1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/sched/signal.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/uio.h> 36 #include <linux/khugepaged.h> 37 #include <linux/hugetlb.h> 38 39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 40 41 static struct vfsmount *shm_mnt; 42 43 #ifdef CONFIG_SHMEM 44 /* 45 * This virtual memory filesystem is heavily based on the ramfs. It 46 * extends ramfs by the ability to use swap and honor resource limits 47 * which makes it a completely usable filesystem. 48 */ 49 50 #include <linux/xattr.h> 51 #include <linux/exportfs.h> 52 #include <linux/posix_acl.h> 53 #include <linux/posix_acl_xattr.h> 54 #include <linux/mman.h> 55 #include <linux/string.h> 56 #include <linux/slab.h> 57 #include <linux/backing-dev.h> 58 #include <linux/shmem_fs.h> 59 #include <linux/writeback.h> 60 #include <linux/blkdev.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 #include <asm/pgtable.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_mutex making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, 125 gfp_t gfp, struct vm_area_struct *vma, 126 struct vm_fault *vmf, int *fault_type); 127 128 int shmem_getpage(struct inode *inode, pgoff_t index, 129 struct page **pagep, enum sgp_type sgp) 130 { 131 return shmem_getpage_gfp(inode, index, pagep, sgp, 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 133 } 134 135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 136 { 137 return sb->s_fs_info; 138 } 139 140 /* 141 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 142 * for shared memory and for shared anonymous (/dev/zero) mappings 143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 144 * consistent with the pre-accounting of private mappings ... 145 */ 146 static inline int shmem_acct_size(unsigned long flags, loff_t size) 147 { 148 return (flags & VM_NORESERVE) ? 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 150 } 151 152 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 153 { 154 if (!(flags & VM_NORESERVE)) 155 vm_unacct_memory(VM_ACCT(size)); 156 } 157 158 static inline int shmem_reacct_size(unsigned long flags, 159 loff_t oldsize, loff_t newsize) 160 { 161 if (!(flags & VM_NORESERVE)) { 162 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 163 return security_vm_enough_memory_mm(current->mm, 164 VM_ACCT(newsize) - VM_ACCT(oldsize)); 165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 167 } 168 return 0; 169 } 170 171 /* 172 * ... whereas tmpfs objects are accounted incrementally as 173 * pages are allocated, in order to allow large sparse files. 174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 176 */ 177 static inline int shmem_acct_block(unsigned long flags, long pages) 178 { 179 if (!(flags & VM_NORESERVE)) 180 return 0; 181 182 return security_vm_enough_memory_mm(current->mm, 183 pages * VM_ACCT(PAGE_SIZE)); 184 } 185 186 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 187 { 188 if (flags & VM_NORESERVE) 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 190 } 191 192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 193 { 194 struct shmem_inode_info *info = SHMEM_I(inode); 195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 196 197 if (shmem_acct_block(info->flags, pages)) 198 return false; 199 200 if (sbinfo->max_blocks) { 201 if (percpu_counter_compare(&sbinfo->used_blocks, 202 sbinfo->max_blocks - pages) > 0) 203 goto unacct; 204 percpu_counter_add(&sbinfo->used_blocks, pages); 205 } 206 207 return true; 208 209 unacct: 210 shmem_unacct_blocks(info->flags, pages); 211 return false; 212 } 213 214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 215 { 216 struct shmem_inode_info *info = SHMEM_I(inode); 217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 218 219 if (sbinfo->max_blocks) 220 percpu_counter_sub(&sbinfo->used_blocks, pages); 221 shmem_unacct_blocks(info->flags, pages); 222 } 223 224 static const struct super_operations shmem_ops; 225 static const struct address_space_operations shmem_aops; 226 static const struct file_operations shmem_file_operations; 227 static const struct inode_operations shmem_inode_operations; 228 static const struct inode_operations shmem_dir_inode_operations; 229 static const struct inode_operations shmem_special_inode_operations; 230 static const struct vm_operations_struct shmem_vm_ops; 231 static struct file_system_type shmem_fs_type; 232 233 bool vma_is_shmem(struct vm_area_struct *vma) 234 { 235 return vma->vm_ops == &shmem_vm_ops; 236 } 237 238 static LIST_HEAD(shmem_swaplist); 239 static DEFINE_MUTEX(shmem_swaplist_mutex); 240 241 static int shmem_reserve_inode(struct super_block *sb) 242 { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 244 if (sbinfo->max_inodes) { 245 spin_lock(&sbinfo->stat_lock); 246 if (!sbinfo->free_inodes) { 247 spin_unlock(&sbinfo->stat_lock); 248 return -ENOSPC; 249 } 250 sbinfo->free_inodes--; 251 spin_unlock(&sbinfo->stat_lock); 252 } 253 return 0; 254 } 255 256 static void shmem_free_inode(struct super_block *sb) 257 { 258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 259 if (sbinfo->max_inodes) { 260 spin_lock(&sbinfo->stat_lock); 261 sbinfo->free_inodes++; 262 spin_unlock(&sbinfo->stat_lock); 263 } 264 } 265 266 /** 267 * shmem_recalc_inode - recalculate the block usage of an inode 268 * @inode: inode to recalc 269 * 270 * We have to calculate the free blocks since the mm can drop 271 * undirtied hole pages behind our back. 272 * 273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 275 * 276 * It has to be called with the spinlock held. 277 */ 278 static void shmem_recalc_inode(struct inode *inode) 279 { 280 struct shmem_inode_info *info = SHMEM_I(inode); 281 long freed; 282 283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 284 if (freed > 0) { 285 info->alloced -= freed; 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 287 shmem_inode_unacct_blocks(inode, freed); 288 } 289 } 290 291 bool shmem_charge(struct inode *inode, long pages) 292 { 293 struct shmem_inode_info *info = SHMEM_I(inode); 294 unsigned long flags; 295 296 if (!shmem_inode_acct_block(inode, pages)) 297 return false; 298 299 spin_lock_irqsave(&info->lock, flags); 300 info->alloced += pages; 301 inode->i_blocks += pages * BLOCKS_PER_PAGE; 302 shmem_recalc_inode(inode); 303 spin_unlock_irqrestore(&info->lock, flags); 304 inode->i_mapping->nrpages += pages; 305 306 return true; 307 } 308 309 void shmem_uncharge(struct inode *inode, long pages) 310 { 311 struct shmem_inode_info *info = SHMEM_I(inode); 312 unsigned long flags; 313 314 spin_lock_irqsave(&info->lock, flags); 315 info->alloced -= pages; 316 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 317 shmem_recalc_inode(inode); 318 spin_unlock_irqrestore(&info->lock, flags); 319 320 shmem_inode_unacct_blocks(inode, pages); 321 } 322 323 /* 324 * Replace item expected in radix tree by a new item, while holding tree lock. 325 */ 326 static int shmem_radix_tree_replace(struct address_space *mapping, 327 pgoff_t index, void *expected, void *replacement) 328 { 329 struct radix_tree_node *node; 330 void __rcu **pslot; 331 void *item; 332 333 VM_BUG_ON(!expected); 334 VM_BUG_ON(!replacement); 335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot); 336 if (!item) 337 return -ENOENT; 338 if (item != expected) 339 return -ENOENT; 340 __radix_tree_replace(&mapping->i_pages, node, pslot, 341 replacement, NULL); 342 return 0; 343 } 344 345 /* 346 * Sometimes, before we decide whether to proceed or to fail, we must check 347 * that an entry was not already brought back from swap by a racing thread. 348 * 349 * Checking page is not enough: by the time a SwapCache page is locked, it 350 * might be reused, and again be SwapCache, using the same swap as before. 351 */ 352 static bool shmem_confirm_swap(struct address_space *mapping, 353 pgoff_t index, swp_entry_t swap) 354 { 355 void *item; 356 357 rcu_read_lock(); 358 item = radix_tree_lookup(&mapping->i_pages, index); 359 rcu_read_unlock(); 360 return item == swp_to_radix_entry(swap); 361 } 362 363 /* 364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 365 * 366 * SHMEM_HUGE_NEVER: 367 * disables huge pages for the mount; 368 * SHMEM_HUGE_ALWAYS: 369 * enables huge pages for the mount; 370 * SHMEM_HUGE_WITHIN_SIZE: 371 * only allocate huge pages if the page will be fully within i_size, 372 * also respect fadvise()/madvise() hints; 373 * SHMEM_HUGE_ADVISE: 374 * only allocate huge pages if requested with fadvise()/madvise(); 375 */ 376 377 #define SHMEM_HUGE_NEVER 0 378 #define SHMEM_HUGE_ALWAYS 1 379 #define SHMEM_HUGE_WITHIN_SIZE 2 380 #define SHMEM_HUGE_ADVISE 3 381 382 /* 383 * Special values. 384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 385 * 386 * SHMEM_HUGE_DENY: 387 * disables huge on shm_mnt and all mounts, for emergency use; 388 * SHMEM_HUGE_FORCE: 389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 390 * 391 */ 392 #define SHMEM_HUGE_DENY (-1) 393 #define SHMEM_HUGE_FORCE (-2) 394 395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 396 /* ifdef here to avoid bloating shmem.o when not necessary */ 397 398 static int shmem_huge __read_mostly; 399 400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 401 static int shmem_parse_huge(const char *str) 402 { 403 if (!strcmp(str, "never")) 404 return SHMEM_HUGE_NEVER; 405 if (!strcmp(str, "always")) 406 return SHMEM_HUGE_ALWAYS; 407 if (!strcmp(str, "within_size")) 408 return SHMEM_HUGE_WITHIN_SIZE; 409 if (!strcmp(str, "advise")) 410 return SHMEM_HUGE_ADVISE; 411 if (!strcmp(str, "deny")) 412 return SHMEM_HUGE_DENY; 413 if (!strcmp(str, "force")) 414 return SHMEM_HUGE_FORCE; 415 return -EINVAL; 416 } 417 418 static const char *shmem_format_huge(int huge) 419 { 420 switch (huge) { 421 case SHMEM_HUGE_NEVER: 422 return "never"; 423 case SHMEM_HUGE_ALWAYS: 424 return "always"; 425 case SHMEM_HUGE_WITHIN_SIZE: 426 return "within_size"; 427 case SHMEM_HUGE_ADVISE: 428 return "advise"; 429 case SHMEM_HUGE_DENY: 430 return "deny"; 431 case SHMEM_HUGE_FORCE: 432 return "force"; 433 default: 434 VM_BUG_ON(1); 435 return "bad_val"; 436 } 437 } 438 #endif 439 440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 441 struct shrink_control *sc, unsigned long nr_to_split) 442 { 443 LIST_HEAD(list), *pos, *next; 444 LIST_HEAD(to_remove); 445 struct inode *inode; 446 struct shmem_inode_info *info; 447 struct page *page; 448 unsigned long batch = sc ? sc->nr_to_scan : 128; 449 int removed = 0, split = 0; 450 451 if (list_empty(&sbinfo->shrinklist)) 452 return SHRINK_STOP; 453 454 spin_lock(&sbinfo->shrinklist_lock); 455 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 456 info = list_entry(pos, struct shmem_inode_info, shrinklist); 457 458 /* pin the inode */ 459 inode = igrab(&info->vfs_inode); 460 461 /* inode is about to be evicted */ 462 if (!inode) { 463 list_del_init(&info->shrinklist); 464 removed++; 465 goto next; 466 } 467 468 /* Check if there's anything to gain */ 469 if (round_up(inode->i_size, PAGE_SIZE) == 470 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 471 list_move(&info->shrinklist, &to_remove); 472 removed++; 473 goto next; 474 } 475 476 list_move(&info->shrinklist, &list); 477 next: 478 if (!--batch) 479 break; 480 } 481 spin_unlock(&sbinfo->shrinklist_lock); 482 483 list_for_each_safe(pos, next, &to_remove) { 484 info = list_entry(pos, struct shmem_inode_info, shrinklist); 485 inode = &info->vfs_inode; 486 list_del_init(&info->shrinklist); 487 iput(inode); 488 } 489 490 list_for_each_safe(pos, next, &list) { 491 int ret; 492 493 info = list_entry(pos, struct shmem_inode_info, shrinklist); 494 inode = &info->vfs_inode; 495 496 if (nr_to_split && split >= nr_to_split) 497 goto leave; 498 499 page = find_get_page(inode->i_mapping, 500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 501 if (!page) 502 goto drop; 503 504 /* No huge page at the end of the file: nothing to split */ 505 if (!PageTransHuge(page)) { 506 put_page(page); 507 goto drop; 508 } 509 510 /* 511 * Leave the inode on the list if we failed to lock 512 * the page at this time. 513 * 514 * Waiting for the lock may lead to deadlock in the 515 * reclaim path. 516 */ 517 if (!trylock_page(page)) { 518 put_page(page); 519 goto leave; 520 } 521 522 ret = split_huge_page(page); 523 unlock_page(page); 524 put_page(page); 525 526 /* If split failed leave the inode on the list */ 527 if (ret) 528 goto leave; 529 530 split++; 531 drop: 532 list_del_init(&info->shrinklist); 533 removed++; 534 leave: 535 iput(inode); 536 } 537 538 spin_lock(&sbinfo->shrinklist_lock); 539 list_splice_tail(&list, &sbinfo->shrinklist); 540 sbinfo->shrinklist_len -= removed; 541 spin_unlock(&sbinfo->shrinklist_lock); 542 543 return split; 544 } 545 546 static long shmem_unused_huge_scan(struct super_block *sb, 547 struct shrink_control *sc) 548 { 549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 550 551 if (!READ_ONCE(sbinfo->shrinklist_len)) 552 return SHRINK_STOP; 553 554 return shmem_unused_huge_shrink(sbinfo, sc, 0); 555 } 556 557 static long shmem_unused_huge_count(struct super_block *sb, 558 struct shrink_control *sc) 559 { 560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 561 return READ_ONCE(sbinfo->shrinklist_len); 562 } 563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 564 565 #define shmem_huge SHMEM_HUGE_DENY 566 567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 568 struct shrink_control *sc, unsigned long nr_to_split) 569 { 570 return 0; 571 } 572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 573 574 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 575 { 576 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 577 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 578 shmem_huge != SHMEM_HUGE_DENY) 579 return true; 580 return false; 581 } 582 583 /* 584 * Like add_to_page_cache_locked, but error if expected item has gone. 585 */ 586 static int shmem_add_to_page_cache(struct page *page, 587 struct address_space *mapping, 588 pgoff_t index, void *expected) 589 { 590 int error, nr = hpage_nr_pages(page); 591 592 VM_BUG_ON_PAGE(PageTail(page), page); 593 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 594 VM_BUG_ON_PAGE(!PageLocked(page), page); 595 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 596 VM_BUG_ON(expected && PageTransHuge(page)); 597 598 page_ref_add(page, nr); 599 page->mapping = mapping; 600 page->index = index; 601 602 xa_lock_irq(&mapping->i_pages); 603 if (PageTransHuge(page)) { 604 void __rcu **results; 605 pgoff_t idx; 606 int i; 607 608 error = 0; 609 if (radix_tree_gang_lookup_slot(&mapping->i_pages, 610 &results, &idx, index, 1) && 611 idx < index + HPAGE_PMD_NR) { 612 error = -EEXIST; 613 } 614 615 if (!error) { 616 for (i = 0; i < HPAGE_PMD_NR; i++) { 617 error = radix_tree_insert(&mapping->i_pages, 618 index + i, page + i); 619 VM_BUG_ON(error); 620 } 621 count_vm_event(THP_FILE_ALLOC); 622 } 623 } else if (!expected) { 624 error = radix_tree_insert(&mapping->i_pages, index, page); 625 } else { 626 error = shmem_radix_tree_replace(mapping, index, expected, 627 page); 628 } 629 630 if (!error) { 631 mapping->nrpages += nr; 632 if (PageTransHuge(page)) 633 __inc_node_page_state(page, NR_SHMEM_THPS); 634 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 635 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 636 xa_unlock_irq(&mapping->i_pages); 637 } else { 638 page->mapping = NULL; 639 xa_unlock_irq(&mapping->i_pages); 640 page_ref_sub(page, nr); 641 } 642 return error; 643 } 644 645 /* 646 * Like delete_from_page_cache, but substitutes swap for page. 647 */ 648 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 649 { 650 struct address_space *mapping = page->mapping; 651 int error; 652 653 VM_BUG_ON_PAGE(PageCompound(page), page); 654 655 xa_lock_irq(&mapping->i_pages); 656 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 657 page->mapping = NULL; 658 mapping->nrpages--; 659 __dec_node_page_state(page, NR_FILE_PAGES); 660 __dec_node_page_state(page, NR_SHMEM); 661 xa_unlock_irq(&mapping->i_pages); 662 put_page(page); 663 BUG_ON(error); 664 } 665 666 /* 667 * Remove swap entry from radix tree, free the swap and its page cache. 668 */ 669 static int shmem_free_swap(struct address_space *mapping, 670 pgoff_t index, void *radswap) 671 { 672 void *old; 673 674 xa_lock_irq(&mapping->i_pages); 675 old = radix_tree_delete_item(&mapping->i_pages, index, radswap); 676 xa_unlock_irq(&mapping->i_pages); 677 if (old != radswap) 678 return -ENOENT; 679 free_swap_and_cache(radix_to_swp_entry(radswap)); 680 return 0; 681 } 682 683 /* 684 * Determine (in bytes) how many of the shmem object's pages mapped by the 685 * given offsets are swapped out. 686 * 687 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 688 * as long as the inode doesn't go away and racy results are not a problem. 689 */ 690 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 691 pgoff_t start, pgoff_t end) 692 { 693 struct radix_tree_iter iter; 694 void __rcu **slot; 695 struct page *page; 696 unsigned long swapped = 0; 697 698 rcu_read_lock(); 699 700 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) { 701 if (iter.index >= end) 702 break; 703 704 page = radix_tree_deref_slot(slot); 705 706 if (radix_tree_deref_retry(page)) { 707 slot = radix_tree_iter_retry(&iter); 708 continue; 709 } 710 711 if (radix_tree_exceptional_entry(page)) 712 swapped++; 713 714 if (need_resched()) { 715 slot = radix_tree_iter_resume(slot, &iter); 716 cond_resched_rcu(); 717 } 718 } 719 720 rcu_read_unlock(); 721 722 return swapped << PAGE_SHIFT; 723 } 724 725 /* 726 * Determine (in bytes) how many of the shmem object's pages mapped by the 727 * given vma is swapped out. 728 * 729 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 730 * as long as the inode doesn't go away and racy results are not a problem. 731 */ 732 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 733 { 734 struct inode *inode = file_inode(vma->vm_file); 735 struct shmem_inode_info *info = SHMEM_I(inode); 736 struct address_space *mapping = inode->i_mapping; 737 unsigned long swapped; 738 739 /* Be careful as we don't hold info->lock */ 740 swapped = READ_ONCE(info->swapped); 741 742 /* 743 * The easier cases are when the shmem object has nothing in swap, or 744 * the vma maps it whole. Then we can simply use the stats that we 745 * already track. 746 */ 747 if (!swapped) 748 return 0; 749 750 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 751 return swapped << PAGE_SHIFT; 752 753 /* Here comes the more involved part */ 754 return shmem_partial_swap_usage(mapping, 755 linear_page_index(vma, vma->vm_start), 756 linear_page_index(vma, vma->vm_end)); 757 } 758 759 /* 760 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 761 */ 762 void shmem_unlock_mapping(struct address_space *mapping) 763 { 764 struct pagevec pvec; 765 pgoff_t indices[PAGEVEC_SIZE]; 766 pgoff_t index = 0; 767 768 pagevec_init(&pvec); 769 /* 770 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 771 */ 772 while (!mapping_unevictable(mapping)) { 773 /* 774 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 775 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 776 */ 777 pvec.nr = find_get_entries(mapping, index, 778 PAGEVEC_SIZE, pvec.pages, indices); 779 if (!pvec.nr) 780 break; 781 index = indices[pvec.nr - 1] + 1; 782 pagevec_remove_exceptionals(&pvec); 783 check_move_unevictable_pages(pvec.pages, pvec.nr); 784 pagevec_release(&pvec); 785 cond_resched(); 786 } 787 } 788 789 /* 790 * Remove range of pages and swap entries from radix tree, and free them. 791 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 792 */ 793 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 794 bool unfalloc) 795 { 796 struct address_space *mapping = inode->i_mapping; 797 struct shmem_inode_info *info = SHMEM_I(inode); 798 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 799 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 800 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 801 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 802 struct pagevec pvec; 803 pgoff_t indices[PAGEVEC_SIZE]; 804 long nr_swaps_freed = 0; 805 pgoff_t index; 806 int i; 807 808 if (lend == -1) 809 end = -1; /* unsigned, so actually very big */ 810 811 pagevec_init(&pvec); 812 index = start; 813 while (index < end) { 814 pvec.nr = find_get_entries(mapping, index, 815 min(end - index, (pgoff_t)PAGEVEC_SIZE), 816 pvec.pages, indices); 817 if (!pvec.nr) 818 break; 819 for (i = 0; i < pagevec_count(&pvec); i++) { 820 struct page *page = pvec.pages[i]; 821 822 index = indices[i]; 823 if (index >= end) 824 break; 825 826 if (radix_tree_exceptional_entry(page)) { 827 if (unfalloc) 828 continue; 829 nr_swaps_freed += !shmem_free_swap(mapping, 830 index, page); 831 continue; 832 } 833 834 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 835 836 if (!trylock_page(page)) 837 continue; 838 839 if (PageTransTail(page)) { 840 /* Middle of THP: zero out the page */ 841 clear_highpage(page); 842 unlock_page(page); 843 continue; 844 } else if (PageTransHuge(page)) { 845 if (index == round_down(end, HPAGE_PMD_NR)) { 846 /* 847 * Range ends in the middle of THP: 848 * zero out the page 849 */ 850 clear_highpage(page); 851 unlock_page(page); 852 continue; 853 } 854 index += HPAGE_PMD_NR - 1; 855 i += HPAGE_PMD_NR - 1; 856 } 857 858 if (!unfalloc || !PageUptodate(page)) { 859 VM_BUG_ON_PAGE(PageTail(page), page); 860 if (page_mapping(page) == mapping) { 861 VM_BUG_ON_PAGE(PageWriteback(page), page); 862 truncate_inode_page(mapping, page); 863 } 864 } 865 unlock_page(page); 866 } 867 pagevec_remove_exceptionals(&pvec); 868 pagevec_release(&pvec); 869 cond_resched(); 870 index++; 871 } 872 873 if (partial_start) { 874 struct page *page = NULL; 875 shmem_getpage(inode, start - 1, &page, SGP_READ); 876 if (page) { 877 unsigned int top = PAGE_SIZE; 878 if (start > end) { 879 top = partial_end; 880 partial_end = 0; 881 } 882 zero_user_segment(page, partial_start, top); 883 set_page_dirty(page); 884 unlock_page(page); 885 put_page(page); 886 } 887 } 888 if (partial_end) { 889 struct page *page = NULL; 890 shmem_getpage(inode, end, &page, SGP_READ); 891 if (page) { 892 zero_user_segment(page, 0, partial_end); 893 set_page_dirty(page); 894 unlock_page(page); 895 put_page(page); 896 } 897 } 898 if (start >= end) 899 return; 900 901 index = start; 902 while (index < end) { 903 cond_resched(); 904 905 pvec.nr = find_get_entries(mapping, index, 906 min(end - index, (pgoff_t)PAGEVEC_SIZE), 907 pvec.pages, indices); 908 if (!pvec.nr) { 909 /* If all gone or hole-punch or unfalloc, we're done */ 910 if (index == start || end != -1) 911 break; 912 /* But if truncating, restart to make sure all gone */ 913 index = start; 914 continue; 915 } 916 for (i = 0; i < pagevec_count(&pvec); i++) { 917 struct page *page = pvec.pages[i]; 918 919 index = indices[i]; 920 if (index >= end) 921 break; 922 923 if (radix_tree_exceptional_entry(page)) { 924 if (unfalloc) 925 continue; 926 if (shmem_free_swap(mapping, index, page)) { 927 /* Swap was replaced by page: retry */ 928 index--; 929 break; 930 } 931 nr_swaps_freed++; 932 continue; 933 } 934 935 lock_page(page); 936 937 if (PageTransTail(page)) { 938 /* Middle of THP: zero out the page */ 939 clear_highpage(page); 940 unlock_page(page); 941 /* 942 * Partial thp truncate due 'start' in middle 943 * of THP: don't need to look on these pages 944 * again on !pvec.nr restart. 945 */ 946 if (index != round_down(end, HPAGE_PMD_NR)) 947 start++; 948 continue; 949 } else if (PageTransHuge(page)) { 950 if (index == round_down(end, HPAGE_PMD_NR)) { 951 /* 952 * Range ends in the middle of THP: 953 * zero out the page 954 */ 955 clear_highpage(page); 956 unlock_page(page); 957 continue; 958 } 959 index += HPAGE_PMD_NR - 1; 960 i += HPAGE_PMD_NR - 1; 961 } 962 963 if (!unfalloc || !PageUptodate(page)) { 964 VM_BUG_ON_PAGE(PageTail(page), page); 965 if (page_mapping(page) == mapping) { 966 VM_BUG_ON_PAGE(PageWriteback(page), page); 967 truncate_inode_page(mapping, page); 968 } else { 969 /* Page was replaced by swap: retry */ 970 unlock_page(page); 971 index--; 972 break; 973 } 974 } 975 unlock_page(page); 976 } 977 pagevec_remove_exceptionals(&pvec); 978 pagevec_release(&pvec); 979 index++; 980 } 981 982 spin_lock_irq(&info->lock); 983 info->swapped -= nr_swaps_freed; 984 shmem_recalc_inode(inode); 985 spin_unlock_irq(&info->lock); 986 } 987 988 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 989 { 990 shmem_undo_range(inode, lstart, lend, false); 991 inode->i_ctime = inode->i_mtime = current_time(inode); 992 } 993 EXPORT_SYMBOL_GPL(shmem_truncate_range); 994 995 static int shmem_getattr(const struct path *path, struct kstat *stat, 996 u32 request_mask, unsigned int query_flags) 997 { 998 struct inode *inode = path->dentry->d_inode; 999 struct shmem_inode_info *info = SHMEM_I(inode); 1000 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1001 1002 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1003 spin_lock_irq(&info->lock); 1004 shmem_recalc_inode(inode); 1005 spin_unlock_irq(&info->lock); 1006 } 1007 generic_fillattr(inode, stat); 1008 1009 if (is_huge_enabled(sb_info)) 1010 stat->blksize = HPAGE_PMD_SIZE; 1011 1012 return 0; 1013 } 1014 1015 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1016 { 1017 struct inode *inode = d_inode(dentry); 1018 struct shmem_inode_info *info = SHMEM_I(inode); 1019 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1020 int error; 1021 1022 error = setattr_prepare(dentry, attr); 1023 if (error) 1024 return error; 1025 1026 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1027 loff_t oldsize = inode->i_size; 1028 loff_t newsize = attr->ia_size; 1029 1030 /* protected by i_mutex */ 1031 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1032 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1033 return -EPERM; 1034 1035 if (newsize != oldsize) { 1036 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1037 oldsize, newsize); 1038 if (error) 1039 return error; 1040 i_size_write(inode, newsize); 1041 inode->i_ctime = inode->i_mtime = current_time(inode); 1042 } 1043 if (newsize <= oldsize) { 1044 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1045 if (oldsize > holebegin) 1046 unmap_mapping_range(inode->i_mapping, 1047 holebegin, 0, 1); 1048 if (info->alloced) 1049 shmem_truncate_range(inode, 1050 newsize, (loff_t)-1); 1051 /* unmap again to remove racily COWed private pages */ 1052 if (oldsize > holebegin) 1053 unmap_mapping_range(inode->i_mapping, 1054 holebegin, 0, 1); 1055 1056 /* 1057 * Part of the huge page can be beyond i_size: subject 1058 * to shrink under memory pressure. 1059 */ 1060 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1061 spin_lock(&sbinfo->shrinklist_lock); 1062 /* 1063 * _careful to defend against unlocked access to 1064 * ->shrink_list in shmem_unused_huge_shrink() 1065 */ 1066 if (list_empty_careful(&info->shrinklist)) { 1067 list_add_tail(&info->shrinklist, 1068 &sbinfo->shrinklist); 1069 sbinfo->shrinklist_len++; 1070 } 1071 spin_unlock(&sbinfo->shrinklist_lock); 1072 } 1073 } 1074 } 1075 1076 setattr_copy(inode, attr); 1077 if (attr->ia_valid & ATTR_MODE) 1078 error = posix_acl_chmod(inode, inode->i_mode); 1079 return error; 1080 } 1081 1082 static void shmem_evict_inode(struct inode *inode) 1083 { 1084 struct shmem_inode_info *info = SHMEM_I(inode); 1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1086 1087 if (inode->i_mapping->a_ops == &shmem_aops) { 1088 shmem_unacct_size(info->flags, inode->i_size); 1089 inode->i_size = 0; 1090 shmem_truncate_range(inode, 0, (loff_t)-1); 1091 if (!list_empty(&info->shrinklist)) { 1092 spin_lock(&sbinfo->shrinklist_lock); 1093 if (!list_empty(&info->shrinklist)) { 1094 list_del_init(&info->shrinklist); 1095 sbinfo->shrinklist_len--; 1096 } 1097 spin_unlock(&sbinfo->shrinklist_lock); 1098 } 1099 if (!list_empty(&info->swaplist)) { 1100 mutex_lock(&shmem_swaplist_mutex); 1101 list_del_init(&info->swaplist); 1102 mutex_unlock(&shmem_swaplist_mutex); 1103 } 1104 } 1105 1106 simple_xattrs_free(&info->xattrs); 1107 WARN_ON(inode->i_blocks); 1108 shmem_free_inode(inode->i_sb); 1109 clear_inode(inode); 1110 } 1111 1112 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1113 { 1114 struct radix_tree_iter iter; 1115 void __rcu **slot; 1116 unsigned long found = -1; 1117 unsigned int checked = 0; 1118 1119 rcu_read_lock(); 1120 radix_tree_for_each_slot(slot, root, &iter, 0) { 1121 void *entry = radix_tree_deref_slot(slot); 1122 1123 if (radix_tree_deref_retry(entry)) { 1124 slot = radix_tree_iter_retry(&iter); 1125 continue; 1126 } 1127 if (entry == item) { 1128 found = iter.index; 1129 break; 1130 } 1131 checked++; 1132 if ((checked % 4096) != 0) 1133 continue; 1134 slot = radix_tree_iter_resume(slot, &iter); 1135 cond_resched_rcu(); 1136 } 1137 1138 rcu_read_unlock(); 1139 return found; 1140 } 1141 1142 /* 1143 * If swap found in inode, free it and move page from swapcache to filecache. 1144 */ 1145 static int shmem_unuse_inode(struct shmem_inode_info *info, 1146 swp_entry_t swap, struct page **pagep) 1147 { 1148 struct address_space *mapping = info->vfs_inode.i_mapping; 1149 void *radswap; 1150 pgoff_t index; 1151 gfp_t gfp; 1152 int error = 0; 1153 1154 radswap = swp_to_radix_entry(swap); 1155 index = find_swap_entry(&mapping->i_pages, radswap); 1156 if (index == -1) 1157 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1158 1159 /* 1160 * Move _head_ to start search for next from here. 1161 * But be careful: shmem_evict_inode checks list_empty without taking 1162 * mutex, and there's an instant in list_move_tail when info->swaplist 1163 * would appear empty, if it were the only one on shmem_swaplist. 1164 */ 1165 if (shmem_swaplist.next != &info->swaplist) 1166 list_move_tail(&shmem_swaplist, &info->swaplist); 1167 1168 gfp = mapping_gfp_mask(mapping); 1169 if (shmem_should_replace_page(*pagep, gfp)) { 1170 mutex_unlock(&shmem_swaplist_mutex); 1171 error = shmem_replace_page(pagep, gfp, info, index); 1172 mutex_lock(&shmem_swaplist_mutex); 1173 /* 1174 * We needed to drop mutex to make that restrictive page 1175 * allocation, but the inode might have been freed while we 1176 * dropped it: although a racing shmem_evict_inode() cannot 1177 * complete without emptying the radix_tree, our page lock 1178 * on this swapcache page is not enough to prevent that - 1179 * free_swap_and_cache() of our swap entry will only 1180 * trylock_page(), removing swap from radix_tree whatever. 1181 * 1182 * We must not proceed to shmem_add_to_page_cache() if the 1183 * inode has been freed, but of course we cannot rely on 1184 * inode or mapping or info to check that. However, we can 1185 * safely check if our swap entry is still in use (and here 1186 * it can't have got reused for another page): if it's still 1187 * in use, then the inode cannot have been freed yet, and we 1188 * can safely proceed (if it's no longer in use, that tells 1189 * nothing about the inode, but we don't need to unuse swap). 1190 */ 1191 if (!page_swapcount(*pagep)) 1192 error = -ENOENT; 1193 } 1194 1195 /* 1196 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1197 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1198 * beneath us (pagelock doesn't help until the page is in pagecache). 1199 */ 1200 if (!error) 1201 error = shmem_add_to_page_cache(*pagep, mapping, index, 1202 radswap); 1203 if (error != -ENOMEM) { 1204 /* 1205 * Truncation and eviction use free_swap_and_cache(), which 1206 * only does trylock page: if we raced, best clean up here. 1207 */ 1208 delete_from_swap_cache(*pagep); 1209 set_page_dirty(*pagep); 1210 if (!error) { 1211 spin_lock_irq(&info->lock); 1212 info->swapped--; 1213 spin_unlock_irq(&info->lock); 1214 swap_free(swap); 1215 } 1216 } 1217 return error; 1218 } 1219 1220 /* 1221 * Search through swapped inodes to find and replace swap by page. 1222 */ 1223 int shmem_unuse(swp_entry_t swap, struct page *page) 1224 { 1225 struct list_head *this, *next; 1226 struct shmem_inode_info *info; 1227 struct mem_cgroup *memcg; 1228 int error = 0; 1229 1230 /* 1231 * There's a faint possibility that swap page was replaced before 1232 * caller locked it: caller will come back later with the right page. 1233 */ 1234 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1235 goto out; 1236 1237 /* 1238 * Charge page using GFP_KERNEL while we can wait, before taking 1239 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1240 * Charged back to the user (not to caller) when swap account is used. 1241 */ 1242 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1243 false); 1244 if (error) 1245 goto out; 1246 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1247 error = -EAGAIN; 1248 1249 mutex_lock(&shmem_swaplist_mutex); 1250 list_for_each_safe(this, next, &shmem_swaplist) { 1251 info = list_entry(this, struct shmem_inode_info, swaplist); 1252 if (info->swapped) 1253 error = shmem_unuse_inode(info, swap, &page); 1254 else 1255 list_del_init(&info->swaplist); 1256 cond_resched(); 1257 if (error != -EAGAIN) 1258 break; 1259 /* found nothing in this: move on to search the next */ 1260 } 1261 mutex_unlock(&shmem_swaplist_mutex); 1262 1263 if (error) { 1264 if (error != -ENOMEM) 1265 error = 0; 1266 mem_cgroup_cancel_charge(page, memcg, false); 1267 } else 1268 mem_cgroup_commit_charge(page, memcg, true, false); 1269 out: 1270 unlock_page(page); 1271 put_page(page); 1272 return error; 1273 } 1274 1275 /* 1276 * Move the page from the page cache to the swap cache. 1277 */ 1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1279 { 1280 struct shmem_inode_info *info; 1281 struct address_space *mapping; 1282 struct inode *inode; 1283 swp_entry_t swap; 1284 pgoff_t index; 1285 1286 VM_BUG_ON_PAGE(PageCompound(page), page); 1287 BUG_ON(!PageLocked(page)); 1288 mapping = page->mapping; 1289 index = page->index; 1290 inode = mapping->host; 1291 info = SHMEM_I(inode); 1292 if (info->flags & VM_LOCKED) 1293 goto redirty; 1294 if (!total_swap_pages) 1295 goto redirty; 1296 1297 /* 1298 * Our capabilities prevent regular writeback or sync from ever calling 1299 * shmem_writepage; but a stacking filesystem might use ->writepage of 1300 * its underlying filesystem, in which case tmpfs should write out to 1301 * swap only in response to memory pressure, and not for the writeback 1302 * threads or sync. 1303 */ 1304 if (!wbc->for_reclaim) { 1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1306 goto redirty; 1307 } 1308 1309 /* 1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1311 * value into swapfile.c, the only way we can correctly account for a 1312 * fallocated page arriving here is now to initialize it and write it. 1313 * 1314 * That's okay for a page already fallocated earlier, but if we have 1315 * not yet completed the fallocation, then (a) we want to keep track 1316 * of this page in case we have to undo it, and (b) it may not be a 1317 * good idea to continue anyway, once we're pushing into swap. So 1318 * reactivate the page, and let shmem_fallocate() quit when too many. 1319 */ 1320 if (!PageUptodate(page)) { 1321 if (inode->i_private) { 1322 struct shmem_falloc *shmem_falloc; 1323 spin_lock(&inode->i_lock); 1324 shmem_falloc = inode->i_private; 1325 if (shmem_falloc && 1326 !shmem_falloc->waitq && 1327 index >= shmem_falloc->start && 1328 index < shmem_falloc->next) 1329 shmem_falloc->nr_unswapped++; 1330 else 1331 shmem_falloc = NULL; 1332 spin_unlock(&inode->i_lock); 1333 if (shmem_falloc) 1334 goto redirty; 1335 } 1336 clear_highpage(page); 1337 flush_dcache_page(page); 1338 SetPageUptodate(page); 1339 } 1340 1341 swap = get_swap_page(page); 1342 if (!swap.val) 1343 goto redirty; 1344 1345 /* 1346 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1347 * if it's not already there. Do it now before the page is 1348 * moved to swap cache, when its pagelock no longer protects 1349 * the inode from eviction. But don't unlock the mutex until 1350 * we've incremented swapped, because shmem_unuse_inode() will 1351 * prune a !swapped inode from the swaplist under this mutex. 1352 */ 1353 mutex_lock(&shmem_swaplist_mutex); 1354 if (list_empty(&info->swaplist)) 1355 list_add_tail(&info->swaplist, &shmem_swaplist); 1356 1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1358 spin_lock_irq(&info->lock); 1359 shmem_recalc_inode(inode); 1360 info->swapped++; 1361 spin_unlock_irq(&info->lock); 1362 1363 swap_shmem_alloc(swap); 1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1365 1366 mutex_unlock(&shmem_swaplist_mutex); 1367 BUG_ON(page_mapped(page)); 1368 swap_writepage(page, wbc); 1369 return 0; 1370 } 1371 1372 mutex_unlock(&shmem_swaplist_mutex); 1373 put_swap_page(page, swap); 1374 redirty: 1375 set_page_dirty(page); 1376 if (wbc->for_reclaim) 1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1378 unlock_page(page); 1379 return 0; 1380 } 1381 1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1384 { 1385 char buffer[64]; 1386 1387 if (!mpol || mpol->mode == MPOL_DEFAULT) 1388 return; /* show nothing */ 1389 1390 mpol_to_str(buffer, sizeof(buffer), mpol); 1391 1392 seq_printf(seq, ",mpol=%s", buffer); 1393 } 1394 1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1396 { 1397 struct mempolicy *mpol = NULL; 1398 if (sbinfo->mpol) { 1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1400 mpol = sbinfo->mpol; 1401 mpol_get(mpol); 1402 spin_unlock(&sbinfo->stat_lock); 1403 } 1404 return mpol; 1405 } 1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1408 { 1409 } 1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1411 { 1412 return NULL; 1413 } 1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1415 #ifndef CONFIG_NUMA 1416 #define vm_policy vm_private_data 1417 #endif 1418 1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1420 struct shmem_inode_info *info, pgoff_t index) 1421 { 1422 /* Create a pseudo vma that just contains the policy */ 1423 memset(vma, 0, sizeof(*vma)); 1424 /* Bias interleave by inode number to distribute better across nodes */ 1425 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1426 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1427 } 1428 1429 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1430 { 1431 /* Drop reference taken by mpol_shared_policy_lookup() */ 1432 mpol_cond_put(vma->vm_policy); 1433 } 1434 1435 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1436 struct shmem_inode_info *info, pgoff_t index) 1437 { 1438 struct vm_area_struct pvma; 1439 struct page *page; 1440 struct vm_fault vmf; 1441 1442 shmem_pseudo_vma_init(&pvma, info, index); 1443 vmf.vma = &pvma; 1444 vmf.address = 0; 1445 page = swap_cluster_readahead(swap, gfp, &vmf); 1446 shmem_pseudo_vma_destroy(&pvma); 1447 1448 return page; 1449 } 1450 1451 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1452 struct shmem_inode_info *info, pgoff_t index) 1453 { 1454 struct vm_area_struct pvma; 1455 struct inode *inode = &info->vfs_inode; 1456 struct address_space *mapping = inode->i_mapping; 1457 pgoff_t idx, hindex; 1458 void __rcu **results; 1459 struct page *page; 1460 1461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1462 return NULL; 1463 1464 hindex = round_down(index, HPAGE_PMD_NR); 1465 rcu_read_lock(); 1466 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx, 1467 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1468 rcu_read_unlock(); 1469 return NULL; 1470 } 1471 rcu_read_unlock(); 1472 1473 shmem_pseudo_vma_init(&pvma, info, hindex); 1474 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1475 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1476 shmem_pseudo_vma_destroy(&pvma); 1477 if (page) 1478 prep_transhuge_page(page); 1479 return page; 1480 } 1481 1482 static struct page *shmem_alloc_page(gfp_t gfp, 1483 struct shmem_inode_info *info, pgoff_t index) 1484 { 1485 struct vm_area_struct pvma; 1486 struct page *page; 1487 1488 shmem_pseudo_vma_init(&pvma, info, index); 1489 page = alloc_page_vma(gfp, &pvma, 0); 1490 shmem_pseudo_vma_destroy(&pvma); 1491 1492 return page; 1493 } 1494 1495 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1496 struct inode *inode, 1497 pgoff_t index, bool huge) 1498 { 1499 struct shmem_inode_info *info = SHMEM_I(inode); 1500 struct page *page; 1501 int nr; 1502 int err = -ENOSPC; 1503 1504 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1505 huge = false; 1506 nr = huge ? HPAGE_PMD_NR : 1; 1507 1508 if (!shmem_inode_acct_block(inode, nr)) 1509 goto failed; 1510 1511 if (huge) 1512 page = shmem_alloc_hugepage(gfp, info, index); 1513 else 1514 page = shmem_alloc_page(gfp, info, index); 1515 if (page) { 1516 __SetPageLocked(page); 1517 __SetPageSwapBacked(page); 1518 return page; 1519 } 1520 1521 err = -ENOMEM; 1522 shmem_inode_unacct_blocks(inode, nr); 1523 failed: 1524 return ERR_PTR(err); 1525 } 1526 1527 /* 1528 * When a page is moved from swapcache to shmem filecache (either by the 1529 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1530 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1531 * ignorance of the mapping it belongs to. If that mapping has special 1532 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1533 * we may need to copy to a suitable page before moving to filecache. 1534 * 1535 * In a future release, this may well be extended to respect cpuset and 1536 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1537 * but for now it is a simple matter of zone. 1538 */ 1539 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1540 { 1541 return page_zonenum(page) > gfp_zone(gfp); 1542 } 1543 1544 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1545 struct shmem_inode_info *info, pgoff_t index) 1546 { 1547 struct page *oldpage, *newpage; 1548 struct address_space *swap_mapping; 1549 pgoff_t swap_index; 1550 int error; 1551 1552 oldpage = *pagep; 1553 swap_index = page_private(oldpage); 1554 swap_mapping = page_mapping(oldpage); 1555 1556 /* 1557 * We have arrived here because our zones are constrained, so don't 1558 * limit chance of success by further cpuset and node constraints. 1559 */ 1560 gfp &= ~GFP_CONSTRAINT_MASK; 1561 newpage = shmem_alloc_page(gfp, info, index); 1562 if (!newpage) 1563 return -ENOMEM; 1564 1565 get_page(newpage); 1566 copy_highpage(newpage, oldpage); 1567 flush_dcache_page(newpage); 1568 1569 __SetPageLocked(newpage); 1570 __SetPageSwapBacked(newpage); 1571 SetPageUptodate(newpage); 1572 set_page_private(newpage, swap_index); 1573 SetPageSwapCache(newpage); 1574 1575 /* 1576 * Our caller will very soon move newpage out of swapcache, but it's 1577 * a nice clean interface for us to replace oldpage by newpage there. 1578 */ 1579 xa_lock_irq(&swap_mapping->i_pages); 1580 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1581 newpage); 1582 if (!error) { 1583 __inc_node_page_state(newpage, NR_FILE_PAGES); 1584 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1585 } 1586 xa_unlock_irq(&swap_mapping->i_pages); 1587 1588 if (unlikely(error)) { 1589 /* 1590 * Is this possible? I think not, now that our callers check 1591 * both PageSwapCache and page_private after getting page lock; 1592 * but be defensive. Reverse old to newpage for clear and free. 1593 */ 1594 oldpage = newpage; 1595 } else { 1596 mem_cgroup_migrate(oldpage, newpage); 1597 lru_cache_add_anon(newpage); 1598 *pagep = newpage; 1599 } 1600 1601 ClearPageSwapCache(oldpage); 1602 set_page_private(oldpage, 0); 1603 1604 unlock_page(oldpage); 1605 put_page(oldpage); 1606 put_page(oldpage); 1607 return error; 1608 } 1609 1610 /* 1611 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1612 * 1613 * If we allocate a new one we do not mark it dirty. That's up to the 1614 * vm. If we swap it in we mark it dirty since we also free the swap 1615 * entry since a page cannot live in both the swap and page cache. 1616 * 1617 * fault_mm and fault_type are only supplied by shmem_fault: 1618 * otherwise they are NULL. 1619 */ 1620 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1621 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1622 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1623 { 1624 struct address_space *mapping = inode->i_mapping; 1625 struct shmem_inode_info *info = SHMEM_I(inode); 1626 struct shmem_sb_info *sbinfo; 1627 struct mm_struct *charge_mm; 1628 struct mem_cgroup *memcg; 1629 struct page *page; 1630 swp_entry_t swap; 1631 enum sgp_type sgp_huge = sgp; 1632 pgoff_t hindex = index; 1633 int error; 1634 int once = 0; 1635 int alloced = 0; 1636 1637 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1638 return -EFBIG; 1639 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1640 sgp = SGP_CACHE; 1641 repeat: 1642 swap.val = 0; 1643 page = find_lock_entry(mapping, index); 1644 if (radix_tree_exceptional_entry(page)) { 1645 swap = radix_to_swp_entry(page); 1646 page = NULL; 1647 } 1648 1649 if (sgp <= SGP_CACHE && 1650 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1651 error = -EINVAL; 1652 goto unlock; 1653 } 1654 1655 if (page && sgp == SGP_WRITE) 1656 mark_page_accessed(page); 1657 1658 /* fallocated page? */ 1659 if (page && !PageUptodate(page)) { 1660 if (sgp != SGP_READ) 1661 goto clear; 1662 unlock_page(page); 1663 put_page(page); 1664 page = NULL; 1665 } 1666 if (page || (sgp == SGP_READ && !swap.val)) { 1667 *pagep = page; 1668 return 0; 1669 } 1670 1671 /* 1672 * Fast cache lookup did not find it: 1673 * bring it back from swap or allocate. 1674 */ 1675 sbinfo = SHMEM_SB(inode->i_sb); 1676 charge_mm = vma ? vma->vm_mm : current->mm; 1677 1678 if (swap.val) { 1679 /* Look it up and read it in.. */ 1680 page = lookup_swap_cache(swap, NULL, 0); 1681 if (!page) { 1682 /* Or update major stats only when swapin succeeds?? */ 1683 if (fault_type) { 1684 *fault_type |= VM_FAULT_MAJOR; 1685 count_vm_event(PGMAJFAULT); 1686 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1687 } 1688 /* Here we actually start the io */ 1689 page = shmem_swapin(swap, gfp, info, index); 1690 if (!page) { 1691 error = -ENOMEM; 1692 goto failed; 1693 } 1694 } 1695 1696 /* We have to do this with page locked to prevent races */ 1697 lock_page(page); 1698 if (!PageSwapCache(page) || page_private(page) != swap.val || 1699 !shmem_confirm_swap(mapping, index, swap)) { 1700 error = -EEXIST; /* try again */ 1701 goto unlock; 1702 } 1703 if (!PageUptodate(page)) { 1704 error = -EIO; 1705 goto failed; 1706 } 1707 wait_on_page_writeback(page); 1708 1709 if (shmem_should_replace_page(page, gfp)) { 1710 error = shmem_replace_page(&page, gfp, info, index); 1711 if (error) 1712 goto failed; 1713 } 1714 1715 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1716 false); 1717 if (!error) { 1718 error = shmem_add_to_page_cache(page, mapping, index, 1719 swp_to_radix_entry(swap)); 1720 /* 1721 * We already confirmed swap under page lock, and make 1722 * no memory allocation here, so usually no possibility 1723 * of error; but free_swap_and_cache() only trylocks a 1724 * page, so it is just possible that the entry has been 1725 * truncated or holepunched since swap was confirmed. 1726 * shmem_undo_range() will have done some of the 1727 * unaccounting, now delete_from_swap_cache() will do 1728 * the rest. 1729 * Reset swap.val? No, leave it so "failed" goes back to 1730 * "repeat": reading a hole and writing should succeed. 1731 */ 1732 if (error) { 1733 mem_cgroup_cancel_charge(page, memcg, false); 1734 delete_from_swap_cache(page); 1735 } 1736 } 1737 if (error) 1738 goto failed; 1739 1740 mem_cgroup_commit_charge(page, memcg, true, false); 1741 1742 spin_lock_irq(&info->lock); 1743 info->swapped--; 1744 shmem_recalc_inode(inode); 1745 spin_unlock_irq(&info->lock); 1746 1747 if (sgp == SGP_WRITE) 1748 mark_page_accessed(page); 1749 1750 delete_from_swap_cache(page); 1751 set_page_dirty(page); 1752 swap_free(swap); 1753 1754 } else { 1755 if (vma && userfaultfd_missing(vma)) { 1756 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1757 return 0; 1758 } 1759 1760 /* shmem_symlink() */ 1761 if (mapping->a_ops != &shmem_aops) 1762 goto alloc_nohuge; 1763 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1764 goto alloc_nohuge; 1765 if (shmem_huge == SHMEM_HUGE_FORCE) 1766 goto alloc_huge; 1767 switch (sbinfo->huge) { 1768 loff_t i_size; 1769 pgoff_t off; 1770 case SHMEM_HUGE_NEVER: 1771 goto alloc_nohuge; 1772 case SHMEM_HUGE_WITHIN_SIZE: 1773 off = round_up(index, HPAGE_PMD_NR); 1774 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1775 if (i_size >= HPAGE_PMD_SIZE && 1776 i_size >> PAGE_SHIFT >= off) 1777 goto alloc_huge; 1778 /* fallthrough */ 1779 case SHMEM_HUGE_ADVISE: 1780 if (sgp_huge == SGP_HUGE) 1781 goto alloc_huge; 1782 /* TODO: implement fadvise() hints */ 1783 goto alloc_nohuge; 1784 } 1785 1786 alloc_huge: 1787 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1788 if (IS_ERR(page)) { 1789 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, 1790 index, false); 1791 } 1792 if (IS_ERR(page)) { 1793 int retry = 5; 1794 error = PTR_ERR(page); 1795 page = NULL; 1796 if (error != -ENOSPC) 1797 goto failed; 1798 /* 1799 * Try to reclaim some spece by splitting a huge page 1800 * beyond i_size on the filesystem. 1801 */ 1802 while (retry--) { 1803 int ret; 1804 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1805 if (ret == SHRINK_STOP) 1806 break; 1807 if (ret) 1808 goto alloc_nohuge; 1809 } 1810 goto failed; 1811 } 1812 1813 if (PageTransHuge(page)) 1814 hindex = round_down(index, HPAGE_PMD_NR); 1815 else 1816 hindex = index; 1817 1818 if (sgp == SGP_WRITE) 1819 __SetPageReferenced(page); 1820 1821 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1822 PageTransHuge(page)); 1823 if (error) 1824 goto unacct; 1825 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1826 compound_order(page)); 1827 if (!error) { 1828 error = shmem_add_to_page_cache(page, mapping, hindex, 1829 NULL); 1830 radix_tree_preload_end(); 1831 } 1832 if (error) { 1833 mem_cgroup_cancel_charge(page, memcg, 1834 PageTransHuge(page)); 1835 goto unacct; 1836 } 1837 mem_cgroup_commit_charge(page, memcg, false, 1838 PageTransHuge(page)); 1839 lru_cache_add_anon(page); 1840 1841 spin_lock_irq(&info->lock); 1842 info->alloced += 1 << compound_order(page); 1843 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1844 shmem_recalc_inode(inode); 1845 spin_unlock_irq(&info->lock); 1846 alloced = true; 1847 1848 if (PageTransHuge(page) && 1849 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1850 hindex + HPAGE_PMD_NR - 1) { 1851 /* 1852 * Part of the huge page is beyond i_size: subject 1853 * to shrink under memory pressure. 1854 */ 1855 spin_lock(&sbinfo->shrinklist_lock); 1856 /* 1857 * _careful to defend against unlocked access to 1858 * ->shrink_list in shmem_unused_huge_shrink() 1859 */ 1860 if (list_empty_careful(&info->shrinklist)) { 1861 list_add_tail(&info->shrinklist, 1862 &sbinfo->shrinklist); 1863 sbinfo->shrinklist_len++; 1864 } 1865 spin_unlock(&sbinfo->shrinklist_lock); 1866 } 1867 1868 /* 1869 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1870 */ 1871 if (sgp == SGP_FALLOC) 1872 sgp = SGP_WRITE; 1873 clear: 1874 /* 1875 * Let SGP_WRITE caller clear ends if write does not fill page; 1876 * but SGP_FALLOC on a page fallocated earlier must initialize 1877 * it now, lest undo on failure cancel our earlier guarantee. 1878 */ 1879 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1880 struct page *head = compound_head(page); 1881 int i; 1882 1883 for (i = 0; i < (1 << compound_order(head)); i++) { 1884 clear_highpage(head + i); 1885 flush_dcache_page(head + i); 1886 } 1887 SetPageUptodate(head); 1888 } 1889 } 1890 1891 /* Perhaps the file has been truncated since we checked */ 1892 if (sgp <= SGP_CACHE && 1893 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1894 if (alloced) { 1895 ClearPageDirty(page); 1896 delete_from_page_cache(page); 1897 spin_lock_irq(&info->lock); 1898 shmem_recalc_inode(inode); 1899 spin_unlock_irq(&info->lock); 1900 } 1901 error = -EINVAL; 1902 goto unlock; 1903 } 1904 *pagep = page + index - hindex; 1905 return 0; 1906 1907 /* 1908 * Error recovery. 1909 */ 1910 unacct: 1911 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1912 1913 if (PageTransHuge(page)) { 1914 unlock_page(page); 1915 put_page(page); 1916 goto alloc_nohuge; 1917 } 1918 failed: 1919 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1920 error = -EEXIST; 1921 unlock: 1922 if (page) { 1923 unlock_page(page); 1924 put_page(page); 1925 } 1926 if (error == -ENOSPC && !once++) { 1927 spin_lock_irq(&info->lock); 1928 shmem_recalc_inode(inode); 1929 spin_unlock_irq(&info->lock); 1930 goto repeat; 1931 } 1932 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1933 goto repeat; 1934 return error; 1935 } 1936 1937 /* 1938 * This is like autoremove_wake_function, but it removes the wait queue 1939 * entry unconditionally - even if something else had already woken the 1940 * target. 1941 */ 1942 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1943 { 1944 int ret = default_wake_function(wait, mode, sync, key); 1945 list_del_init(&wait->entry); 1946 return ret; 1947 } 1948 1949 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1950 { 1951 struct vm_area_struct *vma = vmf->vma; 1952 struct inode *inode = file_inode(vma->vm_file); 1953 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1954 enum sgp_type sgp; 1955 int err; 1956 vm_fault_t ret = VM_FAULT_LOCKED; 1957 1958 /* 1959 * Trinity finds that probing a hole which tmpfs is punching can 1960 * prevent the hole-punch from ever completing: which in turn 1961 * locks writers out with its hold on i_mutex. So refrain from 1962 * faulting pages into the hole while it's being punched. Although 1963 * shmem_undo_range() does remove the additions, it may be unable to 1964 * keep up, as each new page needs its own unmap_mapping_range() call, 1965 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1966 * 1967 * It does not matter if we sometimes reach this check just before the 1968 * hole-punch begins, so that one fault then races with the punch: 1969 * we just need to make racing faults a rare case. 1970 * 1971 * The implementation below would be much simpler if we just used a 1972 * standard mutex or completion: but we cannot take i_mutex in fault, 1973 * and bloating every shmem inode for this unlikely case would be sad. 1974 */ 1975 if (unlikely(inode->i_private)) { 1976 struct shmem_falloc *shmem_falloc; 1977 1978 spin_lock(&inode->i_lock); 1979 shmem_falloc = inode->i_private; 1980 if (shmem_falloc && 1981 shmem_falloc->waitq && 1982 vmf->pgoff >= shmem_falloc->start && 1983 vmf->pgoff < shmem_falloc->next) { 1984 wait_queue_head_t *shmem_falloc_waitq; 1985 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1986 1987 ret = VM_FAULT_NOPAGE; 1988 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1989 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1990 /* It's polite to up mmap_sem if we can */ 1991 up_read(&vma->vm_mm->mmap_sem); 1992 ret = VM_FAULT_RETRY; 1993 } 1994 1995 shmem_falloc_waitq = shmem_falloc->waitq; 1996 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1997 TASK_UNINTERRUPTIBLE); 1998 spin_unlock(&inode->i_lock); 1999 schedule(); 2000 2001 /* 2002 * shmem_falloc_waitq points into the shmem_fallocate() 2003 * stack of the hole-punching task: shmem_falloc_waitq 2004 * is usually invalid by the time we reach here, but 2005 * finish_wait() does not dereference it in that case; 2006 * though i_lock needed lest racing with wake_up_all(). 2007 */ 2008 spin_lock(&inode->i_lock); 2009 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2010 spin_unlock(&inode->i_lock); 2011 return ret; 2012 } 2013 spin_unlock(&inode->i_lock); 2014 } 2015 2016 sgp = SGP_CACHE; 2017 2018 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2019 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2020 sgp = SGP_NOHUGE; 2021 else if (vma->vm_flags & VM_HUGEPAGE) 2022 sgp = SGP_HUGE; 2023 2024 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2025 gfp, vma, vmf, &ret); 2026 if (err) 2027 return vmf_error(err); 2028 return ret; 2029 } 2030 2031 unsigned long shmem_get_unmapped_area(struct file *file, 2032 unsigned long uaddr, unsigned long len, 2033 unsigned long pgoff, unsigned long flags) 2034 { 2035 unsigned long (*get_area)(struct file *, 2036 unsigned long, unsigned long, unsigned long, unsigned long); 2037 unsigned long addr; 2038 unsigned long offset; 2039 unsigned long inflated_len; 2040 unsigned long inflated_addr; 2041 unsigned long inflated_offset; 2042 2043 if (len > TASK_SIZE) 2044 return -ENOMEM; 2045 2046 get_area = current->mm->get_unmapped_area; 2047 addr = get_area(file, uaddr, len, pgoff, flags); 2048 2049 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2050 return addr; 2051 if (IS_ERR_VALUE(addr)) 2052 return addr; 2053 if (addr & ~PAGE_MASK) 2054 return addr; 2055 if (addr > TASK_SIZE - len) 2056 return addr; 2057 2058 if (shmem_huge == SHMEM_HUGE_DENY) 2059 return addr; 2060 if (len < HPAGE_PMD_SIZE) 2061 return addr; 2062 if (flags & MAP_FIXED) 2063 return addr; 2064 /* 2065 * Our priority is to support MAP_SHARED mapped hugely; 2066 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2067 * But if caller specified an address hint, respect that as before. 2068 */ 2069 if (uaddr) 2070 return addr; 2071 2072 if (shmem_huge != SHMEM_HUGE_FORCE) { 2073 struct super_block *sb; 2074 2075 if (file) { 2076 VM_BUG_ON(file->f_op != &shmem_file_operations); 2077 sb = file_inode(file)->i_sb; 2078 } else { 2079 /* 2080 * Called directly from mm/mmap.c, or drivers/char/mem.c 2081 * for "/dev/zero", to create a shared anonymous object. 2082 */ 2083 if (IS_ERR(shm_mnt)) 2084 return addr; 2085 sb = shm_mnt->mnt_sb; 2086 } 2087 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2088 return addr; 2089 } 2090 2091 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2092 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2093 return addr; 2094 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2095 return addr; 2096 2097 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2098 if (inflated_len > TASK_SIZE) 2099 return addr; 2100 if (inflated_len < len) 2101 return addr; 2102 2103 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2104 if (IS_ERR_VALUE(inflated_addr)) 2105 return addr; 2106 if (inflated_addr & ~PAGE_MASK) 2107 return addr; 2108 2109 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2110 inflated_addr += offset - inflated_offset; 2111 if (inflated_offset > offset) 2112 inflated_addr += HPAGE_PMD_SIZE; 2113 2114 if (inflated_addr > TASK_SIZE - len) 2115 return addr; 2116 return inflated_addr; 2117 } 2118 2119 #ifdef CONFIG_NUMA 2120 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2121 { 2122 struct inode *inode = file_inode(vma->vm_file); 2123 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2124 } 2125 2126 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2127 unsigned long addr) 2128 { 2129 struct inode *inode = file_inode(vma->vm_file); 2130 pgoff_t index; 2131 2132 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2133 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2134 } 2135 #endif 2136 2137 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2138 { 2139 struct inode *inode = file_inode(file); 2140 struct shmem_inode_info *info = SHMEM_I(inode); 2141 int retval = -ENOMEM; 2142 2143 spin_lock_irq(&info->lock); 2144 if (lock && !(info->flags & VM_LOCKED)) { 2145 if (!user_shm_lock(inode->i_size, user)) 2146 goto out_nomem; 2147 info->flags |= VM_LOCKED; 2148 mapping_set_unevictable(file->f_mapping); 2149 } 2150 if (!lock && (info->flags & VM_LOCKED) && user) { 2151 user_shm_unlock(inode->i_size, user); 2152 info->flags &= ~VM_LOCKED; 2153 mapping_clear_unevictable(file->f_mapping); 2154 } 2155 retval = 0; 2156 2157 out_nomem: 2158 spin_unlock_irq(&info->lock); 2159 return retval; 2160 } 2161 2162 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2163 { 2164 file_accessed(file); 2165 vma->vm_ops = &shmem_vm_ops; 2166 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2167 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2168 (vma->vm_end & HPAGE_PMD_MASK)) { 2169 khugepaged_enter(vma, vma->vm_flags); 2170 } 2171 return 0; 2172 } 2173 2174 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2175 umode_t mode, dev_t dev, unsigned long flags) 2176 { 2177 struct inode *inode; 2178 struct shmem_inode_info *info; 2179 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2180 2181 if (shmem_reserve_inode(sb)) 2182 return NULL; 2183 2184 inode = new_inode(sb); 2185 if (inode) { 2186 inode->i_ino = get_next_ino(); 2187 inode_init_owner(inode, dir, mode); 2188 inode->i_blocks = 0; 2189 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2190 inode->i_generation = get_seconds(); 2191 info = SHMEM_I(inode); 2192 memset(info, 0, (char *)inode - (char *)info); 2193 spin_lock_init(&info->lock); 2194 info->seals = F_SEAL_SEAL; 2195 info->flags = flags & VM_NORESERVE; 2196 INIT_LIST_HEAD(&info->shrinklist); 2197 INIT_LIST_HEAD(&info->swaplist); 2198 simple_xattrs_init(&info->xattrs); 2199 cache_no_acl(inode); 2200 2201 switch (mode & S_IFMT) { 2202 default: 2203 inode->i_op = &shmem_special_inode_operations; 2204 init_special_inode(inode, mode, dev); 2205 break; 2206 case S_IFREG: 2207 inode->i_mapping->a_ops = &shmem_aops; 2208 inode->i_op = &shmem_inode_operations; 2209 inode->i_fop = &shmem_file_operations; 2210 mpol_shared_policy_init(&info->policy, 2211 shmem_get_sbmpol(sbinfo)); 2212 break; 2213 case S_IFDIR: 2214 inc_nlink(inode); 2215 /* Some things misbehave if size == 0 on a directory */ 2216 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2217 inode->i_op = &shmem_dir_inode_operations; 2218 inode->i_fop = &simple_dir_operations; 2219 break; 2220 case S_IFLNK: 2221 /* 2222 * Must not load anything in the rbtree, 2223 * mpol_free_shared_policy will not be called. 2224 */ 2225 mpol_shared_policy_init(&info->policy, NULL); 2226 break; 2227 } 2228 } else 2229 shmem_free_inode(sb); 2230 return inode; 2231 } 2232 2233 bool shmem_mapping(struct address_space *mapping) 2234 { 2235 return mapping->a_ops == &shmem_aops; 2236 } 2237 2238 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2239 pmd_t *dst_pmd, 2240 struct vm_area_struct *dst_vma, 2241 unsigned long dst_addr, 2242 unsigned long src_addr, 2243 bool zeropage, 2244 struct page **pagep) 2245 { 2246 struct inode *inode = file_inode(dst_vma->vm_file); 2247 struct shmem_inode_info *info = SHMEM_I(inode); 2248 struct address_space *mapping = inode->i_mapping; 2249 gfp_t gfp = mapping_gfp_mask(mapping); 2250 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2251 struct mem_cgroup *memcg; 2252 spinlock_t *ptl; 2253 void *page_kaddr; 2254 struct page *page; 2255 pte_t _dst_pte, *dst_pte; 2256 int ret; 2257 2258 ret = -ENOMEM; 2259 if (!shmem_inode_acct_block(inode, 1)) 2260 goto out; 2261 2262 if (!*pagep) { 2263 page = shmem_alloc_page(gfp, info, pgoff); 2264 if (!page) 2265 goto out_unacct_blocks; 2266 2267 if (!zeropage) { /* mcopy_atomic */ 2268 page_kaddr = kmap_atomic(page); 2269 ret = copy_from_user(page_kaddr, 2270 (const void __user *)src_addr, 2271 PAGE_SIZE); 2272 kunmap_atomic(page_kaddr); 2273 2274 /* fallback to copy_from_user outside mmap_sem */ 2275 if (unlikely(ret)) { 2276 *pagep = page; 2277 shmem_inode_unacct_blocks(inode, 1); 2278 /* don't free the page */ 2279 return -EFAULT; 2280 } 2281 } else { /* mfill_zeropage_atomic */ 2282 clear_highpage(page); 2283 } 2284 } else { 2285 page = *pagep; 2286 *pagep = NULL; 2287 } 2288 2289 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2290 __SetPageLocked(page); 2291 __SetPageSwapBacked(page); 2292 __SetPageUptodate(page); 2293 2294 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2295 if (ret) 2296 goto out_release; 2297 2298 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2299 if (!ret) { 2300 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2301 radix_tree_preload_end(); 2302 } 2303 if (ret) 2304 goto out_release_uncharge; 2305 2306 mem_cgroup_commit_charge(page, memcg, false, false); 2307 2308 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2309 if (dst_vma->vm_flags & VM_WRITE) 2310 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2311 2312 ret = -EEXIST; 2313 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2314 if (!pte_none(*dst_pte)) 2315 goto out_release_uncharge_unlock; 2316 2317 lru_cache_add_anon(page); 2318 2319 spin_lock(&info->lock); 2320 info->alloced++; 2321 inode->i_blocks += BLOCKS_PER_PAGE; 2322 shmem_recalc_inode(inode); 2323 spin_unlock(&info->lock); 2324 2325 inc_mm_counter(dst_mm, mm_counter_file(page)); 2326 page_add_file_rmap(page, false); 2327 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2328 2329 /* No need to invalidate - it was non-present before */ 2330 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2331 unlock_page(page); 2332 pte_unmap_unlock(dst_pte, ptl); 2333 ret = 0; 2334 out: 2335 return ret; 2336 out_release_uncharge_unlock: 2337 pte_unmap_unlock(dst_pte, ptl); 2338 out_release_uncharge: 2339 mem_cgroup_cancel_charge(page, memcg, false); 2340 out_release: 2341 unlock_page(page); 2342 put_page(page); 2343 out_unacct_blocks: 2344 shmem_inode_unacct_blocks(inode, 1); 2345 goto out; 2346 } 2347 2348 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2349 pmd_t *dst_pmd, 2350 struct vm_area_struct *dst_vma, 2351 unsigned long dst_addr, 2352 unsigned long src_addr, 2353 struct page **pagep) 2354 { 2355 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2356 dst_addr, src_addr, false, pagep); 2357 } 2358 2359 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2360 pmd_t *dst_pmd, 2361 struct vm_area_struct *dst_vma, 2362 unsigned long dst_addr) 2363 { 2364 struct page *page = NULL; 2365 2366 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2367 dst_addr, 0, true, &page); 2368 } 2369 2370 #ifdef CONFIG_TMPFS 2371 static const struct inode_operations shmem_symlink_inode_operations; 2372 static const struct inode_operations shmem_short_symlink_operations; 2373 2374 #ifdef CONFIG_TMPFS_XATTR 2375 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2376 #else 2377 #define shmem_initxattrs NULL 2378 #endif 2379 2380 static int 2381 shmem_write_begin(struct file *file, struct address_space *mapping, 2382 loff_t pos, unsigned len, unsigned flags, 2383 struct page **pagep, void **fsdata) 2384 { 2385 struct inode *inode = mapping->host; 2386 struct shmem_inode_info *info = SHMEM_I(inode); 2387 pgoff_t index = pos >> PAGE_SHIFT; 2388 2389 /* i_mutex is held by caller */ 2390 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2391 if (info->seals & F_SEAL_WRITE) 2392 return -EPERM; 2393 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2394 return -EPERM; 2395 } 2396 2397 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2398 } 2399 2400 static int 2401 shmem_write_end(struct file *file, struct address_space *mapping, 2402 loff_t pos, unsigned len, unsigned copied, 2403 struct page *page, void *fsdata) 2404 { 2405 struct inode *inode = mapping->host; 2406 2407 if (pos + copied > inode->i_size) 2408 i_size_write(inode, pos + copied); 2409 2410 if (!PageUptodate(page)) { 2411 struct page *head = compound_head(page); 2412 if (PageTransCompound(page)) { 2413 int i; 2414 2415 for (i = 0; i < HPAGE_PMD_NR; i++) { 2416 if (head + i == page) 2417 continue; 2418 clear_highpage(head + i); 2419 flush_dcache_page(head + i); 2420 } 2421 } 2422 if (copied < PAGE_SIZE) { 2423 unsigned from = pos & (PAGE_SIZE - 1); 2424 zero_user_segments(page, 0, from, 2425 from + copied, PAGE_SIZE); 2426 } 2427 SetPageUptodate(head); 2428 } 2429 set_page_dirty(page); 2430 unlock_page(page); 2431 put_page(page); 2432 2433 return copied; 2434 } 2435 2436 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2437 { 2438 struct file *file = iocb->ki_filp; 2439 struct inode *inode = file_inode(file); 2440 struct address_space *mapping = inode->i_mapping; 2441 pgoff_t index; 2442 unsigned long offset; 2443 enum sgp_type sgp = SGP_READ; 2444 int error = 0; 2445 ssize_t retval = 0; 2446 loff_t *ppos = &iocb->ki_pos; 2447 2448 /* 2449 * Might this read be for a stacking filesystem? Then when reading 2450 * holes of a sparse file, we actually need to allocate those pages, 2451 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2452 */ 2453 if (!iter_is_iovec(to)) 2454 sgp = SGP_CACHE; 2455 2456 index = *ppos >> PAGE_SHIFT; 2457 offset = *ppos & ~PAGE_MASK; 2458 2459 for (;;) { 2460 struct page *page = NULL; 2461 pgoff_t end_index; 2462 unsigned long nr, ret; 2463 loff_t i_size = i_size_read(inode); 2464 2465 end_index = i_size >> PAGE_SHIFT; 2466 if (index > end_index) 2467 break; 2468 if (index == end_index) { 2469 nr = i_size & ~PAGE_MASK; 2470 if (nr <= offset) 2471 break; 2472 } 2473 2474 error = shmem_getpage(inode, index, &page, sgp); 2475 if (error) { 2476 if (error == -EINVAL) 2477 error = 0; 2478 break; 2479 } 2480 if (page) { 2481 if (sgp == SGP_CACHE) 2482 set_page_dirty(page); 2483 unlock_page(page); 2484 } 2485 2486 /* 2487 * We must evaluate after, since reads (unlike writes) 2488 * are called without i_mutex protection against truncate 2489 */ 2490 nr = PAGE_SIZE; 2491 i_size = i_size_read(inode); 2492 end_index = i_size >> PAGE_SHIFT; 2493 if (index == end_index) { 2494 nr = i_size & ~PAGE_MASK; 2495 if (nr <= offset) { 2496 if (page) 2497 put_page(page); 2498 break; 2499 } 2500 } 2501 nr -= offset; 2502 2503 if (page) { 2504 /* 2505 * If users can be writing to this page using arbitrary 2506 * virtual addresses, take care about potential aliasing 2507 * before reading the page on the kernel side. 2508 */ 2509 if (mapping_writably_mapped(mapping)) 2510 flush_dcache_page(page); 2511 /* 2512 * Mark the page accessed if we read the beginning. 2513 */ 2514 if (!offset) 2515 mark_page_accessed(page); 2516 } else { 2517 page = ZERO_PAGE(0); 2518 get_page(page); 2519 } 2520 2521 /* 2522 * Ok, we have the page, and it's up-to-date, so 2523 * now we can copy it to user space... 2524 */ 2525 ret = copy_page_to_iter(page, offset, nr, to); 2526 retval += ret; 2527 offset += ret; 2528 index += offset >> PAGE_SHIFT; 2529 offset &= ~PAGE_MASK; 2530 2531 put_page(page); 2532 if (!iov_iter_count(to)) 2533 break; 2534 if (ret < nr) { 2535 error = -EFAULT; 2536 break; 2537 } 2538 cond_resched(); 2539 } 2540 2541 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2542 file_accessed(file); 2543 return retval ? retval : error; 2544 } 2545 2546 /* 2547 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2548 */ 2549 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2550 pgoff_t index, pgoff_t end, int whence) 2551 { 2552 struct page *page; 2553 struct pagevec pvec; 2554 pgoff_t indices[PAGEVEC_SIZE]; 2555 bool done = false; 2556 int i; 2557 2558 pagevec_init(&pvec); 2559 pvec.nr = 1; /* start small: we may be there already */ 2560 while (!done) { 2561 pvec.nr = find_get_entries(mapping, index, 2562 pvec.nr, pvec.pages, indices); 2563 if (!pvec.nr) { 2564 if (whence == SEEK_DATA) 2565 index = end; 2566 break; 2567 } 2568 for (i = 0; i < pvec.nr; i++, index++) { 2569 if (index < indices[i]) { 2570 if (whence == SEEK_HOLE) { 2571 done = true; 2572 break; 2573 } 2574 index = indices[i]; 2575 } 2576 page = pvec.pages[i]; 2577 if (page && !radix_tree_exceptional_entry(page)) { 2578 if (!PageUptodate(page)) 2579 page = NULL; 2580 } 2581 if (index >= end || 2582 (page && whence == SEEK_DATA) || 2583 (!page && whence == SEEK_HOLE)) { 2584 done = true; 2585 break; 2586 } 2587 } 2588 pagevec_remove_exceptionals(&pvec); 2589 pagevec_release(&pvec); 2590 pvec.nr = PAGEVEC_SIZE; 2591 cond_resched(); 2592 } 2593 return index; 2594 } 2595 2596 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2597 { 2598 struct address_space *mapping = file->f_mapping; 2599 struct inode *inode = mapping->host; 2600 pgoff_t start, end; 2601 loff_t new_offset; 2602 2603 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2604 return generic_file_llseek_size(file, offset, whence, 2605 MAX_LFS_FILESIZE, i_size_read(inode)); 2606 inode_lock(inode); 2607 /* We're holding i_mutex so we can access i_size directly */ 2608 2609 if (offset < 0) 2610 offset = -EINVAL; 2611 else if (offset >= inode->i_size) 2612 offset = -ENXIO; 2613 else { 2614 start = offset >> PAGE_SHIFT; 2615 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2616 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2617 new_offset <<= PAGE_SHIFT; 2618 if (new_offset > offset) { 2619 if (new_offset < inode->i_size) 2620 offset = new_offset; 2621 else if (whence == SEEK_DATA) 2622 offset = -ENXIO; 2623 else 2624 offset = inode->i_size; 2625 } 2626 } 2627 2628 if (offset >= 0) 2629 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2630 inode_unlock(inode); 2631 return offset; 2632 } 2633 2634 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2635 loff_t len) 2636 { 2637 struct inode *inode = file_inode(file); 2638 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2639 struct shmem_inode_info *info = SHMEM_I(inode); 2640 struct shmem_falloc shmem_falloc; 2641 pgoff_t start, index, end; 2642 int error; 2643 2644 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2645 return -EOPNOTSUPP; 2646 2647 inode_lock(inode); 2648 2649 if (mode & FALLOC_FL_PUNCH_HOLE) { 2650 struct address_space *mapping = file->f_mapping; 2651 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2652 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2653 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2654 2655 /* protected by i_mutex */ 2656 if (info->seals & F_SEAL_WRITE) { 2657 error = -EPERM; 2658 goto out; 2659 } 2660 2661 shmem_falloc.waitq = &shmem_falloc_waitq; 2662 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2663 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2664 spin_lock(&inode->i_lock); 2665 inode->i_private = &shmem_falloc; 2666 spin_unlock(&inode->i_lock); 2667 2668 if ((u64)unmap_end > (u64)unmap_start) 2669 unmap_mapping_range(mapping, unmap_start, 2670 1 + unmap_end - unmap_start, 0); 2671 shmem_truncate_range(inode, offset, offset + len - 1); 2672 /* No need to unmap again: hole-punching leaves COWed pages */ 2673 2674 spin_lock(&inode->i_lock); 2675 inode->i_private = NULL; 2676 wake_up_all(&shmem_falloc_waitq); 2677 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2678 spin_unlock(&inode->i_lock); 2679 error = 0; 2680 goto out; 2681 } 2682 2683 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2684 error = inode_newsize_ok(inode, offset + len); 2685 if (error) 2686 goto out; 2687 2688 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2689 error = -EPERM; 2690 goto out; 2691 } 2692 2693 start = offset >> PAGE_SHIFT; 2694 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2695 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2696 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2697 error = -ENOSPC; 2698 goto out; 2699 } 2700 2701 shmem_falloc.waitq = NULL; 2702 shmem_falloc.start = start; 2703 shmem_falloc.next = start; 2704 shmem_falloc.nr_falloced = 0; 2705 shmem_falloc.nr_unswapped = 0; 2706 spin_lock(&inode->i_lock); 2707 inode->i_private = &shmem_falloc; 2708 spin_unlock(&inode->i_lock); 2709 2710 for (index = start; index < end; index++) { 2711 struct page *page; 2712 2713 /* 2714 * Good, the fallocate(2) manpage permits EINTR: we may have 2715 * been interrupted because we are using up too much memory. 2716 */ 2717 if (signal_pending(current)) 2718 error = -EINTR; 2719 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2720 error = -ENOMEM; 2721 else 2722 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2723 if (error) { 2724 /* Remove the !PageUptodate pages we added */ 2725 if (index > start) { 2726 shmem_undo_range(inode, 2727 (loff_t)start << PAGE_SHIFT, 2728 ((loff_t)index << PAGE_SHIFT) - 1, true); 2729 } 2730 goto undone; 2731 } 2732 2733 /* 2734 * Inform shmem_writepage() how far we have reached. 2735 * No need for lock or barrier: we have the page lock. 2736 */ 2737 shmem_falloc.next++; 2738 if (!PageUptodate(page)) 2739 shmem_falloc.nr_falloced++; 2740 2741 /* 2742 * If !PageUptodate, leave it that way so that freeable pages 2743 * can be recognized if we need to rollback on error later. 2744 * But set_page_dirty so that memory pressure will swap rather 2745 * than free the pages we are allocating (and SGP_CACHE pages 2746 * might still be clean: we now need to mark those dirty too). 2747 */ 2748 set_page_dirty(page); 2749 unlock_page(page); 2750 put_page(page); 2751 cond_resched(); 2752 } 2753 2754 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2755 i_size_write(inode, offset + len); 2756 inode->i_ctime = current_time(inode); 2757 undone: 2758 spin_lock(&inode->i_lock); 2759 inode->i_private = NULL; 2760 spin_unlock(&inode->i_lock); 2761 out: 2762 inode_unlock(inode); 2763 return error; 2764 } 2765 2766 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2767 { 2768 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2769 2770 buf->f_type = TMPFS_MAGIC; 2771 buf->f_bsize = PAGE_SIZE; 2772 buf->f_namelen = NAME_MAX; 2773 if (sbinfo->max_blocks) { 2774 buf->f_blocks = sbinfo->max_blocks; 2775 buf->f_bavail = 2776 buf->f_bfree = sbinfo->max_blocks - 2777 percpu_counter_sum(&sbinfo->used_blocks); 2778 } 2779 if (sbinfo->max_inodes) { 2780 buf->f_files = sbinfo->max_inodes; 2781 buf->f_ffree = sbinfo->free_inodes; 2782 } 2783 /* else leave those fields 0 like simple_statfs */ 2784 return 0; 2785 } 2786 2787 /* 2788 * File creation. Allocate an inode, and we're done.. 2789 */ 2790 static int 2791 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2792 { 2793 struct inode *inode; 2794 int error = -ENOSPC; 2795 2796 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2797 if (inode) { 2798 error = simple_acl_create(dir, inode); 2799 if (error) 2800 goto out_iput; 2801 error = security_inode_init_security(inode, dir, 2802 &dentry->d_name, 2803 shmem_initxattrs, NULL); 2804 if (error && error != -EOPNOTSUPP) 2805 goto out_iput; 2806 2807 error = 0; 2808 dir->i_size += BOGO_DIRENT_SIZE; 2809 dir->i_ctime = dir->i_mtime = current_time(dir); 2810 d_instantiate(dentry, inode); 2811 dget(dentry); /* Extra count - pin the dentry in core */ 2812 } 2813 return error; 2814 out_iput: 2815 iput(inode); 2816 return error; 2817 } 2818 2819 static int 2820 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2821 { 2822 struct inode *inode; 2823 int error = -ENOSPC; 2824 2825 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2826 if (inode) { 2827 error = security_inode_init_security(inode, dir, 2828 NULL, 2829 shmem_initxattrs, NULL); 2830 if (error && error != -EOPNOTSUPP) 2831 goto out_iput; 2832 error = simple_acl_create(dir, inode); 2833 if (error) 2834 goto out_iput; 2835 d_tmpfile(dentry, inode); 2836 } 2837 return error; 2838 out_iput: 2839 iput(inode); 2840 return error; 2841 } 2842 2843 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2844 { 2845 int error; 2846 2847 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2848 return error; 2849 inc_nlink(dir); 2850 return 0; 2851 } 2852 2853 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2854 bool excl) 2855 { 2856 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2857 } 2858 2859 /* 2860 * Link a file.. 2861 */ 2862 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2863 { 2864 struct inode *inode = d_inode(old_dentry); 2865 int ret; 2866 2867 /* 2868 * No ordinary (disk based) filesystem counts links as inodes; 2869 * but each new link needs a new dentry, pinning lowmem, and 2870 * tmpfs dentries cannot be pruned until they are unlinked. 2871 */ 2872 ret = shmem_reserve_inode(inode->i_sb); 2873 if (ret) 2874 goto out; 2875 2876 dir->i_size += BOGO_DIRENT_SIZE; 2877 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2878 inc_nlink(inode); 2879 ihold(inode); /* New dentry reference */ 2880 dget(dentry); /* Extra pinning count for the created dentry */ 2881 d_instantiate(dentry, inode); 2882 out: 2883 return ret; 2884 } 2885 2886 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2887 { 2888 struct inode *inode = d_inode(dentry); 2889 2890 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2891 shmem_free_inode(inode->i_sb); 2892 2893 dir->i_size -= BOGO_DIRENT_SIZE; 2894 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2895 drop_nlink(inode); 2896 dput(dentry); /* Undo the count from "create" - this does all the work */ 2897 return 0; 2898 } 2899 2900 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2901 { 2902 if (!simple_empty(dentry)) 2903 return -ENOTEMPTY; 2904 2905 drop_nlink(d_inode(dentry)); 2906 drop_nlink(dir); 2907 return shmem_unlink(dir, dentry); 2908 } 2909 2910 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2911 { 2912 bool old_is_dir = d_is_dir(old_dentry); 2913 bool new_is_dir = d_is_dir(new_dentry); 2914 2915 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2916 if (old_is_dir) { 2917 drop_nlink(old_dir); 2918 inc_nlink(new_dir); 2919 } else { 2920 drop_nlink(new_dir); 2921 inc_nlink(old_dir); 2922 } 2923 } 2924 old_dir->i_ctime = old_dir->i_mtime = 2925 new_dir->i_ctime = new_dir->i_mtime = 2926 d_inode(old_dentry)->i_ctime = 2927 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2928 2929 return 0; 2930 } 2931 2932 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2933 { 2934 struct dentry *whiteout; 2935 int error; 2936 2937 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2938 if (!whiteout) 2939 return -ENOMEM; 2940 2941 error = shmem_mknod(old_dir, whiteout, 2942 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2943 dput(whiteout); 2944 if (error) 2945 return error; 2946 2947 /* 2948 * Cheat and hash the whiteout while the old dentry is still in 2949 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2950 * 2951 * d_lookup() will consistently find one of them at this point, 2952 * not sure which one, but that isn't even important. 2953 */ 2954 d_rehash(whiteout); 2955 return 0; 2956 } 2957 2958 /* 2959 * The VFS layer already does all the dentry stuff for rename, 2960 * we just have to decrement the usage count for the target if 2961 * it exists so that the VFS layer correctly free's it when it 2962 * gets overwritten. 2963 */ 2964 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2965 { 2966 struct inode *inode = d_inode(old_dentry); 2967 int they_are_dirs = S_ISDIR(inode->i_mode); 2968 2969 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2970 return -EINVAL; 2971 2972 if (flags & RENAME_EXCHANGE) 2973 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2974 2975 if (!simple_empty(new_dentry)) 2976 return -ENOTEMPTY; 2977 2978 if (flags & RENAME_WHITEOUT) { 2979 int error; 2980 2981 error = shmem_whiteout(old_dir, old_dentry); 2982 if (error) 2983 return error; 2984 } 2985 2986 if (d_really_is_positive(new_dentry)) { 2987 (void) shmem_unlink(new_dir, new_dentry); 2988 if (they_are_dirs) { 2989 drop_nlink(d_inode(new_dentry)); 2990 drop_nlink(old_dir); 2991 } 2992 } else if (they_are_dirs) { 2993 drop_nlink(old_dir); 2994 inc_nlink(new_dir); 2995 } 2996 2997 old_dir->i_size -= BOGO_DIRENT_SIZE; 2998 new_dir->i_size += BOGO_DIRENT_SIZE; 2999 old_dir->i_ctime = old_dir->i_mtime = 3000 new_dir->i_ctime = new_dir->i_mtime = 3001 inode->i_ctime = current_time(old_dir); 3002 return 0; 3003 } 3004 3005 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3006 { 3007 int error; 3008 int len; 3009 struct inode *inode; 3010 struct page *page; 3011 3012 len = strlen(symname) + 1; 3013 if (len > PAGE_SIZE) 3014 return -ENAMETOOLONG; 3015 3016 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3017 VM_NORESERVE); 3018 if (!inode) 3019 return -ENOSPC; 3020 3021 error = security_inode_init_security(inode, dir, &dentry->d_name, 3022 shmem_initxattrs, NULL); 3023 if (error) { 3024 if (error != -EOPNOTSUPP) { 3025 iput(inode); 3026 return error; 3027 } 3028 error = 0; 3029 } 3030 3031 inode->i_size = len-1; 3032 if (len <= SHORT_SYMLINK_LEN) { 3033 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3034 if (!inode->i_link) { 3035 iput(inode); 3036 return -ENOMEM; 3037 } 3038 inode->i_op = &shmem_short_symlink_operations; 3039 } else { 3040 inode_nohighmem(inode); 3041 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3042 if (error) { 3043 iput(inode); 3044 return error; 3045 } 3046 inode->i_mapping->a_ops = &shmem_aops; 3047 inode->i_op = &shmem_symlink_inode_operations; 3048 memcpy(page_address(page), symname, len); 3049 SetPageUptodate(page); 3050 set_page_dirty(page); 3051 unlock_page(page); 3052 put_page(page); 3053 } 3054 dir->i_size += BOGO_DIRENT_SIZE; 3055 dir->i_ctime = dir->i_mtime = current_time(dir); 3056 d_instantiate(dentry, inode); 3057 dget(dentry); 3058 return 0; 3059 } 3060 3061 static void shmem_put_link(void *arg) 3062 { 3063 mark_page_accessed(arg); 3064 put_page(arg); 3065 } 3066 3067 static const char *shmem_get_link(struct dentry *dentry, 3068 struct inode *inode, 3069 struct delayed_call *done) 3070 { 3071 struct page *page = NULL; 3072 int error; 3073 if (!dentry) { 3074 page = find_get_page(inode->i_mapping, 0); 3075 if (!page) 3076 return ERR_PTR(-ECHILD); 3077 if (!PageUptodate(page)) { 3078 put_page(page); 3079 return ERR_PTR(-ECHILD); 3080 } 3081 } else { 3082 error = shmem_getpage(inode, 0, &page, SGP_READ); 3083 if (error) 3084 return ERR_PTR(error); 3085 unlock_page(page); 3086 } 3087 set_delayed_call(done, shmem_put_link, page); 3088 return page_address(page); 3089 } 3090 3091 #ifdef CONFIG_TMPFS_XATTR 3092 /* 3093 * Superblocks without xattr inode operations may get some security.* xattr 3094 * support from the LSM "for free". As soon as we have any other xattrs 3095 * like ACLs, we also need to implement the security.* handlers at 3096 * filesystem level, though. 3097 */ 3098 3099 /* 3100 * Callback for security_inode_init_security() for acquiring xattrs. 3101 */ 3102 static int shmem_initxattrs(struct inode *inode, 3103 const struct xattr *xattr_array, 3104 void *fs_info) 3105 { 3106 struct shmem_inode_info *info = SHMEM_I(inode); 3107 const struct xattr *xattr; 3108 struct simple_xattr *new_xattr; 3109 size_t len; 3110 3111 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3112 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3113 if (!new_xattr) 3114 return -ENOMEM; 3115 3116 len = strlen(xattr->name) + 1; 3117 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3118 GFP_KERNEL); 3119 if (!new_xattr->name) { 3120 kfree(new_xattr); 3121 return -ENOMEM; 3122 } 3123 3124 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3125 XATTR_SECURITY_PREFIX_LEN); 3126 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3127 xattr->name, len); 3128 3129 simple_xattr_list_add(&info->xattrs, new_xattr); 3130 } 3131 3132 return 0; 3133 } 3134 3135 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3136 struct dentry *unused, struct inode *inode, 3137 const char *name, void *buffer, size_t size) 3138 { 3139 struct shmem_inode_info *info = SHMEM_I(inode); 3140 3141 name = xattr_full_name(handler, name); 3142 return simple_xattr_get(&info->xattrs, name, buffer, size); 3143 } 3144 3145 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3146 struct dentry *unused, struct inode *inode, 3147 const char *name, const void *value, 3148 size_t size, int flags) 3149 { 3150 struct shmem_inode_info *info = SHMEM_I(inode); 3151 3152 name = xattr_full_name(handler, name); 3153 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3154 } 3155 3156 static const struct xattr_handler shmem_security_xattr_handler = { 3157 .prefix = XATTR_SECURITY_PREFIX, 3158 .get = shmem_xattr_handler_get, 3159 .set = shmem_xattr_handler_set, 3160 }; 3161 3162 static const struct xattr_handler shmem_trusted_xattr_handler = { 3163 .prefix = XATTR_TRUSTED_PREFIX, 3164 .get = shmem_xattr_handler_get, 3165 .set = shmem_xattr_handler_set, 3166 }; 3167 3168 static const struct xattr_handler *shmem_xattr_handlers[] = { 3169 #ifdef CONFIG_TMPFS_POSIX_ACL 3170 &posix_acl_access_xattr_handler, 3171 &posix_acl_default_xattr_handler, 3172 #endif 3173 &shmem_security_xattr_handler, 3174 &shmem_trusted_xattr_handler, 3175 NULL 3176 }; 3177 3178 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3179 { 3180 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3181 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3182 } 3183 #endif /* CONFIG_TMPFS_XATTR */ 3184 3185 static const struct inode_operations shmem_short_symlink_operations = { 3186 .get_link = simple_get_link, 3187 #ifdef CONFIG_TMPFS_XATTR 3188 .listxattr = shmem_listxattr, 3189 #endif 3190 }; 3191 3192 static const struct inode_operations shmem_symlink_inode_operations = { 3193 .get_link = shmem_get_link, 3194 #ifdef CONFIG_TMPFS_XATTR 3195 .listxattr = shmem_listxattr, 3196 #endif 3197 }; 3198 3199 static struct dentry *shmem_get_parent(struct dentry *child) 3200 { 3201 return ERR_PTR(-ESTALE); 3202 } 3203 3204 static int shmem_match(struct inode *ino, void *vfh) 3205 { 3206 __u32 *fh = vfh; 3207 __u64 inum = fh[2]; 3208 inum = (inum << 32) | fh[1]; 3209 return ino->i_ino == inum && fh[0] == ino->i_generation; 3210 } 3211 3212 /* Find any alias of inode, but prefer a hashed alias */ 3213 static struct dentry *shmem_find_alias(struct inode *inode) 3214 { 3215 struct dentry *alias = d_find_alias(inode); 3216 3217 return alias ?: d_find_any_alias(inode); 3218 } 3219 3220 3221 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3222 struct fid *fid, int fh_len, int fh_type) 3223 { 3224 struct inode *inode; 3225 struct dentry *dentry = NULL; 3226 u64 inum; 3227 3228 if (fh_len < 3) 3229 return NULL; 3230 3231 inum = fid->raw[2]; 3232 inum = (inum << 32) | fid->raw[1]; 3233 3234 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3235 shmem_match, fid->raw); 3236 if (inode) { 3237 dentry = shmem_find_alias(inode); 3238 iput(inode); 3239 } 3240 3241 return dentry; 3242 } 3243 3244 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3245 struct inode *parent) 3246 { 3247 if (*len < 3) { 3248 *len = 3; 3249 return FILEID_INVALID; 3250 } 3251 3252 if (inode_unhashed(inode)) { 3253 /* Unfortunately insert_inode_hash is not idempotent, 3254 * so as we hash inodes here rather than at creation 3255 * time, we need a lock to ensure we only try 3256 * to do it once 3257 */ 3258 static DEFINE_SPINLOCK(lock); 3259 spin_lock(&lock); 3260 if (inode_unhashed(inode)) 3261 __insert_inode_hash(inode, 3262 inode->i_ino + inode->i_generation); 3263 spin_unlock(&lock); 3264 } 3265 3266 fh[0] = inode->i_generation; 3267 fh[1] = inode->i_ino; 3268 fh[2] = ((__u64)inode->i_ino) >> 32; 3269 3270 *len = 3; 3271 return 1; 3272 } 3273 3274 static const struct export_operations shmem_export_ops = { 3275 .get_parent = shmem_get_parent, 3276 .encode_fh = shmem_encode_fh, 3277 .fh_to_dentry = shmem_fh_to_dentry, 3278 }; 3279 3280 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3281 bool remount) 3282 { 3283 char *this_char, *value, *rest; 3284 struct mempolicy *mpol = NULL; 3285 uid_t uid; 3286 gid_t gid; 3287 3288 while (options != NULL) { 3289 this_char = options; 3290 for (;;) { 3291 /* 3292 * NUL-terminate this option: unfortunately, 3293 * mount options form a comma-separated list, 3294 * but mpol's nodelist may also contain commas. 3295 */ 3296 options = strchr(options, ','); 3297 if (options == NULL) 3298 break; 3299 options++; 3300 if (!isdigit(*options)) { 3301 options[-1] = '\0'; 3302 break; 3303 } 3304 } 3305 if (!*this_char) 3306 continue; 3307 if ((value = strchr(this_char,'=')) != NULL) { 3308 *value++ = 0; 3309 } else { 3310 pr_err("tmpfs: No value for mount option '%s'\n", 3311 this_char); 3312 goto error; 3313 } 3314 3315 if (!strcmp(this_char,"size")) { 3316 unsigned long long size; 3317 size = memparse(value,&rest); 3318 if (*rest == '%') { 3319 size <<= PAGE_SHIFT; 3320 size *= totalram_pages; 3321 do_div(size, 100); 3322 rest++; 3323 } 3324 if (*rest) 3325 goto bad_val; 3326 sbinfo->max_blocks = 3327 DIV_ROUND_UP(size, PAGE_SIZE); 3328 } else if (!strcmp(this_char,"nr_blocks")) { 3329 sbinfo->max_blocks = memparse(value, &rest); 3330 if (*rest) 3331 goto bad_val; 3332 } else if (!strcmp(this_char,"nr_inodes")) { 3333 sbinfo->max_inodes = memparse(value, &rest); 3334 if (*rest) 3335 goto bad_val; 3336 } else if (!strcmp(this_char,"mode")) { 3337 if (remount) 3338 continue; 3339 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3340 if (*rest) 3341 goto bad_val; 3342 } else if (!strcmp(this_char,"uid")) { 3343 if (remount) 3344 continue; 3345 uid = simple_strtoul(value, &rest, 0); 3346 if (*rest) 3347 goto bad_val; 3348 sbinfo->uid = make_kuid(current_user_ns(), uid); 3349 if (!uid_valid(sbinfo->uid)) 3350 goto bad_val; 3351 } else if (!strcmp(this_char,"gid")) { 3352 if (remount) 3353 continue; 3354 gid = simple_strtoul(value, &rest, 0); 3355 if (*rest) 3356 goto bad_val; 3357 sbinfo->gid = make_kgid(current_user_ns(), gid); 3358 if (!gid_valid(sbinfo->gid)) 3359 goto bad_val; 3360 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3361 } else if (!strcmp(this_char, "huge")) { 3362 int huge; 3363 huge = shmem_parse_huge(value); 3364 if (huge < 0) 3365 goto bad_val; 3366 if (!has_transparent_hugepage() && 3367 huge != SHMEM_HUGE_NEVER) 3368 goto bad_val; 3369 sbinfo->huge = huge; 3370 #endif 3371 #ifdef CONFIG_NUMA 3372 } else if (!strcmp(this_char,"mpol")) { 3373 mpol_put(mpol); 3374 mpol = NULL; 3375 if (mpol_parse_str(value, &mpol)) 3376 goto bad_val; 3377 #endif 3378 } else { 3379 pr_err("tmpfs: Bad mount option %s\n", this_char); 3380 goto error; 3381 } 3382 } 3383 sbinfo->mpol = mpol; 3384 return 0; 3385 3386 bad_val: 3387 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3388 value, this_char); 3389 error: 3390 mpol_put(mpol); 3391 return 1; 3392 3393 } 3394 3395 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3396 { 3397 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3398 struct shmem_sb_info config = *sbinfo; 3399 unsigned long inodes; 3400 int error = -EINVAL; 3401 3402 config.mpol = NULL; 3403 if (shmem_parse_options(data, &config, true)) 3404 return error; 3405 3406 spin_lock(&sbinfo->stat_lock); 3407 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3408 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3409 goto out; 3410 if (config.max_inodes < inodes) 3411 goto out; 3412 /* 3413 * Those tests disallow limited->unlimited while any are in use; 3414 * but we must separately disallow unlimited->limited, because 3415 * in that case we have no record of how much is already in use. 3416 */ 3417 if (config.max_blocks && !sbinfo->max_blocks) 3418 goto out; 3419 if (config.max_inodes && !sbinfo->max_inodes) 3420 goto out; 3421 3422 error = 0; 3423 sbinfo->huge = config.huge; 3424 sbinfo->max_blocks = config.max_blocks; 3425 sbinfo->max_inodes = config.max_inodes; 3426 sbinfo->free_inodes = config.max_inodes - inodes; 3427 3428 /* 3429 * Preserve previous mempolicy unless mpol remount option was specified. 3430 */ 3431 if (config.mpol) { 3432 mpol_put(sbinfo->mpol); 3433 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3434 } 3435 out: 3436 spin_unlock(&sbinfo->stat_lock); 3437 return error; 3438 } 3439 3440 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3441 { 3442 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3443 3444 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3445 seq_printf(seq, ",size=%luk", 3446 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3447 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3448 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3449 if (sbinfo->mode != (0777 | S_ISVTX)) 3450 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3451 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3452 seq_printf(seq, ",uid=%u", 3453 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3454 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3455 seq_printf(seq, ",gid=%u", 3456 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3457 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3458 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3459 if (sbinfo->huge) 3460 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3461 #endif 3462 shmem_show_mpol(seq, sbinfo->mpol); 3463 return 0; 3464 } 3465 3466 #endif /* CONFIG_TMPFS */ 3467 3468 static void shmem_put_super(struct super_block *sb) 3469 { 3470 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3471 3472 percpu_counter_destroy(&sbinfo->used_blocks); 3473 mpol_put(sbinfo->mpol); 3474 kfree(sbinfo); 3475 sb->s_fs_info = NULL; 3476 } 3477 3478 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3479 { 3480 struct inode *inode; 3481 struct shmem_sb_info *sbinfo; 3482 int err = -ENOMEM; 3483 3484 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3485 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3486 L1_CACHE_BYTES), GFP_KERNEL); 3487 if (!sbinfo) 3488 return -ENOMEM; 3489 3490 sbinfo->mode = 0777 | S_ISVTX; 3491 sbinfo->uid = current_fsuid(); 3492 sbinfo->gid = current_fsgid(); 3493 sb->s_fs_info = sbinfo; 3494 3495 #ifdef CONFIG_TMPFS 3496 /* 3497 * Per default we only allow half of the physical ram per 3498 * tmpfs instance, limiting inodes to one per page of lowmem; 3499 * but the internal instance is left unlimited. 3500 */ 3501 if (!(sb->s_flags & SB_KERNMOUNT)) { 3502 sbinfo->max_blocks = shmem_default_max_blocks(); 3503 sbinfo->max_inodes = shmem_default_max_inodes(); 3504 if (shmem_parse_options(data, sbinfo, false)) { 3505 err = -EINVAL; 3506 goto failed; 3507 } 3508 } else { 3509 sb->s_flags |= SB_NOUSER; 3510 } 3511 sb->s_export_op = &shmem_export_ops; 3512 sb->s_flags |= SB_NOSEC; 3513 #else 3514 sb->s_flags |= SB_NOUSER; 3515 #endif 3516 3517 spin_lock_init(&sbinfo->stat_lock); 3518 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3519 goto failed; 3520 sbinfo->free_inodes = sbinfo->max_inodes; 3521 spin_lock_init(&sbinfo->shrinklist_lock); 3522 INIT_LIST_HEAD(&sbinfo->shrinklist); 3523 3524 sb->s_maxbytes = MAX_LFS_FILESIZE; 3525 sb->s_blocksize = PAGE_SIZE; 3526 sb->s_blocksize_bits = PAGE_SHIFT; 3527 sb->s_magic = TMPFS_MAGIC; 3528 sb->s_op = &shmem_ops; 3529 sb->s_time_gran = 1; 3530 #ifdef CONFIG_TMPFS_XATTR 3531 sb->s_xattr = shmem_xattr_handlers; 3532 #endif 3533 #ifdef CONFIG_TMPFS_POSIX_ACL 3534 sb->s_flags |= SB_POSIXACL; 3535 #endif 3536 uuid_gen(&sb->s_uuid); 3537 3538 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3539 if (!inode) 3540 goto failed; 3541 inode->i_uid = sbinfo->uid; 3542 inode->i_gid = sbinfo->gid; 3543 sb->s_root = d_make_root(inode); 3544 if (!sb->s_root) 3545 goto failed; 3546 return 0; 3547 3548 failed: 3549 shmem_put_super(sb); 3550 return err; 3551 } 3552 3553 static struct kmem_cache *shmem_inode_cachep; 3554 3555 static struct inode *shmem_alloc_inode(struct super_block *sb) 3556 { 3557 struct shmem_inode_info *info; 3558 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3559 if (!info) 3560 return NULL; 3561 return &info->vfs_inode; 3562 } 3563 3564 static void shmem_destroy_callback(struct rcu_head *head) 3565 { 3566 struct inode *inode = container_of(head, struct inode, i_rcu); 3567 if (S_ISLNK(inode->i_mode)) 3568 kfree(inode->i_link); 3569 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3570 } 3571 3572 static void shmem_destroy_inode(struct inode *inode) 3573 { 3574 if (S_ISREG(inode->i_mode)) 3575 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3576 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3577 } 3578 3579 static void shmem_init_inode(void *foo) 3580 { 3581 struct shmem_inode_info *info = foo; 3582 inode_init_once(&info->vfs_inode); 3583 } 3584 3585 static void shmem_init_inodecache(void) 3586 { 3587 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3588 sizeof(struct shmem_inode_info), 3589 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3590 } 3591 3592 static void shmem_destroy_inodecache(void) 3593 { 3594 kmem_cache_destroy(shmem_inode_cachep); 3595 } 3596 3597 static const struct address_space_operations shmem_aops = { 3598 .writepage = shmem_writepage, 3599 .set_page_dirty = __set_page_dirty_no_writeback, 3600 #ifdef CONFIG_TMPFS 3601 .write_begin = shmem_write_begin, 3602 .write_end = shmem_write_end, 3603 #endif 3604 #ifdef CONFIG_MIGRATION 3605 .migratepage = migrate_page, 3606 #endif 3607 .error_remove_page = generic_error_remove_page, 3608 }; 3609 3610 static const struct file_operations shmem_file_operations = { 3611 .mmap = shmem_mmap, 3612 .get_unmapped_area = shmem_get_unmapped_area, 3613 #ifdef CONFIG_TMPFS 3614 .llseek = shmem_file_llseek, 3615 .read_iter = shmem_file_read_iter, 3616 .write_iter = generic_file_write_iter, 3617 .fsync = noop_fsync, 3618 .splice_read = generic_file_splice_read, 3619 .splice_write = iter_file_splice_write, 3620 .fallocate = shmem_fallocate, 3621 #endif 3622 }; 3623 3624 static const struct inode_operations shmem_inode_operations = { 3625 .getattr = shmem_getattr, 3626 .setattr = shmem_setattr, 3627 #ifdef CONFIG_TMPFS_XATTR 3628 .listxattr = shmem_listxattr, 3629 .set_acl = simple_set_acl, 3630 #endif 3631 }; 3632 3633 static const struct inode_operations shmem_dir_inode_operations = { 3634 #ifdef CONFIG_TMPFS 3635 .create = shmem_create, 3636 .lookup = simple_lookup, 3637 .link = shmem_link, 3638 .unlink = shmem_unlink, 3639 .symlink = shmem_symlink, 3640 .mkdir = shmem_mkdir, 3641 .rmdir = shmem_rmdir, 3642 .mknod = shmem_mknod, 3643 .rename = shmem_rename2, 3644 .tmpfile = shmem_tmpfile, 3645 #endif 3646 #ifdef CONFIG_TMPFS_XATTR 3647 .listxattr = shmem_listxattr, 3648 #endif 3649 #ifdef CONFIG_TMPFS_POSIX_ACL 3650 .setattr = shmem_setattr, 3651 .set_acl = simple_set_acl, 3652 #endif 3653 }; 3654 3655 static const struct inode_operations shmem_special_inode_operations = { 3656 #ifdef CONFIG_TMPFS_XATTR 3657 .listxattr = shmem_listxattr, 3658 #endif 3659 #ifdef CONFIG_TMPFS_POSIX_ACL 3660 .setattr = shmem_setattr, 3661 .set_acl = simple_set_acl, 3662 #endif 3663 }; 3664 3665 static const struct super_operations shmem_ops = { 3666 .alloc_inode = shmem_alloc_inode, 3667 .destroy_inode = shmem_destroy_inode, 3668 #ifdef CONFIG_TMPFS 3669 .statfs = shmem_statfs, 3670 .remount_fs = shmem_remount_fs, 3671 .show_options = shmem_show_options, 3672 #endif 3673 .evict_inode = shmem_evict_inode, 3674 .drop_inode = generic_delete_inode, 3675 .put_super = shmem_put_super, 3676 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3677 .nr_cached_objects = shmem_unused_huge_count, 3678 .free_cached_objects = shmem_unused_huge_scan, 3679 #endif 3680 }; 3681 3682 static const struct vm_operations_struct shmem_vm_ops = { 3683 .fault = shmem_fault, 3684 .map_pages = filemap_map_pages, 3685 #ifdef CONFIG_NUMA 3686 .set_policy = shmem_set_policy, 3687 .get_policy = shmem_get_policy, 3688 #endif 3689 }; 3690 3691 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3692 int flags, const char *dev_name, void *data) 3693 { 3694 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3695 } 3696 3697 static struct file_system_type shmem_fs_type = { 3698 .owner = THIS_MODULE, 3699 .name = "tmpfs", 3700 .mount = shmem_mount, 3701 .kill_sb = kill_litter_super, 3702 .fs_flags = FS_USERNS_MOUNT, 3703 }; 3704 3705 int __init shmem_init(void) 3706 { 3707 int error; 3708 3709 /* If rootfs called this, don't re-init */ 3710 if (shmem_inode_cachep) 3711 return 0; 3712 3713 shmem_init_inodecache(); 3714 3715 error = register_filesystem(&shmem_fs_type); 3716 if (error) { 3717 pr_err("Could not register tmpfs\n"); 3718 goto out2; 3719 } 3720 3721 shm_mnt = kern_mount(&shmem_fs_type); 3722 if (IS_ERR(shm_mnt)) { 3723 error = PTR_ERR(shm_mnt); 3724 pr_err("Could not kern_mount tmpfs\n"); 3725 goto out1; 3726 } 3727 3728 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3729 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3730 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3731 else 3732 shmem_huge = 0; /* just in case it was patched */ 3733 #endif 3734 return 0; 3735 3736 out1: 3737 unregister_filesystem(&shmem_fs_type); 3738 out2: 3739 shmem_destroy_inodecache(); 3740 shm_mnt = ERR_PTR(error); 3741 return error; 3742 } 3743 3744 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3745 static ssize_t shmem_enabled_show(struct kobject *kobj, 3746 struct kobj_attribute *attr, char *buf) 3747 { 3748 int values[] = { 3749 SHMEM_HUGE_ALWAYS, 3750 SHMEM_HUGE_WITHIN_SIZE, 3751 SHMEM_HUGE_ADVISE, 3752 SHMEM_HUGE_NEVER, 3753 SHMEM_HUGE_DENY, 3754 SHMEM_HUGE_FORCE, 3755 }; 3756 int i, count; 3757 3758 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3759 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3760 3761 count += sprintf(buf + count, fmt, 3762 shmem_format_huge(values[i])); 3763 } 3764 buf[count - 1] = '\n'; 3765 return count; 3766 } 3767 3768 static ssize_t shmem_enabled_store(struct kobject *kobj, 3769 struct kobj_attribute *attr, const char *buf, size_t count) 3770 { 3771 char tmp[16]; 3772 int huge; 3773 3774 if (count + 1 > sizeof(tmp)) 3775 return -EINVAL; 3776 memcpy(tmp, buf, count); 3777 tmp[count] = '\0'; 3778 if (count && tmp[count - 1] == '\n') 3779 tmp[count - 1] = '\0'; 3780 3781 huge = shmem_parse_huge(tmp); 3782 if (huge == -EINVAL) 3783 return -EINVAL; 3784 if (!has_transparent_hugepage() && 3785 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3786 return -EINVAL; 3787 3788 shmem_huge = huge; 3789 if (shmem_huge > SHMEM_HUGE_DENY) 3790 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3791 return count; 3792 } 3793 3794 struct kobj_attribute shmem_enabled_attr = 3795 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3796 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3797 3798 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3799 bool shmem_huge_enabled(struct vm_area_struct *vma) 3800 { 3801 struct inode *inode = file_inode(vma->vm_file); 3802 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3803 loff_t i_size; 3804 pgoff_t off; 3805 3806 if (shmem_huge == SHMEM_HUGE_FORCE) 3807 return true; 3808 if (shmem_huge == SHMEM_HUGE_DENY) 3809 return false; 3810 switch (sbinfo->huge) { 3811 case SHMEM_HUGE_NEVER: 3812 return false; 3813 case SHMEM_HUGE_ALWAYS: 3814 return true; 3815 case SHMEM_HUGE_WITHIN_SIZE: 3816 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3817 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3818 if (i_size >= HPAGE_PMD_SIZE && 3819 i_size >> PAGE_SHIFT >= off) 3820 return true; 3821 /* fall through */ 3822 case SHMEM_HUGE_ADVISE: 3823 /* TODO: implement fadvise() hints */ 3824 return (vma->vm_flags & VM_HUGEPAGE); 3825 default: 3826 VM_BUG_ON(1); 3827 return false; 3828 } 3829 } 3830 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3831 3832 #else /* !CONFIG_SHMEM */ 3833 3834 /* 3835 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3836 * 3837 * This is intended for small system where the benefits of the full 3838 * shmem code (swap-backed and resource-limited) are outweighed by 3839 * their complexity. On systems without swap this code should be 3840 * effectively equivalent, but much lighter weight. 3841 */ 3842 3843 static struct file_system_type shmem_fs_type = { 3844 .name = "tmpfs", 3845 .mount = ramfs_mount, 3846 .kill_sb = kill_litter_super, 3847 .fs_flags = FS_USERNS_MOUNT, 3848 }; 3849 3850 int __init shmem_init(void) 3851 { 3852 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3853 3854 shm_mnt = kern_mount(&shmem_fs_type); 3855 BUG_ON(IS_ERR(shm_mnt)); 3856 3857 return 0; 3858 } 3859 3860 int shmem_unuse(swp_entry_t swap, struct page *page) 3861 { 3862 return 0; 3863 } 3864 3865 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3866 { 3867 return 0; 3868 } 3869 3870 void shmem_unlock_mapping(struct address_space *mapping) 3871 { 3872 } 3873 3874 #ifdef CONFIG_MMU 3875 unsigned long shmem_get_unmapped_area(struct file *file, 3876 unsigned long addr, unsigned long len, 3877 unsigned long pgoff, unsigned long flags) 3878 { 3879 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3880 } 3881 #endif 3882 3883 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3884 { 3885 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3886 } 3887 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3888 3889 #define shmem_vm_ops generic_file_vm_ops 3890 #define shmem_file_operations ramfs_file_operations 3891 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3892 #define shmem_acct_size(flags, size) 0 3893 #define shmem_unacct_size(flags, size) do {} while (0) 3894 3895 #endif /* CONFIG_SHMEM */ 3896 3897 /* common code */ 3898 3899 static const struct dentry_operations anon_ops = { 3900 .d_dname = simple_dname 3901 }; 3902 3903 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 3904 unsigned long flags, unsigned int i_flags) 3905 { 3906 struct file *res; 3907 struct inode *inode; 3908 struct path path; 3909 struct super_block *sb; 3910 struct qstr this; 3911 3912 if (IS_ERR(mnt)) 3913 return ERR_CAST(mnt); 3914 3915 if (size < 0 || size > MAX_LFS_FILESIZE) 3916 return ERR_PTR(-EINVAL); 3917 3918 if (shmem_acct_size(flags, size)) 3919 return ERR_PTR(-ENOMEM); 3920 3921 res = ERR_PTR(-ENOMEM); 3922 this.name = name; 3923 this.len = strlen(name); 3924 this.hash = 0; /* will go */ 3925 sb = mnt->mnt_sb; 3926 path.mnt = mntget(mnt); 3927 path.dentry = d_alloc_pseudo(sb, &this); 3928 if (!path.dentry) 3929 goto put_memory; 3930 d_set_d_op(path.dentry, &anon_ops); 3931 3932 res = ERR_PTR(-ENOSPC); 3933 inode = shmem_get_inode(sb, NULL, S_IFREG | 0777, 0, flags); 3934 if (!inode) 3935 goto put_memory; 3936 3937 inode->i_flags |= i_flags; 3938 d_instantiate(path.dentry, inode); 3939 inode->i_size = size; 3940 clear_nlink(inode); /* It is unlinked */ 3941 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3942 if (IS_ERR(res)) 3943 goto put_path; 3944 3945 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3946 &shmem_file_operations); 3947 if (IS_ERR(res)) 3948 goto put_path; 3949 3950 return res; 3951 3952 put_memory: 3953 shmem_unacct_size(flags, size); 3954 put_path: 3955 path_put(&path); 3956 return res; 3957 } 3958 3959 /** 3960 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3961 * kernel internal. There will be NO LSM permission checks against the 3962 * underlying inode. So users of this interface must do LSM checks at a 3963 * higher layer. The users are the big_key and shm implementations. LSM 3964 * checks are provided at the key or shm level rather than the inode. 3965 * @name: name for dentry (to be seen in /proc/<pid>/maps 3966 * @size: size to be set for the file 3967 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3968 */ 3969 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3970 { 3971 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 3972 } 3973 3974 /** 3975 * shmem_file_setup - get an unlinked file living in tmpfs 3976 * @name: name for dentry (to be seen in /proc/<pid>/maps 3977 * @size: size to be set for the file 3978 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3979 */ 3980 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3981 { 3982 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 3983 } 3984 EXPORT_SYMBOL_GPL(shmem_file_setup); 3985 3986 /** 3987 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 3988 * @mnt: the tmpfs mount where the file will be created 3989 * @name: name for dentry (to be seen in /proc/<pid>/maps 3990 * @size: size to be set for the file 3991 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3992 */ 3993 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 3994 loff_t size, unsigned long flags) 3995 { 3996 return __shmem_file_setup(mnt, name, size, flags, 0); 3997 } 3998 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 3999 4000 /** 4001 * shmem_zero_setup - setup a shared anonymous mapping 4002 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4003 */ 4004 int shmem_zero_setup(struct vm_area_struct *vma) 4005 { 4006 struct file *file; 4007 loff_t size = vma->vm_end - vma->vm_start; 4008 4009 /* 4010 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4011 * between XFS directory reading and selinux: since this file is only 4012 * accessible to the user through its mapping, use S_PRIVATE flag to 4013 * bypass file security, in the same way as shmem_kernel_file_setup(). 4014 */ 4015 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4016 if (IS_ERR(file)) 4017 return PTR_ERR(file); 4018 4019 if (vma->vm_file) 4020 fput(vma->vm_file); 4021 vma->vm_file = file; 4022 vma->vm_ops = &shmem_vm_ops; 4023 4024 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4025 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4026 (vma->vm_end & HPAGE_PMD_MASK)) { 4027 khugepaged_enter(vma, vma->vm_flags); 4028 } 4029 4030 return 0; 4031 } 4032 4033 /** 4034 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4035 * @mapping: the page's address_space 4036 * @index: the page index 4037 * @gfp: the page allocator flags to use if allocating 4038 * 4039 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4040 * with any new page allocations done using the specified allocation flags. 4041 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4042 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4043 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4044 * 4045 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4046 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4047 */ 4048 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4049 pgoff_t index, gfp_t gfp) 4050 { 4051 #ifdef CONFIG_SHMEM 4052 struct inode *inode = mapping->host; 4053 struct page *page; 4054 int error; 4055 4056 BUG_ON(mapping->a_ops != &shmem_aops); 4057 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4058 gfp, NULL, NULL, NULL); 4059 if (error) 4060 page = ERR_PTR(error); 4061 else 4062 unlock_page(page); 4063 return page; 4064 #else 4065 /* 4066 * The tiny !SHMEM case uses ramfs without swap 4067 */ 4068 return read_cache_page_gfp(mapping, index, gfp); 4069 #endif 4070 } 4071 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4072