1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2005 Hugh Dickins. 10 * Copyright (C) 2002-2005 VERITAS Software Corporation. 11 * Copyright (C) 2004 Andi Kleen, SuSE Labs 12 * 13 * Extended attribute support for tmpfs: 14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 16 * 17 * This file is released under the GPL. 18 */ 19 20 /* 21 * This virtual memory filesystem is heavily based on the ramfs. It 22 * extends ramfs by the ability to use swap and honor resource limits 23 * which makes it a completely usable filesystem. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/fs.h> 29 #include <linux/xattr.h> 30 #include <linux/exportfs.h> 31 #include <linux/generic_acl.h> 32 #include <linux/mm.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/swap.h> 36 #include <linux/pagemap.h> 37 #include <linux/string.h> 38 #include <linux/slab.h> 39 #include <linux/backing-dev.h> 40 #include <linux/shmem_fs.h> 41 #include <linux/mount.h> 42 #include <linux/writeback.h> 43 #include <linux/vfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/security.h> 46 #include <linux/swapops.h> 47 #include <linux/mempolicy.h> 48 #include <linux/namei.h> 49 #include <linux/ctype.h> 50 #include <linux/migrate.h> 51 #include <linux/highmem.h> 52 #include <linux/seq_file.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/div64.h> 56 #include <asm/pgtable.h> 57 58 /* This magic number is used in glibc for posix shared memory */ 59 #define TMPFS_MAGIC 0x01021994 60 61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) 62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) 63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 64 65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1)) 66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT) 67 68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 69 70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */ 71 #define SHMEM_PAGEIN VM_READ 72 #define SHMEM_TRUNCATE VM_WRITE 73 74 /* Definition to limit shmem_truncate's steps between cond_rescheds */ 75 #define LATENCY_LIMIT 64 76 77 /* Pretend that each entry is of this size in directory's i_size */ 78 #define BOGO_DIRENT_SIZE 20 79 80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */ 81 enum sgp_type { 82 SGP_READ, /* don't exceed i_size, don't allocate page */ 83 SGP_CACHE, /* don't exceed i_size, may allocate page */ 84 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 85 SGP_WRITE, /* may exceed i_size, may allocate page */ 86 }; 87 88 #ifdef CONFIG_TMPFS 89 static unsigned long shmem_default_max_blocks(void) 90 { 91 return totalram_pages / 2; 92 } 93 94 static unsigned long shmem_default_max_inodes(void) 95 { 96 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 97 } 98 #endif 99 100 static int shmem_getpage(struct inode *inode, unsigned long idx, 101 struct page **pagep, enum sgp_type sgp, int *type); 102 103 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask) 104 { 105 /* 106 * The above definition of ENTRIES_PER_PAGE, and the use of 107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE: 108 * might be reconsidered if it ever diverges from PAGE_SIZE. 109 * 110 * Mobility flags are masked out as swap vectors cannot move 111 */ 112 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO, 113 PAGE_CACHE_SHIFT-PAGE_SHIFT); 114 } 115 116 static inline void shmem_dir_free(struct page *page) 117 { 118 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT); 119 } 120 121 static struct page **shmem_dir_map(struct page *page) 122 { 123 return (struct page **)kmap_atomic(page, KM_USER0); 124 } 125 126 static inline void shmem_dir_unmap(struct page **dir) 127 { 128 kunmap_atomic(dir, KM_USER0); 129 } 130 131 static swp_entry_t *shmem_swp_map(struct page *page) 132 { 133 return (swp_entry_t *)kmap_atomic(page, KM_USER1); 134 } 135 136 static inline void shmem_swp_balance_unmap(void) 137 { 138 /* 139 * When passing a pointer to an i_direct entry, to code which 140 * also handles indirect entries and so will shmem_swp_unmap, 141 * we must arrange for the preempt count to remain in balance. 142 * What kmap_atomic of a lowmem page does depends on config 143 * and architecture, so pretend to kmap_atomic some lowmem page. 144 */ 145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1); 146 } 147 148 static inline void shmem_swp_unmap(swp_entry_t *entry) 149 { 150 kunmap_atomic(entry, KM_USER1); 151 } 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_ACCOUNT)? 167 security_vm_enough_memory(VM_ACCT(size)): 0; 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (flags & VM_ACCOUNT) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 /* 177 * ... whereas tmpfs objects are accounted incrementally as 178 * pages are allocated, in order to allow huge sparse files. 179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 181 */ 182 static inline int shmem_acct_block(unsigned long flags) 183 { 184 return (flags & VM_ACCOUNT)? 185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE)); 186 } 187 188 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 189 { 190 if (!(flags & VM_ACCOUNT)) 191 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 192 } 193 194 static const struct super_operations shmem_ops; 195 static const struct address_space_operations shmem_aops; 196 static const struct file_operations shmem_file_operations; 197 static const struct inode_operations shmem_inode_operations; 198 static const struct inode_operations shmem_dir_inode_operations; 199 static const struct inode_operations shmem_special_inode_operations; 200 static struct vm_operations_struct shmem_vm_ops; 201 202 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 203 .ra_pages = 0, /* No readahead */ 204 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, 205 .unplug_io_fn = default_unplug_io_fn, 206 }; 207 208 static LIST_HEAD(shmem_swaplist); 209 static DEFINE_MUTEX(shmem_swaplist_mutex); 210 211 static void shmem_free_blocks(struct inode *inode, long pages) 212 { 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 if (sbinfo->max_blocks) { 215 spin_lock(&sbinfo->stat_lock); 216 sbinfo->free_blocks += pages; 217 inode->i_blocks -= pages*BLOCKS_PER_PAGE; 218 spin_unlock(&sbinfo->stat_lock); 219 } 220 } 221 222 static int shmem_reserve_inode(struct super_block *sb) 223 { 224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 225 if (sbinfo->max_inodes) { 226 spin_lock(&sbinfo->stat_lock); 227 if (!sbinfo->free_inodes) { 228 spin_unlock(&sbinfo->stat_lock); 229 return -ENOSPC; 230 } 231 sbinfo->free_inodes--; 232 spin_unlock(&sbinfo->stat_lock); 233 } 234 return 0; 235 } 236 237 static void shmem_free_inode(struct super_block *sb) 238 { 239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 240 if (sbinfo->max_inodes) { 241 spin_lock(&sbinfo->stat_lock); 242 sbinfo->free_inodes++; 243 spin_unlock(&sbinfo->stat_lock); 244 } 245 } 246 247 /** 248 * shmem_recalc_inode - recalculate the size of an inode 249 * @inode: inode to recalc 250 * 251 * We have to calculate the free blocks since the mm can drop 252 * undirtied hole pages behind our back. 253 * 254 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 255 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 256 * 257 * It has to be called with the spinlock held. 258 */ 259 static void shmem_recalc_inode(struct inode *inode) 260 { 261 struct shmem_inode_info *info = SHMEM_I(inode); 262 long freed; 263 264 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 265 if (freed > 0) { 266 info->alloced -= freed; 267 shmem_unacct_blocks(info->flags, freed); 268 shmem_free_blocks(inode, freed); 269 } 270 } 271 272 /** 273 * shmem_swp_entry - find the swap vector position in the info structure 274 * @info: info structure for the inode 275 * @index: index of the page to find 276 * @page: optional page to add to the structure. Has to be preset to 277 * all zeros 278 * 279 * If there is no space allocated yet it will return NULL when 280 * page is NULL, else it will use the page for the needed block, 281 * setting it to NULL on return to indicate that it has been used. 282 * 283 * The swap vector is organized the following way: 284 * 285 * There are SHMEM_NR_DIRECT entries directly stored in the 286 * shmem_inode_info structure. So small files do not need an addional 287 * allocation. 288 * 289 * For pages with index > SHMEM_NR_DIRECT there is the pointer 290 * i_indirect which points to a page which holds in the first half 291 * doubly indirect blocks, in the second half triple indirect blocks: 292 * 293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the 294 * following layout (for SHMEM_NR_DIRECT == 16): 295 * 296 * i_indirect -> dir --> 16-19 297 * | +-> 20-23 298 * | 299 * +-->dir2 --> 24-27 300 * | +-> 28-31 301 * | +-> 32-35 302 * | +-> 36-39 303 * | 304 * +-->dir3 --> 40-43 305 * +-> 44-47 306 * +-> 48-51 307 * +-> 52-55 308 */ 309 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page) 310 { 311 unsigned long offset; 312 struct page **dir; 313 struct page *subdir; 314 315 if (index < SHMEM_NR_DIRECT) { 316 shmem_swp_balance_unmap(); 317 return info->i_direct+index; 318 } 319 if (!info->i_indirect) { 320 if (page) { 321 info->i_indirect = *page; 322 *page = NULL; 323 } 324 return NULL; /* need another page */ 325 } 326 327 index -= SHMEM_NR_DIRECT; 328 offset = index % ENTRIES_PER_PAGE; 329 index /= ENTRIES_PER_PAGE; 330 dir = shmem_dir_map(info->i_indirect); 331 332 if (index >= ENTRIES_PER_PAGE/2) { 333 index -= ENTRIES_PER_PAGE/2; 334 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE; 335 index %= ENTRIES_PER_PAGE; 336 subdir = *dir; 337 if (!subdir) { 338 if (page) { 339 *dir = *page; 340 *page = NULL; 341 } 342 shmem_dir_unmap(dir); 343 return NULL; /* need another page */ 344 } 345 shmem_dir_unmap(dir); 346 dir = shmem_dir_map(subdir); 347 } 348 349 dir += index; 350 subdir = *dir; 351 if (!subdir) { 352 if (!page || !(subdir = *page)) { 353 shmem_dir_unmap(dir); 354 return NULL; /* need a page */ 355 } 356 *dir = subdir; 357 *page = NULL; 358 } 359 shmem_dir_unmap(dir); 360 return shmem_swp_map(subdir) + offset; 361 } 362 363 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value) 364 { 365 long incdec = value? 1: -1; 366 367 entry->val = value; 368 info->swapped += incdec; 369 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) { 370 struct page *page = kmap_atomic_to_page(entry); 371 set_page_private(page, page_private(page) + incdec); 372 } 373 } 374 375 /** 376 * shmem_swp_alloc - get the position of the swap entry for the page. 377 * @info: info structure for the inode 378 * @index: index of the page to find 379 * @sgp: check and recheck i_size? skip allocation? 380 * 381 * If the entry does not exist, allocate it. 382 */ 383 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp) 384 { 385 struct inode *inode = &info->vfs_inode; 386 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 387 struct page *page = NULL; 388 swp_entry_t *entry; 389 390 if (sgp != SGP_WRITE && 391 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 392 return ERR_PTR(-EINVAL); 393 394 while (!(entry = shmem_swp_entry(info, index, &page))) { 395 if (sgp == SGP_READ) 396 return shmem_swp_map(ZERO_PAGE(0)); 397 /* 398 * Test free_blocks against 1 not 0, since we have 1 data 399 * page (and perhaps indirect index pages) yet to allocate: 400 * a waste to allocate index if we cannot allocate data. 401 */ 402 if (sbinfo->max_blocks) { 403 spin_lock(&sbinfo->stat_lock); 404 if (sbinfo->free_blocks <= 1) { 405 spin_unlock(&sbinfo->stat_lock); 406 return ERR_PTR(-ENOSPC); 407 } 408 sbinfo->free_blocks--; 409 inode->i_blocks += BLOCKS_PER_PAGE; 410 spin_unlock(&sbinfo->stat_lock); 411 } 412 413 spin_unlock(&info->lock); 414 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping)); 415 if (page) 416 set_page_private(page, 0); 417 spin_lock(&info->lock); 418 419 if (!page) { 420 shmem_free_blocks(inode, 1); 421 return ERR_PTR(-ENOMEM); 422 } 423 if (sgp != SGP_WRITE && 424 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 425 entry = ERR_PTR(-EINVAL); 426 break; 427 } 428 if (info->next_index <= index) 429 info->next_index = index + 1; 430 } 431 if (page) { 432 /* another task gave its page, or truncated the file */ 433 shmem_free_blocks(inode, 1); 434 shmem_dir_free(page); 435 } 436 if (info->next_index <= index && !IS_ERR(entry)) 437 info->next_index = index + 1; 438 return entry; 439 } 440 441 /** 442 * shmem_free_swp - free some swap entries in a directory 443 * @dir: pointer to the directory 444 * @edir: pointer after last entry of the directory 445 * @punch_lock: pointer to spinlock when needed for the holepunch case 446 */ 447 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir, 448 spinlock_t *punch_lock) 449 { 450 spinlock_t *punch_unlock = NULL; 451 swp_entry_t *ptr; 452 int freed = 0; 453 454 for (ptr = dir; ptr < edir; ptr++) { 455 if (ptr->val) { 456 if (unlikely(punch_lock)) { 457 punch_unlock = punch_lock; 458 punch_lock = NULL; 459 spin_lock(punch_unlock); 460 if (!ptr->val) 461 continue; 462 } 463 free_swap_and_cache(*ptr); 464 *ptr = (swp_entry_t){0}; 465 freed++; 466 } 467 } 468 if (punch_unlock) 469 spin_unlock(punch_unlock); 470 return freed; 471 } 472 473 static int shmem_map_and_free_swp(struct page *subdir, int offset, 474 int limit, struct page ***dir, spinlock_t *punch_lock) 475 { 476 swp_entry_t *ptr; 477 int freed = 0; 478 479 ptr = shmem_swp_map(subdir); 480 for (; offset < limit; offset += LATENCY_LIMIT) { 481 int size = limit - offset; 482 if (size > LATENCY_LIMIT) 483 size = LATENCY_LIMIT; 484 freed += shmem_free_swp(ptr+offset, ptr+offset+size, 485 punch_lock); 486 if (need_resched()) { 487 shmem_swp_unmap(ptr); 488 if (*dir) { 489 shmem_dir_unmap(*dir); 490 *dir = NULL; 491 } 492 cond_resched(); 493 ptr = shmem_swp_map(subdir); 494 } 495 } 496 shmem_swp_unmap(ptr); 497 return freed; 498 } 499 500 static void shmem_free_pages(struct list_head *next) 501 { 502 struct page *page; 503 int freed = 0; 504 505 do { 506 page = container_of(next, struct page, lru); 507 next = next->next; 508 shmem_dir_free(page); 509 freed++; 510 if (freed >= LATENCY_LIMIT) { 511 cond_resched(); 512 freed = 0; 513 } 514 } while (next); 515 } 516 517 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end) 518 { 519 struct shmem_inode_info *info = SHMEM_I(inode); 520 unsigned long idx; 521 unsigned long size; 522 unsigned long limit; 523 unsigned long stage; 524 unsigned long diroff; 525 struct page **dir; 526 struct page *topdir; 527 struct page *middir; 528 struct page *subdir; 529 swp_entry_t *ptr; 530 LIST_HEAD(pages_to_free); 531 long nr_pages_to_free = 0; 532 long nr_swaps_freed = 0; 533 int offset; 534 int freed; 535 int punch_hole; 536 spinlock_t *needs_lock; 537 spinlock_t *punch_lock; 538 unsigned long upper_limit; 539 540 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 541 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 542 if (idx >= info->next_index) 543 return; 544 545 spin_lock(&info->lock); 546 info->flags |= SHMEM_TRUNCATE; 547 if (likely(end == (loff_t) -1)) { 548 limit = info->next_index; 549 upper_limit = SHMEM_MAX_INDEX; 550 info->next_index = idx; 551 needs_lock = NULL; 552 punch_hole = 0; 553 } else { 554 if (end + 1 >= inode->i_size) { /* we may free a little more */ 555 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >> 556 PAGE_CACHE_SHIFT; 557 upper_limit = SHMEM_MAX_INDEX; 558 } else { 559 limit = (end + 1) >> PAGE_CACHE_SHIFT; 560 upper_limit = limit; 561 } 562 needs_lock = &info->lock; 563 punch_hole = 1; 564 } 565 566 topdir = info->i_indirect; 567 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) { 568 info->i_indirect = NULL; 569 nr_pages_to_free++; 570 list_add(&topdir->lru, &pages_to_free); 571 } 572 spin_unlock(&info->lock); 573 574 if (info->swapped && idx < SHMEM_NR_DIRECT) { 575 ptr = info->i_direct; 576 size = limit; 577 if (size > SHMEM_NR_DIRECT) 578 size = SHMEM_NR_DIRECT; 579 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock); 580 } 581 582 /* 583 * If there are no indirect blocks or we are punching a hole 584 * below indirect blocks, nothing to be done. 585 */ 586 if (!topdir || limit <= SHMEM_NR_DIRECT) 587 goto done2; 588 589 /* 590 * The truncation case has already dropped info->lock, and we're safe 591 * because i_size and next_index have already been lowered, preventing 592 * access beyond. But in the punch_hole case, we still need to take 593 * the lock when updating the swap directory, because there might be 594 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or 595 * shmem_writepage. However, whenever we find we can remove a whole 596 * directory page (not at the misaligned start or end of the range), 597 * we first NULLify its pointer in the level above, and then have no 598 * need to take the lock when updating its contents: needs_lock and 599 * punch_lock (either pointing to info->lock or NULL) manage this. 600 */ 601 602 upper_limit -= SHMEM_NR_DIRECT; 603 limit -= SHMEM_NR_DIRECT; 604 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0; 605 offset = idx % ENTRIES_PER_PAGE; 606 idx -= offset; 607 608 dir = shmem_dir_map(topdir); 609 stage = ENTRIES_PER_PAGEPAGE/2; 610 if (idx < ENTRIES_PER_PAGEPAGE/2) { 611 middir = topdir; 612 diroff = idx/ENTRIES_PER_PAGE; 613 } else { 614 dir += ENTRIES_PER_PAGE/2; 615 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE; 616 while (stage <= idx) 617 stage += ENTRIES_PER_PAGEPAGE; 618 middir = *dir; 619 if (*dir) { 620 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) % 621 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE; 622 if (!diroff && !offset && upper_limit >= stage) { 623 if (needs_lock) { 624 spin_lock(needs_lock); 625 *dir = NULL; 626 spin_unlock(needs_lock); 627 needs_lock = NULL; 628 } else 629 *dir = NULL; 630 nr_pages_to_free++; 631 list_add(&middir->lru, &pages_to_free); 632 } 633 shmem_dir_unmap(dir); 634 dir = shmem_dir_map(middir); 635 } else { 636 diroff = 0; 637 offset = 0; 638 idx = stage; 639 } 640 } 641 642 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) { 643 if (unlikely(idx == stage)) { 644 shmem_dir_unmap(dir); 645 dir = shmem_dir_map(topdir) + 646 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 647 while (!*dir) { 648 dir++; 649 idx += ENTRIES_PER_PAGEPAGE; 650 if (idx >= limit) 651 goto done1; 652 } 653 stage = idx + ENTRIES_PER_PAGEPAGE; 654 middir = *dir; 655 if (punch_hole) 656 needs_lock = &info->lock; 657 if (upper_limit >= stage) { 658 if (needs_lock) { 659 spin_lock(needs_lock); 660 *dir = NULL; 661 spin_unlock(needs_lock); 662 needs_lock = NULL; 663 } else 664 *dir = NULL; 665 nr_pages_to_free++; 666 list_add(&middir->lru, &pages_to_free); 667 } 668 shmem_dir_unmap(dir); 669 cond_resched(); 670 dir = shmem_dir_map(middir); 671 diroff = 0; 672 } 673 punch_lock = needs_lock; 674 subdir = dir[diroff]; 675 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) { 676 if (needs_lock) { 677 spin_lock(needs_lock); 678 dir[diroff] = NULL; 679 spin_unlock(needs_lock); 680 punch_lock = NULL; 681 } else 682 dir[diroff] = NULL; 683 nr_pages_to_free++; 684 list_add(&subdir->lru, &pages_to_free); 685 } 686 if (subdir && page_private(subdir) /* has swap entries */) { 687 size = limit - idx; 688 if (size > ENTRIES_PER_PAGE) 689 size = ENTRIES_PER_PAGE; 690 freed = shmem_map_and_free_swp(subdir, 691 offset, size, &dir, punch_lock); 692 if (!dir) 693 dir = shmem_dir_map(middir); 694 nr_swaps_freed += freed; 695 if (offset || punch_lock) { 696 spin_lock(&info->lock); 697 set_page_private(subdir, 698 page_private(subdir) - freed); 699 spin_unlock(&info->lock); 700 } else 701 BUG_ON(page_private(subdir) != freed); 702 } 703 offset = 0; 704 } 705 done1: 706 shmem_dir_unmap(dir); 707 done2: 708 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) { 709 /* 710 * Call truncate_inode_pages again: racing shmem_unuse_inode 711 * may have swizzled a page in from swap since vmtruncate or 712 * generic_delete_inode did it, before we lowered next_index. 713 * Also, though shmem_getpage checks i_size before adding to 714 * cache, no recheck after: so fix the narrow window there too. 715 * 716 * Recalling truncate_inode_pages_range and unmap_mapping_range 717 * every time for punch_hole (which never got a chance to clear 718 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive, 719 * yet hardly ever necessary: try to optimize them out later. 720 */ 721 truncate_inode_pages_range(inode->i_mapping, start, end); 722 if (punch_hole) 723 unmap_mapping_range(inode->i_mapping, start, 724 end - start, 1); 725 } 726 727 spin_lock(&info->lock); 728 info->flags &= ~SHMEM_TRUNCATE; 729 info->swapped -= nr_swaps_freed; 730 if (nr_pages_to_free) 731 shmem_free_blocks(inode, nr_pages_to_free); 732 shmem_recalc_inode(inode); 733 spin_unlock(&info->lock); 734 735 /* 736 * Empty swap vector directory pages to be freed? 737 */ 738 if (!list_empty(&pages_to_free)) { 739 pages_to_free.prev->next = NULL; 740 shmem_free_pages(pages_to_free.next); 741 } 742 } 743 744 static void shmem_truncate(struct inode *inode) 745 { 746 shmem_truncate_range(inode, inode->i_size, (loff_t)-1); 747 } 748 749 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) 750 { 751 struct inode *inode = dentry->d_inode; 752 struct page *page = NULL; 753 int error; 754 755 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 756 if (attr->ia_size < inode->i_size) { 757 /* 758 * If truncating down to a partial page, then 759 * if that page is already allocated, hold it 760 * in memory until the truncation is over, so 761 * truncate_partial_page cannnot miss it were 762 * it assigned to swap. 763 */ 764 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) { 765 (void) shmem_getpage(inode, 766 attr->ia_size>>PAGE_CACHE_SHIFT, 767 &page, SGP_READ, NULL); 768 if (page) 769 unlock_page(page); 770 } 771 /* 772 * Reset SHMEM_PAGEIN flag so that shmem_truncate can 773 * detect if any pages might have been added to cache 774 * after truncate_inode_pages. But we needn't bother 775 * if it's being fully truncated to zero-length: the 776 * nrpages check is efficient enough in that case. 777 */ 778 if (attr->ia_size) { 779 struct shmem_inode_info *info = SHMEM_I(inode); 780 spin_lock(&info->lock); 781 info->flags &= ~SHMEM_PAGEIN; 782 spin_unlock(&info->lock); 783 } 784 } 785 } 786 787 error = inode_change_ok(inode, attr); 788 if (!error) 789 error = inode_setattr(inode, attr); 790 #ifdef CONFIG_TMPFS_POSIX_ACL 791 if (!error && (attr->ia_valid & ATTR_MODE)) 792 error = generic_acl_chmod(inode, &shmem_acl_ops); 793 #endif 794 if (page) 795 page_cache_release(page); 796 return error; 797 } 798 799 static void shmem_delete_inode(struct inode *inode) 800 { 801 struct shmem_inode_info *info = SHMEM_I(inode); 802 803 if (inode->i_op->truncate == shmem_truncate) { 804 truncate_inode_pages(inode->i_mapping, 0); 805 shmem_unacct_size(info->flags, inode->i_size); 806 inode->i_size = 0; 807 shmem_truncate(inode); 808 if (!list_empty(&info->swaplist)) { 809 mutex_lock(&shmem_swaplist_mutex); 810 list_del_init(&info->swaplist); 811 mutex_unlock(&shmem_swaplist_mutex); 812 } 813 } 814 BUG_ON(inode->i_blocks); 815 shmem_free_inode(inode->i_sb); 816 clear_inode(inode); 817 } 818 819 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) 820 { 821 swp_entry_t *ptr; 822 823 for (ptr = dir; ptr < edir; ptr++) { 824 if (ptr->val == entry.val) 825 return ptr - dir; 826 } 827 return -1; 828 } 829 830 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page) 831 { 832 struct inode *inode; 833 unsigned long idx; 834 unsigned long size; 835 unsigned long limit; 836 unsigned long stage; 837 struct page **dir; 838 struct page *subdir; 839 swp_entry_t *ptr; 840 int offset; 841 int error; 842 843 idx = 0; 844 ptr = info->i_direct; 845 spin_lock(&info->lock); 846 if (!info->swapped) { 847 list_del_init(&info->swaplist); 848 goto lost2; 849 } 850 limit = info->next_index; 851 size = limit; 852 if (size > SHMEM_NR_DIRECT) 853 size = SHMEM_NR_DIRECT; 854 offset = shmem_find_swp(entry, ptr, ptr+size); 855 if (offset >= 0) 856 goto found; 857 if (!info->i_indirect) 858 goto lost2; 859 860 dir = shmem_dir_map(info->i_indirect); 861 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2; 862 863 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) { 864 if (unlikely(idx == stage)) { 865 shmem_dir_unmap(dir-1); 866 if (cond_resched_lock(&info->lock)) { 867 /* check it has not been truncated */ 868 if (limit > info->next_index) { 869 limit = info->next_index; 870 if (idx >= limit) 871 goto lost2; 872 } 873 } 874 dir = shmem_dir_map(info->i_indirect) + 875 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE; 876 while (!*dir) { 877 dir++; 878 idx += ENTRIES_PER_PAGEPAGE; 879 if (idx >= limit) 880 goto lost1; 881 } 882 stage = idx + ENTRIES_PER_PAGEPAGE; 883 subdir = *dir; 884 shmem_dir_unmap(dir); 885 dir = shmem_dir_map(subdir); 886 } 887 subdir = *dir; 888 if (subdir && page_private(subdir)) { 889 ptr = shmem_swp_map(subdir); 890 size = limit - idx; 891 if (size > ENTRIES_PER_PAGE) 892 size = ENTRIES_PER_PAGE; 893 offset = shmem_find_swp(entry, ptr, ptr+size); 894 shmem_swp_unmap(ptr); 895 if (offset >= 0) { 896 shmem_dir_unmap(dir); 897 goto found; 898 } 899 } 900 } 901 lost1: 902 shmem_dir_unmap(dir-1); 903 lost2: 904 spin_unlock(&info->lock); 905 return 0; 906 found: 907 idx += offset; 908 inode = igrab(&info->vfs_inode); 909 spin_unlock(&info->lock); 910 911 /* 912 * Move _head_ to start search for next from here. 913 * But be careful: shmem_delete_inode checks list_empty without taking 914 * mutex, and there's an instant in list_move_tail when info->swaplist 915 * would appear empty, if it were the only one on shmem_swaplist. We 916 * could avoid doing it if inode NULL; or use this minor optimization. 917 */ 918 if (shmem_swaplist.next != &info->swaplist) 919 list_move_tail(&shmem_swaplist, &info->swaplist); 920 mutex_unlock(&shmem_swaplist_mutex); 921 922 error = 1; 923 if (!inode) 924 goto out; 925 /* Precharge page while we can wait, compensate afterwards */ 926 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 927 if (error) 928 goto out; 929 error = radix_tree_preload(GFP_KERNEL); 930 if (error) 931 goto uncharge; 932 error = 1; 933 934 spin_lock(&info->lock); 935 ptr = shmem_swp_entry(info, idx, NULL); 936 if (ptr && ptr->val == entry.val) 937 error = add_to_page_cache(page, inode->i_mapping, 938 idx, GFP_NOWAIT); 939 if (error == -EEXIST) { 940 struct page *filepage = find_get_page(inode->i_mapping, idx); 941 error = 1; 942 if (filepage) { 943 /* 944 * There might be a more uptodate page coming down 945 * from a stacked writepage: forget our swappage if so. 946 */ 947 if (PageUptodate(filepage)) 948 error = 0; 949 page_cache_release(filepage); 950 } 951 } 952 if (!error) { 953 delete_from_swap_cache(page); 954 set_page_dirty(page); 955 info->flags |= SHMEM_PAGEIN; 956 shmem_swp_set(info, ptr, 0); 957 swap_free(entry); 958 error = 1; /* not an error, but entry was found */ 959 } 960 if (ptr) 961 shmem_swp_unmap(ptr); 962 spin_unlock(&info->lock); 963 radix_tree_preload_end(); 964 uncharge: 965 mem_cgroup_uncharge_page(page); 966 out: 967 unlock_page(page); 968 page_cache_release(page); 969 iput(inode); /* allows for NULL */ 970 return error; 971 } 972 973 /* 974 * shmem_unuse() search for an eventually swapped out shmem page. 975 */ 976 int shmem_unuse(swp_entry_t entry, struct page *page) 977 { 978 struct list_head *p, *next; 979 struct shmem_inode_info *info; 980 int found = 0; 981 982 mutex_lock(&shmem_swaplist_mutex); 983 list_for_each_safe(p, next, &shmem_swaplist) { 984 info = list_entry(p, struct shmem_inode_info, swaplist); 985 found = shmem_unuse_inode(info, entry, page); 986 cond_resched(); 987 if (found) 988 goto out; 989 } 990 mutex_unlock(&shmem_swaplist_mutex); 991 out: return found; /* 0 or 1 or -ENOMEM */ 992 } 993 994 /* 995 * Move the page from the page cache to the swap cache. 996 */ 997 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 998 { 999 struct shmem_inode_info *info; 1000 swp_entry_t *entry, swap; 1001 struct address_space *mapping; 1002 unsigned long index; 1003 struct inode *inode; 1004 1005 BUG_ON(!PageLocked(page)); 1006 mapping = page->mapping; 1007 index = page->index; 1008 inode = mapping->host; 1009 info = SHMEM_I(inode); 1010 if (info->flags & VM_LOCKED) 1011 goto redirty; 1012 if (!total_swap_pages) 1013 goto redirty; 1014 1015 /* 1016 * shmem_backing_dev_info's capabilities prevent regular writeback or 1017 * sync from ever calling shmem_writepage; but a stacking filesystem 1018 * may use the ->writepage of its underlying filesystem, in which case 1019 * tmpfs should write out to swap only in response to memory pressure, 1020 * and not for pdflush or sync. However, in those cases, we do still 1021 * want to check if there's a redundant swappage to be discarded. 1022 */ 1023 if (wbc->for_reclaim) 1024 swap = get_swap_page(); 1025 else 1026 swap.val = 0; 1027 1028 spin_lock(&info->lock); 1029 if (index >= info->next_index) { 1030 BUG_ON(!(info->flags & SHMEM_TRUNCATE)); 1031 goto unlock; 1032 } 1033 entry = shmem_swp_entry(info, index, NULL); 1034 if (entry->val) { 1035 /* 1036 * The more uptodate page coming down from a stacked 1037 * writepage should replace our old swappage. 1038 */ 1039 free_swap_and_cache(*entry); 1040 shmem_swp_set(info, entry, 0); 1041 } 1042 shmem_recalc_inode(inode); 1043 1044 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1045 remove_from_page_cache(page); 1046 shmem_swp_set(info, entry, swap.val); 1047 shmem_swp_unmap(entry); 1048 if (list_empty(&info->swaplist)) 1049 inode = igrab(inode); 1050 else 1051 inode = NULL; 1052 spin_unlock(&info->lock); 1053 swap_duplicate(swap); 1054 BUG_ON(page_mapped(page)); 1055 page_cache_release(page); /* pagecache ref */ 1056 set_page_dirty(page); 1057 unlock_page(page); 1058 if (inode) { 1059 mutex_lock(&shmem_swaplist_mutex); 1060 /* move instead of add in case we're racing */ 1061 list_move_tail(&info->swaplist, &shmem_swaplist); 1062 mutex_unlock(&shmem_swaplist_mutex); 1063 iput(inode); 1064 } 1065 return 0; 1066 } 1067 1068 shmem_swp_unmap(entry); 1069 unlock: 1070 spin_unlock(&info->lock); 1071 swap_free(swap); 1072 redirty: 1073 set_page_dirty(page); 1074 if (wbc->for_reclaim) 1075 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1076 unlock_page(page); 1077 return 0; 1078 } 1079 1080 #ifdef CONFIG_NUMA 1081 #ifdef CONFIG_TMPFS 1082 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1083 { 1084 char buffer[64]; 1085 1086 if (!mpol || mpol->mode == MPOL_DEFAULT) 1087 return; /* show nothing */ 1088 1089 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 1090 1091 seq_printf(seq, ",mpol=%s", buffer); 1092 } 1093 1094 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1095 { 1096 struct mempolicy *mpol = NULL; 1097 if (sbinfo->mpol) { 1098 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1099 mpol = sbinfo->mpol; 1100 mpol_get(mpol); 1101 spin_unlock(&sbinfo->stat_lock); 1102 } 1103 return mpol; 1104 } 1105 #endif /* CONFIG_TMPFS */ 1106 1107 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1108 struct shmem_inode_info *info, unsigned long idx) 1109 { 1110 struct mempolicy mpol, *spol; 1111 struct vm_area_struct pvma; 1112 struct page *page; 1113 1114 spol = mpol_cond_copy(&mpol, 1115 mpol_shared_policy_lookup(&info->policy, idx)); 1116 1117 /* Create a pseudo vma that just contains the policy */ 1118 pvma.vm_start = 0; 1119 pvma.vm_pgoff = idx; 1120 pvma.vm_ops = NULL; 1121 pvma.vm_policy = spol; 1122 page = swapin_readahead(entry, gfp, &pvma, 0); 1123 return page; 1124 } 1125 1126 static struct page *shmem_alloc_page(gfp_t gfp, 1127 struct shmem_inode_info *info, unsigned long idx) 1128 { 1129 struct vm_area_struct pvma; 1130 1131 /* Create a pseudo vma that just contains the policy */ 1132 pvma.vm_start = 0; 1133 pvma.vm_pgoff = idx; 1134 pvma.vm_ops = NULL; 1135 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx); 1136 1137 /* 1138 * alloc_page_vma() will drop the shared policy reference 1139 */ 1140 return alloc_page_vma(gfp, &pvma, 0); 1141 } 1142 #else /* !CONFIG_NUMA */ 1143 #ifdef CONFIG_TMPFS 1144 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p) 1145 { 1146 } 1147 #endif /* CONFIG_TMPFS */ 1148 1149 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp, 1150 struct shmem_inode_info *info, unsigned long idx) 1151 { 1152 return swapin_readahead(entry, gfp, NULL, 0); 1153 } 1154 1155 static inline struct page *shmem_alloc_page(gfp_t gfp, 1156 struct shmem_inode_info *info, unsigned long idx) 1157 { 1158 return alloc_page(gfp); 1159 } 1160 #endif /* CONFIG_NUMA */ 1161 1162 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1163 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1164 { 1165 return NULL; 1166 } 1167 #endif 1168 1169 /* 1170 * shmem_getpage - either get the page from swap or allocate a new one 1171 * 1172 * If we allocate a new one we do not mark it dirty. That's up to the 1173 * vm. If we swap it in we mark it dirty since we also free the swap 1174 * entry since a page cannot live in both the swap and page cache 1175 */ 1176 static int shmem_getpage(struct inode *inode, unsigned long idx, 1177 struct page **pagep, enum sgp_type sgp, int *type) 1178 { 1179 struct address_space *mapping = inode->i_mapping; 1180 struct shmem_inode_info *info = SHMEM_I(inode); 1181 struct shmem_sb_info *sbinfo; 1182 struct page *filepage = *pagep; 1183 struct page *swappage; 1184 swp_entry_t *entry; 1185 swp_entry_t swap; 1186 gfp_t gfp; 1187 int error; 1188 1189 if (idx >= SHMEM_MAX_INDEX) 1190 return -EFBIG; 1191 1192 if (type) 1193 *type = 0; 1194 1195 /* 1196 * Normally, filepage is NULL on entry, and either found 1197 * uptodate immediately, or allocated and zeroed, or read 1198 * in under swappage, which is then assigned to filepage. 1199 * But shmem_readpage (required for splice) passes in a locked 1200 * filepage, which may be found not uptodate by other callers 1201 * too, and may need to be copied from the swappage read in. 1202 */ 1203 repeat: 1204 if (!filepage) 1205 filepage = find_lock_page(mapping, idx); 1206 if (filepage && PageUptodate(filepage)) 1207 goto done; 1208 error = 0; 1209 gfp = mapping_gfp_mask(mapping); 1210 if (!filepage) { 1211 /* 1212 * Try to preload while we can wait, to not make a habit of 1213 * draining atomic reserves; but don't latch on to this cpu. 1214 */ 1215 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM); 1216 if (error) 1217 goto failed; 1218 radix_tree_preload_end(); 1219 } 1220 1221 spin_lock(&info->lock); 1222 shmem_recalc_inode(inode); 1223 entry = shmem_swp_alloc(info, idx, sgp); 1224 if (IS_ERR(entry)) { 1225 spin_unlock(&info->lock); 1226 error = PTR_ERR(entry); 1227 goto failed; 1228 } 1229 swap = *entry; 1230 1231 if (swap.val) { 1232 /* Look it up and read it in.. */ 1233 swappage = lookup_swap_cache(swap); 1234 if (!swappage) { 1235 shmem_swp_unmap(entry); 1236 /* here we actually do the io */ 1237 if (type && !(*type & VM_FAULT_MAJOR)) { 1238 __count_vm_event(PGMAJFAULT); 1239 *type |= VM_FAULT_MAJOR; 1240 } 1241 spin_unlock(&info->lock); 1242 swappage = shmem_swapin(swap, gfp, info, idx); 1243 if (!swappage) { 1244 spin_lock(&info->lock); 1245 entry = shmem_swp_alloc(info, idx, sgp); 1246 if (IS_ERR(entry)) 1247 error = PTR_ERR(entry); 1248 else { 1249 if (entry->val == swap.val) 1250 error = -ENOMEM; 1251 shmem_swp_unmap(entry); 1252 } 1253 spin_unlock(&info->lock); 1254 if (error) 1255 goto failed; 1256 goto repeat; 1257 } 1258 wait_on_page_locked(swappage); 1259 page_cache_release(swappage); 1260 goto repeat; 1261 } 1262 1263 /* We have to do this with page locked to prevent races */ 1264 if (TestSetPageLocked(swappage)) { 1265 shmem_swp_unmap(entry); 1266 spin_unlock(&info->lock); 1267 wait_on_page_locked(swappage); 1268 page_cache_release(swappage); 1269 goto repeat; 1270 } 1271 if (PageWriteback(swappage)) { 1272 shmem_swp_unmap(entry); 1273 spin_unlock(&info->lock); 1274 wait_on_page_writeback(swappage); 1275 unlock_page(swappage); 1276 page_cache_release(swappage); 1277 goto repeat; 1278 } 1279 if (!PageUptodate(swappage)) { 1280 shmem_swp_unmap(entry); 1281 spin_unlock(&info->lock); 1282 unlock_page(swappage); 1283 page_cache_release(swappage); 1284 error = -EIO; 1285 goto failed; 1286 } 1287 1288 if (filepage) { 1289 shmem_swp_set(info, entry, 0); 1290 shmem_swp_unmap(entry); 1291 delete_from_swap_cache(swappage); 1292 spin_unlock(&info->lock); 1293 copy_highpage(filepage, swappage); 1294 unlock_page(swappage); 1295 page_cache_release(swappage); 1296 flush_dcache_page(filepage); 1297 SetPageUptodate(filepage); 1298 set_page_dirty(filepage); 1299 swap_free(swap); 1300 } else if (!(error = add_to_page_cache( 1301 swappage, mapping, idx, GFP_NOWAIT))) { 1302 info->flags |= SHMEM_PAGEIN; 1303 shmem_swp_set(info, entry, 0); 1304 shmem_swp_unmap(entry); 1305 delete_from_swap_cache(swappage); 1306 spin_unlock(&info->lock); 1307 filepage = swappage; 1308 set_page_dirty(filepage); 1309 swap_free(swap); 1310 } else { 1311 shmem_swp_unmap(entry); 1312 spin_unlock(&info->lock); 1313 unlock_page(swappage); 1314 if (error == -ENOMEM) { 1315 /* allow reclaim from this memory cgroup */ 1316 error = mem_cgroup_cache_charge(swappage, 1317 current->mm, gfp & ~__GFP_HIGHMEM); 1318 if (error) { 1319 page_cache_release(swappage); 1320 goto failed; 1321 } 1322 mem_cgroup_uncharge_page(swappage); 1323 } 1324 page_cache_release(swappage); 1325 goto repeat; 1326 } 1327 } else if (sgp == SGP_READ && !filepage) { 1328 shmem_swp_unmap(entry); 1329 filepage = find_get_page(mapping, idx); 1330 if (filepage && 1331 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) { 1332 spin_unlock(&info->lock); 1333 wait_on_page_locked(filepage); 1334 page_cache_release(filepage); 1335 filepage = NULL; 1336 goto repeat; 1337 } 1338 spin_unlock(&info->lock); 1339 } else { 1340 shmem_swp_unmap(entry); 1341 sbinfo = SHMEM_SB(inode->i_sb); 1342 if (sbinfo->max_blocks) { 1343 spin_lock(&sbinfo->stat_lock); 1344 if (sbinfo->free_blocks == 0 || 1345 shmem_acct_block(info->flags)) { 1346 spin_unlock(&sbinfo->stat_lock); 1347 spin_unlock(&info->lock); 1348 error = -ENOSPC; 1349 goto failed; 1350 } 1351 sbinfo->free_blocks--; 1352 inode->i_blocks += BLOCKS_PER_PAGE; 1353 spin_unlock(&sbinfo->stat_lock); 1354 } else if (shmem_acct_block(info->flags)) { 1355 spin_unlock(&info->lock); 1356 error = -ENOSPC; 1357 goto failed; 1358 } 1359 1360 if (!filepage) { 1361 spin_unlock(&info->lock); 1362 filepage = shmem_alloc_page(gfp, info, idx); 1363 if (!filepage) { 1364 shmem_unacct_blocks(info->flags, 1); 1365 shmem_free_blocks(inode, 1); 1366 error = -ENOMEM; 1367 goto failed; 1368 } 1369 1370 /* Precharge page while we can wait, compensate after */ 1371 error = mem_cgroup_cache_charge(filepage, current->mm, 1372 gfp & ~__GFP_HIGHMEM); 1373 if (error) { 1374 page_cache_release(filepage); 1375 shmem_unacct_blocks(info->flags, 1); 1376 shmem_free_blocks(inode, 1); 1377 filepage = NULL; 1378 goto failed; 1379 } 1380 1381 spin_lock(&info->lock); 1382 entry = shmem_swp_alloc(info, idx, sgp); 1383 if (IS_ERR(entry)) 1384 error = PTR_ERR(entry); 1385 else { 1386 swap = *entry; 1387 shmem_swp_unmap(entry); 1388 } 1389 if (error || swap.val || 0 != add_to_page_cache_lru( 1390 filepage, mapping, idx, GFP_NOWAIT)) { 1391 spin_unlock(&info->lock); 1392 mem_cgroup_uncharge_page(filepage); 1393 page_cache_release(filepage); 1394 shmem_unacct_blocks(info->flags, 1); 1395 shmem_free_blocks(inode, 1); 1396 filepage = NULL; 1397 if (error) 1398 goto failed; 1399 goto repeat; 1400 } 1401 mem_cgroup_uncharge_page(filepage); 1402 info->flags |= SHMEM_PAGEIN; 1403 } 1404 1405 info->alloced++; 1406 spin_unlock(&info->lock); 1407 clear_highpage(filepage); 1408 flush_dcache_page(filepage); 1409 SetPageUptodate(filepage); 1410 if (sgp == SGP_DIRTY) 1411 set_page_dirty(filepage); 1412 } 1413 done: 1414 *pagep = filepage; 1415 return 0; 1416 1417 failed: 1418 if (*pagep != filepage) { 1419 unlock_page(filepage); 1420 page_cache_release(filepage); 1421 } 1422 return error; 1423 } 1424 1425 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1426 { 1427 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1428 int error; 1429 int ret; 1430 1431 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode)) 1432 return VM_FAULT_SIGBUS; 1433 1434 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1435 if (error) 1436 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1437 1438 mark_page_accessed(vmf->page); 1439 return ret | VM_FAULT_LOCKED; 1440 } 1441 1442 #ifdef CONFIG_NUMA 1443 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new) 1444 { 1445 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1446 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new); 1447 } 1448 1449 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1450 unsigned long addr) 1451 { 1452 struct inode *i = vma->vm_file->f_path.dentry->d_inode; 1453 unsigned long idx; 1454 1455 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1456 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx); 1457 } 1458 #endif 1459 1460 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1461 { 1462 struct inode *inode = file->f_path.dentry->d_inode; 1463 struct shmem_inode_info *info = SHMEM_I(inode); 1464 int retval = -ENOMEM; 1465 1466 spin_lock(&info->lock); 1467 if (lock && !(info->flags & VM_LOCKED)) { 1468 if (!user_shm_lock(inode->i_size, user)) 1469 goto out_nomem; 1470 info->flags |= VM_LOCKED; 1471 } 1472 if (!lock && (info->flags & VM_LOCKED) && user) { 1473 user_shm_unlock(inode->i_size, user); 1474 info->flags &= ~VM_LOCKED; 1475 } 1476 retval = 0; 1477 out_nomem: 1478 spin_unlock(&info->lock); 1479 return retval; 1480 } 1481 1482 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1483 { 1484 file_accessed(file); 1485 vma->vm_ops = &shmem_vm_ops; 1486 vma->vm_flags |= VM_CAN_NONLINEAR; 1487 return 0; 1488 } 1489 1490 static struct inode * 1491 shmem_get_inode(struct super_block *sb, int mode, dev_t dev) 1492 { 1493 struct inode *inode; 1494 struct shmem_inode_info *info; 1495 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1496 1497 if (shmem_reserve_inode(sb)) 1498 return NULL; 1499 1500 inode = new_inode(sb); 1501 if (inode) { 1502 inode->i_mode = mode; 1503 inode->i_uid = current->fsuid; 1504 inode->i_gid = current->fsgid; 1505 inode->i_blocks = 0; 1506 inode->i_mapping->a_ops = &shmem_aops; 1507 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1508 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1509 inode->i_generation = get_seconds(); 1510 info = SHMEM_I(inode); 1511 memset(info, 0, (char *)inode - (char *)info); 1512 spin_lock_init(&info->lock); 1513 INIT_LIST_HEAD(&info->swaplist); 1514 1515 switch (mode & S_IFMT) { 1516 default: 1517 inode->i_op = &shmem_special_inode_operations; 1518 init_special_inode(inode, mode, dev); 1519 break; 1520 case S_IFREG: 1521 inode->i_op = &shmem_inode_operations; 1522 inode->i_fop = &shmem_file_operations; 1523 mpol_shared_policy_init(&info->policy, 1524 shmem_get_sbmpol(sbinfo)); 1525 break; 1526 case S_IFDIR: 1527 inc_nlink(inode); 1528 /* Some things misbehave if size == 0 on a directory */ 1529 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1530 inode->i_op = &shmem_dir_inode_operations; 1531 inode->i_fop = &simple_dir_operations; 1532 break; 1533 case S_IFLNK: 1534 /* 1535 * Must not load anything in the rbtree, 1536 * mpol_free_shared_policy will not be called. 1537 */ 1538 mpol_shared_policy_init(&info->policy, NULL); 1539 break; 1540 } 1541 } else 1542 shmem_free_inode(sb); 1543 return inode; 1544 } 1545 1546 #ifdef CONFIG_TMPFS 1547 static const struct inode_operations shmem_symlink_inode_operations; 1548 static const struct inode_operations shmem_symlink_inline_operations; 1549 1550 /* 1551 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin; 1552 * but providing them allows a tmpfs file to be used for splice, sendfile, and 1553 * below the loop driver, in the generic fashion that many filesystems support. 1554 */ 1555 static int shmem_readpage(struct file *file, struct page *page) 1556 { 1557 struct inode *inode = page->mapping->host; 1558 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL); 1559 unlock_page(page); 1560 return error; 1561 } 1562 1563 static int 1564 shmem_write_begin(struct file *file, struct address_space *mapping, 1565 loff_t pos, unsigned len, unsigned flags, 1566 struct page **pagep, void **fsdata) 1567 { 1568 struct inode *inode = mapping->host; 1569 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1570 *pagep = NULL; 1571 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1572 } 1573 1574 static int 1575 shmem_write_end(struct file *file, struct address_space *mapping, 1576 loff_t pos, unsigned len, unsigned copied, 1577 struct page *page, void *fsdata) 1578 { 1579 struct inode *inode = mapping->host; 1580 1581 if (pos + copied > inode->i_size) 1582 i_size_write(inode, pos + copied); 1583 1584 unlock_page(page); 1585 set_page_dirty(page); 1586 page_cache_release(page); 1587 1588 return copied; 1589 } 1590 1591 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1592 { 1593 struct inode *inode = filp->f_path.dentry->d_inode; 1594 struct address_space *mapping = inode->i_mapping; 1595 unsigned long index, offset; 1596 enum sgp_type sgp = SGP_READ; 1597 1598 /* 1599 * Might this read be for a stacking filesystem? Then when reading 1600 * holes of a sparse file, we actually need to allocate those pages, 1601 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1602 */ 1603 if (segment_eq(get_fs(), KERNEL_DS)) 1604 sgp = SGP_DIRTY; 1605 1606 index = *ppos >> PAGE_CACHE_SHIFT; 1607 offset = *ppos & ~PAGE_CACHE_MASK; 1608 1609 for (;;) { 1610 struct page *page = NULL; 1611 unsigned long end_index, nr, ret; 1612 loff_t i_size = i_size_read(inode); 1613 1614 end_index = i_size >> PAGE_CACHE_SHIFT; 1615 if (index > end_index) 1616 break; 1617 if (index == end_index) { 1618 nr = i_size & ~PAGE_CACHE_MASK; 1619 if (nr <= offset) 1620 break; 1621 } 1622 1623 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1624 if (desc->error) { 1625 if (desc->error == -EINVAL) 1626 desc->error = 0; 1627 break; 1628 } 1629 if (page) 1630 unlock_page(page); 1631 1632 /* 1633 * We must evaluate after, since reads (unlike writes) 1634 * are called without i_mutex protection against truncate 1635 */ 1636 nr = PAGE_CACHE_SIZE; 1637 i_size = i_size_read(inode); 1638 end_index = i_size >> PAGE_CACHE_SHIFT; 1639 if (index == end_index) { 1640 nr = i_size & ~PAGE_CACHE_MASK; 1641 if (nr <= offset) { 1642 if (page) 1643 page_cache_release(page); 1644 break; 1645 } 1646 } 1647 nr -= offset; 1648 1649 if (page) { 1650 /* 1651 * If users can be writing to this page using arbitrary 1652 * virtual addresses, take care about potential aliasing 1653 * before reading the page on the kernel side. 1654 */ 1655 if (mapping_writably_mapped(mapping)) 1656 flush_dcache_page(page); 1657 /* 1658 * Mark the page accessed if we read the beginning. 1659 */ 1660 if (!offset) 1661 mark_page_accessed(page); 1662 } else { 1663 page = ZERO_PAGE(0); 1664 page_cache_get(page); 1665 } 1666 1667 /* 1668 * Ok, we have the page, and it's up-to-date, so 1669 * now we can copy it to user space... 1670 * 1671 * The actor routine returns how many bytes were actually used.. 1672 * NOTE! This may not be the same as how much of a user buffer 1673 * we filled up (we may be padding etc), so we can only update 1674 * "pos" here (the actor routine has to update the user buffer 1675 * pointers and the remaining count). 1676 */ 1677 ret = actor(desc, page, offset, nr); 1678 offset += ret; 1679 index += offset >> PAGE_CACHE_SHIFT; 1680 offset &= ~PAGE_CACHE_MASK; 1681 1682 page_cache_release(page); 1683 if (ret != nr || !desc->count) 1684 break; 1685 1686 cond_resched(); 1687 } 1688 1689 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1690 file_accessed(filp); 1691 } 1692 1693 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1694 { 1695 read_descriptor_t desc; 1696 1697 if ((ssize_t) count < 0) 1698 return -EINVAL; 1699 if (!access_ok(VERIFY_WRITE, buf, count)) 1700 return -EFAULT; 1701 if (!count) 1702 return 0; 1703 1704 desc.written = 0; 1705 desc.count = count; 1706 desc.arg.buf = buf; 1707 desc.error = 0; 1708 1709 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1710 if (desc.written) 1711 return desc.written; 1712 return desc.error; 1713 } 1714 1715 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1716 { 1717 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1718 1719 buf->f_type = TMPFS_MAGIC; 1720 buf->f_bsize = PAGE_CACHE_SIZE; 1721 buf->f_namelen = NAME_MAX; 1722 spin_lock(&sbinfo->stat_lock); 1723 if (sbinfo->max_blocks) { 1724 buf->f_blocks = sbinfo->max_blocks; 1725 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; 1726 } 1727 if (sbinfo->max_inodes) { 1728 buf->f_files = sbinfo->max_inodes; 1729 buf->f_ffree = sbinfo->free_inodes; 1730 } 1731 /* else leave those fields 0 like simple_statfs */ 1732 spin_unlock(&sbinfo->stat_lock); 1733 return 0; 1734 } 1735 1736 /* 1737 * File creation. Allocate an inode, and we're done.. 1738 */ 1739 static int 1740 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1741 { 1742 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev); 1743 int error = -ENOSPC; 1744 1745 if (inode) { 1746 error = security_inode_init_security(inode, dir, NULL, NULL, 1747 NULL); 1748 if (error) { 1749 if (error != -EOPNOTSUPP) { 1750 iput(inode); 1751 return error; 1752 } 1753 } 1754 error = shmem_acl_init(inode, dir); 1755 if (error) { 1756 iput(inode); 1757 return error; 1758 } 1759 if (dir->i_mode & S_ISGID) { 1760 inode->i_gid = dir->i_gid; 1761 if (S_ISDIR(mode)) 1762 inode->i_mode |= S_ISGID; 1763 } 1764 dir->i_size += BOGO_DIRENT_SIZE; 1765 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1766 d_instantiate(dentry, inode); 1767 dget(dentry); /* Extra count - pin the dentry in core */ 1768 } 1769 return error; 1770 } 1771 1772 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1773 { 1774 int error; 1775 1776 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1777 return error; 1778 inc_nlink(dir); 1779 return 0; 1780 } 1781 1782 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode, 1783 struct nameidata *nd) 1784 { 1785 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1786 } 1787 1788 /* 1789 * Link a file.. 1790 */ 1791 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1792 { 1793 struct inode *inode = old_dentry->d_inode; 1794 int ret; 1795 1796 /* 1797 * No ordinary (disk based) filesystem counts links as inodes; 1798 * but each new link needs a new dentry, pinning lowmem, and 1799 * tmpfs dentries cannot be pruned until they are unlinked. 1800 */ 1801 ret = shmem_reserve_inode(inode->i_sb); 1802 if (ret) 1803 goto out; 1804 1805 dir->i_size += BOGO_DIRENT_SIZE; 1806 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1807 inc_nlink(inode); 1808 atomic_inc(&inode->i_count); /* New dentry reference */ 1809 dget(dentry); /* Extra pinning count for the created dentry */ 1810 d_instantiate(dentry, inode); 1811 out: 1812 return ret; 1813 } 1814 1815 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1816 { 1817 struct inode *inode = dentry->d_inode; 1818 1819 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1820 shmem_free_inode(inode->i_sb); 1821 1822 dir->i_size -= BOGO_DIRENT_SIZE; 1823 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1824 drop_nlink(inode); 1825 dput(dentry); /* Undo the count from "create" - this does all the work */ 1826 return 0; 1827 } 1828 1829 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 1830 { 1831 if (!simple_empty(dentry)) 1832 return -ENOTEMPTY; 1833 1834 drop_nlink(dentry->d_inode); 1835 drop_nlink(dir); 1836 return shmem_unlink(dir, dentry); 1837 } 1838 1839 /* 1840 * The VFS layer already does all the dentry stuff for rename, 1841 * we just have to decrement the usage count for the target if 1842 * it exists so that the VFS layer correctly free's it when it 1843 * gets overwritten. 1844 */ 1845 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 1846 { 1847 struct inode *inode = old_dentry->d_inode; 1848 int they_are_dirs = S_ISDIR(inode->i_mode); 1849 1850 if (!simple_empty(new_dentry)) 1851 return -ENOTEMPTY; 1852 1853 if (new_dentry->d_inode) { 1854 (void) shmem_unlink(new_dir, new_dentry); 1855 if (they_are_dirs) 1856 drop_nlink(old_dir); 1857 } else if (they_are_dirs) { 1858 drop_nlink(old_dir); 1859 inc_nlink(new_dir); 1860 } 1861 1862 old_dir->i_size -= BOGO_DIRENT_SIZE; 1863 new_dir->i_size += BOGO_DIRENT_SIZE; 1864 old_dir->i_ctime = old_dir->i_mtime = 1865 new_dir->i_ctime = new_dir->i_mtime = 1866 inode->i_ctime = CURRENT_TIME; 1867 return 0; 1868 } 1869 1870 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1871 { 1872 int error; 1873 int len; 1874 struct inode *inode; 1875 struct page *page = NULL; 1876 char *kaddr; 1877 struct shmem_inode_info *info; 1878 1879 len = strlen(symname) + 1; 1880 if (len > PAGE_CACHE_SIZE) 1881 return -ENAMETOOLONG; 1882 1883 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0); 1884 if (!inode) 1885 return -ENOSPC; 1886 1887 error = security_inode_init_security(inode, dir, NULL, NULL, 1888 NULL); 1889 if (error) { 1890 if (error != -EOPNOTSUPP) { 1891 iput(inode); 1892 return error; 1893 } 1894 error = 0; 1895 } 1896 1897 info = SHMEM_I(inode); 1898 inode->i_size = len-1; 1899 if (len <= (char *)inode - (char *)info) { 1900 /* do it inline */ 1901 memcpy(info, symname, len); 1902 inode->i_op = &shmem_symlink_inline_operations; 1903 } else { 1904 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 1905 if (error) { 1906 iput(inode); 1907 return error; 1908 } 1909 unlock_page(page); 1910 inode->i_op = &shmem_symlink_inode_operations; 1911 kaddr = kmap_atomic(page, KM_USER0); 1912 memcpy(kaddr, symname, len); 1913 kunmap_atomic(kaddr, KM_USER0); 1914 set_page_dirty(page); 1915 page_cache_release(page); 1916 } 1917 if (dir->i_mode & S_ISGID) 1918 inode->i_gid = dir->i_gid; 1919 dir->i_size += BOGO_DIRENT_SIZE; 1920 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1921 d_instantiate(dentry, inode); 1922 dget(dentry); 1923 return 0; 1924 } 1925 1926 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd) 1927 { 1928 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode)); 1929 return NULL; 1930 } 1931 1932 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 1933 { 1934 struct page *page = NULL; 1935 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 1936 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page)); 1937 if (page) 1938 unlock_page(page); 1939 return page; 1940 } 1941 1942 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 1943 { 1944 if (!IS_ERR(nd_get_link(nd))) { 1945 struct page *page = cookie; 1946 kunmap(page); 1947 mark_page_accessed(page); 1948 page_cache_release(page); 1949 } 1950 } 1951 1952 static const struct inode_operations shmem_symlink_inline_operations = { 1953 .readlink = generic_readlink, 1954 .follow_link = shmem_follow_link_inline, 1955 }; 1956 1957 static const struct inode_operations shmem_symlink_inode_operations = { 1958 .truncate = shmem_truncate, 1959 .readlink = generic_readlink, 1960 .follow_link = shmem_follow_link, 1961 .put_link = shmem_put_link, 1962 }; 1963 1964 #ifdef CONFIG_TMPFS_POSIX_ACL 1965 /* 1966 * Superblocks without xattr inode operations will get security.* xattr 1967 * support from the VFS "for free". As soon as we have any other xattrs 1968 * like ACLs, we also need to implement the security.* handlers at 1969 * filesystem level, though. 1970 */ 1971 1972 static size_t shmem_xattr_security_list(struct inode *inode, char *list, 1973 size_t list_len, const char *name, 1974 size_t name_len) 1975 { 1976 return security_inode_listsecurity(inode, list, list_len); 1977 } 1978 1979 static int shmem_xattr_security_get(struct inode *inode, const char *name, 1980 void *buffer, size_t size) 1981 { 1982 if (strcmp(name, "") == 0) 1983 return -EINVAL; 1984 return xattr_getsecurity(inode, name, buffer, size); 1985 } 1986 1987 static int shmem_xattr_security_set(struct inode *inode, const char *name, 1988 const void *value, size_t size, int flags) 1989 { 1990 if (strcmp(name, "") == 0) 1991 return -EINVAL; 1992 return security_inode_setsecurity(inode, name, value, size, flags); 1993 } 1994 1995 static struct xattr_handler shmem_xattr_security_handler = { 1996 .prefix = XATTR_SECURITY_PREFIX, 1997 .list = shmem_xattr_security_list, 1998 .get = shmem_xattr_security_get, 1999 .set = shmem_xattr_security_set, 2000 }; 2001 2002 static struct xattr_handler *shmem_xattr_handlers[] = { 2003 &shmem_xattr_acl_access_handler, 2004 &shmem_xattr_acl_default_handler, 2005 &shmem_xattr_security_handler, 2006 NULL 2007 }; 2008 #endif 2009 2010 static struct dentry *shmem_get_parent(struct dentry *child) 2011 { 2012 return ERR_PTR(-ESTALE); 2013 } 2014 2015 static int shmem_match(struct inode *ino, void *vfh) 2016 { 2017 __u32 *fh = vfh; 2018 __u64 inum = fh[2]; 2019 inum = (inum << 32) | fh[1]; 2020 return ino->i_ino == inum && fh[0] == ino->i_generation; 2021 } 2022 2023 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2024 struct fid *fid, int fh_len, int fh_type) 2025 { 2026 struct inode *inode; 2027 struct dentry *dentry = NULL; 2028 u64 inum = fid->raw[2]; 2029 inum = (inum << 32) | fid->raw[1]; 2030 2031 if (fh_len < 3) 2032 return NULL; 2033 2034 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2035 shmem_match, fid->raw); 2036 if (inode) { 2037 dentry = d_find_alias(inode); 2038 iput(inode); 2039 } 2040 2041 return dentry; 2042 } 2043 2044 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, 2045 int connectable) 2046 { 2047 struct inode *inode = dentry->d_inode; 2048 2049 if (*len < 3) 2050 return 255; 2051 2052 if (hlist_unhashed(&inode->i_hash)) { 2053 /* Unfortunately insert_inode_hash is not idempotent, 2054 * so as we hash inodes here rather than at creation 2055 * time, we need a lock to ensure we only try 2056 * to do it once 2057 */ 2058 static DEFINE_SPINLOCK(lock); 2059 spin_lock(&lock); 2060 if (hlist_unhashed(&inode->i_hash)) 2061 __insert_inode_hash(inode, 2062 inode->i_ino + inode->i_generation); 2063 spin_unlock(&lock); 2064 } 2065 2066 fh[0] = inode->i_generation; 2067 fh[1] = inode->i_ino; 2068 fh[2] = ((__u64)inode->i_ino) >> 32; 2069 2070 *len = 3; 2071 return 1; 2072 } 2073 2074 static const struct export_operations shmem_export_ops = { 2075 .get_parent = shmem_get_parent, 2076 .encode_fh = shmem_encode_fh, 2077 .fh_to_dentry = shmem_fh_to_dentry, 2078 }; 2079 2080 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2081 bool remount) 2082 { 2083 char *this_char, *value, *rest; 2084 2085 while (options != NULL) { 2086 this_char = options; 2087 for (;;) { 2088 /* 2089 * NUL-terminate this option: unfortunately, 2090 * mount options form a comma-separated list, 2091 * but mpol's nodelist may also contain commas. 2092 */ 2093 options = strchr(options, ','); 2094 if (options == NULL) 2095 break; 2096 options++; 2097 if (!isdigit(*options)) { 2098 options[-1] = '\0'; 2099 break; 2100 } 2101 } 2102 if (!*this_char) 2103 continue; 2104 if ((value = strchr(this_char,'=')) != NULL) { 2105 *value++ = 0; 2106 } else { 2107 printk(KERN_ERR 2108 "tmpfs: No value for mount option '%s'\n", 2109 this_char); 2110 return 1; 2111 } 2112 2113 if (!strcmp(this_char,"size")) { 2114 unsigned long long size; 2115 size = memparse(value,&rest); 2116 if (*rest == '%') { 2117 size <<= PAGE_SHIFT; 2118 size *= totalram_pages; 2119 do_div(size, 100); 2120 rest++; 2121 } 2122 if (*rest) 2123 goto bad_val; 2124 sbinfo->max_blocks = 2125 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2126 } else if (!strcmp(this_char,"nr_blocks")) { 2127 sbinfo->max_blocks = memparse(value, &rest); 2128 if (*rest) 2129 goto bad_val; 2130 } else if (!strcmp(this_char,"nr_inodes")) { 2131 sbinfo->max_inodes = memparse(value, &rest); 2132 if (*rest) 2133 goto bad_val; 2134 } else if (!strcmp(this_char,"mode")) { 2135 if (remount) 2136 continue; 2137 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2138 if (*rest) 2139 goto bad_val; 2140 } else if (!strcmp(this_char,"uid")) { 2141 if (remount) 2142 continue; 2143 sbinfo->uid = simple_strtoul(value, &rest, 0); 2144 if (*rest) 2145 goto bad_val; 2146 } else if (!strcmp(this_char,"gid")) { 2147 if (remount) 2148 continue; 2149 sbinfo->gid = simple_strtoul(value, &rest, 0); 2150 if (*rest) 2151 goto bad_val; 2152 } else if (!strcmp(this_char,"mpol")) { 2153 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2154 goto bad_val; 2155 } else { 2156 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2157 this_char); 2158 return 1; 2159 } 2160 } 2161 return 0; 2162 2163 bad_val: 2164 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2165 value, this_char); 2166 return 1; 2167 2168 } 2169 2170 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2171 { 2172 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2173 struct shmem_sb_info config = *sbinfo; 2174 unsigned long blocks; 2175 unsigned long inodes; 2176 int error = -EINVAL; 2177 2178 if (shmem_parse_options(data, &config, true)) 2179 return error; 2180 2181 spin_lock(&sbinfo->stat_lock); 2182 blocks = sbinfo->max_blocks - sbinfo->free_blocks; 2183 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2184 if (config.max_blocks < blocks) 2185 goto out; 2186 if (config.max_inodes < inodes) 2187 goto out; 2188 /* 2189 * Those tests also disallow limited->unlimited while any are in 2190 * use, so i_blocks will always be zero when max_blocks is zero; 2191 * but we must separately disallow unlimited->limited, because 2192 * in that case we have no record of how much is already in use. 2193 */ 2194 if (config.max_blocks && !sbinfo->max_blocks) 2195 goto out; 2196 if (config.max_inodes && !sbinfo->max_inodes) 2197 goto out; 2198 2199 error = 0; 2200 sbinfo->max_blocks = config.max_blocks; 2201 sbinfo->free_blocks = config.max_blocks - blocks; 2202 sbinfo->max_inodes = config.max_inodes; 2203 sbinfo->free_inodes = config.max_inodes - inodes; 2204 2205 mpol_put(sbinfo->mpol); 2206 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2207 out: 2208 spin_unlock(&sbinfo->stat_lock); 2209 return error; 2210 } 2211 2212 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) 2213 { 2214 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb); 2215 2216 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2217 seq_printf(seq, ",size=%luk", 2218 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2219 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2220 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2221 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2222 seq_printf(seq, ",mode=%03o", sbinfo->mode); 2223 if (sbinfo->uid != 0) 2224 seq_printf(seq, ",uid=%u", sbinfo->uid); 2225 if (sbinfo->gid != 0) 2226 seq_printf(seq, ",gid=%u", sbinfo->gid); 2227 shmem_show_mpol(seq, sbinfo->mpol); 2228 return 0; 2229 } 2230 #endif /* CONFIG_TMPFS */ 2231 2232 static void shmem_put_super(struct super_block *sb) 2233 { 2234 kfree(sb->s_fs_info); 2235 sb->s_fs_info = NULL; 2236 } 2237 2238 static int shmem_fill_super(struct super_block *sb, 2239 void *data, int silent) 2240 { 2241 struct inode *inode; 2242 struct dentry *root; 2243 struct shmem_sb_info *sbinfo; 2244 int err = -ENOMEM; 2245 2246 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2247 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info), 2248 L1_CACHE_BYTES), GFP_KERNEL); 2249 if (!sbinfo) 2250 return -ENOMEM; 2251 2252 sbinfo->max_blocks = 0; 2253 sbinfo->max_inodes = 0; 2254 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2255 sbinfo->uid = current->fsuid; 2256 sbinfo->gid = current->fsgid; 2257 sbinfo->mpol = NULL; 2258 sb->s_fs_info = sbinfo; 2259 2260 #ifdef CONFIG_TMPFS 2261 /* 2262 * Per default we only allow half of the physical ram per 2263 * tmpfs instance, limiting inodes to one per page of lowmem; 2264 * but the internal instance is left unlimited. 2265 */ 2266 if (!(sb->s_flags & MS_NOUSER)) { 2267 sbinfo->max_blocks = shmem_default_max_blocks(); 2268 sbinfo->max_inodes = shmem_default_max_inodes(); 2269 if (shmem_parse_options(data, sbinfo, false)) { 2270 err = -EINVAL; 2271 goto failed; 2272 } 2273 } 2274 sb->s_export_op = &shmem_export_ops; 2275 #else 2276 sb->s_flags |= MS_NOUSER; 2277 #endif 2278 2279 spin_lock_init(&sbinfo->stat_lock); 2280 sbinfo->free_blocks = sbinfo->max_blocks; 2281 sbinfo->free_inodes = sbinfo->max_inodes; 2282 2283 sb->s_maxbytes = SHMEM_MAX_BYTES; 2284 sb->s_blocksize = PAGE_CACHE_SIZE; 2285 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2286 sb->s_magic = TMPFS_MAGIC; 2287 sb->s_op = &shmem_ops; 2288 sb->s_time_gran = 1; 2289 #ifdef CONFIG_TMPFS_POSIX_ACL 2290 sb->s_xattr = shmem_xattr_handlers; 2291 sb->s_flags |= MS_POSIXACL; 2292 #endif 2293 2294 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0); 2295 if (!inode) 2296 goto failed; 2297 inode->i_uid = sbinfo->uid; 2298 inode->i_gid = sbinfo->gid; 2299 root = d_alloc_root(inode); 2300 if (!root) 2301 goto failed_iput; 2302 sb->s_root = root; 2303 return 0; 2304 2305 failed_iput: 2306 iput(inode); 2307 failed: 2308 shmem_put_super(sb); 2309 return err; 2310 } 2311 2312 static struct kmem_cache *shmem_inode_cachep; 2313 2314 static struct inode *shmem_alloc_inode(struct super_block *sb) 2315 { 2316 struct shmem_inode_info *p; 2317 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2318 if (!p) 2319 return NULL; 2320 return &p->vfs_inode; 2321 } 2322 2323 static void shmem_destroy_inode(struct inode *inode) 2324 { 2325 if ((inode->i_mode & S_IFMT) == S_IFREG) { 2326 /* only struct inode is valid if it's an inline symlink */ 2327 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2328 } 2329 shmem_acl_destroy_inode(inode); 2330 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2331 } 2332 2333 static void init_once(struct kmem_cache *cachep, void *foo) 2334 { 2335 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2336 2337 inode_init_once(&p->vfs_inode); 2338 #ifdef CONFIG_TMPFS_POSIX_ACL 2339 p->i_acl = NULL; 2340 p->i_default_acl = NULL; 2341 #endif 2342 } 2343 2344 static int init_inodecache(void) 2345 { 2346 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2347 sizeof(struct shmem_inode_info), 2348 0, SLAB_PANIC, init_once); 2349 return 0; 2350 } 2351 2352 static void destroy_inodecache(void) 2353 { 2354 kmem_cache_destroy(shmem_inode_cachep); 2355 } 2356 2357 static const struct address_space_operations shmem_aops = { 2358 .writepage = shmem_writepage, 2359 .set_page_dirty = __set_page_dirty_no_writeback, 2360 #ifdef CONFIG_TMPFS 2361 .readpage = shmem_readpage, 2362 .write_begin = shmem_write_begin, 2363 .write_end = shmem_write_end, 2364 #endif 2365 .migratepage = migrate_page, 2366 }; 2367 2368 static const struct file_operations shmem_file_operations = { 2369 .mmap = shmem_mmap, 2370 #ifdef CONFIG_TMPFS 2371 .llseek = generic_file_llseek, 2372 .read = shmem_file_read, 2373 .write = do_sync_write, 2374 .aio_write = generic_file_aio_write, 2375 .fsync = simple_sync_file, 2376 .splice_read = generic_file_splice_read, 2377 .splice_write = generic_file_splice_write, 2378 #endif 2379 }; 2380 2381 static const struct inode_operations shmem_inode_operations = { 2382 .truncate = shmem_truncate, 2383 .setattr = shmem_notify_change, 2384 .truncate_range = shmem_truncate_range, 2385 #ifdef CONFIG_TMPFS_POSIX_ACL 2386 .setxattr = generic_setxattr, 2387 .getxattr = generic_getxattr, 2388 .listxattr = generic_listxattr, 2389 .removexattr = generic_removexattr, 2390 .permission = shmem_permission, 2391 #endif 2392 2393 }; 2394 2395 static const struct inode_operations shmem_dir_inode_operations = { 2396 #ifdef CONFIG_TMPFS 2397 .create = shmem_create, 2398 .lookup = simple_lookup, 2399 .link = shmem_link, 2400 .unlink = shmem_unlink, 2401 .symlink = shmem_symlink, 2402 .mkdir = shmem_mkdir, 2403 .rmdir = shmem_rmdir, 2404 .mknod = shmem_mknod, 2405 .rename = shmem_rename, 2406 #endif 2407 #ifdef CONFIG_TMPFS_POSIX_ACL 2408 .setattr = shmem_notify_change, 2409 .setxattr = generic_setxattr, 2410 .getxattr = generic_getxattr, 2411 .listxattr = generic_listxattr, 2412 .removexattr = generic_removexattr, 2413 .permission = shmem_permission, 2414 #endif 2415 }; 2416 2417 static const struct inode_operations shmem_special_inode_operations = { 2418 #ifdef CONFIG_TMPFS_POSIX_ACL 2419 .setattr = shmem_notify_change, 2420 .setxattr = generic_setxattr, 2421 .getxattr = generic_getxattr, 2422 .listxattr = generic_listxattr, 2423 .removexattr = generic_removexattr, 2424 .permission = shmem_permission, 2425 #endif 2426 }; 2427 2428 static const struct super_operations shmem_ops = { 2429 .alloc_inode = shmem_alloc_inode, 2430 .destroy_inode = shmem_destroy_inode, 2431 #ifdef CONFIG_TMPFS 2432 .statfs = shmem_statfs, 2433 .remount_fs = shmem_remount_fs, 2434 .show_options = shmem_show_options, 2435 #endif 2436 .delete_inode = shmem_delete_inode, 2437 .drop_inode = generic_delete_inode, 2438 .put_super = shmem_put_super, 2439 }; 2440 2441 static struct vm_operations_struct shmem_vm_ops = { 2442 .fault = shmem_fault, 2443 #ifdef CONFIG_NUMA 2444 .set_policy = shmem_set_policy, 2445 .get_policy = shmem_get_policy, 2446 #endif 2447 }; 2448 2449 2450 static int shmem_get_sb(struct file_system_type *fs_type, 2451 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 2452 { 2453 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); 2454 } 2455 2456 static struct file_system_type tmpfs_fs_type = { 2457 .owner = THIS_MODULE, 2458 .name = "tmpfs", 2459 .get_sb = shmem_get_sb, 2460 .kill_sb = kill_litter_super, 2461 }; 2462 static struct vfsmount *shm_mnt; 2463 2464 static int __init init_tmpfs(void) 2465 { 2466 int error; 2467 2468 error = bdi_init(&shmem_backing_dev_info); 2469 if (error) 2470 goto out4; 2471 2472 error = init_inodecache(); 2473 if (error) 2474 goto out3; 2475 2476 error = register_filesystem(&tmpfs_fs_type); 2477 if (error) { 2478 printk(KERN_ERR "Could not register tmpfs\n"); 2479 goto out2; 2480 } 2481 2482 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER, 2483 tmpfs_fs_type.name, NULL); 2484 if (IS_ERR(shm_mnt)) { 2485 error = PTR_ERR(shm_mnt); 2486 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2487 goto out1; 2488 } 2489 return 0; 2490 2491 out1: 2492 unregister_filesystem(&tmpfs_fs_type); 2493 out2: 2494 destroy_inodecache(); 2495 out3: 2496 bdi_destroy(&shmem_backing_dev_info); 2497 out4: 2498 shm_mnt = ERR_PTR(error); 2499 return error; 2500 } 2501 module_init(init_tmpfs) 2502 2503 /** 2504 * shmem_file_setup - get an unlinked file living in tmpfs 2505 * @name: name for dentry (to be seen in /proc/<pid>/maps 2506 * @size: size to be set for the file 2507 * @flags: vm_flags 2508 */ 2509 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags) 2510 { 2511 int error; 2512 struct file *file; 2513 struct inode *inode; 2514 struct dentry *dentry, *root; 2515 struct qstr this; 2516 2517 if (IS_ERR(shm_mnt)) 2518 return (void *)shm_mnt; 2519 2520 if (size < 0 || size > SHMEM_MAX_BYTES) 2521 return ERR_PTR(-EINVAL); 2522 2523 if (shmem_acct_size(flags, size)) 2524 return ERR_PTR(-ENOMEM); 2525 2526 error = -ENOMEM; 2527 this.name = name; 2528 this.len = strlen(name); 2529 this.hash = 0; /* will go */ 2530 root = shm_mnt->mnt_root; 2531 dentry = d_alloc(root, &this); 2532 if (!dentry) 2533 goto put_memory; 2534 2535 error = -ENFILE; 2536 file = get_empty_filp(); 2537 if (!file) 2538 goto put_dentry; 2539 2540 error = -ENOSPC; 2541 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0); 2542 if (!inode) 2543 goto close_file; 2544 2545 SHMEM_I(inode)->flags = flags & VM_ACCOUNT; 2546 d_instantiate(dentry, inode); 2547 inode->i_size = size; 2548 inode->i_nlink = 0; /* It is unlinked */ 2549 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ, 2550 &shmem_file_operations); 2551 return file; 2552 2553 close_file: 2554 put_filp(file); 2555 put_dentry: 2556 dput(dentry); 2557 put_memory: 2558 shmem_unacct_size(flags, size); 2559 return ERR_PTR(error); 2560 } 2561 2562 /** 2563 * shmem_zero_setup - setup a shared anonymous mapping 2564 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 2565 */ 2566 int shmem_zero_setup(struct vm_area_struct *vma) 2567 { 2568 struct file *file; 2569 loff_t size = vma->vm_end - vma->vm_start; 2570 2571 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 2572 if (IS_ERR(file)) 2573 return PTR_ERR(file); 2574 2575 if (vma->vm_file) 2576 fput(vma->vm_file); 2577 vma->vm_file = file; 2578 vma->vm_ops = &shmem_vm_ops; 2579 return 0; 2580 } 2581