xref: /openbmc/linux/mm/shmem.c (revision 110e6f26)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
80 
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83 
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86 
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 	pgoff_t start;		/* start of range currently being fallocated */
95 	pgoff_t next;		/* the next page offset to be fallocated */
96 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
97 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
98 };
99 
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 	SGP_READ,	/* don't exceed i_size, don't allocate page */
103 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
104 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
105 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
106 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126 
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 	struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 	return shmem_getpage_gfp(inode, index, pagep, sgp,
131 			mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133 
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 	return sb->s_fs_info;
137 }
138 
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150 
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 	if (!(flags & VM_NORESERVE))
154 		vm_unacct_memory(VM_ACCT(size));
155 }
156 
157 static inline int shmem_reacct_size(unsigned long flags,
158 		loff_t oldsize, loff_t newsize)
159 {
160 	if (!(flags & VM_NORESERVE)) {
161 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 			return security_vm_enough_memory_mm(current->mm,
163 					VM_ACCT(newsize) - VM_ACCT(oldsize));
164 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 	}
167 	return 0;
168 }
169 
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
180 }
181 
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 	if (flags & VM_NORESERVE)
185 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
186 }
187 
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198 
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 	if (sbinfo->max_inodes) {
203 		spin_lock(&sbinfo->stat_lock);
204 		if (!sbinfo->free_inodes) {
205 			spin_unlock(&sbinfo->stat_lock);
206 			return -ENOSPC;
207 		}
208 		sbinfo->free_inodes--;
209 		spin_unlock(&sbinfo->stat_lock);
210 	}
211 	return 0;
212 }
213 
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 	if (sbinfo->max_inodes) {
218 		spin_lock(&sbinfo->stat_lock);
219 		sbinfo->free_inodes++;
220 		spin_unlock(&sbinfo->stat_lock);
221 	}
222 }
223 
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	long freed;
240 
241 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 	if (freed > 0) {
243 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 		if (sbinfo->max_blocks)
245 			percpu_counter_add(&sbinfo->used_blocks, -freed);
246 		info->alloced -= freed;
247 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 		shmem_unacct_blocks(info->flags, freed);
249 	}
250 }
251 
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 			pgoff_t index, void *expected, void *replacement)
257 {
258 	void **pslot;
259 	void *item;
260 
261 	VM_BUG_ON(!expected);
262 	VM_BUG_ON(!replacement);
263 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 	if (!pslot)
265 		return -ENOENT;
266 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 	if (item != expected)
268 		return -ENOENT;
269 	radix_tree_replace_slot(pslot, replacement);
270 	return 0;
271 }
272 
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 			       pgoff_t index, swp_entry_t swap)
282 {
283 	void *item;
284 
285 	rcu_read_lock();
286 	item = radix_tree_lookup(&mapping->page_tree, index);
287 	rcu_read_unlock();
288 	return item == swp_to_radix_entry(swap);
289 }
290 
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295 				   struct address_space *mapping,
296 				   pgoff_t index, void *expected)
297 {
298 	int error;
299 
300 	VM_BUG_ON_PAGE(!PageLocked(page), page);
301 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302 
303 	get_page(page);
304 	page->mapping = mapping;
305 	page->index = index;
306 
307 	spin_lock_irq(&mapping->tree_lock);
308 	if (!expected)
309 		error = radix_tree_insert(&mapping->page_tree, index, page);
310 	else
311 		error = shmem_radix_tree_replace(mapping, index, expected,
312 								 page);
313 	if (!error) {
314 		mapping->nrpages++;
315 		__inc_zone_page_state(page, NR_FILE_PAGES);
316 		__inc_zone_page_state(page, NR_SHMEM);
317 		spin_unlock_irq(&mapping->tree_lock);
318 	} else {
319 		page->mapping = NULL;
320 		spin_unlock_irq(&mapping->tree_lock);
321 		put_page(page);
322 	}
323 	return error;
324 }
325 
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 	struct address_space *mapping = page->mapping;
332 	int error;
333 
334 	spin_lock_irq(&mapping->tree_lock);
335 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 	page->mapping = NULL;
337 	mapping->nrpages--;
338 	__dec_zone_page_state(page, NR_FILE_PAGES);
339 	__dec_zone_page_state(page, NR_SHMEM);
340 	spin_unlock_irq(&mapping->tree_lock);
341 	put_page(page);
342 	BUG_ON(error);
343 }
344 
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349 			   pgoff_t index, void *radswap)
350 {
351 	void *old;
352 
353 	spin_lock_irq(&mapping->tree_lock);
354 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 	spin_unlock_irq(&mapping->tree_lock);
356 	if (old != radswap)
357 		return -ENOENT;
358 	free_swap_and_cache(radix_to_swp_entry(radswap));
359 	return 0;
360 }
361 
362 /*
363  * Determine (in bytes) how many of the shmem object's pages mapped by the
364  * given offsets are swapped out.
365  *
366  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367  * as long as the inode doesn't go away and racy results are not a problem.
368  */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 						pgoff_t start, pgoff_t end)
371 {
372 	struct radix_tree_iter iter;
373 	void **slot;
374 	struct page *page;
375 	unsigned long swapped = 0;
376 
377 	rcu_read_lock();
378 
379 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
380 		if (iter.index >= end)
381 			break;
382 
383 		page = radix_tree_deref_slot(slot);
384 
385 		if (radix_tree_deref_retry(page)) {
386 			slot = radix_tree_iter_retry(&iter);
387 			continue;
388 		}
389 
390 		if (radix_tree_exceptional_entry(page))
391 			swapped++;
392 
393 		if (need_resched()) {
394 			cond_resched_rcu();
395 			slot = radix_tree_iter_next(&iter);
396 		}
397 	}
398 
399 	rcu_read_unlock();
400 
401 	return swapped << PAGE_SHIFT;
402 }
403 
404 /*
405  * Determine (in bytes) how many of the shmem object's pages mapped by the
406  * given vma is swapped out.
407  *
408  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
409  * as long as the inode doesn't go away and racy results are not a problem.
410  */
411 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
412 {
413 	struct inode *inode = file_inode(vma->vm_file);
414 	struct shmem_inode_info *info = SHMEM_I(inode);
415 	struct address_space *mapping = inode->i_mapping;
416 	unsigned long swapped;
417 
418 	/* Be careful as we don't hold info->lock */
419 	swapped = READ_ONCE(info->swapped);
420 
421 	/*
422 	 * The easier cases are when the shmem object has nothing in swap, or
423 	 * the vma maps it whole. Then we can simply use the stats that we
424 	 * already track.
425 	 */
426 	if (!swapped)
427 		return 0;
428 
429 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
430 		return swapped << PAGE_SHIFT;
431 
432 	/* Here comes the more involved part */
433 	return shmem_partial_swap_usage(mapping,
434 			linear_page_index(vma, vma->vm_start),
435 			linear_page_index(vma, vma->vm_end));
436 }
437 
438 /*
439  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
440  */
441 void shmem_unlock_mapping(struct address_space *mapping)
442 {
443 	struct pagevec pvec;
444 	pgoff_t indices[PAGEVEC_SIZE];
445 	pgoff_t index = 0;
446 
447 	pagevec_init(&pvec, 0);
448 	/*
449 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
450 	 */
451 	while (!mapping_unevictable(mapping)) {
452 		/*
453 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
454 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
455 		 */
456 		pvec.nr = find_get_entries(mapping, index,
457 					   PAGEVEC_SIZE, pvec.pages, indices);
458 		if (!pvec.nr)
459 			break;
460 		index = indices[pvec.nr - 1] + 1;
461 		pagevec_remove_exceptionals(&pvec);
462 		check_move_unevictable_pages(pvec.pages, pvec.nr);
463 		pagevec_release(&pvec);
464 		cond_resched();
465 	}
466 }
467 
468 /*
469  * Remove range of pages and swap entries from radix tree, and free them.
470  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
471  */
472 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
473 								 bool unfalloc)
474 {
475 	struct address_space *mapping = inode->i_mapping;
476 	struct shmem_inode_info *info = SHMEM_I(inode);
477 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
478 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
479 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
480 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
481 	struct pagevec pvec;
482 	pgoff_t indices[PAGEVEC_SIZE];
483 	long nr_swaps_freed = 0;
484 	pgoff_t index;
485 	int i;
486 
487 	if (lend == -1)
488 		end = -1;	/* unsigned, so actually very big */
489 
490 	pagevec_init(&pvec, 0);
491 	index = start;
492 	while (index < end) {
493 		pvec.nr = find_get_entries(mapping, index,
494 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
495 			pvec.pages, indices);
496 		if (!pvec.nr)
497 			break;
498 		for (i = 0; i < pagevec_count(&pvec); i++) {
499 			struct page *page = pvec.pages[i];
500 
501 			index = indices[i];
502 			if (index >= end)
503 				break;
504 
505 			if (radix_tree_exceptional_entry(page)) {
506 				if (unfalloc)
507 					continue;
508 				nr_swaps_freed += !shmem_free_swap(mapping,
509 								index, page);
510 				continue;
511 			}
512 
513 			if (!trylock_page(page))
514 				continue;
515 			if (!unfalloc || !PageUptodate(page)) {
516 				if (page->mapping == mapping) {
517 					VM_BUG_ON_PAGE(PageWriteback(page), page);
518 					truncate_inode_page(mapping, page);
519 				}
520 			}
521 			unlock_page(page);
522 		}
523 		pagevec_remove_exceptionals(&pvec);
524 		pagevec_release(&pvec);
525 		cond_resched();
526 		index++;
527 	}
528 
529 	if (partial_start) {
530 		struct page *page = NULL;
531 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
532 		if (page) {
533 			unsigned int top = PAGE_SIZE;
534 			if (start > end) {
535 				top = partial_end;
536 				partial_end = 0;
537 			}
538 			zero_user_segment(page, partial_start, top);
539 			set_page_dirty(page);
540 			unlock_page(page);
541 			put_page(page);
542 		}
543 	}
544 	if (partial_end) {
545 		struct page *page = NULL;
546 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
547 		if (page) {
548 			zero_user_segment(page, 0, partial_end);
549 			set_page_dirty(page);
550 			unlock_page(page);
551 			put_page(page);
552 		}
553 	}
554 	if (start >= end)
555 		return;
556 
557 	index = start;
558 	while (index < end) {
559 		cond_resched();
560 
561 		pvec.nr = find_get_entries(mapping, index,
562 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
563 				pvec.pages, indices);
564 		if (!pvec.nr) {
565 			/* If all gone or hole-punch or unfalloc, we're done */
566 			if (index == start || end != -1)
567 				break;
568 			/* But if truncating, restart to make sure all gone */
569 			index = start;
570 			continue;
571 		}
572 		for (i = 0; i < pagevec_count(&pvec); i++) {
573 			struct page *page = pvec.pages[i];
574 
575 			index = indices[i];
576 			if (index >= end)
577 				break;
578 
579 			if (radix_tree_exceptional_entry(page)) {
580 				if (unfalloc)
581 					continue;
582 				if (shmem_free_swap(mapping, index, page)) {
583 					/* Swap was replaced by page: retry */
584 					index--;
585 					break;
586 				}
587 				nr_swaps_freed++;
588 				continue;
589 			}
590 
591 			lock_page(page);
592 			if (!unfalloc || !PageUptodate(page)) {
593 				if (page->mapping == mapping) {
594 					VM_BUG_ON_PAGE(PageWriteback(page), page);
595 					truncate_inode_page(mapping, page);
596 				} else {
597 					/* Page was replaced by swap: retry */
598 					unlock_page(page);
599 					index--;
600 					break;
601 				}
602 			}
603 			unlock_page(page);
604 		}
605 		pagevec_remove_exceptionals(&pvec);
606 		pagevec_release(&pvec);
607 		index++;
608 	}
609 
610 	spin_lock(&info->lock);
611 	info->swapped -= nr_swaps_freed;
612 	shmem_recalc_inode(inode);
613 	spin_unlock(&info->lock);
614 }
615 
616 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
617 {
618 	shmem_undo_range(inode, lstart, lend, false);
619 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
620 }
621 EXPORT_SYMBOL_GPL(shmem_truncate_range);
622 
623 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
624 			 struct kstat *stat)
625 {
626 	struct inode *inode = dentry->d_inode;
627 	struct shmem_inode_info *info = SHMEM_I(inode);
628 
629 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
630 		spin_lock(&info->lock);
631 		shmem_recalc_inode(inode);
632 		spin_unlock(&info->lock);
633 	}
634 	generic_fillattr(inode, stat);
635 	return 0;
636 }
637 
638 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
639 {
640 	struct inode *inode = d_inode(dentry);
641 	struct shmem_inode_info *info = SHMEM_I(inode);
642 	int error;
643 
644 	error = inode_change_ok(inode, attr);
645 	if (error)
646 		return error;
647 
648 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
649 		loff_t oldsize = inode->i_size;
650 		loff_t newsize = attr->ia_size;
651 
652 		/* protected by i_mutex */
653 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
654 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
655 			return -EPERM;
656 
657 		if (newsize != oldsize) {
658 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
659 					oldsize, newsize);
660 			if (error)
661 				return error;
662 			i_size_write(inode, newsize);
663 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
664 		}
665 		if (newsize <= oldsize) {
666 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
667 			if (oldsize > holebegin)
668 				unmap_mapping_range(inode->i_mapping,
669 							holebegin, 0, 1);
670 			if (info->alloced)
671 				shmem_truncate_range(inode,
672 							newsize, (loff_t)-1);
673 			/* unmap again to remove racily COWed private pages */
674 			if (oldsize > holebegin)
675 				unmap_mapping_range(inode->i_mapping,
676 							holebegin, 0, 1);
677 		}
678 	}
679 
680 	setattr_copy(inode, attr);
681 	if (attr->ia_valid & ATTR_MODE)
682 		error = posix_acl_chmod(inode, inode->i_mode);
683 	return error;
684 }
685 
686 static void shmem_evict_inode(struct inode *inode)
687 {
688 	struct shmem_inode_info *info = SHMEM_I(inode);
689 
690 	if (inode->i_mapping->a_ops == &shmem_aops) {
691 		shmem_unacct_size(info->flags, inode->i_size);
692 		inode->i_size = 0;
693 		shmem_truncate_range(inode, 0, (loff_t)-1);
694 		if (!list_empty(&info->swaplist)) {
695 			mutex_lock(&shmem_swaplist_mutex);
696 			list_del_init(&info->swaplist);
697 			mutex_unlock(&shmem_swaplist_mutex);
698 		}
699 	}
700 
701 	simple_xattrs_free(&info->xattrs);
702 	WARN_ON(inode->i_blocks);
703 	shmem_free_inode(inode->i_sb);
704 	clear_inode(inode);
705 }
706 
707 /*
708  * If swap found in inode, free it and move page from swapcache to filecache.
709  */
710 static int shmem_unuse_inode(struct shmem_inode_info *info,
711 			     swp_entry_t swap, struct page **pagep)
712 {
713 	struct address_space *mapping = info->vfs_inode.i_mapping;
714 	void *radswap;
715 	pgoff_t index;
716 	gfp_t gfp;
717 	int error = 0;
718 
719 	radswap = swp_to_radix_entry(swap);
720 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
721 	if (index == -1)
722 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
723 
724 	/*
725 	 * Move _head_ to start search for next from here.
726 	 * But be careful: shmem_evict_inode checks list_empty without taking
727 	 * mutex, and there's an instant in list_move_tail when info->swaplist
728 	 * would appear empty, if it were the only one on shmem_swaplist.
729 	 */
730 	if (shmem_swaplist.next != &info->swaplist)
731 		list_move_tail(&shmem_swaplist, &info->swaplist);
732 
733 	gfp = mapping_gfp_mask(mapping);
734 	if (shmem_should_replace_page(*pagep, gfp)) {
735 		mutex_unlock(&shmem_swaplist_mutex);
736 		error = shmem_replace_page(pagep, gfp, info, index);
737 		mutex_lock(&shmem_swaplist_mutex);
738 		/*
739 		 * We needed to drop mutex to make that restrictive page
740 		 * allocation, but the inode might have been freed while we
741 		 * dropped it: although a racing shmem_evict_inode() cannot
742 		 * complete without emptying the radix_tree, our page lock
743 		 * on this swapcache page is not enough to prevent that -
744 		 * free_swap_and_cache() of our swap entry will only
745 		 * trylock_page(), removing swap from radix_tree whatever.
746 		 *
747 		 * We must not proceed to shmem_add_to_page_cache() if the
748 		 * inode has been freed, but of course we cannot rely on
749 		 * inode or mapping or info to check that.  However, we can
750 		 * safely check if our swap entry is still in use (and here
751 		 * it can't have got reused for another page): if it's still
752 		 * in use, then the inode cannot have been freed yet, and we
753 		 * can safely proceed (if it's no longer in use, that tells
754 		 * nothing about the inode, but we don't need to unuse swap).
755 		 */
756 		if (!page_swapcount(*pagep))
757 			error = -ENOENT;
758 	}
759 
760 	/*
761 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
762 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
763 	 * beneath us (pagelock doesn't help until the page is in pagecache).
764 	 */
765 	if (!error)
766 		error = shmem_add_to_page_cache(*pagep, mapping, index,
767 						radswap);
768 	if (error != -ENOMEM) {
769 		/*
770 		 * Truncation and eviction use free_swap_and_cache(), which
771 		 * only does trylock page: if we raced, best clean up here.
772 		 */
773 		delete_from_swap_cache(*pagep);
774 		set_page_dirty(*pagep);
775 		if (!error) {
776 			spin_lock(&info->lock);
777 			info->swapped--;
778 			spin_unlock(&info->lock);
779 			swap_free(swap);
780 		}
781 	}
782 	return error;
783 }
784 
785 /*
786  * Search through swapped inodes to find and replace swap by page.
787  */
788 int shmem_unuse(swp_entry_t swap, struct page *page)
789 {
790 	struct list_head *this, *next;
791 	struct shmem_inode_info *info;
792 	struct mem_cgroup *memcg;
793 	int error = 0;
794 
795 	/*
796 	 * There's a faint possibility that swap page was replaced before
797 	 * caller locked it: caller will come back later with the right page.
798 	 */
799 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
800 		goto out;
801 
802 	/*
803 	 * Charge page using GFP_KERNEL while we can wait, before taking
804 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
805 	 * Charged back to the user (not to caller) when swap account is used.
806 	 */
807 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
808 			false);
809 	if (error)
810 		goto out;
811 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
812 	error = -EAGAIN;
813 
814 	mutex_lock(&shmem_swaplist_mutex);
815 	list_for_each_safe(this, next, &shmem_swaplist) {
816 		info = list_entry(this, struct shmem_inode_info, swaplist);
817 		if (info->swapped)
818 			error = shmem_unuse_inode(info, swap, &page);
819 		else
820 			list_del_init(&info->swaplist);
821 		cond_resched();
822 		if (error != -EAGAIN)
823 			break;
824 		/* found nothing in this: move on to search the next */
825 	}
826 	mutex_unlock(&shmem_swaplist_mutex);
827 
828 	if (error) {
829 		if (error != -ENOMEM)
830 			error = 0;
831 		mem_cgroup_cancel_charge(page, memcg, false);
832 	} else
833 		mem_cgroup_commit_charge(page, memcg, true, false);
834 out:
835 	unlock_page(page);
836 	put_page(page);
837 	return error;
838 }
839 
840 /*
841  * Move the page from the page cache to the swap cache.
842  */
843 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
844 {
845 	struct shmem_inode_info *info;
846 	struct address_space *mapping;
847 	struct inode *inode;
848 	swp_entry_t swap;
849 	pgoff_t index;
850 
851 	BUG_ON(!PageLocked(page));
852 	mapping = page->mapping;
853 	index = page->index;
854 	inode = mapping->host;
855 	info = SHMEM_I(inode);
856 	if (info->flags & VM_LOCKED)
857 		goto redirty;
858 	if (!total_swap_pages)
859 		goto redirty;
860 
861 	/*
862 	 * Our capabilities prevent regular writeback or sync from ever calling
863 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
864 	 * its underlying filesystem, in which case tmpfs should write out to
865 	 * swap only in response to memory pressure, and not for the writeback
866 	 * threads or sync.
867 	 */
868 	if (!wbc->for_reclaim) {
869 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
870 		goto redirty;
871 	}
872 
873 	/*
874 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
875 	 * value into swapfile.c, the only way we can correctly account for a
876 	 * fallocated page arriving here is now to initialize it and write it.
877 	 *
878 	 * That's okay for a page already fallocated earlier, but if we have
879 	 * not yet completed the fallocation, then (a) we want to keep track
880 	 * of this page in case we have to undo it, and (b) it may not be a
881 	 * good idea to continue anyway, once we're pushing into swap.  So
882 	 * reactivate the page, and let shmem_fallocate() quit when too many.
883 	 */
884 	if (!PageUptodate(page)) {
885 		if (inode->i_private) {
886 			struct shmem_falloc *shmem_falloc;
887 			spin_lock(&inode->i_lock);
888 			shmem_falloc = inode->i_private;
889 			if (shmem_falloc &&
890 			    !shmem_falloc->waitq &&
891 			    index >= shmem_falloc->start &&
892 			    index < shmem_falloc->next)
893 				shmem_falloc->nr_unswapped++;
894 			else
895 				shmem_falloc = NULL;
896 			spin_unlock(&inode->i_lock);
897 			if (shmem_falloc)
898 				goto redirty;
899 		}
900 		clear_highpage(page);
901 		flush_dcache_page(page);
902 		SetPageUptodate(page);
903 	}
904 
905 	swap = get_swap_page();
906 	if (!swap.val)
907 		goto redirty;
908 
909 	if (mem_cgroup_try_charge_swap(page, swap))
910 		goto free_swap;
911 
912 	/*
913 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
914 	 * if it's not already there.  Do it now before the page is
915 	 * moved to swap cache, when its pagelock no longer protects
916 	 * the inode from eviction.  But don't unlock the mutex until
917 	 * we've incremented swapped, because shmem_unuse_inode() will
918 	 * prune a !swapped inode from the swaplist under this mutex.
919 	 */
920 	mutex_lock(&shmem_swaplist_mutex);
921 	if (list_empty(&info->swaplist))
922 		list_add_tail(&info->swaplist, &shmem_swaplist);
923 
924 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
925 		spin_lock(&info->lock);
926 		shmem_recalc_inode(inode);
927 		info->swapped++;
928 		spin_unlock(&info->lock);
929 
930 		swap_shmem_alloc(swap);
931 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
932 
933 		mutex_unlock(&shmem_swaplist_mutex);
934 		BUG_ON(page_mapped(page));
935 		swap_writepage(page, wbc);
936 		return 0;
937 	}
938 
939 	mutex_unlock(&shmem_swaplist_mutex);
940 free_swap:
941 	swapcache_free(swap);
942 redirty:
943 	set_page_dirty(page);
944 	if (wbc->for_reclaim)
945 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
946 	unlock_page(page);
947 	return 0;
948 }
949 
950 #ifdef CONFIG_NUMA
951 #ifdef CONFIG_TMPFS
952 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
953 {
954 	char buffer[64];
955 
956 	if (!mpol || mpol->mode == MPOL_DEFAULT)
957 		return;		/* show nothing */
958 
959 	mpol_to_str(buffer, sizeof(buffer), mpol);
960 
961 	seq_printf(seq, ",mpol=%s", buffer);
962 }
963 
964 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
965 {
966 	struct mempolicy *mpol = NULL;
967 	if (sbinfo->mpol) {
968 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
969 		mpol = sbinfo->mpol;
970 		mpol_get(mpol);
971 		spin_unlock(&sbinfo->stat_lock);
972 	}
973 	return mpol;
974 }
975 #endif /* CONFIG_TMPFS */
976 
977 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
978 			struct shmem_inode_info *info, pgoff_t index)
979 {
980 	struct vm_area_struct pvma;
981 	struct page *page;
982 
983 	/* Create a pseudo vma that just contains the policy */
984 	pvma.vm_start = 0;
985 	/* Bias interleave by inode number to distribute better across nodes */
986 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
987 	pvma.vm_ops = NULL;
988 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
989 
990 	page = swapin_readahead(swap, gfp, &pvma, 0);
991 
992 	/* Drop reference taken by mpol_shared_policy_lookup() */
993 	mpol_cond_put(pvma.vm_policy);
994 
995 	return page;
996 }
997 
998 static struct page *shmem_alloc_page(gfp_t gfp,
999 			struct shmem_inode_info *info, pgoff_t index)
1000 {
1001 	struct vm_area_struct pvma;
1002 	struct page *page;
1003 
1004 	/* Create a pseudo vma that just contains the policy */
1005 	pvma.vm_start = 0;
1006 	/* Bias interleave by inode number to distribute better across nodes */
1007 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1008 	pvma.vm_ops = NULL;
1009 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1010 
1011 	page = alloc_page_vma(gfp, &pvma, 0);
1012 
1013 	/* Drop reference taken by mpol_shared_policy_lookup() */
1014 	mpol_cond_put(pvma.vm_policy);
1015 
1016 	return page;
1017 }
1018 #else /* !CONFIG_NUMA */
1019 #ifdef CONFIG_TMPFS
1020 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1021 {
1022 }
1023 #endif /* CONFIG_TMPFS */
1024 
1025 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1026 			struct shmem_inode_info *info, pgoff_t index)
1027 {
1028 	return swapin_readahead(swap, gfp, NULL, 0);
1029 }
1030 
1031 static inline struct page *shmem_alloc_page(gfp_t gfp,
1032 			struct shmem_inode_info *info, pgoff_t index)
1033 {
1034 	return alloc_page(gfp);
1035 }
1036 #endif /* CONFIG_NUMA */
1037 
1038 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1039 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1040 {
1041 	return NULL;
1042 }
1043 #endif
1044 
1045 /*
1046  * When a page is moved from swapcache to shmem filecache (either by the
1047  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1048  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1049  * ignorance of the mapping it belongs to.  If that mapping has special
1050  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1051  * we may need to copy to a suitable page before moving to filecache.
1052  *
1053  * In a future release, this may well be extended to respect cpuset and
1054  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1055  * but for now it is a simple matter of zone.
1056  */
1057 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1058 {
1059 	return page_zonenum(page) > gfp_zone(gfp);
1060 }
1061 
1062 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1063 				struct shmem_inode_info *info, pgoff_t index)
1064 {
1065 	struct page *oldpage, *newpage;
1066 	struct address_space *swap_mapping;
1067 	pgoff_t swap_index;
1068 	int error;
1069 
1070 	oldpage = *pagep;
1071 	swap_index = page_private(oldpage);
1072 	swap_mapping = page_mapping(oldpage);
1073 
1074 	/*
1075 	 * We have arrived here because our zones are constrained, so don't
1076 	 * limit chance of success by further cpuset and node constraints.
1077 	 */
1078 	gfp &= ~GFP_CONSTRAINT_MASK;
1079 	newpage = shmem_alloc_page(gfp, info, index);
1080 	if (!newpage)
1081 		return -ENOMEM;
1082 
1083 	get_page(newpage);
1084 	copy_highpage(newpage, oldpage);
1085 	flush_dcache_page(newpage);
1086 
1087 	__SetPageLocked(newpage);
1088 	SetPageUptodate(newpage);
1089 	SetPageSwapBacked(newpage);
1090 	set_page_private(newpage, swap_index);
1091 	SetPageSwapCache(newpage);
1092 
1093 	/*
1094 	 * Our caller will very soon move newpage out of swapcache, but it's
1095 	 * a nice clean interface for us to replace oldpage by newpage there.
1096 	 */
1097 	spin_lock_irq(&swap_mapping->tree_lock);
1098 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1099 								   newpage);
1100 	if (!error) {
1101 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1102 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1103 	}
1104 	spin_unlock_irq(&swap_mapping->tree_lock);
1105 
1106 	if (unlikely(error)) {
1107 		/*
1108 		 * Is this possible?  I think not, now that our callers check
1109 		 * both PageSwapCache and page_private after getting page lock;
1110 		 * but be defensive.  Reverse old to newpage for clear and free.
1111 		 */
1112 		oldpage = newpage;
1113 	} else {
1114 		mem_cgroup_migrate(oldpage, newpage);
1115 		lru_cache_add_anon(newpage);
1116 		*pagep = newpage;
1117 	}
1118 
1119 	ClearPageSwapCache(oldpage);
1120 	set_page_private(oldpage, 0);
1121 
1122 	unlock_page(oldpage);
1123 	put_page(oldpage);
1124 	put_page(oldpage);
1125 	return error;
1126 }
1127 
1128 /*
1129  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1130  *
1131  * If we allocate a new one we do not mark it dirty. That's up to the
1132  * vm. If we swap it in we mark it dirty since we also free the swap
1133  * entry since a page cannot live in both the swap and page cache
1134  */
1135 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1136 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1137 {
1138 	struct address_space *mapping = inode->i_mapping;
1139 	struct shmem_inode_info *info;
1140 	struct shmem_sb_info *sbinfo;
1141 	struct mem_cgroup *memcg;
1142 	struct page *page;
1143 	swp_entry_t swap;
1144 	int error;
1145 	int once = 0;
1146 	int alloced = 0;
1147 
1148 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1149 		return -EFBIG;
1150 repeat:
1151 	swap.val = 0;
1152 	page = find_lock_entry(mapping, index);
1153 	if (radix_tree_exceptional_entry(page)) {
1154 		swap = radix_to_swp_entry(page);
1155 		page = NULL;
1156 	}
1157 
1158 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1159 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1160 		error = -EINVAL;
1161 		goto unlock;
1162 	}
1163 
1164 	if (page && sgp == SGP_WRITE)
1165 		mark_page_accessed(page);
1166 
1167 	/* fallocated page? */
1168 	if (page && !PageUptodate(page)) {
1169 		if (sgp != SGP_READ)
1170 			goto clear;
1171 		unlock_page(page);
1172 		put_page(page);
1173 		page = NULL;
1174 	}
1175 	if (page || (sgp == SGP_READ && !swap.val)) {
1176 		*pagep = page;
1177 		return 0;
1178 	}
1179 
1180 	/*
1181 	 * Fast cache lookup did not find it:
1182 	 * bring it back from swap or allocate.
1183 	 */
1184 	info = SHMEM_I(inode);
1185 	sbinfo = SHMEM_SB(inode->i_sb);
1186 
1187 	if (swap.val) {
1188 		/* Look it up and read it in.. */
1189 		page = lookup_swap_cache(swap);
1190 		if (!page) {
1191 			/* here we actually do the io */
1192 			if (fault_type)
1193 				*fault_type |= VM_FAULT_MAJOR;
1194 			page = shmem_swapin(swap, gfp, info, index);
1195 			if (!page) {
1196 				error = -ENOMEM;
1197 				goto failed;
1198 			}
1199 		}
1200 
1201 		/* We have to do this with page locked to prevent races */
1202 		lock_page(page);
1203 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1204 		    !shmem_confirm_swap(mapping, index, swap)) {
1205 			error = -EEXIST;	/* try again */
1206 			goto unlock;
1207 		}
1208 		if (!PageUptodate(page)) {
1209 			error = -EIO;
1210 			goto failed;
1211 		}
1212 		wait_on_page_writeback(page);
1213 
1214 		if (shmem_should_replace_page(page, gfp)) {
1215 			error = shmem_replace_page(&page, gfp, info, index);
1216 			if (error)
1217 				goto failed;
1218 		}
1219 
1220 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1221 				false);
1222 		if (!error) {
1223 			error = shmem_add_to_page_cache(page, mapping, index,
1224 						swp_to_radix_entry(swap));
1225 			/*
1226 			 * We already confirmed swap under page lock, and make
1227 			 * no memory allocation here, so usually no possibility
1228 			 * of error; but free_swap_and_cache() only trylocks a
1229 			 * page, so it is just possible that the entry has been
1230 			 * truncated or holepunched since swap was confirmed.
1231 			 * shmem_undo_range() will have done some of the
1232 			 * unaccounting, now delete_from_swap_cache() will do
1233 			 * the rest.
1234 			 * Reset swap.val? No, leave it so "failed" goes back to
1235 			 * "repeat": reading a hole and writing should succeed.
1236 			 */
1237 			if (error) {
1238 				mem_cgroup_cancel_charge(page, memcg, false);
1239 				delete_from_swap_cache(page);
1240 			}
1241 		}
1242 		if (error)
1243 			goto failed;
1244 
1245 		mem_cgroup_commit_charge(page, memcg, true, false);
1246 
1247 		spin_lock(&info->lock);
1248 		info->swapped--;
1249 		shmem_recalc_inode(inode);
1250 		spin_unlock(&info->lock);
1251 
1252 		if (sgp == SGP_WRITE)
1253 			mark_page_accessed(page);
1254 
1255 		delete_from_swap_cache(page);
1256 		set_page_dirty(page);
1257 		swap_free(swap);
1258 
1259 	} else {
1260 		if (shmem_acct_block(info->flags)) {
1261 			error = -ENOSPC;
1262 			goto failed;
1263 		}
1264 		if (sbinfo->max_blocks) {
1265 			if (percpu_counter_compare(&sbinfo->used_blocks,
1266 						sbinfo->max_blocks) >= 0) {
1267 				error = -ENOSPC;
1268 				goto unacct;
1269 			}
1270 			percpu_counter_inc(&sbinfo->used_blocks);
1271 		}
1272 
1273 		page = shmem_alloc_page(gfp, info, index);
1274 		if (!page) {
1275 			error = -ENOMEM;
1276 			goto decused;
1277 		}
1278 
1279 		__SetPageSwapBacked(page);
1280 		__SetPageLocked(page);
1281 		if (sgp == SGP_WRITE)
1282 			__SetPageReferenced(page);
1283 
1284 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1285 				false);
1286 		if (error)
1287 			goto decused;
1288 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1289 		if (!error) {
1290 			error = shmem_add_to_page_cache(page, mapping, index,
1291 							NULL);
1292 			radix_tree_preload_end();
1293 		}
1294 		if (error) {
1295 			mem_cgroup_cancel_charge(page, memcg, false);
1296 			goto decused;
1297 		}
1298 		mem_cgroup_commit_charge(page, memcg, false, false);
1299 		lru_cache_add_anon(page);
1300 
1301 		spin_lock(&info->lock);
1302 		info->alloced++;
1303 		inode->i_blocks += BLOCKS_PER_PAGE;
1304 		shmem_recalc_inode(inode);
1305 		spin_unlock(&info->lock);
1306 		alloced = true;
1307 
1308 		/*
1309 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1310 		 */
1311 		if (sgp == SGP_FALLOC)
1312 			sgp = SGP_WRITE;
1313 clear:
1314 		/*
1315 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1316 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1317 		 * it now, lest undo on failure cancel our earlier guarantee.
1318 		 */
1319 		if (sgp != SGP_WRITE) {
1320 			clear_highpage(page);
1321 			flush_dcache_page(page);
1322 			SetPageUptodate(page);
1323 		}
1324 		if (sgp == SGP_DIRTY)
1325 			set_page_dirty(page);
1326 	}
1327 
1328 	/* Perhaps the file has been truncated since we checked */
1329 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1330 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1331 		if (alloced) {
1332 			ClearPageDirty(page);
1333 			delete_from_page_cache(page);
1334 			spin_lock(&info->lock);
1335 			shmem_recalc_inode(inode);
1336 			spin_unlock(&info->lock);
1337 		}
1338 		error = -EINVAL;
1339 		goto unlock;
1340 	}
1341 	*pagep = page;
1342 	return 0;
1343 
1344 	/*
1345 	 * Error recovery.
1346 	 */
1347 decused:
1348 	if (sbinfo->max_blocks)
1349 		percpu_counter_add(&sbinfo->used_blocks, -1);
1350 unacct:
1351 	shmem_unacct_blocks(info->flags, 1);
1352 failed:
1353 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1354 		error = -EEXIST;
1355 unlock:
1356 	if (page) {
1357 		unlock_page(page);
1358 		put_page(page);
1359 	}
1360 	if (error == -ENOSPC && !once++) {
1361 		info = SHMEM_I(inode);
1362 		spin_lock(&info->lock);
1363 		shmem_recalc_inode(inode);
1364 		spin_unlock(&info->lock);
1365 		goto repeat;
1366 	}
1367 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1368 		goto repeat;
1369 	return error;
1370 }
1371 
1372 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1373 {
1374 	struct inode *inode = file_inode(vma->vm_file);
1375 	int error;
1376 	int ret = VM_FAULT_LOCKED;
1377 
1378 	/*
1379 	 * Trinity finds that probing a hole which tmpfs is punching can
1380 	 * prevent the hole-punch from ever completing: which in turn
1381 	 * locks writers out with its hold on i_mutex.  So refrain from
1382 	 * faulting pages into the hole while it's being punched.  Although
1383 	 * shmem_undo_range() does remove the additions, it may be unable to
1384 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1385 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1386 	 *
1387 	 * It does not matter if we sometimes reach this check just before the
1388 	 * hole-punch begins, so that one fault then races with the punch:
1389 	 * we just need to make racing faults a rare case.
1390 	 *
1391 	 * The implementation below would be much simpler if we just used a
1392 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1393 	 * and bloating every shmem inode for this unlikely case would be sad.
1394 	 */
1395 	if (unlikely(inode->i_private)) {
1396 		struct shmem_falloc *shmem_falloc;
1397 
1398 		spin_lock(&inode->i_lock);
1399 		shmem_falloc = inode->i_private;
1400 		if (shmem_falloc &&
1401 		    shmem_falloc->waitq &&
1402 		    vmf->pgoff >= shmem_falloc->start &&
1403 		    vmf->pgoff < shmem_falloc->next) {
1404 			wait_queue_head_t *shmem_falloc_waitq;
1405 			DEFINE_WAIT(shmem_fault_wait);
1406 
1407 			ret = VM_FAULT_NOPAGE;
1408 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1409 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1410 				/* It's polite to up mmap_sem if we can */
1411 				up_read(&vma->vm_mm->mmap_sem);
1412 				ret = VM_FAULT_RETRY;
1413 			}
1414 
1415 			shmem_falloc_waitq = shmem_falloc->waitq;
1416 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1417 					TASK_UNINTERRUPTIBLE);
1418 			spin_unlock(&inode->i_lock);
1419 			schedule();
1420 
1421 			/*
1422 			 * shmem_falloc_waitq points into the shmem_fallocate()
1423 			 * stack of the hole-punching task: shmem_falloc_waitq
1424 			 * is usually invalid by the time we reach here, but
1425 			 * finish_wait() does not dereference it in that case;
1426 			 * though i_lock needed lest racing with wake_up_all().
1427 			 */
1428 			spin_lock(&inode->i_lock);
1429 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1430 			spin_unlock(&inode->i_lock);
1431 			return ret;
1432 		}
1433 		spin_unlock(&inode->i_lock);
1434 	}
1435 
1436 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1437 	if (error)
1438 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1439 
1440 	if (ret & VM_FAULT_MAJOR) {
1441 		count_vm_event(PGMAJFAULT);
1442 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1443 	}
1444 	return ret;
1445 }
1446 
1447 #ifdef CONFIG_NUMA
1448 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1449 {
1450 	struct inode *inode = file_inode(vma->vm_file);
1451 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1452 }
1453 
1454 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1455 					  unsigned long addr)
1456 {
1457 	struct inode *inode = file_inode(vma->vm_file);
1458 	pgoff_t index;
1459 
1460 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1461 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1462 }
1463 #endif
1464 
1465 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1466 {
1467 	struct inode *inode = file_inode(file);
1468 	struct shmem_inode_info *info = SHMEM_I(inode);
1469 	int retval = -ENOMEM;
1470 
1471 	spin_lock(&info->lock);
1472 	if (lock && !(info->flags & VM_LOCKED)) {
1473 		if (!user_shm_lock(inode->i_size, user))
1474 			goto out_nomem;
1475 		info->flags |= VM_LOCKED;
1476 		mapping_set_unevictable(file->f_mapping);
1477 	}
1478 	if (!lock && (info->flags & VM_LOCKED) && user) {
1479 		user_shm_unlock(inode->i_size, user);
1480 		info->flags &= ~VM_LOCKED;
1481 		mapping_clear_unevictable(file->f_mapping);
1482 	}
1483 	retval = 0;
1484 
1485 out_nomem:
1486 	spin_unlock(&info->lock);
1487 	return retval;
1488 }
1489 
1490 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1491 {
1492 	file_accessed(file);
1493 	vma->vm_ops = &shmem_vm_ops;
1494 	return 0;
1495 }
1496 
1497 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1498 				     umode_t mode, dev_t dev, unsigned long flags)
1499 {
1500 	struct inode *inode;
1501 	struct shmem_inode_info *info;
1502 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1503 
1504 	if (shmem_reserve_inode(sb))
1505 		return NULL;
1506 
1507 	inode = new_inode(sb);
1508 	if (inode) {
1509 		inode->i_ino = get_next_ino();
1510 		inode_init_owner(inode, dir, mode);
1511 		inode->i_blocks = 0;
1512 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1513 		inode->i_generation = get_seconds();
1514 		info = SHMEM_I(inode);
1515 		memset(info, 0, (char *)inode - (char *)info);
1516 		spin_lock_init(&info->lock);
1517 		info->seals = F_SEAL_SEAL;
1518 		info->flags = flags & VM_NORESERVE;
1519 		INIT_LIST_HEAD(&info->swaplist);
1520 		simple_xattrs_init(&info->xattrs);
1521 		cache_no_acl(inode);
1522 
1523 		switch (mode & S_IFMT) {
1524 		default:
1525 			inode->i_op = &shmem_special_inode_operations;
1526 			init_special_inode(inode, mode, dev);
1527 			break;
1528 		case S_IFREG:
1529 			inode->i_mapping->a_ops = &shmem_aops;
1530 			inode->i_op = &shmem_inode_operations;
1531 			inode->i_fop = &shmem_file_operations;
1532 			mpol_shared_policy_init(&info->policy,
1533 						 shmem_get_sbmpol(sbinfo));
1534 			break;
1535 		case S_IFDIR:
1536 			inc_nlink(inode);
1537 			/* Some things misbehave if size == 0 on a directory */
1538 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1539 			inode->i_op = &shmem_dir_inode_operations;
1540 			inode->i_fop = &simple_dir_operations;
1541 			break;
1542 		case S_IFLNK:
1543 			/*
1544 			 * Must not load anything in the rbtree,
1545 			 * mpol_free_shared_policy will not be called.
1546 			 */
1547 			mpol_shared_policy_init(&info->policy, NULL);
1548 			break;
1549 		}
1550 	} else
1551 		shmem_free_inode(sb);
1552 	return inode;
1553 }
1554 
1555 bool shmem_mapping(struct address_space *mapping)
1556 {
1557 	if (!mapping->host)
1558 		return false;
1559 
1560 	return mapping->host->i_sb->s_op == &shmem_ops;
1561 }
1562 
1563 #ifdef CONFIG_TMPFS
1564 static const struct inode_operations shmem_symlink_inode_operations;
1565 static const struct inode_operations shmem_short_symlink_operations;
1566 
1567 #ifdef CONFIG_TMPFS_XATTR
1568 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1569 #else
1570 #define shmem_initxattrs NULL
1571 #endif
1572 
1573 static int
1574 shmem_write_begin(struct file *file, struct address_space *mapping,
1575 			loff_t pos, unsigned len, unsigned flags,
1576 			struct page **pagep, void **fsdata)
1577 {
1578 	struct inode *inode = mapping->host;
1579 	struct shmem_inode_info *info = SHMEM_I(inode);
1580 	pgoff_t index = pos >> PAGE_SHIFT;
1581 
1582 	/* i_mutex is held by caller */
1583 	if (unlikely(info->seals)) {
1584 		if (info->seals & F_SEAL_WRITE)
1585 			return -EPERM;
1586 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1587 			return -EPERM;
1588 	}
1589 
1590 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1591 }
1592 
1593 static int
1594 shmem_write_end(struct file *file, struct address_space *mapping,
1595 			loff_t pos, unsigned len, unsigned copied,
1596 			struct page *page, void *fsdata)
1597 {
1598 	struct inode *inode = mapping->host;
1599 
1600 	if (pos + copied > inode->i_size)
1601 		i_size_write(inode, pos + copied);
1602 
1603 	if (!PageUptodate(page)) {
1604 		if (copied < PAGE_SIZE) {
1605 			unsigned from = pos & (PAGE_SIZE - 1);
1606 			zero_user_segments(page, 0, from,
1607 					from + copied, PAGE_SIZE);
1608 		}
1609 		SetPageUptodate(page);
1610 	}
1611 	set_page_dirty(page);
1612 	unlock_page(page);
1613 	put_page(page);
1614 
1615 	return copied;
1616 }
1617 
1618 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1619 {
1620 	struct file *file = iocb->ki_filp;
1621 	struct inode *inode = file_inode(file);
1622 	struct address_space *mapping = inode->i_mapping;
1623 	pgoff_t index;
1624 	unsigned long offset;
1625 	enum sgp_type sgp = SGP_READ;
1626 	int error = 0;
1627 	ssize_t retval = 0;
1628 	loff_t *ppos = &iocb->ki_pos;
1629 
1630 	/*
1631 	 * Might this read be for a stacking filesystem?  Then when reading
1632 	 * holes of a sparse file, we actually need to allocate those pages,
1633 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1634 	 */
1635 	if (!iter_is_iovec(to))
1636 		sgp = SGP_DIRTY;
1637 
1638 	index = *ppos >> PAGE_SHIFT;
1639 	offset = *ppos & ~PAGE_MASK;
1640 
1641 	for (;;) {
1642 		struct page *page = NULL;
1643 		pgoff_t end_index;
1644 		unsigned long nr, ret;
1645 		loff_t i_size = i_size_read(inode);
1646 
1647 		end_index = i_size >> PAGE_SHIFT;
1648 		if (index > end_index)
1649 			break;
1650 		if (index == end_index) {
1651 			nr = i_size & ~PAGE_MASK;
1652 			if (nr <= offset)
1653 				break;
1654 		}
1655 
1656 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1657 		if (error) {
1658 			if (error == -EINVAL)
1659 				error = 0;
1660 			break;
1661 		}
1662 		if (page)
1663 			unlock_page(page);
1664 
1665 		/*
1666 		 * We must evaluate after, since reads (unlike writes)
1667 		 * are called without i_mutex protection against truncate
1668 		 */
1669 		nr = PAGE_SIZE;
1670 		i_size = i_size_read(inode);
1671 		end_index = i_size >> PAGE_SHIFT;
1672 		if (index == end_index) {
1673 			nr = i_size & ~PAGE_MASK;
1674 			if (nr <= offset) {
1675 				if (page)
1676 					put_page(page);
1677 				break;
1678 			}
1679 		}
1680 		nr -= offset;
1681 
1682 		if (page) {
1683 			/*
1684 			 * If users can be writing to this page using arbitrary
1685 			 * virtual addresses, take care about potential aliasing
1686 			 * before reading the page on the kernel side.
1687 			 */
1688 			if (mapping_writably_mapped(mapping))
1689 				flush_dcache_page(page);
1690 			/*
1691 			 * Mark the page accessed if we read the beginning.
1692 			 */
1693 			if (!offset)
1694 				mark_page_accessed(page);
1695 		} else {
1696 			page = ZERO_PAGE(0);
1697 			get_page(page);
1698 		}
1699 
1700 		/*
1701 		 * Ok, we have the page, and it's up-to-date, so
1702 		 * now we can copy it to user space...
1703 		 */
1704 		ret = copy_page_to_iter(page, offset, nr, to);
1705 		retval += ret;
1706 		offset += ret;
1707 		index += offset >> PAGE_SHIFT;
1708 		offset &= ~PAGE_MASK;
1709 
1710 		put_page(page);
1711 		if (!iov_iter_count(to))
1712 			break;
1713 		if (ret < nr) {
1714 			error = -EFAULT;
1715 			break;
1716 		}
1717 		cond_resched();
1718 	}
1719 
1720 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1721 	file_accessed(file);
1722 	return retval ? retval : error;
1723 }
1724 
1725 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1726 				struct pipe_inode_info *pipe, size_t len,
1727 				unsigned int flags)
1728 {
1729 	struct address_space *mapping = in->f_mapping;
1730 	struct inode *inode = mapping->host;
1731 	unsigned int loff, nr_pages, req_pages;
1732 	struct page *pages[PIPE_DEF_BUFFERS];
1733 	struct partial_page partial[PIPE_DEF_BUFFERS];
1734 	struct page *page;
1735 	pgoff_t index, end_index;
1736 	loff_t isize, left;
1737 	int error, page_nr;
1738 	struct splice_pipe_desc spd = {
1739 		.pages = pages,
1740 		.partial = partial,
1741 		.nr_pages_max = PIPE_DEF_BUFFERS,
1742 		.flags = flags,
1743 		.ops = &page_cache_pipe_buf_ops,
1744 		.spd_release = spd_release_page,
1745 	};
1746 
1747 	isize = i_size_read(inode);
1748 	if (unlikely(*ppos >= isize))
1749 		return 0;
1750 
1751 	left = isize - *ppos;
1752 	if (unlikely(left < len))
1753 		len = left;
1754 
1755 	if (splice_grow_spd(pipe, &spd))
1756 		return -ENOMEM;
1757 
1758 	index = *ppos >> PAGE_SHIFT;
1759 	loff = *ppos & ~PAGE_MASK;
1760 	req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1761 	nr_pages = min(req_pages, spd.nr_pages_max);
1762 
1763 	spd.nr_pages = find_get_pages_contig(mapping, index,
1764 						nr_pages, spd.pages);
1765 	index += spd.nr_pages;
1766 	error = 0;
1767 
1768 	while (spd.nr_pages < nr_pages) {
1769 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1770 		if (error)
1771 			break;
1772 		unlock_page(page);
1773 		spd.pages[spd.nr_pages++] = page;
1774 		index++;
1775 	}
1776 
1777 	index = *ppos >> PAGE_SHIFT;
1778 	nr_pages = spd.nr_pages;
1779 	spd.nr_pages = 0;
1780 
1781 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1782 		unsigned int this_len;
1783 
1784 		if (!len)
1785 			break;
1786 
1787 		this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1788 		page = spd.pages[page_nr];
1789 
1790 		if (!PageUptodate(page) || page->mapping != mapping) {
1791 			error = shmem_getpage(inode, index, &page,
1792 							SGP_CACHE, NULL);
1793 			if (error)
1794 				break;
1795 			unlock_page(page);
1796 			put_page(spd.pages[page_nr]);
1797 			spd.pages[page_nr] = page;
1798 		}
1799 
1800 		isize = i_size_read(inode);
1801 		end_index = (isize - 1) >> PAGE_SHIFT;
1802 		if (unlikely(!isize || index > end_index))
1803 			break;
1804 
1805 		if (end_index == index) {
1806 			unsigned int plen;
1807 
1808 			plen = ((isize - 1) & ~PAGE_MASK) + 1;
1809 			if (plen <= loff)
1810 				break;
1811 
1812 			this_len = min(this_len, plen - loff);
1813 			len = this_len;
1814 		}
1815 
1816 		spd.partial[page_nr].offset = loff;
1817 		spd.partial[page_nr].len = this_len;
1818 		len -= this_len;
1819 		loff = 0;
1820 		spd.nr_pages++;
1821 		index++;
1822 	}
1823 
1824 	while (page_nr < nr_pages)
1825 		put_page(spd.pages[page_nr++]);
1826 
1827 	if (spd.nr_pages)
1828 		error = splice_to_pipe(pipe, &spd);
1829 
1830 	splice_shrink_spd(&spd);
1831 
1832 	if (error > 0) {
1833 		*ppos += error;
1834 		file_accessed(in);
1835 	}
1836 	return error;
1837 }
1838 
1839 /*
1840  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1841  */
1842 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1843 				    pgoff_t index, pgoff_t end, int whence)
1844 {
1845 	struct page *page;
1846 	struct pagevec pvec;
1847 	pgoff_t indices[PAGEVEC_SIZE];
1848 	bool done = false;
1849 	int i;
1850 
1851 	pagevec_init(&pvec, 0);
1852 	pvec.nr = 1;		/* start small: we may be there already */
1853 	while (!done) {
1854 		pvec.nr = find_get_entries(mapping, index,
1855 					pvec.nr, pvec.pages, indices);
1856 		if (!pvec.nr) {
1857 			if (whence == SEEK_DATA)
1858 				index = end;
1859 			break;
1860 		}
1861 		for (i = 0; i < pvec.nr; i++, index++) {
1862 			if (index < indices[i]) {
1863 				if (whence == SEEK_HOLE) {
1864 					done = true;
1865 					break;
1866 				}
1867 				index = indices[i];
1868 			}
1869 			page = pvec.pages[i];
1870 			if (page && !radix_tree_exceptional_entry(page)) {
1871 				if (!PageUptodate(page))
1872 					page = NULL;
1873 			}
1874 			if (index >= end ||
1875 			    (page && whence == SEEK_DATA) ||
1876 			    (!page && whence == SEEK_HOLE)) {
1877 				done = true;
1878 				break;
1879 			}
1880 		}
1881 		pagevec_remove_exceptionals(&pvec);
1882 		pagevec_release(&pvec);
1883 		pvec.nr = PAGEVEC_SIZE;
1884 		cond_resched();
1885 	}
1886 	return index;
1887 }
1888 
1889 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1890 {
1891 	struct address_space *mapping = file->f_mapping;
1892 	struct inode *inode = mapping->host;
1893 	pgoff_t start, end;
1894 	loff_t new_offset;
1895 
1896 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1897 		return generic_file_llseek_size(file, offset, whence,
1898 					MAX_LFS_FILESIZE, i_size_read(inode));
1899 	inode_lock(inode);
1900 	/* We're holding i_mutex so we can access i_size directly */
1901 
1902 	if (offset < 0)
1903 		offset = -EINVAL;
1904 	else if (offset >= inode->i_size)
1905 		offset = -ENXIO;
1906 	else {
1907 		start = offset >> PAGE_SHIFT;
1908 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1909 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1910 		new_offset <<= PAGE_SHIFT;
1911 		if (new_offset > offset) {
1912 			if (new_offset < inode->i_size)
1913 				offset = new_offset;
1914 			else if (whence == SEEK_DATA)
1915 				offset = -ENXIO;
1916 			else
1917 				offset = inode->i_size;
1918 		}
1919 	}
1920 
1921 	if (offset >= 0)
1922 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1923 	inode_unlock(inode);
1924 	return offset;
1925 }
1926 
1927 /*
1928  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1929  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1930  */
1931 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1932 #define LAST_SCAN               4       /* about 150ms max */
1933 
1934 static void shmem_tag_pins(struct address_space *mapping)
1935 {
1936 	struct radix_tree_iter iter;
1937 	void **slot;
1938 	pgoff_t start;
1939 	struct page *page;
1940 
1941 	lru_add_drain();
1942 	start = 0;
1943 	rcu_read_lock();
1944 
1945 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946 		page = radix_tree_deref_slot(slot);
1947 		if (!page || radix_tree_exception(page)) {
1948 			if (radix_tree_deref_retry(page)) {
1949 				slot = radix_tree_iter_retry(&iter);
1950 				continue;
1951 			}
1952 		} else if (page_count(page) - page_mapcount(page) > 1) {
1953 			spin_lock_irq(&mapping->tree_lock);
1954 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1955 					   SHMEM_TAG_PINNED);
1956 			spin_unlock_irq(&mapping->tree_lock);
1957 		}
1958 
1959 		if (need_resched()) {
1960 			cond_resched_rcu();
1961 			slot = radix_tree_iter_next(&iter);
1962 		}
1963 	}
1964 	rcu_read_unlock();
1965 }
1966 
1967 /*
1968  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1969  * via get_user_pages(), drivers might have some pending I/O without any active
1970  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1971  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1972  * them to be dropped.
1973  * The caller must guarantee that no new user will acquire writable references
1974  * to those pages to avoid races.
1975  */
1976 static int shmem_wait_for_pins(struct address_space *mapping)
1977 {
1978 	struct radix_tree_iter iter;
1979 	void **slot;
1980 	pgoff_t start;
1981 	struct page *page;
1982 	int error, scan;
1983 
1984 	shmem_tag_pins(mapping);
1985 
1986 	error = 0;
1987 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1988 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1989 			break;
1990 
1991 		if (!scan)
1992 			lru_add_drain_all();
1993 		else if (schedule_timeout_killable((HZ << scan) / 200))
1994 			scan = LAST_SCAN;
1995 
1996 		start = 0;
1997 		rcu_read_lock();
1998 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999 					   start, SHMEM_TAG_PINNED) {
2000 
2001 			page = radix_tree_deref_slot(slot);
2002 			if (radix_tree_exception(page)) {
2003 				if (radix_tree_deref_retry(page)) {
2004 					slot = radix_tree_iter_retry(&iter);
2005 					continue;
2006 				}
2007 
2008 				page = NULL;
2009 			}
2010 
2011 			if (page &&
2012 			    page_count(page) - page_mapcount(page) != 1) {
2013 				if (scan < LAST_SCAN)
2014 					goto continue_resched;
2015 
2016 				/*
2017 				 * On the last scan, we clean up all those tags
2018 				 * we inserted; but make a note that we still
2019 				 * found pages pinned.
2020 				 */
2021 				error = -EBUSY;
2022 			}
2023 
2024 			spin_lock_irq(&mapping->tree_lock);
2025 			radix_tree_tag_clear(&mapping->page_tree,
2026 					     iter.index, SHMEM_TAG_PINNED);
2027 			spin_unlock_irq(&mapping->tree_lock);
2028 continue_resched:
2029 			if (need_resched()) {
2030 				cond_resched_rcu();
2031 				slot = radix_tree_iter_next(&iter);
2032 			}
2033 		}
2034 		rcu_read_unlock();
2035 	}
2036 
2037 	return error;
2038 }
2039 
2040 #define F_ALL_SEALS (F_SEAL_SEAL | \
2041 		     F_SEAL_SHRINK | \
2042 		     F_SEAL_GROW | \
2043 		     F_SEAL_WRITE)
2044 
2045 int shmem_add_seals(struct file *file, unsigned int seals)
2046 {
2047 	struct inode *inode = file_inode(file);
2048 	struct shmem_inode_info *info = SHMEM_I(inode);
2049 	int error;
2050 
2051 	/*
2052 	 * SEALING
2053 	 * Sealing allows multiple parties to share a shmem-file but restrict
2054 	 * access to a specific subset of file operations. Seals can only be
2055 	 * added, but never removed. This way, mutually untrusted parties can
2056 	 * share common memory regions with a well-defined policy. A malicious
2057 	 * peer can thus never perform unwanted operations on a shared object.
2058 	 *
2059 	 * Seals are only supported on special shmem-files and always affect
2060 	 * the whole underlying inode. Once a seal is set, it may prevent some
2061 	 * kinds of access to the file. Currently, the following seals are
2062 	 * defined:
2063 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2064 	 *   SEAL_SHRINK: Prevent the file from shrinking
2065 	 *   SEAL_GROW: Prevent the file from growing
2066 	 *   SEAL_WRITE: Prevent write access to the file
2067 	 *
2068 	 * As we don't require any trust relationship between two parties, we
2069 	 * must prevent seals from being removed. Therefore, sealing a file
2070 	 * only adds a given set of seals to the file, it never touches
2071 	 * existing seals. Furthermore, the "setting seals"-operation can be
2072 	 * sealed itself, which basically prevents any further seal from being
2073 	 * added.
2074 	 *
2075 	 * Semantics of sealing are only defined on volatile files. Only
2076 	 * anonymous shmem files support sealing. More importantly, seals are
2077 	 * never written to disk. Therefore, there's no plan to support it on
2078 	 * other file types.
2079 	 */
2080 
2081 	if (file->f_op != &shmem_file_operations)
2082 		return -EINVAL;
2083 	if (!(file->f_mode & FMODE_WRITE))
2084 		return -EPERM;
2085 	if (seals & ~(unsigned int)F_ALL_SEALS)
2086 		return -EINVAL;
2087 
2088 	inode_lock(inode);
2089 
2090 	if (info->seals & F_SEAL_SEAL) {
2091 		error = -EPERM;
2092 		goto unlock;
2093 	}
2094 
2095 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2096 		error = mapping_deny_writable(file->f_mapping);
2097 		if (error)
2098 			goto unlock;
2099 
2100 		error = shmem_wait_for_pins(file->f_mapping);
2101 		if (error) {
2102 			mapping_allow_writable(file->f_mapping);
2103 			goto unlock;
2104 		}
2105 	}
2106 
2107 	info->seals |= seals;
2108 	error = 0;
2109 
2110 unlock:
2111 	inode_unlock(inode);
2112 	return error;
2113 }
2114 EXPORT_SYMBOL_GPL(shmem_add_seals);
2115 
2116 int shmem_get_seals(struct file *file)
2117 {
2118 	if (file->f_op != &shmem_file_operations)
2119 		return -EINVAL;
2120 
2121 	return SHMEM_I(file_inode(file))->seals;
2122 }
2123 EXPORT_SYMBOL_GPL(shmem_get_seals);
2124 
2125 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2126 {
2127 	long error;
2128 
2129 	switch (cmd) {
2130 	case F_ADD_SEALS:
2131 		/* disallow upper 32bit */
2132 		if (arg > UINT_MAX)
2133 			return -EINVAL;
2134 
2135 		error = shmem_add_seals(file, arg);
2136 		break;
2137 	case F_GET_SEALS:
2138 		error = shmem_get_seals(file);
2139 		break;
2140 	default:
2141 		error = -EINVAL;
2142 		break;
2143 	}
2144 
2145 	return error;
2146 }
2147 
2148 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2149 							 loff_t len)
2150 {
2151 	struct inode *inode = file_inode(file);
2152 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2153 	struct shmem_inode_info *info = SHMEM_I(inode);
2154 	struct shmem_falloc shmem_falloc;
2155 	pgoff_t start, index, end;
2156 	int error;
2157 
2158 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2159 		return -EOPNOTSUPP;
2160 
2161 	inode_lock(inode);
2162 
2163 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2164 		struct address_space *mapping = file->f_mapping;
2165 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2166 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2167 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2168 
2169 		/* protected by i_mutex */
2170 		if (info->seals & F_SEAL_WRITE) {
2171 			error = -EPERM;
2172 			goto out;
2173 		}
2174 
2175 		shmem_falloc.waitq = &shmem_falloc_waitq;
2176 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2177 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2178 		spin_lock(&inode->i_lock);
2179 		inode->i_private = &shmem_falloc;
2180 		spin_unlock(&inode->i_lock);
2181 
2182 		if ((u64)unmap_end > (u64)unmap_start)
2183 			unmap_mapping_range(mapping, unmap_start,
2184 					    1 + unmap_end - unmap_start, 0);
2185 		shmem_truncate_range(inode, offset, offset + len - 1);
2186 		/* No need to unmap again: hole-punching leaves COWed pages */
2187 
2188 		spin_lock(&inode->i_lock);
2189 		inode->i_private = NULL;
2190 		wake_up_all(&shmem_falloc_waitq);
2191 		spin_unlock(&inode->i_lock);
2192 		error = 0;
2193 		goto out;
2194 	}
2195 
2196 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2197 	error = inode_newsize_ok(inode, offset + len);
2198 	if (error)
2199 		goto out;
2200 
2201 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2202 		error = -EPERM;
2203 		goto out;
2204 	}
2205 
2206 	start = offset >> PAGE_SHIFT;
2207 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2208 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2209 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2210 		error = -ENOSPC;
2211 		goto out;
2212 	}
2213 
2214 	shmem_falloc.waitq = NULL;
2215 	shmem_falloc.start = start;
2216 	shmem_falloc.next  = start;
2217 	shmem_falloc.nr_falloced = 0;
2218 	shmem_falloc.nr_unswapped = 0;
2219 	spin_lock(&inode->i_lock);
2220 	inode->i_private = &shmem_falloc;
2221 	spin_unlock(&inode->i_lock);
2222 
2223 	for (index = start; index < end; index++) {
2224 		struct page *page;
2225 
2226 		/*
2227 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2228 		 * been interrupted because we are using up too much memory.
2229 		 */
2230 		if (signal_pending(current))
2231 			error = -EINTR;
2232 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2233 			error = -ENOMEM;
2234 		else
2235 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2236 									NULL);
2237 		if (error) {
2238 			/* Remove the !PageUptodate pages we added */
2239 			shmem_undo_range(inode,
2240 				(loff_t)start << PAGE_SHIFT,
2241 				(loff_t)index << PAGE_SHIFT, true);
2242 			goto undone;
2243 		}
2244 
2245 		/*
2246 		 * Inform shmem_writepage() how far we have reached.
2247 		 * No need for lock or barrier: we have the page lock.
2248 		 */
2249 		shmem_falloc.next++;
2250 		if (!PageUptodate(page))
2251 			shmem_falloc.nr_falloced++;
2252 
2253 		/*
2254 		 * If !PageUptodate, leave it that way so that freeable pages
2255 		 * can be recognized if we need to rollback on error later.
2256 		 * But set_page_dirty so that memory pressure will swap rather
2257 		 * than free the pages we are allocating (and SGP_CACHE pages
2258 		 * might still be clean: we now need to mark those dirty too).
2259 		 */
2260 		set_page_dirty(page);
2261 		unlock_page(page);
2262 		put_page(page);
2263 		cond_resched();
2264 	}
2265 
2266 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2267 		i_size_write(inode, offset + len);
2268 	inode->i_ctime = CURRENT_TIME;
2269 undone:
2270 	spin_lock(&inode->i_lock);
2271 	inode->i_private = NULL;
2272 	spin_unlock(&inode->i_lock);
2273 out:
2274 	inode_unlock(inode);
2275 	return error;
2276 }
2277 
2278 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2279 {
2280 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2281 
2282 	buf->f_type = TMPFS_MAGIC;
2283 	buf->f_bsize = PAGE_SIZE;
2284 	buf->f_namelen = NAME_MAX;
2285 	if (sbinfo->max_blocks) {
2286 		buf->f_blocks = sbinfo->max_blocks;
2287 		buf->f_bavail =
2288 		buf->f_bfree  = sbinfo->max_blocks -
2289 				percpu_counter_sum(&sbinfo->used_blocks);
2290 	}
2291 	if (sbinfo->max_inodes) {
2292 		buf->f_files = sbinfo->max_inodes;
2293 		buf->f_ffree = sbinfo->free_inodes;
2294 	}
2295 	/* else leave those fields 0 like simple_statfs */
2296 	return 0;
2297 }
2298 
2299 /*
2300  * File creation. Allocate an inode, and we're done..
2301  */
2302 static int
2303 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2304 {
2305 	struct inode *inode;
2306 	int error = -ENOSPC;
2307 
2308 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2309 	if (inode) {
2310 		error = simple_acl_create(dir, inode);
2311 		if (error)
2312 			goto out_iput;
2313 		error = security_inode_init_security(inode, dir,
2314 						     &dentry->d_name,
2315 						     shmem_initxattrs, NULL);
2316 		if (error && error != -EOPNOTSUPP)
2317 			goto out_iput;
2318 
2319 		error = 0;
2320 		dir->i_size += BOGO_DIRENT_SIZE;
2321 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2322 		d_instantiate(dentry, inode);
2323 		dget(dentry); /* Extra count - pin the dentry in core */
2324 	}
2325 	return error;
2326 out_iput:
2327 	iput(inode);
2328 	return error;
2329 }
2330 
2331 static int
2332 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2333 {
2334 	struct inode *inode;
2335 	int error = -ENOSPC;
2336 
2337 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2338 	if (inode) {
2339 		error = security_inode_init_security(inode, dir,
2340 						     NULL,
2341 						     shmem_initxattrs, NULL);
2342 		if (error && error != -EOPNOTSUPP)
2343 			goto out_iput;
2344 		error = simple_acl_create(dir, inode);
2345 		if (error)
2346 			goto out_iput;
2347 		d_tmpfile(dentry, inode);
2348 	}
2349 	return error;
2350 out_iput:
2351 	iput(inode);
2352 	return error;
2353 }
2354 
2355 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2356 {
2357 	int error;
2358 
2359 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2360 		return error;
2361 	inc_nlink(dir);
2362 	return 0;
2363 }
2364 
2365 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2366 		bool excl)
2367 {
2368 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2369 }
2370 
2371 /*
2372  * Link a file..
2373  */
2374 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2375 {
2376 	struct inode *inode = d_inode(old_dentry);
2377 	int ret;
2378 
2379 	/*
2380 	 * No ordinary (disk based) filesystem counts links as inodes;
2381 	 * but each new link needs a new dentry, pinning lowmem, and
2382 	 * tmpfs dentries cannot be pruned until they are unlinked.
2383 	 */
2384 	ret = shmem_reserve_inode(inode->i_sb);
2385 	if (ret)
2386 		goto out;
2387 
2388 	dir->i_size += BOGO_DIRENT_SIZE;
2389 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2390 	inc_nlink(inode);
2391 	ihold(inode);	/* New dentry reference */
2392 	dget(dentry);		/* Extra pinning count for the created dentry */
2393 	d_instantiate(dentry, inode);
2394 out:
2395 	return ret;
2396 }
2397 
2398 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2399 {
2400 	struct inode *inode = d_inode(dentry);
2401 
2402 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2403 		shmem_free_inode(inode->i_sb);
2404 
2405 	dir->i_size -= BOGO_DIRENT_SIZE;
2406 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2407 	drop_nlink(inode);
2408 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2409 	return 0;
2410 }
2411 
2412 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2413 {
2414 	if (!simple_empty(dentry))
2415 		return -ENOTEMPTY;
2416 
2417 	drop_nlink(d_inode(dentry));
2418 	drop_nlink(dir);
2419 	return shmem_unlink(dir, dentry);
2420 }
2421 
2422 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2423 {
2424 	bool old_is_dir = d_is_dir(old_dentry);
2425 	bool new_is_dir = d_is_dir(new_dentry);
2426 
2427 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2428 		if (old_is_dir) {
2429 			drop_nlink(old_dir);
2430 			inc_nlink(new_dir);
2431 		} else {
2432 			drop_nlink(new_dir);
2433 			inc_nlink(old_dir);
2434 		}
2435 	}
2436 	old_dir->i_ctime = old_dir->i_mtime =
2437 	new_dir->i_ctime = new_dir->i_mtime =
2438 	d_inode(old_dentry)->i_ctime =
2439 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2440 
2441 	return 0;
2442 }
2443 
2444 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2445 {
2446 	struct dentry *whiteout;
2447 	int error;
2448 
2449 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2450 	if (!whiteout)
2451 		return -ENOMEM;
2452 
2453 	error = shmem_mknod(old_dir, whiteout,
2454 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2455 	dput(whiteout);
2456 	if (error)
2457 		return error;
2458 
2459 	/*
2460 	 * Cheat and hash the whiteout while the old dentry is still in
2461 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2462 	 *
2463 	 * d_lookup() will consistently find one of them at this point,
2464 	 * not sure which one, but that isn't even important.
2465 	 */
2466 	d_rehash(whiteout);
2467 	return 0;
2468 }
2469 
2470 /*
2471  * The VFS layer already does all the dentry stuff for rename,
2472  * we just have to decrement the usage count for the target if
2473  * it exists so that the VFS layer correctly free's it when it
2474  * gets overwritten.
2475  */
2476 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2477 {
2478 	struct inode *inode = d_inode(old_dentry);
2479 	int they_are_dirs = S_ISDIR(inode->i_mode);
2480 
2481 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2482 		return -EINVAL;
2483 
2484 	if (flags & RENAME_EXCHANGE)
2485 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2486 
2487 	if (!simple_empty(new_dentry))
2488 		return -ENOTEMPTY;
2489 
2490 	if (flags & RENAME_WHITEOUT) {
2491 		int error;
2492 
2493 		error = shmem_whiteout(old_dir, old_dentry);
2494 		if (error)
2495 			return error;
2496 	}
2497 
2498 	if (d_really_is_positive(new_dentry)) {
2499 		(void) shmem_unlink(new_dir, new_dentry);
2500 		if (they_are_dirs) {
2501 			drop_nlink(d_inode(new_dentry));
2502 			drop_nlink(old_dir);
2503 		}
2504 	} else if (they_are_dirs) {
2505 		drop_nlink(old_dir);
2506 		inc_nlink(new_dir);
2507 	}
2508 
2509 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2510 	new_dir->i_size += BOGO_DIRENT_SIZE;
2511 	old_dir->i_ctime = old_dir->i_mtime =
2512 	new_dir->i_ctime = new_dir->i_mtime =
2513 	inode->i_ctime = CURRENT_TIME;
2514 	return 0;
2515 }
2516 
2517 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2518 {
2519 	int error;
2520 	int len;
2521 	struct inode *inode;
2522 	struct page *page;
2523 	struct shmem_inode_info *info;
2524 
2525 	len = strlen(symname) + 1;
2526 	if (len > PAGE_SIZE)
2527 		return -ENAMETOOLONG;
2528 
2529 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2530 	if (!inode)
2531 		return -ENOSPC;
2532 
2533 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2534 					     shmem_initxattrs, NULL);
2535 	if (error) {
2536 		if (error != -EOPNOTSUPP) {
2537 			iput(inode);
2538 			return error;
2539 		}
2540 		error = 0;
2541 	}
2542 
2543 	info = SHMEM_I(inode);
2544 	inode->i_size = len-1;
2545 	if (len <= SHORT_SYMLINK_LEN) {
2546 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2547 		if (!inode->i_link) {
2548 			iput(inode);
2549 			return -ENOMEM;
2550 		}
2551 		inode->i_op = &shmem_short_symlink_operations;
2552 	} else {
2553 		inode_nohighmem(inode);
2554 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2555 		if (error) {
2556 			iput(inode);
2557 			return error;
2558 		}
2559 		inode->i_mapping->a_ops = &shmem_aops;
2560 		inode->i_op = &shmem_symlink_inode_operations;
2561 		memcpy(page_address(page), symname, len);
2562 		SetPageUptodate(page);
2563 		set_page_dirty(page);
2564 		unlock_page(page);
2565 		put_page(page);
2566 	}
2567 	dir->i_size += BOGO_DIRENT_SIZE;
2568 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569 	d_instantiate(dentry, inode);
2570 	dget(dentry);
2571 	return 0;
2572 }
2573 
2574 static void shmem_put_link(void *arg)
2575 {
2576 	mark_page_accessed(arg);
2577 	put_page(arg);
2578 }
2579 
2580 static const char *shmem_get_link(struct dentry *dentry,
2581 				  struct inode *inode,
2582 				  struct delayed_call *done)
2583 {
2584 	struct page *page = NULL;
2585 	int error;
2586 	if (!dentry) {
2587 		page = find_get_page(inode->i_mapping, 0);
2588 		if (!page)
2589 			return ERR_PTR(-ECHILD);
2590 		if (!PageUptodate(page)) {
2591 			put_page(page);
2592 			return ERR_PTR(-ECHILD);
2593 		}
2594 	} else {
2595 		error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2596 		if (error)
2597 			return ERR_PTR(error);
2598 		unlock_page(page);
2599 	}
2600 	set_delayed_call(done, shmem_put_link, page);
2601 	return page_address(page);
2602 }
2603 
2604 #ifdef CONFIG_TMPFS_XATTR
2605 /*
2606  * Superblocks without xattr inode operations may get some security.* xattr
2607  * support from the LSM "for free". As soon as we have any other xattrs
2608  * like ACLs, we also need to implement the security.* handlers at
2609  * filesystem level, though.
2610  */
2611 
2612 /*
2613  * Callback for security_inode_init_security() for acquiring xattrs.
2614  */
2615 static int shmem_initxattrs(struct inode *inode,
2616 			    const struct xattr *xattr_array,
2617 			    void *fs_info)
2618 {
2619 	struct shmem_inode_info *info = SHMEM_I(inode);
2620 	const struct xattr *xattr;
2621 	struct simple_xattr *new_xattr;
2622 	size_t len;
2623 
2624 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2626 		if (!new_xattr)
2627 			return -ENOMEM;
2628 
2629 		len = strlen(xattr->name) + 1;
2630 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2631 					  GFP_KERNEL);
2632 		if (!new_xattr->name) {
2633 			kfree(new_xattr);
2634 			return -ENOMEM;
2635 		}
2636 
2637 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638 		       XATTR_SECURITY_PREFIX_LEN);
2639 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2640 		       xattr->name, len);
2641 
2642 		simple_xattr_list_add(&info->xattrs, new_xattr);
2643 	}
2644 
2645 	return 0;
2646 }
2647 
2648 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649 				   struct dentry *dentry, const char *name,
2650 				   void *buffer, size_t size)
2651 {
2652 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2653 
2654 	name = xattr_full_name(handler, name);
2655 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2656 }
2657 
2658 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659 				   struct dentry *dentry, const char *name,
2660 				   const void *value, size_t size, int flags)
2661 {
2662 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2663 
2664 	name = xattr_full_name(handler, name);
2665 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2666 }
2667 
2668 static const struct xattr_handler shmem_security_xattr_handler = {
2669 	.prefix = XATTR_SECURITY_PREFIX,
2670 	.get = shmem_xattr_handler_get,
2671 	.set = shmem_xattr_handler_set,
2672 };
2673 
2674 static const struct xattr_handler shmem_trusted_xattr_handler = {
2675 	.prefix = XATTR_TRUSTED_PREFIX,
2676 	.get = shmem_xattr_handler_get,
2677 	.set = shmem_xattr_handler_set,
2678 };
2679 
2680 static const struct xattr_handler *shmem_xattr_handlers[] = {
2681 #ifdef CONFIG_TMPFS_POSIX_ACL
2682 	&posix_acl_access_xattr_handler,
2683 	&posix_acl_default_xattr_handler,
2684 #endif
2685 	&shmem_security_xattr_handler,
2686 	&shmem_trusted_xattr_handler,
2687 	NULL
2688 };
2689 
2690 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2691 {
2692 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2694 }
2695 #endif /* CONFIG_TMPFS_XATTR */
2696 
2697 static const struct inode_operations shmem_short_symlink_operations = {
2698 	.readlink	= generic_readlink,
2699 	.get_link	= simple_get_link,
2700 #ifdef CONFIG_TMPFS_XATTR
2701 	.setxattr	= generic_setxattr,
2702 	.getxattr	= generic_getxattr,
2703 	.listxattr	= shmem_listxattr,
2704 	.removexattr	= generic_removexattr,
2705 #endif
2706 };
2707 
2708 static const struct inode_operations shmem_symlink_inode_operations = {
2709 	.readlink	= generic_readlink,
2710 	.get_link	= shmem_get_link,
2711 #ifdef CONFIG_TMPFS_XATTR
2712 	.setxattr	= generic_setxattr,
2713 	.getxattr	= generic_getxattr,
2714 	.listxattr	= shmem_listxattr,
2715 	.removexattr	= generic_removexattr,
2716 #endif
2717 };
2718 
2719 static struct dentry *shmem_get_parent(struct dentry *child)
2720 {
2721 	return ERR_PTR(-ESTALE);
2722 }
2723 
2724 static int shmem_match(struct inode *ino, void *vfh)
2725 {
2726 	__u32 *fh = vfh;
2727 	__u64 inum = fh[2];
2728 	inum = (inum << 32) | fh[1];
2729 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2730 }
2731 
2732 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733 		struct fid *fid, int fh_len, int fh_type)
2734 {
2735 	struct inode *inode;
2736 	struct dentry *dentry = NULL;
2737 	u64 inum;
2738 
2739 	if (fh_len < 3)
2740 		return NULL;
2741 
2742 	inum = fid->raw[2];
2743 	inum = (inum << 32) | fid->raw[1];
2744 
2745 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746 			shmem_match, fid->raw);
2747 	if (inode) {
2748 		dentry = d_find_alias(inode);
2749 		iput(inode);
2750 	}
2751 
2752 	return dentry;
2753 }
2754 
2755 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756 				struct inode *parent)
2757 {
2758 	if (*len < 3) {
2759 		*len = 3;
2760 		return FILEID_INVALID;
2761 	}
2762 
2763 	if (inode_unhashed(inode)) {
2764 		/* Unfortunately insert_inode_hash is not idempotent,
2765 		 * so as we hash inodes here rather than at creation
2766 		 * time, we need a lock to ensure we only try
2767 		 * to do it once
2768 		 */
2769 		static DEFINE_SPINLOCK(lock);
2770 		spin_lock(&lock);
2771 		if (inode_unhashed(inode))
2772 			__insert_inode_hash(inode,
2773 					    inode->i_ino + inode->i_generation);
2774 		spin_unlock(&lock);
2775 	}
2776 
2777 	fh[0] = inode->i_generation;
2778 	fh[1] = inode->i_ino;
2779 	fh[2] = ((__u64)inode->i_ino) >> 32;
2780 
2781 	*len = 3;
2782 	return 1;
2783 }
2784 
2785 static const struct export_operations shmem_export_ops = {
2786 	.get_parent     = shmem_get_parent,
2787 	.encode_fh      = shmem_encode_fh,
2788 	.fh_to_dentry	= shmem_fh_to_dentry,
2789 };
2790 
2791 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2792 			       bool remount)
2793 {
2794 	char *this_char, *value, *rest;
2795 	struct mempolicy *mpol = NULL;
2796 	uid_t uid;
2797 	gid_t gid;
2798 
2799 	while (options != NULL) {
2800 		this_char = options;
2801 		for (;;) {
2802 			/*
2803 			 * NUL-terminate this option: unfortunately,
2804 			 * mount options form a comma-separated list,
2805 			 * but mpol's nodelist may also contain commas.
2806 			 */
2807 			options = strchr(options, ',');
2808 			if (options == NULL)
2809 				break;
2810 			options++;
2811 			if (!isdigit(*options)) {
2812 				options[-1] = '\0';
2813 				break;
2814 			}
2815 		}
2816 		if (!*this_char)
2817 			continue;
2818 		if ((value = strchr(this_char,'=')) != NULL) {
2819 			*value++ = 0;
2820 		} else {
2821 			pr_err("tmpfs: No value for mount option '%s'\n",
2822 			       this_char);
2823 			goto error;
2824 		}
2825 
2826 		if (!strcmp(this_char,"size")) {
2827 			unsigned long long size;
2828 			size = memparse(value,&rest);
2829 			if (*rest == '%') {
2830 				size <<= PAGE_SHIFT;
2831 				size *= totalram_pages;
2832 				do_div(size, 100);
2833 				rest++;
2834 			}
2835 			if (*rest)
2836 				goto bad_val;
2837 			sbinfo->max_blocks =
2838 				DIV_ROUND_UP(size, PAGE_SIZE);
2839 		} else if (!strcmp(this_char,"nr_blocks")) {
2840 			sbinfo->max_blocks = memparse(value, &rest);
2841 			if (*rest)
2842 				goto bad_val;
2843 		} else if (!strcmp(this_char,"nr_inodes")) {
2844 			sbinfo->max_inodes = memparse(value, &rest);
2845 			if (*rest)
2846 				goto bad_val;
2847 		} else if (!strcmp(this_char,"mode")) {
2848 			if (remount)
2849 				continue;
2850 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2851 			if (*rest)
2852 				goto bad_val;
2853 		} else if (!strcmp(this_char,"uid")) {
2854 			if (remount)
2855 				continue;
2856 			uid = simple_strtoul(value, &rest, 0);
2857 			if (*rest)
2858 				goto bad_val;
2859 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2860 			if (!uid_valid(sbinfo->uid))
2861 				goto bad_val;
2862 		} else if (!strcmp(this_char,"gid")) {
2863 			if (remount)
2864 				continue;
2865 			gid = simple_strtoul(value, &rest, 0);
2866 			if (*rest)
2867 				goto bad_val;
2868 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2869 			if (!gid_valid(sbinfo->gid))
2870 				goto bad_val;
2871 		} else if (!strcmp(this_char,"mpol")) {
2872 			mpol_put(mpol);
2873 			mpol = NULL;
2874 			if (mpol_parse_str(value, &mpol))
2875 				goto bad_val;
2876 		} else {
2877 			pr_err("tmpfs: Bad mount option %s\n", this_char);
2878 			goto error;
2879 		}
2880 	}
2881 	sbinfo->mpol = mpol;
2882 	return 0;
2883 
2884 bad_val:
2885 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2886 	       value, this_char);
2887 error:
2888 	mpol_put(mpol);
2889 	return 1;
2890 
2891 }
2892 
2893 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2894 {
2895 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2896 	struct shmem_sb_info config = *sbinfo;
2897 	unsigned long inodes;
2898 	int error = -EINVAL;
2899 
2900 	config.mpol = NULL;
2901 	if (shmem_parse_options(data, &config, true))
2902 		return error;
2903 
2904 	spin_lock(&sbinfo->stat_lock);
2905 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2906 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2907 		goto out;
2908 	if (config.max_inodes < inodes)
2909 		goto out;
2910 	/*
2911 	 * Those tests disallow limited->unlimited while any are in use;
2912 	 * but we must separately disallow unlimited->limited, because
2913 	 * in that case we have no record of how much is already in use.
2914 	 */
2915 	if (config.max_blocks && !sbinfo->max_blocks)
2916 		goto out;
2917 	if (config.max_inodes && !sbinfo->max_inodes)
2918 		goto out;
2919 
2920 	error = 0;
2921 	sbinfo->max_blocks  = config.max_blocks;
2922 	sbinfo->max_inodes  = config.max_inodes;
2923 	sbinfo->free_inodes = config.max_inodes - inodes;
2924 
2925 	/*
2926 	 * Preserve previous mempolicy unless mpol remount option was specified.
2927 	 */
2928 	if (config.mpol) {
2929 		mpol_put(sbinfo->mpol);
2930 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2931 	}
2932 out:
2933 	spin_unlock(&sbinfo->stat_lock);
2934 	return error;
2935 }
2936 
2937 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2938 {
2939 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2940 
2941 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2942 		seq_printf(seq, ",size=%luk",
2943 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
2944 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2945 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2946 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2947 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2948 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2949 		seq_printf(seq, ",uid=%u",
2950 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2951 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2952 		seq_printf(seq, ",gid=%u",
2953 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2954 	shmem_show_mpol(seq, sbinfo->mpol);
2955 	return 0;
2956 }
2957 
2958 #define MFD_NAME_PREFIX "memfd:"
2959 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2960 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2961 
2962 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2963 
2964 SYSCALL_DEFINE2(memfd_create,
2965 		const char __user *, uname,
2966 		unsigned int, flags)
2967 {
2968 	struct shmem_inode_info *info;
2969 	struct file *file;
2970 	int fd, error;
2971 	char *name;
2972 	long len;
2973 
2974 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2975 		return -EINVAL;
2976 
2977 	/* length includes terminating zero */
2978 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2979 	if (len <= 0)
2980 		return -EFAULT;
2981 	if (len > MFD_NAME_MAX_LEN + 1)
2982 		return -EINVAL;
2983 
2984 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2985 	if (!name)
2986 		return -ENOMEM;
2987 
2988 	strcpy(name, MFD_NAME_PREFIX);
2989 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2990 		error = -EFAULT;
2991 		goto err_name;
2992 	}
2993 
2994 	/* terminating-zero may have changed after strnlen_user() returned */
2995 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2996 		error = -EFAULT;
2997 		goto err_name;
2998 	}
2999 
3000 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3001 	if (fd < 0) {
3002 		error = fd;
3003 		goto err_name;
3004 	}
3005 
3006 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3007 	if (IS_ERR(file)) {
3008 		error = PTR_ERR(file);
3009 		goto err_fd;
3010 	}
3011 	info = SHMEM_I(file_inode(file));
3012 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3013 	file->f_flags |= O_RDWR | O_LARGEFILE;
3014 	if (flags & MFD_ALLOW_SEALING)
3015 		info->seals &= ~F_SEAL_SEAL;
3016 
3017 	fd_install(fd, file);
3018 	kfree(name);
3019 	return fd;
3020 
3021 err_fd:
3022 	put_unused_fd(fd);
3023 err_name:
3024 	kfree(name);
3025 	return error;
3026 }
3027 
3028 #endif /* CONFIG_TMPFS */
3029 
3030 static void shmem_put_super(struct super_block *sb)
3031 {
3032 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3033 
3034 	percpu_counter_destroy(&sbinfo->used_blocks);
3035 	mpol_put(sbinfo->mpol);
3036 	kfree(sbinfo);
3037 	sb->s_fs_info = NULL;
3038 }
3039 
3040 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3041 {
3042 	struct inode *inode;
3043 	struct shmem_sb_info *sbinfo;
3044 	int err = -ENOMEM;
3045 
3046 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3047 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3048 				L1_CACHE_BYTES), GFP_KERNEL);
3049 	if (!sbinfo)
3050 		return -ENOMEM;
3051 
3052 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3053 	sbinfo->uid = current_fsuid();
3054 	sbinfo->gid = current_fsgid();
3055 	sb->s_fs_info = sbinfo;
3056 
3057 #ifdef CONFIG_TMPFS
3058 	/*
3059 	 * Per default we only allow half of the physical ram per
3060 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3061 	 * but the internal instance is left unlimited.
3062 	 */
3063 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3064 		sbinfo->max_blocks = shmem_default_max_blocks();
3065 		sbinfo->max_inodes = shmem_default_max_inodes();
3066 		if (shmem_parse_options(data, sbinfo, false)) {
3067 			err = -EINVAL;
3068 			goto failed;
3069 		}
3070 	} else {
3071 		sb->s_flags |= MS_NOUSER;
3072 	}
3073 	sb->s_export_op = &shmem_export_ops;
3074 	sb->s_flags |= MS_NOSEC;
3075 #else
3076 	sb->s_flags |= MS_NOUSER;
3077 #endif
3078 
3079 	spin_lock_init(&sbinfo->stat_lock);
3080 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3081 		goto failed;
3082 	sbinfo->free_inodes = sbinfo->max_inodes;
3083 
3084 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3085 	sb->s_blocksize = PAGE_SIZE;
3086 	sb->s_blocksize_bits = PAGE_SHIFT;
3087 	sb->s_magic = TMPFS_MAGIC;
3088 	sb->s_op = &shmem_ops;
3089 	sb->s_time_gran = 1;
3090 #ifdef CONFIG_TMPFS_XATTR
3091 	sb->s_xattr = shmem_xattr_handlers;
3092 #endif
3093 #ifdef CONFIG_TMPFS_POSIX_ACL
3094 	sb->s_flags |= MS_POSIXACL;
3095 #endif
3096 
3097 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3098 	if (!inode)
3099 		goto failed;
3100 	inode->i_uid = sbinfo->uid;
3101 	inode->i_gid = sbinfo->gid;
3102 	sb->s_root = d_make_root(inode);
3103 	if (!sb->s_root)
3104 		goto failed;
3105 	return 0;
3106 
3107 failed:
3108 	shmem_put_super(sb);
3109 	return err;
3110 }
3111 
3112 static struct kmem_cache *shmem_inode_cachep;
3113 
3114 static struct inode *shmem_alloc_inode(struct super_block *sb)
3115 {
3116 	struct shmem_inode_info *info;
3117 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3118 	if (!info)
3119 		return NULL;
3120 	return &info->vfs_inode;
3121 }
3122 
3123 static void shmem_destroy_callback(struct rcu_head *head)
3124 {
3125 	struct inode *inode = container_of(head, struct inode, i_rcu);
3126 	kfree(inode->i_link);
3127 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3128 }
3129 
3130 static void shmem_destroy_inode(struct inode *inode)
3131 {
3132 	if (S_ISREG(inode->i_mode))
3133 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3134 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3135 }
3136 
3137 static void shmem_init_inode(void *foo)
3138 {
3139 	struct shmem_inode_info *info = foo;
3140 	inode_init_once(&info->vfs_inode);
3141 }
3142 
3143 static int shmem_init_inodecache(void)
3144 {
3145 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3146 				sizeof(struct shmem_inode_info),
3147 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3148 	return 0;
3149 }
3150 
3151 static void shmem_destroy_inodecache(void)
3152 {
3153 	kmem_cache_destroy(shmem_inode_cachep);
3154 }
3155 
3156 static const struct address_space_operations shmem_aops = {
3157 	.writepage	= shmem_writepage,
3158 	.set_page_dirty	= __set_page_dirty_no_writeback,
3159 #ifdef CONFIG_TMPFS
3160 	.write_begin	= shmem_write_begin,
3161 	.write_end	= shmem_write_end,
3162 #endif
3163 #ifdef CONFIG_MIGRATION
3164 	.migratepage	= migrate_page,
3165 #endif
3166 	.error_remove_page = generic_error_remove_page,
3167 };
3168 
3169 static const struct file_operations shmem_file_operations = {
3170 	.mmap		= shmem_mmap,
3171 #ifdef CONFIG_TMPFS
3172 	.llseek		= shmem_file_llseek,
3173 	.read_iter	= shmem_file_read_iter,
3174 	.write_iter	= generic_file_write_iter,
3175 	.fsync		= noop_fsync,
3176 	.splice_read	= shmem_file_splice_read,
3177 	.splice_write	= iter_file_splice_write,
3178 	.fallocate	= shmem_fallocate,
3179 #endif
3180 };
3181 
3182 static const struct inode_operations shmem_inode_operations = {
3183 	.getattr	= shmem_getattr,
3184 	.setattr	= shmem_setattr,
3185 #ifdef CONFIG_TMPFS_XATTR
3186 	.setxattr	= generic_setxattr,
3187 	.getxattr	= generic_getxattr,
3188 	.listxattr	= shmem_listxattr,
3189 	.removexattr	= generic_removexattr,
3190 	.set_acl	= simple_set_acl,
3191 #endif
3192 };
3193 
3194 static const struct inode_operations shmem_dir_inode_operations = {
3195 #ifdef CONFIG_TMPFS
3196 	.create		= shmem_create,
3197 	.lookup		= simple_lookup,
3198 	.link		= shmem_link,
3199 	.unlink		= shmem_unlink,
3200 	.symlink	= shmem_symlink,
3201 	.mkdir		= shmem_mkdir,
3202 	.rmdir		= shmem_rmdir,
3203 	.mknod		= shmem_mknod,
3204 	.rename2	= shmem_rename2,
3205 	.tmpfile	= shmem_tmpfile,
3206 #endif
3207 #ifdef CONFIG_TMPFS_XATTR
3208 	.setxattr	= generic_setxattr,
3209 	.getxattr	= generic_getxattr,
3210 	.listxattr	= shmem_listxattr,
3211 	.removexattr	= generic_removexattr,
3212 #endif
3213 #ifdef CONFIG_TMPFS_POSIX_ACL
3214 	.setattr	= shmem_setattr,
3215 	.set_acl	= simple_set_acl,
3216 #endif
3217 };
3218 
3219 static const struct inode_operations shmem_special_inode_operations = {
3220 #ifdef CONFIG_TMPFS_XATTR
3221 	.setxattr	= generic_setxattr,
3222 	.getxattr	= generic_getxattr,
3223 	.listxattr	= shmem_listxattr,
3224 	.removexattr	= generic_removexattr,
3225 #endif
3226 #ifdef CONFIG_TMPFS_POSIX_ACL
3227 	.setattr	= shmem_setattr,
3228 	.set_acl	= simple_set_acl,
3229 #endif
3230 };
3231 
3232 static const struct super_operations shmem_ops = {
3233 	.alloc_inode	= shmem_alloc_inode,
3234 	.destroy_inode	= shmem_destroy_inode,
3235 #ifdef CONFIG_TMPFS
3236 	.statfs		= shmem_statfs,
3237 	.remount_fs	= shmem_remount_fs,
3238 	.show_options	= shmem_show_options,
3239 #endif
3240 	.evict_inode	= shmem_evict_inode,
3241 	.drop_inode	= generic_delete_inode,
3242 	.put_super	= shmem_put_super,
3243 };
3244 
3245 static const struct vm_operations_struct shmem_vm_ops = {
3246 	.fault		= shmem_fault,
3247 	.map_pages	= filemap_map_pages,
3248 #ifdef CONFIG_NUMA
3249 	.set_policy     = shmem_set_policy,
3250 	.get_policy     = shmem_get_policy,
3251 #endif
3252 };
3253 
3254 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3255 	int flags, const char *dev_name, void *data)
3256 {
3257 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3258 }
3259 
3260 static struct file_system_type shmem_fs_type = {
3261 	.owner		= THIS_MODULE,
3262 	.name		= "tmpfs",
3263 	.mount		= shmem_mount,
3264 	.kill_sb	= kill_litter_super,
3265 	.fs_flags	= FS_USERNS_MOUNT,
3266 };
3267 
3268 int __init shmem_init(void)
3269 {
3270 	int error;
3271 
3272 	/* If rootfs called this, don't re-init */
3273 	if (shmem_inode_cachep)
3274 		return 0;
3275 
3276 	error = shmem_init_inodecache();
3277 	if (error)
3278 		goto out3;
3279 
3280 	error = register_filesystem(&shmem_fs_type);
3281 	if (error) {
3282 		pr_err("Could not register tmpfs\n");
3283 		goto out2;
3284 	}
3285 
3286 	shm_mnt = kern_mount(&shmem_fs_type);
3287 	if (IS_ERR(shm_mnt)) {
3288 		error = PTR_ERR(shm_mnt);
3289 		pr_err("Could not kern_mount tmpfs\n");
3290 		goto out1;
3291 	}
3292 	return 0;
3293 
3294 out1:
3295 	unregister_filesystem(&shmem_fs_type);
3296 out2:
3297 	shmem_destroy_inodecache();
3298 out3:
3299 	shm_mnt = ERR_PTR(error);
3300 	return error;
3301 }
3302 
3303 #else /* !CONFIG_SHMEM */
3304 
3305 /*
3306  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3307  *
3308  * This is intended for small system where the benefits of the full
3309  * shmem code (swap-backed and resource-limited) are outweighed by
3310  * their complexity. On systems without swap this code should be
3311  * effectively equivalent, but much lighter weight.
3312  */
3313 
3314 static struct file_system_type shmem_fs_type = {
3315 	.name		= "tmpfs",
3316 	.mount		= ramfs_mount,
3317 	.kill_sb	= kill_litter_super,
3318 	.fs_flags	= FS_USERNS_MOUNT,
3319 };
3320 
3321 int __init shmem_init(void)
3322 {
3323 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3324 
3325 	shm_mnt = kern_mount(&shmem_fs_type);
3326 	BUG_ON(IS_ERR(shm_mnt));
3327 
3328 	return 0;
3329 }
3330 
3331 int shmem_unuse(swp_entry_t swap, struct page *page)
3332 {
3333 	return 0;
3334 }
3335 
3336 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3337 {
3338 	return 0;
3339 }
3340 
3341 void shmem_unlock_mapping(struct address_space *mapping)
3342 {
3343 }
3344 
3345 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3346 {
3347 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3348 }
3349 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3350 
3351 #define shmem_vm_ops				generic_file_vm_ops
3352 #define shmem_file_operations			ramfs_file_operations
3353 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3354 #define shmem_acct_size(flags, size)		0
3355 #define shmem_unacct_size(flags, size)		do {} while (0)
3356 
3357 #endif /* CONFIG_SHMEM */
3358 
3359 /* common code */
3360 
3361 static struct dentry_operations anon_ops = {
3362 	.d_dname = simple_dname
3363 };
3364 
3365 static struct file *__shmem_file_setup(const char *name, loff_t size,
3366 				       unsigned long flags, unsigned int i_flags)
3367 {
3368 	struct file *res;
3369 	struct inode *inode;
3370 	struct path path;
3371 	struct super_block *sb;
3372 	struct qstr this;
3373 
3374 	if (IS_ERR(shm_mnt))
3375 		return ERR_CAST(shm_mnt);
3376 
3377 	if (size < 0 || size > MAX_LFS_FILESIZE)
3378 		return ERR_PTR(-EINVAL);
3379 
3380 	if (shmem_acct_size(flags, size))
3381 		return ERR_PTR(-ENOMEM);
3382 
3383 	res = ERR_PTR(-ENOMEM);
3384 	this.name = name;
3385 	this.len = strlen(name);
3386 	this.hash = 0; /* will go */
3387 	sb = shm_mnt->mnt_sb;
3388 	path.mnt = mntget(shm_mnt);
3389 	path.dentry = d_alloc_pseudo(sb, &this);
3390 	if (!path.dentry)
3391 		goto put_memory;
3392 	d_set_d_op(path.dentry, &anon_ops);
3393 
3394 	res = ERR_PTR(-ENOSPC);
3395 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3396 	if (!inode)
3397 		goto put_memory;
3398 
3399 	inode->i_flags |= i_flags;
3400 	d_instantiate(path.dentry, inode);
3401 	inode->i_size = size;
3402 	clear_nlink(inode);	/* It is unlinked */
3403 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3404 	if (IS_ERR(res))
3405 		goto put_path;
3406 
3407 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3408 		  &shmem_file_operations);
3409 	if (IS_ERR(res))
3410 		goto put_path;
3411 
3412 	return res;
3413 
3414 put_memory:
3415 	shmem_unacct_size(flags, size);
3416 put_path:
3417 	path_put(&path);
3418 	return res;
3419 }
3420 
3421 /**
3422  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3423  * 	kernel internal.  There will be NO LSM permission checks against the
3424  * 	underlying inode.  So users of this interface must do LSM checks at a
3425  *	higher layer.  The users are the big_key and shm implementations.  LSM
3426  *	checks are provided at the key or shm level rather than the inode.
3427  * @name: name for dentry (to be seen in /proc/<pid>/maps
3428  * @size: size to be set for the file
3429  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3430  */
3431 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3432 {
3433 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3434 }
3435 
3436 /**
3437  * shmem_file_setup - get an unlinked file living in tmpfs
3438  * @name: name for dentry (to be seen in /proc/<pid>/maps
3439  * @size: size to be set for the file
3440  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3441  */
3442 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3443 {
3444 	return __shmem_file_setup(name, size, flags, 0);
3445 }
3446 EXPORT_SYMBOL_GPL(shmem_file_setup);
3447 
3448 /**
3449  * shmem_zero_setup - setup a shared anonymous mapping
3450  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3451  */
3452 int shmem_zero_setup(struct vm_area_struct *vma)
3453 {
3454 	struct file *file;
3455 	loff_t size = vma->vm_end - vma->vm_start;
3456 
3457 	/*
3458 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3459 	 * between XFS directory reading and selinux: since this file is only
3460 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3461 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3462 	 */
3463 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3464 	if (IS_ERR(file))
3465 		return PTR_ERR(file);
3466 
3467 	if (vma->vm_file)
3468 		fput(vma->vm_file);
3469 	vma->vm_file = file;
3470 	vma->vm_ops = &shmem_vm_ops;
3471 	return 0;
3472 }
3473 
3474 /**
3475  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3476  * @mapping:	the page's address_space
3477  * @index:	the page index
3478  * @gfp:	the page allocator flags to use if allocating
3479  *
3480  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3481  * with any new page allocations done using the specified allocation flags.
3482  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3483  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3484  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3485  *
3486  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3487  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3488  */
3489 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3490 					 pgoff_t index, gfp_t gfp)
3491 {
3492 #ifdef CONFIG_SHMEM
3493 	struct inode *inode = mapping->host;
3494 	struct page *page;
3495 	int error;
3496 
3497 	BUG_ON(mapping->a_ops != &shmem_aops);
3498 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3499 	if (error)
3500 		page = ERR_PTR(error);
3501 	else
3502 		unlock_page(page);
3503 	return page;
3504 #else
3505 	/*
3506 	 * The tiny !SHMEM case uses ramfs without swap
3507 	 */
3508 	return read_cache_page_gfp(mapping, index, gfp);
3509 #endif
3510 }
3511 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3512