if (sgp <= SGP_CACHE &&
1969 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1970 		return -EINVAL;
1971 	}
1972 
1973 	sbinfo = SHMEM_SB(inode->i_sb);
1974 	charge_mm = vma ? vma->vm_mm : NULL;
1975 
1976 	folio = filemap_get_entry(mapping, index);
1977 	if (folio && vma && userfaultfd_minor(vma)) {
1978 		if (!xa_is_value(folio))
1979 			folio_put(folio);
1980 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1981 		return 0;
1982 	}
1983 
1984 	if (xa_is_value(folio)) {
1985 		error = shmem_swapin_folio(inode, index, &folio,
1986 					  sgp, gfp, vma, fault_type);
1987 		if (error == -EEXIST)
1988 			goto repeat;
1989 
1990 		*foliop = folio;
1991 		return error;
1992 	}
1993 
1994 	if (folio) {
1995 		folio_lock(folio);
1996 
1997 		/* Has the folio been truncated or swapped out? */
1998 		if (unlikely(folio->mapping != mapping)) {
1999 			folio_unlock(folio);
2000 			folio_put(folio);
2001 			goto repeat;
2002 		}
2003 		if (sgp == SGP_WRITE)
2004 			folio_mark_accessed(folio);
2005 		if (folio_test_uptodate(folio))
2006 			goto out;
2007 		/* fallocated folio */
2008 		if (sgp != SGP_READ)
2009 			goto clear;
2010 		folio_unlock(folio);
2011 		folio_put(folio);
2012 	}
2013 
2014 	/*
2015 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2016 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2017 	 */
2018 	*foliop = NULL;
2019 	if (sgp == SGP_READ)
2020 		return 0;
2021 	if (sgp == SGP_NOALLOC)
2022 		return -ENOENT;
2023 
2024 	/*
2025 	 * Fast cache lookup and swap lookup did not find it: allocate.
2026 	 */
2027 
2028 	if (vma && userfaultfd_missing(vma)) {
2029 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2030 		return 0;
2031 	}
2032 
2033 	if (!shmem_is_huge(inode, index, false,
2034 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2035 		goto alloc_nohuge;
2036 
2037 	huge_gfp = vma_thp_gfp_mask(vma);
2038 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2039 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2040 	if (IS_ERR(folio)) {
2041 alloc_nohuge:
2042 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2043 	}
2044 	if (IS_ERR(folio)) {
2045 		int retry = 5;
2046 
2047 		error = PTR_ERR(folio);
2048 		folio = NULL;
2049 		if (error != -ENOSPC)
2050 			goto unlock;
2051 		/*
2052 		 * Try to reclaim some space by splitting a large folio
2053 		 * beyond i_size on the filesystem.
2054 		 */
2055 		while (retry--) {
2056 			int ret;
2057 
2058 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2059 			if (ret == SHRINK_STOP)
2060 				break;
2061 			if (ret)
2062 				goto alloc_nohuge;
2063 		}
2064 		goto unlock;
2065 	}
2066 
2067 	hindex = round_down(index, folio_nr_pages(folio));
2068 
2069 	if (sgp == SGP_WRITE)
2070 		__folio_set_referenced(folio);
2071 
2072 	error = shmem_add_to_page_cache(folio, mapping, hindex,
2073 					NULL, gfp & GFP_RECLAIM_MASK,
2074 					charge_mm);
2075 	if (error)
2076 		goto unacct;
2077 
2078 	folio_add_lru(folio);
2079 	shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2080 	alloced = true;
2081 
2082 	if (folio_test_pmd_mappable(folio) &&
2083 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2084 					folio_next_index(folio) - 1) {
2085 		/*
2086 		 * Part of the large folio is beyond i_size: subject
2087 		 * to shrink under memory pressure.
2088 		 */
2089 		spin_lock(&sbinfo->shrinklist_lock);
2090 		/*
2091 		 * _careful to defend against unlocked access to
2092 		 * ->shrink_list in shmem_unused_huge_shrink()
2093 		 */
2094 		if (list_empty_careful(&info->shrinklist)) {
2095 			list_add_tail(&info->shrinklist,
2096 				      &sbinfo->shrinklist);
2097 			sbinfo->shrinklist_len++;
2098 		}
2099 		spin_unlock(&sbinfo->shrinklist_lock);
2100 	}
2101 
2102 	/*
2103 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2104 	 */
2105 	if (sgp == SGP_FALLOC)
2106 		sgp = SGP_WRITE;
2107 clear:
2108 	/*
2109 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2110 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2111 	 * it now, lest undo on failure cancel our earlier guarantee.
2112 	 */
2113 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2114 		long i, n = folio_nr_pages(folio);
2115 
2116 		for (i = 0; i < n; i++)
2117 			clear_highpage(folio_page(folio, i));
2118 		flush_dcache_folio(folio);
2119 		folio_mark_uptodate(folio);
2120 	}
2121 
2122 	/* Perhaps the file has been truncated since we checked */
2123 	if (sgp <= SGP_CACHE &&
2124 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2125 		if (alloced) {
2126 			folio_clear_dirty(folio);
2127 			filemap_remove_folio(folio);
2128 			shmem_recalc_inode(inode, 0, 0);
2129 		}
2130 		error = -EINVAL;
2131 		goto unlock;
2132 	}
2133 out:
2134 	*foliop = folio;
2135 	return 0;
2136 
2137 	/*
2138 	 * Error recovery.
2139 	 */
2140 unacct:
2141 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2142 
2143 	if (folio_test_large(folio)) {
2144 		folio_unlock(folio);
2145 		folio_put(folio);
2146 		goto alloc_nohuge;
2147 	}
2148 unlock:
2149 	if (folio) {
2150 		folio_unlock(folio);
2151 		folio_put(folio);
2152 	}
2153 	if (error == -ENOSPC && !once++) {
2154 		shmem_recalc_inode(inode, 0, 0);
2155 		goto repeat;
2156 	}
2157 	if (error == -EEXIST)
2158 		goto repeat;
2159 	return error;
2160 }
2161 
2162 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2163 		enum sgp_type sgp)
2164 {
2165 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2166 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2167 }
2168 
2169 /*
2170  * This is like autoremove_wake_function, but it removes the wait queue
2171  * entry unconditionally - even if something else had already woken the
2172  * target.
2173  */
2174 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2175 {
2176 	int ret = default_wake_function(wait, mode, sync, key);
2177 	list_del_init(&wait->entry);
2178 	return ret;
2179 }
2180 
2181 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2182 {
2183 	struct vm_area_struct *vma = vmf->vma;
2184 	struct inode *inode = file_inode(vma->vm_file);
2185 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2186 	struct folio *folio = NULL;
2187 	int err;
2188 	vm_fault_t ret = VM_FAULT_LOCKED;
2189 
2190 	/*
2191 	 * Trinity finds that probing a hole which tmpfs is punching can
2192 	 * prevent the hole-punch from ever completing: which in turn
2193 	 * locks writers out with its hold on i_rwsem.  So refrain from
2194 	 * faulting pages into the hole while it's being punched.  Although
2195 	 * shmem_undo_range() does remove the additions, it may be unable to
2196 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2197 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2198 	 *
2199 	 * It does not matter if we sometimes reach this check just before the
2200 	 * hole-punch begins, so that one fault then races with the punch:
2201 	 * we just need to make racing faults a rare case.
2202 	 *
2203 	 * The implementation below would be much simpler if we just used a
2204 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2205 	 * and bloating every shmem inode for this unlikely case would be sad.
2206 	 */
2207 	if (unlikely(inode->i_private)) {
2208 		struct shmem_falloc *shmem_falloc;
2209 
2210 		spin_lock(&inode->i_lock);
2211 		shmem_falloc = inode->i_private;
2212 		if (shmem_falloc &&
2213 		    shmem_falloc->waitq &&
2214 		    vmf->pgoff >= shmem_falloc->start &&
2215 		    vmf->pgoff < shmem_falloc->next) {
2216 			struct file *fpin;
2217 			wait_queue_head_t *shmem_falloc_waitq;
2218 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2219 
2220 			ret = VM_FAULT_NOPAGE;
2221 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2222 			if (fpin)
2223 				ret = VM_FAULT_RETRY;
2224 
2225 			shmem_falloc_waitq = shmem_falloc->waitq;
2226 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2227 					TASK_UNINTERRUPTIBLE);
2228 			spin_unlock(&inode->i_lock);
2229 			schedule();
2230 
2231 			/*
2232 			 * shmem_falloc_waitq points into the shmem_fallocate()
2233 			 * stack of the hole-punching task: shmem_falloc_waitq
2234 			 * is usually invalid by the time we reach here, but
2235 			 * finish_wait() does not dereference it in that case;
2236 			 * though i_lock needed lest racing with wake_up_all().
2237 			 */
2238 			spin_lock(&inode->i_lock);
2239 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2240 			spin_unlock(&inode->i_lock);
2241 
2242 			if (fpin)
2243 				fput(fpin);
2244 			return ret;
2245 		}
2246 		spin_unlock(&inode->i_lock);
2247 	}
2248 
2249 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2250 				  gfp, vma, vmf, &ret);
2251 	if (err)
2252 		return vmf_error(err);
2253 	if (folio)
2254 		vmf->page = folio_file_page(folio, vmf->pgoff);
2255 	return ret;
2256 }
2257 
2258 unsigned long shmem_get_unmapped_area(struct file *file,
2259 				      unsigned long uaddr, unsigned long len,
2260 				      unsigned long pgoff, unsigned long flags)
2261 {
2262 	unsigned long (*get_area)(struct file *,
2263 		unsigned long, unsigned long, unsigned long, unsigned long);
2264 	unsigned long addr;
2265 	unsigned long offset;
2266 	unsigned long inflated_len;
2267 	unsigned long inflated_addr;
2268 	unsigned long inflated_offset;
2269 
2270 	if (len > TASK_SIZE)
2271 		return -ENOMEM;
2272 
2273 	get_area = current->mm->get_unmapped_area;
2274 	addr = get_area(file, uaddr, len, pgoff, flags);
2275 
2276 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2277 		return addr;
2278 	if (IS_ERR_VALUE(addr))
2279 		return addr;
2280 	if (addr & ~PAGE_MASK)
2281 		return addr;
2282 	if (addr > TASK_SIZE - len)
2283 		return addr;
2284 
2285 	if (shmem_huge == SHMEM_HUGE_DENY)
2286 		return addr;
2287 	if (len < HPAGE_PMD_SIZE)
2288 		return addr;
2289 	if (flags & MAP_FIXED)
2290 		return addr;
2291 	/*
2292 	 * Our priority is to support MAP_SHARED mapped hugely;
2293 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2294 	 * But if caller specified an address hint and we allocated area there
2295 	 * successfully, respect that as before.
2296 	 */
2297 	if (uaddr == addr)
2298 		return addr;
2299 
2300 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2301 		struct super_block *sb;
2302 
2303 		if (file) {
2304 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2305 			sb = file_inode(file)->i_sb;
2306 		} else {
2307 			/*
2308 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2309 			 * for "/dev/zero", to create a shared anonymous object.
2310 			 */
2311 			if (IS_ERR(shm_mnt))
2312 				return addr;
2313 			sb = shm_mnt->mnt_sb;
2314 		}
2315 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2316 			return addr;
2317 	}
2318 
2319 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2320 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2321 		return addr;
2322 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2323 		return addr;
2324 
2325 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2326 	if (inflated_len > TASK_SIZE)
2327 		return addr;
2328 	if (inflated_len < len)
2329 		return addr;
2330 
2331 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2332 	if (IS_ERR_VALUE(inflated_addr))
2333 		return addr;
2334 	if (inflated_addr & ~PAGE_MASK)
2335 		return addr;
2336 
2337 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2338 	inflated_addr += offset - inflated_offset;
2339 	if (inflated_offset > offset)
2340 		inflated_addr += HPAGE_PMD_SIZE;
2341 
2342 	if (inflated_addr > TASK_SIZE - len)
2343 		return addr;
2344 	return inflated_addr;
2345 }
2346 
2347 #ifdef CONFIG_NUMA
2348 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2349 {
2350 	struct inode *inode = file_inode(vma->vm_file);
2351 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2352 }
2353 
2354 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2355 					  unsigned long addr)
2356 {
2357 	struct inode *inode = file_inode(vma->vm_file);
2358 	pgoff_t index;
2359 
2360 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2361 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2362 }
2363 #endif
2364 
2365 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2366 {
2367 	struct inode *inode = file_inode(file);
2368 	struct shmem_inode_info *info = SHMEM_I(inode);
2369 	int retval = -ENOMEM;
2370 
2371 	/*
2372 	 * What serializes the accesses to info->flags?
2373 	 * ipc_lock_object() when called from shmctl_do_lock(),
2374 	 * no serialization needed when called from shm_destroy().
2375 	 */
2376 	if (lock && !(info->flags & VM_LOCKED)) {
2377 		if (!user_shm_lock(inode->i_size, ucounts))
2378 			goto out_nomem;
2379 		info->flags |= VM_LOCKED;
2380 		mapping_set_unevictable(file->f_mapping);
2381 	}
2382 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2383 		user_shm_unlock(inode->i_size, ucounts);
2384 		info->flags &= ~VM_LOCKED;
2385 		mapping_clear_unevictable(file->f_mapping);
2386 	}
2387 	retval = 0;
2388 
2389 out_nomem:
2390 	return retval;
2391 }
2392 
2393 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2394 {
2395 	struct inode *inode = file_inode(file);
2396 	struct shmem_inode_info *info = SHMEM_I(inode);
2397 	int ret;
2398 
2399 	ret = seal_check_future_write(info->seals, vma);
2400 	if (ret)
2401 		return ret;
2402 
2403 	file_accessed(file);
2404 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2405 	if (inode->i_nlink)
2406 		vma->vm_ops = &shmem_vm_ops;
2407 	else
2408 		vma->vm_ops = &shmem_anon_vm_ops;
2409 	return 0;
2410 }
2411 
2412 static int shmem_file_open(struct inode *inode, struct file *file)
2413 {
2414 	file->f_mode |= FMODE_CAN_ODIRECT;
2415 	return generic_file_open(inode, file);
2416 }
2417 
2418 #ifdef CONFIG_TMPFS_XATTR
2419 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2420 
2421 /*
2422  * chattr's fsflags are unrelated to extended attributes,
2423  * but tmpfs has chosen to enable them under the same config option.
2424  */
2425 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2426 {
2427 	unsigned int i_flags = 0;
2428 
2429 	if (fsflags & FS_NOATIME_FL)
2430 		i_flags |= S_NOATIME;
2431 	if (fsflags & FS_APPEND_FL)
2432 		i_flags |= S_APPEND;
2433 	if (fsflags & FS_IMMUTABLE_FL)
2434 		i_flags |= S_IMMUTABLE;
2435 	/*
2436 	 * But FS_NODUMP_FL does not require any action in i_flags.
2437 	 */
2438 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2439 }
2440 #else
2441 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2442 {
2443 }
2444 #define shmem_initxattrs NULL
2445 #endif
2446 
2447 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2448 {
2449 	return &SHMEM_I(inode)->dir_offsets;
2450 }
2451 
2452 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2453 					     struct super_block *sb,
2454 					     struct inode *dir, umode_t mode,
2455 					     dev_t dev, unsigned long flags)
2456 {
2457 	struct inode *inode;
2458 	struct shmem_inode_info *info;
2459 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2460 	ino_t ino;
2461 	int err;
2462 
2463 	err = shmem_reserve_inode(sb, &ino);
2464 	if (err)
2465 		return ERR_PTR(err);
2466 
2467 
2468 	inode = new_inode(sb);
2469 	if (!inode) {
2470 		shmem_free_inode(sb, 0);
2471 		return ERR_PTR(-ENOSPC);
2472 	}
2473 
2474 	inode->i_ino = ino;
2475 	inode_init_owner(idmap, inode, dir, mode);
2476 	inode->i_blocks = 0;
2477 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2478 	inode->i_generation = get_random_u32();
2479 	info = SHMEM_I(inode);
2480 	memset(info, 0, (char *)inode - (char *)info);
2481 	spin_lock_init(&info->lock);
2482 	atomic_set(&info->stop_eviction, 0);
2483 	info->seals = F_SEAL_SEAL;
2484 	info->flags = flags & VM_NORESERVE;
2485 	info->i_crtime = inode->i_mtime;
2486 	info->fsflags = (dir == NULL) ? 0 :
2487 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2488 	if (info->fsflags)
2489 		shmem_set_inode_flags(inode, info->fsflags);
2490 	INIT_LIST_HEAD(&info->shrinklist);
2491 	INIT_LIST_HEAD(&info->swaplist);
2492 	INIT_LIST_HEAD(&info->swaplist);
2493 	if (sbinfo->noswap)
2494 		mapping_set_unevictable(inode->i_mapping);
2495 	simple_xattrs_init(&info->xattrs);
2496 	cache_no_acl(inode);
2497 	mapping_set_large_folios(inode->i_mapping);
2498 
2499 	switch (mode & S_IFMT) {
2500 	default:
2501 		inode->i_op = &shmem_special_inode_operations;
2502 		init_special_inode(inode, mode, dev);
2503 		break;
2504 	case S_IFREG:
2505 		inode->i_mapping->a_ops = &shmem_aops;
2506 		inode->i_op = &shmem_inode_operations;
2507 		inode->i_fop = &shmem_file_operations;
2508 		mpol_shared_policy_init(&info->policy,
2509 					 shmem_get_sbmpol(sbinfo));
2510 		break;
2511 	case S_IFDIR:
2512 		inc_nlink(inode);
2513 		/* Some things misbehave if size == 0 on a directory */
2514 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2515 		inode->i_op = &shmem_dir_inode_operations;
2516 		inode->i_fop = &simple_offset_dir_operations;
2517 		simple_offset_init(shmem_get_offset_ctx(inode));
2518 		break;
2519 	case S_IFLNK:
2520 		/*
2521 		 * Must not load anything in the rbtree,
2522 		 * mpol_free_shared_policy will not be called.
2523 		 */
2524 		mpol_shared_policy_init(&info->policy, NULL);
2525 		break;
2526 	}
2527 
2528 	lockdep_annotate_inode_mutex_key(inode);
2529 	return inode;
2530 }
2531 
2532 #ifdef CONFIG_TMPFS_QUOTA
2533 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2534 				     struct super_block *sb, struct inode *dir,
2535 				     umode_t mode, dev_t dev, unsigned long flags)
2536 {
2537 	int err;
2538 	struct inode *inode;
2539 
2540 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2541 	if (IS_ERR(inode))
2542 		return inode;
2543 
2544 	err = dquot_initialize(inode);
2545 	if (err)
2546 		goto errout;
2547 
2548 	err = dquot_alloc_inode(inode);
2549 	if (err) {
2550 		dquot_drop(inode);
2551 		goto errout;
2552 	}
2553 	return inode;
2554 
2555 errout:
2556 	inode->i_flags |= S_NOQUOTA;
2557 	iput(inode);
2558 	return ERR_PTR(err);
2559 }
2560 #else
2561 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2562 				     struct super_block *sb, struct inode *dir,
2563 				     umode_t mode, dev_t dev, unsigned long flags)
2564 {
2565 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2566 }
2567 #endif /* CONFIG_TMPFS_QUOTA */
2568 
2569 #ifdef CONFIG_USERFAULTFD
2570 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2571 			   struct vm_area_struct *dst_vma,
2572 			   unsigned long dst_addr,
2573 			   unsigned long src_addr,
2574 			   uffd_flags_t flags,
2575 			   struct folio **foliop)
2576 {
2577 	struct inode *inode = file_inode(dst_vma->vm_file);
2578 	struct shmem_inode_info *info = SHMEM_I(inode);
2579 	struct address_space *mapping = inode->i_mapping;
2580 	gfp_t gfp = mapping_gfp_mask(mapping);
2581 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2582 	void *page_kaddr;
2583 	struct folio *folio;
2584 	int ret;
2585 	pgoff_t max_off;
2586 
2587 	if (shmem_inode_acct_block(inode, 1)) {
2588 		/*
2589 		 * We may have got a page, returned -ENOENT triggering a retry,
2590 		 * and now we find ourselves with -ENOMEM. Release the page, to
2591 		 * avoid a BUG_ON in our caller.
2592 		 */
2593 		if (unlikely(*foliop)) {
2594 			folio_put(*foliop);
2595 			*foliop = NULL;
2596 		}
2597 		return -ENOMEM;
2598 	}
2599 
2600 	if (!*foliop) {
2601 		ret = -ENOMEM;
2602 		folio = shmem_alloc_folio(gfp, info, pgoff);
2603 		if (!folio)
2604 			goto out_unacct_blocks;
2605 
2606 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2607 			page_kaddr = kmap_local_folio(folio, 0);
2608 			/*
2609 			 * The read mmap_lock is held here.  Despite the
2610 			 * mmap_lock being read recursive a deadlock is still
2611 			 * possible if a writer has taken a lock.  For example:
2612 			 *
2613 			 * process A thread 1 takes read lock on own mmap_lock
2614 			 * process A thread 2 calls mmap, blocks taking write lock
2615 			 * process B thread 1 takes page fault, read lock on own mmap lock
2616 			 * process B thread 2 calls mmap, blocks taking write lock
2617 			 * process A thread 1 blocks taking read lock on process B
2618 			 * process B thread 1 blocks taking read lock on process A
2619 			 *
2620 			 * Disable page faults to prevent potential deadlock
2621 			 * and retry the copy outside the mmap_lock.
2622 			 */
2623 			pagefault_disable();
2624 			ret = copy_from_user(page_kaddr,
2625 					     (const void __user *)src_addr,
2626 					     PAGE_SIZE);
2627 			pagefault_enable();
2628 			kunmap_local(page_kaddr);
2629 
2630 			/* fallback to copy_from_user outside mmap_lock */
2631 			if (unlikely(ret)) {
2632 				*foliop = folio;
2633 				ret = -ENOENT;
2634 				/* don't free the page */
2635 				goto out_unacct_blocks;
2636 			}
2637 
2638 			flush_dcache_folio(folio);
2639 		} else {		/* ZEROPAGE */
2640 			clear_user_highpage(&folio->page, dst_addr);
2641 		}
2642 	} else {
2643 		folio = *foliop;
2644 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2645 		*foliop = NULL;
2646 	}
2647 
2648 	VM_BUG_ON(folio_test_locked(folio));
2649 	VM_BUG_ON(folio_test_swapbacked(folio));
2650 	__folio_set_locked(folio);
2651 	__folio_set_swapbacked(folio);
2652 	__folio_mark_uptodate(folio);
2653 
2654 	ret = -EFAULT;
2655 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2656 	if (unlikely(pgoff >= max_off))
2657 		goto out_release;
2658 
2659 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2660 				      gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2661 	if (ret)
2662 		goto out_release;
2663 
2664 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2665 				       &folio->page, true, flags);
2666 	if (ret)
2667 		goto out_delete_from_cache;
2668 
2669 	shmem_recalc_inode(inode, 1, 0);
2670 	folio_unlock(folio);
2671 	return 0;
2672 out_delete_from_cache:
2673 	filemap_remove_folio(folio);
2674 out_release:
2675 	folio_unlock(folio);
2676 	folio_put(folio);
2677 out_unacct_blocks:
2678 	shmem_inode_unacct_blocks(inode, 1);
2679 	return ret;
2680 }
2681 #endif /* CONFIG_USERFAULTFD */
2682 
2683 #ifdef CONFIG_TMPFS
2684 static const struct inode_operations shmem_symlink_inode_operations;
2685 static const struct inode_operations shmem_short_symlink_operations;
2686 
2687 static int
2688 shmem_write_begin(struct file *file, struct address_space *mapping,
2689 			loff_t pos, unsigned len,
2690 			struct page **pagep, void **fsdata)
2691 {
2692 	struct inode *inode = mapping->host;
2693 	struct shmem_inode_info *info = SHMEM_I(inode);
2694 	pgoff_t index = pos >> PAGE_SHIFT;
2695 	struct folio *folio;
2696 	int ret = 0;
2697 
2698 	/* i_rwsem is held by caller */
2699 	if (unlikely(info->seals & (F_SEAL_GROW |
2700 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2701 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2702 			return -EPERM;
2703 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2704 			return -EPERM;
2705 	}
2706 
2707 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2708 
2709 	if (ret)
2710 		return ret;
2711 
2712 	*pagep = folio_file_page(folio, index);
2713 	if (PageHWPoison(*pagep)) {
2714 		folio_unlock(folio);
2715 		folio_put(folio);
2716 		*pagep = NULL;
2717 		return -EIO;
2718 	}
2719 
2720 	return 0;
2721 }
2722 
2723 static int
2724 shmem_write_end(struct file *file, struct address_space *mapping,
2725 			loff_t pos, unsigned len, unsigned copied,
2726 			struct page *page, void *fsdata)
2727 {
2728 	struct folio *folio = page_folio(page);
2729 	struct inode *inode = mapping->host;
2730 
2731 	if (pos + copied > inode->i_size)
2732 		i_size_write(inode, pos + copied);
2733 
2734 	if (!folio_test_uptodate(folio)) {
2735 		if (copied < folio_size(folio)) {
2736 			size_t from = offset_in_folio(folio, pos);
2737 			folio_zero_segments(folio, 0, from,
2738 					from + copied, folio_size(folio));
2739 		}
2740 		folio_mark_uptodate(folio);
2741 	}
2742 	folio_mark_dirty(folio);
2743 	folio_unlock(folio);
2744 	folio_put(folio);
2745 
2746 	return copied;
2747 }
2748 
2749 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2750 {
2751 	struct file *file = iocb->ki_filp;
2752 	struct inode *inode = file_inode(file);
2753 	struct address_space *mapping = inode->i_mapping;
2754 	pgoff_t index;
2755 	unsigned long offset;
2756 	int error = 0;
2757 	ssize_t retval = 0;
2758 	loff_t *ppos = &iocb->ki_pos;
2759 
2760 	index = *ppos >> PAGE_SHIFT;
2761 	offset = *ppos & ~PAGE_MASK;
2762 
2763 	for (;;) {
2764 		struct folio *folio = NULL;
2765 		struct page *page = NULL;
2766 		pgoff_t end_index;
2767 		unsigned long nr, ret;
2768 		loff_t i_size = i_size_read(inode);
2769 
2770 		end_index = i_size >> PAGE_SHIFT;
2771 		if (index > end_index)
2772 			break;
2773 		if (index == end_index) {
2774 			nr = i_size & ~PAGE_MASK;
2775 			if (nr <= offset)
2776 				break;
2777 		}
2778 
2779 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2780 		if (error) {
2781 			if (error == -EINVAL)
2782 				error = 0;
2783 			break;
2784 		}
2785 		if (folio) {
2786 			folio_unlock(folio);
2787 
2788 			page = folio_file_page(folio, index);
2789 			if (PageHWPoison(page)) {
2790 				folio_put(folio);
2791 				error = -EIO;
2792 				break;
2793 			}
2794 		}
2795 
2796 		/*
2797 		 * We must evaluate after, since reads (unlike writes)
2798 		 * are called without i_rwsem protection against truncate
2799 		 */
2800 		nr = PAGE_SIZE;
2801 		i_size = i_size_read(inode);
2802 		end_index = i_size >> PAGE_SHIFT;
2803 		if (index == end_index) {
2804 			nr = i_size & ~PAGE_MASK;
2805 			if (nr <= offset) {
2806 				if (folio)
2807 					folio_put(folio);
2808 				break;
2809 			}
2810 		}
2811 		nr -= offset;
2812 
2813 		if (folio) {
2814 			/*
2815 			 * If users can be writing to this page using arbitrary
2816 			 * virtual addresses, take care about potential aliasing
2817 			 * before reading the page on the kernel side.
2818 			 */
2819 			if (mapping_writably_mapped(mapping))
2820 				flush_dcache_page(page);
2821 			/*
2822 			 * Mark the page accessed if we read the beginning.
2823 			 */
2824 			if (!offset)
2825 				folio_mark_accessed(folio);
2826 			/*
2827 			 * Ok, we have the page, and it's up-to-date, so
2828 			 * now we can copy it to user space...
2829 			 */
2830 			ret = copy_page_to_iter(page, offset, nr, to);
2831 			folio_put(folio);
2832 
2833 		} else if (user_backed_iter(to)) {
2834 			/*
2835 			 * Copy to user tends to be so well optimized, but
2836 			 * clear_user() not so much, that it is noticeably
2837 			 * faster to copy the zero page instead of clearing.
2838 			 */
2839 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2840 		} else {
2841 			/*
2842 			 * But submitting the same page twice in a row to
2843 			 * splice() - or others? - can result in confusion:
2844 			 * so don't attempt that optimization on pipes etc.
2845 			 */
2846 			ret = iov_iter_zero(nr, to);
2847 		}
2848 
2849 		retval += ret;
2850 		offset += ret;
2851 		index += offset >> PAGE_SHIFT;
2852 		offset &= ~PAGE_MASK;
2853 
2854 		if (!iov_iter_count(to))
2855 			break;
2856 		if (ret < nr) {
2857 			error = -EFAULT;
2858 			break;
2859 		}
2860 		cond_resched();
2861 	}
2862 
2863 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2864 	file_accessed(file);
2865 	return retval ? retval : error;
2866 }
2867 
2868 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2869 {
2870 	struct file *file = iocb->ki_filp;
2871 	struct inode *inode = file->f_mapping->host;
2872 	ssize_t ret;
2873 
2874 	inode_lock(inode);
2875 	ret = generic_write_checks(iocb, from);
2876 	if (ret <= 0)
2877 		goto unlock;
2878 	ret = file_remove_privs(file);
2879 	if (ret)
2880 		goto unlock;
2881 	ret = file_update_time(file);
2882 	if (ret)
2883 		goto unlock;
2884 	ret = generic_perform_write(iocb, from);
2885 unlock:
2886 	inode_unlock(inode);
2887 	return ret;
2888 }
2889 
2890 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2891 			      struct pipe_buffer *buf)
2892 {
2893 	return true;
2894 }
2895 
2896 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2897 				  struct pipe_buffer *buf)
2898 {
2899 }
2900 
2901 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2902 				    struct pipe_buffer *buf)
2903 {
2904 	return false;
2905 }
2906 
2907 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2908 	.release	= zero_pipe_buf_release,
2909 	.try_steal	= zero_pipe_buf_try_steal,
2910 	.get		= zero_pipe_buf_get,
2911 };
2912 
2913 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2914 					loff_t fpos, size_t size)
2915 {
2916 	size_t offset = fpos & ~PAGE_MASK;
2917 
2918 	size = min_t(size_t, size, PAGE_SIZE - offset);
2919 
2920 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2921 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2922 
2923 		*buf = (struct pipe_buffer) {
2924 			.ops	= &zero_pipe_buf_ops,
2925 			.page	= ZERO_PAGE(0),
2926 			.offset	= offset,
2927 			.len	= size,
2928 		};
2929 		pipe->head++;
2930 	}
2931 
2932 	return size;
2933 }
2934 
2935 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2936 				      struct pipe_inode_info *pipe,
2937 				      size_t len, unsigned int flags)
2938 {
2939 	struct inode *inode = file_inode(in);
2940 	struct address_space *mapping = inode->i_mapping;
2941 	struct folio *folio = NULL;
2942 	size_t total_spliced = 0, used, npages, n, part;
2943 	loff_t isize;
2944 	int error = 0;
2945 
2946 	/* Work out how much data we can actually add into the pipe */
2947 	used = pipe_occupancy(pipe->head, pipe->tail);
2948 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2949 	len = min_t(size_t, len, npages * PAGE_SIZE);
2950 
2951 	do {
2952 		if (*ppos >= i_size_read(inode))
2953 			break;
2954 
2955 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2956 					SGP_READ);
2957 		if (error) {
2958 			if (error == -EINVAL)
2959 				error = 0;
2960 			break;
2961 		}
2962 		if (folio) {
2963 			folio_unlock(folio);
2964 
2965 			if (folio_test_hwpoison(folio) ||
2966 			    (folio_test_large(folio) &&
2967 			     folio_test_has_hwpoisoned(folio))) {
2968 				error = -EIO;
2969 				break;
2970 			}
2971 		}
2972 
2973 		/*
2974 		 * i_size must be checked after we know the pages are Uptodate.
2975 		 *
2976 		 * Checking i_size after the check allows us to calculate
2977 		 * the correct value for "nr", which means the zero-filled
2978 		 * part of the page is not copied back to userspace (unless
2979 		 * another truncate extends the file - this is desired though).
2980 		 */
2981 		isize = i_size_read(inode);
2982 		if (unlikely(*ppos >= isize))
2983 			break;
2984 		part = min_t(loff_t, isize - *ppos, len);
2985 
2986 		if (folio) {
2987 			/*
2988 			 * If users can be writing to this page using arbitrary
2989 			 * virtual addresses, take care about potential aliasing
2990 			 * before reading the page on the kernel side.
2991 			 */
2992 			if (mapping_writably_mapped(mapping))
2993 				flush_dcache_folio(folio);
2994 			folio_mark_accessed(folio);
2995 			/*
2996 			 * Ok, we have the page, and it's up-to-date, so we can
2997 			 * now splice it into the pipe.
2998 			 */
2999 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3000 			folio_put(folio);
3001 			folio = NULL;
3002 		} else {
3003 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3004 		}
3005 
3006 		if (!n)
3007 			break;
3008 		len -= n;
3009 		total_spliced += n;
3010 		*ppos += n;
3011 		in->f_ra.prev_pos = *ppos;
3012 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3013 			break;
3014 
3015 		cond_resched();
3016 	} while (len);
3017 
3018 	if (folio)
3019 		folio_put(folio);
3020 
3021 	file_accessed(in);
3022 	return total_spliced ? total_spliced : error;
3023 }
3024 
3025 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3026 {
3027 	struct address_space *mapping = file->f_mapping;
3028 	struct inode *inode = mapping->host;
3029 
3030 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3031 		return generic_file_llseek_size(file, offset, whence,
3032 					MAX_LFS_FILESIZE, i_size_read(inode));
3033 	if (offset < 0)
3034 		return -ENXIO;
3035 
3036 	inode_lock(inode);
3037 	/* We're holding i_rwsem so we can access i_size directly */
3038 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3039 	if (offset >= 0)
3040 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3041 	inode_unlock(inode);
3042 	return offset;
3043 }
3044 
3045 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3046 							 loff_t len)
3047 {
3048 	struct inode *inode = file_inode(file);
3049 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3050 	struct shmem_inode_info *info = SHMEM_I(inode);
3051 	struct shmem_falloc shmem_falloc;
3052 	pgoff_t start, index, end, undo_fallocend;
3053 	int error;
3054 
3055 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3056 		return -EOPNOTSUPP;
3057 
3058 	inode_lock(inode);
3059 
3060 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3061 		struct address_space *mapping = file->f_mapping;
3062 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3063 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3064 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3065 
3066 		/* protected by i_rwsem */
3067 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3068 			error = -EPERM;
3069 			goto out;
3070 		}
3071 
3072 		shmem_falloc.waitq = &shmem_falloc_waitq;
3073 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3074 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3075 		spin_lock(&inode->i_lock);
3076 		inode->i_private = &shmem_falloc;
3077 		spin_unlock(&inode->i_lock);
3078 
3079 		if ((u64)unmap_end > (u64)unmap_start)
3080 			unmap_mapping_range(mapping, unmap_start,
3081 					    1 + unmap_end - unmap_start, 0);
3082 		shmem_truncate_range(inode, offset, offset + len - 1);
3083 		/* No need to unmap again: hole-punching leaves COWed pages */
3084 
3085 		spin_lock(&inode->i_lock);
3086 		inode->i_private = NULL;
3087 		wake_up_all(&shmem_falloc_waitq);
3088 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3089 		spin_unlock(&inode->i_lock);
3090 		error = 0;
3091 		goto out;
3092 	}
3093 
3094 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3095 	error = inode_newsize_ok(inode, offset + len);
3096 	if (error)
3097 		goto out;
3098 
3099 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3100 		error = -EPERM;
3101 		goto out;
3102 	}
3103 
3104 	start = offset >> PAGE_SHIFT;
3105 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3106 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3107 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3108 		error = -ENOSPC;
3109 		goto out;
3110 	}
3111 
3112 	shmem_falloc.waitq = NULL;
3113 	shmem_falloc.start = start;
3114 	shmem_falloc.next  = start;
3115 	shmem_falloc.nr_falloced = 0;
3116 	shmem_falloc.nr_unswapped = 0;
3117 	spin_lock(&inode->i_lock);
3118 	inode->i_private = &shmem_falloc;
3119 	spin_unlock(&inode->i_lock);
3120 
3121 	/*
3122 	 * info->fallocend is only relevant when huge pages might be
3123 	 * involved: to prevent split_huge_page() freeing fallocated
3124 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3125 	 */
3126 	undo_fallocend = info->fallocend;
3127 	if (info->fallocend < end)
3128 		info->fallocend = end;
3129 
3130 	for (index = start; index < end; ) {
3131 		struct folio *folio;
3132 
3133 		/*
3134 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3135 		 * been interrupted because we are using up too much memory.
3136 		 */
3137 		if (signal_pending(current))
3138 			error = -EINTR;
3139 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3140 			error = -ENOMEM;
3141 		else
3142 			error = shmem_get_folio(inode, index, &folio,
3143 						SGP_FALLOC);
3144 		if (error) {
3145 			info->fallocend = undo_fallocend;
3146 			/* Remove the !uptodate folios we added */
3147 			if (index > start) {
3148 				shmem_undo_range(inode,
3149 				    (loff_t)start << PAGE_SHIFT,
3150 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3151 			}
3152 			goto undone;
3153 		}
3154 
3155 		/*
3156 		 * Here is a more important optimization than it appears:
3157 		 * a second SGP_FALLOC on the same large folio will clear it,
3158 		 * making it uptodate and un-undoable if we fail later.
3159 		 */
3160 		index = folio_next_index(folio);
3161 		/* Beware 32-bit wraparound */
3162 		if (!index)
3163 			index--;
3164 
3165 		/*
3166 		 * Inform shmem_writepage() how far we have reached.
3167 		 * No need for lock or barrier: we have the page lock.
3168 		 */
3169 		if (!folio_test_uptodate(folio))
3170 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3171 		shmem_falloc.next = index;
3172 
3173 		/*
3174 		 * If !uptodate, leave it that way so that freeable folios
3175 		 * can be recognized if we need to rollback on error later.
3176 		 * But mark it dirty so that memory pressure will swap rather
3177 		 * than free the folios we are allocating (and SGP_CACHE folios
3178 		 * might still be clean: we now need to mark those dirty too).
3179 		 */
3180 		folio_mark_dirty(folio);
3181 		folio_unlock(folio);
3182 		folio_put(folio);
3183 		cond_resched();
3184 	}
3185 
3186 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3187 		i_size_write(inode, offset + len);
3188 undone:
3189 	spin_lock(&inode->i_lock);
3190 	inode->i_private = NULL;
3191 	spin_unlock(&inode->i_lock);
3192 out:
3193 	if (!error)
3194 		file_modified(file);
3195 	inode_unlock(inode);
3196 	return error;
3197 }
3198 
3199 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3200 {
3201 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3202 
3203 	buf->f_type = TMPFS_MAGIC;
3204 	buf->f_bsize = PAGE_SIZE;
3205 	buf->f_namelen = NAME_MAX;
3206 	if (sbinfo->max_blocks) {
3207 		buf->f_blocks = sbinfo->max_blocks;
3208 		buf->f_bavail =
3209 		buf->f_bfree  = sbinfo->max_blocks -
3210 				percpu_counter_sum(&sbinfo->used_blocks);
3211 	}
3212 	if (sbinfo->max_inodes) {
3213 		buf->f_files = sbinfo->max_inodes;
3214 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3215 	}
3216 	/* else leave those fields 0 like simple_statfs */
3217 
3218 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3219 
3220 	return 0;
3221 }
3222 
3223 /*
3224  * File creation. Allocate an inode, and we're done..
3225  */
3226 static int
3227 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3228 	    struct dentry *dentry, umode_t mode, dev_t dev)
3229 {
3230 	struct inode *inode;
3231 	int error;
3232 
3233 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3234 	if (IS_ERR(inode))
3235 		return PTR_ERR(inode);
3236 
3237 	error = simple_acl_create(dir, inode);
3238 	if (error)
3239 		goto out_iput;
3240 	error = security_inode_init_security(inode, dir,
3241 					     &dentry->d_name,
3242 					     shmem_initxattrs, NULL);
3243 	if (error && error != -EOPNOTSUPP)
3244 		goto out_iput;
3245 
3246 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3247 	if (error)
3248 		goto out_iput;
3249 
3250 	dir->i_size += BOGO_DIRENT_SIZE;
3251 	dir->i_mtime = inode_set_ctime_current(dir);
3252 	inode_inc_iversion(dir);
3253 	d_instantiate(dentry, inode);
3254 	dget(dentry); /* Extra count - pin the dentry in core */
3255 	return error;
3256 
3257 out_iput:
3258 	iput(inode);
3259 	return error;
3260 }
3261 
3262 static int
3263 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3264 	      struct file *file, umode_t mode)
3265 {
3266 	struct inode *inode;
3267 	int error;
3268 
3269 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3270 
3271 	if (IS_ERR(inode)) {
3272 		error = PTR_ERR(inode);
3273 		goto err_out;
3274 	}
3275 
3276 	error = security_inode_init_security(inode, dir,
3277 					     NULL,
3278 					     shmem_initxattrs, NULL);
3279 	if (error && error != -EOPNOTSUPP)
3280 		goto out_iput;
3281 	error = simple_acl_create(dir, inode);
3282 	if (error)
3283 		goto out_iput;
3284 	d_tmpfile(file, inode);
3285 
3286 err_out:
3287 	return finish_open_simple(file, error);
3288 out_iput:
3289 	iput(inode);
3290 	return error;
3291 }
3292 
3293 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3294 		       struct dentry *dentry, umode_t mode)
3295 {
3296 	int error;
3297 
3298 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3299 	if (error)
3300 		return error;
3301 	inc_nlink(dir);
3302 	return 0;
3303 }
3304 
3305 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3306 			struct dentry *dentry, umode_t mode, bool excl)
3307 {
3308 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3309 }
3310 
3311 /*
3312  * Link a file..
3313  */
3314 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3315 {
3316 	struct inode *inode = d_inode(old_dentry);
3317 	int ret = 0;
3318 
3319 	/*
3320 	 * No ordinary (disk based) filesystem counts links as inodes;
3321 	 * but each new link needs a new dentry, pinning lowmem, and
3322 	 * tmpfs dentries cannot be pruned until they are unlinked.
3323 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3324 	 * first link must skip that, to get the accounting right.
3325 	 */
3326 	if (inode->i_nlink) {
3327 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3328 		if (ret)
3329 			goto out;
3330 	}
3331 
3332 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3333 	if (ret) {
3334 		if (inode->i_nlink)
3335 			shmem_free_inode(inode->i_sb, 0);
3336 		goto out;
3337 	}
3338 
3339 	dir->i_size += BOGO_DIRENT_SIZE;
3340 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3341 					     inode_set_ctime_current(inode));
3342 	inode_inc_iversion(dir);
3343 	inc_nlink(inode);
3344 	ihold(inode);	/* New dentry reference */
3345 	dget(dentry);		/* Extra pinning count for the created dentry */
3346 	d_instantiate(dentry, inode);
3347 out:
3348 	return ret;
3349 }
3350 
3351 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3352 {
3353 	struct inode *inode = d_inode(dentry);
3354 
3355 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3356 		shmem_free_inode(inode->i_sb, 0);
3357 
3358 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3359 
3360 	dir->i_size -= BOGO_DIRENT_SIZE;
3361 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3362 					     inode_set_ctime_current(inode));
3363 	inode_inc_iversion(dir);
3364 	drop_nlink(inode);
3365 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3366 	return 0;
3367 }
3368 
3369 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3370 {
3371 	if (!simple_empty(dentry))
3372 		return -ENOTEMPTY;
3373 
3374 	drop_nlink(d_inode(dentry));
3375 	drop_nlink(dir);
3376 	return shmem_unlink(dir, dentry);
3377 }
3378 
3379 static int shmem_whiteout(struct mnt_idmap *idmap,
3380 			  struct inode *old_dir, struct dentry *old_dentry)
3381 {
3382 	struct dentry *whiteout;
3383 	int error;
3384 
3385 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3386 	if (!whiteout)
3387 		return -ENOMEM;
3388 
3389 	error = shmem_mknod(idmap, old_dir, whiteout,
3390 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3391 	dput(whiteout);
3392 	if (error)
3393 		return error;
3394 
3395 	/*
3396 	 * Cheat and hash the whiteout while the old dentry is still in
3397 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3398 	 *
3399 	 * d_lookup() will consistently find one of them at this point,
3400 	 * not sure which one, but that isn't even important.
3401 	 */
3402 	d_rehash(whiteout);
3403 	return 0;
3404 }
3405 
3406 /*
3407  * The VFS layer already does all the dentry stuff for rename,
3408  * we just have to decrement the usage count for the target if
3409  * it exists so that the VFS layer correctly free's it when it
3410  * gets overwritten.
3411  */
3412 static int shmem_rename2(struct mnt_idmap *idmap,
3413 			 struct inode *old_dir, struct dentry *old_dentry,
3414 			 struct inode *new_dir, struct dentry *new_dentry,
3415 			 unsigned int flags)
3416 {
3417 	struct inode *inode = d_inode(old_dentry);
3418 	int they_are_dirs = S_ISDIR(inode->i_mode);
3419 	int error;
3420 
3421 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3422 		return -EINVAL;
3423 
3424 	if (flags & RENAME_EXCHANGE)
3425 		return simple_offset_rename_exchange(old_dir, old_dentry,
3426 						     new_dir, new_dentry);
3427 
3428 	if (!simple_empty(new_dentry))
3429 		return -ENOTEMPTY;
3430 
3431 	if (flags & RENAME_WHITEOUT) {
3432 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3433 		if (error)
3434 			return error;
3435 	}
3436 
3437 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3438 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3439 	if (error)
3440 		return error;
3441 
3442 	if (d_really_is_positive(new_dentry)) {
3443 		(void) shmem_unlink(new_dir, new_dentry);
3444 		if (they_are_dirs) {
3445 			drop_nlink(d_inode(new_dentry));
3446 			drop_nlink(old_dir);
3447 		}
3448 	} else if (they_are_dirs) {
3449 		drop_nlink(old_dir);
3450 		inc_nlink(new_dir);
3451 	}
3452 
3453 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3454 	new_dir->i_size += BOGO_DIRENT_SIZE;
3455 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3456 	inode_inc_iversion(old_dir);
3457 	inode_inc_iversion(new_dir);
3458 	return 0;
3459 }
3460 
3461 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3462 			 struct dentry *dentry, const char *symname)
3463 {
3464 	int error;
3465 	int len;
3466 	struct inode *inode;
3467 	struct folio *folio;
3468 
3469 	len = strlen(symname) + 1;
3470 	if (len > PAGE_SIZE)
3471 		return -ENAMETOOLONG;
3472 
3473 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3474 				VM_NORESERVE);
3475 
3476 	if (IS_ERR(inode))
3477 		return PTR_ERR(inode);
3478 
3479 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3480 					     shmem_initxattrs, NULL);
3481 	if (error && error != -EOPNOTSUPP)
3482 		goto out_iput;
3483 
3484 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3485 	if (error)
3486 		goto out_iput;
3487 
3488 	inode->i_size = len-1;
3489 	if (len <= SHORT_SYMLINK_LEN) {
3490 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3491 		if (!inode->i_link) {
3492 			error = -ENOMEM;
3493 			goto out_remove_offset;
3494 		}
3495 		inode->i_op = &shmem_short_symlink_operations;
3496 	} else {
3497 		inode_nohighmem(inode);
3498 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3499 		if (error)
3500 			goto out_remove_offset;
3501 		inode->i_mapping->a_ops = &shmem_aops;
3502 		inode->i_op = &shmem_symlink_inode_operations;
3503 		memcpy(folio_address(folio), symname, len);
3504 		folio_mark_uptodate(folio);
3505 		folio_mark_dirty(folio);
3506 		folio_unlock(folio);
3507 		folio_put(folio);
3508 	}
3509 	dir->i_size += BOGO_DIRENT_SIZE;
3510 	dir->i_mtime = inode_set_ctime_current(dir);
3511 	inode_inc_iversion(dir);
3512 	d_instantiate(dentry, inode);
3513 	dget(dentry);
3514 	return 0;
3515 
3516 out_remove_offset:
3517 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3518 out_iput:
3519 	iput(inode);
3520 	return error;
3521 }
3522 
3523 static void shmem_put_link(void *arg)
3524 {
3525 	folio_mark_accessed(arg);
3526 	folio_put(arg);
3527 }
3528 
3529 static const char *shmem_get_link(struct dentry *dentry,
3530 				  struct inode *inode,
3531 				  struct delayed_call *done)
3532 {
3533 	struct folio *folio = NULL;
3534 	int error;
3535 
3536 	if (!dentry) {
3537 		folio = filemap_get_folio(inode->i_mapping, 0);
3538 		if (IS_ERR(folio))
3539 			return ERR_PTR(-ECHILD);
3540 		if (PageHWPoison(folio_page(folio, 0)) ||
3541 		    !folio_test_uptodate(folio)) {
3542 			folio_put(folio);
3543 			return ERR_PTR(-ECHILD);
3544 		}
3545 	} else {
3546 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3547 		if (error)
3548 			return ERR_PTR(error);
3549 		if (!folio)
3550 			return ERR_PTR(-ECHILD);
3551 		if (PageHWPoison(folio_page(folio, 0))) {
3552 			folio_unlock(folio);
3553 			folio_put(folio);
3554 			return ERR_PTR(-ECHILD);
3555 		}
3556 		folio_unlock(folio);
3557 	}
3558 	set_delayed_call(done, shmem_put_link, folio);
3559 	return folio_address(folio);
3560 }
3561 
3562 #ifdef CONFIG_TMPFS_XATTR
3563 
3564 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3565 {
3566 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3567 
3568 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3569 
3570 	return 0;
3571 }
3572 
3573 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3574 			      struct dentry *dentry, struct fileattr *fa)
3575 {
3576 	struct inode *inode = d_inode(dentry);
3577 	struct shmem_inode_info *info = SHMEM_I(inode);
3578 
3579 	if (fileattr_has_fsx(fa))
3580 		return -EOPNOTSUPP;
3581 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3582 		return -EOPNOTSUPP;
3583 
3584 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3585 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3586 
3587 	shmem_set_inode_flags(inode, info->fsflags);
3588 	inode_set_ctime_current(inode);
3589 	inode_inc_iversion(inode);
3590 	return 0;
3591 }
3592 
3593 /*
3594  * Superblocks without xattr inode operations may get some security.* xattr
3595  * support from the LSM "for free". As soon as we have any other xattrs
3596  * like ACLs, we also need to implement the security.* handlers at
3597  * filesystem level, though.
3598  */
3599 
3600 /*
3601  * Callback for security_inode_init_security() for acquiring xattrs.
3602  */
3603 static int shmem_initxattrs(struct inode *inode,
3604 			    const struct xattr *xattr_array,
3605 			    void *fs_info)
3606 {
3607 	struct shmem_inode_info *info = SHMEM_I(inode);
3608 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3609 	const struct xattr *xattr;
3610 	struct simple_xattr *new_xattr;
3611 	size_t ispace = 0;
3612 	size_t len;
3613 
3614 	if (sbinfo->max_inodes) {
3615 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3616 			ispace += simple_xattr_space(xattr->name,
3617 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3618 		}
3619 		if (ispace) {
3620 			raw_spin_lock(&sbinfo->stat_lock);
3621 			if (sbinfo->free_ispace < ispace)
3622 				ispace = 0;
3623 			else
3624 				sbinfo->free_ispace -= ispace;
3625 			raw_spin_unlock(&sbinfo->stat_lock);
3626 			if (!ispace)
3627 				return -ENOSPC;
3628 		}
3629 	}
3630 
3631 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3632 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3633 		if (!new_xattr)
3634 			break;
3635 
3636 		len = strlen(xattr->name) + 1;
3637 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3638 					  GFP_KERNEL_ACCOUNT);
3639 		if (!new_xattr->name) {
3640 			kvfree(new_xattr);
3641 			break;
3642 		}
3643 
3644 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3645 		       XATTR_SECURITY_PREFIX_LEN);
3646 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3647 		       xattr->name, len);
3648 
3649 		simple_xattr_add(&info->xattrs, new_xattr);
3650 	}
3651 
3652 	if (xattr->name != NULL) {
3653 		if (ispace) {
3654 			raw_spin_lock(&sbinfo->stat_lock);
3655 			sbinfo->free_ispace += ispace;
3656 			raw_spin_unlock(&sbinfo->stat_lock);
3657 		}
3658 		simple_xattrs_free(&info->xattrs, NULL);
3659 		return -ENOMEM;
3660 	}
3661 
3662 	return 0;
3663 }
3664 
3665 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3666 				   struct dentry *unused, struct inode *inode,
3667 				   const char *name, void *buffer, size_t size)
3668 {
3669 	struct shmem_inode_info *info = SHMEM_I(inode);
3670 
3671 	name = xattr_full_name(handler, name);
3672 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3673 }
3674 
3675 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3676 				   struct mnt_idmap *idmap,
3677 				   struct dentry *unused, struct inode *inode,
3678 				   const char *name, const void *value,
3679 				   size_t size, int flags)
3680 {
3681 	struct shmem_inode_info *info = SHMEM_I(inode);
3682 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3683 	struct simple_xattr *old_xattr;
3684 	size_t ispace = 0;
3685 
3686 	name = xattr_full_name(handler, name);
3687 	if (value && sbinfo->max_inodes) {
3688 		ispace = simple_xattr_space(name, size);
3689 		raw_spin_lock(&sbinfo->stat_lock);
3690 		if (sbinfo->free_ispace < ispace)
3691 			ispace = 0;
3692 		else
3693 			sbinfo->free_ispace -= ispace;
3694 		raw_spin_unlock(&sbinfo->stat_lock);
3695 		if (!ispace)
3696 			return -ENOSPC;
3697 	}
3698 
3699 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3700 	if (!IS_ERR(old_xattr)) {
3701 		ispace = 0;
3702 		if (old_xattr && sbinfo->max_inodes)
3703 			ispace = simple_xattr_space(old_xattr->name,
3704 						    old_xattr->size);
3705 		simple_xattr_free(old_xattr);
3706 		old_xattr = NULL;
3707 		inode_set_ctime_current(inode);
3708 		inode_inc_iversion(inode);
3709 	}
3710 	if (ispace) {
3711 		raw_spin_lock(&sbinfo->stat_lock);
3712 		sbinfo->free_ispace += ispace;
3713 		raw_spin_unlock(&sbinfo->stat_lock);
3714 	}
3715 	return PTR_ERR(old_xattr);
3716 }
3717 
3718 static const struct xattr_handler shmem_security_xattr_handler = {
3719 	.prefix = XATTR_SECURITY_PREFIX,
3720 	.get = shmem_xattr_handler_get,
3721 	.set = shmem_xattr_handler_set,
3722 };
3723 
3724 static const struct xattr_handler shmem_trusted_xattr_handler = {
3725 	.prefix = XATTR_TRUSTED_PREFIX,
3726 	.get = shmem_xattr_handler_get,
3727 	.set = shmem_xattr_handler_set,
3728 };
3729 
3730 static const struct xattr_handler shmem_user_xattr_handler = {
3731 	.prefix = XATTR_USER_PREFIX,
3732 	.get = shmem_xattr_handler_get,
3733 	.set = shmem_xattr_handler_set,
3734 };
3735 
3736 static const struct xattr_handler *shmem_xattr_handlers[] = {
3737 	&shmem_security_xattr_handler,
3738 	&shmem_trusted_xattr_handler,
3739 	&shmem_user_xattr_handler,
3740 	NULL
3741 };
3742 
3743 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3744 {
3745 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3746 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3747 }
3748 #endif /* CONFIG_TMPFS_XATTR */
3749 
3750 static const struct inode_operations shmem_short_symlink_operations = {
3751 	.getattr	= shmem_getattr,
3752 	.setattr	= shmem_setattr,
3753 	.get_link	= simple_get_link,
3754 #ifdef CONFIG_TMPFS_XATTR
3755 	.listxattr	= shmem_listxattr,
3756 #endif
3757 };
3758 
3759 static const struct inode_operations shmem_symlink_inode_operations = {
3760 	.getattr	= shmem_getattr,
3761 	.setattr	= shmem_setattr,
3762 	.get_link	= shmem_get_link,
3763 #ifdef CONFIG_TMPFS_XATTR
3764 	.listxattr	= shmem_listxattr,
3765 #endif
3766 };
3767 
3768 static struct dentry *shmem_get_parent(struct dentry *child)
3769 {
3770 	return ERR_PTR(-ESTALE);
3771 }
3772 
3773 static int shmem_match(struct inode *ino, void *vfh)
3774 {
3775 	__u32 *fh = vfh;
3776 	__u64 inum = fh[2];
3777 	inum = (inum << 32) | fh[1];
3778 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3779 }
3780 
3781 /* Find any alias of inode, but prefer a hashed alias */
3782 static struct dentry *shmem_find_alias(struct inode *inode)
3783 {
3784 	struct dentry *alias = d_find_alias(inode);
3785 
3786 	return alias ?: d_find_any_alias(inode);
3787 }
3788 
3789 
3790 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3791 		struct fid *fid, int fh_len, int fh_type)
3792 {
3793 	struct inode *inode;
3794 	struct dentry *dentry = NULL;
3795 	u64 inum;
3796 
3797 	if (fh_len < 3)
3798 		return NULL;
3799 
3800 	inum = fid->raw[2];
3801 	inum = (inum << 32) | fid->raw[1];
3802 
3803 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3804 			shmem_match, fid->raw);
3805 	if (inode) {
3806 		dentry = shmem_find_alias(inode);
3807 		iput(inode);
3808 	}
3809 
3810 	return dentry;
3811 }
3812 
3813 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3814 				struct inode *parent)
3815 {
3816 	if (*len < 3) {
3817 		*len = 3;
3818 		return FILEID_INVALID;
3819 	}
3820 
3821 	if (inode_unhashed(inode)) {
3822 		/* Unfortunately insert_inode_hash is not idempotent,
3823 		 * so as we hash inodes here rather than at creation
3824 		 * time, we need a lock to ensure we only try
3825 		 * to do it once
3826 		 */
3827 		static DEFINE_SPINLOCK(lock);
3828 		spin_lock(&lock);
3829 		if (inode_unhashed(inode))
3830 			__insert_inode_hash(inode,
3831 					    inode->i_ino + inode->i_generation);
3832 		spin_unlock(&lock);
3833 	}
3834 
3835 	fh[0] = inode->i_generation;
3836 	fh[1] = inode->i_ino;
3837 	fh[2] = ((__u64)inode->i_ino) >> 32;
3838 
3839 	*len = 3;
3840 	return 1;
3841 }
3842 
3843 static const struct export_operations shmem_export_ops = {
3844 	.get_parent     = shmem_get_parent,
3845 	.encode_fh      = shmem_encode_fh,
3846 	.fh_to_dentry	= shmem_fh_to_dentry,
3847 };
3848 
3849 enum shmem_param {
3850 	Opt_gid,
3851 	Opt_huge,
3852 	Opt_mode,
3853 	Opt_mpol,
3854 	Opt_nr_blocks,
3855 	Opt_nr_inodes,
3856 	Opt_size,
3857 	Opt_uid,
3858 	Opt_inode32,
3859 	Opt_inode64,
3860 	Opt_noswap,
3861 	Opt_quota,
3862 	Opt_usrquota,
3863 	Opt_grpquota,
3864 	Opt_usrquota_block_hardlimit,
3865 	Opt_usrquota_inode_hardlimit,
3866 	Opt_grpquota_block_hardlimit,
3867 	Opt_grpquota_inode_hardlimit,
3868 };
3869 
3870 static const struct constant_table shmem_param_enums_huge[] = {
3871 	{"never",	SHMEM_HUGE_NEVER },
3872 	{"always",	SHMEM_HUGE_ALWAYS },
3873 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3874 	{"advise",	SHMEM_HUGE_ADVISE },
3875 	{}
3876 };
3877 
3878 const struct fs_parameter_spec shmem_fs_parameters[] = {
3879 	fsparam_u32   ("gid",		Opt_gid),
3880 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3881 	fsparam_u32oct("mode",		Opt_mode),
3882 	fsparam_string("mpol",		Opt_mpol),
3883 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3884 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3885 	fsparam_string("size",		Opt_size),
3886 	fsparam_u32   ("uid",		Opt_uid),
3887 	fsparam_flag  ("inode32",	Opt_inode32),
3888 	fsparam_flag  ("inode64",	Opt_inode64),
3889 	fsparam_flag  ("noswap",	Opt_noswap),
3890 #ifdef CONFIG_TMPFS_QUOTA
3891 	fsparam_flag  ("quota",		Opt_quota),
3892 	fsparam_flag  ("usrquota",	Opt_usrquota),
3893 	fsparam_flag  ("grpquota",	Opt_grpquota),
3894 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3895 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3896 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3897 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3898 #endif
3899 	{}
3900 };
3901 
3902 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3903 {
3904 	struct shmem_options *ctx = fc->fs_private;
3905 	struct fs_parse_result result;
3906 	unsigned long long size;
3907 	char *rest;
3908 	int opt;
3909 	kuid_t kuid;
3910 	kgid_t kgid;
3911 
3912 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3913 	if (opt < 0)
3914 		return opt;
3915 
3916 	switch (opt) {
3917 	case Opt_size:
3918 		size = memparse(param->string, &rest);
3919 		if (*rest == '%') {
3920 			size <<= PAGE_SHIFT;
3921 			size *= totalram_pages();
3922 			do_div(size, 100);
3923 			rest++;
3924 		}
3925 		if (*rest)
3926 			goto bad_value;
3927 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3928 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3929 		break;
3930 	case Opt_nr_blocks:
3931 		ctx->blocks = memparse(param->string, &rest);
3932 		if (*rest || ctx->blocks > LONG_MAX)
3933 			goto bad_value;
3934 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3935 		break;
3936 	case Opt_nr_inodes:
3937 		ctx->inodes = memparse(param->string, &rest);
3938 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3939 			goto bad_value;
3940 		ctx->seen |= SHMEM_SEEN_INODES;
3941 		break;
3942 	case Opt_mode:
3943 		ctx->mode = result.uint_32 & 07777;
3944 		break;
3945 	case Opt_uid:
3946 		kuid = make_kuid(current_user_ns(), result.uint_32);
3947 		if (!uid_valid(kuid))
3948 			goto bad_value;
3949 
3950 		/*
3951 		 * The requested uid must be representable in the
3952 		 * filesystem's idmapping.
3953 		 */
3954 		if (!kuid_has_mapping(fc->user_ns, kuid))
3955 			goto bad_value;
3956 
3957 		ctx->uid = kuid;
3958 		break;
3959 	case Opt_gid:
3960 		kgid = make_kgid(current_user_ns(), result.uint_32);
3961 		if (!gid_valid(kgid))
3962 			goto bad_value;
3963 
3964 		/*
3965 		 * The requested gid must be representable in the
3966 		 * filesystem's idmapping.
3967 		 */
3968 		if (!kgid_has_mapping(fc->user_ns, kgid))
3969 			goto bad_value;
3970 
3971 		ctx->gid = kgid;
3972 		break;
3973 	case Opt_huge:
3974 		ctx->huge = result.uint_32;
3975 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3976 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3977 		      has_transparent_hugepage()))
3978 			goto unsupported_parameter;
3979 		ctx->seen |= SHMEM_SEEN_HUGE;
3980 		break;
3981 	case Opt_mpol:
3982 		if (IS_ENABLED(CONFIG_NUMA)) {
3983 			mpol_put(ctx->mpol);
3984 			ctx->mpol = NULL;
3985 			if (mpol_parse_str(param->string, &ctx->mpol))
3986 				goto bad_value;
3987 			break;
3988 		}
3989 		goto unsupported_parameter;
3990 	case Opt_inode32:
3991 		ctx->full_inums = false;
3992 		ctx->seen |= SHMEM_SEEN_INUMS;
3993 		break;
3994 	case Opt_inode64:
3995 		if (sizeof(ino_t) < 8) {
3996 			return invalfc(fc,
3997 				       "Cannot use inode64 with <64bit inums in kernel\n");
3998 		}
3999 		ctx->full_inums = true;
4000 		ctx->seen |= SHMEM_SEEN_INUMS;
4001 		break;
4002 	case Opt_noswap:
4003 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4004 			return invalfc(fc,
4005 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4006 		}
4007 		ctx->noswap = true;
4008 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4009 		break;
4010 	case Opt_quota:
4011 		if (fc->user_ns != &init_user_ns)
4012 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4013 		ctx->seen |= SHMEM_SEEN_QUOTA;
4014 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4015 		break;
4016 	case Opt_usrquota:
4017 		if (fc->user_ns != &init_user_ns)
4018 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4019 		ctx->seen |= SHMEM_SEEN_QUOTA;
4020 		ctx->quota_types |= QTYPE_MASK_USR;
4021 		break;
4022 	case Opt_grpquota:
4023 		if (fc->user_ns != &init_user_ns)
4024 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4025 		ctx->seen |= SHMEM_SEEN_QUOTA;
4026 		ctx->quota_types |= QTYPE_MASK_GRP;
4027 		break;
4028 	case Opt_usrquota_block_hardlimit:
4029 		size = memparse(param->string, &rest);
4030 		if (*rest || !size)
4031 			goto bad_value;
4032 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4033 			return invalfc(fc,
4034 				       "User quota block hardlimit too large.");
4035 		ctx->qlimits.usrquota_bhardlimit = size;
4036 		break;
4037 	case Opt_grpquota_block_hardlimit:
4038 		size = memparse(param->string, &rest);
4039 		if (*rest || !size)
4040 			goto bad_value;
4041 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4042 			return invalfc(fc,
4043 				       "Group quota block hardlimit too large.");
4044 		ctx->qlimits.grpquota_bhardlimit = size;
4045 		break;
4046 	case Opt_usrquota_inode_hardlimit:
4047 		size = memparse(param->string, &rest);
4048 		if (*rest || !size)
4049 			goto bad_value;
4050 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4051 			return invalfc(fc,
4052 				       "User quota inode hardlimit too large.");
4053 		ctx->qlimits.usrquota_ihardlimit = size;
4054 		break;
4055 	case Opt_grpquota_inode_hardlimit:
4056 		size = memparse(param->string, &rest);
4057 		if (*rest || !size)
4058 			goto bad_value;
4059 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4060 			return invalfc(fc,
4061 				       "Group quota inode hardlimit too large.");
4062 		ctx->qlimits.grpquota_ihardlimit = size;
4063 		break;
4064 	}
4065 	return 0;
4066 
4067 unsupported_parameter:
4068 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4069 bad_value:
4070 	return invalfc(fc, "Bad value for '%s'", param->key);
4071 }
4072 
4073 static int shmem_parse_options(struct fs_context *fc, void *data)
4074 {
4075 	char *options = data;
4076 
4077 	if (options) {
4078 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4079 		if (err)
4080 			return err;
4081 	}
4082 
4083 	while (options != NULL) {
4084 		char *this_char = options;
4085 		for (;;) {
4086 			/*
4087 			 * NUL-terminate this option: unfortunately,
4088 			 * mount options form a comma-separated list,
4089 			 * but mpol's nodelist may also contain commas.
4090 			 */
4091 			options = strchr(options, ',');
4092 			if (options == NULL)
4093 				break;
4094 			options++;
4095 			if (!isdigit(*options)) {
4096 				options[-1] = '\0';
4097 				break;
4098 			}
4099 		}
4100 		if (*this_char) {
4101 			char *value = strchr(this_char, '=');
4102 			size_t len = 0;
4103 			int err;
4104 
4105 			if (value) {
4106 				*value++ = '\0';
4107 				len = strlen(value);
4108 			}
4109 			err = vfs_parse_fs_string(fc, this_char, value, len);
4110 			if (err < 0)
4111 				return err;
4112 		}
4113 	}
4114 	return 0;
4115 }
4116 
4117 /*
4118  * Reconfigure a shmem filesystem.
4119  */
4120 static int shmem_reconfigure(struct fs_context *fc)
4121 {
4122 	struct shmem_options *ctx = fc->fs_private;
4123 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4124 	unsigned long used_isp;
4125 	struct mempolicy *mpol = NULL;
4126 	const char *err;
4127 
4128 	raw_spin_lock(&sbinfo->stat_lock);
4129 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4130 
4131 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4132 		if (!sbinfo->max_blocks) {
4133 			err = "Cannot retroactively limit size";
4134 			goto out;
4135 		}
4136 		if (percpu_counter_compare(&sbinfo->used_blocks,
4137 					   ctx->blocks) > 0) {
4138 			err = "Too small a size for current use";
4139 			goto out;
4140 		}
4141 	}
4142 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4143 		if (!sbinfo->max_inodes) {
4144 			err = "Cannot retroactively limit inodes";
4145 			goto out;
4146 		}
4147 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4148 			err = "Too few inodes for current use";
4149 			goto out;
4150 		}
4151 	}
4152 
4153 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4154 	    sbinfo->next_ino > UINT_MAX) {
4155 		err = "Current inum too high to switch to 32-bit inums";
4156 		goto out;
4157 	}
4158 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4159 		err = "Cannot disable swap on remount";
4160 		goto out;
4161 	}
4162 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4163 		err = "Cannot enable swap on remount if it was disabled on first mount";
4164 		goto out;
4165 	}
4166 
4167 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4168 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4169 		err = "Cannot enable quota on remount";
4170 		goto out;
4171 	}
4172 
4173 #ifdef CONFIG_TMPFS_QUOTA
4174 #define CHANGED_LIMIT(name)						\
4175 	(ctx->qlimits.name## hardlimit &&				\
4176 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4177 
4178 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4179 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4180 		err = "Cannot change global quota limit on remount";
4181 		goto out;
4182 	}
4183 #endif /* CONFIG_TMPFS_QUOTA */
4184 
4185 	if (ctx->seen & SHMEM_SEEN_HUGE)
4186 		sbinfo->huge = ctx->huge;
4187 	if (ctx->seen & SHMEM_SEEN_INUMS)
4188 		sbinfo->full_inums = ctx->full_inums;
4189 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4190 		sbinfo->max_blocks  = ctx->blocks;
4191 	if (ctx->seen & SHMEM_SEEN_INODES) {
4192 		sbinfo->max_inodes  = ctx->inodes;
4193 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4194 	}
4195 
4196 	/*
4197 	 * Preserve previous mempolicy unless mpol remount option was specified.
4198 	 */
4199 	if (ctx->mpol) {
4200 		mpol = sbinfo->mpol;
4201 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4202 		ctx->mpol = NULL;
4203 	}
4204 
4205 	if (ctx->noswap)
4206 		sbinfo->noswap = true;
4207 
4208 	raw_spin_unlock(&sbinfo->stat_lock);
4209 	mpol_put(mpol);
4210 	return 0;
4211 out:
4212 	raw_spin_unlock(&sbinfo->stat_lock);
4213 	return invalfc(fc, "%s", err);
4214 }
4215 
4216 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4217 {
4218 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4219 	struct mempolicy *mpol;
4220 
4221 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4222 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4223 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4224 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4225 	if (sbinfo->mode != (0777 | S_ISVTX))
4226 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4227 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4228 		seq_printf(seq, ",uid=%u",
4229 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4230 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4231 		seq_printf(seq, ",gid=%u",
4232 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4233 
4234 	/*
4235 	 * Showing inode{64,32} might be useful even if it's the system default,
4236 	 * since then people don't have to resort to checking both here and
4237 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4238 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4239 	 *
4240 	 * We hide it when inode64 isn't the default and we are using 32-bit
4241 	 * inodes, since that probably just means the feature isn't even under
4242 	 * consideration.
4243 	 *
4244 	 * As such:
4245 	 *
4246 	 *                     +-----------------+-----------------+
4247 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4248 	 *  +------------------+-----------------+-----------------+
4249 	 *  | full_inums=true  | show            | show            |
4250 	 *  | full_inums=false | show            | hide            |
4251 	 *  +------------------+-----------------+-----------------+
4252 	 *
4253 	 */
4254 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4255 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4257 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4258 	if (sbinfo->huge)
4259 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4260 #endif
4261 	mpol = shmem_get_sbmpol(sbinfo);
4262 	shmem_show_mpol(seq, mpol);
4263 	mpol_put(mpol);
4264 	if (sbinfo->noswap)
4265 		seq_printf(seq, ",noswap");
4266 	return 0;
4267 }
4268 
4269 #endif /* CONFIG_TMPFS */
4270 
4271 static void shmem_put_super(struct super_block *sb)
4272 {
4273 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4274 
4275 #ifdef CONFIG_TMPFS_QUOTA
4276 	shmem_disable_quotas(sb);
4277 #endif
4278 	free_percpu(sbinfo->ino_batch);
4279 	percpu_counter_destroy(&sbinfo->used_blocks);
4280 	mpol_put(sbinfo->mpol);
4281 	kfree(sbinfo);
4282 	sb->s_fs_info = NULL;
4283 }
4284 
4285 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4286 {
4287 	struct shmem_options *ctx = fc->fs_private;
4288 	struct inode *inode;
4289 	struct shmem_sb_info *sbinfo;
4290 	int error = -ENOMEM;
4291 
4292 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4293 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4294 				L1_CACHE_BYTES), GFP_KERNEL);
4295 	if (!sbinfo)
4296 		return error;
4297 
4298 	sb->s_fs_info = sbinfo;
4299 
4300 #ifdef CONFIG_TMPFS
4301 	/*
4302 	 * Per default we only allow half of the physical ram per
4303 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4304 	 * but the internal instance is left unlimited.
4305 	 */
4306 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4307 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4308 			ctx->blocks = shmem_default_max_blocks();
4309 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4310 			ctx->inodes = shmem_default_max_inodes();
4311 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4312 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4313 		sbinfo->noswap = ctx->noswap;
4314 	} else {
4315 		sb->s_flags |= SB_NOUSER;
4316 	}
4317 	sb->s_export_op = &shmem_export_ops;
4318 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4319 #else
4320 	sb->s_flags |= SB_NOUSER;
4321 #endif
4322 	sbinfo->max_blocks = ctx->blocks;
4323 	sbinfo->max_inodes = ctx->inodes;
4324 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4325 	if (sb->s_flags & SB_KERNMOUNT) {
4326 		sbinfo->ino_batch = alloc_percpu(ino_t);
4327 		if (!sbinfo->ino_batch)
4328 			goto failed;
4329 	}
4330 	sbinfo->uid = ctx->uid;
4331 	sbinfo->gid = ctx->gid;
4332 	sbinfo->full_inums = ctx->full_inums;
4333 	sbinfo->mode = ctx->mode;
4334 	sbinfo->huge = ctx->huge;
4335 	sbinfo->mpol = ctx->mpol;
4336 	ctx->mpol = NULL;
4337 
4338 	raw_spin_lock_init(&sbinfo->stat_lock);
4339 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4340 		goto failed;
4341 	spin_lock_init(&sbinfo->shrinklist_lock);
4342 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4343 
4344 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4345 	sb->s_blocksize = PAGE_SIZE;
4346 	sb->s_blocksize_bits = PAGE_SHIFT;
4347 	sb->s_magic = TMPFS_MAGIC;
4348 	sb->s_op = &shmem_ops;
4349 	sb->s_time_gran = 1;
4350 #ifdef CONFIG_TMPFS_XATTR
4351 	sb->s_xattr = shmem_xattr_handlers;
4352 #endif
4353 #ifdef CONFIG_TMPFS_POSIX_ACL
4354 	sb->s_flags |= SB_POSIXACL;
4355 #endif
4356 	uuid_gen(&sb->s_uuid);
4357 
4358 #ifdef CONFIG_TMPFS_QUOTA
4359 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4360 		sb->dq_op = &shmem_quota_operations;
4361 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4362 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4363 
4364 		/* Copy the default limits from ctx into sbinfo */
4365 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4366 		       sizeof(struct shmem_quota_limits));
4367 
4368 		if (shmem_enable_quotas(sb, ctx->quota_types))
4369 			goto failed;
4370 	}
4371 #endif /* CONFIG_TMPFS_QUOTA */
4372 
4373 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4374 				VM_NORESERVE);
4375 	if (IS_ERR(inode)) {
4376 		error = PTR_ERR(inode);
4377 		goto failed;
4378 	}
4379 	inode->i_uid = sbinfo->uid;
4380 	inode->i_gid = sbinfo->gid;
4381 	sb->s_root = d_make_root(inode);
4382 	if (!sb->s_root)
4383 		goto failed;
4384 	return 0;
4385 
4386 failed:
4387 	shmem_put_super(sb);
4388 	return error;
4389 }
4390 
4391 static int shmem_get_tree(struct fs_context *fc)
4392 {
4393 	return get_tree_nodev(fc, shmem_fill_super);
4394 }
4395 
4396 static void shmem_free_fc(struct fs_context *fc)
4397 {
4398 	struct shmem_options *ctx = fc->fs_private;
4399 
4400 	if (ctx) {
4401 		mpol_put(ctx->mpol);
4402 		kfree(ctx);
4403 	}
4404 }
4405 
4406 static const struct fs_context_operations shmem_fs_context_ops = {
4407 	.free			= shmem_free_fc,
4408 	.get_tree		= shmem_get_tree,
4409 #ifdef CONFIG_TMPFS
4410 	.parse_monolithic	= shmem_parse_options,
4411 	.parse_param		= shmem_parse_one,
4412 	.reconfigure		= shmem_reconfigure,
4413 #endif
4414 };
4415 
4416 static struct kmem_cache *shmem_inode_cachep;
4417 
4418 static struct inode *shmem_alloc_inode(struct super_block *sb)
4419 {
4420 	struct shmem_inode_info *info;
4421 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4422 	if (!info)
4423 		return NULL;
4424 	return &info->vfs_inode;
4425 }
4426 
4427 static void shmem_free_in_core_inode(struct inode *inode)
4428 {
4429 	if (S_ISLNK(inode->i_mode))
4430 		kfree(inode->i_link);
4431 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4432 }
4433 
4434 static void shmem_destroy_inode(struct inode *inode)
4435 {
4436 	if (S_ISREG(inode->i_mode))
4437 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4438 	if (S_ISDIR(inode->i_mode))
4439 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4440 }
4441 
4442 static void shmem_init_inode(void *foo)
4443 {
4444 	struct shmem_inode_info *info = foo;
4445 	inode_init_once(&info->vfs_inode);
4446 }
4447 
4448 static void shmem_init_inodecache(void)
4449 {
4450 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4451 				sizeof(struct shmem_inode_info),
4452 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4453 }
4454 
4455 static void shmem_destroy_inodecache(void)
4456 {
4457 	kmem_cache_destroy(shmem_inode_cachep);
4458 }
4459 
4460 /* Keep the page in page cache instead of truncating it */
4461 static int shmem_error_remove_page(struct address_space *mapping,
4462 				   struct page *page)
4463 {
4464 	return 0;
4465 }
4466 
4467 const struct address_space_operations shmem_aops = {
4468 	.writepage	= shmem_writepage,
4469 	.dirty_folio	= noop_dirty_folio,
4470 #ifdef CONFIG_TMPFS
4471 	.write_begin	= shmem_write_begin,
4472 	.write_end	= shmem_write_end,
4473 #endif
4474 #ifdef CONFIG_MIGRATION
4475 	.migrate_folio	= migrate_folio,
4476 #endif
4477 	.error_remove_page = shmem_error_remove_page,
4478 };
4479 EXPORT_SYMBOL(shmem_aops);
4480 
4481 static const struct file_operations shmem_file_operations = {
4482 	.mmap		= shmem_mmap,
4483 	.open		= shmem_file_open,
4484 	.get_unmapped_area = shmem_get_unmapped_area,
4485 #ifdef CONFIG_TMPFS
4486 	.llseek		= shmem_file_llseek,
4487 	.read_iter	= shmem_file_read_iter,
4488 	.write_iter	= shmem_file_write_iter,
4489 	.fsync		= noop_fsync,
4490 	.splice_read	= shmem_file_splice_read,
4491 	.splice_write	= iter_file_splice_write,
4492 	.fallocate	= shmem_fallocate,
4493 #endif
4494 };
4495 
4496 static const struct inode_operations shmem_inode_operations = {
4497 	.getattr	= shmem_getattr,
4498 	.setattr	= shmem_setattr,
4499 #ifdef CONFIG_TMPFS_XATTR
4500 	.listxattr	= shmem_listxattr,
4501 	.set_acl	= simple_set_acl,
4502 	.fileattr_get	= shmem_fileattr_get,
4503 	.fileattr_set	= shmem_fileattr_set,
4504 #endif
4505 };
4506 
4507 static const struct inode_operations shmem_dir_inode_operations = {
4508 #ifdef CONFIG_TMPFS
4509 	.getattr	= shmem_getattr,
4510 	.create		= shmem_create,
4511 	.lookup		= simple_lookup,
4512 	.link		= shmem_link,
4513 	.unlink		= shmem_unlink,
4514 	.symlink	= shmem_symlink,
4515 	.mkdir		= shmem_mkdir,
4516 	.rmdir		= shmem_rmdir,
4517 	.mknod		= shmem_mknod,
4518 	.rename		= shmem_rename2,
4519 	.tmpfile	= shmem_tmpfile,
4520 	.get_offset_ctx	= shmem_get_offset_ctx,
4521 #endif
4522 #ifdef CONFIG_TMPFS_XATTR
4523 	.listxattr	= shmem_listxattr,
4524 	.fileattr_get	= shmem_fileattr_get,
4525 	.fileattr_set	= shmem_fileattr_set,
4526 #endif
4527 #ifdef CONFIG_TMPFS_POSIX_ACL
4528 	.setattr	= shmem_setattr,
4529 	.set_acl	= simple_set_acl,
4530 #endif
4531 };
4532 
4533 static const struct inode_operations shmem_special_inode_operations = {
4534 	.getattr	= shmem_getattr,
4535 #ifdef CONFIG_TMPFS_XATTR
4536 	.listxattr	= shmem_listxattr,
4537 #endif
4538 #ifdef CONFIG_TMPFS_POSIX_ACL
4539 	.setattr	= shmem_setattr,
4540 	.set_acl	= simple_set_acl,
4541 #endif
4542 };
4543 
4544 static const struct super_operations shmem_ops = {
4545 	.alloc_inode	= shmem_alloc_inode,
4546 	.free_inode	= shmem_free_in_core_inode,
4547 	.destroy_inode	= shmem_destroy_inode,
4548 #ifdef CONFIG_TMPFS
4549 	.statfs		= shmem_statfs,
4550 	.show_options	= shmem_show_options,
4551 #endif
4552 #ifdef CONFIG_TMPFS_QUOTA
4553 	.get_dquots	= shmem_get_dquots,
4554 #endif
4555 	.evict_inode	= shmem_evict_inode,
4556 	.drop_inode	= generic_delete_inode,
4557 	.put_super	= shmem_put_super,
4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4559 	.nr_cached_objects	= shmem_unused_huge_count,
4560 	.free_cached_objects	= shmem_unused_huge_scan,
4561 #endif
4562 };
4563 
4564 static const struct vm_operations_struct shmem_vm_ops = {
4565 	.fault		= shmem_fault,
4566 	.map_pages	= filemap_map_pages,
4567 #ifdef CONFIG_NUMA
4568 	.set_policy     = shmem_set_policy,
4569 	.get_policy     = shmem_get_policy,
4570 #endif
4571 };
4572 
4573 static const struct vm_operations_struct shmem_anon_vm_ops = {
4574 	.fault		= shmem_fault,
4575 	.map_pages	= filemap_map_pages,
4576 #ifdef CONFIG_NUMA
4577 	.set_policy     = shmem_set_policy,
4578 	.get_policy     = shmem_get_policy,
4579 #endif
4580 };
4581 
4582 int shmem_init_fs_context(struct fs_context *fc)
4583 {
4584 	struct shmem_options *ctx;
4585 
4586 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4587 	if (!ctx)
4588 		return -ENOMEM;
4589 
4590 	ctx->mode = 0777 | S_ISVTX;
4591 	ctx->uid = current_fsuid();
4592 	ctx->gid = current_fsgid();
4593 
4594 	fc->fs_private = ctx;
4595 	fc->ops = &shmem_fs_context_ops;
4596 	return 0;
4597 }
4598 
4599 static struct file_system_type shmem_fs_type = {
4600 	.owner		= THIS_MODULE,
4601 	.name		= "tmpfs",
4602 	.init_fs_context = shmem_init_fs_context,
4603 #ifdef CONFIG_TMPFS
4604 	.parameters	= shmem_fs_parameters,
4605 #endif
4606 	.kill_sb	= kill_litter_super,
4607 #ifdef CONFIG_SHMEM
4608 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4609 #else
4610 	.fs_flags	= FS_USERNS_MOUNT,
4611 #endif
4612 };
4613 
4614 void __init shmem_init(void)
4615 {
4616 	int error;
4617 
4618 	shmem_init_inodecache();
4619 
4620 #ifdef CONFIG_TMPFS_QUOTA
4621 	error = register_quota_format(&shmem_quota_format);
4622 	if (error < 0) {
4623 		pr_err("Could not register quota format\n");
4624 		goto out3;
4625 	}
4626 #endif
4627 
4628 	error = register_filesystem(&shmem_fs_type);
4629 	if (error) {
4630 		pr_err("Could not register tmpfs\n");
4631 		goto out2;
4632 	}
4633 
4634 	shm_mnt = kern_mount(&shmem_fs_type);
4635 	if (IS_ERR(shm_mnt)) {
4636 		error = PTR_ERR(shm_mnt);
4637 		pr_err("Could not kern_mount tmpfs\n");
4638 		goto out1;
4639 	}
4640 
4641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4642 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4643 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4644 	else
4645 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4646 #endif
4647 	return;
4648 
4649 out1:
4650 	unregister_filesystem(&shmem_fs_type);
4651 out2:
4652 #ifdef CONFIG_TMPFS_QUOTA
4653 	unregister_quota_format(&shmem_quota_format);
4654 out3:
4655 #endif
4656 	shmem_destroy_inodecache();
4657 	shm_mnt = ERR_PTR(error);
4658 }
4659 
4660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4661 static ssize_t shmem_enabled_show(struct kobject *kobj,
4662 				  struct kobj_attribute *attr, char *buf)
4663 {
4664 	static const int values[] = {
4665 		SHMEM_HUGE_ALWAYS,
4666 		SHMEM_HUGE_WITHIN_SIZE,
4667 		SHMEM_HUGE_ADVISE,
4668 		SHMEM_HUGE_NEVER,
4669 		SHMEM_HUGE_DENY,
4670 		SHMEM_HUGE_FORCE,
4671 	};
4672 	int len = 0;
4673 	int i;
4674 
4675 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4676 		len += sysfs_emit_at(buf, len,
4677 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4678 				     i ? " " : "",
4679 				     shmem_format_huge(values[i]));
4680 	}
4681 
4682 	len += sysfs_emit_at(buf, len, "\n");
4683 
4684 	return len;
4685 }
4686 
4687 static ssize_t shmem_enabled_store(struct kobject *kobj,
4688 		struct kobj_attribute *attr, const char *buf, size_t count)
4689 {
4690 	char tmp[16];
4691 	int huge;
4692 
4693 	if (count + 1 > sizeof(tmp))
4694 		return -EINVAL;
4695 	memcpy(tmp, buf, count);
4696 	tmp[count] = '\0';
4697 	if (count && tmp[count - 1] == '\n')
4698 		tmp[count - 1] = '\0';
4699 
4700 	huge = shmem_parse_huge(tmp);
4701 	if (huge == -EINVAL)
4702 		return -EINVAL;
4703 	if (!has_transparent_hugepage() &&
4704 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4705 		return -EINVAL;
4706 
4707 	shmem_huge = huge;
4708 	if (shmem_huge > SHMEM_HUGE_DENY)
4709 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4710 	return count;
4711 }
4712 
4713 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4714 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4715 
4716 #else /* !CONFIG_SHMEM */
4717 
4718 /*
4719  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4720  *
4721  * This is intended for small system where the benefits of the full
4722  * shmem code (swap-backed and resource-limited) are outweighed by
4723  * their complexity. On systems without swap this code should be
4724  * effectively equivalent, but much lighter weight.
4725  */
4726 
4727 static struct file_system_type shmem_fs_type = {
4728 	.name		= "tmpfs",
4729 	.init_fs_context = ramfs_init_fs_context,
4730 	.parameters	= ramfs_fs_parameters,
4731 	.kill_sb	= ramfs_kill_sb,
4732 	.fs_flags	= FS_USERNS_MOUNT,
4733 };
4734 
4735 void __init shmem_init(void)
4736 {
4737 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4738 
4739 	shm_mnt = kern_mount(&shmem_fs_type);
4740 	BUG_ON(IS_ERR(shm_mnt));
4741 }
4742 
4743 int shmem_unuse(unsigned int type)
4744 {
4745 	return 0;
4746 }
4747 
4748 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4749 {
4750 	return 0;
4751 }
4752 
4753 void shmem_unlock_mapping(struct address_space *mapping)
4754 {
4755 }
4756 
4757 #ifdef CONFIG_MMU
4758 unsigned long shmem_get_unmapped_area(struct file *file,
4759 				      unsigned long addr, unsigned long len,
4760 				      unsigned long pgoff, unsigned long flags)
4761 {
4762 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4763 }
4764 #endif
4765 
4766 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4767 {
4768 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4769 }
4770 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4771 
4772 #define shmem_vm_ops				generic_file_vm_ops
4773 #define shmem_anon_vm_ops			generic_file_vm_ops
4774 #define shmem_file_operations			ramfs_file_operations
4775 #define shmem_acct_size(flags, size)		0
4776 #define shmem_unacct_size(flags, size)		do {} while (0)
4777 
4778 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4779 					    umode_t mode, dev_t dev, unsigned long flags)
4780 {
4781 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4782 	return inode ? inode : ERR_PTR(-ENOSPC);
4783 }
4784 
4785 #endif /* CONFIG_SHMEM */
4786 
4787 /* common code */
4788 
4789 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4790 				       unsigned long flags, unsigned int i_flags)
4791 {
4792 	struct inode *inode;
4793 	struct file *res;
4794 
4795 	if (IS_ERR(mnt))
4796 		return ERR_CAST(mnt);
4797 
4798 	if (size < 0 || size > MAX_LFS_FILESIZE)
4799 		return ERR_PTR(-EINVAL);
4800 
4801 	if (shmem_acct_size(flags, size))
4802 		return ERR_PTR(-ENOMEM);
4803 
4804 	if (is_idmapped_mnt(mnt))
4805 		return ERR_PTR(-EINVAL);
4806 
4807 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4808 				S_IFREG | S_IRWXUGO, 0, flags);
4809 
4810 	if (IS_ERR(inode)) {
4811 		shmem_unacct_size(flags, size);
4812 		return ERR_CAST(inode);
4813 	}
4814 	inode->i_flags |= i_flags;
4815 	inode->i_size = size;
4816 	clear_nlink(inode);	/* It is unlinked */
4817 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4818 	if (!IS_ERR(res))
4819 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4820 				&shmem_file_operations);
4821 	if (IS_ERR(res))
4822 		iput(inode);
4823 	return res;
4824 }
4825 
4826 /**
4827  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4828  * 	kernel internal.  There will be NO LSM permission checks against the
4829  * 	underlying inode.  So users of this interface must do LSM checks at a
4830  *	higher layer.  The users are the big_key and shm implementations.  LSM
4831  *	checks are provided at the key or shm level rather than the inode.
4832  * @name: name for dentry (to be seen in /proc/<pid>/maps
4833  * @size: size to be set for the file
4834  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4835  */
4836 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4837 {
4838 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4839 }
4840 
4841 /**
4842  * shmem_file_setup - get an unlinked file living in tmpfs
4843  * @name: name for dentry (to be seen in /proc/<pid>/maps
4844  * @size: size to be set for the file
4845  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4846  */
4847 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4848 {
4849 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4850 }
4851 EXPORT_SYMBOL_GPL(shmem_file_setup);
4852 
4853 /**
4854  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4855  * @mnt: the tmpfs mount where the file will be created
4856  * @name: name for dentry (to be seen in /proc/<pid>/maps
4857  * @size: size to be set for the file
4858  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4859  */
4860 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4861 				       loff_t size, unsigned long flags)
4862 {
4863 	return __shmem_file_setup(mnt, name, size, flags, 0);
4864 }
4865 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4866 
4867 /**
4868  * shmem_zero_setup - setup a shared anonymous mapping
4869  * @vma: the vma to be mmapped is prepared by do_mmap
4870  */
4871 int shmem_zero_setup(struct vm_area_struct *vma)
4872 {
4873 	struct file *file;
4874 	loff_t size = vma->vm_end - vma->vm_start;
4875 
4876 	/*
4877 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4878 	 * between XFS directory reading and selinux: since this file is only
4879 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4880 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4881 	 */
4882 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4883 	if (IS_ERR(file))
4884 		return PTR_ERR(file);
4885 
4886 	if (vma->vm_file)
4887 		fput(vma->vm_file);
4888 	vma->vm_file = file;
4889 	vma->vm_ops = &shmem_anon_vm_ops;
4890 
4891 	return 0;
4892 }
4893 
4894 /**
4895  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4896  * @mapping:	the folio's address_space
4897  * @index:	the folio index
4898  * @gfp:	the page allocator flags to use if allocating
4899  *
4900  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4901  * with any new page allocations done using the specified allocation flags.
4902  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4903  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4904  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4905  *
4906  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4907  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4908  */
4909 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4910 		pgoff_t index, gfp_t gfp)
4911 {
4912 #ifdef CONFIG_SHMEM
4913 	struct inode *inode = mapping->host;
4914 	struct folio *folio;
4915 	int error;
4916 
4917 	BUG_ON(!shmem_mapping(mapping));
4918 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4919 				  gfp, NULL, NULL, NULL);
4920 	if (error)
4921 		return ERR_PTR(error);
4922 
4923 	folio_unlock(folio);
4924 	return folio;
4925 #else
4926 	/*
4927 	 * The tiny !SHMEM case uses ramfs without swap
4928 	 */
4929 	return mapping_read_folio_gfp(mapping, index, gfp);
4930 #endif
4931 }
4932 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4933 
4934 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4935 					 pgoff_t index, gfp_t gfp)
4936 {
4937 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4938 	struct page *page;
4939 
4940 	if (IS_ERR(folio))
4941 		return &folio->page;
4942 
4943 	page = folio_file_page(folio, index);
4944 	if (PageHWPoison(page)) {
4945 		folio_put(folio);
4946 		return ERR_PTR(-EIO);
4947 	}
4948 
4949 	return page;
4950 }
4951 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4952