xref: /openbmc/linux/mm/shmem.c (revision 2fe60ec9)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include "swap.h"
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 			     struct page **pagep, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 		struct page **pagep, enum sgp_type sgp,
144 		gfp_t gfp, struct vm_area_struct *vma,
145 		struct vm_fault *vmf, vm_fault_t *fault_type);
146 
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp)
149 {
150 	return shmem_getpage_gfp(inode, index, pagep, sgp,
151 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153 
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 	return sb->s_fs_info;
157 }
158 
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 	return (flags & VM_NORESERVE) ?
168 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170 
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 	if (!(flags & VM_NORESERVE))
174 		vm_unacct_memory(VM_ACCT(size));
175 }
176 
177 static inline int shmem_reacct_size(unsigned long flags,
178 		loff_t oldsize, loff_t newsize)
179 {
180 	if (!(flags & VM_NORESERVE)) {
181 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 			return security_vm_enough_memory_mm(current->mm,
183 					VM_ACCT(newsize) - VM_ACCT(oldsize));
184 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 	}
187 	return 0;
188 }
189 
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 	if (!(flags & VM_NORESERVE))
199 		return 0;
200 
201 	return security_vm_enough_memory_mm(current->mm,
202 			pages * VM_ACCT(PAGE_SIZE));
203 }
204 
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 	if (flags & VM_NORESERVE)
208 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 	struct shmem_inode_info *info = SHMEM_I(inode);
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return false;
218 
219 	if (sbinfo->max_blocks) {
220 		if (percpu_counter_compare(&sbinfo->used_blocks,
221 					   sbinfo->max_blocks - pages) > 0)
222 			goto unacct;
223 		percpu_counter_add(&sbinfo->used_blocks, pages);
224 	}
225 
226 	return true;
227 
228 unacct:
229 	shmem_unacct_blocks(info->flags, pages);
230 	return false;
231 }
232 
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 
238 	if (sbinfo->max_blocks)
239 		percpu_counter_sub(&sbinfo->used_blocks, pages);
240 	shmem_unacct_blocks(info->flags, pages);
241 }
242 
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251 
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 	return vma->vm_ops == &shmem_vm_ops;
255 }
256 
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259 
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 	ino_t ino;
274 
275 	if (!(sb->s_flags & SB_KERNMOUNT)) {
276 		raw_spin_lock(&sbinfo->stat_lock);
277 		if (sbinfo->max_inodes) {
278 			if (!sbinfo->free_inodes) {
279 				raw_spin_unlock(&sbinfo->stat_lock);
280 				return -ENOSPC;
281 			}
282 			sbinfo->free_inodes--;
283 		}
284 		if (inop) {
285 			ino = sbinfo->next_ino++;
286 			if (unlikely(is_zero_ino(ino)))
287 				ino = sbinfo->next_ino++;
288 			if (unlikely(!sbinfo->full_inums &&
289 				     ino > UINT_MAX)) {
290 				/*
291 				 * Emulate get_next_ino uint wraparound for
292 				 * compatibility
293 				 */
294 				if (IS_ENABLED(CONFIG_64BIT))
295 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 						__func__, MINOR(sb->s_dev));
297 				sbinfo->next_ino = 1;
298 				ino = sbinfo->next_ino++;
299 			}
300 			*inop = ino;
301 		}
302 		raw_spin_unlock(&sbinfo->stat_lock);
303 	} else if (inop) {
304 		/*
305 		 * __shmem_file_setup, one of our callers, is lock-free: it
306 		 * doesn't hold stat_lock in shmem_reserve_inode since
307 		 * max_inodes is always 0, and is called from potentially
308 		 * unknown contexts. As such, use a per-cpu batched allocator
309 		 * which doesn't require the per-sb stat_lock unless we are at
310 		 * the batch boundary.
311 		 *
312 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 		 * shmem mounts are not exposed to userspace, so we don't need
314 		 * to worry about things like glibc compatibility.
315 		 */
316 		ino_t *next_ino;
317 
318 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 		ino = *next_ino;
320 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 			raw_spin_lock(&sbinfo->stat_lock);
322 			ino = sbinfo->next_ino;
323 			sbinfo->next_ino += SHMEM_INO_BATCH;
324 			raw_spin_unlock(&sbinfo->stat_lock);
325 			if (unlikely(is_zero_ino(ino)))
326 				ino++;
327 		}
328 		*inop = ino;
329 		*next_ino = ++ino;
330 		put_cpu();
331 	}
332 
333 	return 0;
334 }
335 
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	if (sbinfo->max_inodes) {
340 		raw_spin_lock(&sbinfo->stat_lock);
341 		sbinfo->free_inodes++;
342 		raw_spin_unlock(&sbinfo->stat_lock);
343 	}
344 }
345 
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 	struct shmem_inode_info *info = SHMEM_I(inode);
361 	long freed;
362 
363 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 	if (freed > 0) {
365 		info->alloced -= freed;
366 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 		shmem_inode_unacct_blocks(inode, freed);
368 	}
369 }
370 
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 	struct shmem_inode_info *info = SHMEM_I(inode);
374 	unsigned long flags;
375 
376 	if (!shmem_inode_acct_block(inode, pages))
377 		return false;
378 
379 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 	inode->i_mapping->nrpages += pages;
381 
382 	spin_lock_irqsave(&info->lock, flags);
383 	info->alloced += pages;
384 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 	shmem_recalc_inode(inode);
386 	spin_unlock_irqrestore(&info->lock, flags);
387 
388 	return true;
389 }
390 
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 	struct shmem_inode_info *info = SHMEM_I(inode);
394 	unsigned long flags;
395 
396 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
397 
398 	spin_lock_irqsave(&info->lock, flags);
399 	info->alloced -= pages;
400 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 	shmem_recalc_inode(inode);
402 	spin_unlock_irqrestore(&info->lock, flags);
403 
404 	shmem_inode_unacct_blocks(inode, pages);
405 }
406 
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411 			pgoff_t index, void *expected, void *replacement)
412 {
413 	XA_STATE(xas, &mapping->i_pages, index);
414 	void *item;
415 
416 	VM_BUG_ON(!expected);
417 	VM_BUG_ON(!replacement);
418 	item = xas_load(&xas);
419 	if (item != expected)
420 		return -ENOENT;
421 	xas_store(&xas, replacement);
422 	return 0;
423 }
424 
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 			       pgoff_t index, swp_entry_t swap)
434 {
435 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437 
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *	disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *	enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *	only allocate huge pages if the page will be fully within i_size,
447  *	also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *	only allocate huge pages if requested with fadvise()/madvise();
450  */
451 
452 #define SHMEM_HUGE_NEVER	0
453 #define SHMEM_HUGE_ALWAYS	1
454 #define SHMEM_HUGE_WITHIN_SIZE	2
455 #define SHMEM_HUGE_ADVISE	3
456 
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *	disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY		(-1)
468 #define SHMEM_HUGE_FORCE	(-2)
469 
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472 
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 		   struct inode *inode, pgoff_t index)
477 {
478 	loff_t i_size;
479 
480 	if (!S_ISREG(inode->i_mode))
481 		return false;
482 	if (shmem_huge == SHMEM_HUGE_DENY)
483 		return false;
484 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
485 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
486 		return false;
487 	if (shmem_huge == SHMEM_HUGE_FORCE)
488 		return true;
489 
490 	switch (SHMEM_SB(inode->i_sb)->huge) {
491 	case SHMEM_HUGE_ALWAYS:
492 		return true;
493 	case SHMEM_HUGE_WITHIN_SIZE:
494 		index = round_up(index + 1, HPAGE_PMD_NR);
495 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
496 		if (i_size >> PAGE_SHIFT >= index)
497 			return true;
498 		fallthrough;
499 	case SHMEM_HUGE_ADVISE:
500 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
501 			return true;
502 		fallthrough;
503 	default:
504 		return false;
505 	}
506 }
507 
508 #if defined(CONFIG_SYSFS)
509 static int shmem_parse_huge(const char *str)
510 {
511 	if (!strcmp(str, "never"))
512 		return SHMEM_HUGE_NEVER;
513 	if (!strcmp(str, "always"))
514 		return SHMEM_HUGE_ALWAYS;
515 	if (!strcmp(str, "within_size"))
516 		return SHMEM_HUGE_WITHIN_SIZE;
517 	if (!strcmp(str, "advise"))
518 		return SHMEM_HUGE_ADVISE;
519 	if (!strcmp(str, "deny"))
520 		return SHMEM_HUGE_DENY;
521 	if (!strcmp(str, "force"))
522 		return SHMEM_HUGE_FORCE;
523 	return -EINVAL;
524 }
525 #endif
526 
527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
528 static const char *shmem_format_huge(int huge)
529 {
530 	switch (huge) {
531 	case SHMEM_HUGE_NEVER:
532 		return "never";
533 	case SHMEM_HUGE_ALWAYS:
534 		return "always";
535 	case SHMEM_HUGE_WITHIN_SIZE:
536 		return "within_size";
537 	case SHMEM_HUGE_ADVISE:
538 		return "advise";
539 	case SHMEM_HUGE_DENY:
540 		return "deny";
541 	case SHMEM_HUGE_FORCE:
542 		return "force";
543 	default:
544 		VM_BUG_ON(1);
545 		return "bad_val";
546 	}
547 }
548 #endif
549 
550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
551 		struct shrink_control *sc, unsigned long nr_to_split)
552 {
553 	LIST_HEAD(list), *pos, *next;
554 	LIST_HEAD(to_remove);
555 	struct inode *inode;
556 	struct shmem_inode_info *info;
557 	struct page *page;
558 	unsigned long batch = sc ? sc->nr_to_scan : 128;
559 	int split = 0;
560 
561 	if (list_empty(&sbinfo->shrinklist))
562 		return SHRINK_STOP;
563 
564 	spin_lock(&sbinfo->shrinklist_lock);
565 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
566 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
567 
568 		/* pin the inode */
569 		inode = igrab(&info->vfs_inode);
570 
571 		/* inode is about to be evicted */
572 		if (!inode) {
573 			list_del_init(&info->shrinklist);
574 			goto next;
575 		}
576 
577 		/* Check if there's anything to gain */
578 		if (round_up(inode->i_size, PAGE_SIZE) ==
579 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580 			list_move(&info->shrinklist, &to_remove);
581 			goto next;
582 		}
583 
584 		list_move(&info->shrinklist, &list);
585 next:
586 		sbinfo->shrinklist_len--;
587 		if (!--batch)
588 			break;
589 	}
590 	spin_unlock(&sbinfo->shrinklist_lock);
591 
592 	list_for_each_safe(pos, next, &to_remove) {
593 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 		inode = &info->vfs_inode;
595 		list_del_init(&info->shrinklist);
596 		iput(inode);
597 	}
598 
599 	list_for_each_safe(pos, next, &list) {
600 		int ret;
601 
602 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 		inode = &info->vfs_inode;
604 
605 		if (nr_to_split && split >= nr_to_split)
606 			goto move_back;
607 
608 		page = find_get_page(inode->i_mapping,
609 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610 		if (!page)
611 			goto drop;
612 
613 		/* No huge page at the end of the file: nothing to split */
614 		if (!PageTransHuge(page)) {
615 			put_page(page);
616 			goto drop;
617 		}
618 
619 		/*
620 		 * Move the inode on the list back to shrinklist if we failed
621 		 * to lock the page at this time.
622 		 *
623 		 * Waiting for the lock may lead to deadlock in the
624 		 * reclaim path.
625 		 */
626 		if (!trylock_page(page)) {
627 			put_page(page);
628 			goto move_back;
629 		}
630 
631 		ret = split_huge_page(page);
632 		unlock_page(page);
633 		put_page(page);
634 
635 		/* If split failed move the inode on the list back to shrinklist */
636 		if (ret)
637 			goto move_back;
638 
639 		split++;
640 drop:
641 		list_del_init(&info->shrinklist);
642 		goto put;
643 move_back:
644 		/*
645 		 * Make sure the inode is either on the global list or deleted
646 		 * from any local list before iput() since it could be deleted
647 		 * in another thread once we put the inode (then the local list
648 		 * is corrupted).
649 		 */
650 		spin_lock(&sbinfo->shrinklist_lock);
651 		list_move(&info->shrinklist, &sbinfo->shrinklist);
652 		sbinfo->shrinklist_len++;
653 		spin_unlock(&sbinfo->shrinklist_lock);
654 put:
655 		iput(inode);
656 	}
657 
658 	return split;
659 }
660 
661 static long shmem_unused_huge_scan(struct super_block *sb,
662 		struct shrink_control *sc)
663 {
664 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665 
666 	if (!READ_ONCE(sbinfo->shrinklist_len))
667 		return SHRINK_STOP;
668 
669 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
670 }
671 
672 static long shmem_unused_huge_count(struct super_block *sb,
673 		struct shrink_control *sc)
674 {
675 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 	return READ_ONCE(sbinfo->shrinklist_len);
677 }
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679 
680 #define shmem_huge SHMEM_HUGE_DENY
681 
682 bool shmem_is_huge(struct vm_area_struct *vma,
683 		   struct inode *inode, pgoff_t index)
684 {
685 	return false;
686 }
687 
688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 		struct shrink_control *sc, unsigned long nr_to_split)
690 {
691 	return 0;
692 }
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
694 
695 /*
696  * Like add_to_page_cache_locked, but error if expected item has gone.
697  */
698 static int shmem_add_to_page_cache(struct page *page,
699 				   struct address_space *mapping,
700 				   pgoff_t index, void *expected, gfp_t gfp,
701 				   struct mm_struct *charge_mm)
702 {
703 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
704 	unsigned long nr = compound_nr(page);
705 	int error;
706 
707 	VM_BUG_ON_PAGE(PageTail(page), page);
708 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
709 	VM_BUG_ON_PAGE(!PageLocked(page), page);
710 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
711 	VM_BUG_ON(expected && PageTransHuge(page));
712 
713 	page_ref_add(page, nr);
714 	page->mapping = mapping;
715 	page->index = index;
716 
717 	if (!PageSwapCache(page)) {
718 		error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
719 		if (error) {
720 			if (PageTransHuge(page)) {
721 				count_vm_event(THP_FILE_FALLBACK);
722 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 			}
724 			goto error;
725 		}
726 	}
727 	cgroup_throttle_swaprate(page, gfp);
728 
729 	do {
730 		xas_lock_irq(&xas);
731 		if (expected != xas_find_conflict(&xas)) {
732 			xas_set_err(&xas, -EEXIST);
733 			goto unlock;
734 		}
735 		if (expected && xas_find_conflict(&xas)) {
736 			xas_set_err(&xas, -EEXIST);
737 			goto unlock;
738 		}
739 		xas_store(&xas, page);
740 		if (xas_error(&xas))
741 			goto unlock;
742 		if (PageTransHuge(page)) {
743 			count_vm_event(THP_FILE_ALLOC);
744 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
745 		}
746 		mapping->nrpages += nr;
747 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
748 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
749 unlock:
750 		xas_unlock_irq(&xas);
751 	} while (xas_nomem(&xas, gfp));
752 
753 	if (xas_error(&xas)) {
754 		error = xas_error(&xas);
755 		goto error;
756 	}
757 
758 	return 0;
759 error:
760 	page->mapping = NULL;
761 	page_ref_sub(page, nr);
762 	return error;
763 }
764 
765 /*
766  * Like delete_from_page_cache, but substitutes swap for page.
767  */
768 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
769 {
770 	struct address_space *mapping = page->mapping;
771 	int error;
772 
773 	VM_BUG_ON_PAGE(PageCompound(page), page);
774 
775 	xa_lock_irq(&mapping->i_pages);
776 	error = shmem_replace_entry(mapping, page->index, page, radswap);
777 	page->mapping = NULL;
778 	mapping->nrpages--;
779 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
780 	__dec_lruvec_page_state(page, NR_SHMEM);
781 	xa_unlock_irq(&mapping->i_pages);
782 	put_page(page);
783 	BUG_ON(error);
784 }
785 
786 /*
787  * Remove swap entry from page cache, free the swap and its page cache.
788  */
789 static int shmem_free_swap(struct address_space *mapping,
790 			   pgoff_t index, void *radswap)
791 {
792 	void *old;
793 
794 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
795 	if (old != radswap)
796 		return -ENOENT;
797 	free_swap_and_cache(radix_to_swp_entry(radswap));
798 	return 0;
799 }
800 
801 /*
802  * Determine (in bytes) how many of the shmem object's pages mapped by the
803  * given offsets are swapped out.
804  *
805  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
806  * as long as the inode doesn't go away and racy results are not a problem.
807  */
808 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
809 						pgoff_t start, pgoff_t end)
810 {
811 	XA_STATE(xas, &mapping->i_pages, start);
812 	struct page *page;
813 	unsigned long swapped = 0;
814 
815 	rcu_read_lock();
816 	xas_for_each(&xas, page, end - 1) {
817 		if (xas_retry(&xas, page))
818 			continue;
819 		if (xa_is_value(page))
820 			swapped++;
821 
822 		if (need_resched()) {
823 			xas_pause(&xas);
824 			cond_resched_rcu();
825 		}
826 	}
827 
828 	rcu_read_unlock();
829 
830 	return swapped << PAGE_SHIFT;
831 }
832 
833 /*
834  * Determine (in bytes) how many of the shmem object's pages mapped by the
835  * given vma is swapped out.
836  *
837  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
838  * as long as the inode doesn't go away and racy results are not a problem.
839  */
840 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
841 {
842 	struct inode *inode = file_inode(vma->vm_file);
843 	struct shmem_inode_info *info = SHMEM_I(inode);
844 	struct address_space *mapping = inode->i_mapping;
845 	unsigned long swapped;
846 
847 	/* Be careful as we don't hold info->lock */
848 	swapped = READ_ONCE(info->swapped);
849 
850 	/*
851 	 * The easier cases are when the shmem object has nothing in swap, or
852 	 * the vma maps it whole. Then we can simply use the stats that we
853 	 * already track.
854 	 */
855 	if (!swapped)
856 		return 0;
857 
858 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
859 		return swapped << PAGE_SHIFT;
860 
861 	/* Here comes the more involved part */
862 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
863 					vma->vm_pgoff + vma_pages(vma));
864 }
865 
866 /*
867  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
868  */
869 void shmem_unlock_mapping(struct address_space *mapping)
870 {
871 	struct pagevec pvec;
872 	pgoff_t index = 0;
873 
874 	pagevec_init(&pvec);
875 	/*
876 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
877 	 */
878 	while (!mapping_unevictable(mapping)) {
879 		if (!pagevec_lookup(&pvec, mapping, &index))
880 			break;
881 		check_move_unevictable_pages(&pvec);
882 		pagevec_release(&pvec);
883 		cond_resched();
884 	}
885 }
886 
887 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
888 {
889 	struct folio *folio;
890 	struct page *page;
891 
892 	/*
893 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
894 	 * beyond i_size, and reports fallocated pages as holes.
895 	 */
896 	folio = __filemap_get_folio(inode->i_mapping, index,
897 					FGP_ENTRY | FGP_LOCK, 0);
898 	if (!xa_is_value(folio))
899 		return folio;
900 	/*
901 	 * But read a page back from swap if any of it is within i_size
902 	 * (although in some cases this is just a waste of time).
903 	 */
904 	page = NULL;
905 	shmem_getpage(inode, index, &page, SGP_READ);
906 	return page ? page_folio(page) : NULL;
907 }
908 
909 /*
910  * Remove range of pages and swap entries from page cache, and free them.
911  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
912  */
913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914 								 bool unfalloc)
915 {
916 	struct address_space *mapping = inode->i_mapping;
917 	struct shmem_inode_info *info = SHMEM_I(inode);
918 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 	struct folio_batch fbatch;
921 	pgoff_t indices[PAGEVEC_SIZE];
922 	struct folio *folio;
923 	bool same_folio;
924 	long nr_swaps_freed = 0;
925 	pgoff_t index;
926 	int i;
927 
928 	if (lend == -1)
929 		end = -1;	/* unsigned, so actually very big */
930 
931 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 		info->fallocend = start;
933 
934 	folio_batch_init(&fbatch);
935 	index = start;
936 	while (index < end && find_lock_entries(mapping, index, end - 1,
937 			&fbatch, indices)) {
938 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
939 			folio = fbatch.folios[i];
940 
941 			index = indices[i];
942 
943 			if (xa_is_value(folio)) {
944 				if (unfalloc)
945 					continue;
946 				nr_swaps_freed += !shmem_free_swap(mapping,
947 								index, folio);
948 				continue;
949 			}
950 			index += folio_nr_pages(folio) - 1;
951 
952 			if (!unfalloc || !folio_test_uptodate(folio))
953 				truncate_inode_folio(mapping, folio);
954 			folio_unlock(folio);
955 		}
956 		folio_batch_remove_exceptionals(&fbatch);
957 		folio_batch_release(&fbatch);
958 		cond_resched();
959 		index++;
960 	}
961 
962 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
963 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
964 	if (folio) {
965 		same_folio = lend < folio_pos(folio) + folio_size(folio);
966 		folio_mark_dirty(folio);
967 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
968 			start = folio->index + folio_nr_pages(folio);
969 			if (same_folio)
970 				end = folio->index;
971 		}
972 		folio_unlock(folio);
973 		folio_put(folio);
974 		folio = NULL;
975 	}
976 
977 	if (!same_folio)
978 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
979 	if (folio) {
980 		folio_mark_dirty(folio);
981 		if (!truncate_inode_partial_folio(folio, lstart, lend))
982 			end = folio->index;
983 		folio_unlock(folio);
984 		folio_put(folio);
985 	}
986 
987 	index = start;
988 	while (index < end) {
989 		cond_resched();
990 
991 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
992 				indices)) {
993 			/* If all gone or hole-punch or unfalloc, we're done */
994 			if (index == start || end != -1)
995 				break;
996 			/* But if truncating, restart to make sure all gone */
997 			index = start;
998 			continue;
999 		}
1000 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001 			folio = fbatch.folios[i];
1002 
1003 			index = indices[i];
1004 			if (xa_is_value(folio)) {
1005 				if (unfalloc)
1006 					continue;
1007 				if (shmem_free_swap(mapping, index, folio)) {
1008 					/* Swap was replaced by page: retry */
1009 					index--;
1010 					break;
1011 				}
1012 				nr_swaps_freed++;
1013 				continue;
1014 			}
1015 
1016 			folio_lock(folio);
1017 
1018 			if (!unfalloc || !folio_test_uptodate(folio)) {
1019 				if (folio_mapping(folio) != mapping) {
1020 					/* Page was replaced by swap: retry */
1021 					folio_unlock(folio);
1022 					index--;
1023 					break;
1024 				}
1025 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1026 						folio);
1027 				truncate_inode_folio(mapping, folio);
1028 			}
1029 			index = folio->index + folio_nr_pages(folio) - 1;
1030 			folio_unlock(folio);
1031 		}
1032 		folio_batch_remove_exceptionals(&fbatch);
1033 		folio_batch_release(&fbatch);
1034 		index++;
1035 	}
1036 
1037 	spin_lock_irq(&info->lock);
1038 	info->swapped -= nr_swaps_freed;
1039 	shmem_recalc_inode(inode);
1040 	spin_unlock_irq(&info->lock);
1041 }
1042 
1043 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1044 {
1045 	shmem_undo_range(inode, lstart, lend, false);
1046 	inode->i_ctime = inode->i_mtime = current_time(inode);
1047 }
1048 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1049 
1050 static int shmem_getattr(struct user_namespace *mnt_userns,
1051 			 const struct path *path, struct kstat *stat,
1052 			 u32 request_mask, unsigned int query_flags)
1053 {
1054 	struct inode *inode = path->dentry->d_inode;
1055 	struct shmem_inode_info *info = SHMEM_I(inode);
1056 
1057 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1058 		spin_lock_irq(&info->lock);
1059 		shmem_recalc_inode(inode);
1060 		spin_unlock_irq(&info->lock);
1061 	}
1062 	generic_fillattr(&init_user_ns, inode, stat);
1063 
1064 	if (shmem_is_huge(NULL, inode, 0))
1065 		stat->blksize = HPAGE_PMD_SIZE;
1066 
1067 	if (request_mask & STATX_BTIME) {
1068 		stat->result_mask |= STATX_BTIME;
1069 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1070 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 static int shmem_setattr(struct user_namespace *mnt_userns,
1077 			 struct dentry *dentry, struct iattr *attr)
1078 {
1079 	struct inode *inode = d_inode(dentry);
1080 	struct shmem_inode_info *info = SHMEM_I(inode);
1081 	int error;
1082 
1083 	error = setattr_prepare(&init_user_ns, dentry, attr);
1084 	if (error)
1085 		return error;
1086 
1087 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1088 		loff_t oldsize = inode->i_size;
1089 		loff_t newsize = attr->ia_size;
1090 
1091 		/* protected by i_rwsem */
1092 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1093 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1094 			return -EPERM;
1095 
1096 		if (newsize != oldsize) {
1097 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1098 					oldsize, newsize);
1099 			if (error)
1100 				return error;
1101 			i_size_write(inode, newsize);
1102 			inode->i_ctime = inode->i_mtime = current_time(inode);
1103 		}
1104 		if (newsize <= oldsize) {
1105 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1106 			if (oldsize > holebegin)
1107 				unmap_mapping_range(inode->i_mapping,
1108 							holebegin, 0, 1);
1109 			if (info->alloced)
1110 				shmem_truncate_range(inode,
1111 							newsize, (loff_t)-1);
1112 			/* unmap again to remove racily COWed private pages */
1113 			if (oldsize > holebegin)
1114 				unmap_mapping_range(inode->i_mapping,
1115 							holebegin, 0, 1);
1116 		}
1117 	}
1118 
1119 	setattr_copy(&init_user_ns, inode, attr);
1120 	if (attr->ia_valid & ATTR_MODE)
1121 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1122 	return error;
1123 }
1124 
1125 static void shmem_evict_inode(struct inode *inode)
1126 {
1127 	struct shmem_inode_info *info = SHMEM_I(inode);
1128 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1129 
1130 	if (shmem_mapping(inode->i_mapping)) {
1131 		shmem_unacct_size(info->flags, inode->i_size);
1132 		inode->i_size = 0;
1133 		mapping_set_exiting(inode->i_mapping);
1134 		shmem_truncate_range(inode, 0, (loff_t)-1);
1135 		if (!list_empty(&info->shrinklist)) {
1136 			spin_lock(&sbinfo->shrinklist_lock);
1137 			if (!list_empty(&info->shrinklist)) {
1138 				list_del_init(&info->shrinklist);
1139 				sbinfo->shrinklist_len--;
1140 			}
1141 			spin_unlock(&sbinfo->shrinklist_lock);
1142 		}
1143 		while (!list_empty(&info->swaplist)) {
1144 			/* Wait while shmem_unuse() is scanning this inode... */
1145 			wait_var_event(&info->stop_eviction,
1146 				       !atomic_read(&info->stop_eviction));
1147 			mutex_lock(&shmem_swaplist_mutex);
1148 			/* ...but beware of the race if we peeked too early */
1149 			if (!atomic_read(&info->stop_eviction))
1150 				list_del_init(&info->swaplist);
1151 			mutex_unlock(&shmem_swaplist_mutex);
1152 		}
1153 	}
1154 
1155 	simple_xattrs_free(&info->xattrs);
1156 	WARN_ON(inode->i_blocks);
1157 	shmem_free_inode(inode->i_sb);
1158 	clear_inode(inode);
1159 }
1160 
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162 				   pgoff_t start, unsigned int nr_entries,
1163 				   struct page **entries, pgoff_t *indices,
1164 				   unsigned int type)
1165 {
1166 	XA_STATE(xas, &mapping->i_pages, start);
1167 	struct page *page;
1168 	swp_entry_t entry;
1169 	unsigned int ret = 0;
1170 
1171 	if (!nr_entries)
1172 		return 0;
1173 
1174 	rcu_read_lock();
1175 	xas_for_each(&xas, page, ULONG_MAX) {
1176 		if (xas_retry(&xas, page))
1177 			continue;
1178 
1179 		if (!xa_is_value(page))
1180 			continue;
1181 
1182 		entry = radix_to_swp_entry(page);
1183 		if (swp_type(entry) != type)
1184 			continue;
1185 
1186 		indices[ret] = xas.xa_index;
1187 		entries[ret] = page;
1188 
1189 		if (need_resched()) {
1190 			xas_pause(&xas);
1191 			cond_resched_rcu();
1192 		}
1193 		if (++ret == nr_entries)
1194 			break;
1195 	}
1196 	rcu_read_unlock();
1197 
1198 	return ret;
1199 }
1200 
1201 /*
1202  * Move the swapped pages for an inode to page cache. Returns the count
1203  * of pages swapped in, or the error in case of failure.
1204  */
1205 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1206 				    pgoff_t *indices)
1207 {
1208 	int i = 0;
1209 	int ret = 0;
1210 	int error = 0;
1211 	struct address_space *mapping = inode->i_mapping;
1212 
1213 	for (i = 0; i < pvec.nr; i++) {
1214 		struct page *page = pvec.pages[i];
1215 
1216 		if (!xa_is_value(page))
1217 			continue;
1218 		error = shmem_swapin_page(inode, indices[i],
1219 					  &page, SGP_CACHE,
1220 					  mapping_gfp_mask(mapping),
1221 					  NULL, NULL);
1222 		if (error == 0) {
1223 			unlock_page(page);
1224 			put_page(page);
1225 			ret++;
1226 		}
1227 		if (error == -ENOMEM)
1228 			break;
1229 		error = 0;
1230 	}
1231 	return error ? error : ret;
1232 }
1233 
1234 /*
1235  * If swap found in inode, free it and move page from swapcache to filecache.
1236  */
1237 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1238 {
1239 	struct address_space *mapping = inode->i_mapping;
1240 	pgoff_t start = 0;
1241 	struct pagevec pvec;
1242 	pgoff_t indices[PAGEVEC_SIZE];
1243 	int ret = 0;
1244 
1245 	pagevec_init(&pvec);
1246 	do {
1247 		unsigned int nr_entries = PAGEVEC_SIZE;
1248 
1249 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1250 						  pvec.pages, indices, type);
1251 		if (pvec.nr == 0) {
1252 			ret = 0;
1253 			break;
1254 		}
1255 
1256 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1257 		if (ret < 0)
1258 			break;
1259 
1260 		start = indices[pvec.nr - 1];
1261 	} while (true);
1262 
1263 	return ret;
1264 }
1265 
1266 /*
1267  * Read all the shared memory data that resides in the swap
1268  * device 'type' back into memory, so the swap device can be
1269  * unused.
1270  */
1271 int shmem_unuse(unsigned int type)
1272 {
1273 	struct shmem_inode_info *info, *next;
1274 	int error = 0;
1275 
1276 	if (list_empty(&shmem_swaplist))
1277 		return 0;
1278 
1279 	mutex_lock(&shmem_swaplist_mutex);
1280 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1281 		if (!info->swapped) {
1282 			list_del_init(&info->swaplist);
1283 			continue;
1284 		}
1285 		/*
1286 		 * Drop the swaplist mutex while searching the inode for swap;
1287 		 * but before doing so, make sure shmem_evict_inode() will not
1288 		 * remove placeholder inode from swaplist, nor let it be freed
1289 		 * (igrab() would protect from unlink, but not from unmount).
1290 		 */
1291 		atomic_inc(&info->stop_eviction);
1292 		mutex_unlock(&shmem_swaplist_mutex);
1293 
1294 		error = shmem_unuse_inode(&info->vfs_inode, type);
1295 		cond_resched();
1296 
1297 		mutex_lock(&shmem_swaplist_mutex);
1298 		next = list_next_entry(info, swaplist);
1299 		if (!info->swapped)
1300 			list_del_init(&info->swaplist);
1301 		if (atomic_dec_and_test(&info->stop_eviction))
1302 			wake_up_var(&info->stop_eviction);
1303 		if (error)
1304 			break;
1305 	}
1306 	mutex_unlock(&shmem_swaplist_mutex);
1307 
1308 	return error;
1309 }
1310 
1311 /*
1312  * Move the page from the page cache to the swap cache.
1313  */
1314 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1315 {
1316 	struct shmem_inode_info *info;
1317 	struct address_space *mapping;
1318 	struct inode *inode;
1319 	swp_entry_t swap;
1320 	pgoff_t index;
1321 
1322 	/*
1323 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1324 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1325 	 * and its shmem_writeback() needs them to be split when swapping.
1326 	 */
1327 	if (PageTransCompound(page)) {
1328 		/* Ensure the subpages are still dirty */
1329 		SetPageDirty(page);
1330 		if (split_huge_page(page) < 0)
1331 			goto redirty;
1332 		ClearPageDirty(page);
1333 	}
1334 
1335 	BUG_ON(!PageLocked(page));
1336 	mapping = page->mapping;
1337 	index = page->index;
1338 	inode = mapping->host;
1339 	info = SHMEM_I(inode);
1340 	if (info->flags & VM_LOCKED)
1341 		goto redirty;
1342 	if (!total_swap_pages)
1343 		goto redirty;
1344 
1345 	/*
1346 	 * Our capabilities prevent regular writeback or sync from ever calling
1347 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1348 	 * its underlying filesystem, in which case tmpfs should write out to
1349 	 * swap only in response to memory pressure, and not for the writeback
1350 	 * threads or sync.
1351 	 */
1352 	if (!wbc->for_reclaim) {
1353 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1354 		goto redirty;
1355 	}
1356 
1357 	/*
1358 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1359 	 * value into swapfile.c, the only way we can correctly account for a
1360 	 * fallocated page arriving here is now to initialize it and write it.
1361 	 *
1362 	 * That's okay for a page already fallocated earlier, but if we have
1363 	 * not yet completed the fallocation, then (a) we want to keep track
1364 	 * of this page in case we have to undo it, and (b) it may not be a
1365 	 * good idea to continue anyway, once we're pushing into swap.  So
1366 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1367 	 */
1368 	if (!PageUptodate(page)) {
1369 		if (inode->i_private) {
1370 			struct shmem_falloc *shmem_falloc;
1371 			spin_lock(&inode->i_lock);
1372 			shmem_falloc = inode->i_private;
1373 			if (shmem_falloc &&
1374 			    !shmem_falloc->waitq &&
1375 			    index >= shmem_falloc->start &&
1376 			    index < shmem_falloc->next)
1377 				shmem_falloc->nr_unswapped++;
1378 			else
1379 				shmem_falloc = NULL;
1380 			spin_unlock(&inode->i_lock);
1381 			if (shmem_falloc)
1382 				goto redirty;
1383 		}
1384 		clear_highpage(page);
1385 		flush_dcache_page(page);
1386 		SetPageUptodate(page);
1387 	}
1388 
1389 	swap = get_swap_page(page);
1390 	if (!swap.val)
1391 		goto redirty;
1392 
1393 	/*
1394 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1395 	 * if it's not already there.  Do it now before the page is
1396 	 * moved to swap cache, when its pagelock no longer protects
1397 	 * the inode from eviction.  But don't unlock the mutex until
1398 	 * we've incremented swapped, because shmem_unuse_inode() will
1399 	 * prune a !swapped inode from the swaplist under this mutex.
1400 	 */
1401 	mutex_lock(&shmem_swaplist_mutex);
1402 	if (list_empty(&info->swaplist))
1403 		list_add(&info->swaplist, &shmem_swaplist);
1404 
1405 	if (add_to_swap_cache(page, swap,
1406 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1407 			NULL) == 0) {
1408 		spin_lock_irq(&info->lock);
1409 		shmem_recalc_inode(inode);
1410 		info->swapped++;
1411 		spin_unlock_irq(&info->lock);
1412 
1413 		swap_shmem_alloc(swap);
1414 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1415 
1416 		mutex_unlock(&shmem_swaplist_mutex);
1417 		BUG_ON(page_mapped(page));
1418 		swap_writepage(page, wbc);
1419 		return 0;
1420 	}
1421 
1422 	mutex_unlock(&shmem_swaplist_mutex);
1423 	put_swap_page(page, swap);
1424 redirty:
1425 	set_page_dirty(page);
1426 	if (wbc->for_reclaim)
1427 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1428 	unlock_page(page);
1429 	return 0;
1430 }
1431 
1432 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1433 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1434 {
1435 	char buffer[64];
1436 
1437 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1438 		return;		/* show nothing */
1439 
1440 	mpol_to_str(buffer, sizeof(buffer), mpol);
1441 
1442 	seq_printf(seq, ",mpol=%s", buffer);
1443 }
1444 
1445 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1446 {
1447 	struct mempolicy *mpol = NULL;
1448 	if (sbinfo->mpol) {
1449 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1450 		mpol = sbinfo->mpol;
1451 		mpol_get(mpol);
1452 		raw_spin_unlock(&sbinfo->stat_lock);
1453 	}
1454 	return mpol;
1455 }
1456 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1457 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458 {
1459 }
1460 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1461 {
1462 	return NULL;
1463 }
1464 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1465 #ifndef CONFIG_NUMA
1466 #define vm_policy vm_private_data
1467 #endif
1468 
1469 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1470 		struct shmem_inode_info *info, pgoff_t index)
1471 {
1472 	/* Create a pseudo vma that just contains the policy */
1473 	vma_init(vma, NULL);
1474 	/* Bias interleave by inode number to distribute better across nodes */
1475 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1476 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1477 }
1478 
1479 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1480 {
1481 	/* Drop reference taken by mpol_shared_policy_lookup() */
1482 	mpol_cond_put(vma->vm_policy);
1483 }
1484 
1485 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1486 			struct shmem_inode_info *info, pgoff_t index)
1487 {
1488 	struct vm_area_struct pvma;
1489 	struct page *page;
1490 	struct vm_fault vmf = {
1491 		.vma = &pvma,
1492 	};
1493 
1494 	shmem_pseudo_vma_init(&pvma, info, index);
1495 	page = swap_cluster_readahead(swap, gfp, &vmf);
1496 	shmem_pseudo_vma_destroy(&pvma);
1497 
1498 	return page;
1499 }
1500 
1501 /*
1502  * Make sure huge_gfp is always more limited than limit_gfp.
1503  * Some of the flags set permissions, while others set limitations.
1504  */
1505 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1506 {
1507 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1508 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1509 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1510 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1511 
1512 	/* Allow allocations only from the originally specified zones. */
1513 	result |= zoneflags;
1514 
1515 	/*
1516 	 * Minimize the result gfp by taking the union with the deny flags,
1517 	 * and the intersection of the allow flags.
1518 	 */
1519 	result |= (limit_gfp & denyflags);
1520 	result |= (huge_gfp & limit_gfp) & allowflags;
1521 
1522 	return result;
1523 }
1524 
1525 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1526 		struct shmem_inode_info *info, pgoff_t index)
1527 {
1528 	struct vm_area_struct pvma;
1529 	struct address_space *mapping = info->vfs_inode.i_mapping;
1530 	pgoff_t hindex;
1531 	struct page *page;
1532 
1533 	hindex = round_down(index, HPAGE_PMD_NR);
1534 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1535 								XA_PRESENT))
1536 		return NULL;
1537 
1538 	shmem_pseudo_vma_init(&pvma, info, hindex);
1539 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1540 	shmem_pseudo_vma_destroy(&pvma);
1541 	if (page)
1542 		prep_transhuge_page(page);
1543 	else
1544 		count_vm_event(THP_FILE_FALLBACK);
1545 	return page;
1546 }
1547 
1548 static struct page *shmem_alloc_page(gfp_t gfp,
1549 			struct shmem_inode_info *info, pgoff_t index)
1550 {
1551 	struct vm_area_struct pvma;
1552 	struct page *page;
1553 
1554 	shmem_pseudo_vma_init(&pvma, info, index);
1555 	page = alloc_page_vma(gfp, &pvma, 0);
1556 	shmem_pseudo_vma_destroy(&pvma);
1557 
1558 	return page;
1559 }
1560 
1561 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1562 		struct inode *inode,
1563 		pgoff_t index, bool huge)
1564 {
1565 	struct shmem_inode_info *info = SHMEM_I(inode);
1566 	struct page *page;
1567 	int nr;
1568 	int err = -ENOSPC;
1569 
1570 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1571 		huge = false;
1572 	nr = huge ? HPAGE_PMD_NR : 1;
1573 
1574 	if (!shmem_inode_acct_block(inode, nr))
1575 		goto failed;
1576 
1577 	if (huge)
1578 		page = shmem_alloc_hugepage(gfp, info, index);
1579 	else
1580 		page = shmem_alloc_page(gfp, info, index);
1581 	if (page) {
1582 		__SetPageLocked(page);
1583 		__SetPageSwapBacked(page);
1584 		return page;
1585 	}
1586 
1587 	err = -ENOMEM;
1588 	shmem_inode_unacct_blocks(inode, nr);
1589 failed:
1590 	return ERR_PTR(err);
1591 }
1592 
1593 /*
1594  * When a page is moved from swapcache to shmem filecache (either by the
1595  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1596  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1597  * ignorance of the mapping it belongs to.  If that mapping has special
1598  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1599  * we may need to copy to a suitable page before moving to filecache.
1600  *
1601  * In a future release, this may well be extended to respect cpuset and
1602  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1603  * but for now it is a simple matter of zone.
1604  */
1605 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1606 {
1607 	return page_zonenum(page) > gfp_zone(gfp);
1608 }
1609 
1610 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1611 				struct shmem_inode_info *info, pgoff_t index)
1612 {
1613 	struct page *oldpage, *newpage;
1614 	struct folio *old, *new;
1615 	struct address_space *swap_mapping;
1616 	swp_entry_t entry;
1617 	pgoff_t swap_index;
1618 	int error;
1619 
1620 	oldpage = *pagep;
1621 	entry.val = page_private(oldpage);
1622 	swap_index = swp_offset(entry);
1623 	swap_mapping = page_mapping(oldpage);
1624 
1625 	/*
1626 	 * We have arrived here because our zones are constrained, so don't
1627 	 * limit chance of success by further cpuset and node constraints.
1628 	 */
1629 	gfp &= ~GFP_CONSTRAINT_MASK;
1630 	newpage = shmem_alloc_page(gfp, info, index);
1631 	if (!newpage)
1632 		return -ENOMEM;
1633 
1634 	get_page(newpage);
1635 	copy_highpage(newpage, oldpage);
1636 	flush_dcache_page(newpage);
1637 
1638 	__SetPageLocked(newpage);
1639 	__SetPageSwapBacked(newpage);
1640 	SetPageUptodate(newpage);
1641 	set_page_private(newpage, entry.val);
1642 	SetPageSwapCache(newpage);
1643 
1644 	/*
1645 	 * Our caller will very soon move newpage out of swapcache, but it's
1646 	 * a nice clean interface for us to replace oldpage by newpage there.
1647 	 */
1648 	xa_lock_irq(&swap_mapping->i_pages);
1649 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1650 	if (!error) {
1651 		old = page_folio(oldpage);
1652 		new = page_folio(newpage);
1653 		mem_cgroup_migrate(old, new);
1654 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1655 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1656 	}
1657 	xa_unlock_irq(&swap_mapping->i_pages);
1658 
1659 	if (unlikely(error)) {
1660 		/*
1661 		 * Is this possible?  I think not, now that our callers check
1662 		 * both PageSwapCache and page_private after getting page lock;
1663 		 * but be defensive.  Reverse old to newpage for clear and free.
1664 		 */
1665 		oldpage = newpage;
1666 	} else {
1667 		lru_cache_add(newpage);
1668 		*pagep = newpage;
1669 	}
1670 
1671 	ClearPageSwapCache(oldpage);
1672 	set_page_private(oldpage, 0);
1673 
1674 	unlock_page(oldpage);
1675 	put_page(oldpage);
1676 	put_page(oldpage);
1677 	return error;
1678 }
1679 
1680 /*
1681  * Swap in the page pointed to by *pagep.
1682  * Caller has to make sure that *pagep contains a valid swapped page.
1683  * Returns 0 and the page in pagep if success. On failure, returns the
1684  * error code and NULL in *pagep.
1685  */
1686 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1687 			     struct page **pagep, enum sgp_type sgp,
1688 			     gfp_t gfp, struct vm_area_struct *vma,
1689 			     vm_fault_t *fault_type)
1690 {
1691 	struct address_space *mapping = inode->i_mapping;
1692 	struct shmem_inode_info *info = SHMEM_I(inode);
1693 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1694 	struct page *page;
1695 	swp_entry_t swap;
1696 	int error;
1697 
1698 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1699 	swap = radix_to_swp_entry(*pagep);
1700 	*pagep = NULL;
1701 
1702 	/* Look it up and read it in.. */
1703 	page = lookup_swap_cache(swap, NULL, 0);
1704 	if (!page) {
1705 		/* Or update major stats only when swapin succeeds?? */
1706 		if (fault_type) {
1707 			*fault_type |= VM_FAULT_MAJOR;
1708 			count_vm_event(PGMAJFAULT);
1709 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1710 		}
1711 		/* Here we actually start the io */
1712 		page = shmem_swapin(swap, gfp, info, index);
1713 		if (!page) {
1714 			error = -ENOMEM;
1715 			goto failed;
1716 		}
1717 	}
1718 
1719 	/* We have to do this with page locked to prevent races */
1720 	lock_page(page);
1721 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1722 	    !shmem_confirm_swap(mapping, index, swap)) {
1723 		error = -EEXIST;
1724 		goto unlock;
1725 	}
1726 	if (!PageUptodate(page)) {
1727 		error = -EIO;
1728 		goto failed;
1729 	}
1730 	wait_on_page_writeback(page);
1731 
1732 	/*
1733 	 * Some architectures may have to restore extra metadata to the
1734 	 * physical page after reading from swap.
1735 	 */
1736 	arch_swap_restore(swap, page);
1737 
1738 	if (shmem_should_replace_page(page, gfp)) {
1739 		error = shmem_replace_page(&page, gfp, info, index);
1740 		if (error)
1741 			goto failed;
1742 	}
1743 
1744 	error = shmem_add_to_page_cache(page, mapping, index,
1745 					swp_to_radix_entry(swap), gfp,
1746 					charge_mm);
1747 	if (error)
1748 		goto failed;
1749 
1750 	spin_lock_irq(&info->lock);
1751 	info->swapped--;
1752 	shmem_recalc_inode(inode);
1753 	spin_unlock_irq(&info->lock);
1754 
1755 	if (sgp == SGP_WRITE)
1756 		mark_page_accessed(page);
1757 
1758 	delete_from_swap_cache(page);
1759 	set_page_dirty(page);
1760 	swap_free(swap);
1761 
1762 	*pagep = page;
1763 	return 0;
1764 failed:
1765 	if (!shmem_confirm_swap(mapping, index, swap))
1766 		error = -EEXIST;
1767 unlock:
1768 	if (page) {
1769 		unlock_page(page);
1770 		put_page(page);
1771 	}
1772 
1773 	return error;
1774 }
1775 
1776 /*
1777  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1778  *
1779  * If we allocate a new one we do not mark it dirty. That's up to the
1780  * vm. If we swap it in we mark it dirty since we also free the swap
1781  * entry since a page cannot live in both the swap and page cache.
1782  *
1783  * vma, vmf, and fault_type are only supplied by shmem_fault:
1784  * otherwise they are NULL.
1785  */
1786 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1787 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1788 	struct vm_area_struct *vma, struct vm_fault *vmf,
1789 			vm_fault_t *fault_type)
1790 {
1791 	struct address_space *mapping = inode->i_mapping;
1792 	struct shmem_inode_info *info = SHMEM_I(inode);
1793 	struct shmem_sb_info *sbinfo;
1794 	struct mm_struct *charge_mm;
1795 	struct page *page;
1796 	pgoff_t hindex = index;
1797 	gfp_t huge_gfp;
1798 	int error;
1799 	int once = 0;
1800 	int alloced = 0;
1801 
1802 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1803 		return -EFBIG;
1804 repeat:
1805 	if (sgp <= SGP_CACHE &&
1806 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1807 		return -EINVAL;
1808 	}
1809 
1810 	sbinfo = SHMEM_SB(inode->i_sb);
1811 	charge_mm = vma ? vma->vm_mm : NULL;
1812 
1813 	page = pagecache_get_page(mapping, index,
1814 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1815 
1816 	if (page && vma && userfaultfd_minor(vma)) {
1817 		if (!xa_is_value(page)) {
1818 			unlock_page(page);
1819 			put_page(page);
1820 		}
1821 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1822 		return 0;
1823 	}
1824 
1825 	if (xa_is_value(page)) {
1826 		error = shmem_swapin_page(inode, index, &page,
1827 					  sgp, gfp, vma, fault_type);
1828 		if (error == -EEXIST)
1829 			goto repeat;
1830 
1831 		*pagep = page;
1832 		return error;
1833 	}
1834 
1835 	if (page) {
1836 		hindex = page->index;
1837 		if (sgp == SGP_WRITE)
1838 			mark_page_accessed(page);
1839 		if (PageUptodate(page))
1840 			goto out;
1841 		/* fallocated page */
1842 		if (sgp != SGP_READ)
1843 			goto clear;
1844 		unlock_page(page);
1845 		put_page(page);
1846 	}
1847 
1848 	/*
1849 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1850 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1851 	 */
1852 	*pagep = NULL;
1853 	if (sgp == SGP_READ)
1854 		return 0;
1855 	if (sgp == SGP_NOALLOC)
1856 		return -ENOENT;
1857 
1858 	/*
1859 	 * Fast cache lookup and swap lookup did not find it: allocate.
1860 	 */
1861 
1862 	if (vma && userfaultfd_missing(vma)) {
1863 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1864 		return 0;
1865 	}
1866 
1867 	if (!shmem_is_huge(vma, inode, index))
1868 		goto alloc_nohuge;
1869 
1870 	huge_gfp = vma_thp_gfp_mask(vma);
1871 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1872 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1873 	if (IS_ERR(page)) {
1874 alloc_nohuge:
1875 		page = shmem_alloc_and_acct_page(gfp, inode,
1876 						 index, false);
1877 	}
1878 	if (IS_ERR(page)) {
1879 		int retry = 5;
1880 
1881 		error = PTR_ERR(page);
1882 		page = NULL;
1883 		if (error != -ENOSPC)
1884 			goto unlock;
1885 		/*
1886 		 * Try to reclaim some space by splitting a huge page
1887 		 * beyond i_size on the filesystem.
1888 		 */
1889 		while (retry--) {
1890 			int ret;
1891 
1892 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1893 			if (ret == SHRINK_STOP)
1894 				break;
1895 			if (ret)
1896 				goto alloc_nohuge;
1897 		}
1898 		goto unlock;
1899 	}
1900 
1901 	if (PageTransHuge(page))
1902 		hindex = round_down(index, HPAGE_PMD_NR);
1903 	else
1904 		hindex = index;
1905 
1906 	if (sgp == SGP_WRITE)
1907 		__SetPageReferenced(page);
1908 
1909 	error = shmem_add_to_page_cache(page, mapping, hindex,
1910 					NULL, gfp & GFP_RECLAIM_MASK,
1911 					charge_mm);
1912 	if (error)
1913 		goto unacct;
1914 	lru_cache_add(page);
1915 
1916 	spin_lock_irq(&info->lock);
1917 	info->alloced += compound_nr(page);
1918 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1919 	shmem_recalc_inode(inode);
1920 	spin_unlock_irq(&info->lock);
1921 	alloced = true;
1922 
1923 	if (PageTransHuge(page) &&
1924 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1925 			hindex + HPAGE_PMD_NR - 1) {
1926 		/*
1927 		 * Part of the huge page is beyond i_size: subject
1928 		 * to shrink under memory pressure.
1929 		 */
1930 		spin_lock(&sbinfo->shrinklist_lock);
1931 		/*
1932 		 * _careful to defend against unlocked access to
1933 		 * ->shrink_list in shmem_unused_huge_shrink()
1934 		 */
1935 		if (list_empty_careful(&info->shrinklist)) {
1936 			list_add_tail(&info->shrinklist,
1937 				      &sbinfo->shrinklist);
1938 			sbinfo->shrinklist_len++;
1939 		}
1940 		spin_unlock(&sbinfo->shrinklist_lock);
1941 	}
1942 
1943 	/*
1944 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1945 	 */
1946 	if (sgp == SGP_FALLOC)
1947 		sgp = SGP_WRITE;
1948 clear:
1949 	/*
1950 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1951 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1952 	 * it now, lest undo on failure cancel our earlier guarantee.
1953 	 */
1954 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1955 		int i;
1956 
1957 		for (i = 0; i < compound_nr(page); i++) {
1958 			clear_highpage(page + i);
1959 			flush_dcache_page(page + i);
1960 		}
1961 		SetPageUptodate(page);
1962 	}
1963 
1964 	/* Perhaps the file has been truncated since we checked */
1965 	if (sgp <= SGP_CACHE &&
1966 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1967 		if (alloced) {
1968 			ClearPageDirty(page);
1969 			delete_from_page_cache(page);
1970 			spin_lock_irq(&info->lock);
1971 			shmem_recalc_inode(inode);
1972 			spin_unlock_irq(&info->lock);
1973 		}
1974 		error = -EINVAL;
1975 		goto unlock;
1976 	}
1977 out:
1978 	*pagep = page + index - hindex;
1979 	return 0;
1980 
1981 	/*
1982 	 * Error recovery.
1983 	 */
1984 unacct:
1985 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1986 
1987 	if (PageTransHuge(page)) {
1988 		unlock_page(page);
1989 		put_page(page);
1990 		goto alloc_nohuge;
1991 	}
1992 unlock:
1993 	if (page) {
1994 		unlock_page(page);
1995 		put_page(page);
1996 	}
1997 	if (error == -ENOSPC && !once++) {
1998 		spin_lock_irq(&info->lock);
1999 		shmem_recalc_inode(inode);
2000 		spin_unlock_irq(&info->lock);
2001 		goto repeat;
2002 	}
2003 	if (error == -EEXIST)
2004 		goto repeat;
2005 	return error;
2006 }
2007 
2008 /*
2009  * This is like autoremove_wake_function, but it removes the wait queue
2010  * entry unconditionally - even if something else had already woken the
2011  * target.
2012  */
2013 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2014 {
2015 	int ret = default_wake_function(wait, mode, sync, key);
2016 	list_del_init(&wait->entry);
2017 	return ret;
2018 }
2019 
2020 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2021 {
2022 	struct vm_area_struct *vma = vmf->vma;
2023 	struct inode *inode = file_inode(vma->vm_file);
2024 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2025 	int err;
2026 	vm_fault_t ret = VM_FAULT_LOCKED;
2027 
2028 	/*
2029 	 * Trinity finds that probing a hole which tmpfs is punching can
2030 	 * prevent the hole-punch from ever completing: which in turn
2031 	 * locks writers out with its hold on i_rwsem.  So refrain from
2032 	 * faulting pages into the hole while it's being punched.  Although
2033 	 * shmem_undo_range() does remove the additions, it may be unable to
2034 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2035 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2036 	 *
2037 	 * It does not matter if we sometimes reach this check just before the
2038 	 * hole-punch begins, so that one fault then races with the punch:
2039 	 * we just need to make racing faults a rare case.
2040 	 *
2041 	 * The implementation below would be much simpler if we just used a
2042 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2043 	 * and bloating every shmem inode for this unlikely case would be sad.
2044 	 */
2045 	if (unlikely(inode->i_private)) {
2046 		struct shmem_falloc *shmem_falloc;
2047 
2048 		spin_lock(&inode->i_lock);
2049 		shmem_falloc = inode->i_private;
2050 		if (shmem_falloc &&
2051 		    shmem_falloc->waitq &&
2052 		    vmf->pgoff >= shmem_falloc->start &&
2053 		    vmf->pgoff < shmem_falloc->next) {
2054 			struct file *fpin;
2055 			wait_queue_head_t *shmem_falloc_waitq;
2056 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2057 
2058 			ret = VM_FAULT_NOPAGE;
2059 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2060 			if (fpin)
2061 				ret = VM_FAULT_RETRY;
2062 
2063 			shmem_falloc_waitq = shmem_falloc->waitq;
2064 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2065 					TASK_UNINTERRUPTIBLE);
2066 			spin_unlock(&inode->i_lock);
2067 			schedule();
2068 
2069 			/*
2070 			 * shmem_falloc_waitq points into the shmem_fallocate()
2071 			 * stack of the hole-punching task: shmem_falloc_waitq
2072 			 * is usually invalid by the time we reach here, but
2073 			 * finish_wait() does not dereference it in that case;
2074 			 * though i_lock needed lest racing with wake_up_all().
2075 			 */
2076 			spin_lock(&inode->i_lock);
2077 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2078 			spin_unlock(&inode->i_lock);
2079 
2080 			if (fpin)
2081 				fput(fpin);
2082 			return ret;
2083 		}
2084 		spin_unlock(&inode->i_lock);
2085 	}
2086 
2087 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2088 				  gfp, vma, vmf, &ret);
2089 	if (err)
2090 		return vmf_error(err);
2091 	return ret;
2092 }
2093 
2094 unsigned long shmem_get_unmapped_area(struct file *file,
2095 				      unsigned long uaddr, unsigned long len,
2096 				      unsigned long pgoff, unsigned long flags)
2097 {
2098 	unsigned long (*get_area)(struct file *,
2099 		unsigned long, unsigned long, unsigned long, unsigned long);
2100 	unsigned long addr;
2101 	unsigned long offset;
2102 	unsigned long inflated_len;
2103 	unsigned long inflated_addr;
2104 	unsigned long inflated_offset;
2105 
2106 	if (len > TASK_SIZE)
2107 		return -ENOMEM;
2108 
2109 	get_area = current->mm->get_unmapped_area;
2110 	addr = get_area(file, uaddr, len, pgoff, flags);
2111 
2112 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2113 		return addr;
2114 	if (IS_ERR_VALUE(addr))
2115 		return addr;
2116 	if (addr & ~PAGE_MASK)
2117 		return addr;
2118 	if (addr > TASK_SIZE - len)
2119 		return addr;
2120 
2121 	if (shmem_huge == SHMEM_HUGE_DENY)
2122 		return addr;
2123 	if (len < HPAGE_PMD_SIZE)
2124 		return addr;
2125 	if (flags & MAP_FIXED)
2126 		return addr;
2127 	/*
2128 	 * Our priority is to support MAP_SHARED mapped hugely;
2129 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2130 	 * But if caller specified an address hint and we allocated area there
2131 	 * successfully, respect that as before.
2132 	 */
2133 	if (uaddr == addr)
2134 		return addr;
2135 
2136 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2137 		struct super_block *sb;
2138 
2139 		if (file) {
2140 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2141 			sb = file_inode(file)->i_sb;
2142 		} else {
2143 			/*
2144 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2145 			 * for "/dev/zero", to create a shared anonymous object.
2146 			 */
2147 			if (IS_ERR(shm_mnt))
2148 				return addr;
2149 			sb = shm_mnt->mnt_sb;
2150 		}
2151 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2152 			return addr;
2153 	}
2154 
2155 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2156 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2157 		return addr;
2158 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2159 		return addr;
2160 
2161 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2162 	if (inflated_len > TASK_SIZE)
2163 		return addr;
2164 	if (inflated_len < len)
2165 		return addr;
2166 
2167 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2168 	if (IS_ERR_VALUE(inflated_addr))
2169 		return addr;
2170 	if (inflated_addr & ~PAGE_MASK)
2171 		return addr;
2172 
2173 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2174 	inflated_addr += offset - inflated_offset;
2175 	if (inflated_offset > offset)
2176 		inflated_addr += HPAGE_PMD_SIZE;
2177 
2178 	if (inflated_addr > TASK_SIZE - len)
2179 		return addr;
2180 	return inflated_addr;
2181 }
2182 
2183 #ifdef CONFIG_NUMA
2184 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2185 {
2186 	struct inode *inode = file_inode(vma->vm_file);
2187 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2188 }
2189 
2190 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2191 					  unsigned long addr)
2192 {
2193 	struct inode *inode = file_inode(vma->vm_file);
2194 	pgoff_t index;
2195 
2196 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2197 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2198 }
2199 #endif
2200 
2201 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2202 {
2203 	struct inode *inode = file_inode(file);
2204 	struct shmem_inode_info *info = SHMEM_I(inode);
2205 	int retval = -ENOMEM;
2206 
2207 	/*
2208 	 * What serializes the accesses to info->flags?
2209 	 * ipc_lock_object() when called from shmctl_do_lock(),
2210 	 * no serialization needed when called from shm_destroy().
2211 	 */
2212 	if (lock && !(info->flags & VM_LOCKED)) {
2213 		if (!user_shm_lock(inode->i_size, ucounts))
2214 			goto out_nomem;
2215 		info->flags |= VM_LOCKED;
2216 		mapping_set_unevictable(file->f_mapping);
2217 	}
2218 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2219 		user_shm_unlock(inode->i_size, ucounts);
2220 		info->flags &= ~VM_LOCKED;
2221 		mapping_clear_unevictable(file->f_mapping);
2222 	}
2223 	retval = 0;
2224 
2225 out_nomem:
2226 	return retval;
2227 }
2228 
2229 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2230 {
2231 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2232 	int ret;
2233 
2234 	ret = seal_check_future_write(info->seals, vma);
2235 	if (ret)
2236 		return ret;
2237 
2238 	/* arm64 - allow memory tagging on RAM-based files */
2239 	vma->vm_flags |= VM_MTE_ALLOWED;
2240 
2241 	file_accessed(file);
2242 	vma->vm_ops = &shmem_vm_ops;
2243 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2244 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2245 			(vma->vm_end & HPAGE_PMD_MASK)) {
2246 		khugepaged_enter(vma, vma->vm_flags);
2247 	}
2248 	return 0;
2249 }
2250 
2251 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2252 				     umode_t mode, dev_t dev, unsigned long flags)
2253 {
2254 	struct inode *inode;
2255 	struct shmem_inode_info *info;
2256 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2257 	ino_t ino;
2258 
2259 	if (shmem_reserve_inode(sb, &ino))
2260 		return NULL;
2261 
2262 	inode = new_inode(sb);
2263 	if (inode) {
2264 		inode->i_ino = ino;
2265 		inode_init_owner(&init_user_ns, inode, dir, mode);
2266 		inode->i_blocks = 0;
2267 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2268 		inode->i_generation = prandom_u32();
2269 		info = SHMEM_I(inode);
2270 		memset(info, 0, (char *)inode - (char *)info);
2271 		spin_lock_init(&info->lock);
2272 		atomic_set(&info->stop_eviction, 0);
2273 		info->seals = F_SEAL_SEAL;
2274 		info->flags = flags & VM_NORESERVE;
2275 		info->i_crtime = inode->i_mtime;
2276 		INIT_LIST_HEAD(&info->shrinklist);
2277 		INIT_LIST_HEAD(&info->swaplist);
2278 		simple_xattrs_init(&info->xattrs);
2279 		cache_no_acl(inode);
2280 		mapping_set_large_folios(inode->i_mapping);
2281 
2282 		switch (mode & S_IFMT) {
2283 		default:
2284 			inode->i_op = &shmem_special_inode_operations;
2285 			init_special_inode(inode, mode, dev);
2286 			break;
2287 		case S_IFREG:
2288 			inode->i_mapping->a_ops = &shmem_aops;
2289 			inode->i_op = &shmem_inode_operations;
2290 			inode->i_fop = &shmem_file_operations;
2291 			mpol_shared_policy_init(&info->policy,
2292 						 shmem_get_sbmpol(sbinfo));
2293 			break;
2294 		case S_IFDIR:
2295 			inc_nlink(inode);
2296 			/* Some things misbehave if size == 0 on a directory */
2297 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2298 			inode->i_op = &shmem_dir_inode_operations;
2299 			inode->i_fop = &simple_dir_operations;
2300 			break;
2301 		case S_IFLNK:
2302 			/*
2303 			 * Must not load anything in the rbtree,
2304 			 * mpol_free_shared_policy will not be called.
2305 			 */
2306 			mpol_shared_policy_init(&info->policy, NULL);
2307 			break;
2308 		}
2309 
2310 		lockdep_annotate_inode_mutex_key(inode);
2311 	} else
2312 		shmem_free_inode(sb);
2313 	return inode;
2314 }
2315 
2316 #ifdef CONFIG_USERFAULTFD
2317 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2318 			   pmd_t *dst_pmd,
2319 			   struct vm_area_struct *dst_vma,
2320 			   unsigned long dst_addr,
2321 			   unsigned long src_addr,
2322 			   bool zeropage,
2323 			   struct page **pagep)
2324 {
2325 	struct inode *inode = file_inode(dst_vma->vm_file);
2326 	struct shmem_inode_info *info = SHMEM_I(inode);
2327 	struct address_space *mapping = inode->i_mapping;
2328 	gfp_t gfp = mapping_gfp_mask(mapping);
2329 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2330 	void *page_kaddr;
2331 	struct page *page;
2332 	int ret;
2333 	pgoff_t max_off;
2334 
2335 	if (!shmem_inode_acct_block(inode, 1)) {
2336 		/*
2337 		 * We may have got a page, returned -ENOENT triggering a retry,
2338 		 * and now we find ourselves with -ENOMEM. Release the page, to
2339 		 * avoid a BUG_ON in our caller.
2340 		 */
2341 		if (unlikely(*pagep)) {
2342 			put_page(*pagep);
2343 			*pagep = NULL;
2344 		}
2345 		return -ENOMEM;
2346 	}
2347 
2348 	if (!*pagep) {
2349 		ret = -ENOMEM;
2350 		page = shmem_alloc_page(gfp, info, pgoff);
2351 		if (!page)
2352 			goto out_unacct_blocks;
2353 
2354 		if (!zeropage) {	/* COPY */
2355 			page_kaddr = kmap_atomic(page);
2356 			ret = copy_from_user(page_kaddr,
2357 					     (const void __user *)src_addr,
2358 					     PAGE_SIZE);
2359 			kunmap_atomic(page_kaddr);
2360 
2361 			/* fallback to copy_from_user outside mmap_lock */
2362 			if (unlikely(ret)) {
2363 				*pagep = page;
2364 				ret = -ENOENT;
2365 				/* don't free the page */
2366 				goto out_unacct_blocks;
2367 			}
2368 
2369 			flush_dcache_page(page);
2370 		} else {		/* ZEROPAGE */
2371 			clear_user_highpage(page, dst_addr);
2372 		}
2373 	} else {
2374 		page = *pagep;
2375 		*pagep = NULL;
2376 	}
2377 
2378 	VM_BUG_ON(PageLocked(page));
2379 	VM_BUG_ON(PageSwapBacked(page));
2380 	__SetPageLocked(page);
2381 	__SetPageSwapBacked(page);
2382 	__SetPageUptodate(page);
2383 
2384 	ret = -EFAULT;
2385 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2386 	if (unlikely(pgoff >= max_off))
2387 		goto out_release;
2388 
2389 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2390 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2391 	if (ret)
2392 		goto out_release;
2393 
2394 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2395 				       page, true, false);
2396 	if (ret)
2397 		goto out_delete_from_cache;
2398 
2399 	spin_lock_irq(&info->lock);
2400 	info->alloced++;
2401 	inode->i_blocks += BLOCKS_PER_PAGE;
2402 	shmem_recalc_inode(inode);
2403 	spin_unlock_irq(&info->lock);
2404 
2405 	unlock_page(page);
2406 	return 0;
2407 out_delete_from_cache:
2408 	delete_from_page_cache(page);
2409 out_release:
2410 	unlock_page(page);
2411 	put_page(page);
2412 out_unacct_blocks:
2413 	shmem_inode_unacct_blocks(inode, 1);
2414 	return ret;
2415 }
2416 #endif /* CONFIG_USERFAULTFD */
2417 
2418 #ifdef CONFIG_TMPFS
2419 static const struct inode_operations shmem_symlink_inode_operations;
2420 static const struct inode_operations shmem_short_symlink_operations;
2421 
2422 #ifdef CONFIG_TMPFS_XATTR
2423 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2424 #else
2425 #define shmem_initxattrs NULL
2426 #endif
2427 
2428 static int
2429 shmem_write_begin(struct file *file, struct address_space *mapping,
2430 			loff_t pos, unsigned len, unsigned flags,
2431 			struct page **pagep, void **fsdata)
2432 {
2433 	struct inode *inode = mapping->host;
2434 	struct shmem_inode_info *info = SHMEM_I(inode);
2435 	pgoff_t index = pos >> PAGE_SHIFT;
2436 	int ret = 0;
2437 
2438 	/* i_rwsem is held by caller */
2439 	if (unlikely(info->seals & (F_SEAL_GROW |
2440 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2441 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2442 			return -EPERM;
2443 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2444 			return -EPERM;
2445 	}
2446 
2447 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2448 
2449 	if (ret)
2450 		return ret;
2451 
2452 	if (PageHWPoison(*pagep)) {
2453 		unlock_page(*pagep);
2454 		put_page(*pagep);
2455 		*pagep = NULL;
2456 		return -EIO;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 static int
2463 shmem_write_end(struct file *file, struct address_space *mapping,
2464 			loff_t pos, unsigned len, unsigned copied,
2465 			struct page *page, void *fsdata)
2466 {
2467 	struct inode *inode = mapping->host;
2468 
2469 	if (pos + copied > inode->i_size)
2470 		i_size_write(inode, pos + copied);
2471 
2472 	if (!PageUptodate(page)) {
2473 		struct page *head = compound_head(page);
2474 		if (PageTransCompound(page)) {
2475 			int i;
2476 
2477 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2478 				if (head + i == page)
2479 					continue;
2480 				clear_highpage(head + i);
2481 				flush_dcache_page(head + i);
2482 			}
2483 		}
2484 		if (copied < PAGE_SIZE) {
2485 			unsigned from = pos & (PAGE_SIZE - 1);
2486 			zero_user_segments(page, 0, from,
2487 					from + copied, PAGE_SIZE);
2488 		}
2489 		SetPageUptodate(head);
2490 	}
2491 	set_page_dirty(page);
2492 	unlock_page(page);
2493 	put_page(page);
2494 
2495 	return copied;
2496 }
2497 
2498 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2499 {
2500 	struct file *file = iocb->ki_filp;
2501 	struct inode *inode = file_inode(file);
2502 	struct address_space *mapping = inode->i_mapping;
2503 	pgoff_t index;
2504 	unsigned long offset;
2505 	int error = 0;
2506 	ssize_t retval = 0;
2507 	loff_t *ppos = &iocb->ki_pos;
2508 
2509 	index = *ppos >> PAGE_SHIFT;
2510 	offset = *ppos & ~PAGE_MASK;
2511 
2512 	for (;;) {
2513 		struct page *page = NULL;
2514 		pgoff_t end_index;
2515 		unsigned long nr, ret;
2516 		loff_t i_size = i_size_read(inode);
2517 
2518 		end_index = i_size >> PAGE_SHIFT;
2519 		if (index > end_index)
2520 			break;
2521 		if (index == end_index) {
2522 			nr = i_size & ~PAGE_MASK;
2523 			if (nr <= offset)
2524 				break;
2525 		}
2526 
2527 		error = shmem_getpage(inode, index, &page, SGP_READ);
2528 		if (error) {
2529 			if (error == -EINVAL)
2530 				error = 0;
2531 			break;
2532 		}
2533 		if (page) {
2534 			unlock_page(page);
2535 
2536 			if (PageHWPoison(page)) {
2537 				put_page(page);
2538 				error = -EIO;
2539 				break;
2540 			}
2541 		}
2542 
2543 		/*
2544 		 * We must evaluate after, since reads (unlike writes)
2545 		 * are called without i_rwsem protection against truncate
2546 		 */
2547 		nr = PAGE_SIZE;
2548 		i_size = i_size_read(inode);
2549 		end_index = i_size >> PAGE_SHIFT;
2550 		if (index == end_index) {
2551 			nr = i_size & ~PAGE_MASK;
2552 			if (nr <= offset) {
2553 				if (page)
2554 					put_page(page);
2555 				break;
2556 			}
2557 		}
2558 		nr -= offset;
2559 
2560 		if (page) {
2561 			/*
2562 			 * If users can be writing to this page using arbitrary
2563 			 * virtual addresses, take care about potential aliasing
2564 			 * before reading the page on the kernel side.
2565 			 */
2566 			if (mapping_writably_mapped(mapping))
2567 				flush_dcache_page(page);
2568 			/*
2569 			 * Mark the page accessed if we read the beginning.
2570 			 */
2571 			if (!offset)
2572 				mark_page_accessed(page);
2573 			/*
2574 			 * Ok, we have the page, and it's up-to-date, so
2575 			 * now we can copy it to user space...
2576 			 */
2577 			ret = copy_page_to_iter(page, offset, nr, to);
2578 			put_page(page);
2579 
2580 		} else if (iter_is_iovec(to)) {
2581 			/*
2582 			 * Copy to user tends to be so well optimized, but
2583 			 * clear_user() not so much, that it is noticeably
2584 			 * faster to copy the zero page instead of clearing.
2585 			 */
2586 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2587 		} else {
2588 			/*
2589 			 * But submitting the same page twice in a row to
2590 			 * splice() - or others? - can result in confusion:
2591 			 * so don't attempt that optimization on pipes etc.
2592 			 */
2593 			ret = iov_iter_zero(nr, to);
2594 		}
2595 
2596 		retval += ret;
2597 		offset += ret;
2598 		index += offset >> PAGE_SHIFT;
2599 		offset &= ~PAGE_MASK;
2600 
2601 		if (!iov_iter_count(to))
2602 			break;
2603 		if (ret < nr) {
2604 			error = -EFAULT;
2605 			break;
2606 		}
2607 		cond_resched();
2608 	}
2609 
2610 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2611 	file_accessed(file);
2612 	return retval ? retval : error;
2613 }
2614 
2615 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2616 {
2617 	struct address_space *mapping = file->f_mapping;
2618 	struct inode *inode = mapping->host;
2619 
2620 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2621 		return generic_file_llseek_size(file, offset, whence,
2622 					MAX_LFS_FILESIZE, i_size_read(inode));
2623 	if (offset < 0)
2624 		return -ENXIO;
2625 
2626 	inode_lock(inode);
2627 	/* We're holding i_rwsem so we can access i_size directly */
2628 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2629 	if (offset >= 0)
2630 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2631 	inode_unlock(inode);
2632 	return offset;
2633 }
2634 
2635 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2636 							 loff_t len)
2637 {
2638 	struct inode *inode = file_inode(file);
2639 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2640 	struct shmem_inode_info *info = SHMEM_I(inode);
2641 	struct shmem_falloc shmem_falloc;
2642 	pgoff_t start, index, end, undo_fallocend;
2643 	int error;
2644 
2645 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2646 		return -EOPNOTSUPP;
2647 
2648 	inode_lock(inode);
2649 
2650 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2651 		struct address_space *mapping = file->f_mapping;
2652 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2653 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2654 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2655 
2656 		/* protected by i_rwsem */
2657 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2658 			error = -EPERM;
2659 			goto out;
2660 		}
2661 
2662 		shmem_falloc.waitq = &shmem_falloc_waitq;
2663 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2664 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2665 		spin_lock(&inode->i_lock);
2666 		inode->i_private = &shmem_falloc;
2667 		spin_unlock(&inode->i_lock);
2668 
2669 		if ((u64)unmap_end > (u64)unmap_start)
2670 			unmap_mapping_range(mapping, unmap_start,
2671 					    1 + unmap_end - unmap_start, 0);
2672 		shmem_truncate_range(inode, offset, offset + len - 1);
2673 		/* No need to unmap again: hole-punching leaves COWed pages */
2674 
2675 		spin_lock(&inode->i_lock);
2676 		inode->i_private = NULL;
2677 		wake_up_all(&shmem_falloc_waitq);
2678 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2679 		spin_unlock(&inode->i_lock);
2680 		error = 0;
2681 		goto out;
2682 	}
2683 
2684 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2685 	error = inode_newsize_ok(inode, offset + len);
2686 	if (error)
2687 		goto out;
2688 
2689 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2690 		error = -EPERM;
2691 		goto out;
2692 	}
2693 
2694 	start = offset >> PAGE_SHIFT;
2695 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2696 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2697 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2698 		error = -ENOSPC;
2699 		goto out;
2700 	}
2701 
2702 	shmem_falloc.waitq = NULL;
2703 	shmem_falloc.start = start;
2704 	shmem_falloc.next  = start;
2705 	shmem_falloc.nr_falloced = 0;
2706 	shmem_falloc.nr_unswapped = 0;
2707 	spin_lock(&inode->i_lock);
2708 	inode->i_private = &shmem_falloc;
2709 	spin_unlock(&inode->i_lock);
2710 
2711 	/*
2712 	 * info->fallocend is only relevant when huge pages might be
2713 	 * involved: to prevent split_huge_page() freeing fallocated
2714 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2715 	 */
2716 	undo_fallocend = info->fallocend;
2717 	if (info->fallocend < end)
2718 		info->fallocend = end;
2719 
2720 	for (index = start; index < end; ) {
2721 		struct page *page;
2722 
2723 		/*
2724 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2725 		 * been interrupted because we are using up too much memory.
2726 		 */
2727 		if (signal_pending(current))
2728 			error = -EINTR;
2729 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2730 			error = -ENOMEM;
2731 		else
2732 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2733 		if (error) {
2734 			info->fallocend = undo_fallocend;
2735 			/* Remove the !PageUptodate pages we added */
2736 			if (index > start) {
2737 				shmem_undo_range(inode,
2738 				    (loff_t)start << PAGE_SHIFT,
2739 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2740 			}
2741 			goto undone;
2742 		}
2743 
2744 		index++;
2745 		/*
2746 		 * Here is a more important optimization than it appears:
2747 		 * a second SGP_FALLOC on the same huge page will clear it,
2748 		 * making it PageUptodate and un-undoable if we fail later.
2749 		 */
2750 		if (PageTransCompound(page)) {
2751 			index = round_up(index, HPAGE_PMD_NR);
2752 			/* Beware 32-bit wraparound */
2753 			if (!index)
2754 				index--;
2755 		}
2756 
2757 		/*
2758 		 * Inform shmem_writepage() how far we have reached.
2759 		 * No need for lock or barrier: we have the page lock.
2760 		 */
2761 		if (!PageUptodate(page))
2762 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2763 		shmem_falloc.next = index;
2764 
2765 		/*
2766 		 * If !PageUptodate, leave it that way so that freeable pages
2767 		 * can be recognized if we need to rollback on error later.
2768 		 * But set_page_dirty so that memory pressure will swap rather
2769 		 * than free the pages we are allocating (and SGP_CACHE pages
2770 		 * might still be clean: we now need to mark those dirty too).
2771 		 */
2772 		set_page_dirty(page);
2773 		unlock_page(page);
2774 		put_page(page);
2775 		cond_resched();
2776 	}
2777 
2778 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2779 		i_size_write(inode, offset + len);
2780 	inode->i_ctime = current_time(inode);
2781 undone:
2782 	spin_lock(&inode->i_lock);
2783 	inode->i_private = NULL;
2784 	spin_unlock(&inode->i_lock);
2785 out:
2786 	inode_unlock(inode);
2787 	return error;
2788 }
2789 
2790 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2791 {
2792 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2793 
2794 	buf->f_type = TMPFS_MAGIC;
2795 	buf->f_bsize = PAGE_SIZE;
2796 	buf->f_namelen = NAME_MAX;
2797 	if (sbinfo->max_blocks) {
2798 		buf->f_blocks = sbinfo->max_blocks;
2799 		buf->f_bavail =
2800 		buf->f_bfree  = sbinfo->max_blocks -
2801 				percpu_counter_sum(&sbinfo->used_blocks);
2802 	}
2803 	if (sbinfo->max_inodes) {
2804 		buf->f_files = sbinfo->max_inodes;
2805 		buf->f_ffree = sbinfo->free_inodes;
2806 	}
2807 	/* else leave those fields 0 like simple_statfs */
2808 
2809 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2810 
2811 	return 0;
2812 }
2813 
2814 /*
2815  * File creation. Allocate an inode, and we're done..
2816  */
2817 static int
2818 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2819 	    struct dentry *dentry, umode_t mode, dev_t dev)
2820 {
2821 	struct inode *inode;
2822 	int error = -ENOSPC;
2823 
2824 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2825 	if (inode) {
2826 		error = simple_acl_create(dir, inode);
2827 		if (error)
2828 			goto out_iput;
2829 		error = security_inode_init_security(inode, dir,
2830 						     &dentry->d_name,
2831 						     shmem_initxattrs, NULL);
2832 		if (error && error != -EOPNOTSUPP)
2833 			goto out_iput;
2834 
2835 		error = 0;
2836 		dir->i_size += BOGO_DIRENT_SIZE;
2837 		dir->i_ctime = dir->i_mtime = current_time(dir);
2838 		d_instantiate(dentry, inode);
2839 		dget(dentry); /* Extra count - pin the dentry in core */
2840 	}
2841 	return error;
2842 out_iput:
2843 	iput(inode);
2844 	return error;
2845 }
2846 
2847 static int
2848 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2849 	      struct dentry *dentry, umode_t mode)
2850 {
2851 	struct inode *inode;
2852 	int error = -ENOSPC;
2853 
2854 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2855 	if (inode) {
2856 		error = security_inode_init_security(inode, dir,
2857 						     NULL,
2858 						     shmem_initxattrs, NULL);
2859 		if (error && error != -EOPNOTSUPP)
2860 			goto out_iput;
2861 		error = simple_acl_create(dir, inode);
2862 		if (error)
2863 			goto out_iput;
2864 		d_tmpfile(dentry, inode);
2865 	}
2866 	return error;
2867 out_iput:
2868 	iput(inode);
2869 	return error;
2870 }
2871 
2872 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2873 		       struct dentry *dentry, umode_t mode)
2874 {
2875 	int error;
2876 
2877 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2878 				 mode | S_IFDIR, 0)))
2879 		return error;
2880 	inc_nlink(dir);
2881 	return 0;
2882 }
2883 
2884 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2885 			struct dentry *dentry, umode_t mode, bool excl)
2886 {
2887 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2888 }
2889 
2890 /*
2891  * Link a file..
2892  */
2893 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2894 {
2895 	struct inode *inode = d_inode(old_dentry);
2896 	int ret = 0;
2897 
2898 	/*
2899 	 * No ordinary (disk based) filesystem counts links as inodes;
2900 	 * but each new link needs a new dentry, pinning lowmem, and
2901 	 * tmpfs dentries cannot be pruned until they are unlinked.
2902 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2903 	 * first link must skip that, to get the accounting right.
2904 	 */
2905 	if (inode->i_nlink) {
2906 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2907 		if (ret)
2908 			goto out;
2909 	}
2910 
2911 	dir->i_size += BOGO_DIRENT_SIZE;
2912 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2913 	inc_nlink(inode);
2914 	ihold(inode);	/* New dentry reference */
2915 	dget(dentry);		/* Extra pinning count for the created dentry */
2916 	d_instantiate(dentry, inode);
2917 out:
2918 	return ret;
2919 }
2920 
2921 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2922 {
2923 	struct inode *inode = d_inode(dentry);
2924 
2925 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2926 		shmem_free_inode(inode->i_sb);
2927 
2928 	dir->i_size -= BOGO_DIRENT_SIZE;
2929 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2930 	drop_nlink(inode);
2931 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2932 	return 0;
2933 }
2934 
2935 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2936 {
2937 	if (!simple_empty(dentry))
2938 		return -ENOTEMPTY;
2939 
2940 	drop_nlink(d_inode(dentry));
2941 	drop_nlink(dir);
2942 	return shmem_unlink(dir, dentry);
2943 }
2944 
2945 static int shmem_whiteout(struct user_namespace *mnt_userns,
2946 			  struct inode *old_dir, struct dentry *old_dentry)
2947 {
2948 	struct dentry *whiteout;
2949 	int error;
2950 
2951 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2952 	if (!whiteout)
2953 		return -ENOMEM;
2954 
2955 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2956 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2957 	dput(whiteout);
2958 	if (error)
2959 		return error;
2960 
2961 	/*
2962 	 * Cheat and hash the whiteout while the old dentry is still in
2963 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2964 	 *
2965 	 * d_lookup() will consistently find one of them at this point,
2966 	 * not sure which one, but that isn't even important.
2967 	 */
2968 	d_rehash(whiteout);
2969 	return 0;
2970 }
2971 
2972 /*
2973  * The VFS layer already does all the dentry stuff for rename,
2974  * we just have to decrement the usage count for the target if
2975  * it exists so that the VFS layer correctly free's it when it
2976  * gets overwritten.
2977  */
2978 static int shmem_rename2(struct user_namespace *mnt_userns,
2979 			 struct inode *old_dir, struct dentry *old_dentry,
2980 			 struct inode *new_dir, struct dentry *new_dentry,
2981 			 unsigned int flags)
2982 {
2983 	struct inode *inode = d_inode(old_dentry);
2984 	int they_are_dirs = S_ISDIR(inode->i_mode);
2985 
2986 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2987 		return -EINVAL;
2988 
2989 	if (flags & RENAME_EXCHANGE)
2990 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2991 
2992 	if (!simple_empty(new_dentry))
2993 		return -ENOTEMPTY;
2994 
2995 	if (flags & RENAME_WHITEOUT) {
2996 		int error;
2997 
2998 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2999 		if (error)
3000 			return error;
3001 	}
3002 
3003 	if (d_really_is_positive(new_dentry)) {
3004 		(void) shmem_unlink(new_dir, new_dentry);
3005 		if (they_are_dirs) {
3006 			drop_nlink(d_inode(new_dentry));
3007 			drop_nlink(old_dir);
3008 		}
3009 	} else if (they_are_dirs) {
3010 		drop_nlink(old_dir);
3011 		inc_nlink(new_dir);
3012 	}
3013 
3014 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3015 	new_dir->i_size += BOGO_DIRENT_SIZE;
3016 	old_dir->i_ctime = old_dir->i_mtime =
3017 	new_dir->i_ctime = new_dir->i_mtime =
3018 	inode->i_ctime = current_time(old_dir);
3019 	return 0;
3020 }
3021 
3022 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3023 			 struct dentry *dentry, const char *symname)
3024 {
3025 	int error;
3026 	int len;
3027 	struct inode *inode;
3028 	struct page *page;
3029 
3030 	len = strlen(symname) + 1;
3031 	if (len > PAGE_SIZE)
3032 		return -ENAMETOOLONG;
3033 
3034 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3035 				VM_NORESERVE);
3036 	if (!inode)
3037 		return -ENOSPC;
3038 
3039 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3040 					     shmem_initxattrs, NULL);
3041 	if (error && error != -EOPNOTSUPP) {
3042 		iput(inode);
3043 		return error;
3044 	}
3045 
3046 	inode->i_size = len-1;
3047 	if (len <= SHORT_SYMLINK_LEN) {
3048 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3049 		if (!inode->i_link) {
3050 			iput(inode);
3051 			return -ENOMEM;
3052 		}
3053 		inode->i_op = &shmem_short_symlink_operations;
3054 	} else {
3055 		inode_nohighmem(inode);
3056 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3057 		if (error) {
3058 			iput(inode);
3059 			return error;
3060 		}
3061 		inode->i_mapping->a_ops = &shmem_aops;
3062 		inode->i_op = &shmem_symlink_inode_operations;
3063 		memcpy(page_address(page), symname, len);
3064 		SetPageUptodate(page);
3065 		set_page_dirty(page);
3066 		unlock_page(page);
3067 		put_page(page);
3068 	}
3069 	dir->i_size += BOGO_DIRENT_SIZE;
3070 	dir->i_ctime = dir->i_mtime = current_time(dir);
3071 	d_instantiate(dentry, inode);
3072 	dget(dentry);
3073 	return 0;
3074 }
3075 
3076 static void shmem_put_link(void *arg)
3077 {
3078 	mark_page_accessed(arg);
3079 	put_page(arg);
3080 }
3081 
3082 static const char *shmem_get_link(struct dentry *dentry,
3083 				  struct inode *inode,
3084 				  struct delayed_call *done)
3085 {
3086 	struct page *page = NULL;
3087 	int error;
3088 	if (!dentry) {
3089 		page = find_get_page(inode->i_mapping, 0);
3090 		if (!page)
3091 			return ERR_PTR(-ECHILD);
3092 		if (PageHWPoison(page) ||
3093 		    !PageUptodate(page)) {
3094 			put_page(page);
3095 			return ERR_PTR(-ECHILD);
3096 		}
3097 	} else {
3098 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3099 		if (error)
3100 			return ERR_PTR(error);
3101 		if (!page)
3102 			return ERR_PTR(-ECHILD);
3103 		if (PageHWPoison(page)) {
3104 			unlock_page(page);
3105 			put_page(page);
3106 			return ERR_PTR(-ECHILD);
3107 		}
3108 		unlock_page(page);
3109 	}
3110 	set_delayed_call(done, shmem_put_link, page);
3111 	return page_address(page);
3112 }
3113 
3114 #ifdef CONFIG_TMPFS_XATTR
3115 /*
3116  * Superblocks without xattr inode operations may get some security.* xattr
3117  * support from the LSM "for free". As soon as we have any other xattrs
3118  * like ACLs, we also need to implement the security.* handlers at
3119  * filesystem level, though.
3120  */
3121 
3122 /*
3123  * Callback for security_inode_init_security() for acquiring xattrs.
3124  */
3125 static int shmem_initxattrs(struct inode *inode,
3126 			    const struct xattr *xattr_array,
3127 			    void *fs_info)
3128 {
3129 	struct shmem_inode_info *info = SHMEM_I(inode);
3130 	const struct xattr *xattr;
3131 	struct simple_xattr *new_xattr;
3132 	size_t len;
3133 
3134 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3135 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3136 		if (!new_xattr)
3137 			return -ENOMEM;
3138 
3139 		len = strlen(xattr->name) + 1;
3140 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3141 					  GFP_KERNEL);
3142 		if (!new_xattr->name) {
3143 			kvfree(new_xattr);
3144 			return -ENOMEM;
3145 		}
3146 
3147 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3148 		       XATTR_SECURITY_PREFIX_LEN);
3149 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3150 		       xattr->name, len);
3151 
3152 		simple_xattr_list_add(&info->xattrs, new_xattr);
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3159 				   struct dentry *unused, struct inode *inode,
3160 				   const char *name, void *buffer, size_t size)
3161 {
3162 	struct shmem_inode_info *info = SHMEM_I(inode);
3163 
3164 	name = xattr_full_name(handler, name);
3165 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3166 }
3167 
3168 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3169 				   struct user_namespace *mnt_userns,
3170 				   struct dentry *unused, struct inode *inode,
3171 				   const char *name, const void *value,
3172 				   size_t size, int flags)
3173 {
3174 	struct shmem_inode_info *info = SHMEM_I(inode);
3175 
3176 	name = xattr_full_name(handler, name);
3177 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3178 }
3179 
3180 static const struct xattr_handler shmem_security_xattr_handler = {
3181 	.prefix = XATTR_SECURITY_PREFIX,
3182 	.get = shmem_xattr_handler_get,
3183 	.set = shmem_xattr_handler_set,
3184 };
3185 
3186 static const struct xattr_handler shmem_trusted_xattr_handler = {
3187 	.prefix = XATTR_TRUSTED_PREFIX,
3188 	.get = shmem_xattr_handler_get,
3189 	.set = shmem_xattr_handler_set,
3190 };
3191 
3192 static const struct xattr_handler *shmem_xattr_handlers[] = {
3193 #ifdef CONFIG_TMPFS_POSIX_ACL
3194 	&posix_acl_access_xattr_handler,
3195 	&posix_acl_default_xattr_handler,
3196 #endif
3197 	&shmem_security_xattr_handler,
3198 	&shmem_trusted_xattr_handler,
3199 	NULL
3200 };
3201 
3202 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3203 {
3204 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3205 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3206 }
3207 #endif /* CONFIG_TMPFS_XATTR */
3208 
3209 static const struct inode_operations shmem_short_symlink_operations = {
3210 	.getattr	= shmem_getattr,
3211 	.get_link	= simple_get_link,
3212 #ifdef CONFIG_TMPFS_XATTR
3213 	.listxattr	= shmem_listxattr,
3214 #endif
3215 };
3216 
3217 static const struct inode_operations shmem_symlink_inode_operations = {
3218 	.getattr	= shmem_getattr,
3219 	.get_link	= shmem_get_link,
3220 #ifdef CONFIG_TMPFS_XATTR
3221 	.listxattr	= shmem_listxattr,
3222 #endif
3223 };
3224 
3225 static struct dentry *shmem_get_parent(struct dentry *child)
3226 {
3227 	return ERR_PTR(-ESTALE);
3228 }
3229 
3230 static int shmem_match(struct inode *ino, void *vfh)
3231 {
3232 	__u32 *fh = vfh;
3233 	__u64 inum = fh[2];
3234 	inum = (inum << 32) | fh[1];
3235 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3236 }
3237 
3238 /* Find any alias of inode, but prefer a hashed alias */
3239 static struct dentry *shmem_find_alias(struct inode *inode)
3240 {
3241 	struct dentry *alias = d_find_alias(inode);
3242 
3243 	return alias ?: d_find_any_alias(inode);
3244 }
3245 
3246 
3247 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3248 		struct fid *fid, int fh_len, int fh_type)
3249 {
3250 	struct inode *inode;
3251 	struct dentry *dentry = NULL;
3252 	u64 inum;
3253 
3254 	if (fh_len < 3)
3255 		return NULL;
3256 
3257 	inum = fid->raw[2];
3258 	inum = (inum << 32) | fid->raw[1];
3259 
3260 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3261 			shmem_match, fid->raw);
3262 	if (inode) {
3263 		dentry = shmem_find_alias(inode);
3264 		iput(inode);
3265 	}
3266 
3267 	return dentry;
3268 }
3269 
3270 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3271 				struct inode *parent)
3272 {
3273 	if (*len < 3) {
3274 		*len = 3;
3275 		return FILEID_INVALID;
3276 	}
3277 
3278 	if (inode_unhashed(inode)) {
3279 		/* Unfortunately insert_inode_hash is not idempotent,
3280 		 * so as we hash inodes here rather than at creation
3281 		 * time, we need a lock to ensure we only try
3282 		 * to do it once
3283 		 */
3284 		static DEFINE_SPINLOCK(lock);
3285 		spin_lock(&lock);
3286 		if (inode_unhashed(inode))
3287 			__insert_inode_hash(inode,
3288 					    inode->i_ino + inode->i_generation);
3289 		spin_unlock(&lock);
3290 	}
3291 
3292 	fh[0] = inode->i_generation;
3293 	fh[1] = inode->i_ino;
3294 	fh[2] = ((__u64)inode->i_ino) >> 32;
3295 
3296 	*len = 3;
3297 	return 1;
3298 }
3299 
3300 static const struct export_operations shmem_export_ops = {
3301 	.get_parent     = shmem_get_parent,
3302 	.encode_fh      = shmem_encode_fh,
3303 	.fh_to_dentry	= shmem_fh_to_dentry,
3304 };
3305 
3306 enum shmem_param {
3307 	Opt_gid,
3308 	Opt_huge,
3309 	Opt_mode,
3310 	Opt_mpol,
3311 	Opt_nr_blocks,
3312 	Opt_nr_inodes,
3313 	Opt_size,
3314 	Opt_uid,
3315 	Opt_inode32,
3316 	Opt_inode64,
3317 };
3318 
3319 static const struct constant_table shmem_param_enums_huge[] = {
3320 	{"never",	SHMEM_HUGE_NEVER },
3321 	{"always",	SHMEM_HUGE_ALWAYS },
3322 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3323 	{"advise",	SHMEM_HUGE_ADVISE },
3324 	{}
3325 };
3326 
3327 const struct fs_parameter_spec shmem_fs_parameters[] = {
3328 	fsparam_u32   ("gid",		Opt_gid),
3329 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3330 	fsparam_u32oct("mode",		Opt_mode),
3331 	fsparam_string("mpol",		Opt_mpol),
3332 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3333 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3334 	fsparam_string("size",		Opt_size),
3335 	fsparam_u32   ("uid",		Opt_uid),
3336 	fsparam_flag  ("inode32",	Opt_inode32),
3337 	fsparam_flag  ("inode64",	Opt_inode64),
3338 	{}
3339 };
3340 
3341 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3342 {
3343 	struct shmem_options *ctx = fc->fs_private;
3344 	struct fs_parse_result result;
3345 	unsigned long long size;
3346 	char *rest;
3347 	int opt;
3348 
3349 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3350 	if (opt < 0)
3351 		return opt;
3352 
3353 	switch (opt) {
3354 	case Opt_size:
3355 		size = memparse(param->string, &rest);
3356 		if (*rest == '%') {
3357 			size <<= PAGE_SHIFT;
3358 			size *= totalram_pages();
3359 			do_div(size, 100);
3360 			rest++;
3361 		}
3362 		if (*rest)
3363 			goto bad_value;
3364 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3365 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3366 		break;
3367 	case Opt_nr_blocks:
3368 		ctx->blocks = memparse(param->string, &rest);
3369 		if (*rest)
3370 			goto bad_value;
3371 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3372 		break;
3373 	case Opt_nr_inodes:
3374 		ctx->inodes = memparse(param->string, &rest);
3375 		if (*rest)
3376 			goto bad_value;
3377 		ctx->seen |= SHMEM_SEEN_INODES;
3378 		break;
3379 	case Opt_mode:
3380 		ctx->mode = result.uint_32 & 07777;
3381 		break;
3382 	case Opt_uid:
3383 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3384 		if (!uid_valid(ctx->uid))
3385 			goto bad_value;
3386 		break;
3387 	case Opt_gid:
3388 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3389 		if (!gid_valid(ctx->gid))
3390 			goto bad_value;
3391 		break;
3392 	case Opt_huge:
3393 		ctx->huge = result.uint_32;
3394 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3395 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3396 		      has_transparent_hugepage()))
3397 			goto unsupported_parameter;
3398 		ctx->seen |= SHMEM_SEEN_HUGE;
3399 		break;
3400 	case Opt_mpol:
3401 		if (IS_ENABLED(CONFIG_NUMA)) {
3402 			mpol_put(ctx->mpol);
3403 			ctx->mpol = NULL;
3404 			if (mpol_parse_str(param->string, &ctx->mpol))
3405 				goto bad_value;
3406 			break;
3407 		}
3408 		goto unsupported_parameter;
3409 	case Opt_inode32:
3410 		ctx->full_inums = false;
3411 		ctx->seen |= SHMEM_SEEN_INUMS;
3412 		break;
3413 	case Opt_inode64:
3414 		if (sizeof(ino_t) < 8) {
3415 			return invalfc(fc,
3416 				       "Cannot use inode64 with <64bit inums in kernel\n");
3417 		}
3418 		ctx->full_inums = true;
3419 		ctx->seen |= SHMEM_SEEN_INUMS;
3420 		break;
3421 	}
3422 	return 0;
3423 
3424 unsupported_parameter:
3425 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3426 bad_value:
3427 	return invalfc(fc, "Bad value for '%s'", param->key);
3428 }
3429 
3430 static int shmem_parse_options(struct fs_context *fc, void *data)
3431 {
3432 	char *options = data;
3433 
3434 	if (options) {
3435 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3436 		if (err)
3437 			return err;
3438 	}
3439 
3440 	while (options != NULL) {
3441 		char *this_char = options;
3442 		for (;;) {
3443 			/*
3444 			 * NUL-terminate this option: unfortunately,
3445 			 * mount options form a comma-separated list,
3446 			 * but mpol's nodelist may also contain commas.
3447 			 */
3448 			options = strchr(options, ',');
3449 			if (options == NULL)
3450 				break;
3451 			options++;
3452 			if (!isdigit(*options)) {
3453 				options[-1] = '\0';
3454 				break;
3455 			}
3456 		}
3457 		if (*this_char) {
3458 			char *value = strchr(this_char, '=');
3459 			size_t len = 0;
3460 			int err;
3461 
3462 			if (value) {
3463 				*value++ = '\0';
3464 				len = strlen(value);
3465 			}
3466 			err = vfs_parse_fs_string(fc, this_char, value, len);
3467 			if (err < 0)
3468 				return err;
3469 		}
3470 	}
3471 	return 0;
3472 }
3473 
3474 /*
3475  * Reconfigure a shmem filesystem.
3476  *
3477  * Note that we disallow change from limited->unlimited blocks/inodes while any
3478  * are in use; but we must separately disallow unlimited->limited, because in
3479  * that case we have no record of how much is already in use.
3480  */
3481 static int shmem_reconfigure(struct fs_context *fc)
3482 {
3483 	struct shmem_options *ctx = fc->fs_private;
3484 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3485 	unsigned long inodes;
3486 	struct mempolicy *mpol = NULL;
3487 	const char *err;
3488 
3489 	raw_spin_lock(&sbinfo->stat_lock);
3490 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3491 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3492 		if (!sbinfo->max_blocks) {
3493 			err = "Cannot retroactively limit size";
3494 			goto out;
3495 		}
3496 		if (percpu_counter_compare(&sbinfo->used_blocks,
3497 					   ctx->blocks) > 0) {
3498 			err = "Too small a size for current use";
3499 			goto out;
3500 		}
3501 	}
3502 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3503 		if (!sbinfo->max_inodes) {
3504 			err = "Cannot retroactively limit inodes";
3505 			goto out;
3506 		}
3507 		if (ctx->inodes < inodes) {
3508 			err = "Too few inodes for current use";
3509 			goto out;
3510 		}
3511 	}
3512 
3513 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3514 	    sbinfo->next_ino > UINT_MAX) {
3515 		err = "Current inum too high to switch to 32-bit inums";
3516 		goto out;
3517 	}
3518 
3519 	if (ctx->seen & SHMEM_SEEN_HUGE)
3520 		sbinfo->huge = ctx->huge;
3521 	if (ctx->seen & SHMEM_SEEN_INUMS)
3522 		sbinfo->full_inums = ctx->full_inums;
3523 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3524 		sbinfo->max_blocks  = ctx->blocks;
3525 	if (ctx->seen & SHMEM_SEEN_INODES) {
3526 		sbinfo->max_inodes  = ctx->inodes;
3527 		sbinfo->free_inodes = ctx->inodes - inodes;
3528 	}
3529 
3530 	/*
3531 	 * Preserve previous mempolicy unless mpol remount option was specified.
3532 	 */
3533 	if (ctx->mpol) {
3534 		mpol = sbinfo->mpol;
3535 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3536 		ctx->mpol = NULL;
3537 	}
3538 	raw_spin_unlock(&sbinfo->stat_lock);
3539 	mpol_put(mpol);
3540 	return 0;
3541 out:
3542 	raw_spin_unlock(&sbinfo->stat_lock);
3543 	return invalfc(fc, "%s", err);
3544 }
3545 
3546 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3547 {
3548 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3549 
3550 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3551 		seq_printf(seq, ",size=%luk",
3552 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3553 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3554 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3555 	if (sbinfo->mode != (0777 | S_ISVTX))
3556 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3557 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3558 		seq_printf(seq, ",uid=%u",
3559 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3560 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3561 		seq_printf(seq, ",gid=%u",
3562 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3563 
3564 	/*
3565 	 * Showing inode{64,32} might be useful even if it's the system default,
3566 	 * since then people don't have to resort to checking both here and
3567 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3568 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3569 	 *
3570 	 * We hide it when inode64 isn't the default and we are using 32-bit
3571 	 * inodes, since that probably just means the feature isn't even under
3572 	 * consideration.
3573 	 *
3574 	 * As such:
3575 	 *
3576 	 *                     +-----------------+-----------------+
3577 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3578 	 *  +------------------+-----------------+-----------------+
3579 	 *  | full_inums=true  | show            | show            |
3580 	 *  | full_inums=false | show            | hide            |
3581 	 *  +------------------+-----------------+-----------------+
3582 	 *
3583 	 */
3584 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3585 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3586 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3587 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3588 	if (sbinfo->huge)
3589 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3590 #endif
3591 	shmem_show_mpol(seq, sbinfo->mpol);
3592 	return 0;
3593 }
3594 
3595 #endif /* CONFIG_TMPFS */
3596 
3597 static void shmem_put_super(struct super_block *sb)
3598 {
3599 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3600 
3601 	free_percpu(sbinfo->ino_batch);
3602 	percpu_counter_destroy(&sbinfo->used_blocks);
3603 	mpol_put(sbinfo->mpol);
3604 	kfree(sbinfo);
3605 	sb->s_fs_info = NULL;
3606 }
3607 
3608 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3609 {
3610 	struct shmem_options *ctx = fc->fs_private;
3611 	struct inode *inode;
3612 	struct shmem_sb_info *sbinfo;
3613 
3614 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3615 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3616 				L1_CACHE_BYTES), GFP_KERNEL);
3617 	if (!sbinfo)
3618 		return -ENOMEM;
3619 
3620 	sb->s_fs_info = sbinfo;
3621 
3622 #ifdef CONFIG_TMPFS
3623 	/*
3624 	 * Per default we only allow half of the physical ram per
3625 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3626 	 * but the internal instance is left unlimited.
3627 	 */
3628 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3629 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3630 			ctx->blocks = shmem_default_max_blocks();
3631 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3632 			ctx->inodes = shmem_default_max_inodes();
3633 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3634 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3635 	} else {
3636 		sb->s_flags |= SB_NOUSER;
3637 	}
3638 	sb->s_export_op = &shmem_export_ops;
3639 	sb->s_flags |= SB_NOSEC;
3640 #else
3641 	sb->s_flags |= SB_NOUSER;
3642 #endif
3643 	sbinfo->max_blocks = ctx->blocks;
3644 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3645 	if (sb->s_flags & SB_KERNMOUNT) {
3646 		sbinfo->ino_batch = alloc_percpu(ino_t);
3647 		if (!sbinfo->ino_batch)
3648 			goto failed;
3649 	}
3650 	sbinfo->uid = ctx->uid;
3651 	sbinfo->gid = ctx->gid;
3652 	sbinfo->full_inums = ctx->full_inums;
3653 	sbinfo->mode = ctx->mode;
3654 	sbinfo->huge = ctx->huge;
3655 	sbinfo->mpol = ctx->mpol;
3656 	ctx->mpol = NULL;
3657 
3658 	raw_spin_lock_init(&sbinfo->stat_lock);
3659 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3660 		goto failed;
3661 	spin_lock_init(&sbinfo->shrinklist_lock);
3662 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3663 
3664 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3665 	sb->s_blocksize = PAGE_SIZE;
3666 	sb->s_blocksize_bits = PAGE_SHIFT;
3667 	sb->s_magic = TMPFS_MAGIC;
3668 	sb->s_op = &shmem_ops;
3669 	sb->s_time_gran = 1;
3670 #ifdef CONFIG_TMPFS_XATTR
3671 	sb->s_xattr = shmem_xattr_handlers;
3672 #endif
3673 #ifdef CONFIG_TMPFS_POSIX_ACL
3674 	sb->s_flags |= SB_POSIXACL;
3675 #endif
3676 	uuid_gen(&sb->s_uuid);
3677 
3678 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3679 	if (!inode)
3680 		goto failed;
3681 	inode->i_uid = sbinfo->uid;
3682 	inode->i_gid = sbinfo->gid;
3683 	sb->s_root = d_make_root(inode);
3684 	if (!sb->s_root)
3685 		goto failed;
3686 	return 0;
3687 
3688 failed:
3689 	shmem_put_super(sb);
3690 	return -ENOMEM;
3691 }
3692 
3693 static int shmem_get_tree(struct fs_context *fc)
3694 {
3695 	return get_tree_nodev(fc, shmem_fill_super);
3696 }
3697 
3698 static void shmem_free_fc(struct fs_context *fc)
3699 {
3700 	struct shmem_options *ctx = fc->fs_private;
3701 
3702 	if (ctx) {
3703 		mpol_put(ctx->mpol);
3704 		kfree(ctx);
3705 	}
3706 }
3707 
3708 static const struct fs_context_operations shmem_fs_context_ops = {
3709 	.free			= shmem_free_fc,
3710 	.get_tree		= shmem_get_tree,
3711 #ifdef CONFIG_TMPFS
3712 	.parse_monolithic	= shmem_parse_options,
3713 	.parse_param		= shmem_parse_one,
3714 	.reconfigure		= shmem_reconfigure,
3715 #endif
3716 };
3717 
3718 static struct kmem_cache *shmem_inode_cachep;
3719 
3720 static struct inode *shmem_alloc_inode(struct super_block *sb)
3721 {
3722 	struct shmem_inode_info *info;
3723 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3724 	if (!info)
3725 		return NULL;
3726 	return &info->vfs_inode;
3727 }
3728 
3729 static void shmem_free_in_core_inode(struct inode *inode)
3730 {
3731 	if (S_ISLNK(inode->i_mode))
3732 		kfree(inode->i_link);
3733 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3734 }
3735 
3736 static void shmem_destroy_inode(struct inode *inode)
3737 {
3738 	if (S_ISREG(inode->i_mode))
3739 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3740 }
3741 
3742 static void shmem_init_inode(void *foo)
3743 {
3744 	struct shmem_inode_info *info = foo;
3745 	inode_init_once(&info->vfs_inode);
3746 }
3747 
3748 static void shmem_init_inodecache(void)
3749 {
3750 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3751 				sizeof(struct shmem_inode_info),
3752 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3753 }
3754 
3755 static void shmem_destroy_inodecache(void)
3756 {
3757 	kmem_cache_destroy(shmem_inode_cachep);
3758 }
3759 
3760 /* Keep the page in page cache instead of truncating it */
3761 static int shmem_error_remove_page(struct address_space *mapping,
3762 				   struct page *page)
3763 {
3764 	return 0;
3765 }
3766 
3767 const struct address_space_operations shmem_aops = {
3768 	.writepage	= shmem_writepage,
3769 	.dirty_folio	= noop_dirty_folio,
3770 #ifdef CONFIG_TMPFS
3771 	.write_begin	= shmem_write_begin,
3772 	.write_end	= shmem_write_end,
3773 #endif
3774 #ifdef CONFIG_MIGRATION
3775 	.migratepage	= migrate_page,
3776 #endif
3777 	.error_remove_page = shmem_error_remove_page,
3778 };
3779 EXPORT_SYMBOL(shmem_aops);
3780 
3781 static const struct file_operations shmem_file_operations = {
3782 	.mmap		= shmem_mmap,
3783 	.get_unmapped_area = shmem_get_unmapped_area,
3784 #ifdef CONFIG_TMPFS
3785 	.llseek		= shmem_file_llseek,
3786 	.read_iter	= shmem_file_read_iter,
3787 	.write_iter	= generic_file_write_iter,
3788 	.fsync		= noop_fsync,
3789 	.splice_read	= generic_file_splice_read,
3790 	.splice_write	= iter_file_splice_write,
3791 	.fallocate	= shmem_fallocate,
3792 #endif
3793 };
3794 
3795 static const struct inode_operations shmem_inode_operations = {
3796 	.getattr	= shmem_getattr,
3797 	.setattr	= shmem_setattr,
3798 #ifdef CONFIG_TMPFS_XATTR
3799 	.listxattr	= shmem_listxattr,
3800 	.set_acl	= simple_set_acl,
3801 #endif
3802 };
3803 
3804 static const struct inode_operations shmem_dir_inode_operations = {
3805 #ifdef CONFIG_TMPFS
3806 	.getattr	= shmem_getattr,
3807 	.create		= shmem_create,
3808 	.lookup		= simple_lookup,
3809 	.link		= shmem_link,
3810 	.unlink		= shmem_unlink,
3811 	.symlink	= shmem_symlink,
3812 	.mkdir		= shmem_mkdir,
3813 	.rmdir		= shmem_rmdir,
3814 	.mknod		= shmem_mknod,
3815 	.rename		= shmem_rename2,
3816 	.tmpfile	= shmem_tmpfile,
3817 #endif
3818 #ifdef CONFIG_TMPFS_XATTR
3819 	.listxattr	= shmem_listxattr,
3820 #endif
3821 #ifdef CONFIG_TMPFS_POSIX_ACL
3822 	.setattr	= shmem_setattr,
3823 	.set_acl	= simple_set_acl,
3824 #endif
3825 };
3826 
3827 static const struct inode_operations shmem_special_inode_operations = {
3828 	.getattr	= shmem_getattr,
3829 #ifdef CONFIG_TMPFS_XATTR
3830 	.listxattr	= shmem_listxattr,
3831 #endif
3832 #ifdef CONFIG_TMPFS_POSIX_ACL
3833 	.setattr	= shmem_setattr,
3834 	.set_acl	= simple_set_acl,
3835 #endif
3836 };
3837 
3838 static const struct super_operations shmem_ops = {
3839 	.alloc_inode	= shmem_alloc_inode,
3840 	.free_inode	= shmem_free_in_core_inode,
3841 	.destroy_inode	= shmem_destroy_inode,
3842 #ifdef CONFIG_TMPFS
3843 	.statfs		= shmem_statfs,
3844 	.show_options	= shmem_show_options,
3845 #endif
3846 	.evict_inode	= shmem_evict_inode,
3847 	.drop_inode	= generic_delete_inode,
3848 	.put_super	= shmem_put_super,
3849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3850 	.nr_cached_objects	= shmem_unused_huge_count,
3851 	.free_cached_objects	= shmem_unused_huge_scan,
3852 #endif
3853 };
3854 
3855 static const struct vm_operations_struct shmem_vm_ops = {
3856 	.fault		= shmem_fault,
3857 	.map_pages	= filemap_map_pages,
3858 #ifdef CONFIG_NUMA
3859 	.set_policy     = shmem_set_policy,
3860 	.get_policy     = shmem_get_policy,
3861 #endif
3862 };
3863 
3864 int shmem_init_fs_context(struct fs_context *fc)
3865 {
3866 	struct shmem_options *ctx;
3867 
3868 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3869 	if (!ctx)
3870 		return -ENOMEM;
3871 
3872 	ctx->mode = 0777 | S_ISVTX;
3873 	ctx->uid = current_fsuid();
3874 	ctx->gid = current_fsgid();
3875 
3876 	fc->fs_private = ctx;
3877 	fc->ops = &shmem_fs_context_ops;
3878 	return 0;
3879 }
3880 
3881 static struct file_system_type shmem_fs_type = {
3882 	.owner		= THIS_MODULE,
3883 	.name		= "tmpfs",
3884 	.init_fs_context = shmem_init_fs_context,
3885 #ifdef CONFIG_TMPFS
3886 	.parameters	= shmem_fs_parameters,
3887 #endif
3888 	.kill_sb	= kill_litter_super,
3889 	.fs_flags	= FS_USERNS_MOUNT,
3890 };
3891 
3892 void __init shmem_init(void)
3893 {
3894 	int error;
3895 
3896 	shmem_init_inodecache();
3897 
3898 	error = register_filesystem(&shmem_fs_type);
3899 	if (error) {
3900 		pr_err("Could not register tmpfs\n");
3901 		goto out2;
3902 	}
3903 
3904 	shm_mnt = kern_mount(&shmem_fs_type);
3905 	if (IS_ERR(shm_mnt)) {
3906 		error = PTR_ERR(shm_mnt);
3907 		pr_err("Could not kern_mount tmpfs\n");
3908 		goto out1;
3909 	}
3910 
3911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3912 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3913 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3914 	else
3915 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3916 #endif
3917 	return;
3918 
3919 out1:
3920 	unregister_filesystem(&shmem_fs_type);
3921 out2:
3922 	shmem_destroy_inodecache();
3923 	shm_mnt = ERR_PTR(error);
3924 }
3925 
3926 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3927 static ssize_t shmem_enabled_show(struct kobject *kobj,
3928 				  struct kobj_attribute *attr, char *buf)
3929 {
3930 	static const int values[] = {
3931 		SHMEM_HUGE_ALWAYS,
3932 		SHMEM_HUGE_WITHIN_SIZE,
3933 		SHMEM_HUGE_ADVISE,
3934 		SHMEM_HUGE_NEVER,
3935 		SHMEM_HUGE_DENY,
3936 		SHMEM_HUGE_FORCE,
3937 	};
3938 	int len = 0;
3939 	int i;
3940 
3941 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3942 		len += sysfs_emit_at(buf, len,
3943 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3944 				     i ? " " : "",
3945 				     shmem_format_huge(values[i]));
3946 	}
3947 
3948 	len += sysfs_emit_at(buf, len, "\n");
3949 
3950 	return len;
3951 }
3952 
3953 static ssize_t shmem_enabled_store(struct kobject *kobj,
3954 		struct kobj_attribute *attr, const char *buf, size_t count)
3955 {
3956 	char tmp[16];
3957 	int huge;
3958 
3959 	if (count + 1 > sizeof(tmp))
3960 		return -EINVAL;
3961 	memcpy(tmp, buf, count);
3962 	tmp[count] = '\0';
3963 	if (count && tmp[count - 1] == '\n')
3964 		tmp[count - 1] = '\0';
3965 
3966 	huge = shmem_parse_huge(tmp);
3967 	if (huge == -EINVAL)
3968 		return -EINVAL;
3969 	if (!has_transparent_hugepage() &&
3970 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3971 		return -EINVAL;
3972 
3973 	shmem_huge = huge;
3974 	if (shmem_huge > SHMEM_HUGE_DENY)
3975 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3976 	return count;
3977 }
3978 
3979 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
3980 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3981 
3982 #else /* !CONFIG_SHMEM */
3983 
3984 /*
3985  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3986  *
3987  * This is intended for small system where the benefits of the full
3988  * shmem code (swap-backed and resource-limited) are outweighed by
3989  * their complexity. On systems without swap this code should be
3990  * effectively equivalent, but much lighter weight.
3991  */
3992 
3993 static struct file_system_type shmem_fs_type = {
3994 	.name		= "tmpfs",
3995 	.init_fs_context = ramfs_init_fs_context,
3996 	.parameters	= ramfs_fs_parameters,
3997 	.kill_sb	= kill_litter_super,
3998 	.fs_flags	= FS_USERNS_MOUNT,
3999 };
4000 
4001 void __init shmem_init(void)
4002 {
4003 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4004 
4005 	shm_mnt = kern_mount(&shmem_fs_type);
4006 	BUG_ON(IS_ERR(shm_mnt));
4007 }
4008 
4009 int shmem_unuse(unsigned int type)
4010 {
4011 	return 0;
4012 }
4013 
4014 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4015 {
4016 	return 0;
4017 }
4018 
4019 void shmem_unlock_mapping(struct address_space *mapping)
4020 {
4021 }
4022 
4023 #ifdef CONFIG_MMU
4024 unsigned long shmem_get_unmapped_area(struct file *file,
4025 				      unsigned long addr, unsigned long len,
4026 				      unsigned long pgoff, unsigned long flags)
4027 {
4028 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4029 }
4030 #endif
4031 
4032 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4033 {
4034 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4035 }
4036 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4037 
4038 #define shmem_vm_ops				generic_file_vm_ops
4039 #define shmem_file_operations			ramfs_file_operations
4040 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4041 #define shmem_acct_size(flags, size)		0
4042 #define shmem_unacct_size(flags, size)		do {} while (0)
4043 
4044 #endif /* CONFIG_SHMEM */
4045 
4046 /* common code */
4047 
4048 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4049 				       unsigned long flags, unsigned int i_flags)
4050 {
4051 	struct inode *inode;
4052 	struct file *res;
4053 
4054 	if (IS_ERR(mnt))
4055 		return ERR_CAST(mnt);
4056 
4057 	if (size < 0 || size > MAX_LFS_FILESIZE)
4058 		return ERR_PTR(-EINVAL);
4059 
4060 	if (shmem_acct_size(flags, size))
4061 		return ERR_PTR(-ENOMEM);
4062 
4063 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4064 				flags);
4065 	if (unlikely(!inode)) {
4066 		shmem_unacct_size(flags, size);
4067 		return ERR_PTR(-ENOSPC);
4068 	}
4069 	inode->i_flags |= i_flags;
4070 	inode->i_size = size;
4071 	clear_nlink(inode);	/* It is unlinked */
4072 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4073 	if (!IS_ERR(res))
4074 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4075 				&shmem_file_operations);
4076 	if (IS_ERR(res))
4077 		iput(inode);
4078 	return res;
4079 }
4080 
4081 /**
4082  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4083  * 	kernel internal.  There will be NO LSM permission checks against the
4084  * 	underlying inode.  So users of this interface must do LSM checks at a
4085  *	higher layer.  The users are the big_key and shm implementations.  LSM
4086  *	checks are provided at the key or shm level rather than the inode.
4087  * @name: name for dentry (to be seen in /proc/<pid>/maps
4088  * @size: size to be set for the file
4089  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4090  */
4091 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4092 {
4093 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4094 }
4095 
4096 /**
4097  * shmem_file_setup - get an unlinked file living in tmpfs
4098  * @name: name for dentry (to be seen in /proc/<pid>/maps
4099  * @size: size to be set for the file
4100  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4101  */
4102 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4103 {
4104 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4105 }
4106 EXPORT_SYMBOL_GPL(shmem_file_setup);
4107 
4108 /**
4109  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4110  * @mnt: the tmpfs mount where the file will be created
4111  * @name: name for dentry (to be seen in /proc/<pid>/maps
4112  * @size: size to be set for the file
4113  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4114  */
4115 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4116 				       loff_t size, unsigned long flags)
4117 {
4118 	return __shmem_file_setup(mnt, name, size, flags, 0);
4119 }
4120 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4121 
4122 /**
4123  * shmem_zero_setup - setup a shared anonymous mapping
4124  * @vma: the vma to be mmapped is prepared by do_mmap
4125  */
4126 int shmem_zero_setup(struct vm_area_struct *vma)
4127 {
4128 	struct file *file;
4129 	loff_t size = vma->vm_end - vma->vm_start;
4130 
4131 	/*
4132 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4133 	 * between XFS directory reading and selinux: since this file is only
4134 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4135 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4136 	 */
4137 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4138 	if (IS_ERR(file))
4139 		return PTR_ERR(file);
4140 
4141 	if (vma->vm_file)
4142 		fput(vma->vm_file);
4143 	vma->vm_file = file;
4144 	vma->vm_ops = &shmem_vm_ops;
4145 
4146 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4147 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4148 			(vma->vm_end & HPAGE_PMD_MASK)) {
4149 		khugepaged_enter(vma, vma->vm_flags);
4150 	}
4151 
4152 	return 0;
4153 }
4154 
4155 /**
4156  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4157  * @mapping:	the page's address_space
4158  * @index:	the page index
4159  * @gfp:	the page allocator flags to use if allocating
4160  *
4161  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4162  * with any new page allocations done using the specified allocation flags.
4163  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4164  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4165  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4166  *
4167  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4168  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4169  */
4170 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4171 					 pgoff_t index, gfp_t gfp)
4172 {
4173 #ifdef CONFIG_SHMEM
4174 	struct inode *inode = mapping->host;
4175 	struct page *page;
4176 	int error;
4177 
4178 	BUG_ON(!shmem_mapping(mapping));
4179 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4180 				  gfp, NULL, NULL, NULL);
4181 	if (error)
4182 		return ERR_PTR(error);
4183 
4184 	unlock_page(page);
4185 	if (PageHWPoison(page)) {
4186 		put_page(page);
4187 		return ERR_PTR(-EIO);
4188 	}
4189 
4190 	return page;
4191 #else
4192 	/*
4193 	 * The tiny !SHMEM case uses ramfs without swap
4194 	 */
4195 	return read_cache_page_gfp(mapping, index, gfp);
4196 #endif
4197 }
4198 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4199