xref: /openbmc/linux/mm/shmem.c (revision 384740dc)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
57 
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC	0x01021994
60 
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64 
65 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 
68 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN	 VM_READ
72 #define SHMEM_TRUNCATE	 VM_WRITE
73 
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT	 64
76 
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
79 
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 enum sgp_type {
82 	SGP_READ,	/* don't exceed i_size, don't allocate page */
83 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
85 	SGP_WRITE,	/* may exceed i_size, may allocate page */
86 };
87 
88 #ifdef CONFIG_TMPFS
89 static unsigned long shmem_default_max_blocks(void)
90 {
91 	return totalram_pages / 2;
92 }
93 
94 static unsigned long shmem_default_max_inodes(void)
95 {
96 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97 }
98 #endif
99 
100 static int shmem_getpage(struct inode *inode, unsigned long idx,
101 			 struct page **pagep, enum sgp_type sgp, int *type);
102 
103 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104 {
105 	/*
106 	 * The above definition of ENTRIES_PER_PAGE, and the use of
107 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
109 	 *
110 	 * Mobility flags are masked out as swap vectors cannot move
111 	 */
112 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
114 }
115 
116 static inline void shmem_dir_free(struct page *page)
117 {
118 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119 }
120 
121 static struct page **shmem_dir_map(struct page *page)
122 {
123 	return (struct page **)kmap_atomic(page, KM_USER0);
124 }
125 
126 static inline void shmem_dir_unmap(struct page **dir)
127 {
128 	kunmap_atomic(dir, KM_USER0);
129 }
130 
131 static swp_entry_t *shmem_swp_map(struct page *page)
132 {
133 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134 }
135 
136 static inline void shmem_swp_balance_unmap(void)
137 {
138 	/*
139 	 * When passing a pointer to an i_direct entry, to code which
140 	 * also handles indirect entries and so will shmem_swp_unmap,
141 	 * we must arrange for the preempt count to remain in balance.
142 	 * What kmap_atomic of a lowmem page does depends on config
143 	 * and architecture, so pretend to kmap_atomic some lowmem page.
144 	 */
145 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146 }
147 
148 static inline void shmem_swp_unmap(swp_entry_t *entry)
149 {
150 	kunmap_atomic(entry, KM_USER1);
151 }
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_ACCOUNT)?
167 		security_vm_enough_memory(VM_ACCT(size)): 0;
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (flags & VM_ACCOUNT)
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 /*
177  * ... whereas tmpfs objects are accounted incrementally as
178  * pages are allocated, in order to allow huge sparse files.
179  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181  */
182 static inline int shmem_acct_block(unsigned long flags)
183 {
184 	return (flags & VM_ACCOUNT)?
185 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186 }
187 
188 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189 {
190 	if (!(flags & VM_ACCOUNT))
191 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192 }
193 
194 static const struct super_operations shmem_ops;
195 static const struct address_space_operations shmem_aops;
196 static const struct file_operations shmem_file_operations;
197 static const struct inode_operations shmem_inode_operations;
198 static const struct inode_operations shmem_dir_inode_operations;
199 static const struct inode_operations shmem_special_inode_operations;
200 static struct vm_operations_struct shmem_vm_ops;
201 
202 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
203 	.ra_pages	= 0,	/* No readahead */
204 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
205 	.unplug_io_fn	= default_unplug_io_fn,
206 };
207 
208 static LIST_HEAD(shmem_swaplist);
209 static DEFINE_MUTEX(shmem_swaplist_mutex);
210 
211 static void shmem_free_blocks(struct inode *inode, long pages)
212 {
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	if (sbinfo->max_blocks) {
215 		spin_lock(&sbinfo->stat_lock);
216 		sbinfo->free_blocks += pages;
217 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218 		spin_unlock(&sbinfo->stat_lock);
219 	}
220 }
221 
222 static int shmem_reserve_inode(struct super_block *sb)
223 {
224 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 	if (sbinfo->max_inodes) {
226 		spin_lock(&sbinfo->stat_lock);
227 		if (!sbinfo->free_inodes) {
228 			spin_unlock(&sbinfo->stat_lock);
229 			return -ENOSPC;
230 		}
231 		sbinfo->free_inodes--;
232 		spin_unlock(&sbinfo->stat_lock);
233 	}
234 	return 0;
235 }
236 
237 static void shmem_free_inode(struct super_block *sb)
238 {
239 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240 	if (sbinfo->max_inodes) {
241 		spin_lock(&sbinfo->stat_lock);
242 		sbinfo->free_inodes++;
243 		spin_unlock(&sbinfo->stat_lock);
244 	}
245 }
246 
247 /**
248  * shmem_recalc_inode - recalculate the size of an inode
249  * @inode: inode to recalc
250  *
251  * We have to calculate the free blocks since the mm can drop
252  * undirtied hole pages behind our back.
253  *
254  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
255  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
256  *
257  * It has to be called with the spinlock held.
258  */
259 static void shmem_recalc_inode(struct inode *inode)
260 {
261 	struct shmem_inode_info *info = SHMEM_I(inode);
262 	long freed;
263 
264 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
265 	if (freed > 0) {
266 		info->alloced -= freed;
267 		shmem_unacct_blocks(info->flags, freed);
268 		shmem_free_blocks(inode, freed);
269 	}
270 }
271 
272 /**
273  * shmem_swp_entry - find the swap vector position in the info structure
274  * @info:  info structure for the inode
275  * @index: index of the page to find
276  * @page:  optional page to add to the structure. Has to be preset to
277  *         all zeros
278  *
279  * If there is no space allocated yet it will return NULL when
280  * page is NULL, else it will use the page for the needed block,
281  * setting it to NULL on return to indicate that it has been used.
282  *
283  * The swap vector is organized the following way:
284  *
285  * There are SHMEM_NR_DIRECT entries directly stored in the
286  * shmem_inode_info structure. So small files do not need an addional
287  * allocation.
288  *
289  * For pages with index > SHMEM_NR_DIRECT there is the pointer
290  * i_indirect which points to a page which holds in the first half
291  * doubly indirect blocks, in the second half triple indirect blocks:
292  *
293  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294  * following layout (for SHMEM_NR_DIRECT == 16):
295  *
296  * i_indirect -> dir --> 16-19
297  * 	      |	     +-> 20-23
298  * 	      |
299  * 	      +-->dir2 --> 24-27
300  * 	      |	       +-> 28-31
301  * 	      |	       +-> 32-35
302  * 	      |	       +-> 36-39
303  * 	      |
304  * 	      +-->dir3 --> 40-43
305  * 	       	       +-> 44-47
306  * 	      	       +-> 48-51
307  * 	      	       +-> 52-55
308  */
309 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
310 {
311 	unsigned long offset;
312 	struct page **dir;
313 	struct page *subdir;
314 
315 	if (index < SHMEM_NR_DIRECT) {
316 		shmem_swp_balance_unmap();
317 		return info->i_direct+index;
318 	}
319 	if (!info->i_indirect) {
320 		if (page) {
321 			info->i_indirect = *page;
322 			*page = NULL;
323 		}
324 		return NULL;			/* need another page */
325 	}
326 
327 	index -= SHMEM_NR_DIRECT;
328 	offset = index % ENTRIES_PER_PAGE;
329 	index /= ENTRIES_PER_PAGE;
330 	dir = shmem_dir_map(info->i_indirect);
331 
332 	if (index >= ENTRIES_PER_PAGE/2) {
333 		index -= ENTRIES_PER_PAGE/2;
334 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335 		index %= ENTRIES_PER_PAGE;
336 		subdir = *dir;
337 		if (!subdir) {
338 			if (page) {
339 				*dir = *page;
340 				*page = NULL;
341 			}
342 			shmem_dir_unmap(dir);
343 			return NULL;		/* need another page */
344 		}
345 		shmem_dir_unmap(dir);
346 		dir = shmem_dir_map(subdir);
347 	}
348 
349 	dir += index;
350 	subdir = *dir;
351 	if (!subdir) {
352 		if (!page || !(subdir = *page)) {
353 			shmem_dir_unmap(dir);
354 			return NULL;		/* need a page */
355 		}
356 		*dir = subdir;
357 		*page = NULL;
358 	}
359 	shmem_dir_unmap(dir);
360 	return shmem_swp_map(subdir) + offset;
361 }
362 
363 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
364 {
365 	long incdec = value? 1: -1;
366 
367 	entry->val = value;
368 	info->swapped += incdec;
369 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370 		struct page *page = kmap_atomic_to_page(entry);
371 		set_page_private(page, page_private(page) + incdec);
372 	}
373 }
374 
375 /**
376  * shmem_swp_alloc - get the position of the swap entry for the page.
377  * @info:	info structure for the inode
378  * @index:	index of the page to find
379  * @sgp:	check and recheck i_size? skip allocation?
380  *
381  * If the entry does not exist, allocate it.
382  */
383 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
384 {
385 	struct inode *inode = &info->vfs_inode;
386 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387 	struct page *page = NULL;
388 	swp_entry_t *entry;
389 
390 	if (sgp != SGP_WRITE &&
391 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392 		return ERR_PTR(-EINVAL);
393 
394 	while (!(entry = shmem_swp_entry(info, index, &page))) {
395 		if (sgp == SGP_READ)
396 			return shmem_swp_map(ZERO_PAGE(0));
397 		/*
398 		 * Test free_blocks against 1 not 0, since we have 1 data
399 		 * page (and perhaps indirect index pages) yet to allocate:
400 		 * a waste to allocate index if we cannot allocate data.
401 		 */
402 		if (sbinfo->max_blocks) {
403 			spin_lock(&sbinfo->stat_lock);
404 			if (sbinfo->free_blocks <= 1) {
405 				spin_unlock(&sbinfo->stat_lock);
406 				return ERR_PTR(-ENOSPC);
407 			}
408 			sbinfo->free_blocks--;
409 			inode->i_blocks += BLOCKS_PER_PAGE;
410 			spin_unlock(&sbinfo->stat_lock);
411 		}
412 
413 		spin_unlock(&info->lock);
414 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
415 		if (page)
416 			set_page_private(page, 0);
417 		spin_lock(&info->lock);
418 
419 		if (!page) {
420 			shmem_free_blocks(inode, 1);
421 			return ERR_PTR(-ENOMEM);
422 		}
423 		if (sgp != SGP_WRITE &&
424 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425 			entry = ERR_PTR(-EINVAL);
426 			break;
427 		}
428 		if (info->next_index <= index)
429 			info->next_index = index + 1;
430 	}
431 	if (page) {
432 		/* another task gave its page, or truncated the file */
433 		shmem_free_blocks(inode, 1);
434 		shmem_dir_free(page);
435 	}
436 	if (info->next_index <= index && !IS_ERR(entry))
437 		info->next_index = index + 1;
438 	return entry;
439 }
440 
441 /**
442  * shmem_free_swp - free some swap entries in a directory
443  * @dir:        pointer to the directory
444  * @edir:       pointer after last entry of the directory
445  * @punch_lock: pointer to spinlock when needed for the holepunch case
446  */
447 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
448 						spinlock_t *punch_lock)
449 {
450 	spinlock_t *punch_unlock = NULL;
451 	swp_entry_t *ptr;
452 	int freed = 0;
453 
454 	for (ptr = dir; ptr < edir; ptr++) {
455 		if (ptr->val) {
456 			if (unlikely(punch_lock)) {
457 				punch_unlock = punch_lock;
458 				punch_lock = NULL;
459 				spin_lock(punch_unlock);
460 				if (!ptr->val)
461 					continue;
462 			}
463 			free_swap_and_cache(*ptr);
464 			*ptr = (swp_entry_t){0};
465 			freed++;
466 		}
467 	}
468 	if (punch_unlock)
469 		spin_unlock(punch_unlock);
470 	return freed;
471 }
472 
473 static int shmem_map_and_free_swp(struct page *subdir, int offset,
474 		int limit, struct page ***dir, spinlock_t *punch_lock)
475 {
476 	swp_entry_t *ptr;
477 	int freed = 0;
478 
479 	ptr = shmem_swp_map(subdir);
480 	for (; offset < limit; offset += LATENCY_LIMIT) {
481 		int size = limit - offset;
482 		if (size > LATENCY_LIMIT)
483 			size = LATENCY_LIMIT;
484 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
485 							punch_lock);
486 		if (need_resched()) {
487 			shmem_swp_unmap(ptr);
488 			if (*dir) {
489 				shmem_dir_unmap(*dir);
490 				*dir = NULL;
491 			}
492 			cond_resched();
493 			ptr = shmem_swp_map(subdir);
494 		}
495 	}
496 	shmem_swp_unmap(ptr);
497 	return freed;
498 }
499 
500 static void shmem_free_pages(struct list_head *next)
501 {
502 	struct page *page;
503 	int freed = 0;
504 
505 	do {
506 		page = container_of(next, struct page, lru);
507 		next = next->next;
508 		shmem_dir_free(page);
509 		freed++;
510 		if (freed >= LATENCY_LIMIT) {
511 			cond_resched();
512 			freed = 0;
513 		}
514 	} while (next);
515 }
516 
517 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
518 {
519 	struct shmem_inode_info *info = SHMEM_I(inode);
520 	unsigned long idx;
521 	unsigned long size;
522 	unsigned long limit;
523 	unsigned long stage;
524 	unsigned long diroff;
525 	struct page **dir;
526 	struct page *topdir;
527 	struct page *middir;
528 	struct page *subdir;
529 	swp_entry_t *ptr;
530 	LIST_HEAD(pages_to_free);
531 	long nr_pages_to_free = 0;
532 	long nr_swaps_freed = 0;
533 	int offset;
534 	int freed;
535 	int punch_hole;
536 	spinlock_t *needs_lock;
537 	spinlock_t *punch_lock;
538 	unsigned long upper_limit;
539 
540 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542 	if (idx >= info->next_index)
543 		return;
544 
545 	spin_lock(&info->lock);
546 	info->flags |= SHMEM_TRUNCATE;
547 	if (likely(end == (loff_t) -1)) {
548 		limit = info->next_index;
549 		upper_limit = SHMEM_MAX_INDEX;
550 		info->next_index = idx;
551 		needs_lock = NULL;
552 		punch_hole = 0;
553 	} else {
554 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
555 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
556 							PAGE_CACHE_SHIFT;
557 			upper_limit = SHMEM_MAX_INDEX;
558 		} else {
559 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
560 			upper_limit = limit;
561 		}
562 		needs_lock = &info->lock;
563 		punch_hole = 1;
564 	}
565 
566 	topdir = info->i_indirect;
567 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
568 		info->i_indirect = NULL;
569 		nr_pages_to_free++;
570 		list_add(&topdir->lru, &pages_to_free);
571 	}
572 	spin_unlock(&info->lock);
573 
574 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
575 		ptr = info->i_direct;
576 		size = limit;
577 		if (size > SHMEM_NR_DIRECT)
578 			size = SHMEM_NR_DIRECT;
579 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
580 	}
581 
582 	/*
583 	 * If there are no indirect blocks or we are punching a hole
584 	 * below indirect blocks, nothing to be done.
585 	 */
586 	if (!topdir || limit <= SHMEM_NR_DIRECT)
587 		goto done2;
588 
589 	/*
590 	 * The truncation case has already dropped info->lock, and we're safe
591 	 * because i_size and next_index have already been lowered, preventing
592 	 * access beyond.  But in the punch_hole case, we still need to take
593 	 * the lock when updating the swap directory, because there might be
594 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595 	 * shmem_writepage.  However, whenever we find we can remove a whole
596 	 * directory page (not at the misaligned start or end of the range),
597 	 * we first NULLify its pointer in the level above, and then have no
598 	 * need to take the lock when updating its contents: needs_lock and
599 	 * punch_lock (either pointing to info->lock or NULL) manage this.
600 	 */
601 
602 	upper_limit -= SHMEM_NR_DIRECT;
603 	limit -= SHMEM_NR_DIRECT;
604 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
605 	offset = idx % ENTRIES_PER_PAGE;
606 	idx -= offset;
607 
608 	dir = shmem_dir_map(topdir);
609 	stage = ENTRIES_PER_PAGEPAGE/2;
610 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
611 		middir = topdir;
612 		diroff = idx/ENTRIES_PER_PAGE;
613 	} else {
614 		dir += ENTRIES_PER_PAGE/2;
615 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
616 		while (stage <= idx)
617 			stage += ENTRIES_PER_PAGEPAGE;
618 		middir = *dir;
619 		if (*dir) {
620 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
621 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
622 			if (!diroff && !offset && upper_limit >= stage) {
623 				if (needs_lock) {
624 					spin_lock(needs_lock);
625 					*dir = NULL;
626 					spin_unlock(needs_lock);
627 					needs_lock = NULL;
628 				} else
629 					*dir = NULL;
630 				nr_pages_to_free++;
631 				list_add(&middir->lru, &pages_to_free);
632 			}
633 			shmem_dir_unmap(dir);
634 			dir = shmem_dir_map(middir);
635 		} else {
636 			diroff = 0;
637 			offset = 0;
638 			idx = stage;
639 		}
640 	}
641 
642 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
643 		if (unlikely(idx == stage)) {
644 			shmem_dir_unmap(dir);
645 			dir = shmem_dir_map(topdir) +
646 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
647 			while (!*dir) {
648 				dir++;
649 				idx += ENTRIES_PER_PAGEPAGE;
650 				if (idx >= limit)
651 					goto done1;
652 			}
653 			stage = idx + ENTRIES_PER_PAGEPAGE;
654 			middir = *dir;
655 			if (punch_hole)
656 				needs_lock = &info->lock;
657 			if (upper_limit >= stage) {
658 				if (needs_lock) {
659 					spin_lock(needs_lock);
660 					*dir = NULL;
661 					spin_unlock(needs_lock);
662 					needs_lock = NULL;
663 				} else
664 					*dir = NULL;
665 				nr_pages_to_free++;
666 				list_add(&middir->lru, &pages_to_free);
667 			}
668 			shmem_dir_unmap(dir);
669 			cond_resched();
670 			dir = shmem_dir_map(middir);
671 			diroff = 0;
672 		}
673 		punch_lock = needs_lock;
674 		subdir = dir[diroff];
675 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
676 			if (needs_lock) {
677 				spin_lock(needs_lock);
678 				dir[diroff] = NULL;
679 				spin_unlock(needs_lock);
680 				punch_lock = NULL;
681 			} else
682 				dir[diroff] = NULL;
683 			nr_pages_to_free++;
684 			list_add(&subdir->lru, &pages_to_free);
685 		}
686 		if (subdir && page_private(subdir) /* has swap entries */) {
687 			size = limit - idx;
688 			if (size > ENTRIES_PER_PAGE)
689 				size = ENTRIES_PER_PAGE;
690 			freed = shmem_map_and_free_swp(subdir,
691 					offset, size, &dir, punch_lock);
692 			if (!dir)
693 				dir = shmem_dir_map(middir);
694 			nr_swaps_freed += freed;
695 			if (offset || punch_lock) {
696 				spin_lock(&info->lock);
697 				set_page_private(subdir,
698 					page_private(subdir) - freed);
699 				spin_unlock(&info->lock);
700 			} else
701 				BUG_ON(page_private(subdir) != freed);
702 		}
703 		offset = 0;
704 	}
705 done1:
706 	shmem_dir_unmap(dir);
707 done2:
708 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
709 		/*
710 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
711 		 * may have swizzled a page in from swap since vmtruncate or
712 		 * generic_delete_inode did it, before we lowered next_index.
713 		 * Also, though shmem_getpage checks i_size before adding to
714 		 * cache, no recheck after: so fix the narrow window there too.
715 		 *
716 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
717 		 * every time for punch_hole (which never got a chance to clear
718 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719 		 * yet hardly ever necessary: try to optimize them out later.
720 		 */
721 		truncate_inode_pages_range(inode->i_mapping, start, end);
722 		if (punch_hole)
723 			unmap_mapping_range(inode->i_mapping, start,
724 							end - start, 1);
725 	}
726 
727 	spin_lock(&info->lock);
728 	info->flags &= ~SHMEM_TRUNCATE;
729 	info->swapped -= nr_swaps_freed;
730 	if (nr_pages_to_free)
731 		shmem_free_blocks(inode, nr_pages_to_free);
732 	shmem_recalc_inode(inode);
733 	spin_unlock(&info->lock);
734 
735 	/*
736 	 * Empty swap vector directory pages to be freed?
737 	 */
738 	if (!list_empty(&pages_to_free)) {
739 		pages_to_free.prev->next = NULL;
740 		shmem_free_pages(pages_to_free.next);
741 	}
742 }
743 
744 static void shmem_truncate(struct inode *inode)
745 {
746 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
747 }
748 
749 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
750 {
751 	struct inode *inode = dentry->d_inode;
752 	struct page *page = NULL;
753 	int error;
754 
755 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
756 		if (attr->ia_size < inode->i_size) {
757 			/*
758 			 * If truncating down to a partial page, then
759 			 * if that page is already allocated, hold it
760 			 * in memory until the truncation is over, so
761 			 * truncate_partial_page cannnot miss it were
762 			 * it assigned to swap.
763 			 */
764 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
765 				(void) shmem_getpage(inode,
766 					attr->ia_size>>PAGE_CACHE_SHIFT,
767 						&page, SGP_READ, NULL);
768 				if (page)
769 					unlock_page(page);
770 			}
771 			/*
772 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773 			 * detect if any pages might have been added to cache
774 			 * after truncate_inode_pages.  But we needn't bother
775 			 * if it's being fully truncated to zero-length: the
776 			 * nrpages check is efficient enough in that case.
777 			 */
778 			if (attr->ia_size) {
779 				struct shmem_inode_info *info = SHMEM_I(inode);
780 				spin_lock(&info->lock);
781 				info->flags &= ~SHMEM_PAGEIN;
782 				spin_unlock(&info->lock);
783 			}
784 		}
785 	}
786 
787 	error = inode_change_ok(inode, attr);
788 	if (!error)
789 		error = inode_setattr(inode, attr);
790 #ifdef CONFIG_TMPFS_POSIX_ACL
791 	if (!error && (attr->ia_valid & ATTR_MODE))
792 		error = generic_acl_chmod(inode, &shmem_acl_ops);
793 #endif
794 	if (page)
795 		page_cache_release(page);
796 	return error;
797 }
798 
799 static void shmem_delete_inode(struct inode *inode)
800 {
801 	struct shmem_inode_info *info = SHMEM_I(inode);
802 
803 	if (inode->i_op->truncate == shmem_truncate) {
804 		truncate_inode_pages(inode->i_mapping, 0);
805 		shmem_unacct_size(info->flags, inode->i_size);
806 		inode->i_size = 0;
807 		shmem_truncate(inode);
808 		if (!list_empty(&info->swaplist)) {
809 			mutex_lock(&shmem_swaplist_mutex);
810 			list_del_init(&info->swaplist);
811 			mutex_unlock(&shmem_swaplist_mutex);
812 		}
813 	}
814 	BUG_ON(inode->i_blocks);
815 	shmem_free_inode(inode->i_sb);
816 	clear_inode(inode);
817 }
818 
819 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
820 {
821 	swp_entry_t *ptr;
822 
823 	for (ptr = dir; ptr < edir; ptr++) {
824 		if (ptr->val == entry.val)
825 			return ptr - dir;
826 	}
827 	return -1;
828 }
829 
830 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
831 {
832 	struct inode *inode;
833 	unsigned long idx;
834 	unsigned long size;
835 	unsigned long limit;
836 	unsigned long stage;
837 	struct page **dir;
838 	struct page *subdir;
839 	swp_entry_t *ptr;
840 	int offset;
841 	int error;
842 
843 	idx = 0;
844 	ptr = info->i_direct;
845 	spin_lock(&info->lock);
846 	if (!info->swapped) {
847 		list_del_init(&info->swaplist);
848 		goto lost2;
849 	}
850 	limit = info->next_index;
851 	size = limit;
852 	if (size > SHMEM_NR_DIRECT)
853 		size = SHMEM_NR_DIRECT;
854 	offset = shmem_find_swp(entry, ptr, ptr+size);
855 	if (offset >= 0)
856 		goto found;
857 	if (!info->i_indirect)
858 		goto lost2;
859 
860 	dir = shmem_dir_map(info->i_indirect);
861 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
862 
863 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
864 		if (unlikely(idx == stage)) {
865 			shmem_dir_unmap(dir-1);
866 			if (cond_resched_lock(&info->lock)) {
867 				/* check it has not been truncated */
868 				if (limit > info->next_index) {
869 					limit = info->next_index;
870 					if (idx >= limit)
871 						goto lost2;
872 				}
873 			}
874 			dir = shmem_dir_map(info->i_indirect) +
875 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
876 			while (!*dir) {
877 				dir++;
878 				idx += ENTRIES_PER_PAGEPAGE;
879 				if (idx >= limit)
880 					goto lost1;
881 			}
882 			stage = idx + ENTRIES_PER_PAGEPAGE;
883 			subdir = *dir;
884 			shmem_dir_unmap(dir);
885 			dir = shmem_dir_map(subdir);
886 		}
887 		subdir = *dir;
888 		if (subdir && page_private(subdir)) {
889 			ptr = shmem_swp_map(subdir);
890 			size = limit - idx;
891 			if (size > ENTRIES_PER_PAGE)
892 				size = ENTRIES_PER_PAGE;
893 			offset = shmem_find_swp(entry, ptr, ptr+size);
894 			shmem_swp_unmap(ptr);
895 			if (offset >= 0) {
896 				shmem_dir_unmap(dir);
897 				goto found;
898 			}
899 		}
900 	}
901 lost1:
902 	shmem_dir_unmap(dir-1);
903 lost2:
904 	spin_unlock(&info->lock);
905 	return 0;
906 found:
907 	idx += offset;
908 	inode = igrab(&info->vfs_inode);
909 	spin_unlock(&info->lock);
910 
911 	/*
912 	 * Move _head_ to start search for next from here.
913 	 * But be careful: shmem_delete_inode checks list_empty without taking
914 	 * mutex, and there's an instant in list_move_tail when info->swaplist
915 	 * would appear empty, if it were the only one on shmem_swaplist.  We
916 	 * could avoid doing it if inode NULL; or use this minor optimization.
917 	 */
918 	if (shmem_swaplist.next != &info->swaplist)
919 		list_move_tail(&shmem_swaplist, &info->swaplist);
920 	mutex_unlock(&shmem_swaplist_mutex);
921 
922 	error = 1;
923 	if (!inode)
924 		goto out;
925 	/* Precharge page using GFP_KERNEL while we can wait */
926 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
927 	if (error)
928 		goto out;
929 	error = radix_tree_preload(GFP_KERNEL);
930 	if (error) {
931 		mem_cgroup_uncharge_cache_page(page);
932 		goto out;
933 	}
934 	error = 1;
935 
936 	spin_lock(&info->lock);
937 	ptr = shmem_swp_entry(info, idx, NULL);
938 	if (ptr && ptr->val == entry.val) {
939 		error = add_to_page_cache_locked(page, inode->i_mapping,
940 						idx, GFP_NOWAIT);
941 		/* does mem_cgroup_uncharge_cache_page on error */
942 	} else	/* we must compensate for our precharge above */
943 		mem_cgroup_uncharge_cache_page(page);
944 
945 	if (error == -EEXIST) {
946 		struct page *filepage = find_get_page(inode->i_mapping, idx);
947 		error = 1;
948 		if (filepage) {
949 			/*
950 			 * There might be a more uptodate page coming down
951 			 * from a stacked writepage: forget our swappage if so.
952 			 */
953 			if (PageUptodate(filepage))
954 				error = 0;
955 			page_cache_release(filepage);
956 		}
957 	}
958 	if (!error) {
959 		delete_from_swap_cache(page);
960 		set_page_dirty(page);
961 		info->flags |= SHMEM_PAGEIN;
962 		shmem_swp_set(info, ptr, 0);
963 		swap_free(entry);
964 		error = 1;	/* not an error, but entry was found */
965 	}
966 	if (ptr)
967 		shmem_swp_unmap(ptr);
968 	spin_unlock(&info->lock);
969 	radix_tree_preload_end();
970 out:
971 	unlock_page(page);
972 	page_cache_release(page);
973 	iput(inode);		/* allows for NULL */
974 	return error;
975 }
976 
977 /*
978  * shmem_unuse() search for an eventually swapped out shmem page.
979  */
980 int shmem_unuse(swp_entry_t entry, struct page *page)
981 {
982 	struct list_head *p, *next;
983 	struct shmem_inode_info *info;
984 	int found = 0;
985 
986 	mutex_lock(&shmem_swaplist_mutex);
987 	list_for_each_safe(p, next, &shmem_swaplist) {
988 		info = list_entry(p, struct shmem_inode_info, swaplist);
989 		found = shmem_unuse_inode(info, entry, page);
990 		cond_resched();
991 		if (found)
992 			goto out;
993 	}
994 	mutex_unlock(&shmem_swaplist_mutex);
995 out:	return found;	/* 0 or 1 or -ENOMEM */
996 }
997 
998 /*
999  * Move the page from the page cache to the swap cache.
1000  */
1001 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1002 {
1003 	struct shmem_inode_info *info;
1004 	swp_entry_t *entry, swap;
1005 	struct address_space *mapping;
1006 	unsigned long index;
1007 	struct inode *inode;
1008 
1009 	BUG_ON(!PageLocked(page));
1010 	mapping = page->mapping;
1011 	index = page->index;
1012 	inode = mapping->host;
1013 	info = SHMEM_I(inode);
1014 	if (info->flags & VM_LOCKED)
1015 		goto redirty;
1016 	if (!total_swap_pages)
1017 		goto redirty;
1018 
1019 	/*
1020 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1021 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1022 	 * may use the ->writepage of its underlying filesystem, in which case
1023 	 * tmpfs should write out to swap only in response to memory pressure,
1024 	 * and not for pdflush or sync.  However, in those cases, we do still
1025 	 * want to check if there's a redundant swappage to be discarded.
1026 	 */
1027 	if (wbc->for_reclaim)
1028 		swap = get_swap_page();
1029 	else
1030 		swap.val = 0;
1031 
1032 	spin_lock(&info->lock);
1033 	if (index >= info->next_index) {
1034 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1035 		goto unlock;
1036 	}
1037 	entry = shmem_swp_entry(info, index, NULL);
1038 	if (entry->val) {
1039 		/*
1040 		 * The more uptodate page coming down from a stacked
1041 		 * writepage should replace our old swappage.
1042 		 */
1043 		free_swap_and_cache(*entry);
1044 		shmem_swp_set(info, entry, 0);
1045 	}
1046 	shmem_recalc_inode(inode);
1047 
1048 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1049 		remove_from_page_cache(page);
1050 		shmem_swp_set(info, entry, swap.val);
1051 		shmem_swp_unmap(entry);
1052 		if (list_empty(&info->swaplist))
1053 			inode = igrab(inode);
1054 		else
1055 			inode = NULL;
1056 		spin_unlock(&info->lock);
1057 		swap_duplicate(swap);
1058 		BUG_ON(page_mapped(page));
1059 		page_cache_release(page);	/* pagecache ref */
1060 		set_page_dirty(page);
1061 		unlock_page(page);
1062 		if (inode) {
1063 			mutex_lock(&shmem_swaplist_mutex);
1064 			/* move instead of add in case we're racing */
1065 			list_move_tail(&info->swaplist, &shmem_swaplist);
1066 			mutex_unlock(&shmem_swaplist_mutex);
1067 			iput(inode);
1068 		}
1069 		return 0;
1070 	}
1071 
1072 	shmem_swp_unmap(entry);
1073 unlock:
1074 	spin_unlock(&info->lock);
1075 	swap_free(swap);
1076 redirty:
1077 	set_page_dirty(page);
1078 	if (wbc->for_reclaim)
1079 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1080 	unlock_page(page);
1081 	return 0;
1082 }
1083 
1084 #ifdef CONFIG_NUMA
1085 #ifdef CONFIG_TMPFS
1086 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1087 {
1088 	char buffer[64];
1089 
1090 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1091 		return;		/* show nothing */
1092 
1093 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1094 
1095 	seq_printf(seq, ",mpol=%s", buffer);
1096 }
1097 
1098 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1099 {
1100 	struct mempolicy *mpol = NULL;
1101 	if (sbinfo->mpol) {
1102 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1103 		mpol = sbinfo->mpol;
1104 		mpol_get(mpol);
1105 		spin_unlock(&sbinfo->stat_lock);
1106 	}
1107 	return mpol;
1108 }
1109 #endif /* CONFIG_TMPFS */
1110 
1111 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1112 			struct shmem_inode_info *info, unsigned long idx)
1113 {
1114 	struct mempolicy mpol, *spol;
1115 	struct vm_area_struct pvma;
1116 	struct page *page;
1117 
1118 	spol = mpol_cond_copy(&mpol,
1119 				mpol_shared_policy_lookup(&info->policy, idx));
1120 
1121 	/* Create a pseudo vma that just contains the policy */
1122 	pvma.vm_start = 0;
1123 	pvma.vm_pgoff = idx;
1124 	pvma.vm_ops = NULL;
1125 	pvma.vm_policy = spol;
1126 	page = swapin_readahead(entry, gfp, &pvma, 0);
1127 	return page;
1128 }
1129 
1130 static struct page *shmem_alloc_page(gfp_t gfp,
1131 			struct shmem_inode_info *info, unsigned long idx)
1132 {
1133 	struct vm_area_struct pvma;
1134 
1135 	/* Create a pseudo vma that just contains the policy */
1136 	pvma.vm_start = 0;
1137 	pvma.vm_pgoff = idx;
1138 	pvma.vm_ops = NULL;
1139 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1140 
1141 	/*
1142 	 * alloc_page_vma() will drop the shared policy reference
1143 	 */
1144 	return alloc_page_vma(gfp, &pvma, 0);
1145 }
1146 #else /* !CONFIG_NUMA */
1147 #ifdef CONFIG_TMPFS
1148 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1149 {
1150 }
1151 #endif /* CONFIG_TMPFS */
1152 
1153 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1154 			struct shmem_inode_info *info, unsigned long idx)
1155 {
1156 	return swapin_readahead(entry, gfp, NULL, 0);
1157 }
1158 
1159 static inline struct page *shmem_alloc_page(gfp_t gfp,
1160 			struct shmem_inode_info *info, unsigned long idx)
1161 {
1162 	return alloc_page(gfp);
1163 }
1164 #endif /* CONFIG_NUMA */
1165 
1166 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1167 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1168 {
1169 	return NULL;
1170 }
1171 #endif
1172 
1173 /*
1174  * shmem_getpage - either get the page from swap or allocate a new one
1175  *
1176  * If we allocate a new one we do not mark it dirty. That's up to the
1177  * vm. If we swap it in we mark it dirty since we also free the swap
1178  * entry since a page cannot live in both the swap and page cache
1179  */
1180 static int shmem_getpage(struct inode *inode, unsigned long idx,
1181 			struct page **pagep, enum sgp_type sgp, int *type)
1182 {
1183 	struct address_space *mapping = inode->i_mapping;
1184 	struct shmem_inode_info *info = SHMEM_I(inode);
1185 	struct shmem_sb_info *sbinfo;
1186 	struct page *filepage = *pagep;
1187 	struct page *swappage;
1188 	swp_entry_t *entry;
1189 	swp_entry_t swap;
1190 	gfp_t gfp;
1191 	int error;
1192 
1193 	if (idx >= SHMEM_MAX_INDEX)
1194 		return -EFBIG;
1195 
1196 	if (type)
1197 		*type = 0;
1198 
1199 	/*
1200 	 * Normally, filepage is NULL on entry, and either found
1201 	 * uptodate immediately, or allocated and zeroed, or read
1202 	 * in under swappage, which is then assigned to filepage.
1203 	 * But shmem_readpage (required for splice) passes in a locked
1204 	 * filepage, which may be found not uptodate by other callers
1205 	 * too, and may need to be copied from the swappage read in.
1206 	 */
1207 repeat:
1208 	if (!filepage)
1209 		filepage = find_lock_page(mapping, idx);
1210 	if (filepage && PageUptodate(filepage))
1211 		goto done;
1212 	error = 0;
1213 	gfp = mapping_gfp_mask(mapping);
1214 	if (!filepage) {
1215 		/*
1216 		 * Try to preload while we can wait, to not make a habit of
1217 		 * draining atomic reserves; but don't latch on to this cpu.
1218 		 */
1219 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1220 		if (error)
1221 			goto failed;
1222 		radix_tree_preload_end();
1223 	}
1224 
1225 	spin_lock(&info->lock);
1226 	shmem_recalc_inode(inode);
1227 	entry = shmem_swp_alloc(info, idx, sgp);
1228 	if (IS_ERR(entry)) {
1229 		spin_unlock(&info->lock);
1230 		error = PTR_ERR(entry);
1231 		goto failed;
1232 	}
1233 	swap = *entry;
1234 
1235 	if (swap.val) {
1236 		/* Look it up and read it in.. */
1237 		swappage = lookup_swap_cache(swap);
1238 		if (!swappage) {
1239 			shmem_swp_unmap(entry);
1240 			/* here we actually do the io */
1241 			if (type && !(*type & VM_FAULT_MAJOR)) {
1242 				__count_vm_event(PGMAJFAULT);
1243 				*type |= VM_FAULT_MAJOR;
1244 			}
1245 			spin_unlock(&info->lock);
1246 			swappage = shmem_swapin(swap, gfp, info, idx);
1247 			if (!swappage) {
1248 				spin_lock(&info->lock);
1249 				entry = shmem_swp_alloc(info, idx, sgp);
1250 				if (IS_ERR(entry))
1251 					error = PTR_ERR(entry);
1252 				else {
1253 					if (entry->val == swap.val)
1254 						error = -ENOMEM;
1255 					shmem_swp_unmap(entry);
1256 				}
1257 				spin_unlock(&info->lock);
1258 				if (error)
1259 					goto failed;
1260 				goto repeat;
1261 			}
1262 			wait_on_page_locked(swappage);
1263 			page_cache_release(swappage);
1264 			goto repeat;
1265 		}
1266 
1267 		/* We have to do this with page locked to prevent races */
1268 		if (!trylock_page(swappage)) {
1269 			shmem_swp_unmap(entry);
1270 			spin_unlock(&info->lock);
1271 			wait_on_page_locked(swappage);
1272 			page_cache_release(swappage);
1273 			goto repeat;
1274 		}
1275 		if (PageWriteback(swappage)) {
1276 			shmem_swp_unmap(entry);
1277 			spin_unlock(&info->lock);
1278 			wait_on_page_writeback(swappage);
1279 			unlock_page(swappage);
1280 			page_cache_release(swappage);
1281 			goto repeat;
1282 		}
1283 		if (!PageUptodate(swappage)) {
1284 			shmem_swp_unmap(entry);
1285 			spin_unlock(&info->lock);
1286 			unlock_page(swappage);
1287 			page_cache_release(swappage);
1288 			error = -EIO;
1289 			goto failed;
1290 		}
1291 
1292 		if (filepage) {
1293 			shmem_swp_set(info, entry, 0);
1294 			shmem_swp_unmap(entry);
1295 			delete_from_swap_cache(swappage);
1296 			spin_unlock(&info->lock);
1297 			copy_highpage(filepage, swappage);
1298 			unlock_page(swappage);
1299 			page_cache_release(swappage);
1300 			flush_dcache_page(filepage);
1301 			SetPageUptodate(filepage);
1302 			set_page_dirty(filepage);
1303 			swap_free(swap);
1304 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1305 					idx, GFP_NOWAIT))) {
1306 			info->flags |= SHMEM_PAGEIN;
1307 			shmem_swp_set(info, entry, 0);
1308 			shmem_swp_unmap(entry);
1309 			delete_from_swap_cache(swappage);
1310 			spin_unlock(&info->lock);
1311 			filepage = swappage;
1312 			set_page_dirty(filepage);
1313 			swap_free(swap);
1314 		} else {
1315 			shmem_swp_unmap(entry);
1316 			spin_unlock(&info->lock);
1317 			unlock_page(swappage);
1318 			page_cache_release(swappage);
1319 			if (error == -ENOMEM) {
1320 				/* allow reclaim from this memory cgroup */
1321 				error = mem_cgroup_shrink_usage(current->mm,
1322 								gfp);
1323 				if (error)
1324 					goto failed;
1325 			}
1326 			goto repeat;
1327 		}
1328 	} else if (sgp == SGP_READ && !filepage) {
1329 		shmem_swp_unmap(entry);
1330 		filepage = find_get_page(mapping, idx);
1331 		if (filepage &&
1332 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1333 			spin_unlock(&info->lock);
1334 			wait_on_page_locked(filepage);
1335 			page_cache_release(filepage);
1336 			filepage = NULL;
1337 			goto repeat;
1338 		}
1339 		spin_unlock(&info->lock);
1340 	} else {
1341 		shmem_swp_unmap(entry);
1342 		sbinfo = SHMEM_SB(inode->i_sb);
1343 		if (sbinfo->max_blocks) {
1344 			spin_lock(&sbinfo->stat_lock);
1345 			if (sbinfo->free_blocks == 0 ||
1346 			    shmem_acct_block(info->flags)) {
1347 				spin_unlock(&sbinfo->stat_lock);
1348 				spin_unlock(&info->lock);
1349 				error = -ENOSPC;
1350 				goto failed;
1351 			}
1352 			sbinfo->free_blocks--;
1353 			inode->i_blocks += BLOCKS_PER_PAGE;
1354 			spin_unlock(&sbinfo->stat_lock);
1355 		} else if (shmem_acct_block(info->flags)) {
1356 			spin_unlock(&info->lock);
1357 			error = -ENOSPC;
1358 			goto failed;
1359 		}
1360 
1361 		if (!filepage) {
1362 			int ret;
1363 
1364 			spin_unlock(&info->lock);
1365 			filepage = shmem_alloc_page(gfp, info, idx);
1366 			if (!filepage) {
1367 				shmem_unacct_blocks(info->flags, 1);
1368 				shmem_free_blocks(inode, 1);
1369 				error = -ENOMEM;
1370 				goto failed;
1371 			}
1372 
1373 			/* Precharge page while we can wait, compensate after */
1374 			error = mem_cgroup_cache_charge(filepage, current->mm,
1375 							gfp & ~__GFP_HIGHMEM);
1376 			if (error) {
1377 				page_cache_release(filepage);
1378 				shmem_unacct_blocks(info->flags, 1);
1379 				shmem_free_blocks(inode, 1);
1380 				filepage = NULL;
1381 				goto failed;
1382 			}
1383 
1384 			spin_lock(&info->lock);
1385 			entry = shmem_swp_alloc(info, idx, sgp);
1386 			if (IS_ERR(entry))
1387 				error = PTR_ERR(entry);
1388 			else {
1389 				swap = *entry;
1390 				shmem_swp_unmap(entry);
1391 			}
1392 			ret = error || swap.val;
1393 			if (ret)
1394 				mem_cgroup_uncharge_cache_page(filepage);
1395 			else
1396 				ret = add_to_page_cache_lru(filepage, mapping,
1397 						idx, GFP_NOWAIT);
1398 			/*
1399 			 * At add_to_page_cache_lru() failure, uncharge will
1400 			 * be done automatically.
1401 			 */
1402 			if (ret) {
1403 				spin_unlock(&info->lock);
1404 				page_cache_release(filepage);
1405 				shmem_unacct_blocks(info->flags, 1);
1406 				shmem_free_blocks(inode, 1);
1407 				filepage = NULL;
1408 				if (error)
1409 					goto failed;
1410 				goto repeat;
1411 			}
1412 			info->flags |= SHMEM_PAGEIN;
1413 		}
1414 
1415 		info->alloced++;
1416 		spin_unlock(&info->lock);
1417 		clear_highpage(filepage);
1418 		flush_dcache_page(filepage);
1419 		SetPageUptodate(filepage);
1420 		if (sgp == SGP_DIRTY)
1421 			set_page_dirty(filepage);
1422 	}
1423 done:
1424 	*pagep = filepage;
1425 	return 0;
1426 
1427 failed:
1428 	if (*pagep != filepage) {
1429 		unlock_page(filepage);
1430 		page_cache_release(filepage);
1431 	}
1432 	return error;
1433 }
1434 
1435 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1436 {
1437 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1438 	int error;
1439 	int ret;
1440 
1441 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1442 		return VM_FAULT_SIGBUS;
1443 
1444 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1445 	if (error)
1446 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1447 
1448 	mark_page_accessed(vmf->page);
1449 	return ret | VM_FAULT_LOCKED;
1450 }
1451 
1452 #ifdef CONFIG_NUMA
1453 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1454 {
1455 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1456 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1457 }
1458 
1459 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1460 					  unsigned long addr)
1461 {
1462 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1463 	unsigned long idx;
1464 
1465 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1466 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1467 }
1468 #endif
1469 
1470 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1471 {
1472 	struct inode *inode = file->f_path.dentry->d_inode;
1473 	struct shmem_inode_info *info = SHMEM_I(inode);
1474 	int retval = -ENOMEM;
1475 
1476 	spin_lock(&info->lock);
1477 	if (lock && !(info->flags & VM_LOCKED)) {
1478 		if (!user_shm_lock(inode->i_size, user))
1479 			goto out_nomem;
1480 		info->flags |= VM_LOCKED;
1481 	}
1482 	if (!lock && (info->flags & VM_LOCKED) && user) {
1483 		user_shm_unlock(inode->i_size, user);
1484 		info->flags &= ~VM_LOCKED;
1485 	}
1486 	retval = 0;
1487 out_nomem:
1488 	spin_unlock(&info->lock);
1489 	return retval;
1490 }
1491 
1492 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1493 {
1494 	file_accessed(file);
1495 	vma->vm_ops = &shmem_vm_ops;
1496 	vma->vm_flags |= VM_CAN_NONLINEAR;
1497 	return 0;
1498 }
1499 
1500 static struct inode *
1501 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1502 {
1503 	struct inode *inode;
1504 	struct shmem_inode_info *info;
1505 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1506 
1507 	if (shmem_reserve_inode(sb))
1508 		return NULL;
1509 
1510 	inode = new_inode(sb);
1511 	if (inode) {
1512 		inode->i_mode = mode;
1513 		inode->i_uid = current->fsuid;
1514 		inode->i_gid = current->fsgid;
1515 		inode->i_blocks = 0;
1516 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1517 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1518 		inode->i_generation = get_seconds();
1519 		info = SHMEM_I(inode);
1520 		memset(info, 0, (char *)inode - (char *)info);
1521 		spin_lock_init(&info->lock);
1522 		INIT_LIST_HEAD(&info->swaplist);
1523 
1524 		switch (mode & S_IFMT) {
1525 		default:
1526 			inode->i_op = &shmem_special_inode_operations;
1527 			init_special_inode(inode, mode, dev);
1528 			break;
1529 		case S_IFREG:
1530 			inode->i_mapping->a_ops = &shmem_aops;
1531 			inode->i_op = &shmem_inode_operations;
1532 			inode->i_fop = &shmem_file_operations;
1533 			mpol_shared_policy_init(&info->policy,
1534 						 shmem_get_sbmpol(sbinfo));
1535 			break;
1536 		case S_IFDIR:
1537 			inc_nlink(inode);
1538 			/* Some things misbehave if size == 0 on a directory */
1539 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1540 			inode->i_op = &shmem_dir_inode_operations;
1541 			inode->i_fop = &simple_dir_operations;
1542 			break;
1543 		case S_IFLNK:
1544 			/*
1545 			 * Must not load anything in the rbtree,
1546 			 * mpol_free_shared_policy will not be called.
1547 			 */
1548 			mpol_shared_policy_init(&info->policy, NULL);
1549 			break;
1550 		}
1551 	} else
1552 		shmem_free_inode(sb);
1553 	return inode;
1554 }
1555 
1556 #ifdef CONFIG_TMPFS
1557 static const struct inode_operations shmem_symlink_inode_operations;
1558 static const struct inode_operations shmem_symlink_inline_operations;
1559 
1560 /*
1561  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1562  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1563  * below the loop driver, in the generic fashion that many filesystems support.
1564  */
1565 static int shmem_readpage(struct file *file, struct page *page)
1566 {
1567 	struct inode *inode = page->mapping->host;
1568 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1569 	unlock_page(page);
1570 	return error;
1571 }
1572 
1573 static int
1574 shmem_write_begin(struct file *file, struct address_space *mapping,
1575 			loff_t pos, unsigned len, unsigned flags,
1576 			struct page **pagep, void **fsdata)
1577 {
1578 	struct inode *inode = mapping->host;
1579 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1580 	*pagep = NULL;
1581 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1582 }
1583 
1584 static int
1585 shmem_write_end(struct file *file, struct address_space *mapping,
1586 			loff_t pos, unsigned len, unsigned copied,
1587 			struct page *page, void *fsdata)
1588 {
1589 	struct inode *inode = mapping->host;
1590 
1591 	if (pos + copied > inode->i_size)
1592 		i_size_write(inode, pos + copied);
1593 
1594 	unlock_page(page);
1595 	set_page_dirty(page);
1596 	page_cache_release(page);
1597 
1598 	return copied;
1599 }
1600 
1601 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1602 {
1603 	struct inode *inode = filp->f_path.dentry->d_inode;
1604 	struct address_space *mapping = inode->i_mapping;
1605 	unsigned long index, offset;
1606 	enum sgp_type sgp = SGP_READ;
1607 
1608 	/*
1609 	 * Might this read be for a stacking filesystem?  Then when reading
1610 	 * holes of a sparse file, we actually need to allocate those pages,
1611 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1612 	 */
1613 	if (segment_eq(get_fs(), KERNEL_DS))
1614 		sgp = SGP_DIRTY;
1615 
1616 	index = *ppos >> PAGE_CACHE_SHIFT;
1617 	offset = *ppos & ~PAGE_CACHE_MASK;
1618 
1619 	for (;;) {
1620 		struct page *page = NULL;
1621 		unsigned long end_index, nr, ret;
1622 		loff_t i_size = i_size_read(inode);
1623 
1624 		end_index = i_size >> PAGE_CACHE_SHIFT;
1625 		if (index > end_index)
1626 			break;
1627 		if (index == end_index) {
1628 			nr = i_size & ~PAGE_CACHE_MASK;
1629 			if (nr <= offset)
1630 				break;
1631 		}
1632 
1633 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1634 		if (desc->error) {
1635 			if (desc->error == -EINVAL)
1636 				desc->error = 0;
1637 			break;
1638 		}
1639 		if (page)
1640 			unlock_page(page);
1641 
1642 		/*
1643 		 * We must evaluate after, since reads (unlike writes)
1644 		 * are called without i_mutex protection against truncate
1645 		 */
1646 		nr = PAGE_CACHE_SIZE;
1647 		i_size = i_size_read(inode);
1648 		end_index = i_size >> PAGE_CACHE_SHIFT;
1649 		if (index == end_index) {
1650 			nr = i_size & ~PAGE_CACHE_MASK;
1651 			if (nr <= offset) {
1652 				if (page)
1653 					page_cache_release(page);
1654 				break;
1655 			}
1656 		}
1657 		nr -= offset;
1658 
1659 		if (page) {
1660 			/*
1661 			 * If users can be writing to this page using arbitrary
1662 			 * virtual addresses, take care about potential aliasing
1663 			 * before reading the page on the kernel side.
1664 			 */
1665 			if (mapping_writably_mapped(mapping))
1666 				flush_dcache_page(page);
1667 			/*
1668 			 * Mark the page accessed if we read the beginning.
1669 			 */
1670 			if (!offset)
1671 				mark_page_accessed(page);
1672 		} else {
1673 			page = ZERO_PAGE(0);
1674 			page_cache_get(page);
1675 		}
1676 
1677 		/*
1678 		 * Ok, we have the page, and it's up-to-date, so
1679 		 * now we can copy it to user space...
1680 		 *
1681 		 * The actor routine returns how many bytes were actually used..
1682 		 * NOTE! This may not be the same as how much of a user buffer
1683 		 * we filled up (we may be padding etc), so we can only update
1684 		 * "pos" here (the actor routine has to update the user buffer
1685 		 * pointers and the remaining count).
1686 		 */
1687 		ret = actor(desc, page, offset, nr);
1688 		offset += ret;
1689 		index += offset >> PAGE_CACHE_SHIFT;
1690 		offset &= ~PAGE_CACHE_MASK;
1691 
1692 		page_cache_release(page);
1693 		if (ret != nr || !desc->count)
1694 			break;
1695 
1696 		cond_resched();
1697 	}
1698 
1699 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1700 	file_accessed(filp);
1701 }
1702 
1703 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1704 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1705 {
1706 	struct file *filp = iocb->ki_filp;
1707 	ssize_t retval;
1708 	unsigned long seg;
1709 	size_t count;
1710 	loff_t *ppos = &iocb->ki_pos;
1711 
1712 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1713 	if (retval)
1714 		return retval;
1715 
1716 	for (seg = 0; seg < nr_segs; seg++) {
1717 		read_descriptor_t desc;
1718 
1719 		desc.written = 0;
1720 		desc.arg.buf = iov[seg].iov_base;
1721 		desc.count = iov[seg].iov_len;
1722 		if (desc.count == 0)
1723 			continue;
1724 		desc.error = 0;
1725 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1726 		retval += desc.written;
1727 		if (desc.error) {
1728 			retval = retval ?: desc.error;
1729 			break;
1730 		}
1731 		if (desc.count > 0)
1732 			break;
1733 	}
1734 	return retval;
1735 }
1736 
1737 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1738 {
1739 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1740 
1741 	buf->f_type = TMPFS_MAGIC;
1742 	buf->f_bsize = PAGE_CACHE_SIZE;
1743 	buf->f_namelen = NAME_MAX;
1744 	spin_lock(&sbinfo->stat_lock);
1745 	if (sbinfo->max_blocks) {
1746 		buf->f_blocks = sbinfo->max_blocks;
1747 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1748 	}
1749 	if (sbinfo->max_inodes) {
1750 		buf->f_files = sbinfo->max_inodes;
1751 		buf->f_ffree = sbinfo->free_inodes;
1752 	}
1753 	/* else leave those fields 0 like simple_statfs */
1754 	spin_unlock(&sbinfo->stat_lock);
1755 	return 0;
1756 }
1757 
1758 /*
1759  * File creation. Allocate an inode, and we're done..
1760  */
1761 static int
1762 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1763 {
1764 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1765 	int error = -ENOSPC;
1766 
1767 	if (inode) {
1768 		error = security_inode_init_security(inode, dir, NULL, NULL,
1769 						     NULL);
1770 		if (error) {
1771 			if (error != -EOPNOTSUPP) {
1772 				iput(inode);
1773 				return error;
1774 			}
1775 		}
1776 		error = shmem_acl_init(inode, dir);
1777 		if (error) {
1778 			iput(inode);
1779 			return error;
1780 		}
1781 		if (dir->i_mode & S_ISGID) {
1782 			inode->i_gid = dir->i_gid;
1783 			if (S_ISDIR(mode))
1784 				inode->i_mode |= S_ISGID;
1785 		}
1786 		dir->i_size += BOGO_DIRENT_SIZE;
1787 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1788 		d_instantiate(dentry, inode);
1789 		dget(dentry); /* Extra count - pin the dentry in core */
1790 	}
1791 	return error;
1792 }
1793 
1794 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1795 {
1796 	int error;
1797 
1798 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1799 		return error;
1800 	inc_nlink(dir);
1801 	return 0;
1802 }
1803 
1804 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1805 		struct nameidata *nd)
1806 {
1807 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1808 }
1809 
1810 /*
1811  * Link a file..
1812  */
1813 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1814 {
1815 	struct inode *inode = old_dentry->d_inode;
1816 	int ret;
1817 
1818 	/*
1819 	 * No ordinary (disk based) filesystem counts links as inodes;
1820 	 * but each new link needs a new dentry, pinning lowmem, and
1821 	 * tmpfs dentries cannot be pruned until they are unlinked.
1822 	 */
1823 	ret = shmem_reserve_inode(inode->i_sb);
1824 	if (ret)
1825 		goto out;
1826 
1827 	dir->i_size += BOGO_DIRENT_SIZE;
1828 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1829 	inc_nlink(inode);
1830 	atomic_inc(&inode->i_count);	/* New dentry reference */
1831 	dget(dentry);		/* Extra pinning count for the created dentry */
1832 	d_instantiate(dentry, inode);
1833 out:
1834 	return ret;
1835 }
1836 
1837 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1838 {
1839 	struct inode *inode = dentry->d_inode;
1840 
1841 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1842 		shmem_free_inode(inode->i_sb);
1843 
1844 	dir->i_size -= BOGO_DIRENT_SIZE;
1845 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1846 	drop_nlink(inode);
1847 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1848 	return 0;
1849 }
1850 
1851 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1852 {
1853 	if (!simple_empty(dentry))
1854 		return -ENOTEMPTY;
1855 
1856 	drop_nlink(dentry->d_inode);
1857 	drop_nlink(dir);
1858 	return shmem_unlink(dir, dentry);
1859 }
1860 
1861 /*
1862  * The VFS layer already does all the dentry stuff for rename,
1863  * we just have to decrement the usage count for the target if
1864  * it exists so that the VFS layer correctly free's it when it
1865  * gets overwritten.
1866  */
1867 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1868 {
1869 	struct inode *inode = old_dentry->d_inode;
1870 	int they_are_dirs = S_ISDIR(inode->i_mode);
1871 
1872 	if (!simple_empty(new_dentry))
1873 		return -ENOTEMPTY;
1874 
1875 	if (new_dentry->d_inode) {
1876 		(void) shmem_unlink(new_dir, new_dentry);
1877 		if (they_are_dirs)
1878 			drop_nlink(old_dir);
1879 	} else if (they_are_dirs) {
1880 		drop_nlink(old_dir);
1881 		inc_nlink(new_dir);
1882 	}
1883 
1884 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1885 	new_dir->i_size += BOGO_DIRENT_SIZE;
1886 	old_dir->i_ctime = old_dir->i_mtime =
1887 	new_dir->i_ctime = new_dir->i_mtime =
1888 	inode->i_ctime = CURRENT_TIME;
1889 	return 0;
1890 }
1891 
1892 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1893 {
1894 	int error;
1895 	int len;
1896 	struct inode *inode;
1897 	struct page *page = NULL;
1898 	char *kaddr;
1899 	struct shmem_inode_info *info;
1900 
1901 	len = strlen(symname) + 1;
1902 	if (len > PAGE_CACHE_SIZE)
1903 		return -ENAMETOOLONG;
1904 
1905 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1906 	if (!inode)
1907 		return -ENOSPC;
1908 
1909 	error = security_inode_init_security(inode, dir, NULL, NULL,
1910 					     NULL);
1911 	if (error) {
1912 		if (error != -EOPNOTSUPP) {
1913 			iput(inode);
1914 			return error;
1915 		}
1916 		error = 0;
1917 	}
1918 
1919 	info = SHMEM_I(inode);
1920 	inode->i_size = len-1;
1921 	if (len <= (char *)inode - (char *)info) {
1922 		/* do it inline */
1923 		memcpy(info, symname, len);
1924 		inode->i_op = &shmem_symlink_inline_operations;
1925 	} else {
1926 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1927 		if (error) {
1928 			iput(inode);
1929 			return error;
1930 		}
1931 		unlock_page(page);
1932 		inode->i_mapping->a_ops = &shmem_aops;
1933 		inode->i_op = &shmem_symlink_inode_operations;
1934 		kaddr = kmap_atomic(page, KM_USER0);
1935 		memcpy(kaddr, symname, len);
1936 		kunmap_atomic(kaddr, KM_USER0);
1937 		set_page_dirty(page);
1938 		page_cache_release(page);
1939 	}
1940 	if (dir->i_mode & S_ISGID)
1941 		inode->i_gid = dir->i_gid;
1942 	dir->i_size += BOGO_DIRENT_SIZE;
1943 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1944 	d_instantiate(dentry, inode);
1945 	dget(dentry);
1946 	return 0;
1947 }
1948 
1949 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1950 {
1951 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1952 	return NULL;
1953 }
1954 
1955 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1956 {
1957 	struct page *page = NULL;
1958 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1959 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1960 	if (page)
1961 		unlock_page(page);
1962 	return page;
1963 }
1964 
1965 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1966 {
1967 	if (!IS_ERR(nd_get_link(nd))) {
1968 		struct page *page = cookie;
1969 		kunmap(page);
1970 		mark_page_accessed(page);
1971 		page_cache_release(page);
1972 	}
1973 }
1974 
1975 static const struct inode_operations shmem_symlink_inline_operations = {
1976 	.readlink	= generic_readlink,
1977 	.follow_link	= shmem_follow_link_inline,
1978 };
1979 
1980 static const struct inode_operations shmem_symlink_inode_operations = {
1981 	.truncate	= shmem_truncate,
1982 	.readlink	= generic_readlink,
1983 	.follow_link	= shmem_follow_link,
1984 	.put_link	= shmem_put_link,
1985 };
1986 
1987 #ifdef CONFIG_TMPFS_POSIX_ACL
1988 /*
1989  * Superblocks without xattr inode operations will get security.* xattr
1990  * support from the VFS "for free". As soon as we have any other xattrs
1991  * like ACLs, we also need to implement the security.* handlers at
1992  * filesystem level, though.
1993  */
1994 
1995 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1996 					size_t list_len, const char *name,
1997 					size_t name_len)
1998 {
1999 	return security_inode_listsecurity(inode, list, list_len);
2000 }
2001 
2002 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2003 				    void *buffer, size_t size)
2004 {
2005 	if (strcmp(name, "") == 0)
2006 		return -EINVAL;
2007 	return xattr_getsecurity(inode, name, buffer, size);
2008 }
2009 
2010 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2011 				    const void *value, size_t size, int flags)
2012 {
2013 	if (strcmp(name, "") == 0)
2014 		return -EINVAL;
2015 	return security_inode_setsecurity(inode, name, value, size, flags);
2016 }
2017 
2018 static struct xattr_handler shmem_xattr_security_handler = {
2019 	.prefix = XATTR_SECURITY_PREFIX,
2020 	.list   = shmem_xattr_security_list,
2021 	.get    = shmem_xattr_security_get,
2022 	.set    = shmem_xattr_security_set,
2023 };
2024 
2025 static struct xattr_handler *shmem_xattr_handlers[] = {
2026 	&shmem_xattr_acl_access_handler,
2027 	&shmem_xattr_acl_default_handler,
2028 	&shmem_xattr_security_handler,
2029 	NULL
2030 };
2031 #endif
2032 
2033 static struct dentry *shmem_get_parent(struct dentry *child)
2034 {
2035 	return ERR_PTR(-ESTALE);
2036 }
2037 
2038 static int shmem_match(struct inode *ino, void *vfh)
2039 {
2040 	__u32 *fh = vfh;
2041 	__u64 inum = fh[2];
2042 	inum = (inum << 32) | fh[1];
2043 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2044 }
2045 
2046 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2047 		struct fid *fid, int fh_len, int fh_type)
2048 {
2049 	struct inode *inode;
2050 	struct dentry *dentry = NULL;
2051 	u64 inum = fid->raw[2];
2052 	inum = (inum << 32) | fid->raw[1];
2053 
2054 	if (fh_len < 3)
2055 		return NULL;
2056 
2057 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2058 			shmem_match, fid->raw);
2059 	if (inode) {
2060 		dentry = d_find_alias(inode);
2061 		iput(inode);
2062 	}
2063 
2064 	return dentry;
2065 }
2066 
2067 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2068 				int connectable)
2069 {
2070 	struct inode *inode = dentry->d_inode;
2071 
2072 	if (*len < 3)
2073 		return 255;
2074 
2075 	if (hlist_unhashed(&inode->i_hash)) {
2076 		/* Unfortunately insert_inode_hash is not idempotent,
2077 		 * so as we hash inodes here rather than at creation
2078 		 * time, we need a lock to ensure we only try
2079 		 * to do it once
2080 		 */
2081 		static DEFINE_SPINLOCK(lock);
2082 		spin_lock(&lock);
2083 		if (hlist_unhashed(&inode->i_hash))
2084 			__insert_inode_hash(inode,
2085 					    inode->i_ino + inode->i_generation);
2086 		spin_unlock(&lock);
2087 	}
2088 
2089 	fh[0] = inode->i_generation;
2090 	fh[1] = inode->i_ino;
2091 	fh[2] = ((__u64)inode->i_ino) >> 32;
2092 
2093 	*len = 3;
2094 	return 1;
2095 }
2096 
2097 static const struct export_operations shmem_export_ops = {
2098 	.get_parent     = shmem_get_parent,
2099 	.encode_fh      = shmem_encode_fh,
2100 	.fh_to_dentry	= shmem_fh_to_dentry,
2101 };
2102 
2103 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2104 			       bool remount)
2105 {
2106 	char *this_char, *value, *rest;
2107 
2108 	while (options != NULL) {
2109 		this_char = options;
2110 		for (;;) {
2111 			/*
2112 			 * NUL-terminate this option: unfortunately,
2113 			 * mount options form a comma-separated list,
2114 			 * but mpol's nodelist may also contain commas.
2115 			 */
2116 			options = strchr(options, ',');
2117 			if (options == NULL)
2118 				break;
2119 			options++;
2120 			if (!isdigit(*options)) {
2121 				options[-1] = '\0';
2122 				break;
2123 			}
2124 		}
2125 		if (!*this_char)
2126 			continue;
2127 		if ((value = strchr(this_char,'=')) != NULL) {
2128 			*value++ = 0;
2129 		} else {
2130 			printk(KERN_ERR
2131 			    "tmpfs: No value for mount option '%s'\n",
2132 			    this_char);
2133 			return 1;
2134 		}
2135 
2136 		if (!strcmp(this_char,"size")) {
2137 			unsigned long long size;
2138 			size = memparse(value,&rest);
2139 			if (*rest == '%') {
2140 				size <<= PAGE_SHIFT;
2141 				size *= totalram_pages;
2142 				do_div(size, 100);
2143 				rest++;
2144 			}
2145 			if (*rest)
2146 				goto bad_val;
2147 			sbinfo->max_blocks =
2148 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2149 		} else if (!strcmp(this_char,"nr_blocks")) {
2150 			sbinfo->max_blocks = memparse(value, &rest);
2151 			if (*rest)
2152 				goto bad_val;
2153 		} else if (!strcmp(this_char,"nr_inodes")) {
2154 			sbinfo->max_inodes = memparse(value, &rest);
2155 			if (*rest)
2156 				goto bad_val;
2157 		} else if (!strcmp(this_char,"mode")) {
2158 			if (remount)
2159 				continue;
2160 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2161 			if (*rest)
2162 				goto bad_val;
2163 		} else if (!strcmp(this_char,"uid")) {
2164 			if (remount)
2165 				continue;
2166 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2167 			if (*rest)
2168 				goto bad_val;
2169 		} else if (!strcmp(this_char,"gid")) {
2170 			if (remount)
2171 				continue;
2172 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2173 			if (*rest)
2174 				goto bad_val;
2175 		} else if (!strcmp(this_char,"mpol")) {
2176 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2177 				goto bad_val;
2178 		} else {
2179 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2180 			       this_char);
2181 			return 1;
2182 		}
2183 	}
2184 	return 0;
2185 
2186 bad_val:
2187 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2188 	       value, this_char);
2189 	return 1;
2190 
2191 }
2192 
2193 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2194 {
2195 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2196 	struct shmem_sb_info config = *sbinfo;
2197 	unsigned long blocks;
2198 	unsigned long inodes;
2199 	int error = -EINVAL;
2200 
2201 	if (shmem_parse_options(data, &config, true))
2202 		return error;
2203 
2204 	spin_lock(&sbinfo->stat_lock);
2205 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2206 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2207 	if (config.max_blocks < blocks)
2208 		goto out;
2209 	if (config.max_inodes < inodes)
2210 		goto out;
2211 	/*
2212 	 * Those tests also disallow limited->unlimited while any are in
2213 	 * use, so i_blocks will always be zero when max_blocks is zero;
2214 	 * but we must separately disallow unlimited->limited, because
2215 	 * in that case we have no record of how much is already in use.
2216 	 */
2217 	if (config.max_blocks && !sbinfo->max_blocks)
2218 		goto out;
2219 	if (config.max_inodes && !sbinfo->max_inodes)
2220 		goto out;
2221 
2222 	error = 0;
2223 	sbinfo->max_blocks  = config.max_blocks;
2224 	sbinfo->free_blocks = config.max_blocks - blocks;
2225 	sbinfo->max_inodes  = config.max_inodes;
2226 	sbinfo->free_inodes = config.max_inodes - inodes;
2227 
2228 	mpol_put(sbinfo->mpol);
2229 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2230 out:
2231 	spin_unlock(&sbinfo->stat_lock);
2232 	return error;
2233 }
2234 
2235 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2236 {
2237 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2238 
2239 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2240 		seq_printf(seq, ",size=%luk",
2241 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2242 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2243 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2244 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2245 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2246 	if (sbinfo->uid != 0)
2247 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2248 	if (sbinfo->gid != 0)
2249 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2250 	shmem_show_mpol(seq, sbinfo->mpol);
2251 	return 0;
2252 }
2253 #endif /* CONFIG_TMPFS */
2254 
2255 static void shmem_put_super(struct super_block *sb)
2256 {
2257 	kfree(sb->s_fs_info);
2258 	sb->s_fs_info = NULL;
2259 }
2260 
2261 static int shmem_fill_super(struct super_block *sb,
2262 			    void *data, int silent)
2263 {
2264 	struct inode *inode;
2265 	struct dentry *root;
2266 	struct shmem_sb_info *sbinfo;
2267 	int err = -ENOMEM;
2268 
2269 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2270 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2271 				L1_CACHE_BYTES), GFP_KERNEL);
2272 	if (!sbinfo)
2273 		return -ENOMEM;
2274 
2275 	sbinfo->max_blocks = 0;
2276 	sbinfo->max_inodes = 0;
2277 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2278 	sbinfo->uid = current->fsuid;
2279 	sbinfo->gid = current->fsgid;
2280 	sbinfo->mpol = NULL;
2281 	sb->s_fs_info = sbinfo;
2282 
2283 #ifdef CONFIG_TMPFS
2284 	/*
2285 	 * Per default we only allow half of the physical ram per
2286 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2287 	 * but the internal instance is left unlimited.
2288 	 */
2289 	if (!(sb->s_flags & MS_NOUSER)) {
2290 		sbinfo->max_blocks = shmem_default_max_blocks();
2291 		sbinfo->max_inodes = shmem_default_max_inodes();
2292 		if (shmem_parse_options(data, sbinfo, false)) {
2293 			err = -EINVAL;
2294 			goto failed;
2295 		}
2296 	}
2297 	sb->s_export_op = &shmem_export_ops;
2298 #else
2299 	sb->s_flags |= MS_NOUSER;
2300 #endif
2301 
2302 	spin_lock_init(&sbinfo->stat_lock);
2303 	sbinfo->free_blocks = sbinfo->max_blocks;
2304 	sbinfo->free_inodes = sbinfo->max_inodes;
2305 
2306 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2307 	sb->s_blocksize = PAGE_CACHE_SIZE;
2308 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2309 	sb->s_magic = TMPFS_MAGIC;
2310 	sb->s_op = &shmem_ops;
2311 	sb->s_time_gran = 1;
2312 #ifdef CONFIG_TMPFS_POSIX_ACL
2313 	sb->s_xattr = shmem_xattr_handlers;
2314 	sb->s_flags |= MS_POSIXACL;
2315 #endif
2316 
2317 	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2318 	if (!inode)
2319 		goto failed;
2320 	inode->i_uid = sbinfo->uid;
2321 	inode->i_gid = sbinfo->gid;
2322 	root = d_alloc_root(inode);
2323 	if (!root)
2324 		goto failed_iput;
2325 	sb->s_root = root;
2326 	return 0;
2327 
2328 failed_iput:
2329 	iput(inode);
2330 failed:
2331 	shmem_put_super(sb);
2332 	return err;
2333 }
2334 
2335 static struct kmem_cache *shmem_inode_cachep;
2336 
2337 static struct inode *shmem_alloc_inode(struct super_block *sb)
2338 {
2339 	struct shmem_inode_info *p;
2340 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2341 	if (!p)
2342 		return NULL;
2343 	return &p->vfs_inode;
2344 }
2345 
2346 static void shmem_destroy_inode(struct inode *inode)
2347 {
2348 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2349 		/* only struct inode is valid if it's an inline symlink */
2350 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2351 	}
2352 	shmem_acl_destroy_inode(inode);
2353 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2354 }
2355 
2356 static void init_once(void *foo)
2357 {
2358 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2359 
2360 	inode_init_once(&p->vfs_inode);
2361 #ifdef CONFIG_TMPFS_POSIX_ACL
2362 	p->i_acl = NULL;
2363 	p->i_default_acl = NULL;
2364 #endif
2365 }
2366 
2367 static int init_inodecache(void)
2368 {
2369 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2370 				sizeof(struct shmem_inode_info),
2371 				0, SLAB_PANIC, init_once);
2372 	return 0;
2373 }
2374 
2375 static void destroy_inodecache(void)
2376 {
2377 	kmem_cache_destroy(shmem_inode_cachep);
2378 }
2379 
2380 static const struct address_space_operations shmem_aops = {
2381 	.writepage	= shmem_writepage,
2382 	.set_page_dirty	= __set_page_dirty_no_writeback,
2383 #ifdef CONFIG_TMPFS
2384 	.readpage	= shmem_readpage,
2385 	.write_begin	= shmem_write_begin,
2386 	.write_end	= shmem_write_end,
2387 #endif
2388 	.migratepage	= migrate_page,
2389 };
2390 
2391 static const struct file_operations shmem_file_operations = {
2392 	.mmap		= shmem_mmap,
2393 #ifdef CONFIG_TMPFS
2394 	.llseek		= generic_file_llseek,
2395 	.read		= do_sync_read,
2396 	.write		= do_sync_write,
2397 	.aio_read	= shmem_file_aio_read,
2398 	.aio_write	= generic_file_aio_write,
2399 	.fsync		= simple_sync_file,
2400 	.splice_read	= generic_file_splice_read,
2401 	.splice_write	= generic_file_splice_write,
2402 #endif
2403 };
2404 
2405 static const struct inode_operations shmem_inode_operations = {
2406 	.truncate	= shmem_truncate,
2407 	.setattr	= shmem_notify_change,
2408 	.truncate_range	= shmem_truncate_range,
2409 #ifdef CONFIG_TMPFS_POSIX_ACL
2410 	.setxattr	= generic_setxattr,
2411 	.getxattr	= generic_getxattr,
2412 	.listxattr	= generic_listxattr,
2413 	.removexattr	= generic_removexattr,
2414 	.permission	= shmem_permission,
2415 #endif
2416 
2417 };
2418 
2419 static const struct inode_operations shmem_dir_inode_operations = {
2420 #ifdef CONFIG_TMPFS
2421 	.create		= shmem_create,
2422 	.lookup		= simple_lookup,
2423 	.link		= shmem_link,
2424 	.unlink		= shmem_unlink,
2425 	.symlink	= shmem_symlink,
2426 	.mkdir		= shmem_mkdir,
2427 	.rmdir		= shmem_rmdir,
2428 	.mknod		= shmem_mknod,
2429 	.rename		= shmem_rename,
2430 #endif
2431 #ifdef CONFIG_TMPFS_POSIX_ACL
2432 	.setattr	= shmem_notify_change,
2433 	.setxattr	= generic_setxattr,
2434 	.getxattr	= generic_getxattr,
2435 	.listxattr	= generic_listxattr,
2436 	.removexattr	= generic_removexattr,
2437 	.permission	= shmem_permission,
2438 #endif
2439 };
2440 
2441 static const struct inode_operations shmem_special_inode_operations = {
2442 #ifdef CONFIG_TMPFS_POSIX_ACL
2443 	.setattr	= shmem_notify_change,
2444 	.setxattr	= generic_setxattr,
2445 	.getxattr	= generic_getxattr,
2446 	.listxattr	= generic_listxattr,
2447 	.removexattr	= generic_removexattr,
2448 	.permission	= shmem_permission,
2449 #endif
2450 };
2451 
2452 static const struct super_operations shmem_ops = {
2453 	.alloc_inode	= shmem_alloc_inode,
2454 	.destroy_inode	= shmem_destroy_inode,
2455 #ifdef CONFIG_TMPFS
2456 	.statfs		= shmem_statfs,
2457 	.remount_fs	= shmem_remount_fs,
2458 	.show_options	= shmem_show_options,
2459 #endif
2460 	.delete_inode	= shmem_delete_inode,
2461 	.drop_inode	= generic_delete_inode,
2462 	.put_super	= shmem_put_super,
2463 };
2464 
2465 static struct vm_operations_struct shmem_vm_ops = {
2466 	.fault		= shmem_fault,
2467 #ifdef CONFIG_NUMA
2468 	.set_policy     = shmem_set_policy,
2469 	.get_policy     = shmem_get_policy,
2470 #endif
2471 };
2472 
2473 
2474 static int shmem_get_sb(struct file_system_type *fs_type,
2475 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2476 {
2477 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2478 }
2479 
2480 static struct file_system_type tmpfs_fs_type = {
2481 	.owner		= THIS_MODULE,
2482 	.name		= "tmpfs",
2483 	.get_sb		= shmem_get_sb,
2484 	.kill_sb	= kill_litter_super,
2485 };
2486 static struct vfsmount *shm_mnt;
2487 
2488 static int __init init_tmpfs(void)
2489 {
2490 	int error;
2491 
2492 	error = bdi_init(&shmem_backing_dev_info);
2493 	if (error)
2494 		goto out4;
2495 
2496 	error = init_inodecache();
2497 	if (error)
2498 		goto out3;
2499 
2500 	error = register_filesystem(&tmpfs_fs_type);
2501 	if (error) {
2502 		printk(KERN_ERR "Could not register tmpfs\n");
2503 		goto out2;
2504 	}
2505 
2506 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2507 				tmpfs_fs_type.name, NULL);
2508 	if (IS_ERR(shm_mnt)) {
2509 		error = PTR_ERR(shm_mnt);
2510 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2511 		goto out1;
2512 	}
2513 	return 0;
2514 
2515 out1:
2516 	unregister_filesystem(&tmpfs_fs_type);
2517 out2:
2518 	destroy_inodecache();
2519 out3:
2520 	bdi_destroy(&shmem_backing_dev_info);
2521 out4:
2522 	shm_mnt = ERR_PTR(error);
2523 	return error;
2524 }
2525 module_init(init_tmpfs)
2526 
2527 /**
2528  * shmem_file_setup - get an unlinked file living in tmpfs
2529  * @name: name for dentry (to be seen in /proc/<pid>/maps
2530  * @size: size to be set for the file
2531  * @flags: vm_flags
2532  */
2533 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2534 {
2535 	int error;
2536 	struct file *file;
2537 	struct inode *inode;
2538 	struct dentry *dentry, *root;
2539 	struct qstr this;
2540 
2541 	if (IS_ERR(shm_mnt))
2542 		return (void *)shm_mnt;
2543 
2544 	if (size < 0 || size > SHMEM_MAX_BYTES)
2545 		return ERR_PTR(-EINVAL);
2546 
2547 	if (shmem_acct_size(flags, size))
2548 		return ERR_PTR(-ENOMEM);
2549 
2550 	error = -ENOMEM;
2551 	this.name = name;
2552 	this.len = strlen(name);
2553 	this.hash = 0; /* will go */
2554 	root = shm_mnt->mnt_root;
2555 	dentry = d_alloc(root, &this);
2556 	if (!dentry)
2557 		goto put_memory;
2558 
2559 	error = -ENFILE;
2560 	file = get_empty_filp();
2561 	if (!file)
2562 		goto put_dentry;
2563 
2564 	error = -ENOSPC;
2565 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2566 	if (!inode)
2567 		goto close_file;
2568 
2569 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2570 	d_instantiate(dentry, inode);
2571 	inode->i_size = size;
2572 	inode->i_nlink = 0;	/* It is unlinked */
2573 	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2574 			&shmem_file_operations);
2575 	return file;
2576 
2577 close_file:
2578 	put_filp(file);
2579 put_dentry:
2580 	dput(dentry);
2581 put_memory:
2582 	shmem_unacct_size(flags, size);
2583 	return ERR_PTR(error);
2584 }
2585 
2586 /**
2587  * shmem_zero_setup - setup a shared anonymous mapping
2588  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2589  */
2590 int shmem_zero_setup(struct vm_area_struct *vma)
2591 {
2592 	struct file *file;
2593 	loff_t size = vma->vm_end - vma->vm_start;
2594 
2595 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2596 	if (IS_ERR(file))
2597 		return PTR_ERR(file);
2598 
2599 	if (vma->vm_file)
2600 		fput(vma->vm_file);
2601 	vma->vm_file = file;
2602 	vma->vm_ops = &shmem_vm_ops;
2603 	return 0;
2604 }
2605