1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/sched/signal.h> 33 #include <linux/export.h> 34 #include <linux/swap.h> 35 #include <linux/uio.h> 36 #include <linux/khugepaged.h> 37 #include <linux/hugetlb.h> 38 39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 40 41 static struct vfsmount *shm_mnt; 42 43 #ifdef CONFIG_SHMEM 44 /* 45 * This virtual memory filesystem is heavily based on the ramfs. It 46 * extends ramfs by the ability to use swap and honor resource limits 47 * which makes it a completely usable filesystem. 48 */ 49 50 #include <linux/xattr.h> 51 #include <linux/exportfs.h> 52 #include <linux/posix_acl.h> 53 #include <linux/posix_acl_xattr.h> 54 #include <linux/mman.h> 55 #include <linux/string.h> 56 #include <linux/slab.h> 57 #include <linux/backing-dev.h> 58 #include <linux/shmem_fs.h> 59 #include <linux/writeback.h> 60 #include <linux/blkdev.h> 61 #include <linux/pagevec.h> 62 #include <linux/percpu_counter.h> 63 #include <linux/falloc.h> 64 #include <linux/splice.h> 65 #include <linux/security.h> 66 #include <linux/swapops.h> 67 #include <linux/mempolicy.h> 68 #include <linux/namei.h> 69 #include <linux/ctype.h> 70 #include <linux/migrate.h> 71 #include <linux/highmem.h> 72 #include <linux/seq_file.h> 73 #include <linux/magic.h> 74 #include <linux/syscalls.h> 75 #include <linux/fcntl.h> 76 #include <uapi/linux/memfd.h> 77 #include <linux/userfaultfd_k.h> 78 #include <linux/rmap.h> 79 #include <linux/uuid.h> 80 81 #include <linux/uaccess.h> 82 #include <asm/pgtable.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_mutex making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, 125 gfp_t gfp, struct vm_area_struct *vma, 126 struct vm_fault *vmf, int *fault_type); 127 128 int shmem_getpage(struct inode *inode, pgoff_t index, 129 struct page **pagep, enum sgp_type sgp) 130 { 131 return shmem_getpage_gfp(inode, index, pagep, sgp, 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 133 } 134 135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 136 { 137 return sb->s_fs_info; 138 } 139 140 /* 141 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 142 * for shared memory and for shared anonymous (/dev/zero) mappings 143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 144 * consistent with the pre-accounting of private mappings ... 145 */ 146 static inline int shmem_acct_size(unsigned long flags, loff_t size) 147 { 148 return (flags & VM_NORESERVE) ? 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 150 } 151 152 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 153 { 154 if (!(flags & VM_NORESERVE)) 155 vm_unacct_memory(VM_ACCT(size)); 156 } 157 158 static inline int shmem_reacct_size(unsigned long flags, 159 loff_t oldsize, loff_t newsize) 160 { 161 if (!(flags & VM_NORESERVE)) { 162 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 163 return security_vm_enough_memory_mm(current->mm, 164 VM_ACCT(newsize) - VM_ACCT(oldsize)); 165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 167 } 168 return 0; 169 } 170 171 /* 172 * ... whereas tmpfs objects are accounted incrementally as 173 * pages are allocated, in order to allow large sparse files. 174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 176 */ 177 static inline int shmem_acct_block(unsigned long flags, long pages) 178 { 179 if (!(flags & VM_NORESERVE)) 180 return 0; 181 182 return security_vm_enough_memory_mm(current->mm, 183 pages * VM_ACCT(PAGE_SIZE)); 184 } 185 186 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 187 { 188 if (flags & VM_NORESERVE) 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 190 } 191 192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 193 { 194 struct shmem_inode_info *info = SHMEM_I(inode); 195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 196 197 if (shmem_acct_block(info->flags, pages)) 198 return false; 199 200 if (sbinfo->max_blocks) { 201 if (percpu_counter_compare(&sbinfo->used_blocks, 202 sbinfo->max_blocks - pages) > 0) 203 goto unacct; 204 percpu_counter_add(&sbinfo->used_blocks, pages); 205 } 206 207 return true; 208 209 unacct: 210 shmem_unacct_blocks(info->flags, pages); 211 return false; 212 } 213 214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 215 { 216 struct shmem_inode_info *info = SHMEM_I(inode); 217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 218 219 if (sbinfo->max_blocks) 220 percpu_counter_sub(&sbinfo->used_blocks, pages); 221 shmem_unacct_blocks(info->flags, pages); 222 } 223 224 static const struct super_operations shmem_ops; 225 static const struct address_space_operations shmem_aops; 226 static const struct file_operations shmem_file_operations; 227 static const struct inode_operations shmem_inode_operations; 228 static const struct inode_operations shmem_dir_inode_operations; 229 static const struct inode_operations shmem_special_inode_operations; 230 static const struct vm_operations_struct shmem_vm_ops; 231 static struct file_system_type shmem_fs_type; 232 233 bool vma_is_shmem(struct vm_area_struct *vma) 234 { 235 return vma->vm_ops == &shmem_vm_ops; 236 } 237 238 static LIST_HEAD(shmem_swaplist); 239 static DEFINE_MUTEX(shmem_swaplist_mutex); 240 241 static int shmem_reserve_inode(struct super_block *sb) 242 { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 244 if (sbinfo->max_inodes) { 245 spin_lock(&sbinfo->stat_lock); 246 if (!sbinfo->free_inodes) { 247 spin_unlock(&sbinfo->stat_lock); 248 return -ENOSPC; 249 } 250 sbinfo->free_inodes--; 251 spin_unlock(&sbinfo->stat_lock); 252 } 253 return 0; 254 } 255 256 static void shmem_free_inode(struct super_block *sb) 257 { 258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 259 if (sbinfo->max_inodes) { 260 spin_lock(&sbinfo->stat_lock); 261 sbinfo->free_inodes++; 262 spin_unlock(&sbinfo->stat_lock); 263 } 264 } 265 266 /** 267 * shmem_recalc_inode - recalculate the block usage of an inode 268 * @inode: inode to recalc 269 * 270 * We have to calculate the free blocks since the mm can drop 271 * undirtied hole pages behind our back. 272 * 273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 275 * 276 * It has to be called with the spinlock held. 277 */ 278 static void shmem_recalc_inode(struct inode *inode) 279 { 280 struct shmem_inode_info *info = SHMEM_I(inode); 281 long freed; 282 283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 284 if (freed > 0) { 285 info->alloced -= freed; 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 287 shmem_inode_unacct_blocks(inode, freed); 288 } 289 } 290 291 bool shmem_charge(struct inode *inode, long pages) 292 { 293 struct shmem_inode_info *info = SHMEM_I(inode); 294 unsigned long flags; 295 296 if (!shmem_inode_acct_block(inode, pages)) 297 return false; 298 299 spin_lock_irqsave(&info->lock, flags); 300 info->alloced += pages; 301 inode->i_blocks += pages * BLOCKS_PER_PAGE; 302 shmem_recalc_inode(inode); 303 spin_unlock_irqrestore(&info->lock, flags); 304 inode->i_mapping->nrpages += pages; 305 306 return true; 307 } 308 309 void shmem_uncharge(struct inode *inode, long pages) 310 { 311 struct shmem_inode_info *info = SHMEM_I(inode); 312 unsigned long flags; 313 314 spin_lock_irqsave(&info->lock, flags); 315 info->alloced -= pages; 316 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 317 shmem_recalc_inode(inode); 318 spin_unlock_irqrestore(&info->lock, flags); 319 320 shmem_inode_unacct_blocks(inode, pages); 321 } 322 323 /* 324 * Replace item expected in radix tree by a new item, while holding tree lock. 325 */ 326 static int shmem_radix_tree_replace(struct address_space *mapping, 327 pgoff_t index, void *expected, void *replacement) 328 { 329 struct radix_tree_node *node; 330 void **pslot; 331 void *item; 332 333 VM_BUG_ON(!expected); 334 VM_BUG_ON(!replacement); 335 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot); 336 if (!item) 337 return -ENOENT; 338 if (item != expected) 339 return -ENOENT; 340 __radix_tree_replace(&mapping->page_tree, node, pslot, 341 replacement, NULL); 342 return 0; 343 } 344 345 /* 346 * Sometimes, before we decide whether to proceed or to fail, we must check 347 * that an entry was not already brought back from swap by a racing thread. 348 * 349 * Checking page is not enough: by the time a SwapCache page is locked, it 350 * might be reused, and again be SwapCache, using the same swap as before. 351 */ 352 static bool shmem_confirm_swap(struct address_space *mapping, 353 pgoff_t index, swp_entry_t swap) 354 { 355 void *item; 356 357 rcu_read_lock(); 358 item = radix_tree_lookup(&mapping->page_tree, index); 359 rcu_read_unlock(); 360 return item == swp_to_radix_entry(swap); 361 } 362 363 /* 364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 365 * 366 * SHMEM_HUGE_NEVER: 367 * disables huge pages for the mount; 368 * SHMEM_HUGE_ALWAYS: 369 * enables huge pages for the mount; 370 * SHMEM_HUGE_WITHIN_SIZE: 371 * only allocate huge pages if the page will be fully within i_size, 372 * also respect fadvise()/madvise() hints; 373 * SHMEM_HUGE_ADVISE: 374 * only allocate huge pages if requested with fadvise()/madvise(); 375 */ 376 377 #define SHMEM_HUGE_NEVER 0 378 #define SHMEM_HUGE_ALWAYS 1 379 #define SHMEM_HUGE_WITHIN_SIZE 2 380 #define SHMEM_HUGE_ADVISE 3 381 382 /* 383 * Special values. 384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 385 * 386 * SHMEM_HUGE_DENY: 387 * disables huge on shm_mnt and all mounts, for emergency use; 388 * SHMEM_HUGE_FORCE: 389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 390 * 391 */ 392 #define SHMEM_HUGE_DENY (-1) 393 #define SHMEM_HUGE_FORCE (-2) 394 395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 396 /* ifdef here to avoid bloating shmem.o when not necessary */ 397 398 int shmem_huge __read_mostly; 399 400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 401 static int shmem_parse_huge(const char *str) 402 { 403 if (!strcmp(str, "never")) 404 return SHMEM_HUGE_NEVER; 405 if (!strcmp(str, "always")) 406 return SHMEM_HUGE_ALWAYS; 407 if (!strcmp(str, "within_size")) 408 return SHMEM_HUGE_WITHIN_SIZE; 409 if (!strcmp(str, "advise")) 410 return SHMEM_HUGE_ADVISE; 411 if (!strcmp(str, "deny")) 412 return SHMEM_HUGE_DENY; 413 if (!strcmp(str, "force")) 414 return SHMEM_HUGE_FORCE; 415 return -EINVAL; 416 } 417 418 static const char *shmem_format_huge(int huge) 419 { 420 switch (huge) { 421 case SHMEM_HUGE_NEVER: 422 return "never"; 423 case SHMEM_HUGE_ALWAYS: 424 return "always"; 425 case SHMEM_HUGE_WITHIN_SIZE: 426 return "within_size"; 427 case SHMEM_HUGE_ADVISE: 428 return "advise"; 429 case SHMEM_HUGE_DENY: 430 return "deny"; 431 case SHMEM_HUGE_FORCE: 432 return "force"; 433 default: 434 VM_BUG_ON(1); 435 return "bad_val"; 436 } 437 } 438 #endif 439 440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 441 struct shrink_control *sc, unsigned long nr_to_split) 442 { 443 LIST_HEAD(list), *pos, *next; 444 LIST_HEAD(to_remove); 445 struct inode *inode; 446 struct shmem_inode_info *info; 447 struct page *page; 448 unsigned long batch = sc ? sc->nr_to_scan : 128; 449 int removed = 0, split = 0; 450 451 if (list_empty(&sbinfo->shrinklist)) 452 return SHRINK_STOP; 453 454 spin_lock(&sbinfo->shrinklist_lock); 455 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 456 info = list_entry(pos, struct shmem_inode_info, shrinklist); 457 458 /* pin the inode */ 459 inode = igrab(&info->vfs_inode); 460 461 /* inode is about to be evicted */ 462 if (!inode) { 463 list_del_init(&info->shrinklist); 464 removed++; 465 goto next; 466 } 467 468 /* Check if there's anything to gain */ 469 if (round_up(inode->i_size, PAGE_SIZE) == 470 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 471 list_move(&info->shrinklist, &to_remove); 472 removed++; 473 goto next; 474 } 475 476 list_move(&info->shrinklist, &list); 477 next: 478 if (!--batch) 479 break; 480 } 481 spin_unlock(&sbinfo->shrinklist_lock); 482 483 list_for_each_safe(pos, next, &to_remove) { 484 info = list_entry(pos, struct shmem_inode_info, shrinklist); 485 inode = &info->vfs_inode; 486 list_del_init(&info->shrinklist); 487 iput(inode); 488 } 489 490 list_for_each_safe(pos, next, &list) { 491 int ret; 492 493 info = list_entry(pos, struct shmem_inode_info, shrinklist); 494 inode = &info->vfs_inode; 495 496 if (nr_to_split && split >= nr_to_split) { 497 iput(inode); 498 continue; 499 } 500 501 page = find_lock_page(inode->i_mapping, 502 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 503 if (!page) 504 goto drop; 505 506 if (!PageTransHuge(page)) { 507 unlock_page(page); 508 put_page(page); 509 goto drop; 510 } 511 512 ret = split_huge_page(page); 513 unlock_page(page); 514 put_page(page); 515 516 if (ret) { 517 /* split failed: leave it on the list */ 518 iput(inode); 519 continue; 520 } 521 522 split++; 523 drop: 524 list_del_init(&info->shrinklist); 525 removed++; 526 iput(inode); 527 } 528 529 spin_lock(&sbinfo->shrinklist_lock); 530 list_splice_tail(&list, &sbinfo->shrinklist); 531 sbinfo->shrinklist_len -= removed; 532 spin_unlock(&sbinfo->shrinklist_lock); 533 534 return split; 535 } 536 537 static long shmem_unused_huge_scan(struct super_block *sb, 538 struct shrink_control *sc) 539 { 540 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 541 542 if (!READ_ONCE(sbinfo->shrinklist_len)) 543 return SHRINK_STOP; 544 545 return shmem_unused_huge_shrink(sbinfo, sc, 0); 546 } 547 548 static long shmem_unused_huge_count(struct super_block *sb, 549 struct shrink_control *sc) 550 { 551 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 552 return READ_ONCE(sbinfo->shrinklist_len); 553 } 554 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 555 556 #define shmem_huge SHMEM_HUGE_DENY 557 558 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 559 struct shrink_control *sc, unsigned long nr_to_split) 560 { 561 return 0; 562 } 563 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 564 565 /* 566 * Like add_to_page_cache_locked, but error if expected item has gone. 567 */ 568 static int shmem_add_to_page_cache(struct page *page, 569 struct address_space *mapping, 570 pgoff_t index, void *expected) 571 { 572 int error, nr = hpage_nr_pages(page); 573 574 VM_BUG_ON_PAGE(PageTail(page), page); 575 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 576 VM_BUG_ON_PAGE(!PageLocked(page), page); 577 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 578 VM_BUG_ON(expected && PageTransHuge(page)); 579 580 page_ref_add(page, nr); 581 page->mapping = mapping; 582 page->index = index; 583 584 spin_lock_irq(&mapping->tree_lock); 585 if (PageTransHuge(page)) { 586 void __rcu **results; 587 pgoff_t idx; 588 int i; 589 590 error = 0; 591 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 592 &results, &idx, index, 1) && 593 idx < index + HPAGE_PMD_NR) { 594 error = -EEXIST; 595 } 596 597 if (!error) { 598 for (i = 0; i < HPAGE_PMD_NR; i++) { 599 error = radix_tree_insert(&mapping->page_tree, 600 index + i, page + i); 601 VM_BUG_ON(error); 602 } 603 count_vm_event(THP_FILE_ALLOC); 604 } 605 } else if (!expected) { 606 error = radix_tree_insert(&mapping->page_tree, index, page); 607 } else { 608 error = shmem_radix_tree_replace(mapping, index, expected, 609 page); 610 } 611 612 if (!error) { 613 mapping->nrpages += nr; 614 if (PageTransHuge(page)) 615 __inc_node_page_state(page, NR_SHMEM_THPS); 616 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 617 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 618 spin_unlock_irq(&mapping->tree_lock); 619 } else { 620 page->mapping = NULL; 621 spin_unlock_irq(&mapping->tree_lock); 622 page_ref_sub(page, nr); 623 } 624 return error; 625 } 626 627 /* 628 * Like delete_from_page_cache, but substitutes swap for page. 629 */ 630 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 631 { 632 struct address_space *mapping = page->mapping; 633 int error; 634 635 VM_BUG_ON_PAGE(PageCompound(page), page); 636 637 spin_lock_irq(&mapping->tree_lock); 638 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 639 page->mapping = NULL; 640 mapping->nrpages--; 641 __dec_node_page_state(page, NR_FILE_PAGES); 642 __dec_node_page_state(page, NR_SHMEM); 643 spin_unlock_irq(&mapping->tree_lock); 644 put_page(page); 645 BUG_ON(error); 646 } 647 648 /* 649 * Remove swap entry from radix tree, free the swap and its page cache. 650 */ 651 static int shmem_free_swap(struct address_space *mapping, 652 pgoff_t index, void *radswap) 653 { 654 void *old; 655 656 spin_lock_irq(&mapping->tree_lock); 657 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 658 spin_unlock_irq(&mapping->tree_lock); 659 if (old != radswap) 660 return -ENOENT; 661 free_swap_and_cache(radix_to_swp_entry(radswap)); 662 return 0; 663 } 664 665 /* 666 * Determine (in bytes) how many of the shmem object's pages mapped by the 667 * given offsets are swapped out. 668 * 669 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 670 * as long as the inode doesn't go away and racy results are not a problem. 671 */ 672 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 673 pgoff_t start, pgoff_t end) 674 { 675 struct radix_tree_iter iter; 676 void **slot; 677 struct page *page; 678 unsigned long swapped = 0; 679 680 rcu_read_lock(); 681 682 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 683 if (iter.index >= end) 684 break; 685 686 page = radix_tree_deref_slot(slot); 687 688 if (radix_tree_deref_retry(page)) { 689 slot = radix_tree_iter_retry(&iter); 690 continue; 691 } 692 693 if (radix_tree_exceptional_entry(page)) 694 swapped++; 695 696 if (need_resched()) { 697 slot = radix_tree_iter_resume(slot, &iter); 698 cond_resched_rcu(); 699 } 700 } 701 702 rcu_read_unlock(); 703 704 return swapped << PAGE_SHIFT; 705 } 706 707 /* 708 * Determine (in bytes) how many of the shmem object's pages mapped by the 709 * given vma is swapped out. 710 * 711 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 712 * as long as the inode doesn't go away and racy results are not a problem. 713 */ 714 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 715 { 716 struct inode *inode = file_inode(vma->vm_file); 717 struct shmem_inode_info *info = SHMEM_I(inode); 718 struct address_space *mapping = inode->i_mapping; 719 unsigned long swapped; 720 721 /* Be careful as we don't hold info->lock */ 722 swapped = READ_ONCE(info->swapped); 723 724 /* 725 * The easier cases are when the shmem object has nothing in swap, or 726 * the vma maps it whole. Then we can simply use the stats that we 727 * already track. 728 */ 729 if (!swapped) 730 return 0; 731 732 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 733 return swapped << PAGE_SHIFT; 734 735 /* Here comes the more involved part */ 736 return shmem_partial_swap_usage(mapping, 737 linear_page_index(vma, vma->vm_start), 738 linear_page_index(vma, vma->vm_end)); 739 } 740 741 /* 742 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 743 */ 744 void shmem_unlock_mapping(struct address_space *mapping) 745 { 746 struct pagevec pvec; 747 pgoff_t indices[PAGEVEC_SIZE]; 748 pgoff_t index = 0; 749 750 pagevec_init(&pvec); 751 /* 752 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 753 */ 754 while (!mapping_unevictable(mapping)) { 755 /* 756 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 757 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 758 */ 759 pvec.nr = find_get_entries(mapping, index, 760 PAGEVEC_SIZE, pvec.pages, indices); 761 if (!pvec.nr) 762 break; 763 index = indices[pvec.nr - 1] + 1; 764 pagevec_remove_exceptionals(&pvec); 765 check_move_unevictable_pages(pvec.pages, pvec.nr); 766 pagevec_release(&pvec); 767 cond_resched(); 768 } 769 } 770 771 /* 772 * Remove range of pages and swap entries from radix tree, and free them. 773 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 774 */ 775 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 776 bool unfalloc) 777 { 778 struct address_space *mapping = inode->i_mapping; 779 struct shmem_inode_info *info = SHMEM_I(inode); 780 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 781 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 782 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 783 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 784 struct pagevec pvec; 785 pgoff_t indices[PAGEVEC_SIZE]; 786 long nr_swaps_freed = 0; 787 pgoff_t index; 788 int i; 789 790 if (lend == -1) 791 end = -1; /* unsigned, so actually very big */ 792 793 pagevec_init(&pvec); 794 index = start; 795 while (index < end) { 796 pvec.nr = find_get_entries(mapping, index, 797 min(end - index, (pgoff_t)PAGEVEC_SIZE), 798 pvec.pages, indices); 799 if (!pvec.nr) 800 break; 801 for (i = 0; i < pagevec_count(&pvec); i++) { 802 struct page *page = pvec.pages[i]; 803 804 index = indices[i]; 805 if (index >= end) 806 break; 807 808 if (radix_tree_exceptional_entry(page)) { 809 if (unfalloc) 810 continue; 811 nr_swaps_freed += !shmem_free_swap(mapping, 812 index, page); 813 continue; 814 } 815 816 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 817 818 if (!trylock_page(page)) 819 continue; 820 821 if (PageTransTail(page)) { 822 /* Middle of THP: zero out the page */ 823 clear_highpage(page); 824 unlock_page(page); 825 continue; 826 } else if (PageTransHuge(page)) { 827 if (index == round_down(end, HPAGE_PMD_NR)) { 828 /* 829 * Range ends in the middle of THP: 830 * zero out the page 831 */ 832 clear_highpage(page); 833 unlock_page(page); 834 continue; 835 } 836 index += HPAGE_PMD_NR - 1; 837 i += HPAGE_PMD_NR - 1; 838 } 839 840 if (!unfalloc || !PageUptodate(page)) { 841 VM_BUG_ON_PAGE(PageTail(page), page); 842 if (page_mapping(page) == mapping) { 843 VM_BUG_ON_PAGE(PageWriteback(page), page); 844 truncate_inode_page(mapping, page); 845 } 846 } 847 unlock_page(page); 848 } 849 pagevec_remove_exceptionals(&pvec); 850 pagevec_release(&pvec); 851 cond_resched(); 852 index++; 853 } 854 855 if (partial_start) { 856 struct page *page = NULL; 857 shmem_getpage(inode, start - 1, &page, SGP_READ); 858 if (page) { 859 unsigned int top = PAGE_SIZE; 860 if (start > end) { 861 top = partial_end; 862 partial_end = 0; 863 } 864 zero_user_segment(page, partial_start, top); 865 set_page_dirty(page); 866 unlock_page(page); 867 put_page(page); 868 } 869 } 870 if (partial_end) { 871 struct page *page = NULL; 872 shmem_getpage(inode, end, &page, SGP_READ); 873 if (page) { 874 zero_user_segment(page, 0, partial_end); 875 set_page_dirty(page); 876 unlock_page(page); 877 put_page(page); 878 } 879 } 880 if (start >= end) 881 return; 882 883 index = start; 884 while (index < end) { 885 cond_resched(); 886 887 pvec.nr = find_get_entries(mapping, index, 888 min(end - index, (pgoff_t)PAGEVEC_SIZE), 889 pvec.pages, indices); 890 if (!pvec.nr) { 891 /* If all gone or hole-punch or unfalloc, we're done */ 892 if (index == start || end != -1) 893 break; 894 /* But if truncating, restart to make sure all gone */ 895 index = start; 896 continue; 897 } 898 for (i = 0; i < pagevec_count(&pvec); i++) { 899 struct page *page = pvec.pages[i]; 900 901 index = indices[i]; 902 if (index >= end) 903 break; 904 905 if (radix_tree_exceptional_entry(page)) { 906 if (unfalloc) 907 continue; 908 if (shmem_free_swap(mapping, index, page)) { 909 /* Swap was replaced by page: retry */ 910 index--; 911 break; 912 } 913 nr_swaps_freed++; 914 continue; 915 } 916 917 lock_page(page); 918 919 if (PageTransTail(page)) { 920 /* Middle of THP: zero out the page */ 921 clear_highpage(page); 922 unlock_page(page); 923 /* 924 * Partial thp truncate due 'start' in middle 925 * of THP: don't need to look on these pages 926 * again on !pvec.nr restart. 927 */ 928 if (index != round_down(end, HPAGE_PMD_NR)) 929 start++; 930 continue; 931 } else if (PageTransHuge(page)) { 932 if (index == round_down(end, HPAGE_PMD_NR)) { 933 /* 934 * Range ends in the middle of THP: 935 * zero out the page 936 */ 937 clear_highpage(page); 938 unlock_page(page); 939 continue; 940 } 941 index += HPAGE_PMD_NR - 1; 942 i += HPAGE_PMD_NR - 1; 943 } 944 945 if (!unfalloc || !PageUptodate(page)) { 946 VM_BUG_ON_PAGE(PageTail(page), page); 947 if (page_mapping(page) == mapping) { 948 VM_BUG_ON_PAGE(PageWriteback(page), page); 949 truncate_inode_page(mapping, page); 950 } else { 951 /* Page was replaced by swap: retry */ 952 unlock_page(page); 953 index--; 954 break; 955 } 956 } 957 unlock_page(page); 958 } 959 pagevec_remove_exceptionals(&pvec); 960 pagevec_release(&pvec); 961 index++; 962 } 963 964 spin_lock_irq(&info->lock); 965 info->swapped -= nr_swaps_freed; 966 shmem_recalc_inode(inode); 967 spin_unlock_irq(&info->lock); 968 } 969 970 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 971 { 972 shmem_undo_range(inode, lstart, lend, false); 973 inode->i_ctime = inode->i_mtime = current_time(inode); 974 } 975 EXPORT_SYMBOL_GPL(shmem_truncate_range); 976 977 static int shmem_getattr(const struct path *path, struct kstat *stat, 978 u32 request_mask, unsigned int query_flags) 979 { 980 struct inode *inode = path->dentry->d_inode; 981 struct shmem_inode_info *info = SHMEM_I(inode); 982 983 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 984 spin_lock_irq(&info->lock); 985 shmem_recalc_inode(inode); 986 spin_unlock_irq(&info->lock); 987 } 988 generic_fillattr(inode, stat); 989 return 0; 990 } 991 992 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 993 { 994 struct inode *inode = d_inode(dentry); 995 struct shmem_inode_info *info = SHMEM_I(inode); 996 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 997 int error; 998 999 error = setattr_prepare(dentry, attr); 1000 if (error) 1001 return error; 1002 1003 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1004 loff_t oldsize = inode->i_size; 1005 loff_t newsize = attr->ia_size; 1006 1007 /* protected by i_mutex */ 1008 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1009 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1010 return -EPERM; 1011 1012 if (newsize != oldsize) { 1013 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1014 oldsize, newsize); 1015 if (error) 1016 return error; 1017 i_size_write(inode, newsize); 1018 inode->i_ctime = inode->i_mtime = current_time(inode); 1019 } 1020 if (newsize <= oldsize) { 1021 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1022 if (oldsize > holebegin) 1023 unmap_mapping_range(inode->i_mapping, 1024 holebegin, 0, 1); 1025 if (info->alloced) 1026 shmem_truncate_range(inode, 1027 newsize, (loff_t)-1); 1028 /* unmap again to remove racily COWed private pages */ 1029 if (oldsize > holebegin) 1030 unmap_mapping_range(inode->i_mapping, 1031 holebegin, 0, 1); 1032 1033 /* 1034 * Part of the huge page can be beyond i_size: subject 1035 * to shrink under memory pressure. 1036 */ 1037 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1038 spin_lock(&sbinfo->shrinklist_lock); 1039 /* 1040 * _careful to defend against unlocked access to 1041 * ->shrink_list in shmem_unused_huge_shrink() 1042 */ 1043 if (list_empty_careful(&info->shrinklist)) { 1044 list_add_tail(&info->shrinklist, 1045 &sbinfo->shrinklist); 1046 sbinfo->shrinklist_len++; 1047 } 1048 spin_unlock(&sbinfo->shrinklist_lock); 1049 } 1050 } 1051 } 1052 1053 setattr_copy(inode, attr); 1054 if (attr->ia_valid & ATTR_MODE) 1055 error = posix_acl_chmod(inode, inode->i_mode); 1056 return error; 1057 } 1058 1059 static void shmem_evict_inode(struct inode *inode) 1060 { 1061 struct shmem_inode_info *info = SHMEM_I(inode); 1062 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1063 1064 if (inode->i_mapping->a_ops == &shmem_aops) { 1065 shmem_unacct_size(info->flags, inode->i_size); 1066 inode->i_size = 0; 1067 shmem_truncate_range(inode, 0, (loff_t)-1); 1068 if (!list_empty(&info->shrinklist)) { 1069 spin_lock(&sbinfo->shrinklist_lock); 1070 if (!list_empty(&info->shrinklist)) { 1071 list_del_init(&info->shrinklist); 1072 sbinfo->shrinklist_len--; 1073 } 1074 spin_unlock(&sbinfo->shrinklist_lock); 1075 } 1076 if (!list_empty(&info->swaplist)) { 1077 mutex_lock(&shmem_swaplist_mutex); 1078 list_del_init(&info->swaplist); 1079 mutex_unlock(&shmem_swaplist_mutex); 1080 } 1081 } 1082 1083 simple_xattrs_free(&info->xattrs); 1084 WARN_ON(inode->i_blocks); 1085 shmem_free_inode(inode->i_sb); 1086 clear_inode(inode); 1087 } 1088 1089 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item) 1090 { 1091 struct radix_tree_iter iter; 1092 void **slot; 1093 unsigned long found = -1; 1094 unsigned int checked = 0; 1095 1096 rcu_read_lock(); 1097 radix_tree_for_each_slot(slot, root, &iter, 0) { 1098 if (*slot == item) { 1099 found = iter.index; 1100 break; 1101 } 1102 checked++; 1103 if ((checked % 4096) != 0) 1104 continue; 1105 slot = radix_tree_iter_resume(slot, &iter); 1106 cond_resched_rcu(); 1107 } 1108 1109 rcu_read_unlock(); 1110 return found; 1111 } 1112 1113 /* 1114 * If swap found in inode, free it and move page from swapcache to filecache. 1115 */ 1116 static int shmem_unuse_inode(struct shmem_inode_info *info, 1117 swp_entry_t swap, struct page **pagep) 1118 { 1119 struct address_space *mapping = info->vfs_inode.i_mapping; 1120 void *radswap; 1121 pgoff_t index; 1122 gfp_t gfp; 1123 int error = 0; 1124 1125 radswap = swp_to_radix_entry(swap); 1126 index = find_swap_entry(&mapping->page_tree, radswap); 1127 if (index == -1) 1128 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1129 1130 /* 1131 * Move _head_ to start search for next from here. 1132 * But be careful: shmem_evict_inode checks list_empty without taking 1133 * mutex, and there's an instant in list_move_tail when info->swaplist 1134 * would appear empty, if it were the only one on shmem_swaplist. 1135 */ 1136 if (shmem_swaplist.next != &info->swaplist) 1137 list_move_tail(&shmem_swaplist, &info->swaplist); 1138 1139 gfp = mapping_gfp_mask(mapping); 1140 if (shmem_should_replace_page(*pagep, gfp)) { 1141 mutex_unlock(&shmem_swaplist_mutex); 1142 error = shmem_replace_page(pagep, gfp, info, index); 1143 mutex_lock(&shmem_swaplist_mutex); 1144 /* 1145 * We needed to drop mutex to make that restrictive page 1146 * allocation, but the inode might have been freed while we 1147 * dropped it: although a racing shmem_evict_inode() cannot 1148 * complete without emptying the radix_tree, our page lock 1149 * on this swapcache page is not enough to prevent that - 1150 * free_swap_and_cache() of our swap entry will only 1151 * trylock_page(), removing swap from radix_tree whatever. 1152 * 1153 * We must not proceed to shmem_add_to_page_cache() if the 1154 * inode has been freed, but of course we cannot rely on 1155 * inode or mapping or info to check that. However, we can 1156 * safely check if our swap entry is still in use (and here 1157 * it can't have got reused for another page): if it's still 1158 * in use, then the inode cannot have been freed yet, and we 1159 * can safely proceed (if it's no longer in use, that tells 1160 * nothing about the inode, but we don't need to unuse swap). 1161 */ 1162 if (!page_swapcount(*pagep)) 1163 error = -ENOENT; 1164 } 1165 1166 /* 1167 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1168 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1169 * beneath us (pagelock doesn't help until the page is in pagecache). 1170 */ 1171 if (!error) 1172 error = shmem_add_to_page_cache(*pagep, mapping, index, 1173 radswap); 1174 if (error != -ENOMEM) { 1175 /* 1176 * Truncation and eviction use free_swap_and_cache(), which 1177 * only does trylock page: if we raced, best clean up here. 1178 */ 1179 delete_from_swap_cache(*pagep); 1180 set_page_dirty(*pagep); 1181 if (!error) { 1182 spin_lock_irq(&info->lock); 1183 info->swapped--; 1184 spin_unlock_irq(&info->lock); 1185 swap_free(swap); 1186 } 1187 } 1188 return error; 1189 } 1190 1191 /* 1192 * Search through swapped inodes to find and replace swap by page. 1193 */ 1194 int shmem_unuse(swp_entry_t swap, struct page *page) 1195 { 1196 struct list_head *this, *next; 1197 struct shmem_inode_info *info; 1198 struct mem_cgroup *memcg; 1199 int error = 0; 1200 1201 /* 1202 * There's a faint possibility that swap page was replaced before 1203 * caller locked it: caller will come back later with the right page. 1204 */ 1205 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1206 goto out; 1207 1208 /* 1209 * Charge page using GFP_KERNEL while we can wait, before taking 1210 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1211 * Charged back to the user (not to caller) when swap account is used. 1212 */ 1213 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1214 false); 1215 if (error) 1216 goto out; 1217 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1218 error = -EAGAIN; 1219 1220 mutex_lock(&shmem_swaplist_mutex); 1221 list_for_each_safe(this, next, &shmem_swaplist) { 1222 info = list_entry(this, struct shmem_inode_info, swaplist); 1223 if (info->swapped) 1224 error = shmem_unuse_inode(info, swap, &page); 1225 else 1226 list_del_init(&info->swaplist); 1227 cond_resched(); 1228 if (error != -EAGAIN) 1229 break; 1230 /* found nothing in this: move on to search the next */ 1231 } 1232 mutex_unlock(&shmem_swaplist_mutex); 1233 1234 if (error) { 1235 if (error != -ENOMEM) 1236 error = 0; 1237 mem_cgroup_cancel_charge(page, memcg, false); 1238 } else 1239 mem_cgroup_commit_charge(page, memcg, true, false); 1240 out: 1241 unlock_page(page); 1242 put_page(page); 1243 return error; 1244 } 1245 1246 /* 1247 * Move the page from the page cache to the swap cache. 1248 */ 1249 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1250 { 1251 struct shmem_inode_info *info; 1252 struct address_space *mapping; 1253 struct inode *inode; 1254 swp_entry_t swap; 1255 pgoff_t index; 1256 1257 VM_BUG_ON_PAGE(PageCompound(page), page); 1258 BUG_ON(!PageLocked(page)); 1259 mapping = page->mapping; 1260 index = page->index; 1261 inode = mapping->host; 1262 info = SHMEM_I(inode); 1263 if (info->flags & VM_LOCKED) 1264 goto redirty; 1265 if (!total_swap_pages) 1266 goto redirty; 1267 1268 /* 1269 * Our capabilities prevent regular writeback or sync from ever calling 1270 * shmem_writepage; but a stacking filesystem might use ->writepage of 1271 * its underlying filesystem, in which case tmpfs should write out to 1272 * swap only in response to memory pressure, and not for the writeback 1273 * threads or sync. 1274 */ 1275 if (!wbc->for_reclaim) { 1276 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1277 goto redirty; 1278 } 1279 1280 /* 1281 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1282 * value into swapfile.c, the only way we can correctly account for a 1283 * fallocated page arriving here is now to initialize it and write it. 1284 * 1285 * That's okay for a page already fallocated earlier, but if we have 1286 * not yet completed the fallocation, then (a) we want to keep track 1287 * of this page in case we have to undo it, and (b) it may not be a 1288 * good idea to continue anyway, once we're pushing into swap. So 1289 * reactivate the page, and let shmem_fallocate() quit when too many. 1290 */ 1291 if (!PageUptodate(page)) { 1292 if (inode->i_private) { 1293 struct shmem_falloc *shmem_falloc; 1294 spin_lock(&inode->i_lock); 1295 shmem_falloc = inode->i_private; 1296 if (shmem_falloc && 1297 !shmem_falloc->waitq && 1298 index >= shmem_falloc->start && 1299 index < shmem_falloc->next) 1300 shmem_falloc->nr_unswapped++; 1301 else 1302 shmem_falloc = NULL; 1303 spin_unlock(&inode->i_lock); 1304 if (shmem_falloc) 1305 goto redirty; 1306 } 1307 clear_highpage(page); 1308 flush_dcache_page(page); 1309 SetPageUptodate(page); 1310 } 1311 1312 swap = get_swap_page(page); 1313 if (!swap.val) 1314 goto redirty; 1315 1316 if (mem_cgroup_try_charge_swap(page, swap)) 1317 goto free_swap; 1318 1319 /* 1320 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1321 * if it's not already there. Do it now before the page is 1322 * moved to swap cache, when its pagelock no longer protects 1323 * the inode from eviction. But don't unlock the mutex until 1324 * we've incremented swapped, because shmem_unuse_inode() will 1325 * prune a !swapped inode from the swaplist under this mutex. 1326 */ 1327 mutex_lock(&shmem_swaplist_mutex); 1328 if (list_empty(&info->swaplist)) 1329 list_add_tail(&info->swaplist, &shmem_swaplist); 1330 1331 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1332 spin_lock_irq(&info->lock); 1333 shmem_recalc_inode(inode); 1334 info->swapped++; 1335 spin_unlock_irq(&info->lock); 1336 1337 swap_shmem_alloc(swap); 1338 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1339 1340 mutex_unlock(&shmem_swaplist_mutex); 1341 BUG_ON(page_mapped(page)); 1342 swap_writepage(page, wbc); 1343 return 0; 1344 } 1345 1346 mutex_unlock(&shmem_swaplist_mutex); 1347 free_swap: 1348 put_swap_page(page, swap); 1349 redirty: 1350 set_page_dirty(page); 1351 if (wbc->for_reclaim) 1352 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1353 unlock_page(page); 1354 return 0; 1355 } 1356 1357 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1358 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1359 { 1360 char buffer[64]; 1361 1362 if (!mpol || mpol->mode == MPOL_DEFAULT) 1363 return; /* show nothing */ 1364 1365 mpol_to_str(buffer, sizeof(buffer), mpol); 1366 1367 seq_printf(seq, ",mpol=%s", buffer); 1368 } 1369 1370 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1371 { 1372 struct mempolicy *mpol = NULL; 1373 if (sbinfo->mpol) { 1374 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1375 mpol = sbinfo->mpol; 1376 mpol_get(mpol); 1377 spin_unlock(&sbinfo->stat_lock); 1378 } 1379 return mpol; 1380 } 1381 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1382 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1383 { 1384 } 1385 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1386 { 1387 return NULL; 1388 } 1389 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1390 #ifndef CONFIG_NUMA 1391 #define vm_policy vm_private_data 1392 #endif 1393 1394 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1395 struct shmem_inode_info *info, pgoff_t index) 1396 { 1397 /* Create a pseudo vma that just contains the policy */ 1398 vma->vm_start = 0; 1399 /* Bias interleave by inode number to distribute better across nodes */ 1400 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1401 vma->vm_ops = NULL; 1402 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1403 } 1404 1405 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1406 { 1407 /* Drop reference taken by mpol_shared_policy_lookup() */ 1408 mpol_cond_put(vma->vm_policy); 1409 } 1410 1411 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1412 struct shmem_inode_info *info, pgoff_t index) 1413 { 1414 struct vm_area_struct pvma; 1415 struct page *page; 1416 1417 shmem_pseudo_vma_init(&pvma, info, index); 1418 page = swapin_readahead(swap, gfp, &pvma, 0); 1419 shmem_pseudo_vma_destroy(&pvma); 1420 1421 return page; 1422 } 1423 1424 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1425 struct shmem_inode_info *info, pgoff_t index) 1426 { 1427 struct vm_area_struct pvma; 1428 struct inode *inode = &info->vfs_inode; 1429 struct address_space *mapping = inode->i_mapping; 1430 pgoff_t idx, hindex; 1431 void __rcu **results; 1432 struct page *page; 1433 1434 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1435 return NULL; 1436 1437 hindex = round_down(index, HPAGE_PMD_NR); 1438 rcu_read_lock(); 1439 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1440 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1441 rcu_read_unlock(); 1442 return NULL; 1443 } 1444 rcu_read_unlock(); 1445 1446 shmem_pseudo_vma_init(&pvma, info, hindex); 1447 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1448 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1449 shmem_pseudo_vma_destroy(&pvma); 1450 if (page) 1451 prep_transhuge_page(page); 1452 return page; 1453 } 1454 1455 static struct page *shmem_alloc_page(gfp_t gfp, 1456 struct shmem_inode_info *info, pgoff_t index) 1457 { 1458 struct vm_area_struct pvma; 1459 struct page *page; 1460 1461 shmem_pseudo_vma_init(&pvma, info, index); 1462 page = alloc_page_vma(gfp, &pvma, 0); 1463 shmem_pseudo_vma_destroy(&pvma); 1464 1465 return page; 1466 } 1467 1468 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1469 struct inode *inode, 1470 pgoff_t index, bool huge) 1471 { 1472 struct shmem_inode_info *info = SHMEM_I(inode); 1473 struct page *page; 1474 int nr; 1475 int err = -ENOSPC; 1476 1477 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1478 huge = false; 1479 nr = huge ? HPAGE_PMD_NR : 1; 1480 1481 if (!shmem_inode_acct_block(inode, nr)) 1482 goto failed; 1483 1484 if (huge) 1485 page = shmem_alloc_hugepage(gfp, info, index); 1486 else 1487 page = shmem_alloc_page(gfp, info, index); 1488 if (page) { 1489 __SetPageLocked(page); 1490 __SetPageSwapBacked(page); 1491 return page; 1492 } 1493 1494 err = -ENOMEM; 1495 shmem_inode_unacct_blocks(inode, nr); 1496 failed: 1497 return ERR_PTR(err); 1498 } 1499 1500 /* 1501 * When a page is moved from swapcache to shmem filecache (either by the 1502 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1503 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1504 * ignorance of the mapping it belongs to. If that mapping has special 1505 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1506 * we may need to copy to a suitable page before moving to filecache. 1507 * 1508 * In a future release, this may well be extended to respect cpuset and 1509 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1510 * but for now it is a simple matter of zone. 1511 */ 1512 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1513 { 1514 return page_zonenum(page) > gfp_zone(gfp); 1515 } 1516 1517 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1518 struct shmem_inode_info *info, pgoff_t index) 1519 { 1520 struct page *oldpage, *newpage; 1521 struct address_space *swap_mapping; 1522 pgoff_t swap_index; 1523 int error; 1524 1525 oldpage = *pagep; 1526 swap_index = page_private(oldpage); 1527 swap_mapping = page_mapping(oldpage); 1528 1529 /* 1530 * We have arrived here because our zones are constrained, so don't 1531 * limit chance of success by further cpuset and node constraints. 1532 */ 1533 gfp &= ~GFP_CONSTRAINT_MASK; 1534 newpage = shmem_alloc_page(gfp, info, index); 1535 if (!newpage) 1536 return -ENOMEM; 1537 1538 get_page(newpage); 1539 copy_highpage(newpage, oldpage); 1540 flush_dcache_page(newpage); 1541 1542 __SetPageLocked(newpage); 1543 __SetPageSwapBacked(newpage); 1544 SetPageUptodate(newpage); 1545 set_page_private(newpage, swap_index); 1546 SetPageSwapCache(newpage); 1547 1548 /* 1549 * Our caller will very soon move newpage out of swapcache, but it's 1550 * a nice clean interface for us to replace oldpage by newpage there. 1551 */ 1552 spin_lock_irq(&swap_mapping->tree_lock); 1553 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1554 newpage); 1555 if (!error) { 1556 __inc_node_page_state(newpage, NR_FILE_PAGES); 1557 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1558 } 1559 spin_unlock_irq(&swap_mapping->tree_lock); 1560 1561 if (unlikely(error)) { 1562 /* 1563 * Is this possible? I think not, now that our callers check 1564 * both PageSwapCache and page_private after getting page lock; 1565 * but be defensive. Reverse old to newpage for clear and free. 1566 */ 1567 oldpage = newpage; 1568 } else { 1569 mem_cgroup_migrate(oldpage, newpage); 1570 lru_cache_add_anon(newpage); 1571 *pagep = newpage; 1572 } 1573 1574 ClearPageSwapCache(oldpage); 1575 set_page_private(oldpage, 0); 1576 1577 unlock_page(oldpage); 1578 put_page(oldpage); 1579 put_page(oldpage); 1580 return error; 1581 } 1582 1583 /* 1584 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1585 * 1586 * If we allocate a new one we do not mark it dirty. That's up to the 1587 * vm. If we swap it in we mark it dirty since we also free the swap 1588 * entry since a page cannot live in both the swap and page cache. 1589 * 1590 * fault_mm and fault_type are only supplied by shmem_fault: 1591 * otherwise they are NULL. 1592 */ 1593 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1594 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1595 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type) 1596 { 1597 struct address_space *mapping = inode->i_mapping; 1598 struct shmem_inode_info *info = SHMEM_I(inode); 1599 struct shmem_sb_info *sbinfo; 1600 struct mm_struct *charge_mm; 1601 struct mem_cgroup *memcg; 1602 struct page *page; 1603 swp_entry_t swap; 1604 enum sgp_type sgp_huge = sgp; 1605 pgoff_t hindex = index; 1606 int error; 1607 int once = 0; 1608 int alloced = 0; 1609 1610 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1611 return -EFBIG; 1612 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1613 sgp = SGP_CACHE; 1614 repeat: 1615 swap.val = 0; 1616 page = find_lock_entry(mapping, index); 1617 if (radix_tree_exceptional_entry(page)) { 1618 swap = radix_to_swp_entry(page); 1619 page = NULL; 1620 } 1621 1622 if (sgp <= SGP_CACHE && 1623 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1624 error = -EINVAL; 1625 goto unlock; 1626 } 1627 1628 if (page && sgp == SGP_WRITE) 1629 mark_page_accessed(page); 1630 1631 /* fallocated page? */ 1632 if (page && !PageUptodate(page)) { 1633 if (sgp != SGP_READ) 1634 goto clear; 1635 unlock_page(page); 1636 put_page(page); 1637 page = NULL; 1638 } 1639 if (page || (sgp == SGP_READ && !swap.val)) { 1640 *pagep = page; 1641 return 0; 1642 } 1643 1644 /* 1645 * Fast cache lookup did not find it: 1646 * bring it back from swap or allocate. 1647 */ 1648 sbinfo = SHMEM_SB(inode->i_sb); 1649 charge_mm = vma ? vma->vm_mm : current->mm; 1650 1651 if (swap.val) { 1652 /* Look it up and read it in.. */ 1653 page = lookup_swap_cache(swap, NULL, 0); 1654 if (!page) { 1655 /* Or update major stats only when swapin succeeds?? */ 1656 if (fault_type) { 1657 *fault_type |= VM_FAULT_MAJOR; 1658 count_vm_event(PGMAJFAULT); 1659 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1660 } 1661 /* Here we actually start the io */ 1662 page = shmem_swapin(swap, gfp, info, index); 1663 if (!page) { 1664 error = -ENOMEM; 1665 goto failed; 1666 } 1667 } 1668 1669 /* We have to do this with page locked to prevent races */ 1670 lock_page(page); 1671 if (!PageSwapCache(page) || page_private(page) != swap.val || 1672 !shmem_confirm_swap(mapping, index, swap)) { 1673 error = -EEXIST; /* try again */ 1674 goto unlock; 1675 } 1676 if (!PageUptodate(page)) { 1677 error = -EIO; 1678 goto failed; 1679 } 1680 wait_on_page_writeback(page); 1681 1682 if (shmem_should_replace_page(page, gfp)) { 1683 error = shmem_replace_page(&page, gfp, info, index); 1684 if (error) 1685 goto failed; 1686 } 1687 1688 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1689 false); 1690 if (!error) { 1691 error = shmem_add_to_page_cache(page, mapping, index, 1692 swp_to_radix_entry(swap)); 1693 /* 1694 * We already confirmed swap under page lock, and make 1695 * no memory allocation here, so usually no possibility 1696 * of error; but free_swap_and_cache() only trylocks a 1697 * page, so it is just possible that the entry has been 1698 * truncated or holepunched since swap was confirmed. 1699 * shmem_undo_range() will have done some of the 1700 * unaccounting, now delete_from_swap_cache() will do 1701 * the rest. 1702 * Reset swap.val? No, leave it so "failed" goes back to 1703 * "repeat": reading a hole and writing should succeed. 1704 */ 1705 if (error) { 1706 mem_cgroup_cancel_charge(page, memcg, false); 1707 delete_from_swap_cache(page); 1708 } 1709 } 1710 if (error) 1711 goto failed; 1712 1713 mem_cgroup_commit_charge(page, memcg, true, false); 1714 1715 spin_lock_irq(&info->lock); 1716 info->swapped--; 1717 shmem_recalc_inode(inode); 1718 spin_unlock_irq(&info->lock); 1719 1720 if (sgp == SGP_WRITE) 1721 mark_page_accessed(page); 1722 1723 delete_from_swap_cache(page); 1724 set_page_dirty(page); 1725 swap_free(swap); 1726 1727 } else { 1728 if (vma && userfaultfd_missing(vma)) { 1729 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1730 return 0; 1731 } 1732 1733 /* shmem_symlink() */ 1734 if (mapping->a_ops != &shmem_aops) 1735 goto alloc_nohuge; 1736 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1737 goto alloc_nohuge; 1738 if (shmem_huge == SHMEM_HUGE_FORCE) 1739 goto alloc_huge; 1740 switch (sbinfo->huge) { 1741 loff_t i_size; 1742 pgoff_t off; 1743 case SHMEM_HUGE_NEVER: 1744 goto alloc_nohuge; 1745 case SHMEM_HUGE_WITHIN_SIZE: 1746 off = round_up(index, HPAGE_PMD_NR); 1747 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1748 if (i_size >= HPAGE_PMD_SIZE && 1749 i_size >> PAGE_SHIFT >= off) 1750 goto alloc_huge; 1751 /* fallthrough */ 1752 case SHMEM_HUGE_ADVISE: 1753 if (sgp_huge == SGP_HUGE) 1754 goto alloc_huge; 1755 /* TODO: implement fadvise() hints */ 1756 goto alloc_nohuge; 1757 } 1758 1759 alloc_huge: 1760 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1761 if (IS_ERR(page)) { 1762 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, 1763 index, false); 1764 } 1765 if (IS_ERR(page)) { 1766 int retry = 5; 1767 error = PTR_ERR(page); 1768 page = NULL; 1769 if (error != -ENOSPC) 1770 goto failed; 1771 /* 1772 * Try to reclaim some spece by splitting a huge page 1773 * beyond i_size on the filesystem. 1774 */ 1775 while (retry--) { 1776 int ret; 1777 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1778 if (ret == SHRINK_STOP) 1779 break; 1780 if (ret) 1781 goto alloc_nohuge; 1782 } 1783 goto failed; 1784 } 1785 1786 if (PageTransHuge(page)) 1787 hindex = round_down(index, HPAGE_PMD_NR); 1788 else 1789 hindex = index; 1790 1791 if (sgp == SGP_WRITE) 1792 __SetPageReferenced(page); 1793 1794 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1795 PageTransHuge(page)); 1796 if (error) 1797 goto unacct; 1798 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1799 compound_order(page)); 1800 if (!error) { 1801 error = shmem_add_to_page_cache(page, mapping, hindex, 1802 NULL); 1803 radix_tree_preload_end(); 1804 } 1805 if (error) { 1806 mem_cgroup_cancel_charge(page, memcg, 1807 PageTransHuge(page)); 1808 goto unacct; 1809 } 1810 mem_cgroup_commit_charge(page, memcg, false, 1811 PageTransHuge(page)); 1812 lru_cache_add_anon(page); 1813 1814 spin_lock_irq(&info->lock); 1815 info->alloced += 1 << compound_order(page); 1816 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1817 shmem_recalc_inode(inode); 1818 spin_unlock_irq(&info->lock); 1819 alloced = true; 1820 1821 if (PageTransHuge(page) && 1822 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1823 hindex + HPAGE_PMD_NR - 1) { 1824 /* 1825 * Part of the huge page is beyond i_size: subject 1826 * to shrink under memory pressure. 1827 */ 1828 spin_lock(&sbinfo->shrinklist_lock); 1829 /* 1830 * _careful to defend against unlocked access to 1831 * ->shrink_list in shmem_unused_huge_shrink() 1832 */ 1833 if (list_empty_careful(&info->shrinklist)) { 1834 list_add_tail(&info->shrinklist, 1835 &sbinfo->shrinklist); 1836 sbinfo->shrinklist_len++; 1837 } 1838 spin_unlock(&sbinfo->shrinklist_lock); 1839 } 1840 1841 /* 1842 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1843 */ 1844 if (sgp == SGP_FALLOC) 1845 sgp = SGP_WRITE; 1846 clear: 1847 /* 1848 * Let SGP_WRITE caller clear ends if write does not fill page; 1849 * but SGP_FALLOC on a page fallocated earlier must initialize 1850 * it now, lest undo on failure cancel our earlier guarantee. 1851 */ 1852 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1853 struct page *head = compound_head(page); 1854 int i; 1855 1856 for (i = 0; i < (1 << compound_order(head)); i++) { 1857 clear_highpage(head + i); 1858 flush_dcache_page(head + i); 1859 } 1860 SetPageUptodate(head); 1861 } 1862 } 1863 1864 /* Perhaps the file has been truncated since we checked */ 1865 if (sgp <= SGP_CACHE && 1866 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1867 if (alloced) { 1868 ClearPageDirty(page); 1869 delete_from_page_cache(page); 1870 spin_lock_irq(&info->lock); 1871 shmem_recalc_inode(inode); 1872 spin_unlock_irq(&info->lock); 1873 } 1874 error = -EINVAL; 1875 goto unlock; 1876 } 1877 *pagep = page + index - hindex; 1878 return 0; 1879 1880 /* 1881 * Error recovery. 1882 */ 1883 unacct: 1884 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1885 1886 if (PageTransHuge(page)) { 1887 unlock_page(page); 1888 put_page(page); 1889 goto alloc_nohuge; 1890 } 1891 failed: 1892 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1893 error = -EEXIST; 1894 unlock: 1895 if (page) { 1896 unlock_page(page); 1897 put_page(page); 1898 } 1899 if (error == -ENOSPC && !once++) { 1900 spin_lock_irq(&info->lock); 1901 shmem_recalc_inode(inode); 1902 spin_unlock_irq(&info->lock); 1903 goto repeat; 1904 } 1905 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1906 goto repeat; 1907 return error; 1908 } 1909 1910 /* 1911 * This is like autoremove_wake_function, but it removes the wait queue 1912 * entry unconditionally - even if something else had already woken the 1913 * target. 1914 */ 1915 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1916 { 1917 int ret = default_wake_function(wait, mode, sync, key); 1918 list_del_init(&wait->entry); 1919 return ret; 1920 } 1921 1922 static int shmem_fault(struct vm_fault *vmf) 1923 { 1924 struct vm_area_struct *vma = vmf->vma; 1925 struct inode *inode = file_inode(vma->vm_file); 1926 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1927 enum sgp_type sgp; 1928 int error; 1929 int ret = VM_FAULT_LOCKED; 1930 1931 /* 1932 * Trinity finds that probing a hole which tmpfs is punching can 1933 * prevent the hole-punch from ever completing: which in turn 1934 * locks writers out with its hold on i_mutex. So refrain from 1935 * faulting pages into the hole while it's being punched. Although 1936 * shmem_undo_range() does remove the additions, it may be unable to 1937 * keep up, as each new page needs its own unmap_mapping_range() call, 1938 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1939 * 1940 * It does not matter if we sometimes reach this check just before the 1941 * hole-punch begins, so that one fault then races with the punch: 1942 * we just need to make racing faults a rare case. 1943 * 1944 * The implementation below would be much simpler if we just used a 1945 * standard mutex or completion: but we cannot take i_mutex in fault, 1946 * and bloating every shmem inode for this unlikely case would be sad. 1947 */ 1948 if (unlikely(inode->i_private)) { 1949 struct shmem_falloc *shmem_falloc; 1950 1951 spin_lock(&inode->i_lock); 1952 shmem_falloc = inode->i_private; 1953 if (shmem_falloc && 1954 shmem_falloc->waitq && 1955 vmf->pgoff >= shmem_falloc->start && 1956 vmf->pgoff < shmem_falloc->next) { 1957 wait_queue_head_t *shmem_falloc_waitq; 1958 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1959 1960 ret = VM_FAULT_NOPAGE; 1961 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1962 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1963 /* It's polite to up mmap_sem if we can */ 1964 up_read(&vma->vm_mm->mmap_sem); 1965 ret = VM_FAULT_RETRY; 1966 } 1967 1968 shmem_falloc_waitq = shmem_falloc->waitq; 1969 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1970 TASK_UNINTERRUPTIBLE); 1971 spin_unlock(&inode->i_lock); 1972 schedule(); 1973 1974 /* 1975 * shmem_falloc_waitq points into the shmem_fallocate() 1976 * stack of the hole-punching task: shmem_falloc_waitq 1977 * is usually invalid by the time we reach here, but 1978 * finish_wait() does not dereference it in that case; 1979 * though i_lock needed lest racing with wake_up_all(). 1980 */ 1981 spin_lock(&inode->i_lock); 1982 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1983 spin_unlock(&inode->i_lock); 1984 return ret; 1985 } 1986 spin_unlock(&inode->i_lock); 1987 } 1988 1989 sgp = SGP_CACHE; 1990 1991 if ((vma->vm_flags & VM_NOHUGEPAGE) || 1992 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 1993 sgp = SGP_NOHUGE; 1994 else if (vma->vm_flags & VM_HUGEPAGE) 1995 sgp = SGP_HUGE; 1996 1997 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1998 gfp, vma, vmf, &ret); 1999 if (error) 2000 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 2001 return ret; 2002 } 2003 2004 unsigned long shmem_get_unmapped_area(struct file *file, 2005 unsigned long uaddr, unsigned long len, 2006 unsigned long pgoff, unsigned long flags) 2007 { 2008 unsigned long (*get_area)(struct file *, 2009 unsigned long, unsigned long, unsigned long, unsigned long); 2010 unsigned long addr; 2011 unsigned long offset; 2012 unsigned long inflated_len; 2013 unsigned long inflated_addr; 2014 unsigned long inflated_offset; 2015 2016 if (len > TASK_SIZE) 2017 return -ENOMEM; 2018 2019 get_area = current->mm->get_unmapped_area; 2020 addr = get_area(file, uaddr, len, pgoff, flags); 2021 2022 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2023 return addr; 2024 if (IS_ERR_VALUE(addr)) 2025 return addr; 2026 if (addr & ~PAGE_MASK) 2027 return addr; 2028 if (addr > TASK_SIZE - len) 2029 return addr; 2030 2031 if (shmem_huge == SHMEM_HUGE_DENY) 2032 return addr; 2033 if (len < HPAGE_PMD_SIZE) 2034 return addr; 2035 if (flags & MAP_FIXED) 2036 return addr; 2037 /* 2038 * Our priority is to support MAP_SHARED mapped hugely; 2039 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2040 * But if caller specified an address hint, respect that as before. 2041 */ 2042 if (uaddr) 2043 return addr; 2044 2045 if (shmem_huge != SHMEM_HUGE_FORCE) { 2046 struct super_block *sb; 2047 2048 if (file) { 2049 VM_BUG_ON(file->f_op != &shmem_file_operations); 2050 sb = file_inode(file)->i_sb; 2051 } else { 2052 /* 2053 * Called directly from mm/mmap.c, or drivers/char/mem.c 2054 * for "/dev/zero", to create a shared anonymous object. 2055 */ 2056 if (IS_ERR(shm_mnt)) 2057 return addr; 2058 sb = shm_mnt->mnt_sb; 2059 } 2060 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2061 return addr; 2062 } 2063 2064 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2065 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2066 return addr; 2067 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2068 return addr; 2069 2070 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2071 if (inflated_len > TASK_SIZE) 2072 return addr; 2073 if (inflated_len < len) 2074 return addr; 2075 2076 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2077 if (IS_ERR_VALUE(inflated_addr)) 2078 return addr; 2079 if (inflated_addr & ~PAGE_MASK) 2080 return addr; 2081 2082 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2083 inflated_addr += offset - inflated_offset; 2084 if (inflated_offset > offset) 2085 inflated_addr += HPAGE_PMD_SIZE; 2086 2087 if (inflated_addr > TASK_SIZE - len) 2088 return addr; 2089 return inflated_addr; 2090 } 2091 2092 #ifdef CONFIG_NUMA 2093 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2094 { 2095 struct inode *inode = file_inode(vma->vm_file); 2096 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2097 } 2098 2099 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2100 unsigned long addr) 2101 { 2102 struct inode *inode = file_inode(vma->vm_file); 2103 pgoff_t index; 2104 2105 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2106 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2107 } 2108 #endif 2109 2110 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2111 { 2112 struct inode *inode = file_inode(file); 2113 struct shmem_inode_info *info = SHMEM_I(inode); 2114 int retval = -ENOMEM; 2115 2116 spin_lock_irq(&info->lock); 2117 if (lock && !(info->flags & VM_LOCKED)) { 2118 if (!user_shm_lock(inode->i_size, user)) 2119 goto out_nomem; 2120 info->flags |= VM_LOCKED; 2121 mapping_set_unevictable(file->f_mapping); 2122 } 2123 if (!lock && (info->flags & VM_LOCKED) && user) { 2124 user_shm_unlock(inode->i_size, user); 2125 info->flags &= ~VM_LOCKED; 2126 mapping_clear_unevictable(file->f_mapping); 2127 } 2128 retval = 0; 2129 2130 out_nomem: 2131 spin_unlock_irq(&info->lock); 2132 return retval; 2133 } 2134 2135 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2136 { 2137 file_accessed(file); 2138 vma->vm_ops = &shmem_vm_ops; 2139 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2140 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2141 (vma->vm_end & HPAGE_PMD_MASK)) { 2142 khugepaged_enter(vma, vma->vm_flags); 2143 } 2144 return 0; 2145 } 2146 2147 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2148 umode_t mode, dev_t dev, unsigned long flags) 2149 { 2150 struct inode *inode; 2151 struct shmem_inode_info *info; 2152 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2153 2154 if (shmem_reserve_inode(sb)) 2155 return NULL; 2156 2157 inode = new_inode(sb); 2158 if (inode) { 2159 inode->i_ino = get_next_ino(); 2160 inode_init_owner(inode, dir, mode); 2161 inode->i_blocks = 0; 2162 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2163 inode->i_generation = get_seconds(); 2164 info = SHMEM_I(inode); 2165 memset(info, 0, (char *)inode - (char *)info); 2166 spin_lock_init(&info->lock); 2167 info->seals = F_SEAL_SEAL; 2168 info->flags = flags & VM_NORESERVE; 2169 INIT_LIST_HEAD(&info->shrinklist); 2170 INIT_LIST_HEAD(&info->swaplist); 2171 simple_xattrs_init(&info->xattrs); 2172 cache_no_acl(inode); 2173 2174 switch (mode & S_IFMT) { 2175 default: 2176 inode->i_op = &shmem_special_inode_operations; 2177 init_special_inode(inode, mode, dev); 2178 break; 2179 case S_IFREG: 2180 inode->i_mapping->a_ops = &shmem_aops; 2181 inode->i_op = &shmem_inode_operations; 2182 inode->i_fop = &shmem_file_operations; 2183 mpol_shared_policy_init(&info->policy, 2184 shmem_get_sbmpol(sbinfo)); 2185 break; 2186 case S_IFDIR: 2187 inc_nlink(inode); 2188 /* Some things misbehave if size == 0 on a directory */ 2189 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2190 inode->i_op = &shmem_dir_inode_operations; 2191 inode->i_fop = &simple_dir_operations; 2192 break; 2193 case S_IFLNK: 2194 /* 2195 * Must not load anything in the rbtree, 2196 * mpol_free_shared_policy will not be called. 2197 */ 2198 mpol_shared_policy_init(&info->policy, NULL); 2199 break; 2200 } 2201 } else 2202 shmem_free_inode(sb); 2203 return inode; 2204 } 2205 2206 bool shmem_mapping(struct address_space *mapping) 2207 { 2208 return mapping->a_ops == &shmem_aops; 2209 } 2210 2211 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2212 pmd_t *dst_pmd, 2213 struct vm_area_struct *dst_vma, 2214 unsigned long dst_addr, 2215 unsigned long src_addr, 2216 bool zeropage, 2217 struct page **pagep) 2218 { 2219 struct inode *inode = file_inode(dst_vma->vm_file); 2220 struct shmem_inode_info *info = SHMEM_I(inode); 2221 struct address_space *mapping = inode->i_mapping; 2222 gfp_t gfp = mapping_gfp_mask(mapping); 2223 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2224 struct mem_cgroup *memcg; 2225 spinlock_t *ptl; 2226 void *page_kaddr; 2227 struct page *page; 2228 pte_t _dst_pte, *dst_pte; 2229 int ret; 2230 2231 ret = -ENOMEM; 2232 if (!shmem_inode_acct_block(inode, 1)) 2233 goto out; 2234 2235 if (!*pagep) { 2236 page = shmem_alloc_page(gfp, info, pgoff); 2237 if (!page) 2238 goto out_unacct_blocks; 2239 2240 if (!zeropage) { /* mcopy_atomic */ 2241 page_kaddr = kmap_atomic(page); 2242 ret = copy_from_user(page_kaddr, 2243 (const void __user *)src_addr, 2244 PAGE_SIZE); 2245 kunmap_atomic(page_kaddr); 2246 2247 /* fallback to copy_from_user outside mmap_sem */ 2248 if (unlikely(ret)) { 2249 *pagep = page; 2250 shmem_inode_unacct_blocks(inode, 1); 2251 /* don't free the page */ 2252 return -EFAULT; 2253 } 2254 } else { /* mfill_zeropage_atomic */ 2255 clear_highpage(page); 2256 } 2257 } else { 2258 page = *pagep; 2259 *pagep = NULL; 2260 } 2261 2262 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2263 __SetPageLocked(page); 2264 __SetPageSwapBacked(page); 2265 __SetPageUptodate(page); 2266 2267 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false); 2268 if (ret) 2269 goto out_release; 2270 2271 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 2272 if (!ret) { 2273 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL); 2274 radix_tree_preload_end(); 2275 } 2276 if (ret) 2277 goto out_release_uncharge; 2278 2279 mem_cgroup_commit_charge(page, memcg, false, false); 2280 2281 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2282 if (dst_vma->vm_flags & VM_WRITE) 2283 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2284 2285 ret = -EEXIST; 2286 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2287 if (!pte_none(*dst_pte)) 2288 goto out_release_uncharge_unlock; 2289 2290 lru_cache_add_anon(page); 2291 2292 spin_lock(&info->lock); 2293 info->alloced++; 2294 inode->i_blocks += BLOCKS_PER_PAGE; 2295 shmem_recalc_inode(inode); 2296 spin_unlock(&info->lock); 2297 2298 inc_mm_counter(dst_mm, mm_counter_file(page)); 2299 page_add_file_rmap(page, false); 2300 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2301 2302 /* No need to invalidate - it was non-present before */ 2303 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2304 unlock_page(page); 2305 pte_unmap_unlock(dst_pte, ptl); 2306 ret = 0; 2307 out: 2308 return ret; 2309 out_release_uncharge_unlock: 2310 pte_unmap_unlock(dst_pte, ptl); 2311 out_release_uncharge: 2312 mem_cgroup_cancel_charge(page, memcg, false); 2313 out_release: 2314 unlock_page(page); 2315 put_page(page); 2316 out_unacct_blocks: 2317 shmem_inode_unacct_blocks(inode, 1); 2318 goto out; 2319 } 2320 2321 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2322 pmd_t *dst_pmd, 2323 struct vm_area_struct *dst_vma, 2324 unsigned long dst_addr, 2325 unsigned long src_addr, 2326 struct page **pagep) 2327 { 2328 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2329 dst_addr, src_addr, false, pagep); 2330 } 2331 2332 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2333 pmd_t *dst_pmd, 2334 struct vm_area_struct *dst_vma, 2335 unsigned long dst_addr) 2336 { 2337 struct page *page = NULL; 2338 2339 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2340 dst_addr, 0, true, &page); 2341 } 2342 2343 #ifdef CONFIG_TMPFS 2344 static const struct inode_operations shmem_symlink_inode_operations; 2345 static const struct inode_operations shmem_short_symlink_operations; 2346 2347 #ifdef CONFIG_TMPFS_XATTR 2348 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2349 #else 2350 #define shmem_initxattrs NULL 2351 #endif 2352 2353 static int 2354 shmem_write_begin(struct file *file, struct address_space *mapping, 2355 loff_t pos, unsigned len, unsigned flags, 2356 struct page **pagep, void **fsdata) 2357 { 2358 struct inode *inode = mapping->host; 2359 struct shmem_inode_info *info = SHMEM_I(inode); 2360 pgoff_t index = pos >> PAGE_SHIFT; 2361 2362 /* i_mutex is held by caller */ 2363 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) { 2364 if (info->seals & F_SEAL_WRITE) 2365 return -EPERM; 2366 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2367 return -EPERM; 2368 } 2369 2370 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2371 } 2372 2373 static int 2374 shmem_write_end(struct file *file, struct address_space *mapping, 2375 loff_t pos, unsigned len, unsigned copied, 2376 struct page *page, void *fsdata) 2377 { 2378 struct inode *inode = mapping->host; 2379 2380 if (pos + copied > inode->i_size) 2381 i_size_write(inode, pos + copied); 2382 2383 if (!PageUptodate(page)) { 2384 struct page *head = compound_head(page); 2385 if (PageTransCompound(page)) { 2386 int i; 2387 2388 for (i = 0; i < HPAGE_PMD_NR; i++) { 2389 if (head + i == page) 2390 continue; 2391 clear_highpage(head + i); 2392 flush_dcache_page(head + i); 2393 } 2394 } 2395 if (copied < PAGE_SIZE) { 2396 unsigned from = pos & (PAGE_SIZE - 1); 2397 zero_user_segments(page, 0, from, 2398 from + copied, PAGE_SIZE); 2399 } 2400 SetPageUptodate(head); 2401 } 2402 set_page_dirty(page); 2403 unlock_page(page); 2404 put_page(page); 2405 2406 return copied; 2407 } 2408 2409 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2410 { 2411 struct file *file = iocb->ki_filp; 2412 struct inode *inode = file_inode(file); 2413 struct address_space *mapping = inode->i_mapping; 2414 pgoff_t index; 2415 unsigned long offset; 2416 enum sgp_type sgp = SGP_READ; 2417 int error = 0; 2418 ssize_t retval = 0; 2419 loff_t *ppos = &iocb->ki_pos; 2420 2421 /* 2422 * Might this read be for a stacking filesystem? Then when reading 2423 * holes of a sparse file, we actually need to allocate those pages, 2424 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2425 */ 2426 if (!iter_is_iovec(to)) 2427 sgp = SGP_CACHE; 2428 2429 index = *ppos >> PAGE_SHIFT; 2430 offset = *ppos & ~PAGE_MASK; 2431 2432 for (;;) { 2433 struct page *page = NULL; 2434 pgoff_t end_index; 2435 unsigned long nr, ret; 2436 loff_t i_size = i_size_read(inode); 2437 2438 end_index = i_size >> PAGE_SHIFT; 2439 if (index > end_index) 2440 break; 2441 if (index == end_index) { 2442 nr = i_size & ~PAGE_MASK; 2443 if (nr <= offset) 2444 break; 2445 } 2446 2447 error = shmem_getpage(inode, index, &page, sgp); 2448 if (error) { 2449 if (error == -EINVAL) 2450 error = 0; 2451 break; 2452 } 2453 if (page) { 2454 if (sgp == SGP_CACHE) 2455 set_page_dirty(page); 2456 unlock_page(page); 2457 } 2458 2459 /* 2460 * We must evaluate after, since reads (unlike writes) 2461 * are called without i_mutex protection against truncate 2462 */ 2463 nr = PAGE_SIZE; 2464 i_size = i_size_read(inode); 2465 end_index = i_size >> PAGE_SHIFT; 2466 if (index == end_index) { 2467 nr = i_size & ~PAGE_MASK; 2468 if (nr <= offset) { 2469 if (page) 2470 put_page(page); 2471 break; 2472 } 2473 } 2474 nr -= offset; 2475 2476 if (page) { 2477 /* 2478 * If users can be writing to this page using arbitrary 2479 * virtual addresses, take care about potential aliasing 2480 * before reading the page on the kernel side. 2481 */ 2482 if (mapping_writably_mapped(mapping)) 2483 flush_dcache_page(page); 2484 /* 2485 * Mark the page accessed if we read the beginning. 2486 */ 2487 if (!offset) 2488 mark_page_accessed(page); 2489 } else { 2490 page = ZERO_PAGE(0); 2491 get_page(page); 2492 } 2493 2494 /* 2495 * Ok, we have the page, and it's up-to-date, so 2496 * now we can copy it to user space... 2497 */ 2498 ret = copy_page_to_iter(page, offset, nr, to); 2499 retval += ret; 2500 offset += ret; 2501 index += offset >> PAGE_SHIFT; 2502 offset &= ~PAGE_MASK; 2503 2504 put_page(page); 2505 if (!iov_iter_count(to)) 2506 break; 2507 if (ret < nr) { 2508 error = -EFAULT; 2509 break; 2510 } 2511 cond_resched(); 2512 } 2513 2514 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2515 file_accessed(file); 2516 return retval ? retval : error; 2517 } 2518 2519 /* 2520 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2521 */ 2522 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2523 pgoff_t index, pgoff_t end, int whence) 2524 { 2525 struct page *page; 2526 struct pagevec pvec; 2527 pgoff_t indices[PAGEVEC_SIZE]; 2528 bool done = false; 2529 int i; 2530 2531 pagevec_init(&pvec); 2532 pvec.nr = 1; /* start small: we may be there already */ 2533 while (!done) { 2534 pvec.nr = find_get_entries(mapping, index, 2535 pvec.nr, pvec.pages, indices); 2536 if (!pvec.nr) { 2537 if (whence == SEEK_DATA) 2538 index = end; 2539 break; 2540 } 2541 for (i = 0; i < pvec.nr; i++, index++) { 2542 if (index < indices[i]) { 2543 if (whence == SEEK_HOLE) { 2544 done = true; 2545 break; 2546 } 2547 index = indices[i]; 2548 } 2549 page = pvec.pages[i]; 2550 if (page && !radix_tree_exceptional_entry(page)) { 2551 if (!PageUptodate(page)) 2552 page = NULL; 2553 } 2554 if (index >= end || 2555 (page && whence == SEEK_DATA) || 2556 (!page && whence == SEEK_HOLE)) { 2557 done = true; 2558 break; 2559 } 2560 } 2561 pagevec_remove_exceptionals(&pvec); 2562 pagevec_release(&pvec); 2563 pvec.nr = PAGEVEC_SIZE; 2564 cond_resched(); 2565 } 2566 return index; 2567 } 2568 2569 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2570 { 2571 struct address_space *mapping = file->f_mapping; 2572 struct inode *inode = mapping->host; 2573 pgoff_t start, end; 2574 loff_t new_offset; 2575 2576 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2577 return generic_file_llseek_size(file, offset, whence, 2578 MAX_LFS_FILESIZE, i_size_read(inode)); 2579 inode_lock(inode); 2580 /* We're holding i_mutex so we can access i_size directly */ 2581 2582 if (offset < 0) 2583 offset = -EINVAL; 2584 else if (offset >= inode->i_size) 2585 offset = -ENXIO; 2586 else { 2587 start = offset >> PAGE_SHIFT; 2588 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2589 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2590 new_offset <<= PAGE_SHIFT; 2591 if (new_offset > offset) { 2592 if (new_offset < inode->i_size) 2593 offset = new_offset; 2594 else if (whence == SEEK_DATA) 2595 offset = -ENXIO; 2596 else 2597 offset = inode->i_size; 2598 } 2599 } 2600 2601 if (offset >= 0) 2602 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2603 inode_unlock(inode); 2604 return offset; 2605 } 2606 2607 /* 2608 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2609 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2610 */ 2611 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2612 #define LAST_SCAN 4 /* about 150ms max */ 2613 2614 static void shmem_tag_pins(struct address_space *mapping) 2615 { 2616 struct radix_tree_iter iter; 2617 void **slot; 2618 pgoff_t start; 2619 struct page *page; 2620 2621 lru_add_drain(); 2622 start = 0; 2623 rcu_read_lock(); 2624 2625 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2626 page = radix_tree_deref_slot(slot); 2627 if (!page || radix_tree_exception(page)) { 2628 if (radix_tree_deref_retry(page)) { 2629 slot = radix_tree_iter_retry(&iter); 2630 continue; 2631 } 2632 } else if (page_count(page) - page_mapcount(page) > 1) { 2633 spin_lock_irq(&mapping->tree_lock); 2634 radix_tree_tag_set(&mapping->page_tree, iter.index, 2635 SHMEM_TAG_PINNED); 2636 spin_unlock_irq(&mapping->tree_lock); 2637 } 2638 2639 if (need_resched()) { 2640 slot = radix_tree_iter_resume(slot, &iter); 2641 cond_resched_rcu(); 2642 } 2643 } 2644 rcu_read_unlock(); 2645 } 2646 2647 /* 2648 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2649 * via get_user_pages(), drivers might have some pending I/O without any active 2650 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2651 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2652 * them to be dropped. 2653 * The caller must guarantee that no new user will acquire writable references 2654 * to those pages to avoid races. 2655 */ 2656 static int shmem_wait_for_pins(struct address_space *mapping) 2657 { 2658 struct radix_tree_iter iter; 2659 void **slot; 2660 pgoff_t start; 2661 struct page *page; 2662 int error, scan; 2663 2664 shmem_tag_pins(mapping); 2665 2666 error = 0; 2667 for (scan = 0; scan <= LAST_SCAN; scan++) { 2668 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2669 break; 2670 2671 if (!scan) 2672 lru_add_drain_all(); 2673 else if (schedule_timeout_killable((HZ << scan) / 200)) 2674 scan = LAST_SCAN; 2675 2676 start = 0; 2677 rcu_read_lock(); 2678 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2679 start, SHMEM_TAG_PINNED) { 2680 2681 page = radix_tree_deref_slot(slot); 2682 if (radix_tree_exception(page)) { 2683 if (radix_tree_deref_retry(page)) { 2684 slot = radix_tree_iter_retry(&iter); 2685 continue; 2686 } 2687 2688 page = NULL; 2689 } 2690 2691 if (page && 2692 page_count(page) - page_mapcount(page) != 1) { 2693 if (scan < LAST_SCAN) 2694 goto continue_resched; 2695 2696 /* 2697 * On the last scan, we clean up all those tags 2698 * we inserted; but make a note that we still 2699 * found pages pinned. 2700 */ 2701 error = -EBUSY; 2702 } 2703 2704 spin_lock_irq(&mapping->tree_lock); 2705 radix_tree_tag_clear(&mapping->page_tree, 2706 iter.index, SHMEM_TAG_PINNED); 2707 spin_unlock_irq(&mapping->tree_lock); 2708 continue_resched: 2709 if (need_resched()) { 2710 slot = radix_tree_iter_resume(slot, &iter); 2711 cond_resched_rcu(); 2712 } 2713 } 2714 rcu_read_unlock(); 2715 } 2716 2717 return error; 2718 } 2719 2720 static unsigned int *memfd_file_seals_ptr(struct file *file) 2721 { 2722 if (file->f_op == &shmem_file_operations) 2723 return &SHMEM_I(file_inode(file))->seals; 2724 2725 #ifdef CONFIG_HUGETLBFS 2726 if (file->f_op == &hugetlbfs_file_operations) 2727 return &HUGETLBFS_I(file_inode(file))->seals; 2728 #endif 2729 2730 return NULL; 2731 } 2732 2733 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2734 F_SEAL_SHRINK | \ 2735 F_SEAL_GROW | \ 2736 F_SEAL_WRITE) 2737 2738 static int memfd_add_seals(struct file *file, unsigned int seals) 2739 { 2740 struct inode *inode = file_inode(file); 2741 unsigned int *file_seals; 2742 int error; 2743 2744 /* 2745 * SEALING 2746 * Sealing allows multiple parties to share a shmem-file but restrict 2747 * access to a specific subset of file operations. Seals can only be 2748 * added, but never removed. This way, mutually untrusted parties can 2749 * share common memory regions with a well-defined policy. A malicious 2750 * peer can thus never perform unwanted operations on a shared object. 2751 * 2752 * Seals are only supported on special shmem-files and always affect 2753 * the whole underlying inode. Once a seal is set, it may prevent some 2754 * kinds of access to the file. Currently, the following seals are 2755 * defined: 2756 * SEAL_SEAL: Prevent further seals from being set on this file 2757 * SEAL_SHRINK: Prevent the file from shrinking 2758 * SEAL_GROW: Prevent the file from growing 2759 * SEAL_WRITE: Prevent write access to the file 2760 * 2761 * As we don't require any trust relationship between two parties, we 2762 * must prevent seals from being removed. Therefore, sealing a file 2763 * only adds a given set of seals to the file, it never touches 2764 * existing seals. Furthermore, the "setting seals"-operation can be 2765 * sealed itself, which basically prevents any further seal from being 2766 * added. 2767 * 2768 * Semantics of sealing are only defined on volatile files. Only 2769 * anonymous shmem files support sealing. More importantly, seals are 2770 * never written to disk. Therefore, there's no plan to support it on 2771 * other file types. 2772 */ 2773 2774 if (!(file->f_mode & FMODE_WRITE)) 2775 return -EPERM; 2776 if (seals & ~(unsigned int)F_ALL_SEALS) 2777 return -EINVAL; 2778 2779 inode_lock(inode); 2780 2781 file_seals = memfd_file_seals_ptr(file); 2782 if (!file_seals) { 2783 error = -EINVAL; 2784 goto unlock; 2785 } 2786 2787 if (*file_seals & F_SEAL_SEAL) { 2788 error = -EPERM; 2789 goto unlock; 2790 } 2791 2792 if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) { 2793 error = mapping_deny_writable(file->f_mapping); 2794 if (error) 2795 goto unlock; 2796 2797 error = shmem_wait_for_pins(file->f_mapping); 2798 if (error) { 2799 mapping_allow_writable(file->f_mapping); 2800 goto unlock; 2801 } 2802 } 2803 2804 *file_seals |= seals; 2805 error = 0; 2806 2807 unlock: 2808 inode_unlock(inode); 2809 return error; 2810 } 2811 2812 static int memfd_get_seals(struct file *file) 2813 { 2814 unsigned int *seals = memfd_file_seals_ptr(file); 2815 2816 return seals ? *seals : -EINVAL; 2817 } 2818 2819 long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2820 { 2821 long error; 2822 2823 switch (cmd) { 2824 case F_ADD_SEALS: 2825 /* disallow upper 32bit */ 2826 if (arg > UINT_MAX) 2827 return -EINVAL; 2828 2829 error = memfd_add_seals(file, arg); 2830 break; 2831 case F_GET_SEALS: 2832 error = memfd_get_seals(file); 2833 break; 2834 default: 2835 error = -EINVAL; 2836 break; 2837 } 2838 2839 return error; 2840 } 2841 2842 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2843 loff_t len) 2844 { 2845 struct inode *inode = file_inode(file); 2846 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2847 struct shmem_inode_info *info = SHMEM_I(inode); 2848 struct shmem_falloc shmem_falloc; 2849 pgoff_t start, index, end; 2850 int error; 2851 2852 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2853 return -EOPNOTSUPP; 2854 2855 inode_lock(inode); 2856 2857 if (mode & FALLOC_FL_PUNCH_HOLE) { 2858 struct address_space *mapping = file->f_mapping; 2859 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2860 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2861 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2862 2863 /* protected by i_mutex */ 2864 if (info->seals & F_SEAL_WRITE) { 2865 error = -EPERM; 2866 goto out; 2867 } 2868 2869 shmem_falloc.waitq = &shmem_falloc_waitq; 2870 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2871 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2872 spin_lock(&inode->i_lock); 2873 inode->i_private = &shmem_falloc; 2874 spin_unlock(&inode->i_lock); 2875 2876 if ((u64)unmap_end > (u64)unmap_start) 2877 unmap_mapping_range(mapping, unmap_start, 2878 1 + unmap_end - unmap_start, 0); 2879 shmem_truncate_range(inode, offset, offset + len - 1); 2880 /* No need to unmap again: hole-punching leaves COWed pages */ 2881 2882 spin_lock(&inode->i_lock); 2883 inode->i_private = NULL; 2884 wake_up_all(&shmem_falloc_waitq); 2885 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2886 spin_unlock(&inode->i_lock); 2887 error = 0; 2888 goto out; 2889 } 2890 2891 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2892 error = inode_newsize_ok(inode, offset + len); 2893 if (error) 2894 goto out; 2895 2896 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2897 error = -EPERM; 2898 goto out; 2899 } 2900 2901 start = offset >> PAGE_SHIFT; 2902 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2903 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2904 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2905 error = -ENOSPC; 2906 goto out; 2907 } 2908 2909 shmem_falloc.waitq = NULL; 2910 shmem_falloc.start = start; 2911 shmem_falloc.next = start; 2912 shmem_falloc.nr_falloced = 0; 2913 shmem_falloc.nr_unswapped = 0; 2914 spin_lock(&inode->i_lock); 2915 inode->i_private = &shmem_falloc; 2916 spin_unlock(&inode->i_lock); 2917 2918 for (index = start; index < end; index++) { 2919 struct page *page; 2920 2921 /* 2922 * Good, the fallocate(2) manpage permits EINTR: we may have 2923 * been interrupted because we are using up too much memory. 2924 */ 2925 if (signal_pending(current)) 2926 error = -EINTR; 2927 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2928 error = -ENOMEM; 2929 else 2930 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2931 if (error) { 2932 /* Remove the !PageUptodate pages we added */ 2933 if (index > start) { 2934 shmem_undo_range(inode, 2935 (loff_t)start << PAGE_SHIFT, 2936 ((loff_t)index << PAGE_SHIFT) - 1, true); 2937 } 2938 goto undone; 2939 } 2940 2941 /* 2942 * Inform shmem_writepage() how far we have reached. 2943 * No need for lock or barrier: we have the page lock. 2944 */ 2945 shmem_falloc.next++; 2946 if (!PageUptodate(page)) 2947 shmem_falloc.nr_falloced++; 2948 2949 /* 2950 * If !PageUptodate, leave it that way so that freeable pages 2951 * can be recognized if we need to rollback on error later. 2952 * But set_page_dirty so that memory pressure will swap rather 2953 * than free the pages we are allocating (and SGP_CACHE pages 2954 * might still be clean: we now need to mark those dirty too). 2955 */ 2956 set_page_dirty(page); 2957 unlock_page(page); 2958 put_page(page); 2959 cond_resched(); 2960 } 2961 2962 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2963 i_size_write(inode, offset + len); 2964 inode->i_ctime = current_time(inode); 2965 undone: 2966 spin_lock(&inode->i_lock); 2967 inode->i_private = NULL; 2968 spin_unlock(&inode->i_lock); 2969 out: 2970 inode_unlock(inode); 2971 return error; 2972 } 2973 2974 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2975 { 2976 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2977 2978 buf->f_type = TMPFS_MAGIC; 2979 buf->f_bsize = PAGE_SIZE; 2980 buf->f_namelen = NAME_MAX; 2981 if (sbinfo->max_blocks) { 2982 buf->f_blocks = sbinfo->max_blocks; 2983 buf->f_bavail = 2984 buf->f_bfree = sbinfo->max_blocks - 2985 percpu_counter_sum(&sbinfo->used_blocks); 2986 } 2987 if (sbinfo->max_inodes) { 2988 buf->f_files = sbinfo->max_inodes; 2989 buf->f_ffree = sbinfo->free_inodes; 2990 } 2991 /* else leave those fields 0 like simple_statfs */ 2992 return 0; 2993 } 2994 2995 /* 2996 * File creation. Allocate an inode, and we're done.. 2997 */ 2998 static int 2999 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3000 { 3001 struct inode *inode; 3002 int error = -ENOSPC; 3003 3004 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 3005 if (inode) { 3006 error = simple_acl_create(dir, inode); 3007 if (error) 3008 goto out_iput; 3009 error = security_inode_init_security(inode, dir, 3010 &dentry->d_name, 3011 shmem_initxattrs, NULL); 3012 if (error && error != -EOPNOTSUPP) 3013 goto out_iput; 3014 3015 error = 0; 3016 dir->i_size += BOGO_DIRENT_SIZE; 3017 dir->i_ctime = dir->i_mtime = current_time(dir); 3018 d_instantiate(dentry, inode); 3019 dget(dentry); /* Extra count - pin the dentry in core */ 3020 } 3021 return error; 3022 out_iput: 3023 iput(inode); 3024 return error; 3025 } 3026 3027 static int 3028 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 3029 { 3030 struct inode *inode; 3031 int error = -ENOSPC; 3032 3033 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 3034 if (inode) { 3035 error = security_inode_init_security(inode, dir, 3036 NULL, 3037 shmem_initxattrs, NULL); 3038 if (error && error != -EOPNOTSUPP) 3039 goto out_iput; 3040 error = simple_acl_create(dir, inode); 3041 if (error) 3042 goto out_iput; 3043 d_tmpfile(dentry, inode); 3044 } 3045 return error; 3046 out_iput: 3047 iput(inode); 3048 return error; 3049 } 3050 3051 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3052 { 3053 int error; 3054 3055 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 3056 return error; 3057 inc_nlink(dir); 3058 return 0; 3059 } 3060 3061 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 3062 bool excl) 3063 { 3064 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 3065 } 3066 3067 /* 3068 * Link a file.. 3069 */ 3070 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3071 { 3072 struct inode *inode = d_inode(old_dentry); 3073 int ret; 3074 3075 /* 3076 * No ordinary (disk based) filesystem counts links as inodes; 3077 * but each new link needs a new dentry, pinning lowmem, and 3078 * tmpfs dentries cannot be pruned until they are unlinked. 3079 */ 3080 ret = shmem_reserve_inode(inode->i_sb); 3081 if (ret) 3082 goto out; 3083 3084 dir->i_size += BOGO_DIRENT_SIZE; 3085 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3086 inc_nlink(inode); 3087 ihold(inode); /* New dentry reference */ 3088 dget(dentry); /* Extra pinning count for the created dentry */ 3089 d_instantiate(dentry, inode); 3090 out: 3091 return ret; 3092 } 3093 3094 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3095 { 3096 struct inode *inode = d_inode(dentry); 3097 3098 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3099 shmem_free_inode(inode->i_sb); 3100 3101 dir->i_size -= BOGO_DIRENT_SIZE; 3102 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3103 drop_nlink(inode); 3104 dput(dentry); /* Undo the count from "create" - this does all the work */ 3105 return 0; 3106 } 3107 3108 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3109 { 3110 if (!simple_empty(dentry)) 3111 return -ENOTEMPTY; 3112 3113 drop_nlink(d_inode(dentry)); 3114 drop_nlink(dir); 3115 return shmem_unlink(dir, dentry); 3116 } 3117 3118 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3119 { 3120 bool old_is_dir = d_is_dir(old_dentry); 3121 bool new_is_dir = d_is_dir(new_dentry); 3122 3123 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3124 if (old_is_dir) { 3125 drop_nlink(old_dir); 3126 inc_nlink(new_dir); 3127 } else { 3128 drop_nlink(new_dir); 3129 inc_nlink(old_dir); 3130 } 3131 } 3132 old_dir->i_ctime = old_dir->i_mtime = 3133 new_dir->i_ctime = new_dir->i_mtime = 3134 d_inode(old_dentry)->i_ctime = 3135 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3136 3137 return 0; 3138 } 3139 3140 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3141 { 3142 struct dentry *whiteout; 3143 int error; 3144 3145 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3146 if (!whiteout) 3147 return -ENOMEM; 3148 3149 error = shmem_mknod(old_dir, whiteout, 3150 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3151 dput(whiteout); 3152 if (error) 3153 return error; 3154 3155 /* 3156 * Cheat and hash the whiteout while the old dentry is still in 3157 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3158 * 3159 * d_lookup() will consistently find one of them at this point, 3160 * not sure which one, but that isn't even important. 3161 */ 3162 d_rehash(whiteout); 3163 return 0; 3164 } 3165 3166 /* 3167 * The VFS layer already does all the dentry stuff for rename, 3168 * we just have to decrement the usage count for the target if 3169 * it exists so that the VFS layer correctly free's it when it 3170 * gets overwritten. 3171 */ 3172 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3173 { 3174 struct inode *inode = d_inode(old_dentry); 3175 int they_are_dirs = S_ISDIR(inode->i_mode); 3176 3177 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3178 return -EINVAL; 3179 3180 if (flags & RENAME_EXCHANGE) 3181 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3182 3183 if (!simple_empty(new_dentry)) 3184 return -ENOTEMPTY; 3185 3186 if (flags & RENAME_WHITEOUT) { 3187 int error; 3188 3189 error = shmem_whiteout(old_dir, old_dentry); 3190 if (error) 3191 return error; 3192 } 3193 3194 if (d_really_is_positive(new_dentry)) { 3195 (void) shmem_unlink(new_dir, new_dentry); 3196 if (they_are_dirs) { 3197 drop_nlink(d_inode(new_dentry)); 3198 drop_nlink(old_dir); 3199 } 3200 } else if (they_are_dirs) { 3201 drop_nlink(old_dir); 3202 inc_nlink(new_dir); 3203 } 3204 3205 old_dir->i_size -= BOGO_DIRENT_SIZE; 3206 new_dir->i_size += BOGO_DIRENT_SIZE; 3207 old_dir->i_ctime = old_dir->i_mtime = 3208 new_dir->i_ctime = new_dir->i_mtime = 3209 inode->i_ctime = current_time(old_dir); 3210 return 0; 3211 } 3212 3213 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3214 { 3215 int error; 3216 int len; 3217 struct inode *inode; 3218 struct page *page; 3219 3220 len = strlen(symname) + 1; 3221 if (len > PAGE_SIZE) 3222 return -ENAMETOOLONG; 3223 3224 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3225 if (!inode) 3226 return -ENOSPC; 3227 3228 error = security_inode_init_security(inode, dir, &dentry->d_name, 3229 shmem_initxattrs, NULL); 3230 if (error) { 3231 if (error != -EOPNOTSUPP) { 3232 iput(inode); 3233 return error; 3234 } 3235 error = 0; 3236 } 3237 3238 inode->i_size = len-1; 3239 if (len <= SHORT_SYMLINK_LEN) { 3240 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3241 if (!inode->i_link) { 3242 iput(inode); 3243 return -ENOMEM; 3244 } 3245 inode->i_op = &shmem_short_symlink_operations; 3246 } else { 3247 inode_nohighmem(inode); 3248 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3249 if (error) { 3250 iput(inode); 3251 return error; 3252 } 3253 inode->i_mapping->a_ops = &shmem_aops; 3254 inode->i_op = &shmem_symlink_inode_operations; 3255 memcpy(page_address(page), symname, len); 3256 SetPageUptodate(page); 3257 set_page_dirty(page); 3258 unlock_page(page); 3259 put_page(page); 3260 } 3261 dir->i_size += BOGO_DIRENT_SIZE; 3262 dir->i_ctime = dir->i_mtime = current_time(dir); 3263 d_instantiate(dentry, inode); 3264 dget(dentry); 3265 return 0; 3266 } 3267 3268 static void shmem_put_link(void *arg) 3269 { 3270 mark_page_accessed(arg); 3271 put_page(arg); 3272 } 3273 3274 static const char *shmem_get_link(struct dentry *dentry, 3275 struct inode *inode, 3276 struct delayed_call *done) 3277 { 3278 struct page *page = NULL; 3279 int error; 3280 if (!dentry) { 3281 page = find_get_page(inode->i_mapping, 0); 3282 if (!page) 3283 return ERR_PTR(-ECHILD); 3284 if (!PageUptodate(page)) { 3285 put_page(page); 3286 return ERR_PTR(-ECHILD); 3287 } 3288 } else { 3289 error = shmem_getpage(inode, 0, &page, SGP_READ); 3290 if (error) 3291 return ERR_PTR(error); 3292 unlock_page(page); 3293 } 3294 set_delayed_call(done, shmem_put_link, page); 3295 return page_address(page); 3296 } 3297 3298 #ifdef CONFIG_TMPFS_XATTR 3299 /* 3300 * Superblocks without xattr inode operations may get some security.* xattr 3301 * support from the LSM "for free". As soon as we have any other xattrs 3302 * like ACLs, we also need to implement the security.* handlers at 3303 * filesystem level, though. 3304 */ 3305 3306 /* 3307 * Callback for security_inode_init_security() for acquiring xattrs. 3308 */ 3309 static int shmem_initxattrs(struct inode *inode, 3310 const struct xattr *xattr_array, 3311 void *fs_info) 3312 { 3313 struct shmem_inode_info *info = SHMEM_I(inode); 3314 const struct xattr *xattr; 3315 struct simple_xattr *new_xattr; 3316 size_t len; 3317 3318 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3319 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3320 if (!new_xattr) 3321 return -ENOMEM; 3322 3323 len = strlen(xattr->name) + 1; 3324 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3325 GFP_KERNEL); 3326 if (!new_xattr->name) { 3327 kfree(new_xattr); 3328 return -ENOMEM; 3329 } 3330 3331 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3332 XATTR_SECURITY_PREFIX_LEN); 3333 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3334 xattr->name, len); 3335 3336 simple_xattr_list_add(&info->xattrs, new_xattr); 3337 } 3338 3339 return 0; 3340 } 3341 3342 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3343 struct dentry *unused, struct inode *inode, 3344 const char *name, void *buffer, size_t size) 3345 { 3346 struct shmem_inode_info *info = SHMEM_I(inode); 3347 3348 name = xattr_full_name(handler, name); 3349 return simple_xattr_get(&info->xattrs, name, buffer, size); 3350 } 3351 3352 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3353 struct dentry *unused, struct inode *inode, 3354 const char *name, const void *value, 3355 size_t size, int flags) 3356 { 3357 struct shmem_inode_info *info = SHMEM_I(inode); 3358 3359 name = xattr_full_name(handler, name); 3360 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3361 } 3362 3363 static const struct xattr_handler shmem_security_xattr_handler = { 3364 .prefix = XATTR_SECURITY_PREFIX, 3365 .get = shmem_xattr_handler_get, 3366 .set = shmem_xattr_handler_set, 3367 }; 3368 3369 static const struct xattr_handler shmem_trusted_xattr_handler = { 3370 .prefix = XATTR_TRUSTED_PREFIX, 3371 .get = shmem_xattr_handler_get, 3372 .set = shmem_xattr_handler_set, 3373 }; 3374 3375 static const struct xattr_handler *shmem_xattr_handlers[] = { 3376 #ifdef CONFIG_TMPFS_POSIX_ACL 3377 &posix_acl_access_xattr_handler, 3378 &posix_acl_default_xattr_handler, 3379 #endif 3380 &shmem_security_xattr_handler, 3381 &shmem_trusted_xattr_handler, 3382 NULL 3383 }; 3384 3385 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3386 { 3387 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3388 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3389 } 3390 #endif /* CONFIG_TMPFS_XATTR */ 3391 3392 static const struct inode_operations shmem_short_symlink_operations = { 3393 .get_link = simple_get_link, 3394 #ifdef CONFIG_TMPFS_XATTR 3395 .listxattr = shmem_listxattr, 3396 #endif 3397 }; 3398 3399 static const struct inode_operations shmem_symlink_inode_operations = { 3400 .get_link = shmem_get_link, 3401 #ifdef CONFIG_TMPFS_XATTR 3402 .listxattr = shmem_listxattr, 3403 #endif 3404 }; 3405 3406 static struct dentry *shmem_get_parent(struct dentry *child) 3407 { 3408 return ERR_PTR(-ESTALE); 3409 } 3410 3411 static int shmem_match(struct inode *ino, void *vfh) 3412 { 3413 __u32 *fh = vfh; 3414 __u64 inum = fh[2]; 3415 inum = (inum << 32) | fh[1]; 3416 return ino->i_ino == inum && fh[0] == ino->i_generation; 3417 } 3418 3419 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3420 struct fid *fid, int fh_len, int fh_type) 3421 { 3422 struct inode *inode; 3423 struct dentry *dentry = NULL; 3424 u64 inum; 3425 3426 if (fh_len < 3) 3427 return NULL; 3428 3429 inum = fid->raw[2]; 3430 inum = (inum << 32) | fid->raw[1]; 3431 3432 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3433 shmem_match, fid->raw); 3434 if (inode) { 3435 dentry = d_find_alias(inode); 3436 iput(inode); 3437 } 3438 3439 return dentry; 3440 } 3441 3442 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3443 struct inode *parent) 3444 { 3445 if (*len < 3) { 3446 *len = 3; 3447 return FILEID_INVALID; 3448 } 3449 3450 if (inode_unhashed(inode)) { 3451 /* Unfortunately insert_inode_hash is not idempotent, 3452 * so as we hash inodes here rather than at creation 3453 * time, we need a lock to ensure we only try 3454 * to do it once 3455 */ 3456 static DEFINE_SPINLOCK(lock); 3457 spin_lock(&lock); 3458 if (inode_unhashed(inode)) 3459 __insert_inode_hash(inode, 3460 inode->i_ino + inode->i_generation); 3461 spin_unlock(&lock); 3462 } 3463 3464 fh[0] = inode->i_generation; 3465 fh[1] = inode->i_ino; 3466 fh[2] = ((__u64)inode->i_ino) >> 32; 3467 3468 *len = 3; 3469 return 1; 3470 } 3471 3472 static const struct export_operations shmem_export_ops = { 3473 .get_parent = shmem_get_parent, 3474 .encode_fh = shmem_encode_fh, 3475 .fh_to_dentry = shmem_fh_to_dentry, 3476 }; 3477 3478 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3479 bool remount) 3480 { 3481 char *this_char, *value, *rest; 3482 struct mempolicy *mpol = NULL; 3483 uid_t uid; 3484 gid_t gid; 3485 3486 while (options != NULL) { 3487 this_char = options; 3488 for (;;) { 3489 /* 3490 * NUL-terminate this option: unfortunately, 3491 * mount options form a comma-separated list, 3492 * but mpol's nodelist may also contain commas. 3493 */ 3494 options = strchr(options, ','); 3495 if (options == NULL) 3496 break; 3497 options++; 3498 if (!isdigit(*options)) { 3499 options[-1] = '\0'; 3500 break; 3501 } 3502 } 3503 if (!*this_char) 3504 continue; 3505 if ((value = strchr(this_char,'=')) != NULL) { 3506 *value++ = 0; 3507 } else { 3508 pr_err("tmpfs: No value for mount option '%s'\n", 3509 this_char); 3510 goto error; 3511 } 3512 3513 if (!strcmp(this_char,"size")) { 3514 unsigned long long size; 3515 size = memparse(value,&rest); 3516 if (*rest == '%') { 3517 size <<= PAGE_SHIFT; 3518 size *= totalram_pages; 3519 do_div(size, 100); 3520 rest++; 3521 } 3522 if (*rest) 3523 goto bad_val; 3524 sbinfo->max_blocks = 3525 DIV_ROUND_UP(size, PAGE_SIZE); 3526 } else if (!strcmp(this_char,"nr_blocks")) { 3527 sbinfo->max_blocks = memparse(value, &rest); 3528 if (*rest) 3529 goto bad_val; 3530 } else if (!strcmp(this_char,"nr_inodes")) { 3531 sbinfo->max_inodes = memparse(value, &rest); 3532 if (*rest) 3533 goto bad_val; 3534 } else if (!strcmp(this_char,"mode")) { 3535 if (remount) 3536 continue; 3537 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3538 if (*rest) 3539 goto bad_val; 3540 } else if (!strcmp(this_char,"uid")) { 3541 if (remount) 3542 continue; 3543 uid = simple_strtoul(value, &rest, 0); 3544 if (*rest) 3545 goto bad_val; 3546 sbinfo->uid = make_kuid(current_user_ns(), uid); 3547 if (!uid_valid(sbinfo->uid)) 3548 goto bad_val; 3549 } else if (!strcmp(this_char,"gid")) { 3550 if (remount) 3551 continue; 3552 gid = simple_strtoul(value, &rest, 0); 3553 if (*rest) 3554 goto bad_val; 3555 sbinfo->gid = make_kgid(current_user_ns(), gid); 3556 if (!gid_valid(sbinfo->gid)) 3557 goto bad_val; 3558 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3559 } else if (!strcmp(this_char, "huge")) { 3560 int huge; 3561 huge = shmem_parse_huge(value); 3562 if (huge < 0) 3563 goto bad_val; 3564 if (!has_transparent_hugepage() && 3565 huge != SHMEM_HUGE_NEVER) 3566 goto bad_val; 3567 sbinfo->huge = huge; 3568 #endif 3569 #ifdef CONFIG_NUMA 3570 } else if (!strcmp(this_char,"mpol")) { 3571 mpol_put(mpol); 3572 mpol = NULL; 3573 if (mpol_parse_str(value, &mpol)) 3574 goto bad_val; 3575 #endif 3576 } else { 3577 pr_err("tmpfs: Bad mount option %s\n", this_char); 3578 goto error; 3579 } 3580 } 3581 sbinfo->mpol = mpol; 3582 return 0; 3583 3584 bad_val: 3585 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3586 value, this_char); 3587 error: 3588 mpol_put(mpol); 3589 return 1; 3590 3591 } 3592 3593 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3594 { 3595 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3596 struct shmem_sb_info config = *sbinfo; 3597 unsigned long inodes; 3598 int error = -EINVAL; 3599 3600 config.mpol = NULL; 3601 if (shmem_parse_options(data, &config, true)) 3602 return error; 3603 3604 spin_lock(&sbinfo->stat_lock); 3605 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3606 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3607 goto out; 3608 if (config.max_inodes < inodes) 3609 goto out; 3610 /* 3611 * Those tests disallow limited->unlimited while any are in use; 3612 * but we must separately disallow unlimited->limited, because 3613 * in that case we have no record of how much is already in use. 3614 */ 3615 if (config.max_blocks && !sbinfo->max_blocks) 3616 goto out; 3617 if (config.max_inodes && !sbinfo->max_inodes) 3618 goto out; 3619 3620 error = 0; 3621 sbinfo->huge = config.huge; 3622 sbinfo->max_blocks = config.max_blocks; 3623 sbinfo->max_inodes = config.max_inodes; 3624 sbinfo->free_inodes = config.max_inodes - inodes; 3625 3626 /* 3627 * Preserve previous mempolicy unless mpol remount option was specified. 3628 */ 3629 if (config.mpol) { 3630 mpol_put(sbinfo->mpol); 3631 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3632 } 3633 out: 3634 spin_unlock(&sbinfo->stat_lock); 3635 return error; 3636 } 3637 3638 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3639 { 3640 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3641 3642 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3643 seq_printf(seq, ",size=%luk", 3644 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3645 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3646 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3647 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3648 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3649 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3650 seq_printf(seq, ",uid=%u", 3651 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3652 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3653 seq_printf(seq, ",gid=%u", 3654 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3655 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3656 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3657 if (sbinfo->huge) 3658 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3659 #endif 3660 shmem_show_mpol(seq, sbinfo->mpol); 3661 return 0; 3662 } 3663 3664 #define MFD_NAME_PREFIX "memfd:" 3665 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3666 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3667 3668 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB) 3669 3670 SYSCALL_DEFINE2(memfd_create, 3671 const char __user *, uname, 3672 unsigned int, flags) 3673 { 3674 unsigned int *file_seals; 3675 struct file *file; 3676 int fd, error; 3677 char *name; 3678 long len; 3679 3680 if (!(flags & MFD_HUGETLB)) { 3681 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3682 return -EINVAL; 3683 } else { 3684 /* Allow huge page size encoding in flags. */ 3685 if (flags & ~(unsigned int)(MFD_ALL_FLAGS | 3686 (MFD_HUGE_MASK << MFD_HUGE_SHIFT))) 3687 return -EINVAL; 3688 } 3689 3690 /* length includes terminating zero */ 3691 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3692 if (len <= 0) 3693 return -EFAULT; 3694 if (len > MFD_NAME_MAX_LEN + 1) 3695 return -EINVAL; 3696 3697 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL); 3698 if (!name) 3699 return -ENOMEM; 3700 3701 strcpy(name, MFD_NAME_PREFIX); 3702 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3703 error = -EFAULT; 3704 goto err_name; 3705 } 3706 3707 /* terminating-zero may have changed after strnlen_user() returned */ 3708 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3709 error = -EFAULT; 3710 goto err_name; 3711 } 3712 3713 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3714 if (fd < 0) { 3715 error = fd; 3716 goto err_name; 3717 } 3718 3719 if (flags & MFD_HUGETLB) { 3720 struct user_struct *user = NULL; 3721 3722 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user, 3723 HUGETLB_ANONHUGE_INODE, 3724 (flags >> MFD_HUGE_SHIFT) & 3725 MFD_HUGE_MASK); 3726 } else 3727 file = shmem_file_setup(name, 0, VM_NORESERVE); 3728 if (IS_ERR(file)) { 3729 error = PTR_ERR(file); 3730 goto err_fd; 3731 } 3732 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3733 file->f_flags |= O_RDWR | O_LARGEFILE; 3734 3735 if (flags & MFD_ALLOW_SEALING) { 3736 file_seals = memfd_file_seals_ptr(file); 3737 *file_seals &= ~F_SEAL_SEAL; 3738 } 3739 3740 fd_install(fd, file); 3741 kfree(name); 3742 return fd; 3743 3744 err_fd: 3745 put_unused_fd(fd); 3746 err_name: 3747 kfree(name); 3748 return error; 3749 } 3750 3751 #endif /* CONFIG_TMPFS */ 3752 3753 static void shmem_put_super(struct super_block *sb) 3754 { 3755 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3756 3757 percpu_counter_destroy(&sbinfo->used_blocks); 3758 mpol_put(sbinfo->mpol); 3759 kfree(sbinfo); 3760 sb->s_fs_info = NULL; 3761 } 3762 3763 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3764 { 3765 struct inode *inode; 3766 struct shmem_sb_info *sbinfo; 3767 int err = -ENOMEM; 3768 3769 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3770 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3771 L1_CACHE_BYTES), GFP_KERNEL); 3772 if (!sbinfo) 3773 return -ENOMEM; 3774 3775 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3776 sbinfo->uid = current_fsuid(); 3777 sbinfo->gid = current_fsgid(); 3778 sb->s_fs_info = sbinfo; 3779 3780 #ifdef CONFIG_TMPFS 3781 /* 3782 * Per default we only allow half of the physical ram per 3783 * tmpfs instance, limiting inodes to one per page of lowmem; 3784 * but the internal instance is left unlimited. 3785 */ 3786 if (!(sb->s_flags & SB_KERNMOUNT)) { 3787 sbinfo->max_blocks = shmem_default_max_blocks(); 3788 sbinfo->max_inodes = shmem_default_max_inodes(); 3789 if (shmem_parse_options(data, sbinfo, false)) { 3790 err = -EINVAL; 3791 goto failed; 3792 } 3793 } else { 3794 sb->s_flags |= SB_NOUSER; 3795 } 3796 sb->s_export_op = &shmem_export_ops; 3797 sb->s_flags |= SB_NOSEC; 3798 #else 3799 sb->s_flags |= SB_NOUSER; 3800 #endif 3801 3802 spin_lock_init(&sbinfo->stat_lock); 3803 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3804 goto failed; 3805 sbinfo->free_inodes = sbinfo->max_inodes; 3806 spin_lock_init(&sbinfo->shrinklist_lock); 3807 INIT_LIST_HEAD(&sbinfo->shrinklist); 3808 3809 sb->s_maxbytes = MAX_LFS_FILESIZE; 3810 sb->s_blocksize = PAGE_SIZE; 3811 sb->s_blocksize_bits = PAGE_SHIFT; 3812 sb->s_magic = TMPFS_MAGIC; 3813 sb->s_op = &shmem_ops; 3814 sb->s_time_gran = 1; 3815 #ifdef CONFIG_TMPFS_XATTR 3816 sb->s_xattr = shmem_xattr_handlers; 3817 #endif 3818 #ifdef CONFIG_TMPFS_POSIX_ACL 3819 sb->s_flags |= SB_POSIXACL; 3820 #endif 3821 uuid_gen(&sb->s_uuid); 3822 3823 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3824 if (!inode) 3825 goto failed; 3826 inode->i_uid = sbinfo->uid; 3827 inode->i_gid = sbinfo->gid; 3828 sb->s_root = d_make_root(inode); 3829 if (!sb->s_root) 3830 goto failed; 3831 return 0; 3832 3833 failed: 3834 shmem_put_super(sb); 3835 return err; 3836 } 3837 3838 static struct kmem_cache *shmem_inode_cachep; 3839 3840 static struct inode *shmem_alloc_inode(struct super_block *sb) 3841 { 3842 struct shmem_inode_info *info; 3843 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3844 if (!info) 3845 return NULL; 3846 return &info->vfs_inode; 3847 } 3848 3849 static void shmem_destroy_callback(struct rcu_head *head) 3850 { 3851 struct inode *inode = container_of(head, struct inode, i_rcu); 3852 if (S_ISLNK(inode->i_mode)) 3853 kfree(inode->i_link); 3854 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3855 } 3856 3857 static void shmem_destroy_inode(struct inode *inode) 3858 { 3859 if (S_ISREG(inode->i_mode)) 3860 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3861 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3862 } 3863 3864 static void shmem_init_inode(void *foo) 3865 { 3866 struct shmem_inode_info *info = foo; 3867 inode_init_once(&info->vfs_inode); 3868 } 3869 3870 static void shmem_init_inodecache(void) 3871 { 3872 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3873 sizeof(struct shmem_inode_info), 3874 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3875 } 3876 3877 static void shmem_destroy_inodecache(void) 3878 { 3879 kmem_cache_destroy(shmem_inode_cachep); 3880 } 3881 3882 static const struct address_space_operations shmem_aops = { 3883 .writepage = shmem_writepage, 3884 .set_page_dirty = __set_page_dirty_no_writeback, 3885 #ifdef CONFIG_TMPFS 3886 .write_begin = shmem_write_begin, 3887 .write_end = shmem_write_end, 3888 #endif 3889 #ifdef CONFIG_MIGRATION 3890 .migratepage = migrate_page, 3891 #endif 3892 .error_remove_page = generic_error_remove_page, 3893 }; 3894 3895 static const struct file_operations shmem_file_operations = { 3896 .mmap = shmem_mmap, 3897 .get_unmapped_area = shmem_get_unmapped_area, 3898 #ifdef CONFIG_TMPFS 3899 .llseek = shmem_file_llseek, 3900 .read_iter = shmem_file_read_iter, 3901 .write_iter = generic_file_write_iter, 3902 .fsync = noop_fsync, 3903 .splice_read = generic_file_splice_read, 3904 .splice_write = iter_file_splice_write, 3905 .fallocate = shmem_fallocate, 3906 #endif 3907 }; 3908 3909 static const struct inode_operations shmem_inode_operations = { 3910 .getattr = shmem_getattr, 3911 .setattr = shmem_setattr, 3912 #ifdef CONFIG_TMPFS_XATTR 3913 .listxattr = shmem_listxattr, 3914 .set_acl = simple_set_acl, 3915 #endif 3916 }; 3917 3918 static const struct inode_operations shmem_dir_inode_operations = { 3919 #ifdef CONFIG_TMPFS 3920 .create = shmem_create, 3921 .lookup = simple_lookup, 3922 .link = shmem_link, 3923 .unlink = shmem_unlink, 3924 .symlink = shmem_symlink, 3925 .mkdir = shmem_mkdir, 3926 .rmdir = shmem_rmdir, 3927 .mknod = shmem_mknod, 3928 .rename = shmem_rename2, 3929 .tmpfile = shmem_tmpfile, 3930 #endif 3931 #ifdef CONFIG_TMPFS_XATTR 3932 .listxattr = shmem_listxattr, 3933 #endif 3934 #ifdef CONFIG_TMPFS_POSIX_ACL 3935 .setattr = shmem_setattr, 3936 .set_acl = simple_set_acl, 3937 #endif 3938 }; 3939 3940 static const struct inode_operations shmem_special_inode_operations = { 3941 #ifdef CONFIG_TMPFS_XATTR 3942 .listxattr = shmem_listxattr, 3943 #endif 3944 #ifdef CONFIG_TMPFS_POSIX_ACL 3945 .setattr = shmem_setattr, 3946 .set_acl = simple_set_acl, 3947 #endif 3948 }; 3949 3950 static const struct super_operations shmem_ops = { 3951 .alloc_inode = shmem_alloc_inode, 3952 .destroy_inode = shmem_destroy_inode, 3953 #ifdef CONFIG_TMPFS 3954 .statfs = shmem_statfs, 3955 .remount_fs = shmem_remount_fs, 3956 .show_options = shmem_show_options, 3957 #endif 3958 .evict_inode = shmem_evict_inode, 3959 .drop_inode = generic_delete_inode, 3960 .put_super = shmem_put_super, 3961 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3962 .nr_cached_objects = shmem_unused_huge_count, 3963 .free_cached_objects = shmem_unused_huge_scan, 3964 #endif 3965 }; 3966 3967 static const struct vm_operations_struct shmem_vm_ops = { 3968 .fault = shmem_fault, 3969 .map_pages = filemap_map_pages, 3970 #ifdef CONFIG_NUMA 3971 .set_policy = shmem_set_policy, 3972 .get_policy = shmem_get_policy, 3973 #endif 3974 }; 3975 3976 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3977 int flags, const char *dev_name, void *data) 3978 { 3979 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3980 } 3981 3982 static struct file_system_type shmem_fs_type = { 3983 .owner = THIS_MODULE, 3984 .name = "tmpfs", 3985 .mount = shmem_mount, 3986 .kill_sb = kill_litter_super, 3987 .fs_flags = FS_USERNS_MOUNT, 3988 }; 3989 3990 int __init shmem_init(void) 3991 { 3992 int error; 3993 3994 /* If rootfs called this, don't re-init */ 3995 if (shmem_inode_cachep) 3996 return 0; 3997 3998 shmem_init_inodecache(); 3999 4000 error = register_filesystem(&shmem_fs_type); 4001 if (error) { 4002 pr_err("Could not register tmpfs\n"); 4003 goto out2; 4004 } 4005 4006 shm_mnt = kern_mount(&shmem_fs_type); 4007 if (IS_ERR(shm_mnt)) { 4008 error = PTR_ERR(shm_mnt); 4009 pr_err("Could not kern_mount tmpfs\n"); 4010 goto out1; 4011 } 4012 4013 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4014 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4015 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4016 else 4017 shmem_huge = 0; /* just in case it was patched */ 4018 #endif 4019 return 0; 4020 4021 out1: 4022 unregister_filesystem(&shmem_fs_type); 4023 out2: 4024 shmem_destroy_inodecache(); 4025 shm_mnt = ERR_PTR(error); 4026 return error; 4027 } 4028 4029 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 4030 static ssize_t shmem_enabled_show(struct kobject *kobj, 4031 struct kobj_attribute *attr, char *buf) 4032 { 4033 int values[] = { 4034 SHMEM_HUGE_ALWAYS, 4035 SHMEM_HUGE_WITHIN_SIZE, 4036 SHMEM_HUGE_ADVISE, 4037 SHMEM_HUGE_NEVER, 4038 SHMEM_HUGE_DENY, 4039 SHMEM_HUGE_FORCE, 4040 }; 4041 int i, count; 4042 4043 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4044 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4045 4046 count += sprintf(buf + count, fmt, 4047 shmem_format_huge(values[i])); 4048 } 4049 buf[count - 1] = '\n'; 4050 return count; 4051 } 4052 4053 static ssize_t shmem_enabled_store(struct kobject *kobj, 4054 struct kobj_attribute *attr, const char *buf, size_t count) 4055 { 4056 char tmp[16]; 4057 int huge; 4058 4059 if (count + 1 > sizeof(tmp)) 4060 return -EINVAL; 4061 memcpy(tmp, buf, count); 4062 tmp[count] = '\0'; 4063 if (count && tmp[count - 1] == '\n') 4064 tmp[count - 1] = '\0'; 4065 4066 huge = shmem_parse_huge(tmp); 4067 if (huge == -EINVAL) 4068 return -EINVAL; 4069 if (!has_transparent_hugepage() && 4070 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4071 return -EINVAL; 4072 4073 shmem_huge = huge; 4074 if (shmem_huge > SHMEM_HUGE_DENY) 4075 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4076 return count; 4077 } 4078 4079 struct kobj_attribute shmem_enabled_attr = 4080 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4081 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 4082 4083 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 4084 bool shmem_huge_enabled(struct vm_area_struct *vma) 4085 { 4086 struct inode *inode = file_inode(vma->vm_file); 4087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4088 loff_t i_size; 4089 pgoff_t off; 4090 4091 if (shmem_huge == SHMEM_HUGE_FORCE) 4092 return true; 4093 if (shmem_huge == SHMEM_HUGE_DENY) 4094 return false; 4095 switch (sbinfo->huge) { 4096 case SHMEM_HUGE_NEVER: 4097 return false; 4098 case SHMEM_HUGE_ALWAYS: 4099 return true; 4100 case SHMEM_HUGE_WITHIN_SIZE: 4101 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4102 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4103 if (i_size >= HPAGE_PMD_SIZE && 4104 i_size >> PAGE_SHIFT >= off) 4105 return true; 4106 /* fall through */ 4107 case SHMEM_HUGE_ADVISE: 4108 /* TODO: implement fadvise() hints */ 4109 return (vma->vm_flags & VM_HUGEPAGE); 4110 default: 4111 VM_BUG_ON(1); 4112 return false; 4113 } 4114 } 4115 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4116 4117 #else /* !CONFIG_SHMEM */ 4118 4119 /* 4120 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4121 * 4122 * This is intended for small system where the benefits of the full 4123 * shmem code (swap-backed and resource-limited) are outweighed by 4124 * their complexity. On systems without swap this code should be 4125 * effectively equivalent, but much lighter weight. 4126 */ 4127 4128 static struct file_system_type shmem_fs_type = { 4129 .name = "tmpfs", 4130 .mount = ramfs_mount, 4131 .kill_sb = kill_litter_super, 4132 .fs_flags = FS_USERNS_MOUNT, 4133 }; 4134 4135 int __init shmem_init(void) 4136 { 4137 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4138 4139 shm_mnt = kern_mount(&shmem_fs_type); 4140 BUG_ON(IS_ERR(shm_mnt)); 4141 4142 return 0; 4143 } 4144 4145 int shmem_unuse(swp_entry_t swap, struct page *page) 4146 { 4147 return 0; 4148 } 4149 4150 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4151 { 4152 return 0; 4153 } 4154 4155 void shmem_unlock_mapping(struct address_space *mapping) 4156 { 4157 } 4158 4159 #ifdef CONFIG_MMU 4160 unsigned long shmem_get_unmapped_area(struct file *file, 4161 unsigned long addr, unsigned long len, 4162 unsigned long pgoff, unsigned long flags) 4163 { 4164 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4165 } 4166 #endif 4167 4168 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4169 { 4170 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4171 } 4172 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4173 4174 #define shmem_vm_ops generic_file_vm_ops 4175 #define shmem_file_operations ramfs_file_operations 4176 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4177 #define shmem_acct_size(flags, size) 0 4178 #define shmem_unacct_size(flags, size) do {} while (0) 4179 4180 #endif /* CONFIG_SHMEM */ 4181 4182 /* common code */ 4183 4184 static const struct dentry_operations anon_ops = { 4185 .d_dname = simple_dname 4186 }; 4187 4188 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4189 unsigned long flags, unsigned int i_flags) 4190 { 4191 struct file *res; 4192 struct inode *inode; 4193 struct path path; 4194 struct super_block *sb; 4195 struct qstr this; 4196 4197 if (IS_ERR(mnt)) 4198 return ERR_CAST(mnt); 4199 4200 if (size < 0 || size > MAX_LFS_FILESIZE) 4201 return ERR_PTR(-EINVAL); 4202 4203 if (shmem_acct_size(flags, size)) 4204 return ERR_PTR(-ENOMEM); 4205 4206 res = ERR_PTR(-ENOMEM); 4207 this.name = name; 4208 this.len = strlen(name); 4209 this.hash = 0; /* will go */ 4210 sb = mnt->mnt_sb; 4211 path.mnt = mntget(mnt); 4212 path.dentry = d_alloc_pseudo(sb, &this); 4213 if (!path.dentry) 4214 goto put_memory; 4215 d_set_d_op(path.dentry, &anon_ops); 4216 4217 res = ERR_PTR(-ENOSPC); 4218 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4219 if (!inode) 4220 goto put_memory; 4221 4222 inode->i_flags |= i_flags; 4223 d_instantiate(path.dentry, inode); 4224 inode->i_size = size; 4225 clear_nlink(inode); /* It is unlinked */ 4226 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4227 if (IS_ERR(res)) 4228 goto put_path; 4229 4230 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4231 &shmem_file_operations); 4232 if (IS_ERR(res)) 4233 goto put_path; 4234 4235 return res; 4236 4237 put_memory: 4238 shmem_unacct_size(flags, size); 4239 put_path: 4240 path_put(&path); 4241 return res; 4242 } 4243 4244 /** 4245 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4246 * kernel internal. There will be NO LSM permission checks against the 4247 * underlying inode. So users of this interface must do LSM checks at a 4248 * higher layer. The users are the big_key and shm implementations. LSM 4249 * checks are provided at the key or shm level rather than the inode. 4250 * @name: name for dentry (to be seen in /proc/<pid>/maps 4251 * @size: size to be set for the file 4252 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4253 */ 4254 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4255 { 4256 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4257 } 4258 4259 /** 4260 * shmem_file_setup - get an unlinked file living in tmpfs 4261 * @name: name for dentry (to be seen in /proc/<pid>/maps 4262 * @size: size to be set for the file 4263 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4264 */ 4265 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4266 { 4267 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4268 } 4269 EXPORT_SYMBOL_GPL(shmem_file_setup); 4270 4271 /** 4272 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4273 * @mnt: the tmpfs mount where the file will be created 4274 * @name: name for dentry (to be seen in /proc/<pid>/maps 4275 * @size: size to be set for the file 4276 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4277 */ 4278 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4279 loff_t size, unsigned long flags) 4280 { 4281 return __shmem_file_setup(mnt, name, size, flags, 0); 4282 } 4283 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4284 4285 /** 4286 * shmem_zero_setup - setup a shared anonymous mapping 4287 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4288 */ 4289 int shmem_zero_setup(struct vm_area_struct *vma) 4290 { 4291 struct file *file; 4292 loff_t size = vma->vm_end - vma->vm_start; 4293 4294 /* 4295 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4296 * between XFS directory reading and selinux: since this file is only 4297 * accessible to the user through its mapping, use S_PRIVATE flag to 4298 * bypass file security, in the same way as shmem_kernel_file_setup(). 4299 */ 4300 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4301 if (IS_ERR(file)) 4302 return PTR_ERR(file); 4303 4304 if (vma->vm_file) 4305 fput(vma->vm_file); 4306 vma->vm_file = file; 4307 vma->vm_ops = &shmem_vm_ops; 4308 4309 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4310 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4311 (vma->vm_end & HPAGE_PMD_MASK)) { 4312 khugepaged_enter(vma, vma->vm_flags); 4313 } 4314 4315 return 0; 4316 } 4317 4318 /** 4319 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4320 * @mapping: the page's address_space 4321 * @index: the page index 4322 * @gfp: the page allocator flags to use if allocating 4323 * 4324 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4325 * with any new page allocations done using the specified allocation flags. 4326 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4327 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4328 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4329 * 4330 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4331 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4332 */ 4333 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4334 pgoff_t index, gfp_t gfp) 4335 { 4336 #ifdef CONFIG_SHMEM 4337 struct inode *inode = mapping->host; 4338 struct page *page; 4339 int error; 4340 4341 BUG_ON(mapping->a_ops != &shmem_aops); 4342 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4343 gfp, NULL, NULL, NULL); 4344 if (error) 4345 page = ERR_PTR(error); 4346 else 4347 unlock_page(page); 4348 return page; 4349 #else 4350 /* 4351 * The tiny !SHMEM case uses ramfs without swap 4352 */ 4353 return read_cache_page_gfp(mapping, index, gfp); 4354 #endif 4355 } 4356 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4357