1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include "swap.h" 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/pagevec.h> 63 #include <linux/percpu_counter.h> 64 #include <linux/falloc.h> 65 #include <linux/splice.h> 66 #include <linux/security.h> 67 #include <linux/swapops.h> 68 #include <linux/mempolicy.h> 69 #include <linux/namei.h> 70 #include <linux/ctype.h> 71 #include <linux/migrate.h> 72 #include <linux/highmem.h> 73 #include <linux/seq_file.h> 74 #include <linux/magic.h> 75 #include <linux/syscalls.h> 76 #include <linux/fcntl.h> 77 #include <uapi/linux/memfd.h> 78 #include <linux/userfaultfd_k.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 82 #include <linux/uaccess.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_rwsem making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 struct shmem_options { 109 unsigned long long blocks; 110 unsigned long long inodes; 111 struct mempolicy *mpol; 112 kuid_t uid; 113 kgid_t gid; 114 umode_t mode; 115 bool full_inums; 116 int huge; 117 int seen; 118 #define SHMEM_SEEN_BLOCKS 1 119 #define SHMEM_SEEN_INODES 2 120 #define SHMEM_SEEN_HUGE 4 121 #define SHMEM_SEEN_INUMS 8 122 }; 123 124 #ifdef CONFIG_TMPFS 125 static unsigned long shmem_default_max_blocks(void) 126 { 127 return totalram_pages() / 2; 128 } 129 130 static unsigned long shmem_default_max_inodes(void) 131 { 132 unsigned long nr_pages = totalram_pages(); 133 134 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 135 } 136 #endif 137 138 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 139 struct page **pagep, enum sgp_type sgp, 140 gfp_t gfp, struct vm_area_struct *vma, 141 vm_fault_t *fault_type); 142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 struct vm_fault *vmf, vm_fault_t *fault_type); 146 147 int shmem_getpage(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp) 149 { 150 return shmem_getpage_gfp(inode, index, pagep, sgp, 151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 152 } 153 154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 155 { 156 return sb->s_fs_info; 157 } 158 159 /* 160 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 161 * for shared memory and for shared anonymous (/dev/zero) mappings 162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 163 * consistent with the pre-accounting of private mappings ... 164 */ 165 static inline int shmem_acct_size(unsigned long flags, loff_t size) 166 { 167 return (flags & VM_NORESERVE) ? 168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 169 } 170 171 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 172 { 173 if (!(flags & VM_NORESERVE)) 174 vm_unacct_memory(VM_ACCT(size)); 175 } 176 177 static inline int shmem_reacct_size(unsigned long flags, 178 loff_t oldsize, loff_t newsize) 179 { 180 if (!(flags & VM_NORESERVE)) { 181 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 182 return security_vm_enough_memory_mm(current->mm, 183 VM_ACCT(newsize) - VM_ACCT(oldsize)); 184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 186 } 187 return 0; 188 } 189 190 /* 191 * ... whereas tmpfs objects are accounted incrementally as 192 * pages are allocated, in order to allow large sparse files. 193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 195 */ 196 static inline int shmem_acct_block(unsigned long flags, long pages) 197 { 198 if (!(flags & VM_NORESERVE)) 199 return 0; 200 201 return security_vm_enough_memory_mm(current->mm, 202 pages * VM_ACCT(PAGE_SIZE)); 203 } 204 205 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 206 { 207 if (flags & VM_NORESERVE) 208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 212 { 213 struct shmem_inode_info *info = SHMEM_I(inode); 214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 215 216 if (shmem_acct_block(info->flags, pages)) 217 return false; 218 219 if (sbinfo->max_blocks) { 220 if (percpu_counter_compare(&sbinfo->used_blocks, 221 sbinfo->max_blocks - pages) > 0) 222 goto unacct; 223 percpu_counter_add(&sbinfo->used_blocks, pages); 224 } 225 226 return true; 227 228 unacct: 229 shmem_unacct_blocks(info->flags, pages); 230 return false; 231 } 232 233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 234 { 235 struct shmem_inode_info *info = SHMEM_I(inode); 236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 237 238 if (sbinfo->max_blocks) 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 shmem_unacct_blocks(info->flags, pages); 241 } 242 243 static const struct super_operations shmem_ops; 244 const struct address_space_operations shmem_aops; 245 static const struct file_operations shmem_file_operations; 246 static const struct inode_operations shmem_inode_operations; 247 static const struct inode_operations shmem_dir_inode_operations; 248 static const struct inode_operations shmem_special_inode_operations; 249 static const struct vm_operations_struct shmem_vm_ops; 250 static struct file_system_type shmem_fs_type; 251 252 bool vma_is_shmem(struct vm_area_struct *vma) 253 { 254 return vma->vm_ops == &shmem_vm_ops; 255 } 256 257 static LIST_HEAD(shmem_swaplist); 258 static DEFINE_MUTEX(shmem_swaplist_mutex); 259 260 /* 261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 262 * produces a novel ino for the newly allocated inode. 263 * 264 * It may also be called when making a hard link to permit the space needed by 265 * each dentry. However, in that case, no new inode number is needed since that 266 * internally draws from another pool of inode numbers (currently global 267 * get_next_ino()). This case is indicated by passing NULL as inop. 268 */ 269 #define SHMEM_INO_BATCH 1024 270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 271 { 272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 273 ino_t ino; 274 275 if (!(sb->s_flags & SB_KERNMOUNT)) { 276 raw_spin_lock(&sbinfo->stat_lock); 277 if (sbinfo->max_inodes) { 278 if (!sbinfo->free_inodes) { 279 raw_spin_unlock(&sbinfo->stat_lock); 280 return -ENOSPC; 281 } 282 sbinfo->free_inodes--; 283 } 284 if (inop) { 285 ino = sbinfo->next_ino++; 286 if (unlikely(is_zero_ino(ino))) 287 ino = sbinfo->next_ino++; 288 if (unlikely(!sbinfo->full_inums && 289 ino > UINT_MAX)) { 290 /* 291 * Emulate get_next_ino uint wraparound for 292 * compatibility 293 */ 294 if (IS_ENABLED(CONFIG_64BIT)) 295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 296 __func__, MINOR(sb->s_dev)); 297 sbinfo->next_ino = 1; 298 ino = sbinfo->next_ino++; 299 } 300 *inop = ino; 301 } 302 raw_spin_unlock(&sbinfo->stat_lock); 303 } else if (inop) { 304 /* 305 * __shmem_file_setup, one of our callers, is lock-free: it 306 * doesn't hold stat_lock in shmem_reserve_inode since 307 * max_inodes is always 0, and is called from potentially 308 * unknown contexts. As such, use a per-cpu batched allocator 309 * which doesn't require the per-sb stat_lock unless we are at 310 * the batch boundary. 311 * 312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 313 * shmem mounts are not exposed to userspace, so we don't need 314 * to worry about things like glibc compatibility. 315 */ 316 ino_t *next_ino; 317 318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 319 ino = *next_ino; 320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 321 raw_spin_lock(&sbinfo->stat_lock); 322 ino = sbinfo->next_ino; 323 sbinfo->next_ino += SHMEM_INO_BATCH; 324 raw_spin_unlock(&sbinfo->stat_lock); 325 if (unlikely(is_zero_ino(ino))) 326 ino++; 327 } 328 *inop = ino; 329 *next_ino = ++ino; 330 put_cpu(); 331 } 332 333 return 0; 334 } 335 336 static void shmem_free_inode(struct super_block *sb) 337 { 338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 339 if (sbinfo->max_inodes) { 340 raw_spin_lock(&sbinfo->stat_lock); 341 sbinfo->free_inodes++; 342 raw_spin_unlock(&sbinfo->stat_lock); 343 } 344 } 345 346 /** 347 * shmem_recalc_inode - recalculate the block usage of an inode 348 * @inode: inode to recalc 349 * 350 * We have to calculate the free blocks since the mm can drop 351 * undirtied hole pages behind our back. 352 * 353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 355 * 356 * It has to be called with the spinlock held. 357 */ 358 static void shmem_recalc_inode(struct inode *inode) 359 { 360 struct shmem_inode_info *info = SHMEM_I(inode); 361 long freed; 362 363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 364 if (freed > 0) { 365 info->alloced -= freed; 366 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 367 shmem_inode_unacct_blocks(inode, freed); 368 } 369 } 370 371 bool shmem_charge(struct inode *inode, long pages) 372 { 373 struct shmem_inode_info *info = SHMEM_I(inode); 374 unsigned long flags; 375 376 if (!shmem_inode_acct_block(inode, pages)) 377 return false; 378 379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 380 inode->i_mapping->nrpages += pages; 381 382 spin_lock_irqsave(&info->lock, flags); 383 info->alloced += pages; 384 inode->i_blocks += pages * BLOCKS_PER_PAGE; 385 shmem_recalc_inode(inode); 386 spin_unlock_irqrestore(&info->lock, flags); 387 388 return true; 389 } 390 391 void shmem_uncharge(struct inode *inode, long pages) 392 { 393 struct shmem_inode_info *info = SHMEM_I(inode); 394 unsigned long flags; 395 396 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 397 398 spin_lock_irqsave(&info->lock, flags); 399 info->alloced -= pages; 400 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 401 shmem_recalc_inode(inode); 402 spin_unlock_irqrestore(&info->lock, flags); 403 404 shmem_inode_unacct_blocks(inode, pages); 405 } 406 407 /* 408 * Replace item expected in xarray by a new item, while holding xa_lock. 409 */ 410 static int shmem_replace_entry(struct address_space *mapping, 411 pgoff_t index, void *expected, void *replacement) 412 { 413 XA_STATE(xas, &mapping->i_pages, index); 414 void *item; 415 416 VM_BUG_ON(!expected); 417 VM_BUG_ON(!replacement); 418 item = xas_load(&xas); 419 if (item != expected) 420 return -ENOENT; 421 xas_store(&xas, replacement); 422 return 0; 423 } 424 425 /* 426 * Sometimes, before we decide whether to proceed or to fail, we must check 427 * that an entry was not already brought back from swap by a racing thread. 428 * 429 * Checking page is not enough: by the time a SwapCache page is locked, it 430 * might be reused, and again be SwapCache, using the same swap as before. 431 */ 432 static bool shmem_confirm_swap(struct address_space *mapping, 433 pgoff_t index, swp_entry_t swap) 434 { 435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 436 } 437 438 /* 439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 440 * 441 * SHMEM_HUGE_NEVER: 442 * disables huge pages for the mount; 443 * SHMEM_HUGE_ALWAYS: 444 * enables huge pages for the mount; 445 * SHMEM_HUGE_WITHIN_SIZE: 446 * only allocate huge pages if the page will be fully within i_size, 447 * also respect fadvise()/madvise() hints; 448 * SHMEM_HUGE_ADVISE: 449 * only allocate huge pages if requested with fadvise()/madvise(); 450 */ 451 452 #define SHMEM_HUGE_NEVER 0 453 #define SHMEM_HUGE_ALWAYS 1 454 #define SHMEM_HUGE_WITHIN_SIZE 2 455 #define SHMEM_HUGE_ADVISE 3 456 457 /* 458 * Special values. 459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 460 * 461 * SHMEM_HUGE_DENY: 462 * disables huge on shm_mnt and all mounts, for emergency use; 463 * SHMEM_HUGE_FORCE: 464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 465 * 466 */ 467 #define SHMEM_HUGE_DENY (-1) 468 #define SHMEM_HUGE_FORCE (-2) 469 470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 471 /* ifdef here to avoid bloating shmem.o when not necessary */ 472 473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 474 475 bool shmem_is_huge(struct vm_area_struct *vma, 476 struct inode *inode, pgoff_t index) 477 { 478 loff_t i_size; 479 480 if (!S_ISREG(inode->i_mode)) 481 return false; 482 if (shmem_huge == SHMEM_HUGE_DENY) 483 return false; 484 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 485 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 486 return false; 487 if (shmem_huge == SHMEM_HUGE_FORCE) 488 return true; 489 490 switch (SHMEM_SB(inode->i_sb)->huge) { 491 case SHMEM_HUGE_ALWAYS: 492 return true; 493 case SHMEM_HUGE_WITHIN_SIZE: 494 index = round_up(index + 1, HPAGE_PMD_NR); 495 i_size = round_up(i_size_read(inode), PAGE_SIZE); 496 if (i_size >> PAGE_SHIFT >= index) 497 return true; 498 fallthrough; 499 case SHMEM_HUGE_ADVISE: 500 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 501 return true; 502 fallthrough; 503 default: 504 return false; 505 } 506 } 507 508 #if defined(CONFIG_SYSFS) 509 static int shmem_parse_huge(const char *str) 510 { 511 if (!strcmp(str, "never")) 512 return SHMEM_HUGE_NEVER; 513 if (!strcmp(str, "always")) 514 return SHMEM_HUGE_ALWAYS; 515 if (!strcmp(str, "within_size")) 516 return SHMEM_HUGE_WITHIN_SIZE; 517 if (!strcmp(str, "advise")) 518 return SHMEM_HUGE_ADVISE; 519 if (!strcmp(str, "deny")) 520 return SHMEM_HUGE_DENY; 521 if (!strcmp(str, "force")) 522 return SHMEM_HUGE_FORCE; 523 return -EINVAL; 524 } 525 #endif 526 527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 528 static const char *shmem_format_huge(int huge) 529 { 530 switch (huge) { 531 case SHMEM_HUGE_NEVER: 532 return "never"; 533 case SHMEM_HUGE_ALWAYS: 534 return "always"; 535 case SHMEM_HUGE_WITHIN_SIZE: 536 return "within_size"; 537 case SHMEM_HUGE_ADVISE: 538 return "advise"; 539 case SHMEM_HUGE_DENY: 540 return "deny"; 541 case SHMEM_HUGE_FORCE: 542 return "force"; 543 default: 544 VM_BUG_ON(1); 545 return "bad_val"; 546 } 547 } 548 #endif 549 550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 551 struct shrink_control *sc, unsigned long nr_to_split) 552 { 553 LIST_HEAD(list), *pos, *next; 554 LIST_HEAD(to_remove); 555 struct inode *inode; 556 struct shmem_inode_info *info; 557 struct page *page; 558 unsigned long batch = sc ? sc->nr_to_scan : 128; 559 int split = 0; 560 561 if (list_empty(&sbinfo->shrinklist)) 562 return SHRINK_STOP; 563 564 spin_lock(&sbinfo->shrinklist_lock); 565 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 566 info = list_entry(pos, struct shmem_inode_info, shrinklist); 567 568 /* pin the inode */ 569 inode = igrab(&info->vfs_inode); 570 571 /* inode is about to be evicted */ 572 if (!inode) { 573 list_del_init(&info->shrinklist); 574 goto next; 575 } 576 577 /* Check if there's anything to gain */ 578 if (round_up(inode->i_size, PAGE_SIZE) == 579 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 580 list_move(&info->shrinklist, &to_remove); 581 goto next; 582 } 583 584 list_move(&info->shrinklist, &list); 585 next: 586 sbinfo->shrinklist_len--; 587 if (!--batch) 588 break; 589 } 590 spin_unlock(&sbinfo->shrinklist_lock); 591 592 list_for_each_safe(pos, next, &to_remove) { 593 info = list_entry(pos, struct shmem_inode_info, shrinklist); 594 inode = &info->vfs_inode; 595 list_del_init(&info->shrinklist); 596 iput(inode); 597 } 598 599 list_for_each_safe(pos, next, &list) { 600 int ret; 601 602 info = list_entry(pos, struct shmem_inode_info, shrinklist); 603 inode = &info->vfs_inode; 604 605 if (nr_to_split && split >= nr_to_split) 606 goto move_back; 607 608 page = find_get_page(inode->i_mapping, 609 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 610 if (!page) 611 goto drop; 612 613 /* No huge page at the end of the file: nothing to split */ 614 if (!PageTransHuge(page)) { 615 put_page(page); 616 goto drop; 617 } 618 619 /* 620 * Move the inode on the list back to shrinklist if we failed 621 * to lock the page at this time. 622 * 623 * Waiting for the lock may lead to deadlock in the 624 * reclaim path. 625 */ 626 if (!trylock_page(page)) { 627 put_page(page); 628 goto move_back; 629 } 630 631 ret = split_huge_page(page); 632 unlock_page(page); 633 put_page(page); 634 635 /* If split failed move the inode on the list back to shrinklist */ 636 if (ret) 637 goto move_back; 638 639 split++; 640 drop: 641 list_del_init(&info->shrinklist); 642 goto put; 643 move_back: 644 /* 645 * Make sure the inode is either on the global list or deleted 646 * from any local list before iput() since it could be deleted 647 * in another thread once we put the inode (then the local list 648 * is corrupted). 649 */ 650 spin_lock(&sbinfo->shrinklist_lock); 651 list_move(&info->shrinklist, &sbinfo->shrinklist); 652 sbinfo->shrinklist_len++; 653 spin_unlock(&sbinfo->shrinklist_lock); 654 put: 655 iput(inode); 656 } 657 658 return split; 659 } 660 661 static long shmem_unused_huge_scan(struct super_block *sb, 662 struct shrink_control *sc) 663 { 664 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 665 666 if (!READ_ONCE(sbinfo->shrinklist_len)) 667 return SHRINK_STOP; 668 669 return shmem_unused_huge_shrink(sbinfo, sc, 0); 670 } 671 672 static long shmem_unused_huge_count(struct super_block *sb, 673 struct shrink_control *sc) 674 { 675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 676 return READ_ONCE(sbinfo->shrinklist_len); 677 } 678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 679 680 #define shmem_huge SHMEM_HUGE_DENY 681 682 bool shmem_is_huge(struct vm_area_struct *vma, 683 struct inode *inode, pgoff_t index) 684 { 685 return false; 686 } 687 688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 689 struct shrink_control *sc, unsigned long nr_to_split) 690 { 691 return 0; 692 } 693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 694 695 /* 696 * Like add_to_page_cache_locked, but error if expected item has gone. 697 */ 698 static int shmem_add_to_page_cache(struct page *page, 699 struct address_space *mapping, 700 pgoff_t index, void *expected, gfp_t gfp, 701 struct mm_struct *charge_mm) 702 { 703 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 704 unsigned long nr = compound_nr(page); 705 int error; 706 707 VM_BUG_ON_PAGE(PageTail(page), page); 708 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 709 VM_BUG_ON_PAGE(!PageLocked(page), page); 710 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 711 VM_BUG_ON(expected && PageTransHuge(page)); 712 713 page_ref_add(page, nr); 714 page->mapping = mapping; 715 page->index = index; 716 717 if (!PageSwapCache(page)) { 718 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp); 719 if (error) { 720 if (PageTransHuge(page)) { 721 count_vm_event(THP_FILE_FALLBACK); 722 count_vm_event(THP_FILE_FALLBACK_CHARGE); 723 } 724 goto error; 725 } 726 } 727 cgroup_throttle_swaprate(page, gfp); 728 729 do { 730 xas_lock_irq(&xas); 731 if (expected != xas_find_conflict(&xas)) { 732 xas_set_err(&xas, -EEXIST); 733 goto unlock; 734 } 735 if (expected && xas_find_conflict(&xas)) { 736 xas_set_err(&xas, -EEXIST); 737 goto unlock; 738 } 739 xas_store(&xas, page); 740 if (xas_error(&xas)) 741 goto unlock; 742 if (PageTransHuge(page)) { 743 count_vm_event(THP_FILE_ALLOC); 744 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 745 } 746 mapping->nrpages += nr; 747 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 748 __mod_lruvec_page_state(page, NR_SHMEM, nr); 749 unlock: 750 xas_unlock_irq(&xas); 751 } while (xas_nomem(&xas, gfp)); 752 753 if (xas_error(&xas)) { 754 error = xas_error(&xas); 755 goto error; 756 } 757 758 return 0; 759 error: 760 page->mapping = NULL; 761 page_ref_sub(page, nr); 762 return error; 763 } 764 765 /* 766 * Like delete_from_page_cache, but substitutes swap for page. 767 */ 768 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 769 { 770 struct address_space *mapping = page->mapping; 771 int error; 772 773 VM_BUG_ON_PAGE(PageCompound(page), page); 774 775 xa_lock_irq(&mapping->i_pages); 776 error = shmem_replace_entry(mapping, page->index, page, radswap); 777 page->mapping = NULL; 778 mapping->nrpages--; 779 __dec_lruvec_page_state(page, NR_FILE_PAGES); 780 __dec_lruvec_page_state(page, NR_SHMEM); 781 xa_unlock_irq(&mapping->i_pages); 782 put_page(page); 783 BUG_ON(error); 784 } 785 786 /* 787 * Remove swap entry from page cache, free the swap and its page cache. 788 */ 789 static int shmem_free_swap(struct address_space *mapping, 790 pgoff_t index, void *radswap) 791 { 792 void *old; 793 794 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 795 if (old != radswap) 796 return -ENOENT; 797 free_swap_and_cache(radix_to_swp_entry(radswap)); 798 return 0; 799 } 800 801 /* 802 * Determine (in bytes) how many of the shmem object's pages mapped by the 803 * given offsets are swapped out. 804 * 805 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 806 * as long as the inode doesn't go away and racy results are not a problem. 807 */ 808 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 809 pgoff_t start, pgoff_t end) 810 { 811 XA_STATE(xas, &mapping->i_pages, start); 812 struct page *page; 813 unsigned long swapped = 0; 814 815 rcu_read_lock(); 816 xas_for_each(&xas, page, end - 1) { 817 if (xas_retry(&xas, page)) 818 continue; 819 if (xa_is_value(page)) 820 swapped++; 821 822 if (need_resched()) { 823 xas_pause(&xas); 824 cond_resched_rcu(); 825 } 826 } 827 828 rcu_read_unlock(); 829 830 return swapped << PAGE_SHIFT; 831 } 832 833 /* 834 * Determine (in bytes) how many of the shmem object's pages mapped by the 835 * given vma is swapped out. 836 * 837 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 838 * as long as the inode doesn't go away and racy results are not a problem. 839 */ 840 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 841 { 842 struct inode *inode = file_inode(vma->vm_file); 843 struct shmem_inode_info *info = SHMEM_I(inode); 844 struct address_space *mapping = inode->i_mapping; 845 unsigned long swapped; 846 847 /* Be careful as we don't hold info->lock */ 848 swapped = READ_ONCE(info->swapped); 849 850 /* 851 * The easier cases are when the shmem object has nothing in swap, or 852 * the vma maps it whole. Then we can simply use the stats that we 853 * already track. 854 */ 855 if (!swapped) 856 return 0; 857 858 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 859 return swapped << PAGE_SHIFT; 860 861 /* Here comes the more involved part */ 862 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 863 vma->vm_pgoff + vma_pages(vma)); 864 } 865 866 /* 867 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 868 */ 869 void shmem_unlock_mapping(struct address_space *mapping) 870 { 871 struct pagevec pvec; 872 pgoff_t index = 0; 873 874 pagevec_init(&pvec); 875 /* 876 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 877 */ 878 while (!mapping_unevictable(mapping)) { 879 if (!pagevec_lookup(&pvec, mapping, &index)) 880 break; 881 check_move_unevictable_pages(&pvec); 882 pagevec_release(&pvec); 883 cond_resched(); 884 } 885 } 886 887 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 888 { 889 struct folio *folio; 890 struct page *page; 891 892 /* 893 * At first avoid shmem_getpage(,,,SGP_READ): that fails 894 * beyond i_size, and reports fallocated pages as holes. 895 */ 896 folio = __filemap_get_folio(inode->i_mapping, index, 897 FGP_ENTRY | FGP_LOCK, 0); 898 if (!xa_is_value(folio)) 899 return folio; 900 /* 901 * But read a page back from swap if any of it is within i_size 902 * (although in some cases this is just a waste of time). 903 */ 904 page = NULL; 905 shmem_getpage(inode, index, &page, SGP_READ); 906 return page ? page_folio(page) : NULL; 907 } 908 909 /* 910 * Remove range of pages and swap entries from page cache, and free them. 911 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 912 */ 913 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 914 bool unfalloc) 915 { 916 struct address_space *mapping = inode->i_mapping; 917 struct shmem_inode_info *info = SHMEM_I(inode); 918 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 919 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 920 struct folio_batch fbatch; 921 pgoff_t indices[PAGEVEC_SIZE]; 922 struct folio *folio; 923 bool same_folio; 924 long nr_swaps_freed = 0; 925 pgoff_t index; 926 int i; 927 928 if (lend == -1) 929 end = -1; /* unsigned, so actually very big */ 930 931 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 932 info->fallocend = start; 933 934 folio_batch_init(&fbatch); 935 index = start; 936 while (index < end && find_lock_entries(mapping, index, end - 1, 937 &fbatch, indices)) { 938 for (i = 0; i < folio_batch_count(&fbatch); i++) { 939 folio = fbatch.folios[i]; 940 941 index = indices[i]; 942 943 if (xa_is_value(folio)) { 944 if (unfalloc) 945 continue; 946 nr_swaps_freed += !shmem_free_swap(mapping, 947 index, folio); 948 continue; 949 } 950 index += folio_nr_pages(folio) - 1; 951 952 if (!unfalloc || !folio_test_uptodate(folio)) 953 truncate_inode_folio(mapping, folio); 954 folio_unlock(folio); 955 } 956 folio_batch_remove_exceptionals(&fbatch); 957 folio_batch_release(&fbatch); 958 cond_resched(); 959 index++; 960 } 961 962 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 963 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 964 if (folio) { 965 same_folio = lend < folio_pos(folio) + folio_size(folio); 966 folio_mark_dirty(folio); 967 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 968 start = folio->index + folio_nr_pages(folio); 969 if (same_folio) 970 end = folio->index; 971 } 972 folio_unlock(folio); 973 folio_put(folio); 974 folio = NULL; 975 } 976 977 if (!same_folio) 978 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 979 if (folio) { 980 folio_mark_dirty(folio); 981 if (!truncate_inode_partial_folio(folio, lstart, lend)) 982 end = folio->index; 983 folio_unlock(folio); 984 folio_put(folio); 985 } 986 987 index = start; 988 while (index < end) { 989 cond_resched(); 990 991 if (!find_get_entries(mapping, index, end - 1, &fbatch, 992 indices)) { 993 /* If all gone or hole-punch or unfalloc, we're done */ 994 if (index == start || end != -1) 995 break; 996 /* But if truncating, restart to make sure all gone */ 997 index = start; 998 continue; 999 } 1000 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1001 folio = fbatch.folios[i]; 1002 1003 index = indices[i]; 1004 if (xa_is_value(folio)) { 1005 if (unfalloc) 1006 continue; 1007 if (shmem_free_swap(mapping, index, folio)) { 1008 /* Swap was replaced by page: retry */ 1009 index--; 1010 break; 1011 } 1012 nr_swaps_freed++; 1013 continue; 1014 } 1015 1016 folio_lock(folio); 1017 1018 if (!unfalloc || !folio_test_uptodate(folio)) { 1019 if (folio_mapping(folio) != mapping) { 1020 /* Page was replaced by swap: retry */ 1021 folio_unlock(folio); 1022 index--; 1023 break; 1024 } 1025 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1026 folio); 1027 truncate_inode_folio(mapping, folio); 1028 } 1029 index = folio->index + folio_nr_pages(folio) - 1; 1030 folio_unlock(folio); 1031 } 1032 folio_batch_remove_exceptionals(&fbatch); 1033 folio_batch_release(&fbatch); 1034 index++; 1035 } 1036 1037 spin_lock_irq(&info->lock); 1038 info->swapped -= nr_swaps_freed; 1039 shmem_recalc_inode(inode); 1040 spin_unlock_irq(&info->lock); 1041 } 1042 1043 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1044 { 1045 shmem_undo_range(inode, lstart, lend, false); 1046 inode->i_ctime = inode->i_mtime = current_time(inode); 1047 } 1048 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1049 1050 static int shmem_getattr(struct user_namespace *mnt_userns, 1051 const struct path *path, struct kstat *stat, 1052 u32 request_mask, unsigned int query_flags) 1053 { 1054 struct inode *inode = path->dentry->d_inode; 1055 struct shmem_inode_info *info = SHMEM_I(inode); 1056 1057 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1058 spin_lock_irq(&info->lock); 1059 shmem_recalc_inode(inode); 1060 spin_unlock_irq(&info->lock); 1061 } 1062 generic_fillattr(&init_user_ns, inode, stat); 1063 1064 if (shmem_is_huge(NULL, inode, 0)) 1065 stat->blksize = HPAGE_PMD_SIZE; 1066 1067 if (request_mask & STATX_BTIME) { 1068 stat->result_mask |= STATX_BTIME; 1069 stat->btime.tv_sec = info->i_crtime.tv_sec; 1070 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1071 } 1072 1073 return 0; 1074 } 1075 1076 static int shmem_setattr(struct user_namespace *mnt_userns, 1077 struct dentry *dentry, struct iattr *attr) 1078 { 1079 struct inode *inode = d_inode(dentry); 1080 struct shmem_inode_info *info = SHMEM_I(inode); 1081 int error; 1082 1083 error = setattr_prepare(&init_user_ns, dentry, attr); 1084 if (error) 1085 return error; 1086 1087 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1088 loff_t oldsize = inode->i_size; 1089 loff_t newsize = attr->ia_size; 1090 1091 /* protected by i_rwsem */ 1092 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1093 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1094 return -EPERM; 1095 1096 if (newsize != oldsize) { 1097 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1098 oldsize, newsize); 1099 if (error) 1100 return error; 1101 i_size_write(inode, newsize); 1102 inode->i_ctime = inode->i_mtime = current_time(inode); 1103 } 1104 if (newsize <= oldsize) { 1105 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1106 if (oldsize > holebegin) 1107 unmap_mapping_range(inode->i_mapping, 1108 holebegin, 0, 1); 1109 if (info->alloced) 1110 shmem_truncate_range(inode, 1111 newsize, (loff_t)-1); 1112 /* unmap again to remove racily COWed private pages */ 1113 if (oldsize > holebegin) 1114 unmap_mapping_range(inode->i_mapping, 1115 holebegin, 0, 1); 1116 } 1117 } 1118 1119 setattr_copy(&init_user_ns, inode, attr); 1120 if (attr->ia_valid & ATTR_MODE) 1121 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1122 return error; 1123 } 1124 1125 static void shmem_evict_inode(struct inode *inode) 1126 { 1127 struct shmem_inode_info *info = SHMEM_I(inode); 1128 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1129 1130 if (shmem_mapping(inode->i_mapping)) { 1131 shmem_unacct_size(info->flags, inode->i_size); 1132 inode->i_size = 0; 1133 mapping_set_exiting(inode->i_mapping); 1134 shmem_truncate_range(inode, 0, (loff_t)-1); 1135 if (!list_empty(&info->shrinklist)) { 1136 spin_lock(&sbinfo->shrinklist_lock); 1137 if (!list_empty(&info->shrinklist)) { 1138 list_del_init(&info->shrinklist); 1139 sbinfo->shrinklist_len--; 1140 } 1141 spin_unlock(&sbinfo->shrinklist_lock); 1142 } 1143 while (!list_empty(&info->swaplist)) { 1144 /* Wait while shmem_unuse() is scanning this inode... */ 1145 wait_var_event(&info->stop_eviction, 1146 !atomic_read(&info->stop_eviction)); 1147 mutex_lock(&shmem_swaplist_mutex); 1148 /* ...but beware of the race if we peeked too early */ 1149 if (!atomic_read(&info->stop_eviction)) 1150 list_del_init(&info->swaplist); 1151 mutex_unlock(&shmem_swaplist_mutex); 1152 } 1153 } 1154 1155 simple_xattrs_free(&info->xattrs); 1156 WARN_ON(inode->i_blocks); 1157 shmem_free_inode(inode->i_sb); 1158 clear_inode(inode); 1159 } 1160 1161 static int shmem_find_swap_entries(struct address_space *mapping, 1162 pgoff_t start, unsigned int nr_entries, 1163 struct page **entries, pgoff_t *indices, 1164 unsigned int type) 1165 { 1166 XA_STATE(xas, &mapping->i_pages, start); 1167 struct page *page; 1168 swp_entry_t entry; 1169 unsigned int ret = 0; 1170 1171 if (!nr_entries) 1172 return 0; 1173 1174 rcu_read_lock(); 1175 xas_for_each(&xas, page, ULONG_MAX) { 1176 if (xas_retry(&xas, page)) 1177 continue; 1178 1179 if (!xa_is_value(page)) 1180 continue; 1181 1182 entry = radix_to_swp_entry(page); 1183 if (swp_type(entry) != type) 1184 continue; 1185 1186 indices[ret] = xas.xa_index; 1187 entries[ret] = page; 1188 1189 if (need_resched()) { 1190 xas_pause(&xas); 1191 cond_resched_rcu(); 1192 } 1193 if (++ret == nr_entries) 1194 break; 1195 } 1196 rcu_read_unlock(); 1197 1198 return ret; 1199 } 1200 1201 /* 1202 * Move the swapped pages for an inode to page cache. Returns the count 1203 * of pages swapped in, or the error in case of failure. 1204 */ 1205 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1206 pgoff_t *indices) 1207 { 1208 int i = 0; 1209 int ret = 0; 1210 int error = 0; 1211 struct address_space *mapping = inode->i_mapping; 1212 1213 for (i = 0; i < pvec.nr; i++) { 1214 struct page *page = pvec.pages[i]; 1215 1216 if (!xa_is_value(page)) 1217 continue; 1218 error = shmem_swapin_page(inode, indices[i], 1219 &page, SGP_CACHE, 1220 mapping_gfp_mask(mapping), 1221 NULL, NULL); 1222 if (error == 0) { 1223 unlock_page(page); 1224 put_page(page); 1225 ret++; 1226 } 1227 if (error == -ENOMEM) 1228 break; 1229 error = 0; 1230 } 1231 return error ? error : ret; 1232 } 1233 1234 /* 1235 * If swap found in inode, free it and move page from swapcache to filecache. 1236 */ 1237 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1238 { 1239 struct address_space *mapping = inode->i_mapping; 1240 pgoff_t start = 0; 1241 struct pagevec pvec; 1242 pgoff_t indices[PAGEVEC_SIZE]; 1243 int ret = 0; 1244 1245 pagevec_init(&pvec); 1246 do { 1247 unsigned int nr_entries = PAGEVEC_SIZE; 1248 1249 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1250 pvec.pages, indices, type); 1251 if (pvec.nr == 0) { 1252 ret = 0; 1253 break; 1254 } 1255 1256 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1257 if (ret < 0) 1258 break; 1259 1260 start = indices[pvec.nr - 1]; 1261 } while (true); 1262 1263 return ret; 1264 } 1265 1266 /* 1267 * Read all the shared memory data that resides in the swap 1268 * device 'type' back into memory, so the swap device can be 1269 * unused. 1270 */ 1271 int shmem_unuse(unsigned int type) 1272 { 1273 struct shmem_inode_info *info, *next; 1274 int error = 0; 1275 1276 if (list_empty(&shmem_swaplist)) 1277 return 0; 1278 1279 mutex_lock(&shmem_swaplist_mutex); 1280 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1281 if (!info->swapped) { 1282 list_del_init(&info->swaplist); 1283 continue; 1284 } 1285 /* 1286 * Drop the swaplist mutex while searching the inode for swap; 1287 * but before doing so, make sure shmem_evict_inode() will not 1288 * remove placeholder inode from swaplist, nor let it be freed 1289 * (igrab() would protect from unlink, but not from unmount). 1290 */ 1291 atomic_inc(&info->stop_eviction); 1292 mutex_unlock(&shmem_swaplist_mutex); 1293 1294 error = shmem_unuse_inode(&info->vfs_inode, type); 1295 cond_resched(); 1296 1297 mutex_lock(&shmem_swaplist_mutex); 1298 next = list_next_entry(info, swaplist); 1299 if (!info->swapped) 1300 list_del_init(&info->swaplist); 1301 if (atomic_dec_and_test(&info->stop_eviction)) 1302 wake_up_var(&info->stop_eviction); 1303 if (error) 1304 break; 1305 } 1306 mutex_unlock(&shmem_swaplist_mutex); 1307 1308 return error; 1309 } 1310 1311 /* 1312 * Move the page from the page cache to the swap cache. 1313 */ 1314 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1315 { 1316 struct shmem_inode_info *info; 1317 struct address_space *mapping; 1318 struct inode *inode; 1319 swp_entry_t swap; 1320 pgoff_t index; 1321 1322 /* 1323 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1324 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1325 * and its shmem_writeback() needs them to be split when swapping. 1326 */ 1327 if (PageTransCompound(page)) { 1328 /* Ensure the subpages are still dirty */ 1329 SetPageDirty(page); 1330 if (split_huge_page(page) < 0) 1331 goto redirty; 1332 ClearPageDirty(page); 1333 } 1334 1335 BUG_ON(!PageLocked(page)); 1336 mapping = page->mapping; 1337 index = page->index; 1338 inode = mapping->host; 1339 info = SHMEM_I(inode); 1340 if (info->flags & VM_LOCKED) 1341 goto redirty; 1342 if (!total_swap_pages) 1343 goto redirty; 1344 1345 /* 1346 * Our capabilities prevent regular writeback or sync from ever calling 1347 * shmem_writepage; but a stacking filesystem might use ->writepage of 1348 * its underlying filesystem, in which case tmpfs should write out to 1349 * swap only in response to memory pressure, and not for the writeback 1350 * threads or sync. 1351 */ 1352 if (!wbc->for_reclaim) { 1353 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1354 goto redirty; 1355 } 1356 1357 /* 1358 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1359 * value into swapfile.c, the only way we can correctly account for a 1360 * fallocated page arriving here is now to initialize it and write it. 1361 * 1362 * That's okay for a page already fallocated earlier, but if we have 1363 * not yet completed the fallocation, then (a) we want to keep track 1364 * of this page in case we have to undo it, and (b) it may not be a 1365 * good idea to continue anyway, once we're pushing into swap. So 1366 * reactivate the page, and let shmem_fallocate() quit when too many. 1367 */ 1368 if (!PageUptodate(page)) { 1369 if (inode->i_private) { 1370 struct shmem_falloc *shmem_falloc; 1371 spin_lock(&inode->i_lock); 1372 shmem_falloc = inode->i_private; 1373 if (shmem_falloc && 1374 !shmem_falloc->waitq && 1375 index >= shmem_falloc->start && 1376 index < shmem_falloc->next) 1377 shmem_falloc->nr_unswapped++; 1378 else 1379 shmem_falloc = NULL; 1380 spin_unlock(&inode->i_lock); 1381 if (shmem_falloc) 1382 goto redirty; 1383 } 1384 clear_highpage(page); 1385 flush_dcache_page(page); 1386 SetPageUptodate(page); 1387 } 1388 1389 swap = get_swap_page(page); 1390 if (!swap.val) 1391 goto redirty; 1392 1393 /* 1394 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1395 * if it's not already there. Do it now before the page is 1396 * moved to swap cache, when its pagelock no longer protects 1397 * the inode from eviction. But don't unlock the mutex until 1398 * we've incremented swapped, because shmem_unuse_inode() will 1399 * prune a !swapped inode from the swaplist under this mutex. 1400 */ 1401 mutex_lock(&shmem_swaplist_mutex); 1402 if (list_empty(&info->swaplist)) 1403 list_add(&info->swaplist, &shmem_swaplist); 1404 1405 if (add_to_swap_cache(page, swap, 1406 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1407 NULL) == 0) { 1408 spin_lock_irq(&info->lock); 1409 shmem_recalc_inode(inode); 1410 info->swapped++; 1411 spin_unlock_irq(&info->lock); 1412 1413 swap_shmem_alloc(swap); 1414 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1415 1416 mutex_unlock(&shmem_swaplist_mutex); 1417 BUG_ON(page_mapped(page)); 1418 swap_writepage(page, wbc); 1419 return 0; 1420 } 1421 1422 mutex_unlock(&shmem_swaplist_mutex); 1423 put_swap_page(page, swap); 1424 redirty: 1425 set_page_dirty(page); 1426 if (wbc->for_reclaim) 1427 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1428 unlock_page(page); 1429 return 0; 1430 } 1431 1432 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1433 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1434 { 1435 char buffer[64]; 1436 1437 if (!mpol || mpol->mode == MPOL_DEFAULT) 1438 return; /* show nothing */ 1439 1440 mpol_to_str(buffer, sizeof(buffer), mpol); 1441 1442 seq_printf(seq, ",mpol=%s", buffer); 1443 } 1444 1445 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1446 { 1447 struct mempolicy *mpol = NULL; 1448 if (sbinfo->mpol) { 1449 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1450 mpol = sbinfo->mpol; 1451 mpol_get(mpol); 1452 raw_spin_unlock(&sbinfo->stat_lock); 1453 } 1454 return mpol; 1455 } 1456 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1457 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1458 { 1459 } 1460 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1461 { 1462 return NULL; 1463 } 1464 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1465 #ifndef CONFIG_NUMA 1466 #define vm_policy vm_private_data 1467 #endif 1468 1469 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1470 struct shmem_inode_info *info, pgoff_t index) 1471 { 1472 /* Create a pseudo vma that just contains the policy */ 1473 vma_init(vma, NULL); 1474 /* Bias interleave by inode number to distribute better across nodes */ 1475 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1476 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1477 } 1478 1479 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1480 { 1481 /* Drop reference taken by mpol_shared_policy_lookup() */ 1482 mpol_cond_put(vma->vm_policy); 1483 } 1484 1485 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1486 struct shmem_inode_info *info, pgoff_t index) 1487 { 1488 struct vm_area_struct pvma; 1489 struct page *page; 1490 struct vm_fault vmf = { 1491 .vma = &pvma, 1492 }; 1493 1494 shmem_pseudo_vma_init(&pvma, info, index); 1495 page = swap_cluster_readahead(swap, gfp, &vmf); 1496 shmem_pseudo_vma_destroy(&pvma); 1497 1498 return page; 1499 } 1500 1501 /* 1502 * Make sure huge_gfp is always more limited than limit_gfp. 1503 * Some of the flags set permissions, while others set limitations. 1504 */ 1505 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1506 { 1507 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1508 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1509 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1510 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1511 1512 /* Allow allocations only from the originally specified zones. */ 1513 result |= zoneflags; 1514 1515 /* 1516 * Minimize the result gfp by taking the union with the deny flags, 1517 * and the intersection of the allow flags. 1518 */ 1519 result |= (limit_gfp & denyflags); 1520 result |= (huge_gfp & limit_gfp) & allowflags; 1521 1522 return result; 1523 } 1524 1525 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1526 struct shmem_inode_info *info, pgoff_t index) 1527 { 1528 struct vm_area_struct pvma; 1529 struct address_space *mapping = info->vfs_inode.i_mapping; 1530 pgoff_t hindex; 1531 struct page *page; 1532 1533 hindex = round_down(index, HPAGE_PMD_NR); 1534 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1535 XA_PRESENT)) 1536 return NULL; 1537 1538 shmem_pseudo_vma_init(&pvma, info, hindex); 1539 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1540 shmem_pseudo_vma_destroy(&pvma); 1541 if (page) 1542 prep_transhuge_page(page); 1543 else 1544 count_vm_event(THP_FILE_FALLBACK); 1545 return page; 1546 } 1547 1548 static struct page *shmem_alloc_page(gfp_t gfp, 1549 struct shmem_inode_info *info, pgoff_t index) 1550 { 1551 struct vm_area_struct pvma; 1552 struct page *page; 1553 1554 shmem_pseudo_vma_init(&pvma, info, index); 1555 page = alloc_page_vma(gfp, &pvma, 0); 1556 shmem_pseudo_vma_destroy(&pvma); 1557 1558 return page; 1559 } 1560 1561 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1562 struct inode *inode, 1563 pgoff_t index, bool huge) 1564 { 1565 struct shmem_inode_info *info = SHMEM_I(inode); 1566 struct page *page; 1567 int nr; 1568 int err = -ENOSPC; 1569 1570 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1571 huge = false; 1572 nr = huge ? HPAGE_PMD_NR : 1; 1573 1574 if (!shmem_inode_acct_block(inode, nr)) 1575 goto failed; 1576 1577 if (huge) 1578 page = shmem_alloc_hugepage(gfp, info, index); 1579 else 1580 page = shmem_alloc_page(gfp, info, index); 1581 if (page) { 1582 __SetPageLocked(page); 1583 __SetPageSwapBacked(page); 1584 return page; 1585 } 1586 1587 err = -ENOMEM; 1588 shmem_inode_unacct_blocks(inode, nr); 1589 failed: 1590 return ERR_PTR(err); 1591 } 1592 1593 /* 1594 * When a page is moved from swapcache to shmem filecache (either by the 1595 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1596 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1597 * ignorance of the mapping it belongs to. If that mapping has special 1598 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1599 * we may need to copy to a suitable page before moving to filecache. 1600 * 1601 * In a future release, this may well be extended to respect cpuset and 1602 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1603 * but for now it is a simple matter of zone. 1604 */ 1605 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1606 { 1607 return page_zonenum(page) > gfp_zone(gfp); 1608 } 1609 1610 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1611 struct shmem_inode_info *info, pgoff_t index) 1612 { 1613 struct page *oldpage, *newpage; 1614 struct folio *old, *new; 1615 struct address_space *swap_mapping; 1616 swp_entry_t entry; 1617 pgoff_t swap_index; 1618 int error; 1619 1620 oldpage = *pagep; 1621 entry.val = page_private(oldpage); 1622 swap_index = swp_offset(entry); 1623 swap_mapping = page_mapping(oldpage); 1624 1625 /* 1626 * We have arrived here because our zones are constrained, so don't 1627 * limit chance of success by further cpuset and node constraints. 1628 */ 1629 gfp &= ~GFP_CONSTRAINT_MASK; 1630 newpage = shmem_alloc_page(gfp, info, index); 1631 if (!newpage) 1632 return -ENOMEM; 1633 1634 get_page(newpage); 1635 copy_highpage(newpage, oldpage); 1636 flush_dcache_page(newpage); 1637 1638 __SetPageLocked(newpage); 1639 __SetPageSwapBacked(newpage); 1640 SetPageUptodate(newpage); 1641 set_page_private(newpage, entry.val); 1642 SetPageSwapCache(newpage); 1643 1644 /* 1645 * Our caller will very soon move newpage out of swapcache, but it's 1646 * a nice clean interface for us to replace oldpage by newpage there. 1647 */ 1648 xa_lock_irq(&swap_mapping->i_pages); 1649 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1650 if (!error) { 1651 old = page_folio(oldpage); 1652 new = page_folio(newpage); 1653 mem_cgroup_migrate(old, new); 1654 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1655 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1656 } 1657 xa_unlock_irq(&swap_mapping->i_pages); 1658 1659 if (unlikely(error)) { 1660 /* 1661 * Is this possible? I think not, now that our callers check 1662 * both PageSwapCache and page_private after getting page lock; 1663 * but be defensive. Reverse old to newpage for clear and free. 1664 */ 1665 oldpage = newpage; 1666 } else { 1667 lru_cache_add(newpage); 1668 *pagep = newpage; 1669 } 1670 1671 ClearPageSwapCache(oldpage); 1672 set_page_private(oldpage, 0); 1673 1674 unlock_page(oldpage); 1675 put_page(oldpage); 1676 put_page(oldpage); 1677 return error; 1678 } 1679 1680 /* 1681 * Swap in the page pointed to by *pagep. 1682 * Caller has to make sure that *pagep contains a valid swapped page. 1683 * Returns 0 and the page in pagep if success. On failure, returns the 1684 * error code and NULL in *pagep. 1685 */ 1686 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1687 struct page **pagep, enum sgp_type sgp, 1688 gfp_t gfp, struct vm_area_struct *vma, 1689 vm_fault_t *fault_type) 1690 { 1691 struct address_space *mapping = inode->i_mapping; 1692 struct shmem_inode_info *info = SHMEM_I(inode); 1693 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1694 struct page *page; 1695 swp_entry_t swap; 1696 int error; 1697 1698 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1699 swap = radix_to_swp_entry(*pagep); 1700 *pagep = NULL; 1701 1702 /* Look it up and read it in.. */ 1703 page = lookup_swap_cache(swap, NULL, 0); 1704 if (!page) { 1705 /* Or update major stats only when swapin succeeds?? */ 1706 if (fault_type) { 1707 *fault_type |= VM_FAULT_MAJOR; 1708 count_vm_event(PGMAJFAULT); 1709 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1710 } 1711 /* Here we actually start the io */ 1712 page = shmem_swapin(swap, gfp, info, index); 1713 if (!page) { 1714 error = -ENOMEM; 1715 goto failed; 1716 } 1717 } 1718 1719 /* We have to do this with page locked to prevent races */ 1720 lock_page(page); 1721 if (!PageSwapCache(page) || page_private(page) != swap.val || 1722 !shmem_confirm_swap(mapping, index, swap)) { 1723 error = -EEXIST; 1724 goto unlock; 1725 } 1726 if (!PageUptodate(page)) { 1727 error = -EIO; 1728 goto failed; 1729 } 1730 wait_on_page_writeback(page); 1731 1732 /* 1733 * Some architectures may have to restore extra metadata to the 1734 * physical page after reading from swap. 1735 */ 1736 arch_swap_restore(swap, page); 1737 1738 if (shmem_should_replace_page(page, gfp)) { 1739 error = shmem_replace_page(&page, gfp, info, index); 1740 if (error) 1741 goto failed; 1742 } 1743 1744 error = shmem_add_to_page_cache(page, mapping, index, 1745 swp_to_radix_entry(swap), gfp, 1746 charge_mm); 1747 if (error) 1748 goto failed; 1749 1750 spin_lock_irq(&info->lock); 1751 info->swapped--; 1752 shmem_recalc_inode(inode); 1753 spin_unlock_irq(&info->lock); 1754 1755 if (sgp == SGP_WRITE) 1756 mark_page_accessed(page); 1757 1758 delete_from_swap_cache(page); 1759 set_page_dirty(page); 1760 swap_free(swap); 1761 1762 *pagep = page; 1763 return 0; 1764 failed: 1765 if (!shmem_confirm_swap(mapping, index, swap)) 1766 error = -EEXIST; 1767 unlock: 1768 if (page) { 1769 unlock_page(page); 1770 put_page(page); 1771 } 1772 1773 return error; 1774 } 1775 1776 /* 1777 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1778 * 1779 * If we allocate a new one we do not mark it dirty. That's up to the 1780 * vm. If we swap it in we mark it dirty since we also free the swap 1781 * entry since a page cannot live in both the swap and page cache. 1782 * 1783 * vma, vmf, and fault_type are only supplied by shmem_fault: 1784 * otherwise they are NULL. 1785 */ 1786 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1787 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1788 struct vm_area_struct *vma, struct vm_fault *vmf, 1789 vm_fault_t *fault_type) 1790 { 1791 struct address_space *mapping = inode->i_mapping; 1792 struct shmem_inode_info *info = SHMEM_I(inode); 1793 struct shmem_sb_info *sbinfo; 1794 struct mm_struct *charge_mm; 1795 struct page *page; 1796 pgoff_t hindex = index; 1797 gfp_t huge_gfp; 1798 int error; 1799 int once = 0; 1800 int alloced = 0; 1801 1802 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1803 return -EFBIG; 1804 repeat: 1805 if (sgp <= SGP_CACHE && 1806 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1807 return -EINVAL; 1808 } 1809 1810 sbinfo = SHMEM_SB(inode->i_sb); 1811 charge_mm = vma ? vma->vm_mm : NULL; 1812 1813 page = pagecache_get_page(mapping, index, 1814 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1815 1816 if (page && vma && userfaultfd_minor(vma)) { 1817 if (!xa_is_value(page)) { 1818 unlock_page(page); 1819 put_page(page); 1820 } 1821 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1822 return 0; 1823 } 1824 1825 if (xa_is_value(page)) { 1826 error = shmem_swapin_page(inode, index, &page, 1827 sgp, gfp, vma, fault_type); 1828 if (error == -EEXIST) 1829 goto repeat; 1830 1831 *pagep = page; 1832 return error; 1833 } 1834 1835 if (page) { 1836 hindex = page->index; 1837 if (sgp == SGP_WRITE) 1838 mark_page_accessed(page); 1839 if (PageUptodate(page)) 1840 goto out; 1841 /* fallocated page */ 1842 if (sgp != SGP_READ) 1843 goto clear; 1844 unlock_page(page); 1845 put_page(page); 1846 } 1847 1848 /* 1849 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1850 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1851 */ 1852 *pagep = NULL; 1853 if (sgp == SGP_READ) 1854 return 0; 1855 if (sgp == SGP_NOALLOC) 1856 return -ENOENT; 1857 1858 /* 1859 * Fast cache lookup and swap lookup did not find it: allocate. 1860 */ 1861 1862 if (vma && userfaultfd_missing(vma)) { 1863 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1864 return 0; 1865 } 1866 1867 if (!shmem_is_huge(vma, inode, index)) 1868 goto alloc_nohuge; 1869 1870 huge_gfp = vma_thp_gfp_mask(vma); 1871 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1872 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1873 if (IS_ERR(page)) { 1874 alloc_nohuge: 1875 page = shmem_alloc_and_acct_page(gfp, inode, 1876 index, false); 1877 } 1878 if (IS_ERR(page)) { 1879 int retry = 5; 1880 1881 error = PTR_ERR(page); 1882 page = NULL; 1883 if (error != -ENOSPC) 1884 goto unlock; 1885 /* 1886 * Try to reclaim some space by splitting a huge page 1887 * beyond i_size on the filesystem. 1888 */ 1889 while (retry--) { 1890 int ret; 1891 1892 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1893 if (ret == SHRINK_STOP) 1894 break; 1895 if (ret) 1896 goto alloc_nohuge; 1897 } 1898 goto unlock; 1899 } 1900 1901 if (PageTransHuge(page)) 1902 hindex = round_down(index, HPAGE_PMD_NR); 1903 else 1904 hindex = index; 1905 1906 if (sgp == SGP_WRITE) 1907 __SetPageReferenced(page); 1908 1909 error = shmem_add_to_page_cache(page, mapping, hindex, 1910 NULL, gfp & GFP_RECLAIM_MASK, 1911 charge_mm); 1912 if (error) 1913 goto unacct; 1914 lru_cache_add(page); 1915 1916 spin_lock_irq(&info->lock); 1917 info->alloced += compound_nr(page); 1918 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1919 shmem_recalc_inode(inode); 1920 spin_unlock_irq(&info->lock); 1921 alloced = true; 1922 1923 if (PageTransHuge(page) && 1924 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1925 hindex + HPAGE_PMD_NR - 1) { 1926 /* 1927 * Part of the huge page is beyond i_size: subject 1928 * to shrink under memory pressure. 1929 */ 1930 spin_lock(&sbinfo->shrinklist_lock); 1931 /* 1932 * _careful to defend against unlocked access to 1933 * ->shrink_list in shmem_unused_huge_shrink() 1934 */ 1935 if (list_empty_careful(&info->shrinklist)) { 1936 list_add_tail(&info->shrinklist, 1937 &sbinfo->shrinklist); 1938 sbinfo->shrinklist_len++; 1939 } 1940 spin_unlock(&sbinfo->shrinklist_lock); 1941 } 1942 1943 /* 1944 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1945 */ 1946 if (sgp == SGP_FALLOC) 1947 sgp = SGP_WRITE; 1948 clear: 1949 /* 1950 * Let SGP_WRITE caller clear ends if write does not fill page; 1951 * but SGP_FALLOC on a page fallocated earlier must initialize 1952 * it now, lest undo on failure cancel our earlier guarantee. 1953 */ 1954 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1955 int i; 1956 1957 for (i = 0; i < compound_nr(page); i++) { 1958 clear_highpage(page + i); 1959 flush_dcache_page(page + i); 1960 } 1961 SetPageUptodate(page); 1962 } 1963 1964 /* Perhaps the file has been truncated since we checked */ 1965 if (sgp <= SGP_CACHE && 1966 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1967 if (alloced) { 1968 ClearPageDirty(page); 1969 delete_from_page_cache(page); 1970 spin_lock_irq(&info->lock); 1971 shmem_recalc_inode(inode); 1972 spin_unlock_irq(&info->lock); 1973 } 1974 error = -EINVAL; 1975 goto unlock; 1976 } 1977 out: 1978 *pagep = page + index - hindex; 1979 return 0; 1980 1981 /* 1982 * Error recovery. 1983 */ 1984 unacct: 1985 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1986 1987 if (PageTransHuge(page)) { 1988 unlock_page(page); 1989 put_page(page); 1990 goto alloc_nohuge; 1991 } 1992 unlock: 1993 if (page) { 1994 unlock_page(page); 1995 put_page(page); 1996 } 1997 if (error == -ENOSPC && !once++) { 1998 spin_lock_irq(&info->lock); 1999 shmem_recalc_inode(inode); 2000 spin_unlock_irq(&info->lock); 2001 goto repeat; 2002 } 2003 if (error == -EEXIST) 2004 goto repeat; 2005 return error; 2006 } 2007 2008 /* 2009 * This is like autoremove_wake_function, but it removes the wait queue 2010 * entry unconditionally - even if something else had already woken the 2011 * target. 2012 */ 2013 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2014 { 2015 int ret = default_wake_function(wait, mode, sync, key); 2016 list_del_init(&wait->entry); 2017 return ret; 2018 } 2019 2020 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2021 { 2022 struct vm_area_struct *vma = vmf->vma; 2023 struct inode *inode = file_inode(vma->vm_file); 2024 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2025 int err; 2026 vm_fault_t ret = VM_FAULT_LOCKED; 2027 2028 /* 2029 * Trinity finds that probing a hole which tmpfs is punching can 2030 * prevent the hole-punch from ever completing: which in turn 2031 * locks writers out with its hold on i_rwsem. So refrain from 2032 * faulting pages into the hole while it's being punched. Although 2033 * shmem_undo_range() does remove the additions, it may be unable to 2034 * keep up, as each new page needs its own unmap_mapping_range() call, 2035 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2036 * 2037 * It does not matter if we sometimes reach this check just before the 2038 * hole-punch begins, so that one fault then races with the punch: 2039 * we just need to make racing faults a rare case. 2040 * 2041 * The implementation below would be much simpler if we just used a 2042 * standard mutex or completion: but we cannot take i_rwsem in fault, 2043 * and bloating every shmem inode for this unlikely case would be sad. 2044 */ 2045 if (unlikely(inode->i_private)) { 2046 struct shmem_falloc *shmem_falloc; 2047 2048 spin_lock(&inode->i_lock); 2049 shmem_falloc = inode->i_private; 2050 if (shmem_falloc && 2051 shmem_falloc->waitq && 2052 vmf->pgoff >= shmem_falloc->start && 2053 vmf->pgoff < shmem_falloc->next) { 2054 struct file *fpin; 2055 wait_queue_head_t *shmem_falloc_waitq; 2056 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2057 2058 ret = VM_FAULT_NOPAGE; 2059 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2060 if (fpin) 2061 ret = VM_FAULT_RETRY; 2062 2063 shmem_falloc_waitq = shmem_falloc->waitq; 2064 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2065 TASK_UNINTERRUPTIBLE); 2066 spin_unlock(&inode->i_lock); 2067 schedule(); 2068 2069 /* 2070 * shmem_falloc_waitq points into the shmem_fallocate() 2071 * stack of the hole-punching task: shmem_falloc_waitq 2072 * is usually invalid by the time we reach here, but 2073 * finish_wait() does not dereference it in that case; 2074 * though i_lock needed lest racing with wake_up_all(). 2075 */ 2076 spin_lock(&inode->i_lock); 2077 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2078 spin_unlock(&inode->i_lock); 2079 2080 if (fpin) 2081 fput(fpin); 2082 return ret; 2083 } 2084 spin_unlock(&inode->i_lock); 2085 } 2086 2087 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2088 gfp, vma, vmf, &ret); 2089 if (err) 2090 return vmf_error(err); 2091 return ret; 2092 } 2093 2094 unsigned long shmem_get_unmapped_area(struct file *file, 2095 unsigned long uaddr, unsigned long len, 2096 unsigned long pgoff, unsigned long flags) 2097 { 2098 unsigned long (*get_area)(struct file *, 2099 unsigned long, unsigned long, unsigned long, unsigned long); 2100 unsigned long addr; 2101 unsigned long offset; 2102 unsigned long inflated_len; 2103 unsigned long inflated_addr; 2104 unsigned long inflated_offset; 2105 2106 if (len > TASK_SIZE) 2107 return -ENOMEM; 2108 2109 get_area = current->mm->get_unmapped_area; 2110 addr = get_area(file, uaddr, len, pgoff, flags); 2111 2112 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2113 return addr; 2114 if (IS_ERR_VALUE(addr)) 2115 return addr; 2116 if (addr & ~PAGE_MASK) 2117 return addr; 2118 if (addr > TASK_SIZE - len) 2119 return addr; 2120 2121 if (shmem_huge == SHMEM_HUGE_DENY) 2122 return addr; 2123 if (len < HPAGE_PMD_SIZE) 2124 return addr; 2125 if (flags & MAP_FIXED) 2126 return addr; 2127 /* 2128 * Our priority is to support MAP_SHARED mapped hugely; 2129 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2130 * But if caller specified an address hint and we allocated area there 2131 * successfully, respect that as before. 2132 */ 2133 if (uaddr == addr) 2134 return addr; 2135 2136 if (shmem_huge != SHMEM_HUGE_FORCE) { 2137 struct super_block *sb; 2138 2139 if (file) { 2140 VM_BUG_ON(file->f_op != &shmem_file_operations); 2141 sb = file_inode(file)->i_sb; 2142 } else { 2143 /* 2144 * Called directly from mm/mmap.c, or drivers/char/mem.c 2145 * for "/dev/zero", to create a shared anonymous object. 2146 */ 2147 if (IS_ERR(shm_mnt)) 2148 return addr; 2149 sb = shm_mnt->mnt_sb; 2150 } 2151 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2152 return addr; 2153 } 2154 2155 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2156 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2157 return addr; 2158 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2159 return addr; 2160 2161 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2162 if (inflated_len > TASK_SIZE) 2163 return addr; 2164 if (inflated_len < len) 2165 return addr; 2166 2167 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2168 if (IS_ERR_VALUE(inflated_addr)) 2169 return addr; 2170 if (inflated_addr & ~PAGE_MASK) 2171 return addr; 2172 2173 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2174 inflated_addr += offset - inflated_offset; 2175 if (inflated_offset > offset) 2176 inflated_addr += HPAGE_PMD_SIZE; 2177 2178 if (inflated_addr > TASK_SIZE - len) 2179 return addr; 2180 return inflated_addr; 2181 } 2182 2183 #ifdef CONFIG_NUMA 2184 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2185 { 2186 struct inode *inode = file_inode(vma->vm_file); 2187 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2188 } 2189 2190 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2191 unsigned long addr) 2192 { 2193 struct inode *inode = file_inode(vma->vm_file); 2194 pgoff_t index; 2195 2196 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2197 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2198 } 2199 #endif 2200 2201 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2202 { 2203 struct inode *inode = file_inode(file); 2204 struct shmem_inode_info *info = SHMEM_I(inode); 2205 int retval = -ENOMEM; 2206 2207 /* 2208 * What serializes the accesses to info->flags? 2209 * ipc_lock_object() when called from shmctl_do_lock(), 2210 * no serialization needed when called from shm_destroy(). 2211 */ 2212 if (lock && !(info->flags & VM_LOCKED)) { 2213 if (!user_shm_lock(inode->i_size, ucounts)) 2214 goto out_nomem; 2215 info->flags |= VM_LOCKED; 2216 mapping_set_unevictable(file->f_mapping); 2217 } 2218 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2219 user_shm_unlock(inode->i_size, ucounts); 2220 info->flags &= ~VM_LOCKED; 2221 mapping_clear_unevictable(file->f_mapping); 2222 } 2223 retval = 0; 2224 2225 out_nomem: 2226 return retval; 2227 } 2228 2229 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2230 { 2231 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2232 int ret; 2233 2234 ret = seal_check_future_write(info->seals, vma); 2235 if (ret) 2236 return ret; 2237 2238 /* arm64 - allow memory tagging on RAM-based files */ 2239 vma->vm_flags |= VM_MTE_ALLOWED; 2240 2241 file_accessed(file); 2242 vma->vm_ops = &shmem_vm_ops; 2243 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2244 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2245 (vma->vm_end & HPAGE_PMD_MASK)) { 2246 khugepaged_enter(vma, vma->vm_flags); 2247 } 2248 return 0; 2249 } 2250 2251 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2252 umode_t mode, dev_t dev, unsigned long flags) 2253 { 2254 struct inode *inode; 2255 struct shmem_inode_info *info; 2256 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2257 ino_t ino; 2258 2259 if (shmem_reserve_inode(sb, &ino)) 2260 return NULL; 2261 2262 inode = new_inode(sb); 2263 if (inode) { 2264 inode->i_ino = ino; 2265 inode_init_owner(&init_user_ns, inode, dir, mode); 2266 inode->i_blocks = 0; 2267 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2268 inode->i_generation = prandom_u32(); 2269 info = SHMEM_I(inode); 2270 memset(info, 0, (char *)inode - (char *)info); 2271 spin_lock_init(&info->lock); 2272 atomic_set(&info->stop_eviction, 0); 2273 info->seals = F_SEAL_SEAL; 2274 info->flags = flags & VM_NORESERVE; 2275 info->i_crtime = inode->i_mtime; 2276 INIT_LIST_HEAD(&info->shrinklist); 2277 INIT_LIST_HEAD(&info->swaplist); 2278 simple_xattrs_init(&info->xattrs); 2279 cache_no_acl(inode); 2280 mapping_set_large_folios(inode->i_mapping); 2281 2282 switch (mode & S_IFMT) { 2283 default: 2284 inode->i_op = &shmem_special_inode_operations; 2285 init_special_inode(inode, mode, dev); 2286 break; 2287 case S_IFREG: 2288 inode->i_mapping->a_ops = &shmem_aops; 2289 inode->i_op = &shmem_inode_operations; 2290 inode->i_fop = &shmem_file_operations; 2291 mpol_shared_policy_init(&info->policy, 2292 shmem_get_sbmpol(sbinfo)); 2293 break; 2294 case S_IFDIR: 2295 inc_nlink(inode); 2296 /* Some things misbehave if size == 0 on a directory */ 2297 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2298 inode->i_op = &shmem_dir_inode_operations; 2299 inode->i_fop = &simple_dir_operations; 2300 break; 2301 case S_IFLNK: 2302 /* 2303 * Must not load anything in the rbtree, 2304 * mpol_free_shared_policy will not be called. 2305 */ 2306 mpol_shared_policy_init(&info->policy, NULL); 2307 break; 2308 } 2309 2310 lockdep_annotate_inode_mutex_key(inode); 2311 } else 2312 shmem_free_inode(sb); 2313 return inode; 2314 } 2315 2316 #ifdef CONFIG_USERFAULTFD 2317 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2318 pmd_t *dst_pmd, 2319 struct vm_area_struct *dst_vma, 2320 unsigned long dst_addr, 2321 unsigned long src_addr, 2322 bool zeropage, 2323 struct page **pagep) 2324 { 2325 struct inode *inode = file_inode(dst_vma->vm_file); 2326 struct shmem_inode_info *info = SHMEM_I(inode); 2327 struct address_space *mapping = inode->i_mapping; 2328 gfp_t gfp = mapping_gfp_mask(mapping); 2329 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2330 void *page_kaddr; 2331 struct page *page; 2332 int ret; 2333 pgoff_t max_off; 2334 2335 if (!shmem_inode_acct_block(inode, 1)) { 2336 /* 2337 * We may have got a page, returned -ENOENT triggering a retry, 2338 * and now we find ourselves with -ENOMEM. Release the page, to 2339 * avoid a BUG_ON in our caller. 2340 */ 2341 if (unlikely(*pagep)) { 2342 put_page(*pagep); 2343 *pagep = NULL; 2344 } 2345 return -ENOMEM; 2346 } 2347 2348 if (!*pagep) { 2349 ret = -ENOMEM; 2350 page = shmem_alloc_page(gfp, info, pgoff); 2351 if (!page) 2352 goto out_unacct_blocks; 2353 2354 if (!zeropage) { /* COPY */ 2355 page_kaddr = kmap_atomic(page); 2356 ret = copy_from_user(page_kaddr, 2357 (const void __user *)src_addr, 2358 PAGE_SIZE); 2359 kunmap_atomic(page_kaddr); 2360 2361 /* fallback to copy_from_user outside mmap_lock */ 2362 if (unlikely(ret)) { 2363 *pagep = page; 2364 ret = -ENOENT; 2365 /* don't free the page */ 2366 goto out_unacct_blocks; 2367 } 2368 2369 flush_dcache_page(page); 2370 } else { /* ZEROPAGE */ 2371 clear_user_highpage(page, dst_addr); 2372 } 2373 } else { 2374 page = *pagep; 2375 *pagep = NULL; 2376 } 2377 2378 VM_BUG_ON(PageLocked(page)); 2379 VM_BUG_ON(PageSwapBacked(page)); 2380 __SetPageLocked(page); 2381 __SetPageSwapBacked(page); 2382 __SetPageUptodate(page); 2383 2384 ret = -EFAULT; 2385 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2386 if (unlikely(pgoff >= max_off)) 2387 goto out_release; 2388 2389 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2390 gfp & GFP_RECLAIM_MASK, dst_mm); 2391 if (ret) 2392 goto out_release; 2393 2394 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2395 page, true, false); 2396 if (ret) 2397 goto out_delete_from_cache; 2398 2399 spin_lock_irq(&info->lock); 2400 info->alloced++; 2401 inode->i_blocks += BLOCKS_PER_PAGE; 2402 shmem_recalc_inode(inode); 2403 spin_unlock_irq(&info->lock); 2404 2405 unlock_page(page); 2406 return 0; 2407 out_delete_from_cache: 2408 delete_from_page_cache(page); 2409 out_release: 2410 unlock_page(page); 2411 put_page(page); 2412 out_unacct_blocks: 2413 shmem_inode_unacct_blocks(inode, 1); 2414 return ret; 2415 } 2416 #endif /* CONFIG_USERFAULTFD */ 2417 2418 #ifdef CONFIG_TMPFS 2419 static const struct inode_operations shmem_symlink_inode_operations; 2420 static const struct inode_operations shmem_short_symlink_operations; 2421 2422 #ifdef CONFIG_TMPFS_XATTR 2423 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2424 #else 2425 #define shmem_initxattrs NULL 2426 #endif 2427 2428 static int 2429 shmem_write_begin(struct file *file, struct address_space *mapping, 2430 loff_t pos, unsigned len, unsigned flags, 2431 struct page **pagep, void **fsdata) 2432 { 2433 struct inode *inode = mapping->host; 2434 struct shmem_inode_info *info = SHMEM_I(inode); 2435 pgoff_t index = pos >> PAGE_SHIFT; 2436 int ret = 0; 2437 2438 /* i_rwsem is held by caller */ 2439 if (unlikely(info->seals & (F_SEAL_GROW | 2440 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2441 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2442 return -EPERM; 2443 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2444 return -EPERM; 2445 } 2446 2447 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2448 2449 if (ret) 2450 return ret; 2451 2452 if (PageHWPoison(*pagep)) { 2453 unlock_page(*pagep); 2454 put_page(*pagep); 2455 *pagep = NULL; 2456 return -EIO; 2457 } 2458 2459 return 0; 2460 } 2461 2462 static int 2463 shmem_write_end(struct file *file, struct address_space *mapping, 2464 loff_t pos, unsigned len, unsigned copied, 2465 struct page *page, void *fsdata) 2466 { 2467 struct inode *inode = mapping->host; 2468 2469 if (pos + copied > inode->i_size) 2470 i_size_write(inode, pos + copied); 2471 2472 if (!PageUptodate(page)) { 2473 struct page *head = compound_head(page); 2474 if (PageTransCompound(page)) { 2475 int i; 2476 2477 for (i = 0; i < HPAGE_PMD_NR; i++) { 2478 if (head + i == page) 2479 continue; 2480 clear_highpage(head + i); 2481 flush_dcache_page(head + i); 2482 } 2483 } 2484 if (copied < PAGE_SIZE) { 2485 unsigned from = pos & (PAGE_SIZE - 1); 2486 zero_user_segments(page, 0, from, 2487 from + copied, PAGE_SIZE); 2488 } 2489 SetPageUptodate(head); 2490 } 2491 set_page_dirty(page); 2492 unlock_page(page); 2493 put_page(page); 2494 2495 return copied; 2496 } 2497 2498 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2499 { 2500 struct file *file = iocb->ki_filp; 2501 struct inode *inode = file_inode(file); 2502 struct address_space *mapping = inode->i_mapping; 2503 pgoff_t index; 2504 unsigned long offset; 2505 int error = 0; 2506 ssize_t retval = 0; 2507 loff_t *ppos = &iocb->ki_pos; 2508 2509 index = *ppos >> PAGE_SHIFT; 2510 offset = *ppos & ~PAGE_MASK; 2511 2512 for (;;) { 2513 struct page *page = NULL; 2514 pgoff_t end_index; 2515 unsigned long nr, ret; 2516 loff_t i_size = i_size_read(inode); 2517 2518 end_index = i_size >> PAGE_SHIFT; 2519 if (index > end_index) 2520 break; 2521 if (index == end_index) { 2522 nr = i_size & ~PAGE_MASK; 2523 if (nr <= offset) 2524 break; 2525 } 2526 2527 error = shmem_getpage(inode, index, &page, SGP_READ); 2528 if (error) { 2529 if (error == -EINVAL) 2530 error = 0; 2531 break; 2532 } 2533 if (page) { 2534 unlock_page(page); 2535 2536 if (PageHWPoison(page)) { 2537 put_page(page); 2538 error = -EIO; 2539 break; 2540 } 2541 } 2542 2543 /* 2544 * We must evaluate after, since reads (unlike writes) 2545 * are called without i_rwsem protection against truncate 2546 */ 2547 nr = PAGE_SIZE; 2548 i_size = i_size_read(inode); 2549 end_index = i_size >> PAGE_SHIFT; 2550 if (index == end_index) { 2551 nr = i_size & ~PAGE_MASK; 2552 if (nr <= offset) { 2553 if (page) 2554 put_page(page); 2555 break; 2556 } 2557 } 2558 nr -= offset; 2559 2560 if (page) { 2561 /* 2562 * If users can be writing to this page using arbitrary 2563 * virtual addresses, take care about potential aliasing 2564 * before reading the page on the kernel side. 2565 */ 2566 if (mapping_writably_mapped(mapping)) 2567 flush_dcache_page(page); 2568 /* 2569 * Mark the page accessed if we read the beginning. 2570 */ 2571 if (!offset) 2572 mark_page_accessed(page); 2573 /* 2574 * Ok, we have the page, and it's up-to-date, so 2575 * now we can copy it to user space... 2576 */ 2577 ret = copy_page_to_iter(page, offset, nr, to); 2578 put_page(page); 2579 2580 } else if (iter_is_iovec(to)) { 2581 /* 2582 * Copy to user tends to be so well optimized, but 2583 * clear_user() not so much, that it is noticeably 2584 * faster to copy the zero page instead of clearing. 2585 */ 2586 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2587 } else { 2588 /* 2589 * But submitting the same page twice in a row to 2590 * splice() - or others? - can result in confusion: 2591 * so don't attempt that optimization on pipes etc. 2592 */ 2593 ret = iov_iter_zero(nr, to); 2594 } 2595 2596 retval += ret; 2597 offset += ret; 2598 index += offset >> PAGE_SHIFT; 2599 offset &= ~PAGE_MASK; 2600 2601 if (!iov_iter_count(to)) 2602 break; 2603 if (ret < nr) { 2604 error = -EFAULT; 2605 break; 2606 } 2607 cond_resched(); 2608 } 2609 2610 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2611 file_accessed(file); 2612 return retval ? retval : error; 2613 } 2614 2615 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2616 { 2617 struct address_space *mapping = file->f_mapping; 2618 struct inode *inode = mapping->host; 2619 2620 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2621 return generic_file_llseek_size(file, offset, whence, 2622 MAX_LFS_FILESIZE, i_size_read(inode)); 2623 if (offset < 0) 2624 return -ENXIO; 2625 2626 inode_lock(inode); 2627 /* We're holding i_rwsem so we can access i_size directly */ 2628 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2629 if (offset >= 0) 2630 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2631 inode_unlock(inode); 2632 return offset; 2633 } 2634 2635 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2636 loff_t len) 2637 { 2638 struct inode *inode = file_inode(file); 2639 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2640 struct shmem_inode_info *info = SHMEM_I(inode); 2641 struct shmem_falloc shmem_falloc; 2642 pgoff_t start, index, end, undo_fallocend; 2643 int error; 2644 2645 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2646 return -EOPNOTSUPP; 2647 2648 inode_lock(inode); 2649 2650 if (mode & FALLOC_FL_PUNCH_HOLE) { 2651 struct address_space *mapping = file->f_mapping; 2652 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2653 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2654 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2655 2656 /* protected by i_rwsem */ 2657 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2658 error = -EPERM; 2659 goto out; 2660 } 2661 2662 shmem_falloc.waitq = &shmem_falloc_waitq; 2663 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2664 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2665 spin_lock(&inode->i_lock); 2666 inode->i_private = &shmem_falloc; 2667 spin_unlock(&inode->i_lock); 2668 2669 if ((u64)unmap_end > (u64)unmap_start) 2670 unmap_mapping_range(mapping, unmap_start, 2671 1 + unmap_end - unmap_start, 0); 2672 shmem_truncate_range(inode, offset, offset + len - 1); 2673 /* No need to unmap again: hole-punching leaves COWed pages */ 2674 2675 spin_lock(&inode->i_lock); 2676 inode->i_private = NULL; 2677 wake_up_all(&shmem_falloc_waitq); 2678 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2679 spin_unlock(&inode->i_lock); 2680 error = 0; 2681 goto out; 2682 } 2683 2684 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2685 error = inode_newsize_ok(inode, offset + len); 2686 if (error) 2687 goto out; 2688 2689 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2690 error = -EPERM; 2691 goto out; 2692 } 2693 2694 start = offset >> PAGE_SHIFT; 2695 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2696 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2697 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2698 error = -ENOSPC; 2699 goto out; 2700 } 2701 2702 shmem_falloc.waitq = NULL; 2703 shmem_falloc.start = start; 2704 shmem_falloc.next = start; 2705 shmem_falloc.nr_falloced = 0; 2706 shmem_falloc.nr_unswapped = 0; 2707 spin_lock(&inode->i_lock); 2708 inode->i_private = &shmem_falloc; 2709 spin_unlock(&inode->i_lock); 2710 2711 /* 2712 * info->fallocend is only relevant when huge pages might be 2713 * involved: to prevent split_huge_page() freeing fallocated 2714 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2715 */ 2716 undo_fallocend = info->fallocend; 2717 if (info->fallocend < end) 2718 info->fallocend = end; 2719 2720 for (index = start; index < end; ) { 2721 struct page *page; 2722 2723 /* 2724 * Good, the fallocate(2) manpage permits EINTR: we may have 2725 * been interrupted because we are using up too much memory. 2726 */ 2727 if (signal_pending(current)) 2728 error = -EINTR; 2729 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2730 error = -ENOMEM; 2731 else 2732 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2733 if (error) { 2734 info->fallocend = undo_fallocend; 2735 /* Remove the !PageUptodate pages we added */ 2736 if (index > start) { 2737 shmem_undo_range(inode, 2738 (loff_t)start << PAGE_SHIFT, 2739 ((loff_t)index << PAGE_SHIFT) - 1, true); 2740 } 2741 goto undone; 2742 } 2743 2744 index++; 2745 /* 2746 * Here is a more important optimization than it appears: 2747 * a second SGP_FALLOC on the same huge page will clear it, 2748 * making it PageUptodate and un-undoable if we fail later. 2749 */ 2750 if (PageTransCompound(page)) { 2751 index = round_up(index, HPAGE_PMD_NR); 2752 /* Beware 32-bit wraparound */ 2753 if (!index) 2754 index--; 2755 } 2756 2757 /* 2758 * Inform shmem_writepage() how far we have reached. 2759 * No need for lock or barrier: we have the page lock. 2760 */ 2761 if (!PageUptodate(page)) 2762 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2763 shmem_falloc.next = index; 2764 2765 /* 2766 * If !PageUptodate, leave it that way so that freeable pages 2767 * can be recognized if we need to rollback on error later. 2768 * But set_page_dirty so that memory pressure will swap rather 2769 * than free the pages we are allocating (and SGP_CACHE pages 2770 * might still be clean: we now need to mark those dirty too). 2771 */ 2772 set_page_dirty(page); 2773 unlock_page(page); 2774 put_page(page); 2775 cond_resched(); 2776 } 2777 2778 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2779 i_size_write(inode, offset + len); 2780 inode->i_ctime = current_time(inode); 2781 undone: 2782 spin_lock(&inode->i_lock); 2783 inode->i_private = NULL; 2784 spin_unlock(&inode->i_lock); 2785 out: 2786 inode_unlock(inode); 2787 return error; 2788 } 2789 2790 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2791 { 2792 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2793 2794 buf->f_type = TMPFS_MAGIC; 2795 buf->f_bsize = PAGE_SIZE; 2796 buf->f_namelen = NAME_MAX; 2797 if (sbinfo->max_blocks) { 2798 buf->f_blocks = sbinfo->max_blocks; 2799 buf->f_bavail = 2800 buf->f_bfree = sbinfo->max_blocks - 2801 percpu_counter_sum(&sbinfo->used_blocks); 2802 } 2803 if (sbinfo->max_inodes) { 2804 buf->f_files = sbinfo->max_inodes; 2805 buf->f_ffree = sbinfo->free_inodes; 2806 } 2807 /* else leave those fields 0 like simple_statfs */ 2808 2809 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2810 2811 return 0; 2812 } 2813 2814 /* 2815 * File creation. Allocate an inode, and we're done.. 2816 */ 2817 static int 2818 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2819 struct dentry *dentry, umode_t mode, dev_t dev) 2820 { 2821 struct inode *inode; 2822 int error = -ENOSPC; 2823 2824 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2825 if (inode) { 2826 error = simple_acl_create(dir, inode); 2827 if (error) 2828 goto out_iput; 2829 error = security_inode_init_security(inode, dir, 2830 &dentry->d_name, 2831 shmem_initxattrs, NULL); 2832 if (error && error != -EOPNOTSUPP) 2833 goto out_iput; 2834 2835 error = 0; 2836 dir->i_size += BOGO_DIRENT_SIZE; 2837 dir->i_ctime = dir->i_mtime = current_time(dir); 2838 d_instantiate(dentry, inode); 2839 dget(dentry); /* Extra count - pin the dentry in core */ 2840 } 2841 return error; 2842 out_iput: 2843 iput(inode); 2844 return error; 2845 } 2846 2847 static int 2848 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2849 struct dentry *dentry, umode_t mode) 2850 { 2851 struct inode *inode; 2852 int error = -ENOSPC; 2853 2854 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2855 if (inode) { 2856 error = security_inode_init_security(inode, dir, 2857 NULL, 2858 shmem_initxattrs, NULL); 2859 if (error && error != -EOPNOTSUPP) 2860 goto out_iput; 2861 error = simple_acl_create(dir, inode); 2862 if (error) 2863 goto out_iput; 2864 d_tmpfile(dentry, inode); 2865 } 2866 return error; 2867 out_iput: 2868 iput(inode); 2869 return error; 2870 } 2871 2872 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2873 struct dentry *dentry, umode_t mode) 2874 { 2875 int error; 2876 2877 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2878 mode | S_IFDIR, 0))) 2879 return error; 2880 inc_nlink(dir); 2881 return 0; 2882 } 2883 2884 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2885 struct dentry *dentry, umode_t mode, bool excl) 2886 { 2887 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2888 } 2889 2890 /* 2891 * Link a file.. 2892 */ 2893 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2894 { 2895 struct inode *inode = d_inode(old_dentry); 2896 int ret = 0; 2897 2898 /* 2899 * No ordinary (disk based) filesystem counts links as inodes; 2900 * but each new link needs a new dentry, pinning lowmem, and 2901 * tmpfs dentries cannot be pruned until they are unlinked. 2902 * But if an O_TMPFILE file is linked into the tmpfs, the 2903 * first link must skip that, to get the accounting right. 2904 */ 2905 if (inode->i_nlink) { 2906 ret = shmem_reserve_inode(inode->i_sb, NULL); 2907 if (ret) 2908 goto out; 2909 } 2910 2911 dir->i_size += BOGO_DIRENT_SIZE; 2912 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2913 inc_nlink(inode); 2914 ihold(inode); /* New dentry reference */ 2915 dget(dentry); /* Extra pinning count for the created dentry */ 2916 d_instantiate(dentry, inode); 2917 out: 2918 return ret; 2919 } 2920 2921 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2922 { 2923 struct inode *inode = d_inode(dentry); 2924 2925 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2926 shmem_free_inode(inode->i_sb); 2927 2928 dir->i_size -= BOGO_DIRENT_SIZE; 2929 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2930 drop_nlink(inode); 2931 dput(dentry); /* Undo the count from "create" - this does all the work */ 2932 return 0; 2933 } 2934 2935 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2936 { 2937 if (!simple_empty(dentry)) 2938 return -ENOTEMPTY; 2939 2940 drop_nlink(d_inode(dentry)); 2941 drop_nlink(dir); 2942 return shmem_unlink(dir, dentry); 2943 } 2944 2945 static int shmem_whiteout(struct user_namespace *mnt_userns, 2946 struct inode *old_dir, struct dentry *old_dentry) 2947 { 2948 struct dentry *whiteout; 2949 int error; 2950 2951 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2952 if (!whiteout) 2953 return -ENOMEM; 2954 2955 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2956 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2957 dput(whiteout); 2958 if (error) 2959 return error; 2960 2961 /* 2962 * Cheat and hash the whiteout while the old dentry is still in 2963 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2964 * 2965 * d_lookup() will consistently find one of them at this point, 2966 * not sure which one, but that isn't even important. 2967 */ 2968 d_rehash(whiteout); 2969 return 0; 2970 } 2971 2972 /* 2973 * The VFS layer already does all the dentry stuff for rename, 2974 * we just have to decrement the usage count for the target if 2975 * it exists so that the VFS layer correctly free's it when it 2976 * gets overwritten. 2977 */ 2978 static int shmem_rename2(struct user_namespace *mnt_userns, 2979 struct inode *old_dir, struct dentry *old_dentry, 2980 struct inode *new_dir, struct dentry *new_dentry, 2981 unsigned int flags) 2982 { 2983 struct inode *inode = d_inode(old_dentry); 2984 int they_are_dirs = S_ISDIR(inode->i_mode); 2985 2986 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2987 return -EINVAL; 2988 2989 if (flags & RENAME_EXCHANGE) 2990 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 2991 2992 if (!simple_empty(new_dentry)) 2993 return -ENOTEMPTY; 2994 2995 if (flags & RENAME_WHITEOUT) { 2996 int error; 2997 2998 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 2999 if (error) 3000 return error; 3001 } 3002 3003 if (d_really_is_positive(new_dentry)) { 3004 (void) shmem_unlink(new_dir, new_dentry); 3005 if (they_are_dirs) { 3006 drop_nlink(d_inode(new_dentry)); 3007 drop_nlink(old_dir); 3008 } 3009 } else if (they_are_dirs) { 3010 drop_nlink(old_dir); 3011 inc_nlink(new_dir); 3012 } 3013 3014 old_dir->i_size -= BOGO_DIRENT_SIZE; 3015 new_dir->i_size += BOGO_DIRENT_SIZE; 3016 old_dir->i_ctime = old_dir->i_mtime = 3017 new_dir->i_ctime = new_dir->i_mtime = 3018 inode->i_ctime = current_time(old_dir); 3019 return 0; 3020 } 3021 3022 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3023 struct dentry *dentry, const char *symname) 3024 { 3025 int error; 3026 int len; 3027 struct inode *inode; 3028 struct page *page; 3029 3030 len = strlen(symname) + 1; 3031 if (len > PAGE_SIZE) 3032 return -ENAMETOOLONG; 3033 3034 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3035 VM_NORESERVE); 3036 if (!inode) 3037 return -ENOSPC; 3038 3039 error = security_inode_init_security(inode, dir, &dentry->d_name, 3040 shmem_initxattrs, NULL); 3041 if (error && error != -EOPNOTSUPP) { 3042 iput(inode); 3043 return error; 3044 } 3045 3046 inode->i_size = len-1; 3047 if (len <= SHORT_SYMLINK_LEN) { 3048 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3049 if (!inode->i_link) { 3050 iput(inode); 3051 return -ENOMEM; 3052 } 3053 inode->i_op = &shmem_short_symlink_operations; 3054 } else { 3055 inode_nohighmem(inode); 3056 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3057 if (error) { 3058 iput(inode); 3059 return error; 3060 } 3061 inode->i_mapping->a_ops = &shmem_aops; 3062 inode->i_op = &shmem_symlink_inode_operations; 3063 memcpy(page_address(page), symname, len); 3064 SetPageUptodate(page); 3065 set_page_dirty(page); 3066 unlock_page(page); 3067 put_page(page); 3068 } 3069 dir->i_size += BOGO_DIRENT_SIZE; 3070 dir->i_ctime = dir->i_mtime = current_time(dir); 3071 d_instantiate(dentry, inode); 3072 dget(dentry); 3073 return 0; 3074 } 3075 3076 static void shmem_put_link(void *arg) 3077 { 3078 mark_page_accessed(arg); 3079 put_page(arg); 3080 } 3081 3082 static const char *shmem_get_link(struct dentry *dentry, 3083 struct inode *inode, 3084 struct delayed_call *done) 3085 { 3086 struct page *page = NULL; 3087 int error; 3088 if (!dentry) { 3089 page = find_get_page(inode->i_mapping, 0); 3090 if (!page) 3091 return ERR_PTR(-ECHILD); 3092 if (PageHWPoison(page) || 3093 !PageUptodate(page)) { 3094 put_page(page); 3095 return ERR_PTR(-ECHILD); 3096 } 3097 } else { 3098 error = shmem_getpage(inode, 0, &page, SGP_READ); 3099 if (error) 3100 return ERR_PTR(error); 3101 if (!page) 3102 return ERR_PTR(-ECHILD); 3103 if (PageHWPoison(page)) { 3104 unlock_page(page); 3105 put_page(page); 3106 return ERR_PTR(-ECHILD); 3107 } 3108 unlock_page(page); 3109 } 3110 set_delayed_call(done, shmem_put_link, page); 3111 return page_address(page); 3112 } 3113 3114 #ifdef CONFIG_TMPFS_XATTR 3115 /* 3116 * Superblocks without xattr inode operations may get some security.* xattr 3117 * support from the LSM "for free". As soon as we have any other xattrs 3118 * like ACLs, we also need to implement the security.* handlers at 3119 * filesystem level, though. 3120 */ 3121 3122 /* 3123 * Callback for security_inode_init_security() for acquiring xattrs. 3124 */ 3125 static int shmem_initxattrs(struct inode *inode, 3126 const struct xattr *xattr_array, 3127 void *fs_info) 3128 { 3129 struct shmem_inode_info *info = SHMEM_I(inode); 3130 const struct xattr *xattr; 3131 struct simple_xattr *new_xattr; 3132 size_t len; 3133 3134 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3135 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3136 if (!new_xattr) 3137 return -ENOMEM; 3138 3139 len = strlen(xattr->name) + 1; 3140 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3141 GFP_KERNEL); 3142 if (!new_xattr->name) { 3143 kvfree(new_xattr); 3144 return -ENOMEM; 3145 } 3146 3147 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3148 XATTR_SECURITY_PREFIX_LEN); 3149 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3150 xattr->name, len); 3151 3152 simple_xattr_list_add(&info->xattrs, new_xattr); 3153 } 3154 3155 return 0; 3156 } 3157 3158 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3159 struct dentry *unused, struct inode *inode, 3160 const char *name, void *buffer, size_t size) 3161 { 3162 struct shmem_inode_info *info = SHMEM_I(inode); 3163 3164 name = xattr_full_name(handler, name); 3165 return simple_xattr_get(&info->xattrs, name, buffer, size); 3166 } 3167 3168 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3169 struct user_namespace *mnt_userns, 3170 struct dentry *unused, struct inode *inode, 3171 const char *name, const void *value, 3172 size_t size, int flags) 3173 { 3174 struct shmem_inode_info *info = SHMEM_I(inode); 3175 3176 name = xattr_full_name(handler, name); 3177 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3178 } 3179 3180 static const struct xattr_handler shmem_security_xattr_handler = { 3181 .prefix = XATTR_SECURITY_PREFIX, 3182 .get = shmem_xattr_handler_get, 3183 .set = shmem_xattr_handler_set, 3184 }; 3185 3186 static const struct xattr_handler shmem_trusted_xattr_handler = { 3187 .prefix = XATTR_TRUSTED_PREFIX, 3188 .get = shmem_xattr_handler_get, 3189 .set = shmem_xattr_handler_set, 3190 }; 3191 3192 static const struct xattr_handler *shmem_xattr_handlers[] = { 3193 #ifdef CONFIG_TMPFS_POSIX_ACL 3194 &posix_acl_access_xattr_handler, 3195 &posix_acl_default_xattr_handler, 3196 #endif 3197 &shmem_security_xattr_handler, 3198 &shmem_trusted_xattr_handler, 3199 NULL 3200 }; 3201 3202 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3203 { 3204 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3205 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3206 } 3207 #endif /* CONFIG_TMPFS_XATTR */ 3208 3209 static const struct inode_operations shmem_short_symlink_operations = { 3210 .getattr = shmem_getattr, 3211 .get_link = simple_get_link, 3212 #ifdef CONFIG_TMPFS_XATTR 3213 .listxattr = shmem_listxattr, 3214 #endif 3215 }; 3216 3217 static const struct inode_operations shmem_symlink_inode_operations = { 3218 .getattr = shmem_getattr, 3219 .get_link = shmem_get_link, 3220 #ifdef CONFIG_TMPFS_XATTR 3221 .listxattr = shmem_listxattr, 3222 #endif 3223 }; 3224 3225 static struct dentry *shmem_get_parent(struct dentry *child) 3226 { 3227 return ERR_PTR(-ESTALE); 3228 } 3229 3230 static int shmem_match(struct inode *ino, void *vfh) 3231 { 3232 __u32 *fh = vfh; 3233 __u64 inum = fh[2]; 3234 inum = (inum << 32) | fh[1]; 3235 return ino->i_ino == inum && fh[0] == ino->i_generation; 3236 } 3237 3238 /* Find any alias of inode, but prefer a hashed alias */ 3239 static struct dentry *shmem_find_alias(struct inode *inode) 3240 { 3241 struct dentry *alias = d_find_alias(inode); 3242 3243 return alias ?: d_find_any_alias(inode); 3244 } 3245 3246 3247 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3248 struct fid *fid, int fh_len, int fh_type) 3249 { 3250 struct inode *inode; 3251 struct dentry *dentry = NULL; 3252 u64 inum; 3253 3254 if (fh_len < 3) 3255 return NULL; 3256 3257 inum = fid->raw[2]; 3258 inum = (inum << 32) | fid->raw[1]; 3259 3260 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3261 shmem_match, fid->raw); 3262 if (inode) { 3263 dentry = shmem_find_alias(inode); 3264 iput(inode); 3265 } 3266 3267 return dentry; 3268 } 3269 3270 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3271 struct inode *parent) 3272 { 3273 if (*len < 3) { 3274 *len = 3; 3275 return FILEID_INVALID; 3276 } 3277 3278 if (inode_unhashed(inode)) { 3279 /* Unfortunately insert_inode_hash is not idempotent, 3280 * so as we hash inodes here rather than at creation 3281 * time, we need a lock to ensure we only try 3282 * to do it once 3283 */ 3284 static DEFINE_SPINLOCK(lock); 3285 spin_lock(&lock); 3286 if (inode_unhashed(inode)) 3287 __insert_inode_hash(inode, 3288 inode->i_ino + inode->i_generation); 3289 spin_unlock(&lock); 3290 } 3291 3292 fh[0] = inode->i_generation; 3293 fh[1] = inode->i_ino; 3294 fh[2] = ((__u64)inode->i_ino) >> 32; 3295 3296 *len = 3; 3297 return 1; 3298 } 3299 3300 static const struct export_operations shmem_export_ops = { 3301 .get_parent = shmem_get_parent, 3302 .encode_fh = shmem_encode_fh, 3303 .fh_to_dentry = shmem_fh_to_dentry, 3304 }; 3305 3306 enum shmem_param { 3307 Opt_gid, 3308 Opt_huge, 3309 Opt_mode, 3310 Opt_mpol, 3311 Opt_nr_blocks, 3312 Opt_nr_inodes, 3313 Opt_size, 3314 Opt_uid, 3315 Opt_inode32, 3316 Opt_inode64, 3317 }; 3318 3319 static const struct constant_table shmem_param_enums_huge[] = { 3320 {"never", SHMEM_HUGE_NEVER }, 3321 {"always", SHMEM_HUGE_ALWAYS }, 3322 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3323 {"advise", SHMEM_HUGE_ADVISE }, 3324 {} 3325 }; 3326 3327 const struct fs_parameter_spec shmem_fs_parameters[] = { 3328 fsparam_u32 ("gid", Opt_gid), 3329 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3330 fsparam_u32oct("mode", Opt_mode), 3331 fsparam_string("mpol", Opt_mpol), 3332 fsparam_string("nr_blocks", Opt_nr_blocks), 3333 fsparam_string("nr_inodes", Opt_nr_inodes), 3334 fsparam_string("size", Opt_size), 3335 fsparam_u32 ("uid", Opt_uid), 3336 fsparam_flag ("inode32", Opt_inode32), 3337 fsparam_flag ("inode64", Opt_inode64), 3338 {} 3339 }; 3340 3341 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3342 { 3343 struct shmem_options *ctx = fc->fs_private; 3344 struct fs_parse_result result; 3345 unsigned long long size; 3346 char *rest; 3347 int opt; 3348 3349 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3350 if (opt < 0) 3351 return opt; 3352 3353 switch (opt) { 3354 case Opt_size: 3355 size = memparse(param->string, &rest); 3356 if (*rest == '%') { 3357 size <<= PAGE_SHIFT; 3358 size *= totalram_pages(); 3359 do_div(size, 100); 3360 rest++; 3361 } 3362 if (*rest) 3363 goto bad_value; 3364 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3365 ctx->seen |= SHMEM_SEEN_BLOCKS; 3366 break; 3367 case Opt_nr_blocks: 3368 ctx->blocks = memparse(param->string, &rest); 3369 if (*rest) 3370 goto bad_value; 3371 ctx->seen |= SHMEM_SEEN_BLOCKS; 3372 break; 3373 case Opt_nr_inodes: 3374 ctx->inodes = memparse(param->string, &rest); 3375 if (*rest) 3376 goto bad_value; 3377 ctx->seen |= SHMEM_SEEN_INODES; 3378 break; 3379 case Opt_mode: 3380 ctx->mode = result.uint_32 & 07777; 3381 break; 3382 case Opt_uid: 3383 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3384 if (!uid_valid(ctx->uid)) 3385 goto bad_value; 3386 break; 3387 case Opt_gid: 3388 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3389 if (!gid_valid(ctx->gid)) 3390 goto bad_value; 3391 break; 3392 case Opt_huge: 3393 ctx->huge = result.uint_32; 3394 if (ctx->huge != SHMEM_HUGE_NEVER && 3395 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3396 has_transparent_hugepage())) 3397 goto unsupported_parameter; 3398 ctx->seen |= SHMEM_SEEN_HUGE; 3399 break; 3400 case Opt_mpol: 3401 if (IS_ENABLED(CONFIG_NUMA)) { 3402 mpol_put(ctx->mpol); 3403 ctx->mpol = NULL; 3404 if (mpol_parse_str(param->string, &ctx->mpol)) 3405 goto bad_value; 3406 break; 3407 } 3408 goto unsupported_parameter; 3409 case Opt_inode32: 3410 ctx->full_inums = false; 3411 ctx->seen |= SHMEM_SEEN_INUMS; 3412 break; 3413 case Opt_inode64: 3414 if (sizeof(ino_t) < 8) { 3415 return invalfc(fc, 3416 "Cannot use inode64 with <64bit inums in kernel\n"); 3417 } 3418 ctx->full_inums = true; 3419 ctx->seen |= SHMEM_SEEN_INUMS; 3420 break; 3421 } 3422 return 0; 3423 3424 unsupported_parameter: 3425 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3426 bad_value: 3427 return invalfc(fc, "Bad value for '%s'", param->key); 3428 } 3429 3430 static int shmem_parse_options(struct fs_context *fc, void *data) 3431 { 3432 char *options = data; 3433 3434 if (options) { 3435 int err = security_sb_eat_lsm_opts(options, &fc->security); 3436 if (err) 3437 return err; 3438 } 3439 3440 while (options != NULL) { 3441 char *this_char = options; 3442 for (;;) { 3443 /* 3444 * NUL-terminate this option: unfortunately, 3445 * mount options form a comma-separated list, 3446 * but mpol's nodelist may also contain commas. 3447 */ 3448 options = strchr(options, ','); 3449 if (options == NULL) 3450 break; 3451 options++; 3452 if (!isdigit(*options)) { 3453 options[-1] = '\0'; 3454 break; 3455 } 3456 } 3457 if (*this_char) { 3458 char *value = strchr(this_char, '='); 3459 size_t len = 0; 3460 int err; 3461 3462 if (value) { 3463 *value++ = '\0'; 3464 len = strlen(value); 3465 } 3466 err = vfs_parse_fs_string(fc, this_char, value, len); 3467 if (err < 0) 3468 return err; 3469 } 3470 } 3471 return 0; 3472 } 3473 3474 /* 3475 * Reconfigure a shmem filesystem. 3476 * 3477 * Note that we disallow change from limited->unlimited blocks/inodes while any 3478 * are in use; but we must separately disallow unlimited->limited, because in 3479 * that case we have no record of how much is already in use. 3480 */ 3481 static int shmem_reconfigure(struct fs_context *fc) 3482 { 3483 struct shmem_options *ctx = fc->fs_private; 3484 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3485 unsigned long inodes; 3486 struct mempolicy *mpol = NULL; 3487 const char *err; 3488 3489 raw_spin_lock(&sbinfo->stat_lock); 3490 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3491 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3492 if (!sbinfo->max_blocks) { 3493 err = "Cannot retroactively limit size"; 3494 goto out; 3495 } 3496 if (percpu_counter_compare(&sbinfo->used_blocks, 3497 ctx->blocks) > 0) { 3498 err = "Too small a size for current use"; 3499 goto out; 3500 } 3501 } 3502 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3503 if (!sbinfo->max_inodes) { 3504 err = "Cannot retroactively limit inodes"; 3505 goto out; 3506 } 3507 if (ctx->inodes < inodes) { 3508 err = "Too few inodes for current use"; 3509 goto out; 3510 } 3511 } 3512 3513 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3514 sbinfo->next_ino > UINT_MAX) { 3515 err = "Current inum too high to switch to 32-bit inums"; 3516 goto out; 3517 } 3518 3519 if (ctx->seen & SHMEM_SEEN_HUGE) 3520 sbinfo->huge = ctx->huge; 3521 if (ctx->seen & SHMEM_SEEN_INUMS) 3522 sbinfo->full_inums = ctx->full_inums; 3523 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3524 sbinfo->max_blocks = ctx->blocks; 3525 if (ctx->seen & SHMEM_SEEN_INODES) { 3526 sbinfo->max_inodes = ctx->inodes; 3527 sbinfo->free_inodes = ctx->inodes - inodes; 3528 } 3529 3530 /* 3531 * Preserve previous mempolicy unless mpol remount option was specified. 3532 */ 3533 if (ctx->mpol) { 3534 mpol = sbinfo->mpol; 3535 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3536 ctx->mpol = NULL; 3537 } 3538 raw_spin_unlock(&sbinfo->stat_lock); 3539 mpol_put(mpol); 3540 return 0; 3541 out: 3542 raw_spin_unlock(&sbinfo->stat_lock); 3543 return invalfc(fc, "%s", err); 3544 } 3545 3546 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3547 { 3548 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3549 3550 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3551 seq_printf(seq, ",size=%luk", 3552 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3553 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3554 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3555 if (sbinfo->mode != (0777 | S_ISVTX)) 3556 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3557 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3558 seq_printf(seq, ",uid=%u", 3559 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3560 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3561 seq_printf(seq, ",gid=%u", 3562 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3563 3564 /* 3565 * Showing inode{64,32} might be useful even if it's the system default, 3566 * since then people don't have to resort to checking both here and 3567 * /proc/config.gz to confirm 64-bit inums were successfully applied 3568 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3569 * 3570 * We hide it when inode64 isn't the default and we are using 32-bit 3571 * inodes, since that probably just means the feature isn't even under 3572 * consideration. 3573 * 3574 * As such: 3575 * 3576 * +-----------------+-----------------+ 3577 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3578 * +------------------+-----------------+-----------------+ 3579 * | full_inums=true | show | show | 3580 * | full_inums=false | show | hide | 3581 * +------------------+-----------------+-----------------+ 3582 * 3583 */ 3584 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3585 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3586 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3587 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3588 if (sbinfo->huge) 3589 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3590 #endif 3591 shmem_show_mpol(seq, sbinfo->mpol); 3592 return 0; 3593 } 3594 3595 #endif /* CONFIG_TMPFS */ 3596 3597 static void shmem_put_super(struct super_block *sb) 3598 { 3599 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3600 3601 free_percpu(sbinfo->ino_batch); 3602 percpu_counter_destroy(&sbinfo->used_blocks); 3603 mpol_put(sbinfo->mpol); 3604 kfree(sbinfo); 3605 sb->s_fs_info = NULL; 3606 } 3607 3608 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3609 { 3610 struct shmem_options *ctx = fc->fs_private; 3611 struct inode *inode; 3612 struct shmem_sb_info *sbinfo; 3613 3614 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3615 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3616 L1_CACHE_BYTES), GFP_KERNEL); 3617 if (!sbinfo) 3618 return -ENOMEM; 3619 3620 sb->s_fs_info = sbinfo; 3621 3622 #ifdef CONFIG_TMPFS 3623 /* 3624 * Per default we only allow half of the physical ram per 3625 * tmpfs instance, limiting inodes to one per page of lowmem; 3626 * but the internal instance is left unlimited. 3627 */ 3628 if (!(sb->s_flags & SB_KERNMOUNT)) { 3629 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3630 ctx->blocks = shmem_default_max_blocks(); 3631 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3632 ctx->inodes = shmem_default_max_inodes(); 3633 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3634 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3635 } else { 3636 sb->s_flags |= SB_NOUSER; 3637 } 3638 sb->s_export_op = &shmem_export_ops; 3639 sb->s_flags |= SB_NOSEC; 3640 #else 3641 sb->s_flags |= SB_NOUSER; 3642 #endif 3643 sbinfo->max_blocks = ctx->blocks; 3644 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3645 if (sb->s_flags & SB_KERNMOUNT) { 3646 sbinfo->ino_batch = alloc_percpu(ino_t); 3647 if (!sbinfo->ino_batch) 3648 goto failed; 3649 } 3650 sbinfo->uid = ctx->uid; 3651 sbinfo->gid = ctx->gid; 3652 sbinfo->full_inums = ctx->full_inums; 3653 sbinfo->mode = ctx->mode; 3654 sbinfo->huge = ctx->huge; 3655 sbinfo->mpol = ctx->mpol; 3656 ctx->mpol = NULL; 3657 3658 raw_spin_lock_init(&sbinfo->stat_lock); 3659 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3660 goto failed; 3661 spin_lock_init(&sbinfo->shrinklist_lock); 3662 INIT_LIST_HEAD(&sbinfo->shrinklist); 3663 3664 sb->s_maxbytes = MAX_LFS_FILESIZE; 3665 sb->s_blocksize = PAGE_SIZE; 3666 sb->s_blocksize_bits = PAGE_SHIFT; 3667 sb->s_magic = TMPFS_MAGIC; 3668 sb->s_op = &shmem_ops; 3669 sb->s_time_gran = 1; 3670 #ifdef CONFIG_TMPFS_XATTR 3671 sb->s_xattr = shmem_xattr_handlers; 3672 #endif 3673 #ifdef CONFIG_TMPFS_POSIX_ACL 3674 sb->s_flags |= SB_POSIXACL; 3675 #endif 3676 uuid_gen(&sb->s_uuid); 3677 3678 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3679 if (!inode) 3680 goto failed; 3681 inode->i_uid = sbinfo->uid; 3682 inode->i_gid = sbinfo->gid; 3683 sb->s_root = d_make_root(inode); 3684 if (!sb->s_root) 3685 goto failed; 3686 return 0; 3687 3688 failed: 3689 shmem_put_super(sb); 3690 return -ENOMEM; 3691 } 3692 3693 static int shmem_get_tree(struct fs_context *fc) 3694 { 3695 return get_tree_nodev(fc, shmem_fill_super); 3696 } 3697 3698 static void shmem_free_fc(struct fs_context *fc) 3699 { 3700 struct shmem_options *ctx = fc->fs_private; 3701 3702 if (ctx) { 3703 mpol_put(ctx->mpol); 3704 kfree(ctx); 3705 } 3706 } 3707 3708 static const struct fs_context_operations shmem_fs_context_ops = { 3709 .free = shmem_free_fc, 3710 .get_tree = shmem_get_tree, 3711 #ifdef CONFIG_TMPFS 3712 .parse_monolithic = shmem_parse_options, 3713 .parse_param = shmem_parse_one, 3714 .reconfigure = shmem_reconfigure, 3715 #endif 3716 }; 3717 3718 static struct kmem_cache *shmem_inode_cachep; 3719 3720 static struct inode *shmem_alloc_inode(struct super_block *sb) 3721 { 3722 struct shmem_inode_info *info; 3723 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3724 if (!info) 3725 return NULL; 3726 return &info->vfs_inode; 3727 } 3728 3729 static void shmem_free_in_core_inode(struct inode *inode) 3730 { 3731 if (S_ISLNK(inode->i_mode)) 3732 kfree(inode->i_link); 3733 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3734 } 3735 3736 static void shmem_destroy_inode(struct inode *inode) 3737 { 3738 if (S_ISREG(inode->i_mode)) 3739 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3740 } 3741 3742 static void shmem_init_inode(void *foo) 3743 { 3744 struct shmem_inode_info *info = foo; 3745 inode_init_once(&info->vfs_inode); 3746 } 3747 3748 static void shmem_init_inodecache(void) 3749 { 3750 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3751 sizeof(struct shmem_inode_info), 3752 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3753 } 3754 3755 static void shmem_destroy_inodecache(void) 3756 { 3757 kmem_cache_destroy(shmem_inode_cachep); 3758 } 3759 3760 /* Keep the page in page cache instead of truncating it */ 3761 static int shmem_error_remove_page(struct address_space *mapping, 3762 struct page *page) 3763 { 3764 return 0; 3765 } 3766 3767 const struct address_space_operations shmem_aops = { 3768 .writepage = shmem_writepage, 3769 .dirty_folio = noop_dirty_folio, 3770 #ifdef CONFIG_TMPFS 3771 .write_begin = shmem_write_begin, 3772 .write_end = shmem_write_end, 3773 #endif 3774 #ifdef CONFIG_MIGRATION 3775 .migratepage = migrate_page, 3776 #endif 3777 .error_remove_page = shmem_error_remove_page, 3778 }; 3779 EXPORT_SYMBOL(shmem_aops); 3780 3781 static const struct file_operations shmem_file_operations = { 3782 .mmap = shmem_mmap, 3783 .get_unmapped_area = shmem_get_unmapped_area, 3784 #ifdef CONFIG_TMPFS 3785 .llseek = shmem_file_llseek, 3786 .read_iter = shmem_file_read_iter, 3787 .write_iter = generic_file_write_iter, 3788 .fsync = noop_fsync, 3789 .splice_read = generic_file_splice_read, 3790 .splice_write = iter_file_splice_write, 3791 .fallocate = shmem_fallocate, 3792 #endif 3793 }; 3794 3795 static const struct inode_operations shmem_inode_operations = { 3796 .getattr = shmem_getattr, 3797 .setattr = shmem_setattr, 3798 #ifdef CONFIG_TMPFS_XATTR 3799 .listxattr = shmem_listxattr, 3800 .set_acl = simple_set_acl, 3801 #endif 3802 }; 3803 3804 static const struct inode_operations shmem_dir_inode_operations = { 3805 #ifdef CONFIG_TMPFS 3806 .getattr = shmem_getattr, 3807 .create = shmem_create, 3808 .lookup = simple_lookup, 3809 .link = shmem_link, 3810 .unlink = shmem_unlink, 3811 .symlink = shmem_symlink, 3812 .mkdir = shmem_mkdir, 3813 .rmdir = shmem_rmdir, 3814 .mknod = shmem_mknod, 3815 .rename = shmem_rename2, 3816 .tmpfile = shmem_tmpfile, 3817 #endif 3818 #ifdef CONFIG_TMPFS_XATTR 3819 .listxattr = shmem_listxattr, 3820 #endif 3821 #ifdef CONFIG_TMPFS_POSIX_ACL 3822 .setattr = shmem_setattr, 3823 .set_acl = simple_set_acl, 3824 #endif 3825 }; 3826 3827 static const struct inode_operations shmem_special_inode_operations = { 3828 .getattr = shmem_getattr, 3829 #ifdef CONFIG_TMPFS_XATTR 3830 .listxattr = shmem_listxattr, 3831 #endif 3832 #ifdef CONFIG_TMPFS_POSIX_ACL 3833 .setattr = shmem_setattr, 3834 .set_acl = simple_set_acl, 3835 #endif 3836 }; 3837 3838 static const struct super_operations shmem_ops = { 3839 .alloc_inode = shmem_alloc_inode, 3840 .free_inode = shmem_free_in_core_inode, 3841 .destroy_inode = shmem_destroy_inode, 3842 #ifdef CONFIG_TMPFS 3843 .statfs = shmem_statfs, 3844 .show_options = shmem_show_options, 3845 #endif 3846 .evict_inode = shmem_evict_inode, 3847 .drop_inode = generic_delete_inode, 3848 .put_super = shmem_put_super, 3849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3850 .nr_cached_objects = shmem_unused_huge_count, 3851 .free_cached_objects = shmem_unused_huge_scan, 3852 #endif 3853 }; 3854 3855 static const struct vm_operations_struct shmem_vm_ops = { 3856 .fault = shmem_fault, 3857 .map_pages = filemap_map_pages, 3858 #ifdef CONFIG_NUMA 3859 .set_policy = shmem_set_policy, 3860 .get_policy = shmem_get_policy, 3861 #endif 3862 }; 3863 3864 int shmem_init_fs_context(struct fs_context *fc) 3865 { 3866 struct shmem_options *ctx; 3867 3868 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3869 if (!ctx) 3870 return -ENOMEM; 3871 3872 ctx->mode = 0777 | S_ISVTX; 3873 ctx->uid = current_fsuid(); 3874 ctx->gid = current_fsgid(); 3875 3876 fc->fs_private = ctx; 3877 fc->ops = &shmem_fs_context_ops; 3878 return 0; 3879 } 3880 3881 static struct file_system_type shmem_fs_type = { 3882 .owner = THIS_MODULE, 3883 .name = "tmpfs", 3884 .init_fs_context = shmem_init_fs_context, 3885 #ifdef CONFIG_TMPFS 3886 .parameters = shmem_fs_parameters, 3887 #endif 3888 .kill_sb = kill_litter_super, 3889 .fs_flags = FS_USERNS_MOUNT, 3890 }; 3891 3892 void __init shmem_init(void) 3893 { 3894 int error; 3895 3896 shmem_init_inodecache(); 3897 3898 error = register_filesystem(&shmem_fs_type); 3899 if (error) { 3900 pr_err("Could not register tmpfs\n"); 3901 goto out2; 3902 } 3903 3904 shm_mnt = kern_mount(&shmem_fs_type); 3905 if (IS_ERR(shm_mnt)) { 3906 error = PTR_ERR(shm_mnt); 3907 pr_err("Could not kern_mount tmpfs\n"); 3908 goto out1; 3909 } 3910 3911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3912 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3913 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3914 else 3915 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3916 #endif 3917 return; 3918 3919 out1: 3920 unregister_filesystem(&shmem_fs_type); 3921 out2: 3922 shmem_destroy_inodecache(); 3923 shm_mnt = ERR_PTR(error); 3924 } 3925 3926 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3927 static ssize_t shmem_enabled_show(struct kobject *kobj, 3928 struct kobj_attribute *attr, char *buf) 3929 { 3930 static const int values[] = { 3931 SHMEM_HUGE_ALWAYS, 3932 SHMEM_HUGE_WITHIN_SIZE, 3933 SHMEM_HUGE_ADVISE, 3934 SHMEM_HUGE_NEVER, 3935 SHMEM_HUGE_DENY, 3936 SHMEM_HUGE_FORCE, 3937 }; 3938 int len = 0; 3939 int i; 3940 3941 for (i = 0; i < ARRAY_SIZE(values); i++) { 3942 len += sysfs_emit_at(buf, len, 3943 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3944 i ? " " : "", 3945 shmem_format_huge(values[i])); 3946 } 3947 3948 len += sysfs_emit_at(buf, len, "\n"); 3949 3950 return len; 3951 } 3952 3953 static ssize_t shmem_enabled_store(struct kobject *kobj, 3954 struct kobj_attribute *attr, const char *buf, size_t count) 3955 { 3956 char tmp[16]; 3957 int huge; 3958 3959 if (count + 1 > sizeof(tmp)) 3960 return -EINVAL; 3961 memcpy(tmp, buf, count); 3962 tmp[count] = '\0'; 3963 if (count && tmp[count - 1] == '\n') 3964 tmp[count - 1] = '\0'; 3965 3966 huge = shmem_parse_huge(tmp); 3967 if (huge == -EINVAL) 3968 return -EINVAL; 3969 if (!has_transparent_hugepage() && 3970 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3971 return -EINVAL; 3972 3973 shmem_huge = huge; 3974 if (shmem_huge > SHMEM_HUGE_DENY) 3975 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3976 return count; 3977 } 3978 3979 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 3980 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3981 3982 #else /* !CONFIG_SHMEM */ 3983 3984 /* 3985 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3986 * 3987 * This is intended for small system where the benefits of the full 3988 * shmem code (swap-backed and resource-limited) are outweighed by 3989 * their complexity. On systems without swap this code should be 3990 * effectively equivalent, but much lighter weight. 3991 */ 3992 3993 static struct file_system_type shmem_fs_type = { 3994 .name = "tmpfs", 3995 .init_fs_context = ramfs_init_fs_context, 3996 .parameters = ramfs_fs_parameters, 3997 .kill_sb = kill_litter_super, 3998 .fs_flags = FS_USERNS_MOUNT, 3999 }; 4000 4001 void __init shmem_init(void) 4002 { 4003 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4004 4005 shm_mnt = kern_mount(&shmem_fs_type); 4006 BUG_ON(IS_ERR(shm_mnt)); 4007 } 4008 4009 int shmem_unuse(unsigned int type) 4010 { 4011 return 0; 4012 } 4013 4014 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4015 { 4016 return 0; 4017 } 4018 4019 void shmem_unlock_mapping(struct address_space *mapping) 4020 { 4021 } 4022 4023 #ifdef CONFIG_MMU 4024 unsigned long shmem_get_unmapped_area(struct file *file, 4025 unsigned long addr, unsigned long len, 4026 unsigned long pgoff, unsigned long flags) 4027 { 4028 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4029 } 4030 #endif 4031 4032 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4033 { 4034 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4035 } 4036 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4037 4038 #define shmem_vm_ops generic_file_vm_ops 4039 #define shmem_file_operations ramfs_file_operations 4040 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4041 #define shmem_acct_size(flags, size) 0 4042 #define shmem_unacct_size(flags, size) do {} while (0) 4043 4044 #endif /* CONFIG_SHMEM */ 4045 4046 /* common code */ 4047 4048 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4049 unsigned long flags, unsigned int i_flags) 4050 { 4051 struct inode *inode; 4052 struct file *res; 4053 4054 if (IS_ERR(mnt)) 4055 return ERR_CAST(mnt); 4056 4057 if (size < 0 || size > MAX_LFS_FILESIZE) 4058 return ERR_PTR(-EINVAL); 4059 4060 if (shmem_acct_size(flags, size)) 4061 return ERR_PTR(-ENOMEM); 4062 4063 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4064 flags); 4065 if (unlikely(!inode)) { 4066 shmem_unacct_size(flags, size); 4067 return ERR_PTR(-ENOSPC); 4068 } 4069 inode->i_flags |= i_flags; 4070 inode->i_size = size; 4071 clear_nlink(inode); /* It is unlinked */ 4072 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4073 if (!IS_ERR(res)) 4074 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4075 &shmem_file_operations); 4076 if (IS_ERR(res)) 4077 iput(inode); 4078 return res; 4079 } 4080 4081 /** 4082 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4083 * kernel internal. There will be NO LSM permission checks against the 4084 * underlying inode. So users of this interface must do LSM checks at a 4085 * higher layer. The users are the big_key and shm implementations. LSM 4086 * checks are provided at the key or shm level rather than the inode. 4087 * @name: name for dentry (to be seen in /proc/<pid>/maps 4088 * @size: size to be set for the file 4089 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4090 */ 4091 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4092 { 4093 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4094 } 4095 4096 /** 4097 * shmem_file_setup - get an unlinked file living in tmpfs 4098 * @name: name for dentry (to be seen in /proc/<pid>/maps 4099 * @size: size to be set for the file 4100 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4101 */ 4102 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4103 { 4104 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4105 } 4106 EXPORT_SYMBOL_GPL(shmem_file_setup); 4107 4108 /** 4109 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4110 * @mnt: the tmpfs mount where the file will be created 4111 * @name: name for dentry (to be seen in /proc/<pid>/maps 4112 * @size: size to be set for the file 4113 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4114 */ 4115 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4116 loff_t size, unsigned long flags) 4117 { 4118 return __shmem_file_setup(mnt, name, size, flags, 0); 4119 } 4120 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4121 4122 /** 4123 * shmem_zero_setup - setup a shared anonymous mapping 4124 * @vma: the vma to be mmapped is prepared by do_mmap 4125 */ 4126 int shmem_zero_setup(struct vm_area_struct *vma) 4127 { 4128 struct file *file; 4129 loff_t size = vma->vm_end - vma->vm_start; 4130 4131 /* 4132 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4133 * between XFS directory reading and selinux: since this file is only 4134 * accessible to the user through its mapping, use S_PRIVATE flag to 4135 * bypass file security, in the same way as shmem_kernel_file_setup(). 4136 */ 4137 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4138 if (IS_ERR(file)) 4139 return PTR_ERR(file); 4140 4141 if (vma->vm_file) 4142 fput(vma->vm_file); 4143 vma->vm_file = file; 4144 vma->vm_ops = &shmem_vm_ops; 4145 4146 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4147 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4148 (vma->vm_end & HPAGE_PMD_MASK)) { 4149 khugepaged_enter(vma, vma->vm_flags); 4150 } 4151 4152 return 0; 4153 } 4154 4155 /** 4156 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4157 * @mapping: the page's address_space 4158 * @index: the page index 4159 * @gfp: the page allocator flags to use if allocating 4160 * 4161 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4162 * with any new page allocations done using the specified allocation flags. 4163 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4164 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4165 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4166 * 4167 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4168 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4169 */ 4170 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4171 pgoff_t index, gfp_t gfp) 4172 { 4173 #ifdef CONFIG_SHMEM 4174 struct inode *inode = mapping->host; 4175 struct page *page; 4176 int error; 4177 4178 BUG_ON(!shmem_mapping(mapping)); 4179 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4180 gfp, NULL, NULL, NULL); 4181 if (error) 4182 return ERR_PTR(error); 4183 4184 unlock_page(page); 4185 if (PageHWPoison(page)) { 4186 put_page(page); 4187 return ERR_PTR(-EIO); 4188 } 4189 4190 return page; 4191 #else 4192 /* 4193 * The tiny !SHMEM case uses ramfs without swap 4194 */ 4195 return read_cache_page_gfp(mapping, index, gfp); 4196 #endif 4197 } 4198 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4199