xref: /openbmc/linux/mm/shmem.c (revision 3e08773c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 			     struct page **pagep, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 		struct page **pagep, enum sgp_type sgp,
144 		gfp_t gfp, struct vm_area_struct *vma,
145 		struct vm_fault *vmf, vm_fault_t *fault_type);
146 
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp)
149 {
150 	return shmem_getpage_gfp(inode, index, pagep, sgp,
151 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153 
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 	return sb->s_fs_info;
157 }
158 
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 	return (flags & VM_NORESERVE) ?
168 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170 
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 	if (!(flags & VM_NORESERVE))
174 		vm_unacct_memory(VM_ACCT(size));
175 }
176 
177 static inline int shmem_reacct_size(unsigned long flags,
178 		loff_t oldsize, loff_t newsize)
179 {
180 	if (!(flags & VM_NORESERVE)) {
181 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 			return security_vm_enough_memory_mm(current->mm,
183 					VM_ACCT(newsize) - VM_ACCT(oldsize));
184 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 	}
187 	return 0;
188 }
189 
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 	if (!(flags & VM_NORESERVE))
199 		return 0;
200 
201 	return security_vm_enough_memory_mm(current->mm,
202 			pages * VM_ACCT(PAGE_SIZE));
203 }
204 
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 	if (flags & VM_NORESERVE)
208 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 	struct shmem_inode_info *info = SHMEM_I(inode);
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return false;
218 
219 	if (sbinfo->max_blocks) {
220 		if (percpu_counter_compare(&sbinfo->used_blocks,
221 					   sbinfo->max_blocks - pages) > 0)
222 			goto unacct;
223 		percpu_counter_add(&sbinfo->used_blocks, pages);
224 	}
225 
226 	return true;
227 
228 unacct:
229 	shmem_unacct_blocks(info->flags, pages);
230 	return false;
231 }
232 
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 
238 	if (sbinfo->max_blocks)
239 		percpu_counter_sub(&sbinfo->used_blocks, pages);
240 	shmem_unacct_blocks(info->flags, pages);
241 }
242 
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251 
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 	return vma->vm_ops == &shmem_vm_ops;
255 }
256 
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259 
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 	ino_t ino;
274 
275 	if (!(sb->s_flags & SB_KERNMOUNT)) {
276 		raw_spin_lock(&sbinfo->stat_lock);
277 		if (sbinfo->max_inodes) {
278 			if (!sbinfo->free_inodes) {
279 				raw_spin_unlock(&sbinfo->stat_lock);
280 				return -ENOSPC;
281 			}
282 			sbinfo->free_inodes--;
283 		}
284 		if (inop) {
285 			ino = sbinfo->next_ino++;
286 			if (unlikely(is_zero_ino(ino)))
287 				ino = sbinfo->next_ino++;
288 			if (unlikely(!sbinfo->full_inums &&
289 				     ino > UINT_MAX)) {
290 				/*
291 				 * Emulate get_next_ino uint wraparound for
292 				 * compatibility
293 				 */
294 				if (IS_ENABLED(CONFIG_64BIT))
295 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 						__func__, MINOR(sb->s_dev));
297 				sbinfo->next_ino = 1;
298 				ino = sbinfo->next_ino++;
299 			}
300 			*inop = ino;
301 		}
302 		raw_spin_unlock(&sbinfo->stat_lock);
303 	} else if (inop) {
304 		/*
305 		 * __shmem_file_setup, one of our callers, is lock-free: it
306 		 * doesn't hold stat_lock in shmem_reserve_inode since
307 		 * max_inodes is always 0, and is called from potentially
308 		 * unknown contexts. As such, use a per-cpu batched allocator
309 		 * which doesn't require the per-sb stat_lock unless we are at
310 		 * the batch boundary.
311 		 *
312 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 		 * shmem mounts are not exposed to userspace, so we don't need
314 		 * to worry about things like glibc compatibility.
315 		 */
316 		ino_t *next_ino;
317 
318 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 		ino = *next_ino;
320 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 			raw_spin_lock(&sbinfo->stat_lock);
322 			ino = sbinfo->next_ino;
323 			sbinfo->next_ino += SHMEM_INO_BATCH;
324 			raw_spin_unlock(&sbinfo->stat_lock);
325 			if (unlikely(is_zero_ino(ino)))
326 				ino++;
327 		}
328 		*inop = ino;
329 		*next_ino = ++ino;
330 		put_cpu();
331 	}
332 
333 	return 0;
334 }
335 
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	if (sbinfo->max_inodes) {
340 		raw_spin_lock(&sbinfo->stat_lock);
341 		sbinfo->free_inodes++;
342 		raw_spin_unlock(&sbinfo->stat_lock);
343 	}
344 }
345 
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 	struct shmem_inode_info *info = SHMEM_I(inode);
361 	long freed;
362 
363 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 	if (freed > 0) {
365 		info->alloced -= freed;
366 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 		shmem_inode_unacct_blocks(inode, freed);
368 	}
369 }
370 
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 	struct shmem_inode_info *info = SHMEM_I(inode);
374 	unsigned long flags;
375 
376 	if (!shmem_inode_acct_block(inode, pages))
377 		return false;
378 
379 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 	inode->i_mapping->nrpages += pages;
381 
382 	spin_lock_irqsave(&info->lock, flags);
383 	info->alloced += pages;
384 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 	shmem_recalc_inode(inode);
386 	spin_unlock_irqrestore(&info->lock, flags);
387 
388 	return true;
389 }
390 
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 	struct shmem_inode_info *info = SHMEM_I(inode);
394 	unsigned long flags;
395 
396 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
397 
398 	spin_lock_irqsave(&info->lock, flags);
399 	info->alloced -= pages;
400 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 	shmem_recalc_inode(inode);
402 	spin_unlock_irqrestore(&info->lock, flags);
403 
404 	shmem_inode_unacct_blocks(inode, pages);
405 }
406 
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411 			pgoff_t index, void *expected, void *replacement)
412 {
413 	XA_STATE(xas, &mapping->i_pages, index);
414 	void *item;
415 
416 	VM_BUG_ON(!expected);
417 	VM_BUG_ON(!replacement);
418 	item = xas_load(&xas);
419 	if (item != expected)
420 		return -ENOENT;
421 	xas_store(&xas, replacement);
422 	return 0;
423 }
424 
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 			       pgoff_t index, swp_entry_t swap)
434 {
435 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437 
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *	disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *	enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *	only allocate huge pages if the page will be fully within i_size,
447  *	also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *	only allocate huge pages if requested with fadvise()/madvise();
450  */
451 
452 #define SHMEM_HUGE_NEVER	0
453 #define SHMEM_HUGE_ALWAYS	1
454 #define SHMEM_HUGE_WITHIN_SIZE	2
455 #define SHMEM_HUGE_ADVISE	3
456 
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *	disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY		(-1)
468 #define SHMEM_HUGE_FORCE	(-2)
469 
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472 
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 		   struct inode *inode, pgoff_t index)
477 {
478 	loff_t i_size;
479 
480 	if (shmem_huge == SHMEM_HUGE_DENY)
481 		return false;
482 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484 		return false;
485 	if (shmem_huge == SHMEM_HUGE_FORCE)
486 		return true;
487 
488 	switch (SHMEM_SB(inode->i_sb)->huge) {
489 	case SHMEM_HUGE_ALWAYS:
490 		return true;
491 	case SHMEM_HUGE_WITHIN_SIZE:
492 		index = round_up(index + 1, HPAGE_PMD_NR);
493 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 		if (i_size >> PAGE_SHIFT >= index)
495 			return true;
496 		fallthrough;
497 	case SHMEM_HUGE_ADVISE:
498 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 			return true;
500 		fallthrough;
501 	default:
502 		return false;
503 	}
504 }
505 
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509 	if (!strcmp(str, "never"))
510 		return SHMEM_HUGE_NEVER;
511 	if (!strcmp(str, "always"))
512 		return SHMEM_HUGE_ALWAYS;
513 	if (!strcmp(str, "within_size"))
514 		return SHMEM_HUGE_WITHIN_SIZE;
515 	if (!strcmp(str, "advise"))
516 		return SHMEM_HUGE_ADVISE;
517 	if (!strcmp(str, "deny"))
518 		return SHMEM_HUGE_DENY;
519 	if (!strcmp(str, "force"))
520 		return SHMEM_HUGE_FORCE;
521 	return -EINVAL;
522 }
523 #endif
524 
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528 	switch (huge) {
529 	case SHMEM_HUGE_NEVER:
530 		return "never";
531 	case SHMEM_HUGE_ALWAYS:
532 		return "always";
533 	case SHMEM_HUGE_WITHIN_SIZE:
534 		return "within_size";
535 	case SHMEM_HUGE_ADVISE:
536 		return "advise";
537 	case SHMEM_HUGE_DENY:
538 		return "deny";
539 	case SHMEM_HUGE_FORCE:
540 		return "force";
541 	default:
542 		VM_BUG_ON(1);
543 		return "bad_val";
544 	}
545 }
546 #endif
547 
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 		struct shrink_control *sc, unsigned long nr_to_split)
550 {
551 	LIST_HEAD(list), *pos, *next;
552 	LIST_HEAD(to_remove);
553 	struct inode *inode;
554 	struct shmem_inode_info *info;
555 	struct page *page;
556 	unsigned long batch = sc ? sc->nr_to_scan : 128;
557 	int removed = 0, split = 0;
558 
559 	if (list_empty(&sbinfo->shrinklist))
560 		return SHRINK_STOP;
561 
562 	spin_lock(&sbinfo->shrinklist_lock);
563 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 
566 		/* pin the inode */
567 		inode = igrab(&info->vfs_inode);
568 
569 		/* inode is about to be evicted */
570 		if (!inode) {
571 			list_del_init(&info->shrinklist);
572 			removed++;
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			removed++;
581 			goto next;
582 		}
583 
584 		list_move(&info->shrinklist, &list);
585 next:
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 
601 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 		inode = &info->vfs_inode;
603 
604 		if (nr_to_split && split >= nr_to_split)
605 			goto leave;
606 
607 		page = find_get_page(inode->i_mapping,
608 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 		if (!page)
610 			goto drop;
611 
612 		/* No huge page at the end of the file: nothing to split */
613 		if (!PageTransHuge(page)) {
614 			put_page(page);
615 			goto drop;
616 		}
617 
618 		/*
619 		 * Leave the inode on the list if we failed to lock
620 		 * the page at this time.
621 		 *
622 		 * Waiting for the lock may lead to deadlock in the
623 		 * reclaim path.
624 		 */
625 		if (!trylock_page(page)) {
626 			put_page(page);
627 			goto leave;
628 		}
629 
630 		ret = split_huge_page(page);
631 		unlock_page(page);
632 		put_page(page);
633 
634 		/* If split failed leave the inode on the list */
635 		if (ret)
636 			goto leave;
637 
638 		split++;
639 drop:
640 		list_del_init(&info->shrinklist);
641 		removed++;
642 leave:
643 		iput(inode);
644 	}
645 
646 	spin_lock(&sbinfo->shrinklist_lock);
647 	list_splice_tail(&list, &sbinfo->shrinklist);
648 	sbinfo->shrinklist_len -= removed;
649 	spin_unlock(&sbinfo->shrinklist_lock);
650 
651 	return split;
652 }
653 
654 static long shmem_unused_huge_scan(struct super_block *sb,
655 		struct shrink_control *sc)
656 {
657 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658 
659 	if (!READ_ONCE(sbinfo->shrinklist_len))
660 		return SHRINK_STOP;
661 
662 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664 
665 static long shmem_unused_huge_count(struct super_block *sb,
666 		struct shrink_control *sc)
667 {
668 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 	return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672 
673 #define shmem_huge SHMEM_HUGE_DENY
674 
675 bool shmem_is_huge(struct vm_area_struct *vma,
676 		   struct inode *inode, pgoff_t index)
677 {
678 	return false;
679 }
680 
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 		struct shrink_control *sc, unsigned long nr_to_split)
683 {
684 	return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687 
688 /*
689  * Like add_to_page_cache_locked, but error if expected item has gone.
690  */
691 static int shmem_add_to_page_cache(struct page *page,
692 				   struct address_space *mapping,
693 				   pgoff_t index, void *expected, gfp_t gfp,
694 				   struct mm_struct *charge_mm)
695 {
696 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697 	unsigned long i = 0;
698 	unsigned long nr = compound_nr(page);
699 	int error;
700 
701 	VM_BUG_ON_PAGE(PageTail(page), page);
702 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703 	VM_BUG_ON_PAGE(!PageLocked(page), page);
704 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705 	VM_BUG_ON(expected && PageTransHuge(page));
706 
707 	page_ref_add(page, nr);
708 	page->mapping = mapping;
709 	page->index = index;
710 
711 	if (!PageSwapCache(page)) {
712 		error = mem_cgroup_charge(page, charge_mm, gfp);
713 		if (error) {
714 			if (PageTransHuge(page)) {
715 				count_vm_event(THP_FILE_FALLBACK);
716 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
717 			}
718 			goto error;
719 		}
720 	}
721 	cgroup_throttle_swaprate(page, gfp);
722 
723 	do {
724 		void *entry;
725 		xas_lock_irq(&xas);
726 		entry = xas_find_conflict(&xas);
727 		if (entry != expected)
728 			xas_set_err(&xas, -EEXIST);
729 		xas_create_range(&xas);
730 		if (xas_error(&xas))
731 			goto unlock;
732 next:
733 		xas_store(&xas, page);
734 		if (++i < nr) {
735 			xas_next(&xas);
736 			goto next;
737 		}
738 		if (PageTransHuge(page)) {
739 			count_vm_event(THP_FILE_ALLOC);
740 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
741 		}
742 		mapping->nrpages += nr;
743 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
745 unlock:
746 		xas_unlock_irq(&xas);
747 	} while (xas_nomem(&xas, gfp));
748 
749 	if (xas_error(&xas)) {
750 		error = xas_error(&xas);
751 		goto error;
752 	}
753 
754 	return 0;
755 error:
756 	page->mapping = NULL;
757 	page_ref_sub(page, nr);
758 	return error;
759 }
760 
761 /*
762  * Like delete_from_page_cache, but substitutes swap for page.
763  */
764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765 {
766 	struct address_space *mapping = page->mapping;
767 	int error;
768 
769 	VM_BUG_ON_PAGE(PageCompound(page), page);
770 
771 	xa_lock_irq(&mapping->i_pages);
772 	error = shmem_replace_entry(mapping, page->index, page, radswap);
773 	page->mapping = NULL;
774 	mapping->nrpages--;
775 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
776 	__dec_lruvec_page_state(page, NR_SHMEM);
777 	xa_unlock_irq(&mapping->i_pages);
778 	put_page(page);
779 	BUG_ON(error);
780 }
781 
782 /*
783  * Remove swap entry from page cache, free the swap and its page cache.
784  */
785 static int shmem_free_swap(struct address_space *mapping,
786 			   pgoff_t index, void *radswap)
787 {
788 	void *old;
789 
790 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791 	if (old != radswap)
792 		return -ENOENT;
793 	free_swap_and_cache(radix_to_swp_entry(radswap));
794 	return 0;
795 }
796 
797 /*
798  * Determine (in bytes) how many of the shmem object's pages mapped by the
799  * given offsets are swapped out.
800  *
801  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802  * as long as the inode doesn't go away and racy results are not a problem.
803  */
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 						pgoff_t start, pgoff_t end)
806 {
807 	XA_STATE(xas, &mapping->i_pages, start);
808 	struct page *page;
809 	unsigned long swapped = 0;
810 
811 	rcu_read_lock();
812 	xas_for_each(&xas, page, end - 1) {
813 		if (xas_retry(&xas, page))
814 			continue;
815 		if (xa_is_value(page))
816 			swapped++;
817 
818 		if (need_resched()) {
819 			xas_pause(&xas);
820 			cond_resched_rcu();
821 		}
822 	}
823 
824 	rcu_read_unlock();
825 
826 	return swapped << PAGE_SHIFT;
827 }
828 
829 /*
830  * Determine (in bytes) how many of the shmem object's pages mapped by the
831  * given vma is swapped out.
832  *
833  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834  * as long as the inode doesn't go away and racy results are not a problem.
835  */
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838 	struct inode *inode = file_inode(vma->vm_file);
839 	struct shmem_inode_info *info = SHMEM_I(inode);
840 	struct address_space *mapping = inode->i_mapping;
841 	unsigned long swapped;
842 
843 	/* Be careful as we don't hold info->lock */
844 	swapped = READ_ONCE(info->swapped);
845 
846 	/*
847 	 * The easier cases are when the shmem object has nothing in swap, or
848 	 * the vma maps it whole. Then we can simply use the stats that we
849 	 * already track.
850 	 */
851 	if (!swapped)
852 		return 0;
853 
854 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 		return swapped << PAGE_SHIFT;
856 
857 	/* Here comes the more involved part */
858 	return shmem_partial_swap_usage(mapping,
859 			linear_page_index(vma, vma->vm_start),
860 			linear_page_index(vma, vma->vm_end));
861 }
862 
863 /*
864  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865  */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868 	struct pagevec pvec;
869 	pgoff_t index = 0;
870 
871 	pagevec_init(&pvec);
872 	/*
873 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 	 */
875 	while (!mapping_unevictable(mapping)) {
876 		if (!pagevec_lookup(&pvec, mapping, &index))
877 			break;
878 		check_move_unevictable_pages(&pvec);
879 		pagevec_release(&pvec);
880 		cond_resched();
881 	}
882 }
883 
884 /*
885  * Check whether a hole-punch or truncation needs to split a huge page,
886  * returning true if no split was required, or the split has been successful.
887  *
888  * Eviction (or truncation to 0 size) should never need to split a huge page;
889  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
890  * head, and then succeeded to trylock on tail.
891  *
892  * A split can only succeed when there are no additional references on the
893  * huge page: so the split below relies upon find_get_entries() having stopped
894  * when it found a subpage of the huge page, without getting further references.
895  */
896 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897 {
898 	if (!PageTransCompound(page))
899 		return true;
900 
901 	/* Just proceed to delete a huge page wholly within the range punched */
902 	if (PageHead(page) &&
903 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
904 		return true;
905 
906 	/* Try to split huge page, so we can truly punch the hole or truncate */
907 	return split_huge_page(page) >= 0;
908 }
909 
910 /*
911  * Remove range of pages and swap entries from page cache, and free them.
912  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913  */
914 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915 								 bool unfalloc)
916 {
917 	struct address_space *mapping = inode->i_mapping;
918 	struct shmem_inode_info *info = SHMEM_I(inode);
919 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
922 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
923 	struct pagevec pvec;
924 	pgoff_t indices[PAGEVEC_SIZE];
925 	long nr_swaps_freed = 0;
926 	pgoff_t index;
927 	int i;
928 
929 	if (lend == -1)
930 		end = -1;	/* unsigned, so actually very big */
931 
932 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933 		info->fallocend = start;
934 
935 	pagevec_init(&pvec);
936 	index = start;
937 	while (index < end && find_lock_entries(mapping, index, end - 1,
938 			&pvec, indices)) {
939 		for (i = 0; i < pagevec_count(&pvec); i++) {
940 			struct page *page = pvec.pages[i];
941 
942 			index = indices[i];
943 
944 			if (xa_is_value(page)) {
945 				if (unfalloc)
946 					continue;
947 				nr_swaps_freed += !shmem_free_swap(mapping,
948 								index, page);
949 				continue;
950 			}
951 			index += thp_nr_pages(page) - 1;
952 
953 			if (!unfalloc || !PageUptodate(page))
954 				truncate_inode_page(mapping, page);
955 			unlock_page(page);
956 		}
957 		pagevec_remove_exceptionals(&pvec);
958 		pagevec_release(&pvec);
959 		cond_resched();
960 		index++;
961 	}
962 
963 	if (partial_start) {
964 		struct page *page = NULL;
965 		shmem_getpage(inode, start - 1, &page, SGP_READ);
966 		if (page) {
967 			unsigned int top = PAGE_SIZE;
968 			if (start > end) {
969 				top = partial_end;
970 				partial_end = 0;
971 			}
972 			zero_user_segment(page, partial_start, top);
973 			set_page_dirty(page);
974 			unlock_page(page);
975 			put_page(page);
976 		}
977 	}
978 	if (partial_end) {
979 		struct page *page = NULL;
980 		shmem_getpage(inode, end, &page, SGP_READ);
981 		if (page) {
982 			zero_user_segment(page, 0, partial_end);
983 			set_page_dirty(page);
984 			unlock_page(page);
985 			put_page(page);
986 		}
987 	}
988 	if (start >= end)
989 		return;
990 
991 	index = start;
992 	while (index < end) {
993 		cond_resched();
994 
995 		if (!find_get_entries(mapping, index, end - 1, &pvec,
996 				indices)) {
997 			/* If all gone or hole-punch or unfalloc, we're done */
998 			if (index == start || end != -1)
999 				break;
1000 			/* But if truncating, restart to make sure all gone */
1001 			index = start;
1002 			continue;
1003 		}
1004 		for (i = 0; i < pagevec_count(&pvec); i++) {
1005 			struct page *page = pvec.pages[i];
1006 
1007 			index = indices[i];
1008 			if (xa_is_value(page)) {
1009 				if (unfalloc)
1010 					continue;
1011 				if (shmem_free_swap(mapping, index, page)) {
1012 					/* Swap was replaced by page: retry */
1013 					index--;
1014 					break;
1015 				}
1016 				nr_swaps_freed++;
1017 				continue;
1018 			}
1019 
1020 			lock_page(page);
1021 
1022 			if (!unfalloc || !PageUptodate(page)) {
1023 				if (page_mapping(page) != mapping) {
1024 					/* Page was replaced by swap: retry */
1025 					unlock_page(page);
1026 					index--;
1027 					break;
1028 				}
1029 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1030 				if (shmem_punch_compound(page, start, end))
1031 					truncate_inode_page(mapping, page);
1032 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1033 					/* Wipe the page and don't get stuck */
1034 					clear_highpage(page);
1035 					flush_dcache_page(page);
1036 					set_page_dirty(page);
1037 					if (index <
1038 					    round_up(start, HPAGE_PMD_NR))
1039 						start = index + 1;
1040 				}
1041 			}
1042 			unlock_page(page);
1043 		}
1044 		pagevec_remove_exceptionals(&pvec);
1045 		pagevec_release(&pvec);
1046 		index++;
1047 	}
1048 
1049 	spin_lock_irq(&info->lock);
1050 	info->swapped -= nr_swaps_freed;
1051 	shmem_recalc_inode(inode);
1052 	spin_unlock_irq(&info->lock);
1053 }
1054 
1055 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056 {
1057 	shmem_undo_range(inode, lstart, lend, false);
1058 	inode->i_ctime = inode->i_mtime = current_time(inode);
1059 }
1060 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1061 
1062 static int shmem_getattr(struct user_namespace *mnt_userns,
1063 			 const struct path *path, struct kstat *stat,
1064 			 u32 request_mask, unsigned int query_flags)
1065 {
1066 	struct inode *inode = path->dentry->d_inode;
1067 	struct shmem_inode_info *info = SHMEM_I(inode);
1068 
1069 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1070 		spin_lock_irq(&info->lock);
1071 		shmem_recalc_inode(inode);
1072 		spin_unlock_irq(&info->lock);
1073 	}
1074 	generic_fillattr(&init_user_ns, inode, stat);
1075 
1076 	if (shmem_is_huge(NULL, inode, 0))
1077 		stat->blksize = HPAGE_PMD_SIZE;
1078 
1079 	return 0;
1080 }
1081 
1082 static int shmem_setattr(struct user_namespace *mnt_userns,
1083 			 struct dentry *dentry, struct iattr *attr)
1084 {
1085 	struct inode *inode = d_inode(dentry);
1086 	struct shmem_inode_info *info = SHMEM_I(inode);
1087 	int error;
1088 
1089 	error = setattr_prepare(&init_user_ns, dentry, attr);
1090 	if (error)
1091 		return error;
1092 
1093 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1094 		loff_t oldsize = inode->i_size;
1095 		loff_t newsize = attr->ia_size;
1096 
1097 		/* protected by i_rwsem */
1098 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1099 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1100 			return -EPERM;
1101 
1102 		if (newsize != oldsize) {
1103 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1104 					oldsize, newsize);
1105 			if (error)
1106 				return error;
1107 			i_size_write(inode, newsize);
1108 			inode->i_ctime = inode->i_mtime = current_time(inode);
1109 		}
1110 		if (newsize <= oldsize) {
1111 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1112 			if (oldsize > holebegin)
1113 				unmap_mapping_range(inode->i_mapping,
1114 							holebegin, 0, 1);
1115 			if (info->alloced)
1116 				shmem_truncate_range(inode,
1117 							newsize, (loff_t)-1);
1118 			/* unmap again to remove racily COWed private pages */
1119 			if (oldsize > holebegin)
1120 				unmap_mapping_range(inode->i_mapping,
1121 							holebegin, 0, 1);
1122 		}
1123 	}
1124 
1125 	setattr_copy(&init_user_ns, inode, attr);
1126 	if (attr->ia_valid & ATTR_MODE)
1127 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1128 	return error;
1129 }
1130 
1131 static void shmem_evict_inode(struct inode *inode)
1132 {
1133 	struct shmem_inode_info *info = SHMEM_I(inode);
1134 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1135 
1136 	if (shmem_mapping(inode->i_mapping)) {
1137 		shmem_unacct_size(info->flags, inode->i_size);
1138 		inode->i_size = 0;
1139 		shmem_truncate_range(inode, 0, (loff_t)-1);
1140 		if (!list_empty(&info->shrinklist)) {
1141 			spin_lock(&sbinfo->shrinklist_lock);
1142 			if (!list_empty(&info->shrinklist)) {
1143 				list_del_init(&info->shrinklist);
1144 				sbinfo->shrinklist_len--;
1145 			}
1146 			spin_unlock(&sbinfo->shrinklist_lock);
1147 		}
1148 		while (!list_empty(&info->swaplist)) {
1149 			/* Wait while shmem_unuse() is scanning this inode... */
1150 			wait_var_event(&info->stop_eviction,
1151 				       !atomic_read(&info->stop_eviction));
1152 			mutex_lock(&shmem_swaplist_mutex);
1153 			/* ...but beware of the race if we peeked too early */
1154 			if (!atomic_read(&info->stop_eviction))
1155 				list_del_init(&info->swaplist);
1156 			mutex_unlock(&shmem_swaplist_mutex);
1157 		}
1158 	}
1159 
1160 	simple_xattrs_free(&info->xattrs);
1161 	WARN_ON(inode->i_blocks);
1162 	shmem_free_inode(inode->i_sb);
1163 	clear_inode(inode);
1164 }
1165 
1166 static int shmem_find_swap_entries(struct address_space *mapping,
1167 				   pgoff_t start, unsigned int nr_entries,
1168 				   struct page **entries, pgoff_t *indices,
1169 				   unsigned int type, bool frontswap)
1170 {
1171 	XA_STATE(xas, &mapping->i_pages, start);
1172 	struct page *page;
1173 	swp_entry_t entry;
1174 	unsigned int ret = 0;
1175 
1176 	if (!nr_entries)
1177 		return 0;
1178 
1179 	rcu_read_lock();
1180 	xas_for_each(&xas, page, ULONG_MAX) {
1181 		if (xas_retry(&xas, page))
1182 			continue;
1183 
1184 		if (!xa_is_value(page))
1185 			continue;
1186 
1187 		entry = radix_to_swp_entry(page);
1188 		if (swp_type(entry) != type)
1189 			continue;
1190 		if (frontswap &&
1191 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1192 			continue;
1193 
1194 		indices[ret] = xas.xa_index;
1195 		entries[ret] = page;
1196 
1197 		if (need_resched()) {
1198 			xas_pause(&xas);
1199 			cond_resched_rcu();
1200 		}
1201 		if (++ret == nr_entries)
1202 			break;
1203 	}
1204 	rcu_read_unlock();
1205 
1206 	return ret;
1207 }
1208 
1209 /*
1210  * Move the swapped pages for an inode to page cache. Returns the count
1211  * of pages swapped in, or the error in case of failure.
1212  */
1213 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1214 				    pgoff_t *indices)
1215 {
1216 	int i = 0;
1217 	int ret = 0;
1218 	int error = 0;
1219 	struct address_space *mapping = inode->i_mapping;
1220 
1221 	for (i = 0; i < pvec.nr; i++) {
1222 		struct page *page = pvec.pages[i];
1223 
1224 		if (!xa_is_value(page))
1225 			continue;
1226 		error = shmem_swapin_page(inode, indices[i],
1227 					  &page, SGP_CACHE,
1228 					  mapping_gfp_mask(mapping),
1229 					  NULL, NULL);
1230 		if (error == 0) {
1231 			unlock_page(page);
1232 			put_page(page);
1233 			ret++;
1234 		}
1235 		if (error == -ENOMEM)
1236 			break;
1237 		error = 0;
1238 	}
1239 	return error ? error : ret;
1240 }
1241 
1242 /*
1243  * If swap found in inode, free it and move page from swapcache to filecache.
1244  */
1245 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1246 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1247 {
1248 	struct address_space *mapping = inode->i_mapping;
1249 	pgoff_t start = 0;
1250 	struct pagevec pvec;
1251 	pgoff_t indices[PAGEVEC_SIZE];
1252 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1253 	int ret = 0;
1254 
1255 	pagevec_init(&pvec);
1256 	do {
1257 		unsigned int nr_entries = PAGEVEC_SIZE;
1258 
1259 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1260 			nr_entries = *fs_pages_to_unuse;
1261 
1262 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1263 						  pvec.pages, indices,
1264 						  type, frontswap);
1265 		if (pvec.nr == 0) {
1266 			ret = 0;
1267 			break;
1268 		}
1269 
1270 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1271 		if (ret < 0)
1272 			break;
1273 
1274 		if (frontswap_partial) {
1275 			*fs_pages_to_unuse -= ret;
1276 			if (*fs_pages_to_unuse == 0) {
1277 				ret = FRONTSWAP_PAGES_UNUSED;
1278 				break;
1279 			}
1280 		}
1281 
1282 		start = indices[pvec.nr - 1];
1283 	} while (true);
1284 
1285 	return ret;
1286 }
1287 
1288 /*
1289  * Read all the shared memory data that resides in the swap
1290  * device 'type' back into memory, so the swap device can be
1291  * unused.
1292  */
1293 int shmem_unuse(unsigned int type, bool frontswap,
1294 		unsigned long *fs_pages_to_unuse)
1295 {
1296 	struct shmem_inode_info *info, *next;
1297 	int error = 0;
1298 
1299 	if (list_empty(&shmem_swaplist))
1300 		return 0;
1301 
1302 	mutex_lock(&shmem_swaplist_mutex);
1303 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1304 		if (!info->swapped) {
1305 			list_del_init(&info->swaplist);
1306 			continue;
1307 		}
1308 		/*
1309 		 * Drop the swaplist mutex while searching the inode for swap;
1310 		 * but before doing so, make sure shmem_evict_inode() will not
1311 		 * remove placeholder inode from swaplist, nor let it be freed
1312 		 * (igrab() would protect from unlink, but not from unmount).
1313 		 */
1314 		atomic_inc(&info->stop_eviction);
1315 		mutex_unlock(&shmem_swaplist_mutex);
1316 
1317 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1318 					  fs_pages_to_unuse);
1319 		cond_resched();
1320 
1321 		mutex_lock(&shmem_swaplist_mutex);
1322 		next = list_next_entry(info, swaplist);
1323 		if (!info->swapped)
1324 			list_del_init(&info->swaplist);
1325 		if (atomic_dec_and_test(&info->stop_eviction))
1326 			wake_up_var(&info->stop_eviction);
1327 		if (error)
1328 			break;
1329 	}
1330 	mutex_unlock(&shmem_swaplist_mutex);
1331 
1332 	return error;
1333 }
1334 
1335 /*
1336  * Move the page from the page cache to the swap cache.
1337  */
1338 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339 {
1340 	struct shmem_inode_info *info;
1341 	struct address_space *mapping;
1342 	struct inode *inode;
1343 	swp_entry_t swap;
1344 	pgoff_t index;
1345 
1346 	/*
1347 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1348 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1349 	 * and its shmem_writeback() needs them to be split when swapping.
1350 	 */
1351 	if (PageTransCompound(page)) {
1352 		/* Ensure the subpages are still dirty */
1353 		SetPageDirty(page);
1354 		if (split_huge_page(page) < 0)
1355 			goto redirty;
1356 		ClearPageDirty(page);
1357 	}
1358 
1359 	BUG_ON(!PageLocked(page));
1360 	mapping = page->mapping;
1361 	index = page->index;
1362 	inode = mapping->host;
1363 	info = SHMEM_I(inode);
1364 	if (info->flags & VM_LOCKED)
1365 		goto redirty;
1366 	if (!total_swap_pages)
1367 		goto redirty;
1368 
1369 	/*
1370 	 * Our capabilities prevent regular writeback or sync from ever calling
1371 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1372 	 * its underlying filesystem, in which case tmpfs should write out to
1373 	 * swap only in response to memory pressure, and not for the writeback
1374 	 * threads or sync.
1375 	 */
1376 	if (!wbc->for_reclaim) {
1377 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1378 		goto redirty;
1379 	}
1380 
1381 	/*
1382 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383 	 * value into swapfile.c, the only way we can correctly account for a
1384 	 * fallocated page arriving here is now to initialize it and write it.
1385 	 *
1386 	 * That's okay for a page already fallocated earlier, but if we have
1387 	 * not yet completed the fallocation, then (a) we want to keep track
1388 	 * of this page in case we have to undo it, and (b) it may not be a
1389 	 * good idea to continue anyway, once we're pushing into swap.  So
1390 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1391 	 */
1392 	if (!PageUptodate(page)) {
1393 		if (inode->i_private) {
1394 			struct shmem_falloc *shmem_falloc;
1395 			spin_lock(&inode->i_lock);
1396 			shmem_falloc = inode->i_private;
1397 			if (shmem_falloc &&
1398 			    !shmem_falloc->waitq &&
1399 			    index >= shmem_falloc->start &&
1400 			    index < shmem_falloc->next)
1401 				shmem_falloc->nr_unswapped++;
1402 			else
1403 				shmem_falloc = NULL;
1404 			spin_unlock(&inode->i_lock);
1405 			if (shmem_falloc)
1406 				goto redirty;
1407 		}
1408 		clear_highpage(page);
1409 		flush_dcache_page(page);
1410 		SetPageUptodate(page);
1411 	}
1412 
1413 	swap = get_swap_page(page);
1414 	if (!swap.val)
1415 		goto redirty;
1416 
1417 	/*
1418 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419 	 * if it's not already there.  Do it now before the page is
1420 	 * moved to swap cache, when its pagelock no longer protects
1421 	 * the inode from eviction.  But don't unlock the mutex until
1422 	 * we've incremented swapped, because shmem_unuse_inode() will
1423 	 * prune a !swapped inode from the swaplist under this mutex.
1424 	 */
1425 	mutex_lock(&shmem_swaplist_mutex);
1426 	if (list_empty(&info->swaplist))
1427 		list_add(&info->swaplist, &shmem_swaplist);
1428 
1429 	if (add_to_swap_cache(page, swap,
1430 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431 			NULL) == 0) {
1432 		spin_lock_irq(&info->lock);
1433 		shmem_recalc_inode(inode);
1434 		info->swapped++;
1435 		spin_unlock_irq(&info->lock);
1436 
1437 		swap_shmem_alloc(swap);
1438 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439 
1440 		mutex_unlock(&shmem_swaplist_mutex);
1441 		BUG_ON(page_mapped(page));
1442 		swap_writepage(page, wbc);
1443 		return 0;
1444 	}
1445 
1446 	mutex_unlock(&shmem_swaplist_mutex);
1447 	put_swap_page(page, swap);
1448 redirty:
1449 	set_page_dirty(page);
1450 	if (wbc->for_reclaim)
1451 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1452 	unlock_page(page);
1453 	return 0;
1454 }
1455 
1456 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458 {
1459 	char buffer[64];
1460 
1461 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1462 		return;		/* show nothing */
1463 
1464 	mpol_to_str(buffer, sizeof(buffer), mpol);
1465 
1466 	seq_printf(seq, ",mpol=%s", buffer);
1467 }
1468 
1469 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470 {
1471 	struct mempolicy *mpol = NULL;
1472 	if (sbinfo->mpol) {
1473 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1474 		mpol = sbinfo->mpol;
1475 		mpol_get(mpol);
1476 		raw_spin_unlock(&sbinfo->stat_lock);
1477 	}
1478 	return mpol;
1479 }
1480 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482 {
1483 }
1484 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485 {
1486 	return NULL;
1487 }
1488 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489 #ifndef CONFIG_NUMA
1490 #define vm_policy vm_private_data
1491 #endif
1492 
1493 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494 		struct shmem_inode_info *info, pgoff_t index)
1495 {
1496 	/* Create a pseudo vma that just contains the policy */
1497 	vma_init(vma, NULL);
1498 	/* Bias interleave by inode number to distribute better across nodes */
1499 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501 }
1502 
1503 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504 {
1505 	/* Drop reference taken by mpol_shared_policy_lookup() */
1506 	mpol_cond_put(vma->vm_policy);
1507 }
1508 
1509 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510 			struct shmem_inode_info *info, pgoff_t index)
1511 {
1512 	struct vm_area_struct pvma;
1513 	struct page *page;
1514 	struct vm_fault vmf = {
1515 		.vma = &pvma,
1516 	};
1517 
1518 	shmem_pseudo_vma_init(&pvma, info, index);
1519 	page = swap_cluster_readahead(swap, gfp, &vmf);
1520 	shmem_pseudo_vma_destroy(&pvma);
1521 
1522 	return page;
1523 }
1524 
1525 /*
1526  * Make sure huge_gfp is always more limited than limit_gfp.
1527  * Some of the flags set permissions, while others set limitations.
1528  */
1529 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530 {
1531 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1532 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1533 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1534 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535 
1536 	/* Allow allocations only from the originally specified zones. */
1537 	result |= zoneflags;
1538 
1539 	/*
1540 	 * Minimize the result gfp by taking the union with the deny flags,
1541 	 * and the intersection of the allow flags.
1542 	 */
1543 	result |= (limit_gfp & denyflags);
1544 	result |= (huge_gfp & limit_gfp) & allowflags;
1545 
1546 	return result;
1547 }
1548 
1549 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1550 		struct shmem_inode_info *info, pgoff_t index)
1551 {
1552 	struct vm_area_struct pvma;
1553 	struct address_space *mapping = info->vfs_inode.i_mapping;
1554 	pgoff_t hindex;
1555 	struct page *page;
1556 
1557 	hindex = round_down(index, HPAGE_PMD_NR);
1558 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1559 								XA_PRESENT))
1560 		return NULL;
1561 
1562 	shmem_pseudo_vma_init(&pvma, info, hindex);
1563 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564 			       true);
1565 	shmem_pseudo_vma_destroy(&pvma);
1566 	if (page)
1567 		prep_transhuge_page(page);
1568 	else
1569 		count_vm_event(THP_FILE_FALLBACK);
1570 	return page;
1571 }
1572 
1573 static struct page *shmem_alloc_page(gfp_t gfp,
1574 			struct shmem_inode_info *info, pgoff_t index)
1575 {
1576 	struct vm_area_struct pvma;
1577 	struct page *page;
1578 
1579 	shmem_pseudo_vma_init(&pvma, info, index);
1580 	page = alloc_page_vma(gfp, &pvma, 0);
1581 	shmem_pseudo_vma_destroy(&pvma);
1582 
1583 	return page;
1584 }
1585 
1586 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1587 		struct inode *inode,
1588 		pgoff_t index, bool huge)
1589 {
1590 	struct shmem_inode_info *info = SHMEM_I(inode);
1591 	struct page *page;
1592 	int nr;
1593 	int err = -ENOSPC;
1594 
1595 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1596 		huge = false;
1597 	nr = huge ? HPAGE_PMD_NR : 1;
1598 
1599 	if (!shmem_inode_acct_block(inode, nr))
1600 		goto failed;
1601 
1602 	if (huge)
1603 		page = shmem_alloc_hugepage(gfp, info, index);
1604 	else
1605 		page = shmem_alloc_page(gfp, info, index);
1606 	if (page) {
1607 		__SetPageLocked(page);
1608 		__SetPageSwapBacked(page);
1609 		return page;
1610 	}
1611 
1612 	err = -ENOMEM;
1613 	shmem_inode_unacct_blocks(inode, nr);
1614 failed:
1615 	return ERR_PTR(err);
1616 }
1617 
1618 /*
1619  * When a page is moved from swapcache to shmem filecache (either by the
1620  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1621  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622  * ignorance of the mapping it belongs to.  If that mapping has special
1623  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624  * we may need to copy to a suitable page before moving to filecache.
1625  *
1626  * In a future release, this may well be extended to respect cpuset and
1627  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628  * but for now it is a simple matter of zone.
1629  */
1630 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631 {
1632 	return page_zonenum(page) > gfp_zone(gfp);
1633 }
1634 
1635 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1636 				struct shmem_inode_info *info, pgoff_t index)
1637 {
1638 	struct page *oldpage, *newpage;
1639 	struct address_space *swap_mapping;
1640 	swp_entry_t entry;
1641 	pgoff_t swap_index;
1642 	int error;
1643 
1644 	oldpage = *pagep;
1645 	entry.val = page_private(oldpage);
1646 	swap_index = swp_offset(entry);
1647 	swap_mapping = page_mapping(oldpage);
1648 
1649 	/*
1650 	 * We have arrived here because our zones are constrained, so don't
1651 	 * limit chance of success by further cpuset and node constraints.
1652 	 */
1653 	gfp &= ~GFP_CONSTRAINT_MASK;
1654 	newpage = shmem_alloc_page(gfp, info, index);
1655 	if (!newpage)
1656 		return -ENOMEM;
1657 
1658 	get_page(newpage);
1659 	copy_highpage(newpage, oldpage);
1660 	flush_dcache_page(newpage);
1661 
1662 	__SetPageLocked(newpage);
1663 	__SetPageSwapBacked(newpage);
1664 	SetPageUptodate(newpage);
1665 	set_page_private(newpage, entry.val);
1666 	SetPageSwapCache(newpage);
1667 
1668 	/*
1669 	 * Our caller will very soon move newpage out of swapcache, but it's
1670 	 * a nice clean interface for us to replace oldpage by newpage there.
1671 	 */
1672 	xa_lock_irq(&swap_mapping->i_pages);
1673 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1674 	if (!error) {
1675 		mem_cgroup_migrate(oldpage, newpage);
1676 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1677 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1678 	}
1679 	xa_unlock_irq(&swap_mapping->i_pages);
1680 
1681 	if (unlikely(error)) {
1682 		/*
1683 		 * Is this possible?  I think not, now that our callers check
1684 		 * both PageSwapCache and page_private after getting page lock;
1685 		 * but be defensive.  Reverse old to newpage for clear and free.
1686 		 */
1687 		oldpage = newpage;
1688 	} else {
1689 		lru_cache_add(newpage);
1690 		*pagep = newpage;
1691 	}
1692 
1693 	ClearPageSwapCache(oldpage);
1694 	set_page_private(oldpage, 0);
1695 
1696 	unlock_page(oldpage);
1697 	put_page(oldpage);
1698 	put_page(oldpage);
1699 	return error;
1700 }
1701 
1702 /*
1703  * Swap in the page pointed to by *pagep.
1704  * Caller has to make sure that *pagep contains a valid swapped page.
1705  * Returns 0 and the page in pagep if success. On failure, returns the
1706  * error code and NULL in *pagep.
1707  */
1708 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1709 			     struct page **pagep, enum sgp_type sgp,
1710 			     gfp_t gfp, struct vm_area_struct *vma,
1711 			     vm_fault_t *fault_type)
1712 {
1713 	struct address_space *mapping = inode->i_mapping;
1714 	struct shmem_inode_info *info = SHMEM_I(inode);
1715 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1716 	struct page *page;
1717 	swp_entry_t swap;
1718 	int error;
1719 
1720 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1721 	swap = radix_to_swp_entry(*pagep);
1722 	*pagep = NULL;
1723 
1724 	/* Look it up and read it in.. */
1725 	page = lookup_swap_cache(swap, NULL, 0);
1726 	if (!page) {
1727 		/* Or update major stats only when swapin succeeds?? */
1728 		if (fault_type) {
1729 			*fault_type |= VM_FAULT_MAJOR;
1730 			count_vm_event(PGMAJFAULT);
1731 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1732 		}
1733 		/* Here we actually start the io */
1734 		page = shmem_swapin(swap, gfp, info, index);
1735 		if (!page) {
1736 			error = -ENOMEM;
1737 			goto failed;
1738 		}
1739 	}
1740 
1741 	/* We have to do this with page locked to prevent races */
1742 	lock_page(page);
1743 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1744 	    !shmem_confirm_swap(mapping, index, swap)) {
1745 		error = -EEXIST;
1746 		goto unlock;
1747 	}
1748 	if (!PageUptodate(page)) {
1749 		error = -EIO;
1750 		goto failed;
1751 	}
1752 	wait_on_page_writeback(page);
1753 
1754 	/*
1755 	 * Some architectures may have to restore extra metadata to the
1756 	 * physical page after reading from swap.
1757 	 */
1758 	arch_swap_restore(swap, page);
1759 
1760 	if (shmem_should_replace_page(page, gfp)) {
1761 		error = shmem_replace_page(&page, gfp, info, index);
1762 		if (error)
1763 			goto failed;
1764 	}
1765 
1766 	error = shmem_add_to_page_cache(page, mapping, index,
1767 					swp_to_radix_entry(swap), gfp,
1768 					charge_mm);
1769 	if (error)
1770 		goto failed;
1771 
1772 	spin_lock_irq(&info->lock);
1773 	info->swapped--;
1774 	shmem_recalc_inode(inode);
1775 	spin_unlock_irq(&info->lock);
1776 
1777 	if (sgp == SGP_WRITE)
1778 		mark_page_accessed(page);
1779 
1780 	delete_from_swap_cache(page);
1781 	set_page_dirty(page);
1782 	swap_free(swap);
1783 
1784 	*pagep = page;
1785 	return 0;
1786 failed:
1787 	if (!shmem_confirm_swap(mapping, index, swap))
1788 		error = -EEXIST;
1789 unlock:
1790 	if (page) {
1791 		unlock_page(page);
1792 		put_page(page);
1793 	}
1794 
1795 	return error;
1796 }
1797 
1798 /*
1799  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1800  *
1801  * If we allocate a new one we do not mark it dirty. That's up to the
1802  * vm. If we swap it in we mark it dirty since we also free the swap
1803  * entry since a page cannot live in both the swap and page cache.
1804  *
1805  * vma, vmf, and fault_type are only supplied by shmem_fault:
1806  * otherwise they are NULL.
1807  */
1808 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1809 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1810 	struct vm_area_struct *vma, struct vm_fault *vmf,
1811 			vm_fault_t *fault_type)
1812 {
1813 	struct address_space *mapping = inode->i_mapping;
1814 	struct shmem_inode_info *info = SHMEM_I(inode);
1815 	struct shmem_sb_info *sbinfo;
1816 	struct mm_struct *charge_mm;
1817 	struct page *page;
1818 	pgoff_t hindex = index;
1819 	gfp_t huge_gfp;
1820 	int error;
1821 	int once = 0;
1822 	int alloced = 0;
1823 
1824 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1825 		return -EFBIG;
1826 repeat:
1827 	if (sgp <= SGP_CACHE &&
1828 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1829 		return -EINVAL;
1830 	}
1831 
1832 	sbinfo = SHMEM_SB(inode->i_sb);
1833 	charge_mm = vma ? vma->vm_mm : NULL;
1834 
1835 	page = pagecache_get_page(mapping, index,
1836 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1837 
1838 	if (page && vma && userfaultfd_minor(vma)) {
1839 		if (!xa_is_value(page)) {
1840 			unlock_page(page);
1841 			put_page(page);
1842 		}
1843 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1844 		return 0;
1845 	}
1846 
1847 	if (xa_is_value(page)) {
1848 		error = shmem_swapin_page(inode, index, &page,
1849 					  sgp, gfp, vma, fault_type);
1850 		if (error == -EEXIST)
1851 			goto repeat;
1852 
1853 		*pagep = page;
1854 		return error;
1855 	}
1856 
1857 	if (page) {
1858 		hindex = page->index;
1859 		if (sgp == SGP_WRITE)
1860 			mark_page_accessed(page);
1861 		if (PageUptodate(page))
1862 			goto out;
1863 		/* fallocated page */
1864 		if (sgp != SGP_READ)
1865 			goto clear;
1866 		unlock_page(page);
1867 		put_page(page);
1868 	}
1869 
1870 	/*
1871 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1872 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1873 	 */
1874 	*pagep = NULL;
1875 	if (sgp == SGP_READ)
1876 		return 0;
1877 	if (sgp == SGP_NOALLOC)
1878 		return -ENOENT;
1879 
1880 	/*
1881 	 * Fast cache lookup and swap lookup did not find it: allocate.
1882 	 */
1883 
1884 	if (vma && userfaultfd_missing(vma)) {
1885 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1886 		return 0;
1887 	}
1888 
1889 	/* Never use a huge page for shmem_symlink() */
1890 	if (S_ISLNK(inode->i_mode))
1891 		goto alloc_nohuge;
1892 	if (!shmem_is_huge(vma, inode, index))
1893 		goto alloc_nohuge;
1894 
1895 	huge_gfp = vma_thp_gfp_mask(vma);
1896 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1897 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1898 	if (IS_ERR(page)) {
1899 alloc_nohuge:
1900 		page = shmem_alloc_and_acct_page(gfp, inode,
1901 						 index, false);
1902 	}
1903 	if (IS_ERR(page)) {
1904 		int retry = 5;
1905 
1906 		error = PTR_ERR(page);
1907 		page = NULL;
1908 		if (error != -ENOSPC)
1909 			goto unlock;
1910 		/*
1911 		 * Try to reclaim some space by splitting a huge page
1912 		 * beyond i_size on the filesystem.
1913 		 */
1914 		while (retry--) {
1915 			int ret;
1916 
1917 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1918 			if (ret == SHRINK_STOP)
1919 				break;
1920 			if (ret)
1921 				goto alloc_nohuge;
1922 		}
1923 		goto unlock;
1924 	}
1925 
1926 	if (PageTransHuge(page))
1927 		hindex = round_down(index, HPAGE_PMD_NR);
1928 	else
1929 		hindex = index;
1930 
1931 	if (sgp == SGP_WRITE)
1932 		__SetPageReferenced(page);
1933 
1934 	error = shmem_add_to_page_cache(page, mapping, hindex,
1935 					NULL, gfp & GFP_RECLAIM_MASK,
1936 					charge_mm);
1937 	if (error)
1938 		goto unacct;
1939 	lru_cache_add(page);
1940 
1941 	spin_lock_irq(&info->lock);
1942 	info->alloced += compound_nr(page);
1943 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1944 	shmem_recalc_inode(inode);
1945 	spin_unlock_irq(&info->lock);
1946 	alloced = true;
1947 
1948 	if (PageTransHuge(page) &&
1949 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1950 			hindex + HPAGE_PMD_NR - 1) {
1951 		/*
1952 		 * Part of the huge page is beyond i_size: subject
1953 		 * to shrink under memory pressure.
1954 		 */
1955 		spin_lock(&sbinfo->shrinklist_lock);
1956 		/*
1957 		 * _careful to defend against unlocked access to
1958 		 * ->shrink_list in shmem_unused_huge_shrink()
1959 		 */
1960 		if (list_empty_careful(&info->shrinklist)) {
1961 			list_add_tail(&info->shrinklist,
1962 				      &sbinfo->shrinklist);
1963 			sbinfo->shrinklist_len++;
1964 		}
1965 		spin_unlock(&sbinfo->shrinklist_lock);
1966 	}
1967 
1968 	/*
1969 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1970 	 */
1971 	if (sgp == SGP_FALLOC)
1972 		sgp = SGP_WRITE;
1973 clear:
1974 	/*
1975 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1976 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1977 	 * it now, lest undo on failure cancel our earlier guarantee.
1978 	 */
1979 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1980 		int i;
1981 
1982 		for (i = 0; i < compound_nr(page); i++) {
1983 			clear_highpage(page + i);
1984 			flush_dcache_page(page + i);
1985 		}
1986 		SetPageUptodate(page);
1987 	}
1988 
1989 	/* Perhaps the file has been truncated since we checked */
1990 	if (sgp <= SGP_CACHE &&
1991 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1992 		if (alloced) {
1993 			ClearPageDirty(page);
1994 			delete_from_page_cache(page);
1995 			spin_lock_irq(&info->lock);
1996 			shmem_recalc_inode(inode);
1997 			spin_unlock_irq(&info->lock);
1998 		}
1999 		error = -EINVAL;
2000 		goto unlock;
2001 	}
2002 out:
2003 	*pagep = page + index - hindex;
2004 	return 0;
2005 
2006 	/*
2007 	 * Error recovery.
2008 	 */
2009 unacct:
2010 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2011 
2012 	if (PageTransHuge(page)) {
2013 		unlock_page(page);
2014 		put_page(page);
2015 		goto alloc_nohuge;
2016 	}
2017 unlock:
2018 	if (page) {
2019 		unlock_page(page);
2020 		put_page(page);
2021 	}
2022 	if (error == -ENOSPC && !once++) {
2023 		spin_lock_irq(&info->lock);
2024 		shmem_recalc_inode(inode);
2025 		spin_unlock_irq(&info->lock);
2026 		goto repeat;
2027 	}
2028 	if (error == -EEXIST)
2029 		goto repeat;
2030 	return error;
2031 }
2032 
2033 /*
2034  * This is like autoremove_wake_function, but it removes the wait queue
2035  * entry unconditionally - even if something else had already woken the
2036  * target.
2037  */
2038 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2039 {
2040 	int ret = default_wake_function(wait, mode, sync, key);
2041 	list_del_init(&wait->entry);
2042 	return ret;
2043 }
2044 
2045 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2046 {
2047 	struct vm_area_struct *vma = vmf->vma;
2048 	struct inode *inode = file_inode(vma->vm_file);
2049 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2050 	int err;
2051 	vm_fault_t ret = VM_FAULT_LOCKED;
2052 
2053 	/*
2054 	 * Trinity finds that probing a hole which tmpfs is punching can
2055 	 * prevent the hole-punch from ever completing: which in turn
2056 	 * locks writers out with its hold on i_rwsem.  So refrain from
2057 	 * faulting pages into the hole while it's being punched.  Although
2058 	 * shmem_undo_range() does remove the additions, it may be unable to
2059 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2060 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2061 	 *
2062 	 * It does not matter if we sometimes reach this check just before the
2063 	 * hole-punch begins, so that one fault then races with the punch:
2064 	 * we just need to make racing faults a rare case.
2065 	 *
2066 	 * The implementation below would be much simpler if we just used a
2067 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2068 	 * and bloating every shmem inode for this unlikely case would be sad.
2069 	 */
2070 	if (unlikely(inode->i_private)) {
2071 		struct shmem_falloc *shmem_falloc;
2072 
2073 		spin_lock(&inode->i_lock);
2074 		shmem_falloc = inode->i_private;
2075 		if (shmem_falloc &&
2076 		    shmem_falloc->waitq &&
2077 		    vmf->pgoff >= shmem_falloc->start &&
2078 		    vmf->pgoff < shmem_falloc->next) {
2079 			struct file *fpin;
2080 			wait_queue_head_t *shmem_falloc_waitq;
2081 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2082 
2083 			ret = VM_FAULT_NOPAGE;
2084 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2085 			if (fpin)
2086 				ret = VM_FAULT_RETRY;
2087 
2088 			shmem_falloc_waitq = shmem_falloc->waitq;
2089 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2090 					TASK_UNINTERRUPTIBLE);
2091 			spin_unlock(&inode->i_lock);
2092 			schedule();
2093 
2094 			/*
2095 			 * shmem_falloc_waitq points into the shmem_fallocate()
2096 			 * stack of the hole-punching task: shmem_falloc_waitq
2097 			 * is usually invalid by the time we reach here, but
2098 			 * finish_wait() does not dereference it in that case;
2099 			 * though i_lock needed lest racing with wake_up_all().
2100 			 */
2101 			spin_lock(&inode->i_lock);
2102 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2103 			spin_unlock(&inode->i_lock);
2104 
2105 			if (fpin)
2106 				fput(fpin);
2107 			return ret;
2108 		}
2109 		spin_unlock(&inode->i_lock);
2110 	}
2111 
2112 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2113 				  gfp, vma, vmf, &ret);
2114 	if (err)
2115 		return vmf_error(err);
2116 	return ret;
2117 }
2118 
2119 unsigned long shmem_get_unmapped_area(struct file *file,
2120 				      unsigned long uaddr, unsigned long len,
2121 				      unsigned long pgoff, unsigned long flags)
2122 {
2123 	unsigned long (*get_area)(struct file *,
2124 		unsigned long, unsigned long, unsigned long, unsigned long);
2125 	unsigned long addr;
2126 	unsigned long offset;
2127 	unsigned long inflated_len;
2128 	unsigned long inflated_addr;
2129 	unsigned long inflated_offset;
2130 
2131 	if (len > TASK_SIZE)
2132 		return -ENOMEM;
2133 
2134 	get_area = current->mm->get_unmapped_area;
2135 	addr = get_area(file, uaddr, len, pgoff, flags);
2136 
2137 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2138 		return addr;
2139 	if (IS_ERR_VALUE(addr))
2140 		return addr;
2141 	if (addr & ~PAGE_MASK)
2142 		return addr;
2143 	if (addr > TASK_SIZE - len)
2144 		return addr;
2145 
2146 	if (shmem_huge == SHMEM_HUGE_DENY)
2147 		return addr;
2148 	if (len < HPAGE_PMD_SIZE)
2149 		return addr;
2150 	if (flags & MAP_FIXED)
2151 		return addr;
2152 	/*
2153 	 * Our priority is to support MAP_SHARED mapped hugely;
2154 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2155 	 * But if caller specified an address hint and we allocated area there
2156 	 * successfully, respect that as before.
2157 	 */
2158 	if (uaddr == addr)
2159 		return addr;
2160 
2161 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2162 		struct super_block *sb;
2163 
2164 		if (file) {
2165 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2166 			sb = file_inode(file)->i_sb;
2167 		} else {
2168 			/*
2169 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2170 			 * for "/dev/zero", to create a shared anonymous object.
2171 			 */
2172 			if (IS_ERR(shm_mnt))
2173 				return addr;
2174 			sb = shm_mnt->mnt_sb;
2175 		}
2176 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2177 			return addr;
2178 	}
2179 
2180 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2181 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2182 		return addr;
2183 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2184 		return addr;
2185 
2186 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2187 	if (inflated_len > TASK_SIZE)
2188 		return addr;
2189 	if (inflated_len < len)
2190 		return addr;
2191 
2192 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2193 	if (IS_ERR_VALUE(inflated_addr))
2194 		return addr;
2195 	if (inflated_addr & ~PAGE_MASK)
2196 		return addr;
2197 
2198 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2199 	inflated_addr += offset - inflated_offset;
2200 	if (inflated_offset > offset)
2201 		inflated_addr += HPAGE_PMD_SIZE;
2202 
2203 	if (inflated_addr > TASK_SIZE - len)
2204 		return addr;
2205 	return inflated_addr;
2206 }
2207 
2208 #ifdef CONFIG_NUMA
2209 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2210 {
2211 	struct inode *inode = file_inode(vma->vm_file);
2212 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2213 }
2214 
2215 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2216 					  unsigned long addr)
2217 {
2218 	struct inode *inode = file_inode(vma->vm_file);
2219 	pgoff_t index;
2220 
2221 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2222 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2223 }
2224 #endif
2225 
2226 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2227 {
2228 	struct inode *inode = file_inode(file);
2229 	struct shmem_inode_info *info = SHMEM_I(inode);
2230 	int retval = -ENOMEM;
2231 
2232 	/*
2233 	 * What serializes the accesses to info->flags?
2234 	 * ipc_lock_object() when called from shmctl_do_lock(),
2235 	 * no serialization needed when called from shm_destroy().
2236 	 */
2237 	if (lock && !(info->flags & VM_LOCKED)) {
2238 		if (!user_shm_lock(inode->i_size, ucounts))
2239 			goto out_nomem;
2240 		info->flags |= VM_LOCKED;
2241 		mapping_set_unevictable(file->f_mapping);
2242 	}
2243 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2244 		user_shm_unlock(inode->i_size, ucounts);
2245 		info->flags &= ~VM_LOCKED;
2246 		mapping_clear_unevictable(file->f_mapping);
2247 	}
2248 	retval = 0;
2249 
2250 out_nomem:
2251 	return retval;
2252 }
2253 
2254 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2255 {
2256 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2257 	int ret;
2258 
2259 	ret = seal_check_future_write(info->seals, vma);
2260 	if (ret)
2261 		return ret;
2262 
2263 	/* arm64 - allow memory tagging on RAM-based files */
2264 	vma->vm_flags |= VM_MTE_ALLOWED;
2265 
2266 	file_accessed(file);
2267 	vma->vm_ops = &shmem_vm_ops;
2268 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2269 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2270 			(vma->vm_end & HPAGE_PMD_MASK)) {
2271 		khugepaged_enter(vma, vma->vm_flags);
2272 	}
2273 	return 0;
2274 }
2275 
2276 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2277 				     umode_t mode, dev_t dev, unsigned long flags)
2278 {
2279 	struct inode *inode;
2280 	struct shmem_inode_info *info;
2281 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2282 	ino_t ino;
2283 
2284 	if (shmem_reserve_inode(sb, &ino))
2285 		return NULL;
2286 
2287 	inode = new_inode(sb);
2288 	if (inode) {
2289 		inode->i_ino = ino;
2290 		inode_init_owner(&init_user_ns, inode, dir, mode);
2291 		inode->i_blocks = 0;
2292 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2293 		inode->i_generation = prandom_u32();
2294 		info = SHMEM_I(inode);
2295 		memset(info, 0, (char *)inode - (char *)info);
2296 		spin_lock_init(&info->lock);
2297 		atomic_set(&info->stop_eviction, 0);
2298 		info->seals = F_SEAL_SEAL;
2299 		info->flags = flags & VM_NORESERVE;
2300 		INIT_LIST_HEAD(&info->shrinklist);
2301 		INIT_LIST_HEAD(&info->swaplist);
2302 		simple_xattrs_init(&info->xattrs);
2303 		cache_no_acl(inode);
2304 
2305 		switch (mode & S_IFMT) {
2306 		default:
2307 			inode->i_op = &shmem_special_inode_operations;
2308 			init_special_inode(inode, mode, dev);
2309 			break;
2310 		case S_IFREG:
2311 			inode->i_mapping->a_ops = &shmem_aops;
2312 			inode->i_op = &shmem_inode_operations;
2313 			inode->i_fop = &shmem_file_operations;
2314 			mpol_shared_policy_init(&info->policy,
2315 						 shmem_get_sbmpol(sbinfo));
2316 			break;
2317 		case S_IFDIR:
2318 			inc_nlink(inode);
2319 			/* Some things misbehave if size == 0 on a directory */
2320 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2321 			inode->i_op = &shmem_dir_inode_operations;
2322 			inode->i_fop = &simple_dir_operations;
2323 			break;
2324 		case S_IFLNK:
2325 			/*
2326 			 * Must not load anything in the rbtree,
2327 			 * mpol_free_shared_policy will not be called.
2328 			 */
2329 			mpol_shared_policy_init(&info->policy, NULL);
2330 			break;
2331 		}
2332 
2333 		lockdep_annotate_inode_mutex_key(inode);
2334 	} else
2335 		shmem_free_inode(sb);
2336 	return inode;
2337 }
2338 
2339 #ifdef CONFIG_USERFAULTFD
2340 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2341 			   pmd_t *dst_pmd,
2342 			   struct vm_area_struct *dst_vma,
2343 			   unsigned long dst_addr,
2344 			   unsigned long src_addr,
2345 			   bool zeropage,
2346 			   struct page **pagep)
2347 {
2348 	struct inode *inode = file_inode(dst_vma->vm_file);
2349 	struct shmem_inode_info *info = SHMEM_I(inode);
2350 	struct address_space *mapping = inode->i_mapping;
2351 	gfp_t gfp = mapping_gfp_mask(mapping);
2352 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2353 	void *page_kaddr;
2354 	struct page *page;
2355 	int ret;
2356 	pgoff_t max_off;
2357 
2358 	if (!shmem_inode_acct_block(inode, 1)) {
2359 		/*
2360 		 * We may have got a page, returned -ENOENT triggering a retry,
2361 		 * and now we find ourselves with -ENOMEM. Release the page, to
2362 		 * avoid a BUG_ON in our caller.
2363 		 */
2364 		if (unlikely(*pagep)) {
2365 			put_page(*pagep);
2366 			*pagep = NULL;
2367 		}
2368 		return -ENOMEM;
2369 	}
2370 
2371 	if (!*pagep) {
2372 		ret = -ENOMEM;
2373 		page = shmem_alloc_page(gfp, info, pgoff);
2374 		if (!page)
2375 			goto out_unacct_blocks;
2376 
2377 		if (!zeropage) {	/* COPY */
2378 			page_kaddr = kmap_atomic(page);
2379 			ret = copy_from_user(page_kaddr,
2380 					     (const void __user *)src_addr,
2381 					     PAGE_SIZE);
2382 			kunmap_atomic(page_kaddr);
2383 
2384 			/* fallback to copy_from_user outside mmap_lock */
2385 			if (unlikely(ret)) {
2386 				*pagep = page;
2387 				ret = -ENOENT;
2388 				/* don't free the page */
2389 				goto out_unacct_blocks;
2390 			}
2391 		} else {		/* ZEROPAGE */
2392 			clear_highpage(page);
2393 		}
2394 	} else {
2395 		page = *pagep;
2396 		*pagep = NULL;
2397 	}
2398 
2399 	VM_BUG_ON(PageLocked(page));
2400 	VM_BUG_ON(PageSwapBacked(page));
2401 	__SetPageLocked(page);
2402 	__SetPageSwapBacked(page);
2403 	__SetPageUptodate(page);
2404 
2405 	ret = -EFAULT;
2406 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2407 	if (unlikely(pgoff >= max_off))
2408 		goto out_release;
2409 
2410 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2411 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2412 	if (ret)
2413 		goto out_release;
2414 
2415 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2416 				       page, true, false);
2417 	if (ret)
2418 		goto out_delete_from_cache;
2419 
2420 	spin_lock_irq(&info->lock);
2421 	info->alloced++;
2422 	inode->i_blocks += BLOCKS_PER_PAGE;
2423 	shmem_recalc_inode(inode);
2424 	spin_unlock_irq(&info->lock);
2425 
2426 	SetPageDirty(page);
2427 	unlock_page(page);
2428 	return 0;
2429 out_delete_from_cache:
2430 	delete_from_page_cache(page);
2431 out_release:
2432 	unlock_page(page);
2433 	put_page(page);
2434 out_unacct_blocks:
2435 	shmem_inode_unacct_blocks(inode, 1);
2436 	return ret;
2437 }
2438 #endif /* CONFIG_USERFAULTFD */
2439 
2440 #ifdef CONFIG_TMPFS
2441 static const struct inode_operations shmem_symlink_inode_operations;
2442 static const struct inode_operations shmem_short_symlink_operations;
2443 
2444 #ifdef CONFIG_TMPFS_XATTR
2445 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2446 #else
2447 #define shmem_initxattrs NULL
2448 #endif
2449 
2450 static int
2451 shmem_write_begin(struct file *file, struct address_space *mapping,
2452 			loff_t pos, unsigned len, unsigned flags,
2453 			struct page **pagep, void **fsdata)
2454 {
2455 	struct inode *inode = mapping->host;
2456 	struct shmem_inode_info *info = SHMEM_I(inode);
2457 	pgoff_t index = pos >> PAGE_SHIFT;
2458 
2459 	/* i_rwsem is held by caller */
2460 	if (unlikely(info->seals & (F_SEAL_GROW |
2461 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2462 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2463 			return -EPERM;
2464 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2465 			return -EPERM;
2466 	}
2467 
2468 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2469 }
2470 
2471 static int
2472 shmem_write_end(struct file *file, struct address_space *mapping,
2473 			loff_t pos, unsigned len, unsigned copied,
2474 			struct page *page, void *fsdata)
2475 {
2476 	struct inode *inode = mapping->host;
2477 
2478 	if (pos + copied > inode->i_size)
2479 		i_size_write(inode, pos + copied);
2480 
2481 	if (!PageUptodate(page)) {
2482 		struct page *head = compound_head(page);
2483 		if (PageTransCompound(page)) {
2484 			int i;
2485 
2486 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2487 				if (head + i == page)
2488 					continue;
2489 				clear_highpage(head + i);
2490 				flush_dcache_page(head + i);
2491 			}
2492 		}
2493 		if (copied < PAGE_SIZE) {
2494 			unsigned from = pos & (PAGE_SIZE - 1);
2495 			zero_user_segments(page, 0, from,
2496 					from + copied, PAGE_SIZE);
2497 		}
2498 		SetPageUptodate(head);
2499 	}
2500 	set_page_dirty(page);
2501 	unlock_page(page);
2502 	put_page(page);
2503 
2504 	return copied;
2505 }
2506 
2507 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2508 {
2509 	struct file *file = iocb->ki_filp;
2510 	struct inode *inode = file_inode(file);
2511 	struct address_space *mapping = inode->i_mapping;
2512 	pgoff_t index;
2513 	unsigned long offset;
2514 	enum sgp_type sgp = SGP_READ;
2515 	int error = 0;
2516 	ssize_t retval = 0;
2517 	loff_t *ppos = &iocb->ki_pos;
2518 
2519 	/*
2520 	 * Might this read be for a stacking filesystem?  Then when reading
2521 	 * holes of a sparse file, we actually need to allocate those pages,
2522 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2523 	 */
2524 	if (!iter_is_iovec(to))
2525 		sgp = SGP_CACHE;
2526 
2527 	index = *ppos >> PAGE_SHIFT;
2528 	offset = *ppos & ~PAGE_MASK;
2529 
2530 	for (;;) {
2531 		struct page *page = NULL;
2532 		pgoff_t end_index;
2533 		unsigned long nr, ret;
2534 		loff_t i_size = i_size_read(inode);
2535 
2536 		end_index = i_size >> PAGE_SHIFT;
2537 		if (index > end_index)
2538 			break;
2539 		if (index == end_index) {
2540 			nr = i_size & ~PAGE_MASK;
2541 			if (nr <= offset)
2542 				break;
2543 		}
2544 
2545 		error = shmem_getpage(inode, index, &page, sgp);
2546 		if (error) {
2547 			if (error == -EINVAL)
2548 				error = 0;
2549 			break;
2550 		}
2551 		if (page) {
2552 			if (sgp == SGP_CACHE)
2553 				set_page_dirty(page);
2554 			unlock_page(page);
2555 		}
2556 
2557 		/*
2558 		 * We must evaluate after, since reads (unlike writes)
2559 		 * are called without i_rwsem protection against truncate
2560 		 */
2561 		nr = PAGE_SIZE;
2562 		i_size = i_size_read(inode);
2563 		end_index = i_size >> PAGE_SHIFT;
2564 		if (index == end_index) {
2565 			nr = i_size & ~PAGE_MASK;
2566 			if (nr <= offset) {
2567 				if (page)
2568 					put_page(page);
2569 				break;
2570 			}
2571 		}
2572 		nr -= offset;
2573 
2574 		if (page) {
2575 			/*
2576 			 * If users can be writing to this page using arbitrary
2577 			 * virtual addresses, take care about potential aliasing
2578 			 * before reading the page on the kernel side.
2579 			 */
2580 			if (mapping_writably_mapped(mapping))
2581 				flush_dcache_page(page);
2582 			/*
2583 			 * Mark the page accessed if we read the beginning.
2584 			 */
2585 			if (!offset)
2586 				mark_page_accessed(page);
2587 		} else {
2588 			page = ZERO_PAGE(0);
2589 			get_page(page);
2590 		}
2591 
2592 		/*
2593 		 * Ok, we have the page, and it's up-to-date, so
2594 		 * now we can copy it to user space...
2595 		 */
2596 		ret = copy_page_to_iter(page, offset, nr, to);
2597 		retval += ret;
2598 		offset += ret;
2599 		index += offset >> PAGE_SHIFT;
2600 		offset &= ~PAGE_MASK;
2601 
2602 		put_page(page);
2603 		if (!iov_iter_count(to))
2604 			break;
2605 		if (ret < nr) {
2606 			error = -EFAULT;
2607 			break;
2608 		}
2609 		cond_resched();
2610 	}
2611 
2612 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2613 	file_accessed(file);
2614 	return retval ? retval : error;
2615 }
2616 
2617 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2618 {
2619 	struct address_space *mapping = file->f_mapping;
2620 	struct inode *inode = mapping->host;
2621 
2622 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2623 		return generic_file_llseek_size(file, offset, whence,
2624 					MAX_LFS_FILESIZE, i_size_read(inode));
2625 	if (offset < 0)
2626 		return -ENXIO;
2627 
2628 	inode_lock(inode);
2629 	/* We're holding i_rwsem so we can access i_size directly */
2630 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2631 	if (offset >= 0)
2632 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2633 	inode_unlock(inode);
2634 	return offset;
2635 }
2636 
2637 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2638 							 loff_t len)
2639 {
2640 	struct inode *inode = file_inode(file);
2641 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2642 	struct shmem_inode_info *info = SHMEM_I(inode);
2643 	struct shmem_falloc shmem_falloc;
2644 	pgoff_t start, index, end, undo_fallocend;
2645 	int error;
2646 
2647 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2648 		return -EOPNOTSUPP;
2649 
2650 	inode_lock(inode);
2651 
2652 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2653 		struct address_space *mapping = file->f_mapping;
2654 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2655 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2656 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2657 
2658 		/* protected by i_rwsem */
2659 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2660 			error = -EPERM;
2661 			goto out;
2662 		}
2663 
2664 		shmem_falloc.waitq = &shmem_falloc_waitq;
2665 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2666 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2667 		spin_lock(&inode->i_lock);
2668 		inode->i_private = &shmem_falloc;
2669 		spin_unlock(&inode->i_lock);
2670 
2671 		if ((u64)unmap_end > (u64)unmap_start)
2672 			unmap_mapping_range(mapping, unmap_start,
2673 					    1 + unmap_end - unmap_start, 0);
2674 		shmem_truncate_range(inode, offset, offset + len - 1);
2675 		/* No need to unmap again: hole-punching leaves COWed pages */
2676 
2677 		spin_lock(&inode->i_lock);
2678 		inode->i_private = NULL;
2679 		wake_up_all(&shmem_falloc_waitq);
2680 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2681 		spin_unlock(&inode->i_lock);
2682 		error = 0;
2683 		goto out;
2684 	}
2685 
2686 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2687 	error = inode_newsize_ok(inode, offset + len);
2688 	if (error)
2689 		goto out;
2690 
2691 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2692 		error = -EPERM;
2693 		goto out;
2694 	}
2695 
2696 	start = offset >> PAGE_SHIFT;
2697 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2698 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2699 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2700 		error = -ENOSPC;
2701 		goto out;
2702 	}
2703 
2704 	shmem_falloc.waitq = NULL;
2705 	shmem_falloc.start = start;
2706 	shmem_falloc.next  = start;
2707 	shmem_falloc.nr_falloced = 0;
2708 	shmem_falloc.nr_unswapped = 0;
2709 	spin_lock(&inode->i_lock);
2710 	inode->i_private = &shmem_falloc;
2711 	spin_unlock(&inode->i_lock);
2712 
2713 	/*
2714 	 * info->fallocend is only relevant when huge pages might be
2715 	 * involved: to prevent split_huge_page() freeing fallocated
2716 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2717 	 */
2718 	undo_fallocend = info->fallocend;
2719 	if (info->fallocend < end)
2720 		info->fallocend = end;
2721 
2722 	for (index = start; index < end; ) {
2723 		struct page *page;
2724 
2725 		/*
2726 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2727 		 * been interrupted because we are using up too much memory.
2728 		 */
2729 		if (signal_pending(current))
2730 			error = -EINTR;
2731 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2732 			error = -ENOMEM;
2733 		else
2734 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2735 		if (error) {
2736 			info->fallocend = undo_fallocend;
2737 			/* Remove the !PageUptodate pages we added */
2738 			if (index > start) {
2739 				shmem_undo_range(inode,
2740 				    (loff_t)start << PAGE_SHIFT,
2741 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2742 			}
2743 			goto undone;
2744 		}
2745 
2746 		index++;
2747 		/*
2748 		 * Here is a more important optimization than it appears:
2749 		 * a second SGP_FALLOC on the same huge page will clear it,
2750 		 * making it PageUptodate and un-undoable if we fail later.
2751 		 */
2752 		if (PageTransCompound(page)) {
2753 			index = round_up(index, HPAGE_PMD_NR);
2754 			/* Beware 32-bit wraparound */
2755 			if (!index)
2756 				index--;
2757 		}
2758 
2759 		/*
2760 		 * Inform shmem_writepage() how far we have reached.
2761 		 * No need for lock or barrier: we have the page lock.
2762 		 */
2763 		if (!PageUptodate(page))
2764 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2765 		shmem_falloc.next = index;
2766 
2767 		/*
2768 		 * If !PageUptodate, leave it that way so that freeable pages
2769 		 * can be recognized if we need to rollback on error later.
2770 		 * But set_page_dirty so that memory pressure will swap rather
2771 		 * than free the pages we are allocating (and SGP_CACHE pages
2772 		 * might still be clean: we now need to mark those dirty too).
2773 		 */
2774 		set_page_dirty(page);
2775 		unlock_page(page);
2776 		put_page(page);
2777 		cond_resched();
2778 	}
2779 
2780 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2781 		i_size_write(inode, offset + len);
2782 	inode->i_ctime = current_time(inode);
2783 undone:
2784 	spin_lock(&inode->i_lock);
2785 	inode->i_private = NULL;
2786 	spin_unlock(&inode->i_lock);
2787 out:
2788 	inode_unlock(inode);
2789 	return error;
2790 }
2791 
2792 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2793 {
2794 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2795 
2796 	buf->f_type = TMPFS_MAGIC;
2797 	buf->f_bsize = PAGE_SIZE;
2798 	buf->f_namelen = NAME_MAX;
2799 	if (sbinfo->max_blocks) {
2800 		buf->f_blocks = sbinfo->max_blocks;
2801 		buf->f_bavail =
2802 		buf->f_bfree  = sbinfo->max_blocks -
2803 				percpu_counter_sum(&sbinfo->used_blocks);
2804 	}
2805 	if (sbinfo->max_inodes) {
2806 		buf->f_files = sbinfo->max_inodes;
2807 		buf->f_ffree = sbinfo->free_inodes;
2808 	}
2809 	/* else leave those fields 0 like simple_statfs */
2810 
2811 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2812 
2813 	return 0;
2814 }
2815 
2816 /*
2817  * File creation. Allocate an inode, and we're done..
2818  */
2819 static int
2820 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2821 	    struct dentry *dentry, umode_t mode, dev_t dev)
2822 {
2823 	struct inode *inode;
2824 	int error = -ENOSPC;
2825 
2826 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2827 	if (inode) {
2828 		error = simple_acl_create(dir, inode);
2829 		if (error)
2830 			goto out_iput;
2831 		error = security_inode_init_security(inode, dir,
2832 						     &dentry->d_name,
2833 						     shmem_initxattrs, NULL);
2834 		if (error && error != -EOPNOTSUPP)
2835 			goto out_iput;
2836 
2837 		error = 0;
2838 		dir->i_size += BOGO_DIRENT_SIZE;
2839 		dir->i_ctime = dir->i_mtime = current_time(dir);
2840 		d_instantiate(dentry, inode);
2841 		dget(dentry); /* Extra count - pin the dentry in core */
2842 	}
2843 	return error;
2844 out_iput:
2845 	iput(inode);
2846 	return error;
2847 }
2848 
2849 static int
2850 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2851 	      struct dentry *dentry, umode_t mode)
2852 {
2853 	struct inode *inode;
2854 	int error = -ENOSPC;
2855 
2856 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2857 	if (inode) {
2858 		error = security_inode_init_security(inode, dir,
2859 						     NULL,
2860 						     shmem_initxattrs, NULL);
2861 		if (error && error != -EOPNOTSUPP)
2862 			goto out_iput;
2863 		error = simple_acl_create(dir, inode);
2864 		if (error)
2865 			goto out_iput;
2866 		d_tmpfile(dentry, inode);
2867 	}
2868 	return error;
2869 out_iput:
2870 	iput(inode);
2871 	return error;
2872 }
2873 
2874 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2875 		       struct dentry *dentry, umode_t mode)
2876 {
2877 	int error;
2878 
2879 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2880 				 mode | S_IFDIR, 0)))
2881 		return error;
2882 	inc_nlink(dir);
2883 	return 0;
2884 }
2885 
2886 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2887 			struct dentry *dentry, umode_t mode, bool excl)
2888 {
2889 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2890 }
2891 
2892 /*
2893  * Link a file..
2894  */
2895 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2896 {
2897 	struct inode *inode = d_inode(old_dentry);
2898 	int ret = 0;
2899 
2900 	/*
2901 	 * No ordinary (disk based) filesystem counts links as inodes;
2902 	 * but each new link needs a new dentry, pinning lowmem, and
2903 	 * tmpfs dentries cannot be pruned until they are unlinked.
2904 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2905 	 * first link must skip that, to get the accounting right.
2906 	 */
2907 	if (inode->i_nlink) {
2908 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2909 		if (ret)
2910 			goto out;
2911 	}
2912 
2913 	dir->i_size += BOGO_DIRENT_SIZE;
2914 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2915 	inc_nlink(inode);
2916 	ihold(inode);	/* New dentry reference */
2917 	dget(dentry);		/* Extra pinning count for the created dentry */
2918 	d_instantiate(dentry, inode);
2919 out:
2920 	return ret;
2921 }
2922 
2923 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2924 {
2925 	struct inode *inode = d_inode(dentry);
2926 
2927 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2928 		shmem_free_inode(inode->i_sb);
2929 
2930 	dir->i_size -= BOGO_DIRENT_SIZE;
2931 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2932 	drop_nlink(inode);
2933 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2934 	return 0;
2935 }
2936 
2937 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2938 {
2939 	if (!simple_empty(dentry))
2940 		return -ENOTEMPTY;
2941 
2942 	drop_nlink(d_inode(dentry));
2943 	drop_nlink(dir);
2944 	return shmem_unlink(dir, dentry);
2945 }
2946 
2947 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2948 {
2949 	bool old_is_dir = d_is_dir(old_dentry);
2950 	bool new_is_dir = d_is_dir(new_dentry);
2951 
2952 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2953 		if (old_is_dir) {
2954 			drop_nlink(old_dir);
2955 			inc_nlink(new_dir);
2956 		} else {
2957 			drop_nlink(new_dir);
2958 			inc_nlink(old_dir);
2959 		}
2960 	}
2961 	old_dir->i_ctime = old_dir->i_mtime =
2962 	new_dir->i_ctime = new_dir->i_mtime =
2963 	d_inode(old_dentry)->i_ctime =
2964 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2965 
2966 	return 0;
2967 }
2968 
2969 static int shmem_whiteout(struct user_namespace *mnt_userns,
2970 			  struct inode *old_dir, struct dentry *old_dentry)
2971 {
2972 	struct dentry *whiteout;
2973 	int error;
2974 
2975 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2976 	if (!whiteout)
2977 		return -ENOMEM;
2978 
2979 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2980 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2981 	dput(whiteout);
2982 	if (error)
2983 		return error;
2984 
2985 	/*
2986 	 * Cheat and hash the whiteout while the old dentry is still in
2987 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2988 	 *
2989 	 * d_lookup() will consistently find one of them at this point,
2990 	 * not sure which one, but that isn't even important.
2991 	 */
2992 	d_rehash(whiteout);
2993 	return 0;
2994 }
2995 
2996 /*
2997  * The VFS layer already does all the dentry stuff for rename,
2998  * we just have to decrement the usage count for the target if
2999  * it exists so that the VFS layer correctly free's it when it
3000  * gets overwritten.
3001  */
3002 static int shmem_rename2(struct user_namespace *mnt_userns,
3003 			 struct inode *old_dir, struct dentry *old_dentry,
3004 			 struct inode *new_dir, struct dentry *new_dentry,
3005 			 unsigned int flags)
3006 {
3007 	struct inode *inode = d_inode(old_dentry);
3008 	int they_are_dirs = S_ISDIR(inode->i_mode);
3009 
3010 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3011 		return -EINVAL;
3012 
3013 	if (flags & RENAME_EXCHANGE)
3014 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3015 
3016 	if (!simple_empty(new_dentry))
3017 		return -ENOTEMPTY;
3018 
3019 	if (flags & RENAME_WHITEOUT) {
3020 		int error;
3021 
3022 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3023 		if (error)
3024 			return error;
3025 	}
3026 
3027 	if (d_really_is_positive(new_dentry)) {
3028 		(void) shmem_unlink(new_dir, new_dentry);
3029 		if (they_are_dirs) {
3030 			drop_nlink(d_inode(new_dentry));
3031 			drop_nlink(old_dir);
3032 		}
3033 	} else if (they_are_dirs) {
3034 		drop_nlink(old_dir);
3035 		inc_nlink(new_dir);
3036 	}
3037 
3038 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3039 	new_dir->i_size += BOGO_DIRENT_SIZE;
3040 	old_dir->i_ctime = old_dir->i_mtime =
3041 	new_dir->i_ctime = new_dir->i_mtime =
3042 	inode->i_ctime = current_time(old_dir);
3043 	return 0;
3044 }
3045 
3046 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3047 			 struct dentry *dentry, const char *symname)
3048 {
3049 	int error;
3050 	int len;
3051 	struct inode *inode;
3052 	struct page *page;
3053 
3054 	len = strlen(symname) + 1;
3055 	if (len > PAGE_SIZE)
3056 		return -ENAMETOOLONG;
3057 
3058 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3059 				VM_NORESERVE);
3060 	if (!inode)
3061 		return -ENOSPC;
3062 
3063 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3064 					     shmem_initxattrs, NULL);
3065 	if (error && error != -EOPNOTSUPP) {
3066 		iput(inode);
3067 		return error;
3068 	}
3069 
3070 	inode->i_size = len-1;
3071 	if (len <= SHORT_SYMLINK_LEN) {
3072 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3073 		if (!inode->i_link) {
3074 			iput(inode);
3075 			return -ENOMEM;
3076 		}
3077 		inode->i_op = &shmem_short_symlink_operations;
3078 	} else {
3079 		inode_nohighmem(inode);
3080 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3081 		if (error) {
3082 			iput(inode);
3083 			return error;
3084 		}
3085 		inode->i_mapping->a_ops = &shmem_aops;
3086 		inode->i_op = &shmem_symlink_inode_operations;
3087 		memcpy(page_address(page), symname, len);
3088 		SetPageUptodate(page);
3089 		set_page_dirty(page);
3090 		unlock_page(page);
3091 		put_page(page);
3092 	}
3093 	dir->i_size += BOGO_DIRENT_SIZE;
3094 	dir->i_ctime = dir->i_mtime = current_time(dir);
3095 	d_instantiate(dentry, inode);
3096 	dget(dentry);
3097 	return 0;
3098 }
3099 
3100 static void shmem_put_link(void *arg)
3101 {
3102 	mark_page_accessed(arg);
3103 	put_page(arg);
3104 }
3105 
3106 static const char *shmem_get_link(struct dentry *dentry,
3107 				  struct inode *inode,
3108 				  struct delayed_call *done)
3109 {
3110 	struct page *page = NULL;
3111 	int error;
3112 	if (!dentry) {
3113 		page = find_get_page(inode->i_mapping, 0);
3114 		if (!page)
3115 			return ERR_PTR(-ECHILD);
3116 		if (!PageUptodate(page)) {
3117 			put_page(page);
3118 			return ERR_PTR(-ECHILD);
3119 		}
3120 	} else {
3121 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3122 		if (error)
3123 			return ERR_PTR(error);
3124 		unlock_page(page);
3125 	}
3126 	set_delayed_call(done, shmem_put_link, page);
3127 	return page_address(page);
3128 }
3129 
3130 #ifdef CONFIG_TMPFS_XATTR
3131 /*
3132  * Superblocks without xattr inode operations may get some security.* xattr
3133  * support from the LSM "for free". As soon as we have any other xattrs
3134  * like ACLs, we also need to implement the security.* handlers at
3135  * filesystem level, though.
3136  */
3137 
3138 /*
3139  * Callback for security_inode_init_security() for acquiring xattrs.
3140  */
3141 static int shmem_initxattrs(struct inode *inode,
3142 			    const struct xattr *xattr_array,
3143 			    void *fs_info)
3144 {
3145 	struct shmem_inode_info *info = SHMEM_I(inode);
3146 	const struct xattr *xattr;
3147 	struct simple_xattr *new_xattr;
3148 	size_t len;
3149 
3150 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3151 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3152 		if (!new_xattr)
3153 			return -ENOMEM;
3154 
3155 		len = strlen(xattr->name) + 1;
3156 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3157 					  GFP_KERNEL);
3158 		if (!new_xattr->name) {
3159 			kvfree(new_xattr);
3160 			return -ENOMEM;
3161 		}
3162 
3163 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3164 		       XATTR_SECURITY_PREFIX_LEN);
3165 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3166 		       xattr->name, len);
3167 
3168 		simple_xattr_list_add(&info->xattrs, new_xattr);
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3175 				   struct dentry *unused, struct inode *inode,
3176 				   const char *name, void *buffer, size_t size)
3177 {
3178 	struct shmem_inode_info *info = SHMEM_I(inode);
3179 
3180 	name = xattr_full_name(handler, name);
3181 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3182 }
3183 
3184 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3185 				   struct user_namespace *mnt_userns,
3186 				   struct dentry *unused, struct inode *inode,
3187 				   const char *name, const void *value,
3188 				   size_t size, int flags)
3189 {
3190 	struct shmem_inode_info *info = SHMEM_I(inode);
3191 
3192 	name = xattr_full_name(handler, name);
3193 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3194 }
3195 
3196 static const struct xattr_handler shmem_security_xattr_handler = {
3197 	.prefix = XATTR_SECURITY_PREFIX,
3198 	.get = shmem_xattr_handler_get,
3199 	.set = shmem_xattr_handler_set,
3200 };
3201 
3202 static const struct xattr_handler shmem_trusted_xattr_handler = {
3203 	.prefix = XATTR_TRUSTED_PREFIX,
3204 	.get = shmem_xattr_handler_get,
3205 	.set = shmem_xattr_handler_set,
3206 };
3207 
3208 static const struct xattr_handler *shmem_xattr_handlers[] = {
3209 #ifdef CONFIG_TMPFS_POSIX_ACL
3210 	&posix_acl_access_xattr_handler,
3211 	&posix_acl_default_xattr_handler,
3212 #endif
3213 	&shmem_security_xattr_handler,
3214 	&shmem_trusted_xattr_handler,
3215 	NULL
3216 };
3217 
3218 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3219 {
3220 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3221 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3222 }
3223 #endif /* CONFIG_TMPFS_XATTR */
3224 
3225 static const struct inode_operations shmem_short_symlink_operations = {
3226 	.get_link	= simple_get_link,
3227 #ifdef CONFIG_TMPFS_XATTR
3228 	.listxattr	= shmem_listxattr,
3229 #endif
3230 };
3231 
3232 static const struct inode_operations shmem_symlink_inode_operations = {
3233 	.get_link	= shmem_get_link,
3234 #ifdef CONFIG_TMPFS_XATTR
3235 	.listxattr	= shmem_listxattr,
3236 #endif
3237 };
3238 
3239 static struct dentry *shmem_get_parent(struct dentry *child)
3240 {
3241 	return ERR_PTR(-ESTALE);
3242 }
3243 
3244 static int shmem_match(struct inode *ino, void *vfh)
3245 {
3246 	__u32 *fh = vfh;
3247 	__u64 inum = fh[2];
3248 	inum = (inum << 32) | fh[1];
3249 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3250 }
3251 
3252 /* Find any alias of inode, but prefer a hashed alias */
3253 static struct dentry *shmem_find_alias(struct inode *inode)
3254 {
3255 	struct dentry *alias = d_find_alias(inode);
3256 
3257 	return alias ?: d_find_any_alias(inode);
3258 }
3259 
3260 
3261 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3262 		struct fid *fid, int fh_len, int fh_type)
3263 {
3264 	struct inode *inode;
3265 	struct dentry *dentry = NULL;
3266 	u64 inum;
3267 
3268 	if (fh_len < 3)
3269 		return NULL;
3270 
3271 	inum = fid->raw[2];
3272 	inum = (inum << 32) | fid->raw[1];
3273 
3274 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3275 			shmem_match, fid->raw);
3276 	if (inode) {
3277 		dentry = shmem_find_alias(inode);
3278 		iput(inode);
3279 	}
3280 
3281 	return dentry;
3282 }
3283 
3284 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3285 				struct inode *parent)
3286 {
3287 	if (*len < 3) {
3288 		*len = 3;
3289 		return FILEID_INVALID;
3290 	}
3291 
3292 	if (inode_unhashed(inode)) {
3293 		/* Unfortunately insert_inode_hash is not idempotent,
3294 		 * so as we hash inodes here rather than at creation
3295 		 * time, we need a lock to ensure we only try
3296 		 * to do it once
3297 		 */
3298 		static DEFINE_SPINLOCK(lock);
3299 		spin_lock(&lock);
3300 		if (inode_unhashed(inode))
3301 			__insert_inode_hash(inode,
3302 					    inode->i_ino + inode->i_generation);
3303 		spin_unlock(&lock);
3304 	}
3305 
3306 	fh[0] = inode->i_generation;
3307 	fh[1] = inode->i_ino;
3308 	fh[2] = ((__u64)inode->i_ino) >> 32;
3309 
3310 	*len = 3;
3311 	return 1;
3312 }
3313 
3314 static const struct export_operations shmem_export_ops = {
3315 	.get_parent     = shmem_get_parent,
3316 	.encode_fh      = shmem_encode_fh,
3317 	.fh_to_dentry	= shmem_fh_to_dentry,
3318 };
3319 
3320 enum shmem_param {
3321 	Opt_gid,
3322 	Opt_huge,
3323 	Opt_mode,
3324 	Opt_mpol,
3325 	Opt_nr_blocks,
3326 	Opt_nr_inodes,
3327 	Opt_size,
3328 	Opt_uid,
3329 	Opt_inode32,
3330 	Opt_inode64,
3331 };
3332 
3333 static const struct constant_table shmem_param_enums_huge[] = {
3334 	{"never",	SHMEM_HUGE_NEVER },
3335 	{"always",	SHMEM_HUGE_ALWAYS },
3336 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3337 	{"advise",	SHMEM_HUGE_ADVISE },
3338 	{}
3339 };
3340 
3341 const struct fs_parameter_spec shmem_fs_parameters[] = {
3342 	fsparam_u32   ("gid",		Opt_gid),
3343 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3344 	fsparam_u32oct("mode",		Opt_mode),
3345 	fsparam_string("mpol",		Opt_mpol),
3346 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3347 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3348 	fsparam_string("size",		Opt_size),
3349 	fsparam_u32   ("uid",		Opt_uid),
3350 	fsparam_flag  ("inode32",	Opt_inode32),
3351 	fsparam_flag  ("inode64",	Opt_inode64),
3352 	{}
3353 };
3354 
3355 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3356 {
3357 	struct shmem_options *ctx = fc->fs_private;
3358 	struct fs_parse_result result;
3359 	unsigned long long size;
3360 	char *rest;
3361 	int opt;
3362 
3363 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3364 	if (opt < 0)
3365 		return opt;
3366 
3367 	switch (opt) {
3368 	case Opt_size:
3369 		size = memparse(param->string, &rest);
3370 		if (*rest == '%') {
3371 			size <<= PAGE_SHIFT;
3372 			size *= totalram_pages();
3373 			do_div(size, 100);
3374 			rest++;
3375 		}
3376 		if (*rest)
3377 			goto bad_value;
3378 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3379 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3380 		break;
3381 	case Opt_nr_blocks:
3382 		ctx->blocks = memparse(param->string, &rest);
3383 		if (*rest)
3384 			goto bad_value;
3385 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3386 		break;
3387 	case Opt_nr_inodes:
3388 		ctx->inodes = memparse(param->string, &rest);
3389 		if (*rest)
3390 			goto bad_value;
3391 		ctx->seen |= SHMEM_SEEN_INODES;
3392 		break;
3393 	case Opt_mode:
3394 		ctx->mode = result.uint_32 & 07777;
3395 		break;
3396 	case Opt_uid:
3397 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3398 		if (!uid_valid(ctx->uid))
3399 			goto bad_value;
3400 		break;
3401 	case Opt_gid:
3402 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3403 		if (!gid_valid(ctx->gid))
3404 			goto bad_value;
3405 		break;
3406 	case Opt_huge:
3407 		ctx->huge = result.uint_32;
3408 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3409 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3410 		      has_transparent_hugepage()))
3411 			goto unsupported_parameter;
3412 		ctx->seen |= SHMEM_SEEN_HUGE;
3413 		break;
3414 	case Opt_mpol:
3415 		if (IS_ENABLED(CONFIG_NUMA)) {
3416 			mpol_put(ctx->mpol);
3417 			ctx->mpol = NULL;
3418 			if (mpol_parse_str(param->string, &ctx->mpol))
3419 				goto bad_value;
3420 			break;
3421 		}
3422 		goto unsupported_parameter;
3423 	case Opt_inode32:
3424 		ctx->full_inums = false;
3425 		ctx->seen |= SHMEM_SEEN_INUMS;
3426 		break;
3427 	case Opt_inode64:
3428 		if (sizeof(ino_t) < 8) {
3429 			return invalfc(fc,
3430 				       "Cannot use inode64 with <64bit inums in kernel\n");
3431 		}
3432 		ctx->full_inums = true;
3433 		ctx->seen |= SHMEM_SEEN_INUMS;
3434 		break;
3435 	}
3436 	return 0;
3437 
3438 unsupported_parameter:
3439 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3440 bad_value:
3441 	return invalfc(fc, "Bad value for '%s'", param->key);
3442 }
3443 
3444 static int shmem_parse_options(struct fs_context *fc, void *data)
3445 {
3446 	char *options = data;
3447 
3448 	if (options) {
3449 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3450 		if (err)
3451 			return err;
3452 	}
3453 
3454 	while (options != NULL) {
3455 		char *this_char = options;
3456 		for (;;) {
3457 			/*
3458 			 * NUL-terminate this option: unfortunately,
3459 			 * mount options form a comma-separated list,
3460 			 * but mpol's nodelist may also contain commas.
3461 			 */
3462 			options = strchr(options, ',');
3463 			if (options == NULL)
3464 				break;
3465 			options++;
3466 			if (!isdigit(*options)) {
3467 				options[-1] = '\0';
3468 				break;
3469 			}
3470 		}
3471 		if (*this_char) {
3472 			char *value = strchr(this_char, '=');
3473 			size_t len = 0;
3474 			int err;
3475 
3476 			if (value) {
3477 				*value++ = '\0';
3478 				len = strlen(value);
3479 			}
3480 			err = vfs_parse_fs_string(fc, this_char, value, len);
3481 			if (err < 0)
3482 				return err;
3483 		}
3484 	}
3485 	return 0;
3486 }
3487 
3488 /*
3489  * Reconfigure a shmem filesystem.
3490  *
3491  * Note that we disallow change from limited->unlimited blocks/inodes while any
3492  * are in use; but we must separately disallow unlimited->limited, because in
3493  * that case we have no record of how much is already in use.
3494  */
3495 static int shmem_reconfigure(struct fs_context *fc)
3496 {
3497 	struct shmem_options *ctx = fc->fs_private;
3498 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3499 	unsigned long inodes;
3500 	struct mempolicy *mpol = NULL;
3501 	const char *err;
3502 
3503 	raw_spin_lock(&sbinfo->stat_lock);
3504 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3505 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3506 		if (!sbinfo->max_blocks) {
3507 			err = "Cannot retroactively limit size";
3508 			goto out;
3509 		}
3510 		if (percpu_counter_compare(&sbinfo->used_blocks,
3511 					   ctx->blocks) > 0) {
3512 			err = "Too small a size for current use";
3513 			goto out;
3514 		}
3515 	}
3516 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3517 		if (!sbinfo->max_inodes) {
3518 			err = "Cannot retroactively limit inodes";
3519 			goto out;
3520 		}
3521 		if (ctx->inodes < inodes) {
3522 			err = "Too few inodes for current use";
3523 			goto out;
3524 		}
3525 	}
3526 
3527 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3528 	    sbinfo->next_ino > UINT_MAX) {
3529 		err = "Current inum too high to switch to 32-bit inums";
3530 		goto out;
3531 	}
3532 
3533 	if (ctx->seen & SHMEM_SEEN_HUGE)
3534 		sbinfo->huge = ctx->huge;
3535 	if (ctx->seen & SHMEM_SEEN_INUMS)
3536 		sbinfo->full_inums = ctx->full_inums;
3537 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3538 		sbinfo->max_blocks  = ctx->blocks;
3539 	if (ctx->seen & SHMEM_SEEN_INODES) {
3540 		sbinfo->max_inodes  = ctx->inodes;
3541 		sbinfo->free_inodes = ctx->inodes - inodes;
3542 	}
3543 
3544 	/*
3545 	 * Preserve previous mempolicy unless mpol remount option was specified.
3546 	 */
3547 	if (ctx->mpol) {
3548 		mpol = sbinfo->mpol;
3549 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3550 		ctx->mpol = NULL;
3551 	}
3552 	raw_spin_unlock(&sbinfo->stat_lock);
3553 	mpol_put(mpol);
3554 	return 0;
3555 out:
3556 	raw_spin_unlock(&sbinfo->stat_lock);
3557 	return invalfc(fc, "%s", err);
3558 }
3559 
3560 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3561 {
3562 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3563 
3564 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3565 		seq_printf(seq, ",size=%luk",
3566 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3567 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3568 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3569 	if (sbinfo->mode != (0777 | S_ISVTX))
3570 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3571 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3572 		seq_printf(seq, ",uid=%u",
3573 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3574 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3575 		seq_printf(seq, ",gid=%u",
3576 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3577 
3578 	/*
3579 	 * Showing inode{64,32} might be useful even if it's the system default,
3580 	 * since then people don't have to resort to checking both here and
3581 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3582 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3583 	 *
3584 	 * We hide it when inode64 isn't the default and we are using 32-bit
3585 	 * inodes, since that probably just means the feature isn't even under
3586 	 * consideration.
3587 	 *
3588 	 * As such:
3589 	 *
3590 	 *                     +-----------------+-----------------+
3591 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3592 	 *  +------------------+-----------------+-----------------+
3593 	 *  | full_inums=true  | show            | show            |
3594 	 *  | full_inums=false | show            | hide            |
3595 	 *  +------------------+-----------------+-----------------+
3596 	 *
3597 	 */
3598 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3599 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3601 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3602 	if (sbinfo->huge)
3603 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3604 #endif
3605 	shmem_show_mpol(seq, sbinfo->mpol);
3606 	return 0;
3607 }
3608 
3609 #endif /* CONFIG_TMPFS */
3610 
3611 static void shmem_put_super(struct super_block *sb)
3612 {
3613 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3614 
3615 	free_percpu(sbinfo->ino_batch);
3616 	percpu_counter_destroy(&sbinfo->used_blocks);
3617 	mpol_put(sbinfo->mpol);
3618 	kfree(sbinfo);
3619 	sb->s_fs_info = NULL;
3620 }
3621 
3622 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3623 {
3624 	struct shmem_options *ctx = fc->fs_private;
3625 	struct inode *inode;
3626 	struct shmem_sb_info *sbinfo;
3627 
3628 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3629 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3630 				L1_CACHE_BYTES), GFP_KERNEL);
3631 	if (!sbinfo)
3632 		return -ENOMEM;
3633 
3634 	sb->s_fs_info = sbinfo;
3635 
3636 #ifdef CONFIG_TMPFS
3637 	/*
3638 	 * Per default we only allow half of the physical ram per
3639 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3640 	 * but the internal instance is left unlimited.
3641 	 */
3642 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3643 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3644 			ctx->blocks = shmem_default_max_blocks();
3645 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3646 			ctx->inodes = shmem_default_max_inodes();
3647 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3648 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3649 	} else {
3650 		sb->s_flags |= SB_NOUSER;
3651 	}
3652 	sb->s_export_op = &shmem_export_ops;
3653 	sb->s_flags |= SB_NOSEC;
3654 #else
3655 	sb->s_flags |= SB_NOUSER;
3656 #endif
3657 	sbinfo->max_blocks = ctx->blocks;
3658 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3659 	if (sb->s_flags & SB_KERNMOUNT) {
3660 		sbinfo->ino_batch = alloc_percpu(ino_t);
3661 		if (!sbinfo->ino_batch)
3662 			goto failed;
3663 	}
3664 	sbinfo->uid = ctx->uid;
3665 	sbinfo->gid = ctx->gid;
3666 	sbinfo->full_inums = ctx->full_inums;
3667 	sbinfo->mode = ctx->mode;
3668 	sbinfo->huge = ctx->huge;
3669 	sbinfo->mpol = ctx->mpol;
3670 	ctx->mpol = NULL;
3671 
3672 	raw_spin_lock_init(&sbinfo->stat_lock);
3673 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3674 		goto failed;
3675 	spin_lock_init(&sbinfo->shrinklist_lock);
3676 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3677 
3678 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3679 	sb->s_blocksize = PAGE_SIZE;
3680 	sb->s_blocksize_bits = PAGE_SHIFT;
3681 	sb->s_magic = TMPFS_MAGIC;
3682 	sb->s_op = &shmem_ops;
3683 	sb->s_time_gran = 1;
3684 #ifdef CONFIG_TMPFS_XATTR
3685 	sb->s_xattr = shmem_xattr_handlers;
3686 #endif
3687 #ifdef CONFIG_TMPFS_POSIX_ACL
3688 	sb->s_flags |= SB_POSIXACL;
3689 #endif
3690 	uuid_gen(&sb->s_uuid);
3691 
3692 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3693 	if (!inode)
3694 		goto failed;
3695 	inode->i_uid = sbinfo->uid;
3696 	inode->i_gid = sbinfo->gid;
3697 	sb->s_root = d_make_root(inode);
3698 	if (!sb->s_root)
3699 		goto failed;
3700 	return 0;
3701 
3702 failed:
3703 	shmem_put_super(sb);
3704 	return -ENOMEM;
3705 }
3706 
3707 static int shmem_get_tree(struct fs_context *fc)
3708 {
3709 	return get_tree_nodev(fc, shmem_fill_super);
3710 }
3711 
3712 static void shmem_free_fc(struct fs_context *fc)
3713 {
3714 	struct shmem_options *ctx = fc->fs_private;
3715 
3716 	if (ctx) {
3717 		mpol_put(ctx->mpol);
3718 		kfree(ctx);
3719 	}
3720 }
3721 
3722 static const struct fs_context_operations shmem_fs_context_ops = {
3723 	.free			= shmem_free_fc,
3724 	.get_tree		= shmem_get_tree,
3725 #ifdef CONFIG_TMPFS
3726 	.parse_monolithic	= shmem_parse_options,
3727 	.parse_param		= shmem_parse_one,
3728 	.reconfigure		= shmem_reconfigure,
3729 #endif
3730 };
3731 
3732 static struct kmem_cache *shmem_inode_cachep;
3733 
3734 static struct inode *shmem_alloc_inode(struct super_block *sb)
3735 {
3736 	struct shmem_inode_info *info;
3737 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3738 	if (!info)
3739 		return NULL;
3740 	return &info->vfs_inode;
3741 }
3742 
3743 static void shmem_free_in_core_inode(struct inode *inode)
3744 {
3745 	if (S_ISLNK(inode->i_mode))
3746 		kfree(inode->i_link);
3747 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3748 }
3749 
3750 static void shmem_destroy_inode(struct inode *inode)
3751 {
3752 	if (S_ISREG(inode->i_mode))
3753 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3754 }
3755 
3756 static void shmem_init_inode(void *foo)
3757 {
3758 	struct shmem_inode_info *info = foo;
3759 	inode_init_once(&info->vfs_inode);
3760 }
3761 
3762 static void shmem_init_inodecache(void)
3763 {
3764 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3765 				sizeof(struct shmem_inode_info),
3766 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3767 }
3768 
3769 static void shmem_destroy_inodecache(void)
3770 {
3771 	kmem_cache_destroy(shmem_inode_cachep);
3772 }
3773 
3774 const struct address_space_operations shmem_aops = {
3775 	.writepage	= shmem_writepage,
3776 	.set_page_dirty	= __set_page_dirty_no_writeback,
3777 #ifdef CONFIG_TMPFS
3778 	.write_begin	= shmem_write_begin,
3779 	.write_end	= shmem_write_end,
3780 #endif
3781 #ifdef CONFIG_MIGRATION
3782 	.migratepage	= migrate_page,
3783 #endif
3784 	.error_remove_page = generic_error_remove_page,
3785 };
3786 EXPORT_SYMBOL(shmem_aops);
3787 
3788 static const struct file_operations shmem_file_operations = {
3789 	.mmap		= shmem_mmap,
3790 	.get_unmapped_area = shmem_get_unmapped_area,
3791 #ifdef CONFIG_TMPFS
3792 	.llseek		= shmem_file_llseek,
3793 	.read_iter	= shmem_file_read_iter,
3794 	.write_iter	= generic_file_write_iter,
3795 	.fsync		= noop_fsync,
3796 	.splice_read	= generic_file_splice_read,
3797 	.splice_write	= iter_file_splice_write,
3798 	.fallocate	= shmem_fallocate,
3799 #endif
3800 };
3801 
3802 static const struct inode_operations shmem_inode_operations = {
3803 	.getattr	= shmem_getattr,
3804 	.setattr	= shmem_setattr,
3805 #ifdef CONFIG_TMPFS_XATTR
3806 	.listxattr	= shmem_listxattr,
3807 	.set_acl	= simple_set_acl,
3808 #endif
3809 };
3810 
3811 static const struct inode_operations shmem_dir_inode_operations = {
3812 #ifdef CONFIG_TMPFS
3813 	.create		= shmem_create,
3814 	.lookup		= simple_lookup,
3815 	.link		= shmem_link,
3816 	.unlink		= shmem_unlink,
3817 	.symlink	= shmem_symlink,
3818 	.mkdir		= shmem_mkdir,
3819 	.rmdir		= shmem_rmdir,
3820 	.mknod		= shmem_mknod,
3821 	.rename		= shmem_rename2,
3822 	.tmpfile	= shmem_tmpfile,
3823 #endif
3824 #ifdef CONFIG_TMPFS_XATTR
3825 	.listxattr	= shmem_listxattr,
3826 #endif
3827 #ifdef CONFIG_TMPFS_POSIX_ACL
3828 	.setattr	= shmem_setattr,
3829 	.set_acl	= simple_set_acl,
3830 #endif
3831 };
3832 
3833 static const struct inode_operations shmem_special_inode_operations = {
3834 #ifdef CONFIG_TMPFS_XATTR
3835 	.listxattr	= shmem_listxattr,
3836 #endif
3837 #ifdef CONFIG_TMPFS_POSIX_ACL
3838 	.setattr	= shmem_setattr,
3839 	.set_acl	= simple_set_acl,
3840 #endif
3841 };
3842 
3843 static const struct super_operations shmem_ops = {
3844 	.alloc_inode	= shmem_alloc_inode,
3845 	.free_inode	= shmem_free_in_core_inode,
3846 	.destroy_inode	= shmem_destroy_inode,
3847 #ifdef CONFIG_TMPFS
3848 	.statfs		= shmem_statfs,
3849 	.show_options	= shmem_show_options,
3850 #endif
3851 	.evict_inode	= shmem_evict_inode,
3852 	.drop_inode	= generic_delete_inode,
3853 	.put_super	= shmem_put_super,
3854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3855 	.nr_cached_objects	= shmem_unused_huge_count,
3856 	.free_cached_objects	= shmem_unused_huge_scan,
3857 #endif
3858 };
3859 
3860 static const struct vm_operations_struct shmem_vm_ops = {
3861 	.fault		= shmem_fault,
3862 	.map_pages	= filemap_map_pages,
3863 #ifdef CONFIG_NUMA
3864 	.set_policy     = shmem_set_policy,
3865 	.get_policy     = shmem_get_policy,
3866 #endif
3867 };
3868 
3869 int shmem_init_fs_context(struct fs_context *fc)
3870 {
3871 	struct shmem_options *ctx;
3872 
3873 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3874 	if (!ctx)
3875 		return -ENOMEM;
3876 
3877 	ctx->mode = 0777 | S_ISVTX;
3878 	ctx->uid = current_fsuid();
3879 	ctx->gid = current_fsgid();
3880 
3881 	fc->fs_private = ctx;
3882 	fc->ops = &shmem_fs_context_ops;
3883 	return 0;
3884 }
3885 
3886 static struct file_system_type shmem_fs_type = {
3887 	.owner		= THIS_MODULE,
3888 	.name		= "tmpfs",
3889 	.init_fs_context = shmem_init_fs_context,
3890 #ifdef CONFIG_TMPFS
3891 	.parameters	= shmem_fs_parameters,
3892 #endif
3893 	.kill_sb	= kill_litter_super,
3894 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3895 };
3896 
3897 int __init shmem_init(void)
3898 {
3899 	int error;
3900 
3901 	shmem_init_inodecache();
3902 
3903 	error = register_filesystem(&shmem_fs_type);
3904 	if (error) {
3905 		pr_err("Could not register tmpfs\n");
3906 		goto out2;
3907 	}
3908 
3909 	shm_mnt = kern_mount(&shmem_fs_type);
3910 	if (IS_ERR(shm_mnt)) {
3911 		error = PTR_ERR(shm_mnt);
3912 		pr_err("Could not kern_mount tmpfs\n");
3913 		goto out1;
3914 	}
3915 
3916 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3917 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3918 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3919 	else
3920 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3921 #endif
3922 	return 0;
3923 
3924 out1:
3925 	unregister_filesystem(&shmem_fs_type);
3926 out2:
3927 	shmem_destroy_inodecache();
3928 	shm_mnt = ERR_PTR(error);
3929 	return error;
3930 }
3931 
3932 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3933 static ssize_t shmem_enabled_show(struct kobject *kobj,
3934 				  struct kobj_attribute *attr, char *buf)
3935 {
3936 	static const int values[] = {
3937 		SHMEM_HUGE_ALWAYS,
3938 		SHMEM_HUGE_WITHIN_SIZE,
3939 		SHMEM_HUGE_ADVISE,
3940 		SHMEM_HUGE_NEVER,
3941 		SHMEM_HUGE_DENY,
3942 		SHMEM_HUGE_FORCE,
3943 	};
3944 	int len = 0;
3945 	int i;
3946 
3947 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3948 		len += sysfs_emit_at(buf, len,
3949 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3950 				     i ? " " : "",
3951 				     shmem_format_huge(values[i]));
3952 	}
3953 
3954 	len += sysfs_emit_at(buf, len, "\n");
3955 
3956 	return len;
3957 }
3958 
3959 static ssize_t shmem_enabled_store(struct kobject *kobj,
3960 		struct kobj_attribute *attr, const char *buf, size_t count)
3961 {
3962 	char tmp[16];
3963 	int huge;
3964 
3965 	if (count + 1 > sizeof(tmp))
3966 		return -EINVAL;
3967 	memcpy(tmp, buf, count);
3968 	tmp[count] = '\0';
3969 	if (count && tmp[count - 1] == '\n')
3970 		tmp[count - 1] = '\0';
3971 
3972 	huge = shmem_parse_huge(tmp);
3973 	if (huge == -EINVAL)
3974 		return -EINVAL;
3975 	if (!has_transparent_hugepage() &&
3976 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3977 		return -EINVAL;
3978 
3979 	shmem_huge = huge;
3980 	if (shmem_huge > SHMEM_HUGE_DENY)
3981 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3982 	return count;
3983 }
3984 
3985 struct kobj_attribute shmem_enabled_attr =
3986 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3987 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3988 
3989 #else /* !CONFIG_SHMEM */
3990 
3991 /*
3992  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3993  *
3994  * This is intended for small system where the benefits of the full
3995  * shmem code (swap-backed and resource-limited) are outweighed by
3996  * their complexity. On systems without swap this code should be
3997  * effectively equivalent, but much lighter weight.
3998  */
3999 
4000 static struct file_system_type shmem_fs_type = {
4001 	.name		= "tmpfs",
4002 	.init_fs_context = ramfs_init_fs_context,
4003 	.parameters	= ramfs_fs_parameters,
4004 	.kill_sb	= kill_litter_super,
4005 	.fs_flags	= FS_USERNS_MOUNT,
4006 };
4007 
4008 int __init shmem_init(void)
4009 {
4010 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4011 
4012 	shm_mnt = kern_mount(&shmem_fs_type);
4013 	BUG_ON(IS_ERR(shm_mnt));
4014 
4015 	return 0;
4016 }
4017 
4018 int shmem_unuse(unsigned int type, bool frontswap,
4019 		unsigned long *fs_pages_to_unuse)
4020 {
4021 	return 0;
4022 }
4023 
4024 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4025 {
4026 	return 0;
4027 }
4028 
4029 void shmem_unlock_mapping(struct address_space *mapping)
4030 {
4031 }
4032 
4033 #ifdef CONFIG_MMU
4034 unsigned long shmem_get_unmapped_area(struct file *file,
4035 				      unsigned long addr, unsigned long len,
4036 				      unsigned long pgoff, unsigned long flags)
4037 {
4038 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4039 }
4040 #endif
4041 
4042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4043 {
4044 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4045 }
4046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4047 
4048 #define shmem_vm_ops				generic_file_vm_ops
4049 #define shmem_file_operations			ramfs_file_operations
4050 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4051 #define shmem_acct_size(flags, size)		0
4052 #define shmem_unacct_size(flags, size)		do {} while (0)
4053 
4054 #endif /* CONFIG_SHMEM */
4055 
4056 /* common code */
4057 
4058 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4059 				       unsigned long flags, unsigned int i_flags)
4060 {
4061 	struct inode *inode;
4062 	struct file *res;
4063 
4064 	if (IS_ERR(mnt))
4065 		return ERR_CAST(mnt);
4066 
4067 	if (size < 0 || size > MAX_LFS_FILESIZE)
4068 		return ERR_PTR(-EINVAL);
4069 
4070 	if (shmem_acct_size(flags, size))
4071 		return ERR_PTR(-ENOMEM);
4072 
4073 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4074 				flags);
4075 	if (unlikely(!inode)) {
4076 		shmem_unacct_size(flags, size);
4077 		return ERR_PTR(-ENOSPC);
4078 	}
4079 	inode->i_flags |= i_flags;
4080 	inode->i_size = size;
4081 	clear_nlink(inode);	/* It is unlinked */
4082 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4083 	if (!IS_ERR(res))
4084 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4085 				&shmem_file_operations);
4086 	if (IS_ERR(res))
4087 		iput(inode);
4088 	return res;
4089 }
4090 
4091 /**
4092  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4093  * 	kernel internal.  There will be NO LSM permission checks against the
4094  * 	underlying inode.  So users of this interface must do LSM checks at a
4095  *	higher layer.  The users are the big_key and shm implementations.  LSM
4096  *	checks are provided at the key or shm level rather than the inode.
4097  * @name: name for dentry (to be seen in /proc/<pid>/maps
4098  * @size: size to be set for the file
4099  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4100  */
4101 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4102 {
4103 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4104 }
4105 
4106 /**
4107  * shmem_file_setup - get an unlinked file living in tmpfs
4108  * @name: name for dentry (to be seen in /proc/<pid>/maps
4109  * @size: size to be set for the file
4110  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4111  */
4112 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4113 {
4114 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4115 }
4116 EXPORT_SYMBOL_GPL(shmem_file_setup);
4117 
4118 /**
4119  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4120  * @mnt: the tmpfs mount where the file will be created
4121  * @name: name for dentry (to be seen in /proc/<pid>/maps
4122  * @size: size to be set for the file
4123  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4124  */
4125 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4126 				       loff_t size, unsigned long flags)
4127 {
4128 	return __shmem_file_setup(mnt, name, size, flags, 0);
4129 }
4130 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4131 
4132 /**
4133  * shmem_zero_setup - setup a shared anonymous mapping
4134  * @vma: the vma to be mmapped is prepared by do_mmap
4135  */
4136 int shmem_zero_setup(struct vm_area_struct *vma)
4137 {
4138 	struct file *file;
4139 	loff_t size = vma->vm_end - vma->vm_start;
4140 
4141 	/*
4142 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4143 	 * between XFS directory reading and selinux: since this file is only
4144 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4145 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4146 	 */
4147 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4148 	if (IS_ERR(file))
4149 		return PTR_ERR(file);
4150 
4151 	if (vma->vm_file)
4152 		fput(vma->vm_file);
4153 	vma->vm_file = file;
4154 	vma->vm_ops = &shmem_vm_ops;
4155 
4156 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4157 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4158 			(vma->vm_end & HPAGE_PMD_MASK)) {
4159 		khugepaged_enter(vma, vma->vm_flags);
4160 	}
4161 
4162 	return 0;
4163 }
4164 
4165 /**
4166  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4167  * @mapping:	the page's address_space
4168  * @index:	the page index
4169  * @gfp:	the page allocator flags to use if allocating
4170  *
4171  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4172  * with any new page allocations done using the specified allocation flags.
4173  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4174  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4175  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4176  *
4177  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4178  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4179  */
4180 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4181 					 pgoff_t index, gfp_t gfp)
4182 {
4183 #ifdef CONFIG_SHMEM
4184 	struct inode *inode = mapping->host;
4185 	struct page *page;
4186 	int error;
4187 
4188 	BUG_ON(!shmem_mapping(mapping));
4189 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4190 				  gfp, NULL, NULL, NULL);
4191 	if (error)
4192 		page = ERR_PTR(error);
4193 	else
4194 		unlock_page(page);
4195 	return page;
4196 #else
4197 	/*
4198 	 * The tiny !SHMEM case uses ramfs without swap
4199 	 */
4200 	return read_cache_page_gfp(mapping, index, gfp);
4201 #endif
4202 }
4203 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4204