xref: /openbmc/linux/mm/shmem.c (revision 15e3ae36)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86 
87 #include "internal.h"
88 
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94 
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97 
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 	pgoff_t start;		/* start of range currently being fallocated */
106 	pgoff_t next;		/* the next page offset to be fallocated */
107 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
108 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
109 };
110 
111 struct shmem_options {
112 	unsigned long long blocks;
113 	unsigned long long inodes;
114 	struct mempolicy *mpol;
115 	kuid_t uid;
116 	kgid_t gid;
117 	umode_t mode;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 				struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 			     struct page **pagep, enum sgp_type sgp,
144 			     gfp_t gfp, struct vm_area_struct *vma,
145 			     vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp,
148 		gfp_t gfp, struct vm_area_struct *vma,
149 		struct vm_fault *vmf, vm_fault_t *fault_type);
150 
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 		struct page **pagep, enum sgp_type sgp)
153 {
154 	return shmem_getpage_gfp(inode, index, pagep, sgp,
155 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157 
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160 	return sb->s_fs_info;
161 }
162 
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171 	return (flags & VM_NORESERVE) ?
172 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174 
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177 	if (!(flags & VM_NORESERVE))
178 		vm_unacct_memory(VM_ACCT(size));
179 }
180 
181 static inline int shmem_reacct_size(unsigned long flags,
182 		loff_t oldsize, loff_t newsize)
183 {
184 	if (!(flags & VM_NORESERVE)) {
185 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 			return security_vm_enough_memory_mm(current->mm,
187 					VM_ACCT(newsize) - VM_ACCT(oldsize));
188 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 	}
191 	return 0;
192 }
193 
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202 	if (!(flags & VM_NORESERVE))
203 		return 0;
204 
205 	return security_vm_enough_memory_mm(current->mm,
206 			pages * VM_ACCT(PAGE_SIZE));
207 }
208 
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211 	if (flags & VM_NORESERVE)
212 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214 
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (shmem_acct_block(info->flags, pages))
221 		return false;
222 
223 	if (sbinfo->max_blocks) {
224 		if (percpu_counter_compare(&sbinfo->used_blocks,
225 					   sbinfo->max_blocks - pages) > 0)
226 			goto unacct;
227 		percpu_counter_add(&sbinfo->used_blocks, pages);
228 	}
229 
230 	return true;
231 
232 unacct:
233 	shmem_unacct_blocks(info->flags, pages);
234 	return false;
235 }
236 
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239 	struct shmem_inode_info *info = SHMEM_I(inode);
240 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 
242 	if (sbinfo->max_blocks)
243 		percpu_counter_sub(&sbinfo->used_blocks, pages);
244 	shmem_unacct_blocks(info->flags, pages);
245 }
246 
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255 
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258 	return vma->vm_ops == &shmem_vm_ops;
259 }
260 
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263 
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 	if (sbinfo->max_inodes) {
268 		spin_lock(&sbinfo->stat_lock);
269 		if (!sbinfo->free_inodes) {
270 			spin_unlock(&sbinfo->stat_lock);
271 			return -ENOSPC;
272 		}
273 		sbinfo->free_inodes--;
274 		spin_unlock(&sbinfo->stat_lock);
275 	}
276 	return 0;
277 }
278 
279 static void shmem_free_inode(struct super_block *sb)
280 {
281 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 	if (sbinfo->max_inodes) {
283 		spin_lock(&sbinfo->stat_lock);
284 		sbinfo->free_inodes++;
285 		spin_unlock(&sbinfo->stat_lock);
286 	}
287 }
288 
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303 	struct shmem_inode_info *info = SHMEM_I(inode);
304 	long freed;
305 
306 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 	if (freed > 0) {
308 		info->alloced -= freed;
309 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 		shmem_inode_unacct_blocks(inode, freed);
311 	}
312 }
313 
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316 	struct shmem_inode_info *info = SHMEM_I(inode);
317 	unsigned long flags;
318 
319 	if (!shmem_inode_acct_block(inode, pages))
320 		return false;
321 
322 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 	inode->i_mapping->nrpages += pages;
324 
325 	spin_lock_irqsave(&info->lock, flags);
326 	info->alloced += pages;
327 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 	shmem_recalc_inode(inode);
329 	spin_unlock_irqrestore(&info->lock, flags);
330 
331 	return true;
332 }
333 
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336 	struct shmem_inode_info *info = SHMEM_I(inode);
337 	unsigned long flags;
338 
339 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
340 
341 	spin_lock_irqsave(&info->lock, flags);
342 	info->alloced -= pages;
343 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 	shmem_recalc_inode(inode);
345 	spin_unlock_irqrestore(&info->lock, flags);
346 
347 	shmem_inode_unacct_blocks(inode, pages);
348 }
349 
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354 			pgoff_t index, void *expected, void *replacement)
355 {
356 	XA_STATE(xas, &mapping->i_pages, index);
357 	void *item;
358 
359 	VM_BUG_ON(!expected);
360 	VM_BUG_ON(!replacement);
361 	item = xas_load(&xas);
362 	if (item != expected)
363 		return -ENOENT;
364 	xas_store(&xas, replacement);
365 	return 0;
366 }
367 
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 			       pgoff_t index, swp_entry_t swap)
377 {
378 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380 
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *	disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *	enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *	only allocate huge pages if the page will be fully within i_size,
390  *	also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *	only allocate huge pages if requested with fadvise()/madvise();
393  */
394 
395 #define SHMEM_HUGE_NEVER	0
396 #define SHMEM_HUGE_ALWAYS	1
397 #define SHMEM_HUGE_WITHIN_SIZE	2
398 #define SHMEM_HUGE_ADVISE	3
399 
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *	disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY		(-1)
411 #define SHMEM_HUGE_FORCE	(-2)
412 
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415 
416 static int shmem_huge __read_mostly;
417 
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421 	if (!strcmp(str, "never"))
422 		return SHMEM_HUGE_NEVER;
423 	if (!strcmp(str, "always"))
424 		return SHMEM_HUGE_ALWAYS;
425 	if (!strcmp(str, "within_size"))
426 		return SHMEM_HUGE_WITHIN_SIZE;
427 	if (!strcmp(str, "advise"))
428 		return SHMEM_HUGE_ADVISE;
429 	if (!strcmp(str, "deny"))
430 		return SHMEM_HUGE_DENY;
431 	if (!strcmp(str, "force"))
432 		return SHMEM_HUGE_FORCE;
433 	return -EINVAL;
434 }
435 #endif
436 
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440 	switch (huge) {
441 	case SHMEM_HUGE_NEVER:
442 		return "never";
443 	case SHMEM_HUGE_ALWAYS:
444 		return "always";
445 	case SHMEM_HUGE_WITHIN_SIZE:
446 		return "within_size";
447 	case SHMEM_HUGE_ADVISE:
448 		return "advise";
449 	case SHMEM_HUGE_DENY:
450 		return "deny";
451 	case SHMEM_HUGE_FORCE:
452 		return "force";
453 	default:
454 		VM_BUG_ON(1);
455 		return "bad_val";
456 	}
457 }
458 #endif
459 
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 		struct shrink_control *sc, unsigned long nr_to_split)
462 {
463 	LIST_HEAD(list), *pos, *next;
464 	LIST_HEAD(to_remove);
465 	struct inode *inode;
466 	struct shmem_inode_info *info;
467 	struct page *page;
468 	unsigned long batch = sc ? sc->nr_to_scan : 128;
469 	int removed = 0, split = 0;
470 
471 	if (list_empty(&sbinfo->shrinklist))
472 		return SHRINK_STOP;
473 
474 	spin_lock(&sbinfo->shrinklist_lock);
475 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
477 
478 		/* pin the inode */
479 		inode = igrab(&info->vfs_inode);
480 
481 		/* inode is about to be evicted */
482 		if (!inode) {
483 			list_del_init(&info->shrinklist);
484 			removed++;
485 			goto next;
486 		}
487 
488 		/* Check if there's anything to gain */
489 		if (round_up(inode->i_size, PAGE_SIZE) ==
490 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 			list_move(&info->shrinklist, &to_remove);
492 			removed++;
493 			goto next;
494 		}
495 
496 		list_move(&info->shrinklist, &list);
497 next:
498 		if (!--batch)
499 			break;
500 	}
501 	spin_unlock(&sbinfo->shrinklist_lock);
502 
503 	list_for_each_safe(pos, next, &to_remove) {
504 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 		inode = &info->vfs_inode;
506 		list_del_init(&info->shrinklist);
507 		iput(inode);
508 	}
509 
510 	list_for_each_safe(pos, next, &list) {
511 		int ret;
512 
513 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 		inode = &info->vfs_inode;
515 
516 		if (nr_to_split && split >= nr_to_split)
517 			goto leave;
518 
519 		page = find_get_page(inode->i_mapping,
520 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 		if (!page)
522 			goto drop;
523 
524 		/* No huge page at the end of the file: nothing to split */
525 		if (!PageTransHuge(page)) {
526 			put_page(page);
527 			goto drop;
528 		}
529 
530 		/*
531 		 * Leave the inode on the list if we failed to lock
532 		 * the page at this time.
533 		 *
534 		 * Waiting for the lock may lead to deadlock in the
535 		 * reclaim path.
536 		 */
537 		if (!trylock_page(page)) {
538 			put_page(page);
539 			goto leave;
540 		}
541 
542 		ret = split_huge_page(page);
543 		unlock_page(page);
544 		put_page(page);
545 
546 		/* If split failed leave the inode on the list */
547 		if (ret)
548 			goto leave;
549 
550 		split++;
551 drop:
552 		list_del_init(&info->shrinklist);
553 		removed++;
554 leave:
555 		iput(inode);
556 	}
557 
558 	spin_lock(&sbinfo->shrinklist_lock);
559 	list_splice_tail(&list, &sbinfo->shrinklist);
560 	sbinfo->shrinklist_len -= removed;
561 	spin_unlock(&sbinfo->shrinklist_lock);
562 
563 	return split;
564 }
565 
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 		struct shrink_control *sc)
568 {
569 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570 
571 	if (!READ_ONCE(sbinfo->shrinklist_len))
572 		return SHRINK_STOP;
573 
574 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576 
577 static long shmem_unused_huge_count(struct super_block *sb,
578 		struct shrink_control *sc)
579 {
580 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 	return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584 
585 #define shmem_huge SHMEM_HUGE_DENY
586 
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 		struct shrink_control *sc, unsigned long nr_to_split)
589 {
590 	return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593 
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 	    shmem_huge != SHMEM_HUGE_DENY)
599 		return true;
600 	return false;
601 }
602 
603 /*
604  * Like add_to_page_cache_locked, but error if expected item has gone.
605  */
606 static int shmem_add_to_page_cache(struct page *page,
607 				   struct address_space *mapping,
608 				   pgoff_t index, void *expected, gfp_t gfp)
609 {
610 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 	unsigned long i = 0;
612 	unsigned long nr = compound_nr(page);
613 
614 	VM_BUG_ON_PAGE(PageTail(page), page);
615 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 	VM_BUG_ON_PAGE(!PageLocked(page), page);
617 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 	VM_BUG_ON(expected && PageTransHuge(page));
619 
620 	page_ref_add(page, nr);
621 	page->mapping = mapping;
622 	page->index = index;
623 
624 	do {
625 		void *entry;
626 		xas_lock_irq(&xas);
627 		entry = xas_find_conflict(&xas);
628 		if (entry != expected)
629 			xas_set_err(&xas, -EEXIST);
630 		xas_create_range(&xas);
631 		if (xas_error(&xas))
632 			goto unlock;
633 next:
634 		xas_store(&xas, page);
635 		if (++i < nr) {
636 			xas_next(&xas);
637 			goto next;
638 		}
639 		if (PageTransHuge(page)) {
640 			count_vm_event(THP_FILE_ALLOC);
641 			__inc_node_page_state(page, NR_SHMEM_THPS);
642 		}
643 		mapping->nrpages += nr;
644 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647 		xas_unlock_irq(&xas);
648 	} while (xas_nomem(&xas, gfp));
649 
650 	if (xas_error(&xas)) {
651 		page->mapping = NULL;
652 		page_ref_sub(page, nr);
653 		return xas_error(&xas);
654 	}
655 
656 	return 0;
657 }
658 
659 /*
660  * Like delete_from_page_cache, but substitutes swap for page.
661  */
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664 	struct address_space *mapping = page->mapping;
665 	int error;
666 
667 	VM_BUG_ON_PAGE(PageCompound(page), page);
668 
669 	xa_lock_irq(&mapping->i_pages);
670 	error = shmem_replace_entry(mapping, page->index, page, radswap);
671 	page->mapping = NULL;
672 	mapping->nrpages--;
673 	__dec_node_page_state(page, NR_FILE_PAGES);
674 	__dec_node_page_state(page, NR_SHMEM);
675 	xa_unlock_irq(&mapping->i_pages);
676 	put_page(page);
677 	BUG_ON(error);
678 }
679 
680 /*
681  * Remove swap entry from page cache, free the swap and its page cache.
682  */
683 static int shmem_free_swap(struct address_space *mapping,
684 			   pgoff_t index, void *radswap)
685 {
686 	void *old;
687 
688 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689 	if (old != radswap)
690 		return -ENOENT;
691 	free_swap_and_cache(radix_to_swp_entry(radswap));
692 	return 0;
693 }
694 
695 /*
696  * Determine (in bytes) how many of the shmem object's pages mapped by the
697  * given offsets are swapped out.
698  *
699  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700  * as long as the inode doesn't go away and racy results are not a problem.
701  */
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 						pgoff_t start, pgoff_t end)
704 {
705 	XA_STATE(xas, &mapping->i_pages, start);
706 	struct page *page;
707 	unsigned long swapped = 0;
708 
709 	rcu_read_lock();
710 	xas_for_each(&xas, page, end - 1) {
711 		if (xas_retry(&xas, page))
712 			continue;
713 		if (xa_is_value(page))
714 			swapped++;
715 
716 		if (need_resched()) {
717 			xas_pause(&xas);
718 			cond_resched_rcu();
719 		}
720 	}
721 
722 	rcu_read_unlock();
723 
724 	return swapped << PAGE_SHIFT;
725 }
726 
727 /*
728  * Determine (in bytes) how many of the shmem object's pages mapped by the
729  * given vma is swapped out.
730  *
731  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732  * as long as the inode doesn't go away and racy results are not a problem.
733  */
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736 	struct inode *inode = file_inode(vma->vm_file);
737 	struct shmem_inode_info *info = SHMEM_I(inode);
738 	struct address_space *mapping = inode->i_mapping;
739 	unsigned long swapped;
740 
741 	/* Be careful as we don't hold info->lock */
742 	swapped = READ_ONCE(info->swapped);
743 
744 	/*
745 	 * The easier cases are when the shmem object has nothing in swap, or
746 	 * the vma maps it whole. Then we can simply use the stats that we
747 	 * already track.
748 	 */
749 	if (!swapped)
750 		return 0;
751 
752 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 		return swapped << PAGE_SHIFT;
754 
755 	/* Here comes the more involved part */
756 	return shmem_partial_swap_usage(mapping,
757 			linear_page_index(vma, vma->vm_start),
758 			linear_page_index(vma, vma->vm_end));
759 }
760 
761 /*
762  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763  */
764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766 	struct pagevec pvec;
767 	pgoff_t indices[PAGEVEC_SIZE];
768 	pgoff_t index = 0;
769 
770 	pagevec_init(&pvec);
771 	/*
772 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 	 */
774 	while (!mapping_unevictable(mapping)) {
775 		/*
776 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 		 */
779 		pvec.nr = find_get_entries(mapping, index,
780 					   PAGEVEC_SIZE, pvec.pages, indices);
781 		if (!pvec.nr)
782 			break;
783 		index = indices[pvec.nr - 1] + 1;
784 		pagevec_remove_exceptionals(&pvec);
785 		check_move_unevictable_pages(&pvec);
786 		pagevec_release(&pvec);
787 		cond_resched();
788 	}
789 }
790 
791 /*
792  * Check whether a hole-punch or truncation needs to split a huge page,
793  * returning true if no split was required, or the split has been successful.
794  *
795  * Eviction (or truncation to 0 size) should never need to split a huge page;
796  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
797  * head, and then succeeded to trylock on tail.
798  *
799  * A split can only succeed when there are no additional references on the
800  * huge page: so the split below relies upon find_get_entries() having stopped
801  * when it found a subpage of the huge page, without getting further references.
802  */
803 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
804 {
805 	if (!PageTransCompound(page))
806 		return true;
807 
808 	/* Just proceed to delete a huge page wholly within the range punched */
809 	if (PageHead(page) &&
810 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
811 		return true;
812 
813 	/* Try to split huge page, so we can truly punch the hole or truncate */
814 	return split_huge_page(page) >= 0;
815 }
816 
817 /*
818  * Remove range of pages and swap entries from page cache, and free them.
819  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
820  */
821 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
822 								 bool unfalloc)
823 {
824 	struct address_space *mapping = inode->i_mapping;
825 	struct shmem_inode_info *info = SHMEM_I(inode);
826 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
827 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
828 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
829 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
830 	struct pagevec pvec;
831 	pgoff_t indices[PAGEVEC_SIZE];
832 	long nr_swaps_freed = 0;
833 	pgoff_t index;
834 	int i;
835 
836 	if (lend == -1)
837 		end = -1;	/* unsigned, so actually very big */
838 
839 	pagevec_init(&pvec);
840 	index = start;
841 	while (index < end) {
842 		pvec.nr = find_get_entries(mapping, index,
843 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
844 			pvec.pages, indices);
845 		if (!pvec.nr)
846 			break;
847 		for (i = 0; i < pagevec_count(&pvec); i++) {
848 			struct page *page = pvec.pages[i];
849 
850 			index = indices[i];
851 			if (index >= end)
852 				break;
853 
854 			if (xa_is_value(page)) {
855 				if (unfalloc)
856 					continue;
857 				nr_swaps_freed += !shmem_free_swap(mapping,
858 								index, page);
859 				continue;
860 			}
861 
862 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
863 
864 			if (!trylock_page(page))
865 				continue;
866 
867 			if ((!unfalloc || !PageUptodate(page)) &&
868 			    page_mapping(page) == mapping) {
869 				VM_BUG_ON_PAGE(PageWriteback(page), page);
870 				if (shmem_punch_compound(page, start, end))
871 					truncate_inode_page(mapping, page);
872 			}
873 			unlock_page(page);
874 		}
875 		pagevec_remove_exceptionals(&pvec);
876 		pagevec_release(&pvec);
877 		cond_resched();
878 		index++;
879 	}
880 
881 	if (partial_start) {
882 		struct page *page = NULL;
883 		shmem_getpage(inode, start - 1, &page, SGP_READ);
884 		if (page) {
885 			unsigned int top = PAGE_SIZE;
886 			if (start > end) {
887 				top = partial_end;
888 				partial_end = 0;
889 			}
890 			zero_user_segment(page, partial_start, top);
891 			set_page_dirty(page);
892 			unlock_page(page);
893 			put_page(page);
894 		}
895 	}
896 	if (partial_end) {
897 		struct page *page = NULL;
898 		shmem_getpage(inode, end, &page, SGP_READ);
899 		if (page) {
900 			zero_user_segment(page, 0, partial_end);
901 			set_page_dirty(page);
902 			unlock_page(page);
903 			put_page(page);
904 		}
905 	}
906 	if (start >= end)
907 		return;
908 
909 	index = start;
910 	while (index < end) {
911 		cond_resched();
912 
913 		pvec.nr = find_get_entries(mapping, index,
914 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
915 				pvec.pages, indices);
916 		if (!pvec.nr) {
917 			/* If all gone or hole-punch or unfalloc, we're done */
918 			if (index == start || end != -1)
919 				break;
920 			/* But if truncating, restart to make sure all gone */
921 			index = start;
922 			continue;
923 		}
924 		for (i = 0; i < pagevec_count(&pvec); i++) {
925 			struct page *page = pvec.pages[i];
926 
927 			index = indices[i];
928 			if (index >= end)
929 				break;
930 
931 			if (xa_is_value(page)) {
932 				if (unfalloc)
933 					continue;
934 				if (shmem_free_swap(mapping, index, page)) {
935 					/* Swap was replaced by page: retry */
936 					index--;
937 					break;
938 				}
939 				nr_swaps_freed++;
940 				continue;
941 			}
942 
943 			lock_page(page);
944 
945 			if (!unfalloc || !PageUptodate(page)) {
946 				if (page_mapping(page) != mapping) {
947 					/* Page was replaced by swap: retry */
948 					unlock_page(page);
949 					index--;
950 					break;
951 				}
952 				VM_BUG_ON_PAGE(PageWriteback(page), page);
953 				if (shmem_punch_compound(page, start, end))
954 					truncate_inode_page(mapping, page);
955 				else {
956 					/* Wipe the page and don't get stuck */
957 					clear_highpage(page);
958 					flush_dcache_page(page);
959 					set_page_dirty(page);
960 					if (index <
961 					    round_up(start, HPAGE_PMD_NR))
962 						start = index + 1;
963 				}
964 			}
965 			unlock_page(page);
966 		}
967 		pagevec_remove_exceptionals(&pvec);
968 		pagevec_release(&pvec);
969 		index++;
970 	}
971 
972 	spin_lock_irq(&info->lock);
973 	info->swapped -= nr_swaps_freed;
974 	shmem_recalc_inode(inode);
975 	spin_unlock_irq(&info->lock);
976 }
977 
978 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
979 {
980 	shmem_undo_range(inode, lstart, lend, false);
981 	inode->i_ctime = inode->i_mtime = current_time(inode);
982 }
983 EXPORT_SYMBOL_GPL(shmem_truncate_range);
984 
985 static int shmem_getattr(const struct path *path, struct kstat *stat,
986 			 u32 request_mask, unsigned int query_flags)
987 {
988 	struct inode *inode = path->dentry->d_inode;
989 	struct shmem_inode_info *info = SHMEM_I(inode);
990 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
991 
992 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
993 		spin_lock_irq(&info->lock);
994 		shmem_recalc_inode(inode);
995 		spin_unlock_irq(&info->lock);
996 	}
997 	generic_fillattr(inode, stat);
998 
999 	if (is_huge_enabled(sb_info))
1000 		stat->blksize = HPAGE_PMD_SIZE;
1001 
1002 	return 0;
1003 }
1004 
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007 	struct inode *inode = d_inode(dentry);
1008 	struct shmem_inode_info *info = SHMEM_I(inode);
1009 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010 	int error;
1011 
1012 	error = setattr_prepare(dentry, attr);
1013 	if (error)
1014 		return error;
1015 
1016 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 		loff_t oldsize = inode->i_size;
1018 		loff_t newsize = attr->ia_size;
1019 
1020 		/* protected by i_mutex */
1021 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 			return -EPERM;
1024 
1025 		if (newsize != oldsize) {
1026 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 					oldsize, newsize);
1028 			if (error)
1029 				return error;
1030 			i_size_write(inode, newsize);
1031 			inode->i_ctime = inode->i_mtime = current_time(inode);
1032 		}
1033 		if (newsize <= oldsize) {
1034 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035 			if (oldsize > holebegin)
1036 				unmap_mapping_range(inode->i_mapping,
1037 							holebegin, 0, 1);
1038 			if (info->alloced)
1039 				shmem_truncate_range(inode,
1040 							newsize, (loff_t)-1);
1041 			/* unmap again to remove racily COWed private pages */
1042 			if (oldsize > holebegin)
1043 				unmap_mapping_range(inode->i_mapping,
1044 							holebegin, 0, 1);
1045 
1046 			/*
1047 			 * Part of the huge page can be beyond i_size: subject
1048 			 * to shrink under memory pressure.
1049 			 */
1050 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1051 				spin_lock(&sbinfo->shrinklist_lock);
1052 				/*
1053 				 * _careful to defend against unlocked access to
1054 				 * ->shrink_list in shmem_unused_huge_shrink()
1055 				 */
1056 				if (list_empty_careful(&info->shrinklist)) {
1057 					list_add_tail(&info->shrinklist,
1058 							&sbinfo->shrinklist);
1059 					sbinfo->shrinklist_len++;
1060 				}
1061 				spin_unlock(&sbinfo->shrinklist_lock);
1062 			}
1063 		}
1064 	}
1065 
1066 	setattr_copy(inode, attr);
1067 	if (attr->ia_valid & ATTR_MODE)
1068 		error = posix_acl_chmod(inode, inode->i_mode);
1069 	return error;
1070 }
1071 
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074 	struct shmem_inode_info *info = SHMEM_I(inode);
1075 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076 
1077 	if (inode->i_mapping->a_ops == &shmem_aops) {
1078 		shmem_unacct_size(info->flags, inode->i_size);
1079 		inode->i_size = 0;
1080 		shmem_truncate_range(inode, 0, (loff_t)-1);
1081 		if (!list_empty(&info->shrinklist)) {
1082 			spin_lock(&sbinfo->shrinklist_lock);
1083 			if (!list_empty(&info->shrinklist)) {
1084 				list_del_init(&info->shrinklist);
1085 				sbinfo->shrinklist_len--;
1086 			}
1087 			spin_unlock(&sbinfo->shrinklist_lock);
1088 		}
1089 		while (!list_empty(&info->swaplist)) {
1090 			/* Wait while shmem_unuse() is scanning this inode... */
1091 			wait_var_event(&info->stop_eviction,
1092 				       !atomic_read(&info->stop_eviction));
1093 			mutex_lock(&shmem_swaplist_mutex);
1094 			/* ...but beware of the race if we peeked too early */
1095 			if (!atomic_read(&info->stop_eviction))
1096 				list_del_init(&info->swaplist);
1097 			mutex_unlock(&shmem_swaplist_mutex);
1098 		}
1099 	}
1100 
1101 	simple_xattrs_free(&info->xattrs);
1102 	WARN_ON(inode->i_blocks);
1103 	shmem_free_inode(inode->i_sb);
1104 	clear_inode(inode);
1105 }
1106 
1107 extern struct swap_info_struct *swap_info[];
1108 
1109 static int shmem_find_swap_entries(struct address_space *mapping,
1110 				   pgoff_t start, unsigned int nr_entries,
1111 				   struct page **entries, pgoff_t *indices,
1112 				   unsigned int type, bool frontswap)
1113 {
1114 	XA_STATE(xas, &mapping->i_pages, start);
1115 	struct page *page;
1116 	swp_entry_t entry;
1117 	unsigned int ret = 0;
1118 
1119 	if (!nr_entries)
1120 		return 0;
1121 
1122 	rcu_read_lock();
1123 	xas_for_each(&xas, page, ULONG_MAX) {
1124 		if (xas_retry(&xas, page))
1125 			continue;
1126 
1127 		if (!xa_is_value(page))
1128 			continue;
1129 
1130 		entry = radix_to_swp_entry(page);
1131 		if (swp_type(entry) != type)
1132 			continue;
1133 		if (frontswap &&
1134 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1135 			continue;
1136 
1137 		indices[ret] = xas.xa_index;
1138 		entries[ret] = page;
1139 
1140 		if (need_resched()) {
1141 			xas_pause(&xas);
1142 			cond_resched_rcu();
1143 		}
1144 		if (++ret == nr_entries)
1145 			break;
1146 	}
1147 	rcu_read_unlock();
1148 
1149 	return ret;
1150 }
1151 
1152 /*
1153  * Move the swapped pages for an inode to page cache. Returns the count
1154  * of pages swapped in, or the error in case of failure.
1155  */
1156 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1157 				    pgoff_t *indices)
1158 {
1159 	int i = 0;
1160 	int ret = 0;
1161 	int error = 0;
1162 	struct address_space *mapping = inode->i_mapping;
1163 
1164 	for (i = 0; i < pvec.nr; i++) {
1165 		struct page *page = pvec.pages[i];
1166 
1167 		if (!xa_is_value(page))
1168 			continue;
1169 		error = shmem_swapin_page(inode, indices[i],
1170 					  &page, SGP_CACHE,
1171 					  mapping_gfp_mask(mapping),
1172 					  NULL, NULL);
1173 		if (error == 0) {
1174 			unlock_page(page);
1175 			put_page(page);
1176 			ret++;
1177 		}
1178 		if (error == -ENOMEM)
1179 			break;
1180 		error = 0;
1181 	}
1182 	return error ? error : ret;
1183 }
1184 
1185 /*
1186  * If swap found in inode, free it and move page from swapcache to filecache.
1187  */
1188 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1189 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1190 {
1191 	struct address_space *mapping = inode->i_mapping;
1192 	pgoff_t start = 0;
1193 	struct pagevec pvec;
1194 	pgoff_t indices[PAGEVEC_SIZE];
1195 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1196 	int ret = 0;
1197 
1198 	pagevec_init(&pvec);
1199 	do {
1200 		unsigned int nr_entries = PAGEVEC_SIZE;
1201 
1202 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1203 			nr_entries = *fs_pages_to_unuse;
1204 
1205 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1206 						  pvec.pages, indices,
1207 						  type, frontswap);
1208 		if (pvec.nr == 0) {
1209 			ret = 0;
1210 			break;
1211 		}
1212 
1213 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1214 		if (ret < 0)
1215 			break;
1216 
1217 		if (frontswap_partial) {
1218 			*fs_pages_to_unuse -= ret;
1219 			if (*fs_pages_to_unuse == 0) {
1220 				ret = FRONTSWAP_PAGES_UNUSED;
1221 				break;
1222 			}
1223 		}
1224 
1225 		start = indices[pvec.nr - 1];
1226 	} while (true);
1227 
1228 	return ret;
1229 }
1230 
1231 /*
1232  * Read all the shared memory data that resides in the swap
1233  * device 'type' back into memory, so the swap device can be
1234  * unused.
1235  */
1236 int shmem_unuse(unsigned int type, bool frontswap,
1237 		unsigned long *fs_pages_to_unuse)
1238 {
1239 	struct shmem_inode_info *info, *next;
1240 	int error = 0;
1241 
1242 	if (list_empty(&shmem_swaplist))
1243 		return 0;
1244 
1245 	mutex_lock(&shmem_swaplist_mutex);
1246 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1247 		if (!info->swapped) {
1248 			list_del_init(&info->swaplist);
1249 			continue;
1250 		}
1251 		/*
1252 		 * Drop the swaplist mutex while searching the inode for swap;
1253 		 * but before doing so, make sure shmem_evict_inode() will not
1254 		 * remove placeholder inode from swaplist, nor let it be freed
1255 		 * (igrab() would protect from unlink, but not from unmount).
1256 		 */
1257 		atomic_inc(&info->stop_eviction);
1258 		mutex_unlock(&shmem_swaplist_mutex);
1259 
1260 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1261 					  fs_pages_to_unuse);
1262 		cond_resched();
1263 
1264 		mutex_lock(&shmem_swaplist_mutex);
1265 		next = list_next_entry(info, swaplist);
1266 		if (!info->swapped)
1267 			list_del_init(&info->swaplist);
1268 		if (atomic_dec_and_test(&info->stop_eviction))
1269 			wake_up_var(&info->stop_eviction);
1270 		if (error)
1271 			break;
1272 	}
1273 	mutex_unlock(&shmem_swaplist_mutex);
1274 
1275 	return error;
1276 }
1277 
1278 /*
1279  * Move the page from the page cache to the swap cache.
1280  */
1281 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1282 {
1283 	struct shmem_inode_info *info;
1284 	struct address_space *mapping;
1285 	struct inode *inode;
1286 	swp_entry_t swap;
1287 	pgoff_t index;
1288 
1289 	VM_BUG_ON_PAGE(PageCompound(page), page);
1290 	BUG_ON(!PageLocked(page));
1291 	mapping = page->mapping;
1292 	index = page->index;
1293 	inode = mapping->host;
1294 	info = SHMEM_I(inode);
1295 	if (info->flags & VM_LOCKED)
1296 		goto redirty;
1297 	if (!total_swap_pages)
1298 		goto redirty;
1299 
1300 	/*
1301 	 * Our capabilities prevent regular writeback or sync from ever calling
1302 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1303 	 * its underlying filesystem, in which case tmpfs should write out to
1304 	 * swap only in response to memory pressure, and not for the writeback
1305 	 * threads or sync.
1306 	 */
1307 	if (!wbc->for_reclaim) {
1308 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1309 		goto redirty;
1310 	}
1311 
1312 	/*
1313 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1314 	 * value into swapfile.c, the only way we can correctly account for a
1315 	 * fallocated page arriving here is now to initialize it and write it.
1316 	 *
1317 	 * That's okay for a page already fallocated earlier, but if we have
1318 	 * not yet completed the fallocation, then (a) we want to keep track
1319 	 * of this page in case we have to undo it, and (b) it may not be a
1320 	 * good idea to continue anyway, once we're pushing into swap.  So
1321 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1322 	 */
1323 	if (!PageUptodate(page)) {
1324 		if (inode->i_private) {
1325 			struct shmem_falloc *shmem_falloc;
1326 			spin_lock(&inode->i_lock);
1327 			shmem_falloc = inode->i_private;
1328 			if (shmem_falloc &&
1329 			    !shmem_falloc->waitq &&
1330 			    index >= shmem_falloc->start &&
1331 			    index < shmem_falloc->next)
1332 				shmem_falloc->nr_unswapped++;
1333 			else
1334 				shmem_falloc = NULL;
1335 			spin_unlock(&inode->i_lock);
1336 			if (shmem_falloc)
1337 				goto redirty;
1338 		}
1339 		clear_highpage(page);
1340 		flush_dcache_page(page);
1341 		SetPageUptodate(page);
1342 	}
1343 
1344 	swap = get_swap_page(page);
1345 	if (!swap.val)
1346 		goto redirty;
1347 
1348 	/*
1349 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1350 	 * if it's not already there.  Do it now before the page is
1351 	 * moved to swap cache, when its pagelock no longer protects
1352 	 * the inode from eviction.  But don't unlock the mutex until
1353 	 * we've incremented swapped, because shmem_unuse_inode() will
1354 	 * prune a !swapped inode from the swaplist under this mutex.
1355 	 */
1356 	mutex_lock(&shmem_swaplist_mutex);
1357 	if (list_empty(&info->swaplist))
1358 		list_add(&info->swaplist, &shmem_swaplist);
1359 
1360 	if (add_to_swap_cache(page, swap,
1361 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1362 		spin_lock_irq(&info->lock);
1363 		shmem_recalc_inode(inode);
1364 		info->swapped++;
1365 		spin_unlock_irq(&info->lock);
1366 
1367 		swap_shmem_alloc(swap);
1368 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1369 
1370 		mutex_unlock(&shmem_swaplist_mutex);
1371 		BUG_ON(page_mapped(page));
1372 		swap_writepage(page, wbc);
1373 		return 0;
1374 	}
1375 
1376 	mutex_unlock(&shmem_swaplist_mutex);
1377 	put_swap_page(page, swap);
1378 redirty:
1379 	set_page_dirty(page);
1380 	if (wbc->for_reclaim)
1381 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1382 	unlock_page(page);
1383 	return 0;
1384 }
1385 
1386 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1387 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1388 {
1389 	char buffer[64];
1390 
1391 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1392 		return;		/* show nothing */
1393 
1394 	mpol_to_str(buffer, sizeof(buffer), mpol);
1395 
1396 	seq_printf(seq, ",mpol=%s", buffer);
1397 }
1398 
1399 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1400 {
1401 	struct mempolicy *mpol = NULL;
1402 	if (sbinfo->mpol) {
1403 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1404 		mpol = sbinfo->mpol;
1405 		mpol_get(mpol);
1406 		spin_unlock(&sbinfo->stat_lock);
1407 	}
1408 	return mpol;
1409 }
1410 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1411 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1412 {
1413 }
1414 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1415 {
1416 	return NULL;
1417 }
1418 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1419 #ifndef CONFIG_NUMA
1420 #define vm_policy vm_private_data
1421 #endif
1422 
1423 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1424 		struct shmem_inode_info *info, pgoff_t index)
1425 {
1426 	/* Create a pseudo vma that just contains the policy */
1427 	vma_init(vma, NULL);
1428 	/* Bias interleave by inode number to distribute better across nodes */
1429 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1430 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1431 }
1432 
1433 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1434 {
1435 	/* Drop reference taken by mpol_shared_policy_lookup() */
1436 	mpol_cond_put(vma->vm_policy);
1437 }
1438 
1439 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1440 			struct shmem_inode_info *info, pgoff_t index)
1441 {
1442 	struct vm_area_struct pvma;
1443 	struct page *page;
1444 	struct vm_fault vmf;
1445 
1446 	shmem_pseudo_vma_init(&pvma, info, index);
1447 	vmf.vma = &pvma;
1448 	vmf.address = 0;
1449 	page = swap_cluster_readahead(swap, gfp, &vmf);
1450 	shmem_pseudo_vma_destroy(&pvma);
1451 
1452 	return page;
1453 }
1454 
1455 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1456 		struct shmem_inode_info *info, pgoff_t index)
1457 {
1458 	struct vm_area_struct pvma;
1459 	struct address_space *mapping = info->vfs_inode.i_mapping;
1460 	pgoff_t hindex;
1461 	struct page *page;
1462 
1463 	hindex = round_down(index, HPAGE_PMD_NR);
1464 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1465 								XA_PRESENT))
1466 		return NULL;
1467 
1468 	shmem_pseudo_vma_init(&pvma, info, hindex);
1469 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1470 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1471 	shmem_pseudo_vma_destroy(&pvma);
1472 	if (page)
1473 		prep_transhuge_page(page);
1474 	else
1475 		count_vm_event(THP_FILE_FALLBACK);
1476 	return page;
1477 }
1478 
1479 static struct page *shmem_alloc_page(gfp_t gfp,
1480 			struct shmem_inode_info *info, pgoff_t index)
1481 {
1482 	struct vm_area_struct pvma;
1483 	struct page *page;
1484 
1485 	shmem_pseudo_vma_init(&pvma, info, index);
1486 	page = alloc_page_vma(gfp, &pvma, 0);
1487 	shmem_pseudo_vma_destroy(&pvma);
1488 
1489 	return page;
1490 }
1491 
1492 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1493 		struct inode *inode,
1494 		pgoff_t index, bool huge)
1495 {
1496 	struct shmem_inode_info *info = SHMEM_I(inode);
1497 	struct page *page;
1498 	int nr;
1499 	int err = -ENOSPC;
1500 
1501 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1502 		huge = false;
1503 	nr = huge ? HPAGE_PMD_NR : 1;
1504 
1505 	if (!shmem_inode_acct_block(inode, nr))
1506 		goto failed;
1507 
1508 	if (huge)
1509 		page = shmem_alloc_hugepage(gfp, info, index);
1510 	else
1511 		page = shmem_alloc_page(gfp, info, index);
1512 	if (page) {
1513 		__SetPageLocked(page);
1514 		__SetPageSwapBacked(page);
1515 		return page;
1516 	}
1517 
1518 	err = -ENOMEM;
1519 	shmem_inode_unacct_blocks(inode, nr);
1520 failed:
1521 	return ERR_PTR(err);
1522 }
1523 
1524 /*
1525  * When a page is moved from swapcache to shmem filecache (either by the
1526  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1527  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1528  * ignorance of the mapping it belongs to.  If that mapping has special
1529  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1530  * we may need to copy to a suitable page before moving to filecache.
1531  *
1532  * In a future release, this may well be extended to respect cpuset and
1533  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1534  * but for now it is a simple matter of zone.
1535  */
1536 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1537 {
1538 	return page_zonenum(page) > gfp_zone(gfp);
1539 }
1540 
1541 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1542 				struct shmem_inode_info *info, pgoff_t index)
1543 {
1544 	struct page *oldpage, *newpage;
1545 	struct address_space *swap_mapping;
1546 	swp_entry_t entry;
1547 	pgoff_t swap_index;
1548 	int error;
1549 
1550 	oldpage = *pagep;
1551 	entry.val = page_private(oldpage);
1552 	swap_index = swp_offset(entry);
1553 	swap_mapping = page_mapping(oldpage);
1554 
1555 	/*
1556 	 * We have arrived here because our zones are constrained, so don't
1557 	 * limit chance of success by further cpuset and node constraints.
1558 	 */
1559 	gfp &= ~GFP_CONSTRAINT_MASK;
1560 	newpage = shmem_alloc_page(gfp, info, index);
1561 	if (!newpage)
1562 		return -ENOMEM;
1563 
1564 	get_page(newpage);
1565 	copy_highpage(newpage, oldpage);
1566 	flush_dcache_page(newpage);
1567 
1568 	__SetPageLocked(newpage);
1569 	__SetPageSwapBacked(newpage);
1570 	SetPageUptodate(newpage);
1571 	set_page_private(newpage, entry.val);
1572 	SetPageSwapCache(newpage);
1573 
1574 	/*
1575 	 * Our caller will very soon move newpage out of swapcache, but it's
1576 	 * a nice clean interface for us to replace oldpage by newpage there.
1577 	 */
1578 	xa_lock_irq(&swap_mapping->i_pages);
1579 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1580 	if (!error) {
1581 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1582 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1583 	}
1584 	xa_unlock_irq(&swap_mapping->i_pages);
1585 
1586 	if (unlikely(error)) {
1587 		/*
1588 		 * Is this possible?  I think not, now that our callers check
1589 		 * both PageSwapCache and page_private after getting page lock;
1590 		 * but be defensive.  Reverse old to newpage for clear and free.
1591 		 */
1592 		oldpage = newpage;
1593 	} else {
1594 		mem_cgroup_migrate(oldpage, newpage);
1595 		lru_cache_add_anon(newpage);
1596 		*pagep = newpage;
1597 	}
1598 
1599 	ClearPageSwapCache(oldpage);
1600 	set_page_private(oldpage, 0);
1601 
1602 	unlock_page(oldpage);
1603 	put_page(oldpage);
1604 	put_page(oldpage);
1605 	return error;
1606 }
1607 
1608 /*
1609  * Swap in the page pointed to by *pagep.
1610  * Caller has to make sure that *pagep contains a valid swapped page.
1611  * Returns 0 and the page in pagep if success. On failure, returns the
1612  * the error code and NULL in *pagep.
1613  */
1614 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1615 			     struct page **pagep, enum sgp_type sgp,
1616 			     gfp_t gfp, struct vm_area_struct *vma,
1617 			     vm_fault_t *fault_type)
1618 {
1619 	struct address_space *mapping = inode->i_mapping;
1620 	struct shmem_inode_info *info = SHMEM_I(inode);
1621 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1622 	struct mem_cgroup *memcg;
1623 	struct page *page;
1624 	swp_entry_t swap;
1625 	int error;
1626 
1627 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1628 	swap = radix_to_swp_entry(*pagep);
1629 	*pagep = NULL;
1630 
1631 	/* Look it up and read it in.. */
1632 	page = lookup_swap_cache(swap, NULL, 0);
1633 	if (!page) {
1634 		/* Or update major stats only when swapin succeeds?? */
1635 		if (fault_type) {
1636 			*fault_type |= VM_FAULT_MAJOR;
1637 			count_vm_event(PGMAJFAULT);
1638 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1639 		}
1640 		/* Here we actually start the io */
1641 		page = shmem_swapin(swap, gfp, info, index);
1642 		if (!page) {
1643 			error = -ENOMEM;
1644 			goto failed;
1645 		}
1646 	}
1647 
1648 	/* We have to do this with page locked to prevent races */
1649 	lock_page(page);
1650 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1651 	    !shmem_confirm_swap(mapping, index, swap)) {
1652 		error = -EEXIST;
1653 		goto unlock;
1654 	}
1655 	if (!PageUptodate(page)) {
1656 		error = -EIO;
1657 		goto failed;
1658 	}
1659 	wait_on_page_writeback(page);
1660 
1661 	if (shmem_should_replace_page(page, gfp)) {
1662 		error = shmem_replace_page(&page, gfp, info, index);
1663 		if (error)
1664 			goto failed;
1665 	}
1666 
1667 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1668 					    false);
1669 	if (!error) {
1670 		error = shmem_add_to_page_cache(page, mapping, index,
1671 						swp_to_radix_entry(swap), gfp);
1672 		/*
1673 		 * We already confirmed swap under page lock, and make
1674 		 * no memory allocation here, so usually no possibility
1675 		 * of error; but free_swap_and_cache() only trylocks a
1676 		 * page, so it is just possible that the entry has been
1677 		 * truncated or holepunched since swap was confirmed.
1678 		 * shmem_undo_range() will have done some of the
1679 		 * unaccounting, now delete_from_swap_cache() will do
1680 		 * the rest.
1681 		 */
1682 		if (error) {
1683 			mem_cgroup_cancel_charge(page, memcg, false);
1684 			delete_from_swap_cache(page);
1685 		}
1686 	}
1687 	if (error)
1688 		goto failed;
1689 
1690 	mem_cgroup_commit_charge(page, memcg, true, false);
1691 
1692 	spin_lock_irq(&info->lock);
1693 	info->swapped--;
1694 	shmem_recalc_inode(inode);
1695 	spin_unlock_irq(&info->lock);
1696 
1697 	if (sgp == SGP_WRITE)
1698 		mark_page_accessed(page);
1699 
1700 	delete_from_swap_cache(page);
1701 	set_page_dirty(page);
1702 	swap_free(swap);
1703 
1704 	*pagep = page;
1705 	return 0;
1706 failed:
1707 	if (!shmem_confirm_swap(mapping, index, swap))
1708 		error = -EEXIST;
1709 unlock:
1710 	if (page) {
1711 		unlock_page(page);
1712 		put_page(page);
1713 	}
1714 
1715 	return error;
1716 }
1717 
1718 /*
1719  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1720  *
1721  * If we allocate a new one we do not mark it dirty. That's up to the
1722  * vm. If we swap it in we mark it dirty since we also free the swap
1723  * entry since a page cannot live in both the swap and page cache.
1724  *
1725  * vmf and fault_type are only supplied by shmem_fault:
1726  * otherwise they are NULL.
1727  */
1728 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1729 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1730 	struct vm_area_struct *vma, struct vm_fault *vmf,
1731 			vm_fault_t *fault_type)
1732 {
1733 	struct address_space *mapping = inode->i_mapping;
1734 	struct shmem_inode_info *info = SHMEM_I(inode);
1735 	struct shmem_sb_info *sbinfo;
1736 	struct mm_struct *charge_mm;
1737 	struct mem_cgroup *memcg;
1738 	struct page *page;
1739 	enum sgp_type sgp_huge = sgp;
1740 	pgoff_t hindex = index;
1741 	int error;
1742 	int once = 0;
1743 	int alloced = 0;
1744 
1745 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1746 		return -EFBIG;
1747 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1748 		sgp = SGP_CACHE;
1749 repeat:
1750 	if (sgp <= SGP_CACHE &&
1751 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1752 		return -EINVAL;
1753 	}
1754 
1755 	sbinfo = SHMEM_SB(inode->i_sb);
1756 	charge_mm = vma ? vma->vm_mm : current->mm;
1757 
1758 	page = find_lock_entry(mapping, index);
1759 	if (xa_is_value(page)) {
1760 		error = shmem_swapin_page(inode, index, &page,
1761 					  sgp, gfp, vma, fault_type);
1762 		if (error == -EEXIST)
1763 			goto repeat;
1764 
1765 		*pagep = page;
1766 		return error;
1767 	}
1768 
1769 	if (page && sgp == SGP_WRITE)
1770 		mark_page_accessed(page);
1771 
1772 	/* fallocated page? */
1773 	if (page && !PageUptodate(page)) {
1774 		if (sgp != SGP_READ)
1775 			goto clear;
1776 		unlock_page(page);
1777 		put_page(page);
1778 		page = NULL;
1779 	}
1780 	if (page || sgp == SGP_READ) {
1781 		*pagep = page;
1782 		return 0;
1783 	}
1784 
1785 	/*
1786 	 * Fast cache lookup did not find it:
1787 	 * bring it back from swap or allocate.
1788 	 */
1789 
1790 	if (vma && userfaultfd_missing(vma)) {
1791 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1792 		return 0;
1793 	}
1794 
1795 	/* shmem_symlink() */
1796 	if (mapping->a_ops != &shmem_aops)
1797 		goto alloc_nohuge;
1798 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1799 		goto alloc_nohuge;
1800 	if (shmem_huge == SHMEM_HUGE_FORCE)
1801 		goto alloc_huge;
1802 	switch (sbinfo->huge) {
1803 	case SHMEM_HUGE_NEVER:
1804 		goto alloc_nohuge;
1805 	case SHMEM_HUGE_WITHIN_SIZE: {
1806 		loff_t i_size;
1807 		pgoff_t off;
1808 
1809 		off = round_up(index, HPAGE_PMD_NR);
1810 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1811 		if (i_size >= HPAGE_PMD_SIZE &&
1812 		    i_size >> PAGE_SHIFT >= off)
1813 			goto alloc_huge;
1814 
1815 		fallthrough;
1816 	}
1817 	case SHMEM_HUGE_ADVISE:
1818 		if (sgp_huge == SGP_HUGE)
1819 			goto alloc_huge;
1820 		/* TODO: implement fadvise() hints */
1821 		goto alloc_nohuge;
1822 	}
1823 
1824 alloc_huge:
1825 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1826 	if (IS_ERR(page)) {
1827 alloc_nohuge:
1828 		page = shmem_alloc_and_acct_page(gfp, inode,
1829 						 index, false);
1830 	}
1831 	if (IS_ERR(page)) {
1832 		int retry = 5;
1833 
1834 		error = PTR_ERR(page);
1835 		page = NULL;
1836 		if (error != -ENOSPC)
1837 			goto unlock;
1838 		/*
1839 		 * Try to reclaim some space by splitting a huge page
1840 		 * beyond i_size on the filesystem.
1841 		 */
1842 		while (retry--) {
1843 			int ret;
1844 
1845 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1846 			if (ret == SHRINK_STOP)
1847 				break;
1848 			if (ret)
1849 				goto alloc_nohuge;
1850 		}
1851 		goto unlock;
1852 	}
1853 
1854 	if (PageTransHuge(page))
1855 		hindex = round_down(index, HPAGE_PMD_NR);
1856 	else
1857 		hindex = index;
1858 
1859 	if (sgp == SGP_WRITE)
1860 		__SetPageReferenced(page);
1861 
1862 	error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1863 					    PageTransHuge(page));
1864 	if (error) {
1865 		if (PageTransHuge(page)) {
1866 			count_vm_event(THP_FILE_FALLBACK);
1867 			count_vm_event(THP_FILE_FALLBACK_CHARGE);
1868 		}
1869 		goto unacct;
1870 	}
1871 	error = shmem_add_to_page_cache(page, mapping, hindex,
1872 					NULL, gfp & GFP_RECLAIM_MASK);
1873 	if (error) {
1874 		mem_cgroup_cancel_charge(page, memcg,
1875 					 PageTransHuge(page));
1876 		goto unacct;
1877 	}
1878 	mem_cgroup_commit_charge(page, memcg, false,
1879 				 PageTransHuge(page));
1880 	lru_cache_add_anon(page);
1881 
1882 	spin_lock_irq(&info->lock);
1883 	info->alloced += compound_nr(page);
1884 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1885 	shmem_recalc_inode(inode);
1886 	spin_unlock_irq(&info->lock);
1887 	alloced = true;
1888 
1889 	if (PageTransHuge(page) &&
1890 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1891 			hindex + HPAGE_PMD_NR - 1) {
1892 		/*
1893 		 * Part of the huge page is beyond i_size: subject
1894 		 * to shrink under memory pressure.
1895 		 */
1896 		spin_lock(&sbinfo->shrinklist_lock);
1897 		/*
1898 		 * _careful to defend against unlocked access to
1899 		 * ->shrink_list in shmem_unused_huge_shrink()
1900 		 */
1901 		if (list_empty_careful(&info->shrinklist)) {
1902 			list_add_tail(&info->shrinklist,
1903 				      &sbinfo->shrinklist);
1904 			sbinfo->shrinklist_len++;
1905 		}
1906 		spin_unlock(&sbinfo->shrinklist_lock);
1907 	}
1908 
1909 	/*
1910 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1911 	 */
1912 	if (sgp == SGP_FALLOC)
1913 		sgp = SGP_WRITE;
1914 clear:
1915 	/*
1916 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1917 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1918 	 * it now, lest undo on failure cancel our earlier guarantee.
1919 	 */
1920 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1921 		struct page *head = compound_head(page);
1922 		int i;
1923 
1924 		for (i = 0; i < compound_nr(head); i++) {
1925 			clear_highpage(head + i);
1926 			flush_dcache_page(head + i);
1927 		}
1928 		SetPageUptodate(head);
1929 	}
1930 
1931 	/* Perhaps the file has been truncated since we checked */
1932 	if (sgp <= SGP_CACHE &&
1933 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1934 		if (alloced) {
1935 			ClearPageDirty(page);
1936 			delete_from_page_cache(page);
1937 			spin_lock_irq(&info->lock);
1938 			shmem_recalc_inode(inode);
1939 			spin_unlock_irq(&info->lock);
1940 		}
1941 		error = -EINVAL;
1942 		goto unlock;
1943 	}
1944 	*pagep = page + index - hindex;
1945 	return 0;
1946 
1947 	/*
1948 	 * Error recovery.
1949 	 */
1950 unacct:
1951 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1952 
1953 	if (PageTransHuge(page)) {
1954 		unlock_page(page);
1955 		put_page(page);
1956 		goto alloc_nohuge;
1957 	}
1958 unlock:
1959 	if (page) {
1960 		unlock_page(page);
1961 		put_page(page);
1962 	}
1963 	if (error == -ENOSPC && !once++) {
1964 		spin_lock_irq(&info->lock);
1965 		shmem_recalc_inode(inode);
1966 		spin_unlock_irq(&info->lock);
1967 		goto repeat;
1968 	}
1969 	if (error == -EEXIST)
1970 		goto repeat;
1971 	return error;
1972 }
1973 
1974 /*
1975  * This is like autoremove_wake_function, but it removes the wait queue
1976  * entry unconditionally - even if something else had already woken the
1977  * target.
1978  */
1979 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1980 {
1981 	int ret = default_wake_function(wait, mode, sync, key);
1982 	list_del_init(&wait->entry);
1983 	return ret;
1984 }
1985 
1986 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1987 {
1988 	struct vm_area_struct *vma = vmf->vma;
1989 	struct inode *inode = file_inode(vma->vm_file);
1990 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1991 	enum sgp_type sgp;
1992 	int err;
1993 	vm_fault_t ret = VM_FAULT_LOCKED;
1994 
1995 	/*
1996 	 * Trinity finds that probing a hole which tmpfs is punching can
1997 	 * prevent the hole-punch from ever completing: which in turn
1998 	 * locks writers out with its hold on i_mutex.  So refrain from
1999 	 * faulting pages into the hole while it's being punched.  Although
2000 	 * shmem_undo_range() does remove the additions, it may be unable to
2001 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2002 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2003 	 *
2004 	 * It does not matter if we sometimes reach this check just before the
2005 	 * hole-punch begins, so that one fault then races with the punch:
2006 	 * we just need to make racing faults a rare case.
2007 	 *
2008 	 * The implementation below would be much simpler if we just used a
2009 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2010 	 * and bloating every shmem inode for this unlikely case would be sad.
2011 	 */
2012 	if (unlikely(inode->i_private)) {
2013 		struct shmem_falloc *shmem_falloc;
2014 
2015 		spin_lock(&inode->i_lock);
2016 		shmem_falloc = inode->i_private;
2017 		if (shmem_falloc &&
2018 		    shmem_falloc->waitq &&
2019 		    vmf->pgoff >= shmem_falloc->start &&
2020 		    vmf->pgoff < shmem_falloc->next) {
2021 			struct file *fpin;
2022 			wait_queue_head_t *shmem_falloc_waitq;
2023 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2024 
2025 			ret = VM_FAULT_NOPAGE;
2026 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2027 			if (fpin)
2028 				ret = VM_FAULT_RETRY;
2029 
2030 			shmem_falloc_waitq = shmem_falloc->waitq;
2031 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2032 					TASK_UNINTERRUPTIBLE);
2033 			spin_unlock(&inode->i_lock);
2034 			schedule();
2035 
2036 			/*
2037 			 * shmem_falloc_waitq points into the shmem_fallocate()
2038 			 * stack of the hole-punching task: shmem_falloc_waitq
2039 			 * is usually invalid by the time we reach here, but
2040 			 * finish_wait() does not dereference it in that case;
2041 			 * though i_lock needed lest racing with wake_up_all().
2042 			 */
2043 			spin_lock(&inode->i_lock);
2044 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2045 			spin_unlock(&inode->i_lock);
2046 
2047 			if (fpin)
2048 				fput(fpin);
2049 			return ret;
2050 		}
2051 		spin_unlock(&inode->i_lock);
2052 	}
2053 
2054 	sgp = SGP_CACHE;
2055 
2056 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2057 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2058 		sgp = SGP_NOHUGE;
2059 	else if (vma->vm_flags & VM_HUGEPAGE)
2060 		sgp = SGP_HUGE;
2061 
2062 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2063 				  gfp, vma, vmf, &ret);
2064 	if (err)
2065 		return vmf_error(err);
2066 	return ret;
2067 }
2068 
2069 unsigned long shmem_get_unmapped_area(struct file *file,
2070 				      unsigned long uaddr, unsigned long len,
2071 				      unsigned long pgoff, unsigned long flags)
2072 {
2073 	unsigned long (*get_area)(struct file *,
2074 		unsigned long, unsigned long, unsigned long, unsigned long);
2075 	unsigned long addr;
2076 	unsigned long offset;
2077 	unsigned long inflated_len;
2078 	unsigned long inflated_addr;
2079 	unsigned long inflated_offset;
2080 
2081 	if (len > TASK_SIZE)
2082 		return -ENOMEM;
2083 
2084 	get_area = current->mm->get_unmapped_area;
2085 	addr = get_area(file, uaddr, len, pgoff, flags);
2086 
2087 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2088 		return addr;
2089 	if (IS_ERR_VALUE(addr))
2090 		return addr;
2091 	if (addr & ~PAGE_MASK)
2092 		return addr;
2093 	if (addr > TASK_SIZE - len)
2094 		return addr;
2095 
2096 	if (shmem_huge == SHMEM_HUGE_DENY)
2097 		return addr;
2098 	if (len < HPAGE_PMD_SIZE)
2099 		return addr;
2100 	if (flags & MAP_FIXED)
2101 		return addr;
2102 	/*
2103 	 * Our priority is to support MAP_SHARED mapped hugely;
2104 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2105 	 * But if caller specified an address hint and we allocated area there
2106 	 * successfully, respect that as before.
2107 	 */
2108 	if (uaddr == addr)
2109 		return addr;
2110 
2111 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2112 		struct super_block *sb;
2113 
2114 		if (file) {
2115 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2116 			sb = file_inode(file)->i_sb;
2117 		} else {
2118 			/*
2119 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2120 			 * for "/dev/zero", to create a shared anonymous object.
2121 			 */
2122 			if (IS_ERR(shm_mnt))
2123 				return addr;
2124 			sb = shm_mnt->mnt_sb;
2125 		}
2126 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2127 			return addr;
2128 	}
2129 
2130 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2131 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2132 		return addr;
2133 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2134 		return addr;
2135 
2136 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2137 	if (inflated_len > TASK_SIZE)
2138 		return addr;
2139 	if (inflated_len < len)
2140 		return addr;
2141 
2142 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2143 	if (IS_ERR_VALUE(inflated_addr))
2144 		return addr;
2145 	if (inflated_addr & ~PAGE_MASK)
2146 		return addr;
2147 
2148 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2149 	inflated_addr += offset - inflated_offset;
2150 	if (inflated_offset > offset)
2151 		inflated_addr += HPAGE_PMD_SIZE;
2152 
2153 	if (inflated_addr > TASK_SIZE - len)
2154 		return addr;
2155 	return inflated_addr;
2156 }
2157 
2158 #ifdef CONFIG_NUMA
2159 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2160 {
2161 	struct inode *inode = file_inode(vma->vm_file);
2162 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2163 }
2164 
2165 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2166 					  unsigned long addr)
2167 {
2168 	struct inode *inode = file_inode(vma->vm_file);
2169 	pgoff_t index;
2170 
2171 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2172 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2173 }
2174 #endif
2175 
2176 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2177 {
2178 	struct inode *inode = file_inode(file);
2179 	struct shmem_inode_info *info = SHMEM_I(inode);
2180 	int retval = -ENOMEM;
2181 
2182 	spin_lock_irq(&info->lock);
2183 	if (lock && !(info->flags & VM_LOCKED)) {
2184 		if (!user_shm_lock(inode->i_size, user))
2185 			goto out_nomem;
2186 		info->flags |= VM_LOCKED;
2187 		mapping_set_unevictable(file->f_mapping);
2188 	}
2189 	if (!lock && (info->flags & VM_LOCKED) && user) {
2190 		user_shm_unlock(inode->i_size, user);
2191 		info->flags &= ~VM_LOCKED;
2192 		mapping_clear_unevictable(file->f_mapping);
2193 	}
2194 	retval = 0;
2195 
2196 out_nomem:
2197 	spin_unlock_irq(&info->lock);
2198 	return retval;
2199 }
2200 
2201 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2202 {
2203 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2204 
2205 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2206 		/*
2207 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2208 		 * "future write" seal active.
2209 		 */
2210 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2211 			return -EPERM;
2212 
2213 		/*
2214 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2215 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2216 		 * revert protections on such mappings. Do this only for shared
2217 		 * mappings. For private mappings, don't need to mask
2218 		 * VM_MAYWRITE as we still want them to be COW-writable.
2219 		 */
2220 		if (vma->vm_flags & VM_SHARED)
2221 			vma->vm_flags &= ~(VM_MAYWRITE);
2222 	}
2223 
2224 	file_accessed(file);
2225 	vma->vm_ops = &shmem_vm_ops;
2226 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2227 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2228 			(vma->vm_end & HPAGE_PMD_MASK)) {
2229 		khugepaged_enter(vma, vma->vm_flags);
2230 	}
2231 	return 0;
2232 }
2233 
2234 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2235 				     umode_t mode, dev_t dev, unsigned long flags)
2236 {
2237 	struct inode *inode;
2238 	struct shmem_inode_info *info;
2239 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2240 
2241 	if (shmem_reserve_inode(sb))
2242 		return NULL;
2243 
2244 	inode = new_inode(sb);
2245 	if (inode) {
2246 		inode->i_ino = get_next_ino();
2247 		inode_init_owner(inode, dir, mode);
2248 		inode->i_blocks = 0;
2249 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2250 		inode->i_generation = prandom_u32();
2251 		info = SHMEM_I(inode);
2252 		memset(info, 0, (char *)inode - (char *)info);
2253 		spin_lock_init(&info->lock);
2254 		atomic_set(&info->stop_eviction, 0);
2255 		info->seals = F_SEAL_SEAL;
2256 		info->flags = flags & VM_NORESERVE;
2257 		INIT_LIST_HEAD(&info->shrinklist);
2258 		INIT_LIST_HEAD(&info->swaplist);
2259 		simple_xattrs_init(&info->xattrs);
2260 		cache_no_acl(inode);
2261 
2262 		switch (mode & S_IFMT) {
2263 		default:
2264 			inode->i_op = &shmem_special_inode_operations;
2265 			init_special_inode(inode, mode, dev);
2266 			break;
2267 		case S_IFREG:
2268 			inode->i_mapping->a_ops = &shmem_aops;
2269 			inode->i_op = &shmem_inode_operations;
2270 			inode->i_fop = &shmem_file_operations;
2271 			mpol_shared_policy_init(&info->policy,
2272 						 shmem_get_sbmpol(sbinfo));
2273 			break;
2274 		case S_IFDIR:
2275 			inc_nlink(inode);
2276 			/* Some things misbehave if size == 0 on a directory */
2277 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2278 			inode->i_op = &shmem_dir_inode_operations;
2279 			inode->i_fop = &simple_dir_operations;
2280 			break;
2281 		case S_IFLNK:
2282 			/*
2283 			 * Must not load anything in the rbtree,
2284 			 * mpol_free_shared_policy will not be called.
2285 			 */
2286 			mpol_shared_policy_init(&info->policy, NULL);
2287 			break;
2288 		}
2289 
2290 		lockdep_annotate_inode_mutex_key(inode);
2291 	} else
2292 		shmem_free_inode(sb);
2293 	return inode;
2294 }
2295 
2296 bool shmem_mapping(struct address_space *mapping)
2297 {
2298 	return mapping->a_ops == &shmem_aops;
2299 }
2300 
2301 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2302 				  pmd_t *dst_pmd,
2303 				  struct vm_area_struct *dst_vma,
2304 				  unsigned long dst_addr,
2305 				  unsigned long src_addr,
2306 				  bool zeropage,
2307 				  struct page **pagep)
2308 {
2309 	struct inode *inode = file_inode(dst_vma->vm_file);
2310 	struct shmem_inode_info *info = SHMEM_I(inode);
2311 	struct address_space *mapping = inode->i_mapping;
2312 	gfp_t gfp = mapping_gfp_mask(mapping);
2313 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2314 	struct mem_cgroup *memcg;
2315 	spinlock_t *ptl;
2316 	void *page_kaddr;
2317 	struct page *page;
2318 	pte_t _dst_pte, *dst_pte;
2319 	int ret;
2320 	pgoff_t offset, max_off;
2321 
2322 	ret = -ENOMEM;
2323 	if (!shmem_inode_acct_block(inode, 1))
2324 		goto out;
2325 
2326 	if (!*pagep) {
2327 		page = shmem_alloc_page(gfp, info, pgoff);
2328 		if (!page)
2329 			goto out_unacct_blocks;
2330 
2331 		if (!zeropage) {	/* mcopy_atomic */
2332 			page_kaddr = kmap_atomic(page);
2333 			ret = copy_from_user(page_kaddr,
2334 					     (const void __user *)src_addr,
2335 					     PAGE_SIZE);
2336 			kunmap_atomic(page_kaddr);
2337 
2338 			/* fallback to copy_from_user outside mmap_sem */
2339 			if (unlikely(ret)) {
2340 				*pagep = page;
2341 				shmem_inode_unacct_blocks(inode, 1);
2342 				/* don't free the page */
2343 				return -ENOENT;
2344 			}
2345 		} else {		/* mfill_zeropage_atomic */
2346 			clear_highpage(page);
2347 		}
2348 	} else {
2349 		page = *pagep;
2350 		*pagep = NULL;
2351 	}
2352 
2353 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2354 	__SetPageLocked(page);
2355 	__SetPageSwapBacked(page);
2356 	__SetPageUptodate(page);
2357 
2358 	ret = -EFAULT;
2359 	offset = linear_page_index(dst_vma, dst_addr);
2360 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2361 	if (unlikely(offset >= max_off))
2362 		goto out_release;
2363 
2364 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2365 	if (ret)
2366 		goto out_release;
2367 
2368 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2369 						gfp & GFP_RECLAIM_MASK);
2370 	if (ret)
2371 		goto out_release_uncharge;
2372 
2373 	mem_cgroup_commit_charge(page, memcg, false, false);
2374 
2375 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2376 	if (dst_vma->vm_flags & VM_WRITE)
2377 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2378 	else {
2379 		/*
2380 		 * We don't set the pte dirty if the vma has no
2381 		 * VM_WRITE permission, so mark the page dirty or it
2382 		 * could be freed from under us. We could do it
2383 		 * unconditionally before unlock_page(), but doing it
2384 		 * only if VM_WRITE is not set is faster.
2385 		 */
2386 		set_page_dirty(page);
2387 	}
2388 
2389 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2390 
2391 	ret = -EFAULT;
2392 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2393 	if (unlikely(offset >= max_off))
2394 		goto out_release_uncharge_unlock;
2395 
2396 	ret = -EEXIST;
2397 	if (!pte_none(*dst_pte))
2398 		goto out_release_uncharge_unlock;
2399 
2400 	lru_cache_add_anon(page);
2401 
2402 	spin_lock(&info->lock);
2403 	info->alloced++;
2404 	inode->i_blocks += BLOCKS_PER_PAGE;
2405 	shmem_recalc_inode(inode);
2406 	spin_unlock(&info->lock);
2407 
2408 	inc_mm_counter(dst_mm, mm_counter_file(page));
2409 	page_add_file_rmap(page, false);
2410 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2411 
2412 	/* No need to invalidate - it was non-present before */
2413 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2414 	pte_unmap_unlock(dst_pte, ptl);
2415 	unlock_page(page);
2416 	ret = 0;
2417 out:
2418 	return ret;
2419 out_release_uncharge_unlock:
2420 	pte_unmap_unlock(dst_pte, ptl);
2421 	ClearPageDirty(page);
2422 	delete_from_page_cache(page);
2423 out_release_uncharge:
2424 	mem_cgroup_cancel_charge(page, memcg, false);
2425 out_release:
2426 	unlock_page(page);
2427 	put_page(page);
2428 out_unacct_blocks:
2429 	shmem_inode_unacct_blocks(inode, 1);
2430 	goto out;
2431 }
2432 
2433 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2434 			   pmd_t *dst_pmd,
2435 			   struct vm_area_struct *dst_vma,
2436 			   unsigned long dst_addr,
2437 			   unsigned long src_addr,
2438 			   struct page **pagep)
2439 {
2440 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2441 				      dst_addr, src_addr, false, pagep);
2442 }
2443 
2444 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2445 			     pmd_t *dst_pmd,
2446 			     struct vm_area_struct *dst_vma,
2447 			     unsigned long dst_addr)
2448 {
2449 	struct page *page = NULL;
2450 
2451 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2452 				      dst_addr, 0, true, &page);
2453 }
2454 
2455 #ifdef CONFIG_TMPFS
2456 static const struct inode_operations shmem_symlink_inode_operations;
2457 static const struct inode_operations shmem_short_symlink_operations;
2458 
2459 #ifdef CONFIG_TMPFS_XATTR
2460 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2461 #else
2462 #define shmem_initxattrs NULL
2463 #endif
2464 
2465 static int
2466 shmem_write_begin(struct file *file, struct address_space *mapping,
2467 			loff_t pos, unsigned len, unsigned flags,
2468 			struct page **pagep, void **fsdata)
2469 {
2470 	struct inode *inode = mapping->host;
2471 	struct shmem_inode_info *info = SHMEM_I(inode);
2472 	pgoff_t index = pos >> PAGE_SHIFT;
2473 
2474 	/* i_mutex is held by caller */
2475 	if (unlikely(info->seals & (F_SEAL_GROW |
2476 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2477 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2478 			return -EPERM;
2479 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2480 			return -EPERM;
2481 	}
2482 
2483 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2484 }
2485 
2486 static int
2487 shmem_write_end(struct file *file, struct address_space *mapping,
2488 			loff_t pos, unsigned len, unsigned copied,
2489 			struct page *page, void *fsdata)
2490 {
2491 	struct inode *inode = mapping->host;
2492 
2493 	if (pos + copied > inode->i_size)
2494 		i_size_write(inode, pos + copied);
2495 
2496 	if (!PageUptodate(page)) {
2497 		struct page *head = compound_head(page);
2498 		if (PageTransCompound(page)) {
2499 			int i;
2500 
2501 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2502 				if (head + i == page)
2503 					continue;
2504 				clear_highpage(head + i);
2505 				flush_dcache_page(head + i);
2506 			}
2507 		}
2508 		if (copied < PAGE_SIZE) {
2509 			unsigned from = pos & (PAGE_SIZE - 1);
2510 			zero_user_segments(page, 0, from,
2511 					from + copied, PAGE_SIZE);
2512 		}
2513 		SetPageUptodate(head);
2514 	}
2515 	set_page_dirty(page);
2516 	unlock_page(page);
2517 	put_page(page);
2518 
2519 	return copied;
2520 }
2521 
2522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2523 {
2524 	struct file *file = iocb->ki_filp;
2525 	struct inode *inode = file_inode(file);
2526 	struct address_space *mapping = inode->i_mapping;
2527 	pgoff_t index;
2528 	unsigned long offset;
2529 	enum sgp_type sgp = SGP_READ;
2530 	int error = 0;
2531 	ssize_t retval = 0;
2532 	loff_t *ppos = &iocb->ki_pos;
2533 
2534 	/*
2535 	 * Might this read be for a stacking filesystem?  Then when reading
2536 	 * holes of a sparse file, we actually need to allocate those pages,
2537 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2538 	 */
2539 	if (!iter_is_iovec(to))
2540 		sgp = SGP_CACHE;
2541 
2542 	index = *ppos >> PAGE_SHIFT;
2543 	offset = *ppos & ~PAGE_MASK;
2544 
2545 	for (;;) {
2546 		struct page *page = NULL;
2547 		pgoff_t end_index;
2548 		unsigned long nr, ret;
2549 		loff_t i_size = i_size_read(inode);
2550 
2551 		end_index = i_size >> PAGE_SHIFT;
2552 		if (index > end_index)
2553 			break;
2554 		if (index == end_index) {
2555 			nr = i_size & ~PAGE_MASK;
2556 			if (nr <= offset)
2557 				break;
2558 		}
2559 
2560 		error = shmem_getpage(inode, index, &page, sgp);
2561 		if (error) {
2562 			if (error == -EINVAL)
2563 				error = 0;
2564 			break;
2565 		}
2566 		if (page) {
2567 			if (sgp == SGP_CACHE)
2568 				set_page_dirty(page);
2569 			unlock_page(page);
2570 		}
2571 
2572 		/*
2573 		 * We must evaluate after, since reads (unlike writes)
2574 		 * are called without i_mutex protection against truncate
2575 		 */
2576 		nr = PAGE_SIZE;
2577 		i_size = i_size_read(inode);
2578 		end_index = i_size >> PAGE_SHIFT;
2579 		if (index == end_index) {
2580 			nr = i_size & ~PAGE_MASK;
2581 			if (nr <= offset) {
2582 				if (page)
2583 					put_page(page);
2584 				break;
2585 			}
2586 		}
2587 		nr -= offset;
2588 
2589 		if (page) {
2590 			/*
2591 			 * If users can be writing to this page using arbitrary
2592 			 * virtual addresses, take care about potential aliasing
2593 			 * before reading the page on the kernel side.
2594 			 */
2595 			if (mapping_writably_mapped(mapping))
2596 				flush_dcache_page(page);
2597 			/*
2598 			 * Mark the page accessed if we read the beginning.
2599 			 */
2600 			if (!offset)
2601 				mark_page_accessed(page);
2602 		} else {
2603 			page = ZERO_PAGE(0);
2604 			get_page(page);
2605 		}
2606 
2607 		/*
2608 		 * Ok, we have the page, and it's up-to-date, so
2609 		 * now we can copy it to user space...
2610 		 */
2611 		ret = copy_page_to_iter(page, offset, nr, to);
2612 		retval += ret;
2613 		offset += ret;
2614 		index += offset >> PAGE_SHIFT;
2615 		offset &= ~PAGE_MASK;
2616 
2617 		put_page(page);
2618 		if (!iov_iter_count(to))
2619 			break;
2620 		if (ret < nr) {
2621 			error = -EFAULT;
2622 			break;
2623 		}
2624 		cond_resched();
2625 	}
2626 
2627 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2628 	file_accessed(file);
2629 	return retval ? retval : error;
2630 }
2631 
2632 /*
2633  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2634  */
2635 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2636 				    pgoff_t index, pgoff_t end, int whence)
2637 {
2638 	struct page *page;
2639 	struct pagevec pvec;
2640 	pgoff_t indices[PAGEVEC_SIZE];
2641 	bool done = false;
2642 	int i;
2643 
2644 	pagevec_init(&pvec);
2645 	pvec.nr = 1;		/* start small: we may be there already */
2646 	while (!done) {
2647 		pvec.nr = find_get_entries(mapping, index,
2648 					pvec.nr, pvec.pages, indices);
2649 		if (!pvec.nr) {
2650 			if (whence == SEEK_DATA)
2651 				index = end;
2652 			break;
2653 		}
2654 		for (i = 0; i < pvec.nr; i++, index++) {
2655 			if (index < indices[i]) {
2656 				if (whence == SEEK_HOLE) {
2657 					done = true;
2658 					break;
2659 				}
2660 				index = indices[i];
2661 			}
2662 			page = pvec.pages[i];
2663 			if (page && !xa_is_value(page)) {
2664 				if (!PageUptodate(page))
2665 					page = NULL;
2666 			}
2667 			if (index >= end ||
2668 			    (page && whence == SEEK_DATA) ||
2669 			    (!page && whence == SEEK_HOLE)) {
2670 				done = true;
2671 				break;
2672 			}
2673 		}
2674 		pagevec_remove_exceptionals(&pvec);
2675 		pagevec_release(&pvec);
2676 		pvec.nr = PAGEVEC_SIZE;
2677 		cond_resched();
2678 	}
2679 	return index;
2680 }
2681 
2682 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2683 {
2684 	struct address_space *mapping = file->f_mapping;
2685 	struct inode *inode = mapping->host;
2686 	pgoff_t start, end;
2687 	loff_t new_offset;
2688 
2689 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2690 		return generic_file_llseek_size(file, offset, whence,
2691 					MAX_LFS_FILESIZE, i_size_read(inode));
2692 	inode_lock(inode);
2693 	/* We're holding i_mutex so we can access i_size directly */
2694 
2695 	if (offset < 0 || offset >= inode->i_size)
2696 		offset = -ENXIO;
2697 	else {
2698 		start = offset >> PAGE_SHIFT;
2699 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2700 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2701 		new_offset <<= PAGE_SHIFT;
2702 		if (new_offset > offset) {
2703 			if (new_offset < inode->i_size)
2704 				offset = new_offset;
2705 			else if (whence == SEEK_DATA)
2706 				offset = -ENXIO;
2707 			else
2708 				offset = inode->i_size;
2709 		}
2710 	}
2711 
2712 	if (offset >= 0)
2713 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2714 	inode_unlock(inode);
2715 	return offset;
2716 }
2717 
2718 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2719 							 loff_t len)
2720 {
2721 	struct inode *inode = file_inode(file);
2722 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2723 	struct shmem_inode_info *info = SHMEM_I(inode);
2724 	struct shmem_falloc shmem_falloc;
2725 	pgoff_t start, index, end;
2726 	int error;
2727 
2728 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2729 		return -EOPNOTSUPP;
2730 
2731 	inode_lock(inode);
2732 
2733 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2734 		struct address_space *mapping = file->f_mapping;
2735 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2736 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2737 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2738 
2739 		/* protected by i_mutex */
2740 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2741 			error = -EPERM;
2742 			goto out;
2743 		}
2744 
2745 		shmem_falloc.waitq = &shmem_falloc_waitq;
2746 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2747 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2748 		spin_lock(&inode->i_lock);
2749 		inode->i_private = &shmem_falloc;
2750 		spin_unlock(&inode->i_lock);
2751 
2752 		if ((u64)unmap_end > (u64)unmap_start)
2753 			unmap_mapping_range(mapping, unmap_start,
2754 					    1 + unmap_end - unmap_start, 0);
2755 		shmem_truncate_range(inode, offset, offset + len - 1);
2756 		/* No need to unmap again: hole-punching leaves COWed pages */
2757 
2758 		spin_lock(&inode->i_lock);
2759 		inode->i_private = NULL;
2760 		wake_up_all(&shmem_falloc_waitq);
2761 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2762 		spin_unlock(&inode->i_lock);
2763 		error = 0;
2764 		goto out;
2765 	}
2766 
2767 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2768 	error = inode_newsize_ok(inode, offset + len);
2769 	if (error)
2770 		goto out;
2771 
2772 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2773 		error = -EPERM;
2774 		goto out;
2775 	}
2776 
2777 	start = offset >> PAGE_SHIFT;
2778 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2779 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2780 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2781 		error = -ENOSPC;
2782 		goto out;
2783 	}
2784 
2785 	shmem_falloc.waitq = NULL;
2786 	shmem_falloc.start = start;
2787 	shmem_falloc.next  = start;
2788 	shmem_falloc.nr_falloced = 0;
2789 	shmem_falloc.nr_unswapped = 0;
2790 	spin_lock(&inode->i_lock);
2791 	inode->i_private = &shmem_falloc;
2792 	spin_unlock(&inode->i_lock);
2793 
2794 	for (index = start; index < end; index++) {
2795 		struct page *page;
2796 
2797 		/*
2798 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2799 		 * been interrupted because we are using up too much memory.
2800 		 */
2801 		if (signal_pending(current))
2802 			error = -EINTR;
2803 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2804 			error = -ENOMEM;
2805 		else
2806 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2807 		if (error) {
2808 			/* Remove the !PageUptodate pages we added */
2809 			if (index > start) {
2810 				shmem_undo_range(inode,
2811 				    (loff_t)start << PAGE_SHIFT,
2812 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2813 			}
2814 			goto undone;
2815 		}
2816 
2817 		/*
2818 		 * Inform shmem_writepage() how far we have reached.
2819 		 * No need for lock or barrier: we have the page lock.
2820 		 */
2821 		shmem_falloc.next++;
2822 		if (!PageUptodate(page))
2823 			shmem_falloc.nr_falloced++;
2824 
2825 		/*
2826 		 * If !PageUptodate, leave it that way so that freeable pages
2827 		 * can be recognized if we need to rollback on error later.
2828 		 * But set_page_dirty so that memory pressure will swap rather
2829 		 * than free the pages we are allocating (and SGP_CACHE pages
2830 		 * might still be clean: we now need to mark those dirty too).
2831 		 */
2832 		set_page_dirty(page);
2833 		unlock_page(page);
2834 		put_page(page);
2835 		cond_resched();
2836 	}
2837 
2838 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2839 		i_size_write(inode, offset + len);
2840 	inode->i_ctime = current_time(inode);
2841 undone:
2842 	spin_lock(&inode->i_lock);
2843 	inode->i_private = NULL;
2844 	spin_unlock(&inode->i_lock);
2845 out:
2846 	inode_unlock(inode);
2847 	return error;
2848 }
2849 
2850 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2851 {
2852 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2853 
2854 	buf->f_type = TMPFS_MAGIC;
2855 	buf->f_bsize = PAGE_SIZE;
2856 	buf->f_namelen = NAME_MAX;
2857 	if (sbinfo->max_blocks) {
2858 		buf->f_blocks = sbinfo->max_blocks;
2859 		buf->f_bavail =
2860 		buf->f_bfree  = sbinfo->max_blocks -
2861 				percpu_counter_sum(&sbinfo->used_blocks);
2862 	}
2863 	if (sbinfo->max_inodes) {
2864 		buf->f_files = sbinfo->max_inodes;
2865 		buf->f_ffree = sbinfo->free_inodes;
2866 	}
2867 	/* else leave those fields 0 like simple_statfs */
2868 	return 0;
2869 }
2870 
2871 /*
2872  * File creation. Allocate an inode, and we're done..
2873  */
2874 static int
2875 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2876 {
2877 	struct inode *inode;
2878 	int error = -ENOSPC;
2879 
2880 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2881 	if (inode) {
2882 		error = simple_acl_create(dir, inode);
2883 		if (error)
2884 			goto out_iput;
2885 		error = security_inode_init_security(inode, dir,
2886 						     &dentry->d_name,
2887 						     shmem_initxattrs, NULL);
2888 		if (error && error != -EOPNOTSUPP)
2889 			goto out_iput;
2890 
2891 		error = 0;
2892 		dir->i_size += BOGO_DIRENT_SIZE;
2893 		dir->i_ctime = dir->i_mtime = current_time(dir);
2894 		d_instantiate(dentry, inode);
2895 		dget(dentry); /* Extra count - pin the dentry in core */
2896 	}
2897 	return error;
2898 out_iput:
2899 	iput(inode);
2900 	return error;
2901 }
2902 
2903 static int
2904 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2905 {
2906 	struct inode *inode;
2907 	int error = -ENOSPC;
2908 
2909 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2910 	if (inode) {
2911 		error = security_inode_init_security(inode, dir,
2912 						     NULL,
2913 						     shmem_initxattrs, NULL);
2914 		if (error && error != -EOPNOTSUPP)
2915 			goto out_iput;
2916 		error = simple_acl_create(dir, inode);
2917 		if (error)
2918 			goto out_iput;
2919 		d_tmpfile(dentry, inode);
2920 	}
2921 	return error;
2922 out_iput:
2923 	iput(inode);
2924 	return error;
2925 }
2926 
2927 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2928 {
2929 	int error;
2930 
2931 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2932 		return error;
2933 	inc_nlink(dir);
2934 	return 0;
2935 }
2936 
2937 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2938 		bool excl)
2939 {
2940 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2941 }
2942 
2943 /*
2944  * Link a file..
2945  */
2946 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2947 {
2948 	struct inode *inode = d_inode(old_dentry);
2949 	int ret = 0;
2950 
2951 	/*
2952 	 * No ordinary (disk based) filesystem counts links as inodes;
2953 	 * but each new link needs a new dentry, pinning lowmem, and
2954 	 * tmpfs dentries cannot be pruned until they are unlinked.
2955 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2956 	 * first link must skip that, to get the accounting right.
2957 	 */
2958 	if (inode->i_nlink) {
2959 		ret = shmem_reserve_inode(inode->i_sb);
2960 		if (ret)
2961 			goto out;
2962 	}
2963 
2964 	dir->i_size += BOGO_DIRENT_SIZE;
2965 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2966 	inc_nlink(inode);
2967 	ihold(inode);	/* New dentry reference */
2968 	dget(dentry);		/* Extra pinning count for the created dentry */
2969 	d_instantiate(dentry, inode);
2970 out:
2971 	return ret;
2972 }
2973 
2974 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2975 {
2976 	struct inode *inode = d_inode(dentry);
2977 
2978 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2979 		shmem_free_inode(inode->i_sb);
2980 
2981 	dir->i_size -= BOGO_DIRENT_SIZE;
2982 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2983 	drop_nlink(inode);
2984 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2985 	return 0;
2986 }
2987 
2988 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2989 {
2990 	if (!simple_empty(dentry))
2991 		return -ENOTEMPTY;
2992 
2993 	drop_nlink(d_inode(dentry));
2994 	drop_nlink(dir);
2995 	return shmem_unlink(dir, dentry);
2996 }
2997 
2998 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2999 {
3000 	bool old_is_dir = d_is_dir(old_dentry);
3001 	bool new_is_dir = d_is_dir(new_dentry);
3002 
3003 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3004 		if (old_is_dir) {
3005 			drop_nlink(old_dir);
3006 			inc_nlink(new_dir);
3007 		} else {
3008 			drop_nlink(new_dir);
3009 			inc_nlink(old_dir);
3010 		}
3011 	}
3012 	old_dir->i_ctime = old_dir->i_mtime =
3013 	new_dir->i_ctime = new_dir->i_mtime =
3014 	d_inode(old_dentry)->i_ctime =
3015 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3016 
3017 	return 0;
3018 }
3019 
3020 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3021 {
3022 	struct dentry *whiteout;
3023 	int error;
3024 
3025 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3026 	if (!whiteout)
3027 		return -ENOMEM;
3028 
3029 	error = shmem_mknod(old_dir, whiteout,
3030 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3031 	dput(whiteout);
3032 	if (error)
3033 		return error;
3034 
3035 	/*
3036 	 * Cheat and hash the whiteout while the old dentry is still in
3037 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3038 	 *
3039 	 * d_lookup() will consistently find one of them at this point,
3040 	 * not sure which one, but that isn't even important.
3041 	 */
3042 	d_rehash(whiteout);
3043 	return 0;
3044 }
3045 
3046 /*
3047  * The VFS layer already does all the dentry stuff for rename,
3048  * we just have to decrement the usage count for the target if
3049  * it exists so that the VFS layer correctly free's it when it
3050  * gets overwritten.
3051  */
3052 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3053 {
3054 	struct inode *inode = d_inode(old_dentry);
3055 	int they_are_dirs = S_ISDIR(inode->i_mode);
3056 
3057 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3058 		return -EINVAL;
3059 
3060 	if (flags & RENAME_EXCHANGE)
3061 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3062 
3063 	if (!simple_empty(new_dentry))
3064 		return -ENOTEMPTY;
3065 
3066 	if (flags & RENAME_WHITEOUT) {
3067 		int error;
3068 
3069 		error = shmem_whiteout(old_dir, old_dentry);
3070 		if (error)
3071 			return error;
3072 	}
3073 
3074 	if (d_really_is_positive(new_dentry)) {
3075 		(void) shmem_unlink(new_dir, new_dentry);
3076 		if (they_are_dirs) {
3077 			drop_nlink(d_inode(new_dentry));
3078 			drop_nlink(old_dir);
3079 		}
3080 	} else if (they_are_dirs) {
3081 		drop_nlink(old_dir);
3082 		inc_nlink(new_dir);
3083 	}
3084 
3085 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3086 	new_dir->i_size += BOGO_DIRENT_SIZE;
3087 	old_dir->i_ctime = old_dir->i_mtime =
3088 	new_dir->i_ctime = new_dir->i_mtime =
3089 	inode->i_ctime = current_time(old_dir);
3090 	return 0;
3091 }
3092 
3093 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3094 {
3095 	int error;
3096 	int len;
3097 	struct inode *inode;
3098 	struct page *page;
3099 
3100 	len = strlen(symname) + 1;
3101 	if (len > PAGE_SIZE)
3102 		return -ENAMETOOLONG;
3103 
3104 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3105 				VM_NORESERVE);
3106 	if (!inode)
3107 		return -ENOSPC;
3108 
3109 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3110 					     shmem_initxattrs, NULL);
3111 	if (error && error != -EOPNOTSUPP) {
3112 		iput(inode);
3113 		return error;
3114 	}
3115 
3116 	inode->i_size = len-1;
3117 	if (len <= SHORT_SYMLINK_LEN) {
3118 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3119 		if (!inode->i_link) {
3120 			iput(inode);
3121 			return -ENOMEM;
3122 		}
3123 		inode->i_op = &shmem_short_symlink_operations;
3124 	} else {
3125 		inode_nohighmem(inode);
3126 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3127 		if (error) {
3128 			iput(inode);
3129 			return error;
3130 		}
3131 		inode->i_mapping->a_ops = &shmem_aops;
3132 		inode->i_op = &shmem_symlink_inode_operations;
3133 		memcpy(page_address(page), symname, len);
3134 		SetPageUptodate(page);
3135 		set_page_dirty(page);
3136 		unlock_page(page);
3137 		put_page(page);
3138 	}
3139 	dir->i_size += BOGO_DIRENT_SIZE;
3140 	dir->i_ctime = dir->i_mtime = current_time(dir);
3141 	d_instantiate(dentry, inode);
3142 	dget(dentry);
3143 	return 0;
3144 }
3145 
3146 static void shmem_put_link(void *arg)
3147 {
3148 	mark_page_accessed(arg);
3149 	put_page(arg);
3150 }
3151 
3152 static const char *shmem_get_link(struct dentry *dentry,
3153 				  struct inode *inode,
3154 				  struct delayed_call *done)
3155 {
3156 	struct page *page = NULL;
3157 	int error;
3158 	if (!dentry) {
3159 		page = find_get_page(inode->i_mapping, 0);
3160 		if (!page)
3161 			return ERR_PTR(-ECHILD);
3162 		if (!PageUptodate(page)) {
3163 			put_page(page);
3164 			return ERR_PTR(-ECHILD);
3165 		}
3166 	} else {
3167 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3168 		if (error)
3169 			return ERR_PTR(error);
3170 		unlock_page(page);
3171 	}
3172 	set_delayed_call(done, shmem_put_link, page);
3173 	return page_address(page);
3174 }
3175 
3176 #ifdef CONFIG_TMPFS_XATTR
3177 /*
3178  * Superblocks without xattr inode operations may get some security.* xattr
3179  * support from the LSM "for free". As soon as we have any other xattrs
3180  * like ACLs, we also need to implement the security.* handlers at
3181  * filesystem level, though.
3182  */
3183 
3184 /*
3185  * Callback for security_inode_init_security() for acquiring xattrs.
3186  */
3187 static int shmem_initxattrs(struct inode *inode,
3188 			    const struct xattr *xattr_array,
3189 			    void *fs_info)
3190 {
3191 	struct shmem_inode_info *info = SHMEM_I(inode);
3192 	const struct xattr *xattr;
3193 	struct simple_xattr *new_xattr;
3194 	size_t len;
3195 
3196 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3197 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3198 		if (!new_xattr)
3199 			return -ENOMEM;
3200 
3201 		len = strlen(xattr->name) + 1;
3202 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3203 					  GFP_KERNEL);
3204 		if (!new_xattr->name) {
3205 			kfree(new_xattr);
3206 			return -ENOMEM;
3207 		}
3208 
3209 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3210 		       XATTR_SECURITY_PREFIX_LEN);
3211 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3212 		       xattr->name, len);
3213 
3214 		simple_xattr_list_add(&info->xattrs, new_xattr);
3215 	}
3216 
3217 	return 0;
3218 }
3219 
3220 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3221 				   struct dentry *unused, struct inode *inode,
3222 				   const char *name, void *buffer, size_t size)
3223 {
3224 	struct shmem_inode_info *info = SHMEM_I(inode);
3225 
3226 	name = xattr_full_name(handler, name);
3227 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3228 }
3229 
3230 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3231 				   struct dentry *unused, struct inode *inode,
3232 				   const char *name, const void *value,
3233 				   size_t size, int flags)
3234 {
3235 	struct shmem_inode_info *info = SHMEM_I(inode);
3236 
3237 	name = xattr_full_name(handler, name);
3238 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3239 }
3240 
3241 static const struct xattr_handler shmem_security_xattr_handler = {
3242 	.prefix = XATTR_SECURITY_PREFIX,
3243 	.get = shmem_xattr_handler_get,
3244 	.set = shmem_xattr_handler_set,
3245 };
3246 
3247 static const struct xattr_handler shmem_trusted_xattr_handler = {
3248 	.prefix = XATTR_TRUSTED_PREFIX,
3249 	.get = shmem_xattr_handler_get,
3250 	.set = shmem_xattr_handler_set,
3251 };
3252 
3253 static const struct xattr_handler *shmem_xattr_handlers[] = {
3254 #ifdef CONFIG_TMPFS_POSIX_ACL
3255 	&posix_acl_access_xattr_handler,
3256 	&posix_acl_default_xattr_handler,
3257 #endif
3258 	&shmem_security_xattr_handler,
3259 	&shmem_trusted_xattr_handler,
3260 	NULL
3261 };
3262 
3263 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3264 {
3265 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3266 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3267 }
3268 #endif /* CONFIG_TMPFS_XATTR */
3269 
3270 static const struct inode_operations shmem_short_symlink_operations = {
3271 	.get_link	= simple_get_link,
3272 #ifdef CONFIG_TMPFS_XATTR
3273 	.listxattr	= shmem_listxattr,
3274 #endif
3275 };
3276 
3277 static const struct inode_operations shmem_symlink_inode_operations = {
3278 	.get_link	= shmem_get_link,
3279 #ifdef CONFIG_TMPFS_XATTR
3280 	.listxattr	= shmem_listxattr,
3281 #endif
3282 };
3283 
3284 static struct dentry *shmem_get_parent(struct dentry *child)
3285 {
3286 	return ERR_PTR(-ESTALE);
3287 }
3288 
3289 static int shmem_match(struct inode *ino, void *vfh)
3290 {
3291 	__u32 *fh = vfh;
3292 	__u64 inum = fh[2];
3293 	inum = (inum << 32) | fh[1];
3294 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3295 }
3296 
3297 /* Find any alias of inode, but prefer a hashed alias */
3298 static struct dentry *shmem_find_alias(struct inode *inode)
3299 {
3300 	struct dentry *alias = d_find_alias(inode);
3301 
3302 	return alias ?: d_find_any_alias(inode);
3303 }
3304 
3305 
3306 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3307 		struct fid *fid, int fh_len, int fh_type)
3308 {
3309 	struct inode *inode;
3310 	struct dentry *dentry = NULL;
3311 	u64 inum;
3312 
3313 	if (fh_len < 3)
3314 		return NULL;
3315 
3316 	inum = fid->raw[2];
3317 	inum = (inum << 32) | fid->raw[1];
3318 
3319 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3320 			shmem_match, fid->raw);
3321 	if (inode) {
3322 		dentry = shmem_find_alias(inode);
3323 		iput(inode);
3324 	}
3325 
3326 	return dentry;
3327 }
3328 
3329 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3330 				struct inode *parent)
3331 {
3332 	if (*len < 3) {
3333 		*len = 3;
3334 		return FILEID_INVALID;
3335 	}
3336 
3337 	if (inode_unhashed(inode)) {
3338 		/* Unfortunately insert_inode_hash is not idempotent,
3339 		 * so as we hash inodes here rather than at creation
3340 		 * time, we need a lock to ensure we only try
3341 		 * to do it once
3342 		 */
3343 		static DEFINE_SPINLOCK(lock);
3344 		spin_lock(&lock);
3345 		if (inode_unhashed(inode))
3346 			__insert_inode_hash(inode,
3347 					    inode->i_ino + inode->i_generation);
3348 		spin_unlock(&lock);
3349 	}
3350 
3351 	fh[0] = inode->i_generation;
3352 	fh[1] = inode->i_ino;
3353 	fh[2] = ((__u64)inode->i_ino) >> 32;
3354 
3355 	*len = 3;
3356 	return 1;
3357 }
3358 
3359 static const struct export_operations shmem_export_ops = {
3360 	.get_parent     = shmem_get_parent,
3361 	.encode_fh      = shmem_encode_fh,
3362 	.fh_to_dentry	= shmem_fh_to_dentry,
3363 };
3364 
3365 enum shmem_param {
3366 	Opt_gid,
3367 	Opt_huge,
3368 	Opt_mode,
3369 	Opt_mpol,
3370 	Opt_nr_blocks,
3371 	Opt_nr_inodes,
3372 	Opt_size,
3373 	Opt_uid,
3374 };
3375 
3376 static const struct constant_table shmem_param_enums_huge[] = {
3377 	{"never",	SHMEM_HUGE_NEVER },
3378 	{"always",	SHMEM_HUGE_ALWAYS },
3379 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3380 	{"advise",	SHMEM_HUGE_ADVISE },
3381 	{}
3382 };
3383 
3384 const struct fs_parameter_spec shmem_fs_parameters[] = {
3385 	fsparam_u32   ("gid",		Opt_gid),
3386 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3387 	fsparam_u32oct("mode",		Opt_mode),
3388 	fsparam_string("mpol",		Opt_mpol),
3389 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3390 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3391 	fsparam_string("size",		Opt_size),
3392 	fsparam_u32   ("uid",		Opt_uid),
3393 	{}
3394 };
3395 
3396 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3397 {
3398 	struct shmem_options *ctx = fc->fs_private;
3399 	struct fs_parse_result result;
3400 	unsigned long long size;
3401 	char *rest;
3402 	int opt;
3403 
3404 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3405 	if (opt < 0)
3406 		return opt;
3407 
3408 	switch (opt) {
3409 	case Opt_size:
3410 		size = memparse(param->string, &rest);
3411 		if (*rest == '%') {
3412 			size <<= PAGE_SHIFT;
3413 			size *= totalram_pages();
3414 			do_div(size, 100);
3415 			rest++;
3416 		}
3417 		if (*rest)
3418 			goto bad_value;
3419 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3420 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3421 		break;
3422 	case Opt_nr_blocks:
3423 		ctx->blocks = memparse(param->string, &rest);
3424 		if (*rest)
3425 			goto bad_value;
3426 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3427 		break;
3428 	case Opt_nr_inodes:
3429 		ctx->inodes = memparse(param->string, &rest);
3430 		if (*rest)
3431 			goto bad_value;
3432 		ctx->seen |= SHMEM_SEEN_INODES;
3433 		break;
3434 	case Opt_mode:
3435 		ctx->mode = result.uint_32 & 07777;
3436 		break;
3437 	case Opt_uid:
3438 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3439 		if (!uid_valid(ctx->uid))
3440 			goto bad_value;
3441 		break;
3442 	case Opt_gid:
3443 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3444 		if (!gid_valid(ctx->gid))
3445 			goto bad_value;
3446 		break;
3447 	case Opt_huge:
3448 		ctx->huge = result.uint_32;
3449 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3450 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3451 		      has_transparent_hugepage()))
3452 			goto unsupported_parameter;
3453 		ctx->seen |= SHMEM_SEEN_HUGE;
3454 		break;
3455 	case Opt_mpol:
3456 		if (IS_ENABLED(CONFIG_NUMA)) {
3457 			mpol_put(ctx->mpol);
3458 			ctx->mpol = NULL;
3459 			if (mpol_parse_str(param->string, &ctx->mpol))
3460 				goto bad_value;
3461 			break;
3462 		}
3463 		goto unsupported_parameter;
3464 	}
3465 	return 0;
3466 
3467 unsupported_parameter:
3468 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3469 bad_value:
3470 	return invalfc(fc, "Bad value for '%s'", param->key);
3471 }
3472 
3473 static int shmem_parse_options(struct fs_context *fc, void *data)
3474 {
3475 	char *options = data;
3476 
3477 	if (options) {
3478 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3479 		if (err)
3480 			return err;
3481 	}
3482 
3483 	while (options != NULL) {
3484 		char *this_char = options;
3485 		for (;;) {
3486 			/*
3487 			 * NUL-terminate this option: unfortunately,
3488 			 * mount options form a comma-separated list,
3489 			 * but mpol's nodelist may also contain commas.
3490 			 */
3491 			options = strchr(options, ',');
3492 			if (options == NULL)
3493 				break;
3494 			options++;
3495 			if (!isdigit(*options)) {
3496 				options[-1] = '\0';
3497 				break;
3498 			}
3499 		}
3500 		if (*this_char) {
3501 			char *value = strchr(this_char,'=');
3502 			size_t len = 0;
3503 			int err;
3504 
3505 			if (value) {
3506 				*value++ = '\0';
3507 				len = strlen(value);
3508 			}
3509 			err = vfs_parse_fs_string(fc, this_char, value, len);
3510 			if (err < 0)
3511 				return err;
3512 		}
3513 	}
3514 	return 0;
3515 }
3516 
3517 /*
3518  * Reconfigure a shmem filesystem.
3519  *
3520  * Note that we disallow change from limited->unlimited blocks/inodes while any
3521  * are in use; but we must separately disallow unlimited->limited, because in
3522  * that case we have no record of how much is already in use.
3523  */
3524 static int shmem_reconfigure(struct fs_context *fc)
3525 {
3526 	struct shmem_options *ctx = fc->fs_private;
3527 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3528 	unsigned long inodes;
3529 	const char *err;
3530 
3531 	spin_lock(&sbinfo->stat_lock);
3532 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3533 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3534 		if (!sbinfo->max_blocks) {
3535 			err = "Cannot retroactively limit size";
3536 			goto out;
3537 		}
3538 		if (percpu_counter_compare(&sbinfo->used_blocks,
3539 					   ctx->blocks) > 0) {
3540 			err = "Too small a size for current use";
3541 			goto out;
3542 		}
3543 	}
3544 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3545 		if (!sbinfo->max_inodes) {
3546 			err = "Cannot retroactively limit inodes";
3547 			goto out;
3548 		}
3549 		if (ctx->inodes < inodes) {
3550 			err = "Too few inodes for current use";
3551 			goto out;
3552 		}
3553 	}
3554 
3555 	if (ctx->seen & SHMEM_SEEN_HUGE)
3556 		sbinfo->huge = ctx->huge;
3557 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3558 		sbinfo->max_blocks  = ctx->blocks;
3559 	if (ctx->seen & SHMEM_SEEN_INODES) {
3560 		sbinfo->max_inodes  = ctx->inodes;
3561 		sbinfo->free_inodes = ctx->inodes - inodes;
3562 	}
3563 
3564 	/*
3565 	 * Preserve previous mempolicy unless mpol remount option was specified.
3566 	 */
3567 	if (ctx->mpol) {
3568 		mpol_put(sbinfo->mpol);
3569 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3570 		ctx->mpol = NULL;
3571 	}
3572 	spin_unlock(&sbinfo->stat_lock);
3573 	return 0;
3574 out:
3575 	spin_unlock(&sbinfo->stat_lock);
3576 	return invalfc(fc, "%s", err);
3577 }
3578 
3579 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3580 {
3581 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3582 
3583 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3584 		seq_printf(seq, ",size=%luk",
3585 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3586 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3587 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3588 	if (sbinfo->mode != (0777 | S_ISVTX))
3589 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3590 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3591 		seq_printf(seq, ",uid=%u",
3592 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3593 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3594 		seq_printf(seq, ",gid=%u",
3595 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3597 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3598 	if (sbinfo->huge)
3599 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3600 #endif
3601 	shmem_show_mpol(seq, sbinfo->mpol);
3602 	return 0;
3603 }
3604 
3605 #endif /* CONFIG_TMPFS */
3606 
3607 static void shmem_put_super(struct super_block *sb)
3608 {
3609 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3610 
3611 	percpu_counter_destroy(&sbinfo->used_blocks);
3612 	mpol_put(sbinfo->mpol);
3613 	kfree(sbinfo);
3614 	sb->s_fs_info = NULL;
3615 }
3616 
3617 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3618 {
3619 	struct shmem_options *ctx = fc->fs_private;
3620 	struct inode *inode;
3621 	struct shmem_sb_info *sbinfo;
3622 	int err = -ENOMEM;
3623 
3624 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3625 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3626 				L1_CACHE_BYTES), GFP_KERNEL);
3627 	if (!sbinfo)
3628 		return -ENOMEM;
3629 
3630 	sb->s_fs_info = sbinfo;
3631 
3632 #ifdef CONFIG_TMPFS
3633 	/*
3634 	 * Per default we only allow half of the physical ram per
3635 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3636 	 * but the internal instance is left unlimited.
3637 	 */
3638 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3639 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3640 			ctx->blocks = shmem_default_max_blocks();
3641 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3642 			ctx->inodes = shmem_default_max_inodes();
3643 	} else {
3644 		sb->s_flags |= SB_NOUSER;
3645 	}
3646 	sb->s_export_op = &shmem_export_ops;
3647 	sb->s_flags |= SB_NOSEC;
3648 #else
3649 	sb->s_flags |= SB_NOUSER;
3650 #endif
3651 	sbinfo->max_blocks = ctx->blocks;
3652 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3653 	sbinfo->uid = ctx->uid;
3654 	sbinfo->gid = ctx->gid;
3655 	sbinfo->mode = ctx->mode;
3656 	sbinfo->huge = ctx->huge;
3657 	sbinfo->mpol = ctx->mpol;
3658 	ctx->mpol = NULL;
3659 
3660 	spin_lock_init(&sbinfo->stat_lock);
3661 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3662 		goto failed;
3663 	spin_lock_init(&sbinfo->shrinklist_lock);
3664 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3665 
3666 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3667 	sb->s_blocksize = PAGE_SIZE;
3668 	sb->s_blocksize_bits = PAGE_SHIFT;
3669 	sb->s_magic = TMPFS_MAGIC;
3670 	sb->s_op = &shmem_ops;
3671 	sb->s_time_gran = 1;
3672 #ifdef CONFIG_TMPFS_XATTR
3673 	sb->s_xattr = shmem_xattr_handlers;
3674 #endif
3675 #ifdef CONFIG_TMPFS_POSIX_ACL
3676 	sb->s_flags |= SB_POSIXACL;
3677 #endif
3678 	uuid_gen(&sb->s_uuid);
3679 
3680 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3681 	if (!inode)
3682 		goto failed;
3683 	inode->i_uid = sbinfo->uid;
3684 	inode->i_gid = sbinfo->gid;
3685 	sb->s_root = d_make_root(inode);
3686 	if (!sb->s_root)
3687 		goto failed;
3688 	return 0;
3689 
3690 failed:
3691 	shmem_put_super(sb);
3692 	return err;
3693 }
3694 
3695 static int shmem_get_tree(struct fs_context *fc)
3696 {
3697 	return get_tree_nodev(fc, shmem_fill_super);
3698 }
3699 
3700 static void shmem_free_fc(struct fs_context *fc)
3701 {
3702 	struct shmem_options *ctx = fc->fs_private;
3703 
3704 	if (ctx) {
3705 		mpol_put(ctx->mpol);
3706 		kfree(ctx);
3707 	}
3708 }
3709 
3710 static const struct fs_context_operations shmem_fs_context_ops = {
3711 	.free			= shmem_free_fc,
3712 	.get_tree		= shmem_get_tree,
3713 #ifdef CONFIG_TMPFS
3714 	.parse_monolithic	= shmem_parse_options,
3715 	.parse_param		= shmem_parse_one,
3716 	.reconfigure		= shmem_reconfigure,
3717 #endif
3718 };
3719 
3720 static struct kmem_cache *shmem_inode_cachep;
3721 
3722 static struct inode *shmem_alloc_inode(struct super_block *sb)
3723 {
3724 	struct shmem_inode_info *info;
3725 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3726 	if (!info)
3727 		return NULL;
3728 	return &info->vfs_inode;
3729 }
3730 
3731 static void shmem_free_in_core_inode(struct inode *inode)
3732 {
3733 	if (S_ISLNK(inode->i_mode))
3734 		kfree(inode->i_link);
3735 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3736 }
3737 
3738 static void shmem_destroy_inode(struct inode *inode)
3739 {
3740 	if (S_ISREG(inode->i_mode))
3741 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3742 }
3743 
3744 static void shmem_init_inode(void *foo)
3745 {
3746 	struct shmem_inode_info *info = foo;
3747 	inode_init_once(&info->vfs_inode);
3748 }
3749 
3750 static void shmem_init_inodecache(void)
3751 {
3752 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3753 				sizeof(struct shmem_inode_info),
3754 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3755 }
3756 
3757 static void shmem_destroy_inodecache(void)
3758 {
3759 	kmem_cache_destroy(shmem_inode_cachep);
3760 }
3761 
3762 static const struct address_space_operations shmem_aops = {
3763 	.writepage	= shmem_writepage,
3764 	.set_page_dirty	= __set_page_dirty_no_writeback,
3765 #ifdef CONFIG_TMPFS
3766 	.write_begin	= shmem_write_begin,
3767 	.write_end	= shmem_write_end,
3768 #endif
3769 #ifdef CONFIG_MIGRATION
3770 	.migratepage	= migrate_page,
3771 #endif
3772 	.error_remove_page = generic_error_remove_page,
3773 };
3774 
3775 static const struct file_operations shmem_file_operations = {
3776 	.mmap		= shmem_mmap,
3777 	.get_unmapped_area = shmem_get_unmapped_area,
3778 #ifdef CONFIG_TMPFS
3779 	.llseek		= shmem_file_llseek,
3780 	.read_iter	= shmem_file_read_iter,
3781 	.write_iter	= generic_file_write_iter,
3782 	.fsync		= noop_fsync,
3783 	.splice_read	= generic_file_splice_read,
3784 	.splice_write	= iter_file_splice_write,
3785 	.fallocate	= shmem_fallocate,
3786 #endif
3787 };
3788 
3789 static const struct inode_operations shmem_inode_operations = {
3790 	.getattr	= shmem_getattr,
3791 	.setattr	= shmem_setattr,
3792 #ifdef CONFIG_TMPFS_XATTR
3793 	.listxattr	= shmem_listxattr,
3794 	.set_acl	= simple_set_acl,
3795 #endif
3796 };
3797 
3798 static const struct inode_operations shmem_dir_inode_operations = {
3799 #ifdef CONFIG_TMPFS
3800 	.create		= shmem_create,
3801 	.lookup		= simple_lookup,
3802 	.link		= shmem_link,
3803 	.unlink		= shmem_unlink,
3804 	.symlink	= shmem_symlink,
3805 	.mkdir		= shmem_mkdir,
3806 	.rmdir		= shmem_rmdir,
3807 	.mknod		= shmem_mknod,
3808 	.rename		= shmem_rename2,
3809 	.tmpfile	= shmem_tmpfile,
3810 #endif
3811 #ifdef CONFIG_TMPFS_XATTR
3812 	.listxattr	= shmem_listxattr,
3813 #endif
3814 #ifdef CONFIG_TMPFS_POSIX_ACL
3815 	.setattr	= shmem_setattr,
3816 	.set_acl	= simple_set_acl,
3817 #endif
3818 };
3819 
3820 static const struct inode_operations shmem_special_inode_operations = {
3821 #ifdef CONFIG_TMPFS_XATTR
3822 	.listxattr	= shmem_listxattr,
3823 #endif
3824 #ifdef CONFIG_TMPFS_POSIX_ACL
3825 	.setattr	= shmem_setattr,
3826 	.set_acl	= simple_set_acl,
3827 #endif
3828 };
3829 
3830 static const struct super_operations shmem_ops = {
3831 	.alloc_inode	= shmem_alloc_inode,
3832 	.free_inode	= shmem_free_in_core_inode,
3833 	.destroy_inode	= shmem_destroy_inode,
3834 #ifdef CONFIG_TMPFS
3835 	.statfs		= shmem_statfs,
3836 	.show_options	= shmem_show_options,
3837 #endif
3838 	.evict_inode	= shmem_evict_inode,
3839 	.drop_inode	= generic_delete_inode,
3840 	.put_super	= shmem_put_super,
3841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3842 	.nr_cached_objects	= shmem_unused_huge_count,
3843 	.free_cached_objects	= shmem_unused_huge_scan,
3844 #endif
3845 };
3846 
3847 static const struct vm_operations_struct shmem_vm_ops = {
3848 	.fault		= shmem_fault,
3849 	.map_pages	= filemap_map_pages,
3850 #ifdef CONFIG_NUMA
3851 	.set_policy     = shmem_set_policy,
3852 	.get_policy     = shmem_get_policy,
3853 #endif
3854 };
3855 
3856 int shmem_init_fs_context(struct fs_context *fc)
3857 {
3858 	struct shmem_options *ctx;
3859 
3860 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3861 	if (!ctx)
3862 		return -ENOMEM;
3863 
3864 	ctx->mode = 0777 | S_ISVTX;
3865 	ctx->uid = current_fsuid();
3866 	ctx->gid = current_fsgid();
3867 
3868 	fc->fs_private = ctx;
3869 	fc->ops = &shmem_fs_context_ops;
3870 	return 0;
3871 }
3872 
3873 static struct file_system_type shmem_fs_type = {
3874 	.owner		= THIS_MODULE,
3875 	.name		= "tmpfs",
3876 	.init_fs_context = shmem_init_fs_context,
3877 #ifdef CONFIG_TMPFS
3878 	.parameters	= shmem_fs_parameters,
3879 #endif
3880 	.kill_sb	= kill_litter_super,
3881 	.fs_flags	= FS_USERNS_MOUNT,
3882 };
3883 
3884 int __init shmem_init(void)
3885 {
3886 	int error;
3887 
3888 	shmem_init_inodecache();
3889 
3890 	error = register_filesystem(&shmem_fs_type);
3891 	if (error) {
3892 		pr_err("Could not register tmpfs\n");
3893 		goto out2;
3894 	}
3895 
3896 	shm_mnt = kern_mount(&shmem_fs_type);
3897 	if (IS_ERR(shm_mnt)) {
3898 		error = PTR_ERR(shm_mnt);
3899 		pr_err("Could not kern_mount tmpfs\n");
3900 		goto out1;
3901 	}
3902 
3903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3904 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3905 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3906 	else
3907 		shmem_huge = 0; /* just in case it was patched */
3908 #endif
3909 	return 0;
3910 
3911 out1:
3912 	unregister_filesystem(&shmem_fs_type);
3913 out2:
3914 	shmem_destroy_inodecache();
3915 	shm_mnt = ERR_PTR(error);
3916 	return error;
3917 }
3918 
3919 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3920 static ssize_t shmem_enabled_show(struct kobject *kobj,
3921 		struct kobj_attribute *attr, char *buf)
3922 {
3923 	static const int values[] = {
3924 		SHMEM_HUGE_ALWAYS,
3925 		SHMEM_HUGE_WITHIN_SIZE,
3926 		SHMEM_HUGE_ADVISE,
3927 		SHMEM_HUGE_NEVER,
3928 		SHMEM_HUGE_DENY,
3929 		SHMEM_HUGE_FORCE,
3930 	};
3931 	int i, count;
3932 
3933 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3934 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3935 
3936 		count += sprintf(buf + count, fmt,
3937 				shmem_format_huge(values[i]));
3938 	}
3939 	buf[count - 1] = '\n';
3940 	return count;
3941 }
3942 
3943 static ssize_t shmem_enabled_store(struct kobject *kobj,
3944 		struct kobj_attribute *attr, const char *buf, size_t count)
3945 {
3946 	char tmp[16];
3947 	int huge;
3948 
3949 	if (count + 1 > sizeof(tmp))
3950 		return -EINVAL;
3951 	memcpy(tmp, buf, count);
3952 	tmp[count] = '\0';
3953 	if (count && tmp[count - 1] == '\n')
3954 		tmp[count - 1] = '\0';
3955 
3956 	huge = shmem_parse_huge(tmp);
3957 	if (huge == -EINVAL)
3958 		return -EINVAL;
3959 	if (!has_transparent_hugepage() &&
3960 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3961 		return -EINVAL;
3962 
3963 	shmem_huge = huge;
3964 	if (shmem_huge > SHMEM_HUGE_DENY)
3965 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3966 	return count;
3967 }
3968 
3969 struct kobj_attribute shmem_enabled_attr =
3970 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3971 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3972 
3973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3974 bool shmem_huge_enabled(struct vm_area_struct *vma)
3975 {
3976 	struct inode *inode = file_inode(vma->vm_file);
3977 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3978 	loff_t i_size;
3979 	pgoff_t off;
3980 
3981 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3982 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3983 		return false;
3984 	if (shmem_huge == SHMEM_HUGE_FORCE)
3985 		return true;
3986 	if (shmem_huge == SHMEM_HUGE_DENY)
3987 		return false;
3988 	switch (sbinfo->huge) {
3989 		case SHMEM_HUGE_NEVER:
3990 			return false;
3991 		case SHMEM_HUGE_ALWAYS:
3992 			return true;
3993 		case SHMEM_HUGE_WITHIN_SIZE:
3994 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3995 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3996 			if (i_size >= HPAGE_PMD_SIZE &&
3997 					i_size >> PAGE_SHIFT >= off)
3998 				return true;
3999 			fallthrough;
4000 		case SHMEM_HUGE_ADVISE:
4001 			/* TODO: implement fadvise() hints */
4002 			return (vma->vm_flags & VM_HUGEPAGE);
4003 		default:
4004 			VM_BUG_ON(1);
4005 			return false;
4006 	}
4007 }
4008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4009 
4010 #else /* !CONFIG_SHMEM */
4011 
4012 /*
4013  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4014  *
4015  * This is intended for small system where the benefits of the full
4016  * shmem code (swap-backed and resource-limited) are outweighed by
4017  * their complexity. On systems without swap this code should be
4018  * effectively equivalent, but much lighter weight.
4019  */
4020 
4021 static struct file_system_type shmem_fs_type = {
4022 	.name		= "tmpfs",
4023 	.init_fs_context = ramfs_init_fs_context,
4024 	.parameters	= ramfs_fs_parameters,
4025 	.kill_sb	= kill_litter_super,
4026 	.fs_flags	= FS_USERNS_MOUNT,
4027 };
4028 
4029 int __init shmem_init(void)
4030 {
4031 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4032 
4033 	shm_mnt = kern_mount(&shmem_fs_type);
4034 	BUG_ON(IS_ERR(shm_mnt));
4035 
4036 	return 0;
4037 }
4038 
4039 int shmem_unuse(unsigned int type, bool frontswap,
4040 		unsigned long *fs_pages_to_unuse)
4041 {
4042 	return 0;
4043 }
4044 
4045 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4046 {
4047 	return 0;
4048 }
4049 
4050 void shmem_unlock_mapping(struct address_space *mapping)
4051 {
4052 }
4053 
4054 #ifdef CONFIG_MMU
4055 unsigned long shmem_get_unmapped_area(struct file *file,
4056 				      unsigned long addr, unsigned long len,
4057 				      unsigned long pgoff, unsigned long flags)
4058 {
4059 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4060 }
4061 #endif
4062 
4063 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4064 {
4065 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4066 }
4067 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4068 
4069 #define shmem_vm_ops				generic_file_vm_ops
4070 #define shmem_file_operations			ramfs_file_operations
4071 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4072 #define shmem_acct_size(flags, size)		0
4073 #define shmem_unacct_size(flags, size)		do {} while (0)
4074 
4075 #endif /* CONFIG_SHMEM */
4076 
4077 /* common code */
4078 
4079 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4080 				       unsigned long flags, unsigned int i_flags)
4081 {
4082 	struct inode *inode;
4083 	struct file *res;
4084 
4085 	if (IS_ERR(mnt))
4086 		return ERR_CAST(mnt);
4087 
4088 	if (size < 0 || size > MAX_LFS_FILESIZE)
4089 		return ERR_PTR(-EINVAL);
4090 
4091 	if (shmem_acct_size(flags, size))
4092 		return ERR_PTR(-ENOMEM);
4093 
4094 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4095 				flags);
4096 	if (unlikely(!inode)) {
4097 		shmem_unacct_size(flags, size);
4098 		return ERR_PTR(-ENOSPC);
4099 	}
4100 	inode->i_flags |= i_flags;
4101 	inode->i_size = size;
4102 	clear_nlink(inode);	/* It is unlinked */
4103 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4104 	if (!IS_ERR(res))
4105 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4106 				&shmem_file_operations);
4107 	if (IS_ERR(res))
4108 		iput(inode);
4109 	return res;
4110 }
4111 
4112 /**
4113  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4114  * 	kernel internal.  There will be NO LSM permission checks against the
4115  * 	underlying inode.  So users of this interface must do LSM checks at a
4116  *	higher layer.  The users are the big_key and shm implementations.  LSM
4117  *	checks are provided at the key or shm level rather than the inode.
4118  * @name: name for dentry (to be seen in /proc/<pid>/maps
4119  * @size: size to be set for the file
4120  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4121  */
4122 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4123 {
4124 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4125 }
4126 
4127 /**
4128  * shmem_file_setup - get an unlinked file living in tmpfs
4129  * @name: name for dentry (to be seen in /proc/<pid>/maps
4130  * @size: size to be set for the file
4131  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4132  */
4133 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4134 {
4135 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4136 }
4137 EXPORT_SYMBOL_GPL(shmem_file_setup);
4138 
4139 /**
4140  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4141  * @mnt: the tmpfs mount where the file will be created
4142  * @name: name for dentry (to be seen in /proc/<pid>/maps
4143  * @size: size to be set for the file
4144  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4145  */
4146 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4147 				       loff_t size, unsigned long flags)
4148 {
4149 	return __shmem_file_setup(mnt, name, size, flags, 0);
4150 }
4151 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4152 
4153 /**
4154  * shmem_zero_setup - setup a shared anonymous mapping
4155  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4156  */
4157 int shmem_zero_setup(struct vm_area_struct *vma)
4158 {
4159 	struct file *file;
4160 	loff_t size = vma->vm_end - vma->vm_start;
4161 
4162 	/*
4163 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4164 	 * between XFS directory reading and selinux: since this file is only
4165 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4166 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4167 	 */
4168 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4169 	if (IS_ERR(file))
4170 		return PTR_ERR(file);
4171 
4172 	if (vma->vm_file)
4173 		fput(vma->vm_file);
4174 	vma->vm_file = file;
4175 	vma->vm_ops = &shmem_vm_ops;
4176 
4177 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4178 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4179 			(vma->vm_end & HPAGE_PMD_MASK)) {
4180 		khugepaged_enter(vma, vma->vm_flags);
4181 	}
4182 
4183 	return 0;
4184 }
4185 
4186 /**
4187  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4188  * @mapping:	the page's address_space
4189  * @index:	the page index
4190  * @gfp:	the page allocator flags to use if allocating
4191  *
4192  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4193  * with any new page allocations done using the specified allocation flags.
4194  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4195  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4196  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4197  *
4198  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4199  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4200  */
4201 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4202 					 pgoff_t index, gfp_t gfp)
4203 {
4204 #ifdef CONFIG_SHMEM
4205 	struct inode *inode = mapping->host;
4206 	struct page *page;
4207 	int error;
4208 
4209 	BUG_ON(mapping->a_ops != &shmem_aops);
4210 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4211 				  gfp, NULL, NULL, NULL);
4212 	if (error)
4213 		page = ERR_PTR(error);
4214 	else
4215 		unlock_page(page);
4216 	return page;
4217 #else
4218 	/*
4219 	 * The tiny !SHMEM case uses ramfs without swap
4220 	 */
4221 	return read_cache_page_gfp(mapping, index, gfp);
4222 #endif
4223 }
4224 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4225