1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 #include <asm/pgtable.h> 86 87 #include "internal.h" 88 89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* Pretend that each entry is of this size in directory's i_size */ 93 #define BOGO_DIRENT_SIZE 20 94 95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 96 #define SHORT_SYMLINK_LEN 128 97 98 /* 99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 100 * inode->i_private (with i_mutex making sure that it has only one user at 101 * a time): we would prefer not to enlarge the shmem inode just for that. 102 */ 103 struct shmem_falloc { 104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 105 pgoff_t start; /* start of range currently being fallocated */ 106 pgoff_t next; /* the next page offset to be fallocated */ 107 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 109 }; 110 111 struct shmem_options { 112 unsigned long long blocks; 113 unsigned long long inodes; 114 struct mempolicy *mpol; 115 kuid_t uid; 116 kgid_t gid; 117 umode_t mode; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 140 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 141 struct shmem_inode_info *info, pgoff_t index); 142 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 vm_fault_t *fault_type); 146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp, 148 gfp_t gfp, struct vm_area_struct *vma, 149 struct vm_fault *vmf, vm_fault_t *fault_type); 150 151 int shmem_getpage(struct inode *inode, pgoff_t index, 152 struct page **pagep, enum sgp_type sgp) 153 { 154 return shmem_getpage_gfp(inode, index, pagep, sgp, 155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 156 } 157 158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 159 { 160 return sb->s_fs_info; 161 } 162 163 /* 164 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 165 * for shared memory and for shared anonymous (/dev/zero) mappings 166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 167 * consistent with the pre-accounting of private mappings ... 168 */ 169 static inline int shmem_acct_size(unsigned long flags, loff_t size) 170 { 171 return (flags & VM_NORESERVE) ? 172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 173 } 174 175 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 176 { 177 if (!(flags & VM_NORESERVE)) 178 vm_unacct_memory(VM_ACCT(size)); 179 } 180 181 static inline int shmem_reacct_size(unsigned long flags, 182 loff_t oldsize, loff_t newsize) 183 { 184 if (!(flags & VM_NORESERVE)) { 185 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 186 return security_vm_enough_memory_mm(current->mm, 187 VM_ACCT(newsize) - VM_ACCT(oldsize)); 188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 190 } 191 return 0; 192 } 193 194 /* 195 * ... whereas tmpfs objects are accounted incrementally as 196 * pages are allocated, in order to allow large sparse files. 197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 199 */ 200 static inline int shmem_acct_block(unsigned long flags, long pages) 201 { 202 if (!(flags & VM_NORESERVE)) 203 return 0; 204 205 return security_vm_enough_memory_mm(current->mm, 206 pages * VM_ACCT(PAGE_SIZE)); 207 } 208 209 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 210 { 211 if (flags & VM_NORESERVE) 212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 216 { 217 struct shmem_inode_info *info = SHMEM_I(inode); 218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 219 220 if (shmem_acct_block(info->flags, pages)) 221 return false; 222 223 if (sbinfo->max_blocks) { 224 if (percpu_counter_compare(&sbinfo->used_blocks, 225 sbinfo->max_blocks - pages) > 0) 226 goto unacct; 227 percpu_counter_add(&sbinfo->used_blocks, pages); 228 } 229 230 return true; 231 232 unacct: 233 shmem_unacct_blocks(info->flags, pages); 234 return false; 235 } 236 237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 238 { 239 struct shmem_inode_info *info = SHMEM_I(inode); 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 242 if (sbinfo->max_blocks) 243 percpu_counter_sub(&sbinfo->used_blocks, pages); 244 shmem_unacct_blocks(info->flags, pages); 245 } 246 247 static const struct super_operations shmem_ops; 248 static const struct address_space_operations shmem_aops; 249 static const struct file_operations shmem_file_operations; 250 static const struct inode_operations shmem_inode_operations; 251 static const struct inode_operations shmem_dir_inode_operations; 252 static const struct inode_operations shmem_special_inode_operations; 253 static const struct vm_operations_struct shmem_vm_ops; 254 static struct file_system_type shmem_fs_type; 255 256 bool vma_is_shmem(struct vm_area_struct *vma) 257 { 258 return vma->vm_ops == &shmem_vm_ops; 259 } 260 261 static LIST_HEAD(shmem_swaplist); 262 static DEFINE_MUTEX(shmem_swaplist_mutex); 263 264 static int shmem_reserve_inode(struct super_block *sb) 265 { 266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 267 if (sbinfo->max_inodes) { 268 spin_lock(&sbinfo->stat_lock); 269 if (!sbinfo->free_inodes) { 270 spin_unlock(&sbinfo->stat_lock); 271 return -ENOSPC; 272 } 273 sbinfo->free_inodes--; 274 spin_unlock(&sbinfo->stat_lock); 275 } 276 return 0; 277 } 278 279 static void shmem_free_inode(struct super_block *sb) 280 { 281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 282 if (sbinfo->max_inodes) { 283 spin_lock(&sbinfo->stat_lock); 284 sbinfo->free_inodes++; 285 spin_unlock(&sbinfo->stat_lock); 286 } 287 } 288 289 /** 290 * shmem_recalc_inode - recalculate the block usage of an inode 291 * @inode: inode to recalc 292 * 293 * We have to calculate the free blocks since the mm can drop 294 * undirtied hole pages behind our back. 295 * 296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 298 * 299 * It has to be called with the spinlock held. 300 */ 301 static void shmem_recalc_inode(struct inode *inode) 302 { 303 struct shmem_inode_info *info = SHMEM_I(inode); 304 long freed; 305 306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 307 if (freed > 0) { 308 info->alloced -= freed; 309 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 310 shmem_inode_unacct_blocks(inode, freed); 311 } 312 } 313 314 bool shmem_charge(struct inode *inode, long pages) 315 { 316 struct shmem_inode_info *info = SHMEM_I(inode); 317 unsigned long flags; 318 319 if (!shmem_inode_acct_block(inode, pages)) 320 return false; 321 322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 323 inode->i_mapping->nrpages += pages; 324 325 spin_lock_irqsave(&info->lock, flags); 326 info->alloced += pages; 327 inode->i_blocks += pages * BLOCKS_PER_PAGE; 328 shmem_recalc_inode(inode); 329 spin_unlock_irqrestore(&info->lock, flags); 330 331 return true; 332 } 333 334 void shmem_uncharge(struct inode *inode, long pages) 335 { 336 struct shmem_inode_info *info = SHMEM_I(inode); 337 unsigned long flags; 338 339 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 340 341 spin_lock_irqsave(&info->lock, flags); 342 info->alloced -= pages; 343 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 344 shmem_recalc_inode(inode); 345 spin_unlock_irqrestore(&info->lock, flags); 346 347 shmem_inode_unacct_blocks(inode, pages); 348 } 349 350 /* 351 * Replace item expected in xarray by a new item, while holding xa_lock. 352 */ 353 static int shmem_replace_entry(struct address_space *mapping, 354 pgoff_t index, void *expected, void *replacement) 355 { 356 XA_STATE(xas, &mapping->i_pages, index); 357 void *item; 358 359 VM_BUG_ON(!expected); 360 VM_BUG_ON(!replacement); 361 item = xas_load(&xas); 362 if (item != expected) 363 return -ENOENT; 364 xas_store(&xas, replacement); 365 return 0; 366 } 367 368 /* 369 * Sometimes, before we decide whether to proceed or to fail, we must check 370 * that an entry was not already brought back from swap by a racing thread. 371 * 372 * Checking page is not enough: by the time a SwapCache page is locked, it 373 * might be reused, and again be SwapCache, using the same swap as before. 374 */ 375 static bool shmem_confirm_swap(struct address_space *mapping, 376 pgoff_t index, swp_entry_t swap) 377 { 378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 379 } 380 381 /* 382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 383 * 384 * SHMEM_HUGE_NEVER: 385 * disables huge pages for the mount; 386 * SHMEM_HUGE_ALWAYS: 387 * enables huge pages for the mount; 388 * SHMEM_HUGE_WITHIN_SIZE: 389 * only allocate huge pages if the page will be fully within i_size, 390 * also respect fadvise()/madvise() hints; 391 * SHMEM_HUGE_ADVISE: 392 * only allocate huge pages if requested with fadvise()/madvise(); 393 */ 394 395 #define SHMEM_HUGE_NEVER 0 396 #define SHMEM_HUGE_ALWAYS 1 397 #define SHMEM_HUGE_WITHIN_SIZE 2 398 #define SHMEM_HUGE_ADVISE 3 399 400 /* 401 * Special values. 402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 403 * 404 * SHMEM_HUGE_DENY: 405 * disables huge on shm_mnt and all mounts, for emergency use; 406 * SHMEM_HUGE_FORCE: 407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 408 * 409 */ 410 #define SHMEM_HUGE_DENY (-1) 411 #define SHMEM_HUGE_FORCE (-2) 412 413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 414 /* ifdef here to avoid bloating shmem.o when not necessary */ 415 416 static int shmem_huge __read_mostly; 417 418 #if defined(CONFIG_SYSFS) 419 static int shmem_parse_huge(const char *str) 420 { 421 if (!strcmp(str, "never")) 422 return SHMEM_HUGE_NEVER; 423 if (!strcmp(str, "always")) 424 return SHMEM_HUGE_ALWAYS; 425 if (!strcmp(str, "within_size")) 426 return SHMEM_HUGE_WITHIN_SIZE; 427 if (!strcmp(str, "advise")) 428 return SHMEM_HUGE_ADVISE; 429 if (!strcmp(str, "deny")) 430 return SHMEM_HUGE_DENY; 431 if (!strcmp(str, "force")) 432 return SHMEM_HUGE_FORCE; 433 return -EINVAL; 434 } 435 #endif 436 437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 438 static const char *shmem_format_huge(int huge) 439 { 440 switch (huge) { 441 case SHMEM_HUGE_NEVER: 442 return "never"; 443 case SHMEM_HUGE_ALWAYS: 444 return "always"; 445 case SHMEM_HUGE_WITHIN_SIZE: 446 return "within_size"; 447 case SHMEM_HUGE_ADVISE: 448 return "advise"; 449 case SHMEM_HUGE_DENY: 450 return "deny"; 451 case SHMEM_HUGE_FORCE: 452 return "force"; 453 default: 454 VM_BUG_ON(1); 455 return "bad_val"; 456 } 457 } 458 #endif 459 460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 461 struct shrink_control *sc, unsigned long nr_to_split) 462 { 463 LIST_HEAD(list), *pos, *next; 464 LIST_HEAD(to_remove); 465 struct inode *inode; 466 struct shmem_inode_info *info; 467 struct page *page; 468 unsigned long batch = sc ? sc->nr_to_scan : 128; 469 int removed = 0, split = 0; 470 471 if (list_empty(&sbinfo->shrinklist)) 472 return SHRINK_STOP; 473 474 spin_lock(&sbinfo->shrinklist_lock); 475 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 476 info = list_entry(pos, struct shmem_inode_info, shrinklist); 477 478 /* pin the inode */ 479 inode = igrab(&info->vfs_inode); 480 481 /* inode is about to be evicted */ 482 if (!inode) { 483 list_del_init(&info->shrinklist); 484 removed++; 485 goto next; 486 } 487 488 /* Check if there's anything to gain */ 489 if (round_up(inode->i_size, PAGE_SIZE) == 490 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 491 list_move(&info->shrinklist, &to_remove); 492 removed++; 493 goto next; 494 } 495 496 list_move(&info->shrinklist, &list); 497 next: 498 if (!--batch) 499 break; 500 } 501 spin_unlock(&sbinfo->shrinklist_lock); 502 503 list_for_each_safe(pos, next, &to_remove) { 504 info = list_entry(pos, struct shmem_inode_info, shrinklist); 505 inode = &info->vfs_inode; 506 list_del_init(&info->shrinklist); 507 iput(inode); 508 } 509 510 list_for_each_safe(pos, next, &list) { 511 int ret; 512 513 info = list_entry(pos, struct shmem_inode_info, shrinklist); 514 inode = &info->vfs_inode; 515 516 if (nr_to_split && split >= nr_to_split) 517 goto leave; 518 519 page = find_get_page(inode->i_mapping, 520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 521 if (!page) 522 goto drop; 523 524 /* No huge page at the end of the file: nothing to split */ 525 if (!PageTransHuge(page)) { 526 put_page(page); 527 goto drop; 528 } 529 530 /* 531 * Leave the inode on the list if we failed to lock 532 * the page at this time. 533 * 534 * Waiting for the lock may lead to deadlock in the 535 * reclaim path. 536 */ 537 if (!trylock_page(page)) { 538 put_page(page); 539 goto leave; 540 } 541 542 ret = split_huge_page(page); 543 unlock_page(page); 544 put_page(page); 545 546 /* If split failed leave the inode on the list */ 547 if (ret) 548 goto leave; 549 550 split++; 551 drop: 552 list_del_init(&info->shrinklist); 553 removed++; 554 leave: 555 iput(inode); 556 } 557 558 spin_lock(&sbinfo->shrinklist_lock); 559 list_splice_tail(&list, &sbinfo->shrinklist); 560 sbinfo->shrinklist_len -= removed; 561 spin_unlock(&sbinfo->shrinklist_lock); 562 563 return split; 564 } 565 566 static long shmem_unused_huge_scan(struct super_block *sb, 567 struct shrink_control *sc) 568 { 569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 570 571 if (!READ_ONCE(sbinfo->shrinklist_len)) 572 return SHRINK_STOP; 573 574 return shmem_unused_huge_shrink(sbinfo, sc, 0); 575 } 576 577 static long shmem_unused_huge_count(struct super_block *sb, 578 struct shrink_control *sc) 579 { 580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 581 return READ_ONCE(sbinfo->shrinklist_len); 582 } 583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 584 585 #define shmem_huge SHMEM_HUGE_DENY 586 587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 588 struct shrink_control *sc, unsigned long nr_to_split) 589 { 590 return 0; 591 } 592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 593 594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 595 { 596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 598 shmem_huge != SHMEM_HUGE_DENY) 599 return true; 600 return false; 601 } 602 603 /* 604 * Like add_to_page_cache_locked, but error if expected item has gone. 605 */ 606 static int shmem_add_to_page_cache(struct page *page, 607 struct address_space *mapping, 608 pgoff_t index, void *expected, gfp_t gfp) 609 { 610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 611 unsigned long i = 0; 612 unsigned long nr = compound_nr(page); 613 614 VM_BUG_ON_PAGE(PageTail(page), page); 615 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 616 VM_BUG_ON_PAGE(!PageLocked(page), page); 617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 618 VM_BUG_ON(expected && PageTransHuge(page)); 619 620 page_ref_add(page, nr); 621 page->mapping = mapping; 622 page->index = index; 623 624 do { 625 void *entry; 626 xas_lock_irq(&xas); 627 entry = xas_find_conflict(&xas); 628 if (entry != expected) 629 xas_set_err(&xas, -EEXIST); 630 xas_create_range(&xas); 631 if (xas_error(&xas)) 632 goto unlock; 633 next: 634 xas_store(&xas, page); 635 if (++i < nr) { 636 xas_next(&xas); 637 goto next; 638 } 639 if (PageTransHuge(page)) { 640 count_vm_event(THP_FILE_ALLOC); 641 __inc_node_page_state(page, NR_SHMEM_THPS); 642 } 643 mapping->nrpages += nr; 644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 646 unlock: 647 xas_unlock_irq(&xas); 648 } while (xas_nomem(&xas, gfp)); 649 650 if (xas_error(&xas)) { 651 page->mapping = NULL; 652 page_ref_sub(page, nr); 653 return xas_error(&xas); 654 } 655 656 return 0; 657 } 658 659 /* 660 * Like delete_from_page_cache, but substitutes swap for page. 661 */ 662 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 663 { 664 struct address_space *mapping = page->mapping; 665 int error; 666 667 VM_BUG_ON_PAGE(PageCompound(page), page); 668 669 xa_lock_irq(&mapping->i_pages); 670 error = shmem_replace_entry(mapping, page->index, page, radswap); 671 page->mapping = NULL; 672 mapping->nrpages--; 673 __dec_node_page_state(page, NR_FILE_PAGES); 674 __dec_node_page_state(page, NR_SHMEM); 675 xa_unlock_irq(&mapping->i_pages); 676 put_page(page); 677 BUG_ON(error); 678 } 679 680 /* 681 * Remove swap entry from page cache, free the swap and its page cache. 682 */ 683 static int shmem_free_swap(struct address_space *mapping, 684 pgoff_t index, void *radswap) 685 { 686 void *old; 687 688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 689 if (old != radswap) 690 return -ENOENT; 691 free_swap_and_cache(radix_to_swp_entry(radswap)); 692 return 0; 693 } 694 695 /* 696 * Determine (in bytes) how many of the shmem object's pages mapped by the 697 * given offsets are swapped out. 698 * 699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 700 * as long as the inode doesn't go away and racy results are not a problem. 701 */ 702 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 703 pgoff_t start, pgoff_t end) 704 { 705 XA_STATE(xas, &mapping->i_pages, start); 706 struct page *page; 707 unsigned long swapped = 0; 708 709 rcu_read_lock(); 710 xas_for_each(&xas, page, end - 1) { 711 if (xas_retry(&xas, page)) 712 continue; 713 if (xa_is_value(page)) 714 swapped++; 715 716 if (need_resched()) { 717 xas_pause(&xas); 718 cond_resched_rcu(); 719 } 720 } 721 722 rcu_read_unlock(); 723 724 return swapped << PAGE_SHIFT; 725 } 726 727 /* 728 * Determine (in bytes) how many of the shmem object's pages mapped by the 729 * given vma is swapped out. 730 * 731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 732 * as long as the inode doesn't go away and racy results are not a problem. 733 */ 734 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 735 { 736 struct inode *inode = file_inode(vma->vm_file); 737 struct shmem_inode_info *info = SHMEM_I(inode); 738 struct address_space *mapping = inode->i_mapping; 739 unsigned long swapped; 740 741 /* Be careful as we don't hold info->lock */ 742 swapped = READ_ONCE(info->swapped); 743 744 /* 745 * The easier cases are when the shmem object has nothing in swap, or 746 * the vma maps it whole. Then we can simply use the stats that we 747 * already track. 748 */ 749 if (!swapped) 750 return 0; 751 752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 753 return swapped << PAGE_SHIFT; 754 755 /* Here comes the more involved part */ 756 return shmem_partial_swap_usage(mapping, 757 linear_page_index(vma, vma->vm_start), 758 linear_page_index(vma, vma->vm_end)); 759 } 760 761 /* 762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 763 */ 764 void shmem_unlock_mapping(struct address_space *mapping) 765 { 766 struct pagevec pvec; 767 pgoff_t indices[PAGEVEC_SIZE]; 768 pgoff_t index = 0; 769 770 pagevec_init(&pvec); 771 /* 772 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 773 */ 774 while (!mapping_unevictable(mapping)) { 775 /* 776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 778 */ 779 pvec.nr = find_get_entries(mapping, index, 780 PAGEVEC_SIZE, pvec.pages, indices); 781 if (!pvec.nr) 782 break; 783 index = indices[pvec.nr - 1] + 1; 784 pagevec_remove_exceptionals(&pvec); 785 check_move_unevictable_pages(&pvec); 786 pagevec_release(&pvec); 787 cond_resched(); 788 } 789 } 790 791 /* 792 * Remove range of pages and swap entries from page cache, and free them. 793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 794 */ 795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 796 bool unfalloc) 797 { 798 struct address_space *mapping = inode->i_mapping; 799 struct shmem_inode_info *info = SHMEM_I(inode); 800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 801 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 802 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 804 struct pagevec pvec; 805 pgoff_t indices[PAGEVEC_SIZE]; 806 long nr_swaps_freed = 0; 807 pgoff_t index; 808 int i; 809 810 if (lend == -1) 811 end = -1; /* unsigned, so actually very big */ 812 813 pagevec_init(&pvec); 814 index = start; 815 while (index < end) { 816 pvec.nr = find_get_entries(mapping, index, 817 min(end - index, (pgoff_t)PAGEVEC_SIZE), 818 pvec.pages, indices); 819 if (!pvec.nr) 820 break; 821 for (i = 0; i < pagevec_count(&pvec); i++) { 822 struct page *page = pvec.pages[i]; 823 824 index = indices[i]; 825 if (index >= end) 826 break; 827 828 if (xa_is_value(page)) { 829 if (unfalloc) 830 continue; 831 nr_swaps_freed += !shmem_free_swap(mapping, 832 index, page); 833 continue; 834 } 835 836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 837 838 if (!trylock_page(page)) 839 continue; 840 841 if (PageTransTail(page)) { 842 /* Middle of THP: zero out the page */ 843 clear_highpage(page); 844 unlock_page(page); 845 continue; 846 } else if (PageTransHuge(page)) { 847 if (index == round_down(end, HPAGE_PMD_NR)) { 848 /* 849 * Range ends in the middle of THP: 850 * zero out the page 851 */ 852 clear_highpage(page); 853 unlock_page(page); 854 continue; 855 } 856 index += HPAGE_PMD_NR - 1; 857 i += HPAGE_PMD_NR - 1; 858 } 859 860 if (!unfalloc || !PageUptodate(page)) { 861 VM_BUG_ON_PAGE(PageTail(page), page); 862 if (page_mapping(page) == mapping) { 863 VM_BUG_ON_PAGE(PageWriteback(page), page); 864 truncate_inode_page(mapping, page); 865 } 866 } 867 unlock_page(page); 868 } 869 pagevec_remove_exceptionals(&pvec); 870 pagevec_release(&pvec); 871 cond_resched(); 872 index++; 873 } 874 875 if (partial_start) { 876 struct page *page = NULL; 877 shmem_getpage(inode, start - 1, &page, SGP_READ); 878 if (page) { 879 unsigned int top = PAGE_SIZE; 880 if (start > end) { 881 top = partial_end; 882 partial_end = 0; 883 } 884 zero_user_segment(page, partial_start, top); 885 set_page_dirty(page); 886 unlock_page(page); 887 put_page(page); 888 } 889 } 890 if (partial_end) { 891 struct page *page = NULL; 892 shmem_getpage(inode, end, &page, SGP_READ); 893 if (page) { 894 zero_user_segment(page, 0, partial_end); 895 set_page_dirty(page); 896 unlock_page(page); 897 put_page(page); 898 } 899 } 900 if (start >= end) 901 return; 902 903 index = start; 904 while (index < end) { 905 cond_resched(); 906 907 pvec.nr = find_get_entries(mapping, index, 908 min(end - index, (pgoff_t)PAGEVEC_SIZE), 909 pvec.pages, indices); 910 if (!pvec.nr) { 911 /* If all gone or hole-punch or unfalloc, we're done */ 912 if (index == start || end != -1) 913 break; 914 /* But if truncating, restart to make sure all gone */ 915 index = start; 916 continue; 917 } 918 for (i = 0; i < pagevec_count(&pvec); i++) { 919 struct page *page = pvec.pages[i]; 920 921 index = indices[i]; 922 if (index >= end) 923 break; 924 925 if (xa_is_value(page)) { 926 if (unfalloc) 927 continue; 928 if (shmem_free_swap(mapping, index, page)) { 929 /* Swap was replaced by page: retry */ 930 index--; 931 break; 932 } 933 nr_swaps_freed++; 934 continue; 935 } 936 937 lock_page(page); 938 939 if (PageTransTail(page)) { 940 /* Middle of THP: zero out the page */ 941 clear_highpage(page); 942 unlock_page(page); 943 /* 944 * Partial thp truncate due 'start' in middle 945 * of THP: don't need to look on these pages 946 * again on !pvec.nr restart. 947 */ 948 if (index != round_down(end, HPAGE_PMD_NR)) 949 start++; 950 continue; 951 } else if (PageTransHuge(page)) { 952 if (index == round_down(end, HPAGE_PMD_NR)) { 953 /* 954 * Range ends in the middle of THP: 955 * zero out the page 956 */ 957 clear_highpage(page); 958 unlock_page(page); 959 continue; 960 } 961 index += HPAGE_PMD_NR - 1; 962 i += HPAGE_PMD_NR - 1; 963 } 964 965 if (!unfalloc || !PageUptodate(page)) { 966 VM_BUG_ON_PAGE(PageTail(page), page); 967 if (page_mapping(page) == mapping) { 968 VM_BUG_ON_PAGE(PageWriteback(page), page); 969 truncate_inode_page(mapping, page); 970 } else { 971 /* Page was replaced by swap: retry */ 972 unlock_page(page); 973 index--; 974 break; 975 } 976 } 977 unlock_page(page); 978 } 979 pagevec_remove_exceptionals(&pvec); 980 pagevec_release(&pvec); 981 index++; 982 } 983 984 spin_lock_irq(&info->lock); 985 info->swapped -= nr_swaps_freed; 986 shmem_recalc_inode(inode); 987 spin_unlock_irq(&info->lock); 988 } 989 990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 991 { 992 shmem_undo_range(inode, lstart, lend, false); 993 inode->i_ctime = inode->i_mtime = current_time(inode); 994 } 995 EXPORT_SYMBOL_GPL(shmem_truncate_range); 996 997 static int shmem_getattr(const struct path *path, struct kstat *stat, 998 u32 request_mask, unsigned int query_flags) 999 { 1000 struct inode *inode = path->dentry->d_inode; 1001 struct shmem_inode_info *info = SHMEM_I(inode); 1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1003 1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1005 spin_lock_irq(&info->lock); 1006 shmem_recalc_inode(inode); 1007 spin_unlock_irq(&info->lock); 1008 } 1009 generic_fillattr(inode, stat); 1010 1011 if (is_huge_enabled(sb_info)) 1012 stat->blksize = HPAGE_PMD_SIZE; 1013 1014 return 0; 1015 } 1016 1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1018 { 1019 struct inode *inode = d_inode(dentry); 1020 struct shmem_inode_info *info = SHMEM_I(inode); 1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1022 int error; 1023 1024 error = setattr_prepare(dentry, attr); 1025 if (error) 1026 return error; 1027 1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1029 loff_t oldsize = inode->i_size; 1030 loff_t newsize = attr->ia_size; 1031 1032 /* protected by i_mutex */ 1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1034 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1035 return -EPERM; 1036 1037 if (newsize != oldsize) { 1038 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1039 oldsize, newsize); 1040 if (error) 1041 return error; 1042 i_size_write(inode, newsize); 1043 inode->i_ctime = inode->i_mtime = current_time(inode); 1044 } 1045 if (newsize <= oldsize) { 1046 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1047 if (oldsize > holebegin) 1048 unmap_mapping_range(inode->i_mapping, 1049 holebegin, 0, 1); 1050 if (info->alloced) 1051 shmem_truncate_range(inode, 1052 newsize, (loff_t)-1); 1053 /* unmap again to remove racily COWed private pages */ 1054 if (oldsize > holebegin) 1055 unmap_mapping_range(inode->i_mapping, 1056 holebegin, 0, 1); 1057 1058 /* 1059 * Part of the huge page can be beyond i_size: subject 1060 * to shrink under memory pressure. 1061 */ 1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1063 spin_lock(&sbinfo->shrinklist_lock); 1064 /* 1065 * _careful to defend against unlocked access to 1066 * ->shrink_list in shmem_unused_huge_shrink() 1067 */ 1068 if (list_empty_careful(&info->shrinklist)) { 1069 list_add_tail(&info->shrinklist, 1070 &sbinfo->shrinklist); 1071 sbinfo->shrinklist_len++; 1072 } 1073 spin_unlock(&sbinfo->shrinklist_lock); 1074 } 1075 } 1076 } 1077 1078 setattr_copy(inode, attr); 1079 if (attr->ia_valid & ATTR_MODE) 1080 error = posix_acl_chmod(inode, inode->i_mode); 1081 return error; 1082 } 1083 1084 static void shmem_evict_inode(struct inode *inode) 1085 { 1086 struct shmem_inode_info *info = SHMEM_I(inode); 1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1088 1089 if (inode->i_mapping->a_ops == &shmem_aops) { 1090 shmem_unacct_size(info->flags, inode->i_size); 1091 inode->i_size = 0; 1092 shmem_truncate_range(inode, 0, (loff_t)-1); 1093 if (!list_empty(&info->shrinklist)) { 1094 spin_lock(&sbinfo->shrinklist_lock); 1095 if (!list_empty(&info->shrinklist)) { 1096 list_del_init(&info->shrinklist); 1097 sbinfo->shrinklist_len--; 1098 } 1099 spin_unlock(&sbinfo->shrinklist_lock); 1100 } 1101 while (!list_empty(&info->swaplist)) { 1102 /* Wait while shmem_unuse() is scanning this inode... */ 1103 wait_var_event(&info->stop_eviction, 1104 !atomic_read(&info->stop_eviction)); 1105 mutex_lock(&shmem_swaplist_mutex); 1106 /* ...but beware of the race if we peeked too early */ 1107 if (!atomic_read(&info->stop_eviction)) 1108 list_del_init(&info->swaplist); 1109 mutex_unlock(&shmem_swaplist_mutex); 1110 } 1111 } 1112 1113 simple_xattrs_free(&info->xattrs); 1114 WARN_ON(inode->i_blocks); 1115 shmem_free_inode(inode->i_sb); 1116 clear_inode(inode); 1117 } 1118 1119 extern struct swap_info_struct *swap_info[]; 1120 1121 static int shmem_find_swap_entries(struct address_space *mapping, 1122 pgoff_t start, unsigned int nr_entries, 1123 struct page **entries, pgoff_t *indices, 1124 unsigned int type, bool frontswap) 1125 { 1126 XA_STATE(xas, &mapping->i_pages, start); 1127 struct page *page; 1128 swp_entry_t entry; 1129 unsigned int ret = 0; 1130 1131 if (!nr_entries) 1132 return 0; 1133 1134 rcu_read_lock(); 1135 xas_for_each(&xas, page, ULONG_MAX) { 1136 if (xas_retry(&xas, page)) 1137 continue; 1138 1139 if (!xa_is_value(page)) 1140 continue; 1141 1142 entry = radix_to_swp_entry(page); 1143 if (swp_type(entry) != type) 1144 continue; 1145 if (frontswap && 1146 !frontswap_test(swap_info[type], swp_offset(entry))) 1147 continue; 1148 1149 indices[ret] = xas.xa_index; 1150 entries[ret] = page; 1151 1152 if (need_resched()) { 1153 xas_pause(&xas); 1154 cond_resched_rcu(); 1155 } 1156 if (++ret == nr_entries) 1157 break; 1158 } 1159 rcu_read_unlock(); 1160 1161 return ret; 1162 } 1163 1164 /* 1165 * Move the swapped pages for an inode to page cache. Returns the count 1166 * of pages swapped in, or the error in case of failure. 1167 */ 1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1169 pgoff_t *indices) 1170 { 1171 int i = 0; 1172 int ret = 0; 1173 int error = 0; 1174 struct address_space *mapping = inode->i_mapping; 1175 1176 for (i = 0; i < pvec.nr; i++) { 1177 struct page *page = pvec.pages[i]; 1178 1179 if (!xa_is_value(page)) 1180 continue; 1181 error = shmem_swapin_page(inode, indices[i], 1182 &page, SGP_CACHE, 1183 mapping_gfp_mask(mapping), 1184 NULL, NULL); 1185 if (error == 0) { 1186 unlock_page(page); 1187 put_page(page); 1188 ret++; 1189 } 1190 if (error == -ENOMEM) 1191 break; 1192 error = 0; 1193 } 1194 return error ? error : ret; 1195 } 1196 1197 /* 1198 * If swap found in inode, free it and move page from swapcache to filecache. 1199 */ 1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1201 bool frontswap, unsigned long *fs_pages_to_unuse) 1202 { 1203 struct address_space *mapping = inode->i_mapping; 1204 pgoff_t start = 0; 1205 struct pagevec pvec; 1206 pgoff_t indices[PAGEVEC_SIZE]; 1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1208 int ret = 0; 1209 1210 pagevec_init(&pvec); 1211 do { 1212 unsigned int nr_entries = PAGEVEC_SIZE; 1213 1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1215 nr_entries = *fs_pages_to_unuse; 1216 1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1218 pvec.pages, indices, 1219 type, frontswap); 1220 if (pvec.nr == 0) { 1221 ret = 0; 1222 break; 1223 } 1224 1225 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1226 if (ret < 0) 1227 break; 1228 1229 if (frontswap_partial) { 1230 *fs_pages_to_unuse -= ret; 1231 if (*fs_pages_to_unuse == 0) { 1232 ret = FRONTSWAP_PAGES_UNUSED; 1233 break; 1234 } 1235 } 1236 1237 start = indices[pvec.nr - 1]; 1238 } while (true); 1239 1240 return ret; 1241 } 1242 1243 /* 1244 * Read all the shared memory data that resides in the swap 1245 * device 'type' back into memory, so the swap device can be 1246 * unused. 1247 */ 1248 int shmem_unuse(unsigned int type, bool frontswap, 1249 unsigned long *fs_pages_to_unuse) 1250 { 1251 struct shmem_inode_info *info, *next; 1252 int error = 0; 1253 1254 if (list_empty(&shmem_swaplist)) 1255 return 0; 1256 1257 mutex_lock(&shmem_swaplist_mutex); 1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1259 if (!info->swapped) { 1260 list_del_init(&info->swaplist); 1261 continue; 1262 } 1263 /* 1264 * Drop the swaplist mutex while searching the inode for swap; 1265 * but before doing so, make sure shmem_evict_inode() will not 1266 * remove placeholder inode from swaplist, nor let it be freed 1267 * (igrab() would protect from unlink, but not from unmount). 1268 */ 1269 atomic_inc(&info->stop_eviction); 1270 mutex_unlock(&shmem_swaplist_mutex); 1271 1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1273 fs_pages_to_unuse); 1274 cond_resched(); 1275 1276 mutex_lock(&shmem_swaplist_mutex); 1277 next = list_next_entry(info, swaplist); 1278 if (!info->swapped) 1279 list_del_init(&info->swaplist); 1280 if (atomic_dec_and_test(&info->stop_eviction)) 1281 wake_up_var(&info->stop_eviction); 1282 if (error) 1283 break; 1284 } 1285 mutex_unlock(&shmem_swaplist_mutex); 1286 1287 return error; 1288 } 1289 1290 /* 1291 * Move the page from the page cache to the swap cache. 1292 */ 1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1294 { 1295 struct shmem_inode_info *info; 1296 struct address_space *mapping; 1297 struct inode *inode; 1298 swp_entry_t swap; 1299 pgoff_t index; 1300 1301 VM_BUG_ON_PAGE(PageCompound(page), page); 1302 BUG_ON(!PageLocked(page)); 1303 mapping = page->mapping; 1304 index = page->index; 1305 inode = mapping->host; 1306 info = SHMEM_I(inode); 1307 if (info->flags & VM_LOCKED) 1308 goto redirty; 1309 if (!total_swap_pages) 1310 goto redirty; 1311 1312 /* 1313 * Our capabilities prevent regular writeback or sync from ever calling 1314 * shmem_writepage; but a stacking filesystem might use ->writepage of 1315 * its underlying filesystem, in which case tmpfs should write out to 1316 * swap only in response to memory pressure, and not for the writeback 1317 * threads or sync. 1318 */ 1319 if (!wbc->for_reclaim) { 1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1321 goto redirty; 1322 } 1323 1324 /* 1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1326 * value into swapfile.c, the only way we can correctly account for a 1327 * fallocated page arriving here is now to initialize it and write it. 1328 * 1329 * That's okay for a page already fallocated earlier, but if we have 1330 * not yet completed the fallocation, then (a) we want to keep track 1331 * of this page in case we have to undo it, and (b) it may not be a 1332 * good idea to continue anyway, once we're pushing into swap. So 1333 * reactivate the page, and let shmem_fallocate() quit when too many. 1334 */ 1335 if (!PageUptodate(page)) { 1336 if (inode->i_private) { 1337 struct shmem_falloc *shmem_falloc; 1338 spin_lock(&inode->i_lock); 1339 shmem_falloc = inode->i_private; 1340 if (shmem_falloc && 1341 !shmem_falloc->waitq && 1342 index >= shmem_falloc->start && 1343 index < shmem_falloc->next) 1344 shmem_falloc->nr_unswapped++; 1345 else 1346 shmem_falloc = NULL; 1347 spin_unlock(&inode->i_lock); 1348 if (shmem_falloc) 1349 goto redirty; 1350 } 1351 clear_highpage(page); 1352 flush_dcache_page(page); 1353 SetPageUptodate(page); 1354 } 1355 1356 swap = get_swap_page(page); 1357 if (!swap.val) 1358 goto redirty; 1359 1360 /* 1361 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1362 * if it's not already there. Do it now before the page is 1363 * moved to swap cache, when its pagelock no longer protects 1364 * the inode from eviction. But don't unlock the mutex until 1365 * we've incremented swapped, because shmem_unuse_inode() will 1366 * prune a !swapped inode from the swaplist under this mutex. 1367 */ 1368 mutex_lock(&shmem_swaplist_mutex); 1369 if (list_empty(&info->swaplist)) 1370 list_add(&info->swaplist, &shmem_swaplist); 1371 1372 if (add_to_swap_cache(page, swap, 1373 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) { 1374 spin_lock_irq(&info->lock); 1375 shmem_recalc_inode(inode); 1376 info->swapped++; 1377 spin_unlock_irq(&info->lock); 1378 1379 swap_shmem_alloc(swap); 1380 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1381 1382 mutex_unlock(&shmem_swaplist_mutex); 1383 BUG_ON(page_mapped(page)); 1384 swap_writepage(page, wbc); 1385 return 0; 1386 } 1387 1388 mutex_unlock(&shmem_swaplist_mutex); 1389 put_swap_page(page, swap); 1390 redirty: 1391 set_page_dirty(page); 1392 if (wbc->for_reclaim) 1393 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1394 unlock_page(page); 1395 return 0; 1396 } 1397 1398 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1399 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1400 { 1401 char buffer[64]; 1402 1403 if (!mpol || mpol->mode == MPOL_DEFAULT) 1404 return; /* show nothing */ 1405 1406 mpol_to_str(buffer, sizeof(buffer), mpol); 1407 1408 seq_printf(seq, ",mpol=%s", buffer); 1409 } 1410 1411 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1412 { 1413 struct mempolicy *mpol = NULL; 1414 if (sbinfo->mpol) { 1415 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1416 mpol = sbinfo->mpol; 1417 mpol_get(mpol); 1418 spin_unlock(&sbinfo->stat_lock); 1419 } 1420 return mpol; 1421 } 1422 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1423 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1424 { 1425 } 1426 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1427 { 1428 return NULL; 1429 } 1430 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1431 #ifndef CONFIG_NUMA 1432 #define vm_policy vm_private_data 1433 #endif 1434 1435 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1436 struct shmem_inode_info *info, pgoff_t index) 1437 { 1438 /* Create a pseudo vma that just contains the policy */ 1439 vma_init(vma, NULL); 1440 /* Bias interleave by inode number to distribute better across nodes */ 1441 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1442 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1443 } 1444 1445 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1446 { 1447 /* Drop reference taken by mpol_shared_policy_lookup() */ 1448 mpol_cond_put(vma->vm_policy); 1449 } 1450 1451 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1452 struct shmem_inode_info *info, pgoff_t index) 1453 { 1454 struct vm_area_struct pvma; 1455 struct page *page; 1456 struct vm_fault vmf; 1457 1458 shmem_pseudo_vma_init(&pvma, info, index); 1459 vmf.vma = &pvma; 1460 vmf.address = 0; 1461 page = swap_cluster_readahead(swap, gfp, &vmf); 1462 shmem_pseudo_vma_destroy(&pvma); 1463 1464 return page; 1465 } 1466 1467 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1468 struct shmem_inode_info *info, pgoff_t index) 1469 { 1470 struct vm_area_struct pvma; 1471 struct address_space *mapping = info->vfs_inode.i_mapping; 1472 pgoff_t hindex; 1473 struct page *page; 1474 1475 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1476 return NULL; 1477 1478 hindex = round_down(index, HPAGE_PMD_NR); 1479 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1480 XA_PRESENT)) 1481 return NULL; 1482 1483 shmem_pseudo_vma_init(&pvma, info, hindex); 1484 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1485 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1486 shmem_pseudo_vma_destroy(&pvma); 1487 if (page) 1488 prep_transhuge_page(page); 1489 return page; 1490 } 1491 1492 static struct page *shmem_alloc_page(gfp_t gfp, 1493 struct shmem_inode_info *info, pgoff_t index) 1494 { 1495 struct vm_area_struct pvma; 1496 struct page *page; 1497 1498 shmem_pseudo_vma_init(&pvma, info, index); 1499 page = alloc_page_vma(gfp, &pvma, 0); 1500 shmem_pseudo_vma_destroy(&pvma); 1501 1502 return page; 1503 } 1504 1505 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1506 struct inode *inode, 1507 pgoff_t index, bool huge) 1508 { 1509 struct shmem_inode_info *info = SHMEM_I(inode); 1510 struct page *page; 1511 int nr; 1512 int err = -ENOSPC; 1513 1514 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1515 huge = false; 1516 nr = huge ? HPAGE_PMD_NR : 1; 1517 1518 if (!shmem_inode_acct_block(inode, nr)) 1519 goto failed; 1520 1521 if (huge) 1522 page = shmem_alloc_hugepage(gfp, info, index); 1523 else 1524 page = shmem_alloc_page(gfp, info, index); 1525 if (page) { 1526 __SetPageLocked(page); 1527 __SetPageSwapBacked(page); 1528 return page; 1529 } 1530 1531 err = -ENOMEM; 1532 shmem_inode_unacct_blocks(inode, nr); 1533 failed: 1534 return ERR_PTR(err); 1535 } 1536 1537 /* 1538 * When a page is moved from swapcache to shmem filecache (either by the 1539 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1540 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1541 * ignorance of the mapping it belongs to. If that mapping has special 1542 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1543 * we may need to copy to a suitable page before moving to filecache. 1544 * 1545 * In a future release, this may well be extended to respect cpuset and 1546 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1547 * but for now it is a simple matter of zone. 1548 */ 1549 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1550 { 1551 return page_zonenum(page) > gfp_zone(gfp); 1552 } 1553 1554 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1555 struct shmem_inode_info *info, pgoff_t index) 1556 { 1557 struct page *oldpage, *newpage; 1558 struct address_space *swap_mapping; 1559 swp_entry_t entry; 1560 pgoff_t swap_index; 1561 int error; 1562 1563 oldpage = *pagep; 1564 entry.val = page_private(oldpage); 1565 swap_index = swp_offset(entry); 1566 swap_mapping = page_mapping(oldpage); 1567 1568 /* 1569 * We have arrived here because our zones are constrained, so don't 1570 * limit chance of success by further cpuset and node constraints. 1571 */ 1572 gfp &= ~GFP_CONSTRAINT_MASK; 1573 newpage = shmem_alloc_page(gfp, info, index); 1574 if (!newpage) 1575 return -ENOMEM; 1576 1577 get_page(newpage); 1578 copy_highpage(newpage, oldpage); 1579 flush_dcache_page(newpage); 1580 1581 __SetPageLocked(newpage); 1582 __SetPageSwapBacked(newpage); 1583 SetPageUptodate(newpage); 1584 set_page_private(newpage, entry.val); 1585 SetPageSwapCache(newpage); 1586 1587 /* 1588 * Our caller will very soon move newpage out of swapcache, but it's 1589 * a nice clean interface for us to replace oldpage by newpage there. 1590 */ 1591 xa_lock_irq(&swap_mapping->i_pages); 1592 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1593 if (!error) { 1594 __inc_node_page_state(newpage, NR_FILE_PAGES); 1595 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1596 } 1597 xa_unlock_irq(&swap_mapping->i_pages); 1598 1599 if (unlikely(error)) { 1600 /* 1601 * Is this possible? I think not, now that our callers check 1602 * both PageSwapCache and page_private after getting page lock; 1603 * but be defensive. Reverse old to newpage for clear and free. 1604 */ 1605 oldpage = newpage; 1606 } else { 1607 mem_cgroup_migrate(oldpage, newpage); 1608 lru_cache_add_anon(newpage); 1609 *pagep = newpage; 1610 } 1611 1612 ClearPageSwapCache(oldpage); 1613 set_page_private(oldpage, 0); 1614 1615 unlock_page(oldpage); 1616 put_page(oldpage); 1617 put_page(oldpage); 1618 return error; 1619 } 1620 1621 /* 1622 * Swap in the page pointed to by *pagep. 1623 * Caller has to make sure that *pagep contains a valid swapped page. 1624 * Returns 0 and the page in pagep if success. On failure, returns the 1625 * the error code and NULL in *pagep. 1626 */ 1627 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1628 struct page **pagep, enum sgp_type sgp, 1629 gfp_t gfp, struct vm_area_struct *vma, 1630 vm_fault_t *fault_type) 1631 { 1632 struct address_space *mapping = inode->i_mapping; 1633 struct shmem_inode_info *info = SHMEM_I(inode); 1634 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1635 struct mem_cgroup *memcg; 1636 struct page *page; 1637 swp_entry_t swap; 1638 int error; 1639 1640 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1641 swap = radix_to_swp_entry(*pagep); 1642 *pagep = NULL; 1643 1644 /* Look it up and read it in.. */ 1645 page = lookup_swap_cache(swap, NULL, 0); 1646 if (!page) { 1647 /* Or update major stats only when swapin succeeds?? */ 1648 if (fault_type) { 1649 *fault_type |= VM_FAULT_MAJOR; 1650 count_vm_event(PGMAJFAULT); 1651 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1652 } 1653 /* Here we actually start the io */ 1654 page = shmem_swapin(swap, gfp, info, index); 1655 if (!page) { 1656 error = -ENOMEM; 1657 goto failed; 1658 } 1659 } 1660 1661 /* We have to do this with page locked to prevent races */ 1662 lock_page(page); 1663 if (!PageSwapCache(page) || page_private(page) != swap.val || 1664 !shmem_confirm_swap(mapping, index, swap)) { 1665 error = -EEXIST; 1666 goto unlock; 1667 } 1668 if (!PageUptodate(page)) { 1669 error = -EIO; 1670 goto failed; 1671 } 1672 wait_on_page_writeback(page); 1673 1674 if (shmem_should_replace_page(page, gfp)) { 1675 error = shmem_replace_page(&page, gfp, info, index); 1676 if (error) 1677 goto failed; 1678 } 1679 1680 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1681 false); 1682 if (!error) { 1683 error = shmem_add_to_page_cache(page, mapping, index, 1684 swp_to_radix_entry(swap), gfp); 1685 /* 1686 * We already confirmed swap under page lock, and make 1687 * no memory allocation here, so usually no possibility 1688 * of error; but free_swap_and_cache() only trylocks a 1689 * page, so it is just possible that the entry has been 1690 * truncated or holepunched since swap was confirmed. 1691 * shmem_undo_range() will have done some of the 1692 * unaccounting, now delete_from_swap_cache() will do 1693 * the rest. 1694 */ 1695 if (error) { 1696 mem_cgroup_cancel_charge(page, memcg, false); 1697 delete_from_swap_cache(page); 1698 } 1699 } 1700 if (error) 1701 goto failed; 1702 1703 mem_cgroup_commit_charge(page, memcg, true, false); 1704 1705 spin_lock_irq(&info->lock); 1706 info->swapped--; 1707 shmem_recalc_inode(inode); 1708 spin_unlock_irq(&info->lock); 1709 1710 if (sgp == SGP_WRITE) 1711 mark_page_accessed(page); 1712 1713 delete_from_swap_cache(page); 1714 set_page_dirty(page); 1715 swap_free(swap); 1716 1717 *pagep = page; 1718 return 0; 1719 failed: 1720 if (!shmem_confirm_swap(mapping, index, swap)) 1721 error = -EEXIST; 1722 unlock: 1723 if (page) { 1724 unlock_page(page); 1725 put_page(page); 1726 } 1727 1728 return error; 1729 } 1730 1731 /* 1732 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1733 * 1734 * If we allocate a new one we do not mark it dirty. That's up to the 1735 * vm. If we swap it in we mark it dirty since we also free the swap 1736 * entry since a page cannot live in both the swap and page cache. 1737 * 1738 * vmf and fault_type are only supplied by shmem_fault: 1739 * otherwise they are NULL. 1740 */ 1741 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1742 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1743 struct vm_area_struct *vma, struct vm_fault *vmf, 1744 vm_fault_t *fault_type) 1745 { 1746 struct address_space *mapping = inode->i_mapping; 1747 struct shmem_inode_info *info = SHMEM_I(inode); 1748 struct shmem_sb_info *sbinfo; 1749 struct mm_struct *charge_mm; 1750 struct mem_cgroup *memcg; 1751 struct page *page; 1752 enum sgp_type sgp_huge = sgp; 1753 pgoff_t hindex = index; 1754 int error; 1755 int once = 0; 1756 int alloced = 0; 1757 1758 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1759 return -EFBIG; 1760 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1761 sgp = SGP_CACHE; 1762 repeat: 1763 if (sgp <= SGP_CACHE && 1764 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1765 return -EINVAL; 1766 } 1767 1768 sbinfo = SHMEM_SB(inode->i_sb); 1769 charge_mm = vma ? vma->vm_mm : current->mm; 1770 1771 page = find_lock_entry(mapping, index); 1772 if (xa_is_value(page)) { 1773 error = shmem_swapin_page(inode, index, &page, 1774 sgp, gfp, vma, fault_type); 1775 if (error == -EEXIST) 1776 goto repeat; 1777 1778 *pagep = page; 1779 return error; 1780 } 1781 1782 if (page && sgp == SGP_WRITE) 1783 mark_page_accessed(page); 1784 1785 /* fallocated page? */ 1786 if (page && !PageUptodate(page)) { 1787 if (sgp != SGP_READ) 1788 goto clear; 1789 unlock_page(page); 1790 put_page(page); 1791 page = NULL; 1792 } 1793 if (page || sgp == SGP_READ) { 1794 *pagep = page; 1795 return 0; 1796 } 1797 1798 /* 1799 * Fast cache lookup did not find it: 1800 * bring it back from swap or allocate. 1801 */ 1802 1803 if (vma && userfaultfd_missing(vma)) { 1804 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1805 return 0; 1806 } 1807 1808 /* shmem_symlink() */ 1809 if (mapping->a_ops != &shmem_aops) 1810 goto alloc_nohuge; 1811 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1812 goto alloc_nohuge; 1813 if (shmem_huge == SHMEM_HUGE_FORCE) 1814 goto alloc_huge; 1815 switch (sbinfo->huge) { 1816 loff_t i_size; 1817 pgoff_t off; 1818 case SHMEM_HUGE_NEVER: 1819 goto alloc_nohuge; 1820 case SHMEM_HUGE_WITHIN_SIZE: 1821 off = round_up(index, HPAGE_PMD_NR); 1822 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1823 if (i_size >= HPAGE_PMD_SIZE && 1824 i_size >> PAGE_SHIFT >= off) 1825 goto alloc_huge; 1826 /* fallthrough */ 1827 case SHMEM_HUGE_ADVISE: 1828 if (sgp_huge == SGP_HUGE) 1829 goto alloc_huge; 1830 /* TODO: implement fadvise() hints */ 1831 goto alloc_nohuge; 1832 } 1833 1834 alloc_huge: 1835 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1836 if (IS_ERR(page)) { 1837 alloc_nohuge: 1838 page = shmem_alloc_and_acct_page(gfp, inode, 1839 index, false); 1840 } 1841 if (IS_ERR(page)) { 1842 int retry = 5; 1843 1844 error = PTR_ERR(page); 1845 page = NULL; 1846 if (error != -ENOSPC) 1847 goto unlock; 1848 /* 1849 * Try to reclaim some space by splitting a huge page 1850 * beyond i_size on the filesystem. 1851 */ 1852 while (retry--) { 1853 int ret; 1854 1855 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1856 if (ret == SHRINK_STOP) 1857 break; 1858 if (ret) 1859 goto alloc_nohuge; 1860 } 1861 goto unlock; 1862 } 1863 1864 if (PageTransHuge(page)) 1865 hindex = round_down(index, HPAGE_PMD_NR); 1866 else 1867 hindex = index; 1868 1869 if (sgp == SGP_WRITE) 1870 __SetPageReferenced(page); 1871 1872 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1873 PageTransHuge(page)); 1874 if (error) 1875 goto unacct; 1876 error = shmem_add_to_page_cache(page, mapping, hindex, 1877 NULL, gfp & GFP_RECLAIM_MASK); 1878 if (error) { 1879 mem_cgroup_cancel_charge(page, memcg, 1880 PageTransHuge(page)); 1881 goto unacct; 1882 } 1883 mem_cgroup_commit_charge(page, memcg, false, 1884 PageTransHuge(page)); 1885 lru_cache_add_anon(page); 1886 1887 spin_lock_irq(&info->lock); 1888 info->alloced += compound_nr(page); 1889 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1890 shmem_recalc_inode(inode); 1891 spin_unlock_irq(&info->lock); 1892 alloced = true; 1893 1894 if (PageTransHuge(page) && 1895 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1896 hindex + HPAGE_PMD_NR - 1) { 1897 /* 1898 * Part of the huge page is beyond i_size: subject 1899 * to shrink under memory pressure. 1900 */ 1901 spin_lock(&sbinfo->shrinklist_lock); 1902 /* 1903 * _careful to defend against unlocked access to 1904 * ->shrink_list in shmem_unused_huge_shrink() 1905 */ 1906 if (list_empty_careful(&info->shrinklist)) { 1907 list_add_tail(&info->shrinklist, 1908 &sbinfo->shrinklist); 1909 sbinfo->shrinklist_len++; 1910 } 1911 spin_unlock(&sbinfo->shrinklist_lock); 1912 } 1913 1914 /* 1915 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1916 */ 1917 if (sgp == SGP_FALLOC) 1918 sgp = SGP_WRITE; 1919 clear: 1920 /* 1921 * Let SGP_WRITE caller clear ends if write does not fill page; 1922 * but SGP_FALLOC on a page fallocated earlier must initialize 1923 * it now, lest undo on failure cancel our earlier guarantee. 1924 */ 1925 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1926 struct page *head = compound_head(page); 1927 int i; 1928 1929 for (i = 0; i < compound_nr(head); i++) { 1930 clear_highpage(head + i); 1931 flush_dcache_page(head + i); 1932 } 1933 SetPageUptodate(head); 1934 } 1935 1936 /* Perhaps the file has been truncated since we checked */ 1937 if (sgp <= SGP_CACHE && 1938 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1939 if (alloced) { 1940 ClearPageDirty(page); 1941 delete_from_page_cache(page); 1942 spin_lock_irq(&info->lock); 1943 shmem_recalc_inode(inode); 1944 spin_unlock_irq(&info->lock); 1945 } 1946 error = -EINVAL; 1947 goto unlock; 1948 } 1949 *pagep = page + index - hindex; 1950 return 0; 1951 1952 /* 1953 * Error recovery. 1954 */ 1955 unacct: 1956 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1957 1958 if (PageTransHuge(page)) { 1959 unlock_page(page); 1960 put_page(page); 1961 goto alloc_nohuge; 1962 } 1963 unlock: 1964 if (page) { 1965 unlock_page(page); 1966 put_page(page); 1967 } 1968 if (error == -ENOSPC && !once++) { 1969 spin_lock_irq(&info->lock); 1970 shmem_recalc_inode(inode); 1971 spin_unlock_irq(&info->lock); 1972 goto repeat; 1973 } 1974 if (error == -EEXIST) 1975 goto repeat; 1976 return error; 1977 } 1978 1979 /* 1980 * This is like autoremove_wake_function, but it removes the wait queue 1981 * entry unconditionally - even if something else had already woken the 1982 * target. 1983 */ 1984 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1985 { 1986 int ret = default_wake_function(wait, mode, sync, key); 1987 list_del_init(&wait->entry); 1988 return ret; 1989 } 1990 1991 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1992 { 1993 struct vm_area_struct *vma = vmf->vma; 1994 struct inode *inode = file_inode(vma->vm_file); 1995 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1996 enum sgp_type sgp; 1997 int err; 1998 vm_fault_t ret = VM_FAULT_LOCKED; 1999 2000 /* 2001 * Trinity finds that probing a hole which tmpfs is punching can 2002 * prevent the hole-punch from ever completing: which in turn 2003 * locks writers out with its hold on i_mutex. So refrain from 2004 * faulting pages into the hole while it's being punched. Although 2005 * shmem_undo_range() does remove the additions, it may be unable to 2006 * keep up, as each new page needs its own unmap_mapping_range() call, 2007 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2008 * 2009 * It does not matter if we sometimes reach this check just before the 2010 * hole-punch begins, so that one fault then races with the punch: 2011 * we just need to make racing faults a rare case. 2012 * 2013 * The implementation below would be much simpler if we just used a 2014 * standard mutex or completion: but we cannot take i_mutex in fault, 2015 * and bloating every shmem inode for this unlikely case would be sad. 2016 */ 2017 if (unlikely(inode->i_private)) { 2018 struct shmem_falloc *shmem_falloc; 2019 2020 spin_lock(&inode->i_lock); 2021 shmem_falloc = inode->i_private; 2022 if (shmem_falloc && 2023 shmem_falloc->waitq && 2024 vmf->pgoff >= shmem_falloc->start && 2025 vmf->pgoff < shmem_falloc->next) { 2026 struct file *fpin; 2027 wait_queue_head_t *shmem_falloc_waitq; 2028 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2029 2030 ret = VM_FAULT_NOPAGE; 2031 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2032 if (fpin) 2033 ret = VM_FAULT_RETRY; 2034 2035 shmem_falloc_waitq = shmem_falloc->waitq; 2036 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2037 TASK_UNINTERRUPTIBLE); 2038 spin_unlock(&inode->i_lock); 2039 schedule(); 2040 2041 /* 2042 * shmem_falloc_waitq points into the shmem_fallocate() 2043 * stack of the hole-punching task: shmem_falloc_waitq 2044 * is usually invalid by the time we reach here, but 2045 * finish_wait() does not dereference it in that case; 2046 * though i_lock needed lest racing with wake_up_all(). 2047 */ 2048 spin_lock(&inode->i_lock); 2049 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2050 spin_unlock(&inode->i_lock); 2051 2052 if (fpin) 2053 fput(fpin); 2054 return ret; 2055 } 2056 spin_unlock(&inode->i_lock); 2057 } 2058 2059 sgp = SGP_CACHE; 2060 2061 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2062 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2063 sgp = SGP_NOHUGE; 2064 else if (vma->vm_flags & VM_HUGEPAGE) 2065 sgp = SGP_HUGE; 2066 2067 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2068 gfp, vma, vmf, &ret); 2069 if (err) 2070 return vmf_error(err); 2071 return ret; 2072 } 2073 2074 unsigned long shmem_get_unmapped_area(struct file *file, 2075 unsigned long uaddr, unsigned long len, 2076 unsigned long pgoff, unsigned long flags) 2077 { 2078 unsigned long (*get_area)(struct file *, 2079 unsigned long, unsigned long, unsigned long, unsigned long); 2080 unsigned long addr; 2081 unsigned long offset; 2082 unsigned long inflated_len; 2083 unsigned long inflated_addr; 2084 unsigned long inflated_offset; 2085 2086 if (len > TASK_SIZE) 2087 return -ENOMEM; 2088 2089 get_area = current->mm->get_unmapped_area; 2090 addr = get_area(file, uaddr, len, pgoff, flags); 2091 2092 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2093 return addr; 2094 if (IS_ERR_VALUE(addr)) 2095 return addr; 2096 if (addr & ~PAGE_MASK) 2097 return addr; 2098 if (addr > TASK_SIZE - len) 2099 return addr; 2100 2101 if (shmem_huge == SHMEM_HUGE_DENY) 2102 return addr; 2103 if (len < HPAGE_PMD_SIZE) 2104 return addr; 2105 if (flags & MAP_FIXED) 2106 return addr; 2107 /* 2108 * Our priority is to support MAP_SHARED mapped hugely; 2109 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2110 * But if caller specified an address hint and we allocated area there 2111 * successfully, respect that as before. 2112 */ 2113 if (uaddr == addr) 2114 return addr; 2115 2116 if (shmem_huge != SHMEM_HUGE_FORCE) { 2117 struct super_block *sb; 2118 2119 if (file) { 2120 VM_BUG_ON(file->f_op != &shmem_file_operations); 2121 sb = file_inode(file)->i_sb; 2122 } else { 2123 /* 2124 * Called directly from mm/mmap.c, or drivers/char/mem.c 2125 * for "/dev/zero", to create a shared anonymous object. 2126 */ 2127 if (IS_ERR(shm_mnt)) 2128 return addr; 2129 sb = shm_mnt->mnt_sb; 2130 } 2131 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2132 return addr; 2133 } 2134 2135 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2136 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2137 return addr; 2138 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2139 return addr; 2140 2141 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2142 if (inflated_len > TASK_SIZE) 2143 return addr; 2144 if (inflated_len < len) 2145 return addr; 2146 2147 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2148 if (IS_ERR_VALUE(inflated_addr)) 2149 return addr; 2150 if (inflated_addr & ~PAGE_MASK) 2151 return addr; 2152 2153 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2154 inflated_addr += offset - inflated_offset; 2155 if (inflated_offset > offset) 2156 inflated_addr += HPAGE_PMD_SIZE; 2157 2158 if (inflated_addr > TASK_SIZE - len) 2159 return addr; 2160 return inflated_addr; 2161 } 2162 2163 #ifdef CONFIG_NUMA 2164 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2165 { 2166 struct inode *inode = file_inode(vma->vm_file); 2167 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2168 } 2169 2170 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2171 unsigned long addr) 2172 { 2173 struct inode *inode = file_inode(vma->vm_file); 2174 pgoff_t index; 2175 2176 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2177 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2178 } 2179 #endif 2180 2181 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2182 { 2183 struct inode *inode = file_inode(file); 2184 struct shmem_inode_info *info = SHMEM_I(inode); 2185 int retval = -ENOMEM; 2186 2187 spin_lock_irq(&info->lock); 2188 if (lock && !(info->flags & VM_LOCKED)) { 2189 if (!user_shm_lock(inode->i_size, user)) 2190 goto out_nomem; 2191 info->flags |= VM_LOCKED; 2192 mapping_set_unevictable(file->f_mapping); 2193 } 2194 if (!lock && (info->flags & VM_LOCKED) && user) { 2195 user_shm_unlock(inode->i_size, user); 2196 info->flags &= ~VM_LOCKED; 2197 mapping_clear_unevictable(file->f_mapping); 2198 } 2199 retval = 0; 2200 2201 out_nomem: 2202 spin_unlock_irq(&info->lock); 2203 return retval; 2204 } 2205 2206 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2207 { 2208 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2209 2210 if (info->seals & F_SEAL_FUTURE_WRITE) { 2211 /* 2212 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2213 * "future write" seal active. 2214 */ 2215 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2216 return -EPERM; 2217 2218 /* 2219 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2220 * MAP_SHARED and read-only, take care to not allow mprotect to 2221 * revert protections on such mappings. Do this only for shared 2222 * mappings. For private mappings, don't need to mask 2223 * VM_MAYWRITE as we still want them to be COW-writable. 2224 */ 2225 if (vma->vm_flags & VM_SHARED) 2226 vma->vm_flags &= ~(VM_MAYWRITE); 2227 } 2228 2229 file_accessed(file); 2230 vma->vm_ops = &shmem_vm_ops; 2231 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2232 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2233 (vma->vm_end & HPAGE_PMD_MASK)) { 2234 khugepaged_enter(vma, vma->vm_flags); 2235 } 2236 return 0; 2237 } 2238 2239 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2240 umode_t mode, dev_t dev, unsigned long flags) 2241 { 2242 struct inode *inode; 2243 struct shmem_inode_info *info; 2244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2245 2246 if (shmem_reserve_inode(sb)) 2247 return NULL; 2248 2249 inode = new_inode(sb); 2250 if (inode) { 2251 inode->i_ino = get_next_ino(); 2252 inode_init_owner(inode, dir, mode); 2253 inode->i_blocks = 0; 2254 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2255 inode->i_generation = prandom_u32(); 2256 info = SHMEM_I(inode); 2257 memset(info, 0, (char *)inode - (char *)info); 2258 spin_lock_init(&info->lock); 2259 atomic_set(&info->stop_eviction, 0); 2260 info->seals = F_SEAL_SEAL; 2261 info->flags = flags & VM_NORESERVE; 2262 INIT_LIST_HEAD(&info->shrinklist); 2263 INIT_LIST_HEAD(&info->swaplist); 2264 simple_xattrs_init(&info->xattrs); 2265 cache_no_acl(inode); 2266 2267 switch (mode & S_IFMT) { 2268 default: 2269 inode->i_op = &shmem_special_inode_operations; 2270 init_special_inode(inode, mode, dev); 2271 break; 2272 case S_IFREG: 2273 inode->i_mapping->a_ops = &shmem_aops; 2274 inode->i_op = &shmem_inode_operations; 2275 inode->i_fop = &shmem_file_operations; 2276 mpol_shared_policy_init(&info->policy, 2277 shmem_get_sbmpol(sbinfo)); 2278 break; 2279 case S_IFDIR: 2280 inc_nlink(inode); 2281 /* Some things misbehave if size == 0 on a directory */ 2282 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2283 inode->i_op = &shmem_dir_inode_operations; 2284 inode->i_fop = &simple_dir_operations; 2285 break; 2286 case S_IFLNK: 2287 /* 2288 * Must not load anything in the rbtree, 2289 * mpol_free_shared_policy will not be called. 2290 */ 2291 mpol_shared_policy_init(&info->policy, NULL); 2292 break; 2293 } 2294 2295 lockdep_annotate_inode_mutex_key(inode); 2296 } else 2297 shmem_free_inode(sb); 2298 return inode; 2299 } 2300 2301 bool shmem_mapping(struct address_space *mapping) 2302 { 2303 return mapping->a_ops == &shmem_aops; 2304 } 2305 2306 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2307 pmd_t *dst_pmd, 2308 struct vm_area_struct *dst_vma, 2309 unsigned long dst_addr, 2310 unsigned long src_addr, 2311 bool zeropage, 2312 struct page **pagep) 2313 { 2314 struct inode *inode = file_inode(dst_vma->vm_file); 2315 struct shmem_inode_info *info = SHMEM_I(inode); 2316 struct address_space *mapping = inode->i_mapping; 2317 gfp_t gfp = mapping_gfp_mask(mapping); 2318 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2319 struct mem_cgroup *memcg; 2320 spinlock_t *ptl; 2321 void *page_kaddr; 2322 struct page *page; 2323 pte_t _dst_pte, *dst_pte; 2324 int ret; 2325 pgoff_t offset, max_off; 2326 2327 ret = -ENOMEM; 2328 if (!shmem_inode_acct_block(inode, 1)) 2329 goto out; 2330 2331 if (!*pagep) { 2332 page = shmem_alloc_page(gfp, info, pgoff); 2333 if (!page) 2334 goto out_unacct_blocks; 2335 2336 if (!zeropage) { /* mcopy_atomic */ 2337 page_kaddr = kmap_atomic(page); 2338 ret = copy_from_user(page_kaddr, 2339 (const void __user *)src_addr, 2340 PAGE_SIZE); 2341 kunmap_atomic(page_kaddr); 2342 2343 /* fallback to copy_from_user outside mmap_sem */ 2344 if (unlikely(ret)) { 2345 *pagep = page; 2346 shmem_inode_unacct_blocks(inode, 1); 2347 /* don't free the page */ 2348 return -ENOENT; 2349 } 2350 } else { /* mfill_zeropage_atomic */ 2351 clear_highpage(page); 2352 } 2353 } else { 2354 page = *pagep; 2355 *pagep = NULL; 2356 } 2357 2358 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2359 __SetPageLocked(page); 2360 __SetPageSwapBacked(page); 2361 __SetPageUptodate(page); 2362 2363 ret = -EFAULT; 2364 offset = linear_page_index(dst_vma, dst_addr); 2365 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2366 if (unlikely(offset >= max_off)) 2367 goto out_release; 2368 2369 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2370 if (ret) 2371 goto out_release; 2372 2373 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2374 gfp & GFP_RECLAIM_MASK); 2375 if (ret) 2376 goto out_release_uncharge; 2377 2378 mem_cgroup_commit_charge(page, memcg, false, false); 2379 2380 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2381 if (dst_vma->vm_flags & VM_WRITE) 2382 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2383 else { 2384 /* 2385 * We don't set the pte dirty if the vma has no 2386 * VM_WRITE permission, so mark the page dirty or it 2387 * could be freed from under us. We could do it 2388 * unconditionally before unlock_page(), but doing it 2389 * only if VM_WRITE is not set is faster. 2390 */ 2391 set_page_dirty(page); 2392 } 2393 2394 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2395 2396 ret = -EFAULT; 2397 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2398 if (unlikely(offset >= max_off)) 2399 goto out_release_uncharge_unlock; 2400 2401 ret = -EEXIST; 2402 if (!pte_none(*dst_pte)) 2403 goto out_release_uncharge_unlock; 2404 2405 lru_cache_add_anon(page); 2406 2407 spin_lock(&info->lock); 2408 info->alloced++; 2409 inode->i_blocks += BLOCKS_PER_PAGE; 2410 shmem_recalc_inode(inode); 2411 spin_unlock(&info->lock); 2412 2413 inc_mm_counter(dst_mm, mm_counter_file(page)); 2414 page_add_file_rmap(page, false); 2415 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2416 2417 /* No need to invalidate - it was non-present before */ 2418 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2419 pte_unmap_unlock(dst_pte, ptl); 2420 unlock_page(page); 2421 ret = 0; 2422 out: 2423 return ret; 2424 out_release_uncharge_unlock: 2425 pte_unmap_unlock(dst_pte, ptl); 2426 ClearPageDirty(page); 2427 delete_from_page_cache(page); 2428 out_release_uncharge: 2429 mem_cgroup_cancel_charge(page, memcg, false); 2430 out_release: 2431 unlock_page(page); 2432 put_page(page); 2433 out_unacct_blocks: 2434 shmem_inode_unacct_blocks(inode, 1); 2435 goto out; 2436 } 2437 2438 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2439 pmd_t *dst_pmd, 2440 struct vm_area_struct *dst_vma, 2441 unsigned long dst_addr, 2442 unsigned long src_addr, 2443 struct page **pagep) 2444 { 2445 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2446 dst_addr, src_addr, false, pagep); 2447 } 2448 2449 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2450 pmd_t *dst_pmd, 2451 struct vm_area_struct *dst_vma, 2452 unsigned long dst_addr) 2453 { 2454 struct page *page = NULL; 2455 2456 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2457 dst_addr, 0, true, &page); 2458 } 2459 2460 #ifdef CONFIG_TMPFS 2461 static const struct inode_operations shmem_symlink_inode_operations; 2462 static const struct inode_operations shmem_short_symlink_operations; 2463 2464 #ifdef CONFIG_TMPFS_XATTR 2465 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2466 #else 2467 #define shmem_initxattrs NULL 2468 #endif 2469 2470 static int 2471 shmem_write_begin(struct file *file, struct address_space *mapping, 2472 loff_t pos, unsigned len, unsigned flags, 2473 struct page **pagep, void **fsdata) 2474 { 2475 struct inode *inode = mapping->host; 2476 struct shmem_inode_info *info = SHMEM_I(inode); 2477 pgoff_t index = pos >> PAGE_SHIFT; 2478 2479 /* i_mutex is held by caller */ 2480 if (unlikely(info->seals & (F_SEAL_GROW | 2481 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2482 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2483 return -EPERM; 2484 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2485 return -EPERM; 2486 } 2487 2488 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2489 } 2490 2491 static int 2492 shmem_write_end(struct file *file, struct address_space *mapping, 2493 loff_t pos, unsigned len, unsigned copied, 2494 struct page *page, void *fsdata) 2495 { 2496 struct inode *inode = mapping->host; 2497 2498 if (pos + copied > inode->i_size) 2499 i_size_write(inode, pos + copied); 2500 2501 if (!PageUptodate(page)) { 2502 struct page *head = compound_head(page); 2503 if (PageTransCompound(page)) { 2504 int i; 2505 2506 for (i = 0; i < HPAGE_PMD_NR; i++) { 2507 if (head + i == page) 2508 continue; 2509 clear_highpage(head + i); 2510 flush_dcache_page(head + i); 2511 } 2512 } 2513 if (copied < PAGE_SIZE) { 2514 unsigned from = pos & (PAGE_SIZE - 1); 2515 zero_user_segments(page, 0, from, 2516 from + copied, PAGE_SIZE); 2517 } 2518 SetPageUptodate(head); 2519 } 2520 set_page_dirty(page); 2521 unlock_page(page); 2522 put_page(page); 2523 2524 return copied; 2525 } 2526 2527 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2528 { 2529 struct file *file = iocb->ki_filp; 2530 struct inode *inode = file_inode(file); 2531 struct address_space *mapping = inode->i_mapping; 2532 pgoff_t index; 2533 unsigned long offset; 2534 enum sgp_type sgp = SGP_READ; 2535 int error = 0; 2536 ssize_t retval = 0; 2537 loff_t *ppos = &iocb->ki_pos; 2538 2539 /* 2540 * Might this read be for a stacking filesystem? Then when reading 2541 * holes of a sparse file, we actually need to allocate those pages, 2542 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2543 */ 2544 if (!iter_is_iovec(to)) 2545 sgp = SGP_CACHE; 2546 2547 index = *ppos >> PAGE_SHIFT; 2548 offset = *ppos & ~PAGE_MASK; 2549 2550 for (;;) { 2551 struct page *page = NULL; 2552 pgoff_t end_index; 2553 unsigned long nr, ret; 2554 loff_t i_size = i_size_read(inode); 2555 2556 end_index = i_size >> PAGE_SHIFT; 2557 if (index > end_index) 2558 break; 2559 if (index == end_index) { 2560 nr = i_size & ~PAGE_MASK; 2561 if (nr <= offset) 2562 break; 2563 } 2564 2565 error = shmem_getpage(inode, index, &page, sgp); 2566 if (error) { 2567 if (error == -EINVAL) 2568 error = 0; 2569 break; 2570 } 2571 if (page) { 2572 if (sgp == SGP_CACHE) 2573 set_page_dirty(page); 2574 unlock_page(page); 2575 } 2576 2577 /* 2578 * We must evaluate after, since reads (unlike writes) 2579 * are called without i_mutex protection against truncate 2580 */ 2581 nr = PAGE_SIZE; 2582 i_size = i_size_read(inode); 2583 end_index = i_size >> PAGE_SHIFT; 2584 if (index == end_index) { 2585 nr = i_size & ~PAGE_MASK; 2586 if (nr <= offset) { 2587 if (page) 2588 put_page(page); 2589 break; 2590 } 2591 } 2592 nr -= offset; 2593 2594 if (page) { 2595 /* 2596 * If users can be writing to this page using arbitrary 2597 * virtual addresses, take care about potential aliasing 2598 * before reading the page on the kernel side. 2599 */ 2600 if (mapping_writably_mapped(mapping)) 2601 flush_dcache_page(page); 2602 /* 2603 * Mark the page accessed if we read the beginning. 2604 */ 2605 if (!offset) 2606 mark_page_accessed(page); 2607 } else { 2608 page = ZERO_PAGE(0); 2609 get_page(page); 2610 } 2611 2612 /* 2613 * Ok, we have the page, and it's up-to-date, so 2614 * now we can copy it to user space... 2615 */ 2616 ret = copy_page_to_iter(page, offset, nr, to); 2617 retval += ret; 2618 offset += ret; 2619 index += offset >> PAGE_SHIFT; 2620 offset &= ~PAGE_MASK; 2621 2622 put_page(page); 2623 if (!iov_iter_count(to)) 2624 break; 2625 if (ret < nr) { 2626 error = -EFAULT; 2627 break; 2628 } 2629 cond_resched(); 2630 } 2631 2632 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2633 file_accessed(file); 2634 return retval ? retval : error; 2635 } 2636 2637 /* 2638 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2639 */ 2640 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2641 pgoff_t index, pgoff_t end, int whence) 2642 { 2643 struct page *page; 2644 struct pagevec pvec; 2645 pgoff_t indices[PAGEVEC_SIZE]; 2646 bool done = false; 2647 int i; 2648 2649 pagevec_init(&pvec); 2650 pvec.nr = 1; /* start small: we may be there already */ 2651 while (!done) { 2652 pvec.nr = find_get_entries(mapping, index, 2653 pvec.nr, pvec.pages, indices); 2654 if (!pvec.nr) { 2655 if (whence == SEEK_DATA) 2656 index = end; 2657 break; 2658 } 2659 for (i = 0; i < pvec.nr; i++, index++) { 2660 if (index < indices[i]) { 2661 if (whence == SEEK_HOLE) { 2662 done = true; 2663 break; 2664 } 2665 index = indices[i]; 2666 } 2667 page = pvec.pages[i]; 2668 if (page && !xa_is_value(page)) { 2669 if (!PageUptodate(page)) 2670 page = NULL; 2671 } 2672 if (index >= end || 2673 (page && whence == SEEK_DATA) || 2674 (!page && whence == SEEK_HOLE)) { 2675 done = true; 2676 break; 2677 } 2678 } 2679 pagevec_remove_exceptionals(&pvec); 2680 pagevec_release(&pvec); 2681 pvec.nr = PAGEVEC_SIZE; 2682 cond_resched(); 2683 } 2684 return index; 2685 } 2686 2687 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2688 { 2689 struct address_space *mapping = file->f_mapping; 2690 struct inode *inode = mapping->host; 2691 pgoff_t start, end; 2692 loff_t new_offset; 2693 2694 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2695 return generic_file_llseek_size(file, offset, whence, 2696 MAX_LFS_FILESIZE, i_size_read(inode)); 2697 inode_lock(inode); 2698 /* We're holding i_mutex so we can access i_size directly */ 2699 2700 if (offset < 0 || offset >= inode->i_size) 2701 offset = -ENXIO; 2702 else { 2703 start = offset >> PAGE_SHIFT; 2704 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2705 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2706 new_offset <<= PAGE_SHIFT; 2707 if (new_offset > offset) { 2708 if (new_offset < inode->i_size) 2709 offset = new_offset; 2710 else if (whence == SEEK_DATA) 2711 offset = -ENXIO; 2712 else 2713 offset = inode->i_size; 2714 } 2715 } 2716 2717 if (offset >= 0) 2718 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2719 inode_unlock(inode); 2720 return offset; 2721 } 2722 2723 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2724 loff_t len) 2725 { 2726 struct inode *inode = file_inode(file); 2727 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2728 struct shmem_inode_info *info = SHMEM_I(inode); 2729 struct shmem_falloc shmem_falloc; 2730 pgoff_t start, index, end; 2731 int error; 2732 2733 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2734 return -EOPNOTSUPP; 2735 2736 inode_lock(inode); 2737 2738 if (mode & FALLOC_FL_PUNCH_HOLE) { 2739 struct address_space *mapping = file->f_mapping; 2740 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2741 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2742 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2743 2744 /* protected by i_mutex */ 2745 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2746 error = -EPERM; 2747 goto out; 2748 } 2749 2750 shmem_falloc.waitq = &shmem_falloc_waitq; 2751 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2752 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2753 spin_lock(&inode->i_lock); 2754 inode->i_private = &shmem_falloc; 2755 spin_unlock(&inode->i_lock); 2756 2757 if ((u64)unmap_end > (u64)unmap_start) 2758 unmap_mapping_range(mapping, unmap_start, 2759 1 + unmap_end - unmap_start, 0); 2760 shmem_truncate_range(inode, offset, offset + len - 1); 2761 /* No need to unmap again: hole-punching leaves COWed pages */ 2762 2763 spin_lock(&inode->i_lock); 2764 inode->i_private = NULL; 2765 wake_up_all(&shmem_falloc_waitq); 2766 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2767 spin_unlock(&inode->i_lock); 2768 error = 0; 2769 goto out; 2770 } 2771 2772 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2773 error = inode_newsize_ok(inode, offset + len); 2774 if (error) 2775 goto out; 2776 2777 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2778 error = -EPERM; 2779 goto out; 2780 } 2781 2782 start = offset >> PAGE_SHIFT; 2783 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2784 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2785 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2786 error = -ENOSPC; 2787 goto out; 2788 } 2789 2790 shmem_falloc.waitq = NULL; 2791 shmem_falloc.start = start; 2792 shmem_falloc.next = start; 2793 shmem_falloc.nr_falloced = 0; 2794 shmem_falloc.nr_unswapped = 0; 2795 spin_lock(&inode->i_lock); 2796 inode->i_private = &shmem_falloc; 2797 spin_unlock(&inode->i_lock); 2798 2799 for (index = start; index < end; index++) { 2800 struct page *page; 2801 2802 /* 2803 * Good, the fallocate(2) manpage permits EINTR: we may have 2804 * been interrupted because we are using up too much memory. 2805 */ 2806 if (signal_pending(current)) 2807 error = -EINTR; 2808 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2809 error = -ENOMEM; 2810 else 2811 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2812 if (error) { 2813 /* Remove the !PageUptodate pages we added */ 2814 if (index > start) { 2815 shmem_undo_range(inode, 2816 (loff_t)start << PAGE_SHIFT, 2817 ((loff_t)index << PAGE_SHIFT) - 1, true); 2818 } 2819 goto undone; 2820 } 2821 2822 /* 2823 * Inform shmem_writepage() how far we have reached. 2824 * No need for lock or barrier: we have the page lock. 2825 */ 2826 shmem_falloc.next++; 2827 if (!PageUptodate(page)) 2828 shmem_falloc.nr_falloced++; 2829 2830 /* 2831 * If !PageUptodate, leave it that way so that freeable pages 2832 * can be recognized if we need to rollback on error later. 2833 * But set_page_dirty so that memory pressure will swap rather 2834 * than free the pages we are allocating (and SGP_CACHE pages 2835 * might still be clean: we now need to mark those dirty too). 2836 */ 2837 set_page_dirty(page); 2838 unlock_page(page); 2839 put_page(page); 2840 cond_resched(); 2841 } 2842 2843 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2844 i_size_write(inode, offset + len); 2845 inode->i_ctime = current_time(inode); 2846 undone: 2847 spin_lock(&inode->i_lock); 2848 inode->i_private = NULL; 2849 spin_unlock(&inode->i_lock); 2850 out: 2851 inode_unlock(inode); 2852 return error; 2853 } 2854 2855 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2856 { 2857 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2858 2859 buf->f_type = TMPFS_MAGIC; 2860 buf->f_bsize = PAGE_SIZE; 2861 buf->f_namelen = NAME_MAX; 2862 if (sbinfo->max_blocks) { 2863 buf->f_blocks = sbinfo->max_blocks; 2864 buf->f_bavail = 2865 buf->f_bfree = sbinfo->max_blocks - 2866 percpu_counter_sum(&sbinfo->used_blocks); 2867 } 2868 if (sbinfo->max_inodes) { 2869 buf->f_files = sbinfo->max_inodes; 2870 buf->f_ffree = sbinfo->free_inodes; 2871 } 2872 /* else leave those fields 0 like simple_statfs */ 2873 return 0; 2874 } 2875 2876 /* 2877 * File creation. Allocate an inode, and we're done.. 2878 */ 2879 static int 2880 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2881 { 2882 struct inode *inode; 2883 int error = -ENOSPC; 2884 2885 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2886 if (inode) { 2887 error = simple_acl_create(dir, inode); 2888 if (error) 2889 goto out_iput; 2890 error = security_inode_init_security(inode, dir, 2891 &dentry->d_name, 2892 shmem_initxattrs, NULL); 2893 if (error && error != -EOPNOTSUPP) 2894 goto out_iput; 2895 2896 error = 0; 2897 dir->i_size += BOGO_DIRENT_SIZE; 2898 dir->i_ctime = dir->i_mtime = current_time(dir); 2899 d_instantiate(dentry, inode); 2900 dget(dentry); /* Extra count - pin the dentry in core */ 2901 } 2902 return error; 2903 out_iput: 2904 iput(inode); 2905 return error; 2906 } 2907 2908 static int 2909 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2910 { 2911 struct inode *inode; 2912 int error = -ENOSPC; 2913 2914 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2915 if (inode) { 2916 error = security_inode_init_security(inode, dir, 2917 NULL, 2918 shmem_initxattrs, NULL); 2919 if (error && error != -EOPNOTSUPP) 2920 goto out_iput; 2921 error = simple_acl_create(dir, inode); 2922 if (error) 2923 goto out_iput; 2924 d_tmpfile(dentry, inode); 2925 } 2926 return error; 2927 out_iput: 2928 iput(inode); 2929 return error; 2930 } 2931 2932 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2933 { 2934 int error; 2935 2936 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2937 return error; 2938 inc_nlink(dir); 2939 return 0; 2940 } 2941 2942 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2943 bool excl) 2944 { 2945 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2946 } 2947 2948 /* 2949 * Link a file.. 2950 */ 2951 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2952 { 2953 struct inode *inode = d_inode(old_dentry); 2954 int ret = 0; 2955 2956 /* 2957 * No ordinary (disk based) filesystem counts links as inodes; 2958 * but each new link needs a new dentry, pinning lowmem, and 2959 * tmpfs dentries cannot be pruned until they are unlinked. 2960 * But if an O_TMPFILE file is linked into the tmpfs, the 2961 * first link must skip that, to get the accounting right. 2962 */ 2963 if (inode->i_nlink) { 2964 ret = shmem_reserve_inode(inode->i_sb); 2965 if (ret) 2966 goto out; 2967 } 2968 2969 dir->i_size += BOGO_DIRENT_SIZE; 2970 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2971 inc_nlink(inode); 2972 ihold(inode); /* New dentry reference */ 2973 dget(dentry); /* Extra pinning count for the created dentry */ 2974 d_instantiate(dentry, inode); 2975 out: 2976 return ret; 2977 } 2978 2979 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2980 { 2981 struct inode *inode = d_inode(dentry); 2982 2983 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2984 shmem_free_inode(inode->i_sb); 2985 2986 dir->i_size -= BOGO_DIRENT_SIZE; 2987 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2988 drop_nlink(inode); 2989 dput(dentry); /* Undo the count from "create" - this does all the work */ 2990 return 0; 2991 } 2992 2993 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2994 { 2995 if (!simple_empty(dentry)) 2996 return -ENOTEMPTY; 2997 2998 drop_nlink(d_inode(dentry)); 2999 drop_nlink(dir); 3000 return shmem_unlink(dir, dentry); 3001 } 3002 3003 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3004 { 3005 bool old_is_dir = d_is_dir(old_dentry); 3006 bool new_is_dir = d_is_dir(new_dentry); 3007 3008 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3009 if (old_is_dir) { 3010 drop_nlink(old_dir); 3011 inc_nlink(new_dir); 3012 } else { 3013 drop_nlink(new_dir); 3014 inc_nlink(old_dir); 3015 } 3016 } 3017 old_dir->i_ctime = old_dir->i_mtime = 3018 new_dir->i_ctime = new_dir->i_mtime = 3019 d_inode(old_dentry)->i_ctime = 3020 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3021 3022 return 0; 3023 } 3024 3025 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3026 { 3027 struct dentry *whiteout; 3028 int error; 3029 3030 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3031 if (!whiteout) 3032 return -ENOMEM; 3033 3034 error = shmem_mknod(old_dir, whiteout, 3035 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3036 dput(whiteout); 3037 if (error) 3038 return error; 3039 3040 /* 3041 * Cheat and hash the whiteout while the old dentry is still in 3042 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3043 * 3044 * d_lookup() will consistently find one of them at this point, 3045 * not sure which one, but that isn't even important. 3046 */ 3047 d_rehash(whiteout); 3048 return 0; 3049 } 3050 3051 /* 3052 * The VFS layer already does all the dentry stuff for rename, 3053 * we just have to decrement the usage count for the target if 3054 * it exists so that the VFS layer correctly free's it when it 3055 * gets overwritten. 3056 */ 3057 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3058 { 3059 struct inode *inode = d_inode(old_dentry); 3060 int they_are_dirs = S_ISDIR(inode->i_mode); 3061 3062 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3063 return -EINVAL; 3064 3065 if (flags & RENAME_EXCHANGE) 3066 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3067 3068 if (!simple_empty(new_dentry)) 3069 return -ENOTEMPTY; 3070 3071 if (flags & RENAME_WHITEOUT) { 3072 int error; 3073 3074 error = shmem_whiteout(old_dir, old_dentry); 3075 if (error) 3076 return error; 3077 } 3078 3079 if (d_really_is_positive(new_dentry)) { 3080 (void) shmem_unlink(new_dir, new_dentry); 3081 if (they_are_dirs) { 3082 drop_nlink(d_inode(new_dentry)); 3083 drop_nlink(old_dir); 3084 } 3085 } else if (they_are_dirs) { 3086 drop_nlink(old_dir); 3087 inc_nlink(new_dir); 3088 } 3089 3090 old_dir->i_size -= BOGO_DIRENT_SIZE; 3091 new_dir->i_size += BOGO_DIRENT_SIZE; 3092 old_dir->i_ctime = old_dir->i_mtime = 3093 new_dir->i_ctime = new_dir->i_mtime = 3094 inode->i_ctime = current_time(old_dir); 3095 return 0; 3096 } 3097 3098 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3099 { 3100 int error; 3101 int len; 3102 struct inode *inode; 3103 struct page *page; 3104 3105 len = strlen(symname) + 1; 3106 if (len > PAGE_SIZE) 3107 return -ENAMETOOLONG; 3108 3109 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3110 VM_NORESERVE); 3111 if (!inode) 3112 return -ENOSPC; 3113 3114 error = security_inode_init_security(inode, dir, &dentry->d_name, 3115 shmem_initxattrs, NULL); 3116 if (error) { 3117 if (error != -EOPNOTSUPP) { 3118 iput(inode); 3119 return error; 3120 } 3121 error = 0; 3122 } 3123 3124 inode->i_size = len-1; 3125 if (len <= SHORT_SYMLINK_LEN) { 3126 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3127 if (!inode->i_link) { 3128 iput(inode); 3129 return -ENOMEM; 3130 } 3131 inode->i_op = &shmem_short_symlink_operations; 3132 } else { 3133 inode_nohighmem(inode); 3134 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3135 if (error) { 3136 iput(inode); 3137 return error; 3138 } 3139 inode->i_mapping->a_ops = &shmem_aops; 3140 inode->i_op = &shmem_symlink_inode_operations; 3141 memcpy(page_address(page), symname, len); 3142 SetPageUptodate(page); 3143 set_page_dirty(page); 3144 unlock_page(page); 3145 put_page(page); 3146 } 3147 dir->i_size += BOGO_DIRENT_SIZE; 3148 dir->i_ctime = dir->i_mtime = current_time(dir); 3149 d_instantiate(dentry, inode); 3150 dget(dentry); 3151 return 0; 3152 } 3153 3154 static void shmem_put_link(void *arg) 3155 { 3156 mark_page_accessed(arg); 3157 put_page(arg); 3158 } 3159 3160 static const char *shmem_get_link(struct dentry *dentry, 3161 struct inode *inode, 3162 struct delayed_call *done) 3163 { 3164 struct page *page = NULL; 3165 int error; 3166 if (!dentry) { 3167 page = find_get_page(inode->i_mapping, 0); 3168 if (!page) 3169 return ERR_PTR(-ECHILD); 3170 if (!PageUptodate(page)) { 3171 put_page(page); 3172 return ERR_PTR(-ECHILD); 3173 } 3174 } else { 3175 error = shmem_getpage(inode, 0, &page, SGP_READ); 3176 if (error) 3177 return ERR_PTR(error); 3178 unlock_page(page); 3179 } 3180 set_delayed_call(done, shmem_put_link, page); 3181 return page_address(page); 3182 } 3183 3184 #ifdef CONFIG_TMPFS_XATTR 3185 /* 3186 * Superblocks without xattr inode operations may get some security.* xattr 3187 * support from the LSM "for free". As soon as we have any other xattrs 3188 * like ACLs, we also need to implement the security.* handlers at 3189 * filesystem level, though. 3190 */ 3191 3192 /* 3193 * Callback for security_inode_init_security() for acquiring xattrs. 3194 */ 3195 static int shmem_initxattrs(struct inode *inode, 3196 const struct xattr *xattr_array, 3197 void *fs_info) 3198 { 3199 struct shmem_inode_info *info = SHMEM_I(inode); 3200 const struct xattr *xattr; 3201 struct simple_xattr *new_xattr; 3202 size_t len; 3203 3204 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3205 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3206 if (!new_xattr) 3207 return -ENOMEM; 3208 3209 len = strlen(xattr->name) + 1; 3210 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3211 GFP_KERNEL); 3212 if (!new_xattr->name) { 3213 kfree(new_xattr); 3214 return -ENOMEM; 3215 } 3216 3217 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3218 XATTR_SECURITY_PREFIX_LEN); 3219 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3220 xattr->name, len); 3221 3222 simple_xattr_list_add(&info->xattrs, new_xattr); 3223 } 3224 3225 return 0; 3226 } 3227 3228 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3229 struct dentry *unused, struct inode *inode, 3230 const char *name, void *buffer, size_t size) 3231 { 3232 struct shmem_inode_info *info = SHMEM_I(inode); 3233 3234 name = xattr_full_name(handler, name); 3235 return simple_xattr_get(&info->xattrs, name, buffer, size); 3236 } 3237 3238 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3239 struct dentry *unused, struct inode *inode, 3240 const char *name, const void *value, 3241 size_t size, int flags) 3242 { 3243 struct shmem_inode_info *info = SHMEM_I(inode); 3244 3245 name = xattr_full_name(handler, name); 3246 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3247 } 3248 3249 static const struct xattr_handler shmem_security_xattr_handler = { 3250 .prefix = XATTR_SECURITY_PREFIX, 3251 .get = shmem_xattr_handler_get, 3252 .set = shmem_xattr_handler_set, 3253 }; 3254 3255 static const struct xattr_handler shmem_trusted_xattr_handler = { 3256 .prefix = XATTR_TRUSTED_PREFIX, 3257 .get = shmem_xattr_handler_get, 3258 .set = shmem_xattr_handler_set, 3259 }; 3260 3261 static const struct xattr_handler *shmem_xattr_handlers[] = { 3262 #ifdef CONFIG_TMPFS_POSIX_ACL 3263 &posix_acl_access_xattr_handler, 3264 &posix_acl_default_xattr_handler, 3265 #endif 3266 &shmem_security_xattr_handler, 3267 &shmem_trusted_xattr_handler, 3268 NULL 3269 }; 3270 3271 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3272 { 3273 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3274 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3275 } 3276 #endif /* CONFIG_TMPFS_XATTR */ 3277 3278 static const struct inode_operations shmem_short_symlink_operations = { 3279 .get_link = simple_get_link, 3280 #ifdef CONFIG_TMPFS_XATTR 3281 .listxattr = shmem_listxattr, 3282 #endif 3283 }; 3284 3285 static const struct inode_operations shmem_symlink_inode_operations = { 3286 .get_link = shmem_get_link, 3287 #ifdef CONFIG_TMPFS_XATTR 3288 .listxattr = shmem_listxattr, 3289 #endif 3290 }; 3291 3292 static struct dentry *shmem_get_parent(struct dentry *child) 3293 { 3294 return ERR_PTR(-ESTALE); 3295 } 3296 3297 static int shmem_match(struct inode *ino, void *vfh) 3298 { 3299 __u32 *fh = vfh; 3300 __u64 inum = fh[2]; 3301 inum = (inum << 32) | fh[1]; 3302 return ino->i_ino == inum && fh[0] == ino->i_generation; 3303 } 3304 3305 /* Find any alias of inode, but prefer a hashed alias */ 3306 static struct dentry *shmem_find_alias(struct inode *inode) 3307 { 3308 struct dentry *alias = d_find_alias(inode); 3309 3310 return alias ?: d_find_any_alias(inode); 3311 } 3312 3313 3314 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3315 struct fid *fid, int fh_len, int fh_type) 3316 { 3317 struct inode *inode; 3318 struct dentry *dentry = NULL; 3319 u64 inum; 3320 3321 if (fh_len < 3) 3322 return NULL; 3323 3324 inum = fid->raw[2]; 3325 inum = (inum << 32) | fid->raw[1]; 3326 3327 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3328 shmem_match, fid->raw); 3329 if (inode) { 3330 dentry = shmem_find_alias(inode); 3331 iput(inode); 3332 } 3333 3334 return dentry; 3335 } 3336 3337 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3338 struct inode *parent) 3339 { 3340 if (*len < 3) { 3341 *len = 3; 3342 return FILEID_INVALID; 3343 } 3344 3345 if (inode_unhashed(inode)) { 3346 /* Unfortunately insert_inode_hash is not idempotent, 3347 * so as we hash inodes here rather than at creation 3348 * time, we need a lock to ensure we only try 3349 * to do it once 3350 */ 3351 static DEFINE_SPINLOCK(lock); 3352 spin_lock(&lock); 3353 if (inode_unhashed(inode)) 3354 __insert_inode_hash(inode, 3355 inode->i_ino + inode->i_generation); 3356 spin_unlock(&lock); 3357 } 3358 3359 fh[0] = inode->i_generation; 3360 fh[1] = inode->i_ino; 3361 fh[2] = ((__u64)inode->i_ino) >> 32; 3362 3363 *len = 3; 3364 return 1; 3365 } 3366 3367 static const struct export_operations shmem_export_ops = { 3368 .get_parent = shmem_get_parent, 3369 .encode_fh = shmem_encode_fh, 3370 .fh_to_dentry = shmem_fh_to_dentry, 3371 }; 3372 3373 enum shmem_param { 3374 Opt_gid, 3375 Opt_huge, 3376 Opt_mode, 3377 Opt_mpol, 3378 Opt_nr_blocks, 3379 Opt_nr_inodes, 3380 Opt_size, 3381 Opt_uid, 3382 }; 3383 3384 static const struct constant_table shmem_param_enums_huge[] = { 3385 {"never", SHMEM_HUGE_NEVER }, 3386 {"always", SHMEM_HUGE_ALWAYS }, 3387 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3388 {"advise", SHMEM_HUGE_ADVISE }, 3389 {"deny", SHMEM_HUGE_DENY }, 3390 {"force", SHMEM_HUGE_FORCE }, 3391 {} 3392 }; 3393 3394 const struct fs_parameter_spec shmem_fs_parameters[] = { 3395 fsparam_u32 ("gid", Opt_gid), 3396 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3397 fsparam_u32oct("mode", Opt_mode), 3398 fsparam_string("mpol", Opt_mpol), 3399 fsparam_string("nr_blocks", Opt_nr_blocks), 3400 fsparam_string("nr_inodes", Opt_nr_inodes), 3401 fsparam_string("size", Opt_size), 3402 fsparam_u32 ("uid", Opt_uid), 3403 {} 3404 }; 3405 3406 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3407 { 3408 struct shmem_options *ctx = fc->fs_private; 3409 struct fs_parse_result result; 3410 unsigned long long size; 3411 char *rest; 3412 int opt; 3413 3414 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3415 if (opt < 0) 3416 return opt; 3417 3418 switch (opt) { 3419 case Opt_size: 3420 size = memparse(param->string, &rest); 3421 if (*rest == '%') { 3422 size <<= PAGE_SHIFT; 3423 size *= totalram_pages(); 3424 do_div(size, 100); 3425 rest++; 3426 } 3427 if (*rest) 3428 goto bad_value; 3429 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3430 ctx->seen |= SHMEM_SEEN_BLOCKS; 3431 break; 3432 case Opt_nr_blocks: 3433 ctx->blocks = memparse(param->string, &rest); 3434 if (*rest) 3435 goto bad_value; 3436 ctx->seen |= SHMEM_SEEN_BLOCKS; 3437 break; 3438 case Opt_nr_inodes: 3439 ctx->inodes = memparse(param->string, &rest); 3440 if (*rest) 3441 goto bad_value; 3442 ctx->seen |= SHMEM_SEEN_INODES; 3443 break; 3444 case Opt_mode: 3445 ctx->mode = result.uint_32 & 07777; 3446 break; 3447 case Opt_uid: 3448 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3449 if (!uid_valid(ctx->uid)) 3450 goto bad_value; 3451 break; 3452 case Opt_gid: 3453 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3454 if (!gid_valid(ctx->gid)) 3455 goto bad_value; 3456 break; 3457 case Opt_huge: 3458 ctx->huge = result.uint_32; 3459 if (ctx->huge != SHMEM_HUGE_NEVER && 3460 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 3461 has_transparent_hugepage())) 3462 goto unsupported_parameter; 3463 ctx->seen |= SHMEM_SEEN_HUGE; 3464 break; 3465 case Opt_mpol: 3466 if (IS_ENABLED(CONFIG_NUMA)) { 3467 mpol_put(ctx->mpol); 3468 ctx->mpol = NULL; 3469 if (mpol_parse_str(param->string, &ctx->mpol)) 3470 goto bad_value; 3471 break; 3472 } 3473 goto unsupported_parameter; 3474 } 3475 return 0; 3476 3477 unsupported_parameter: 3478 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3479 bad_value: 3480 return invalfc(fc, "Bad value for '%s'", param->key); 3481 } 3482 3483 static int shmem_parse_options(struct fs_context *fc, void *data) 3484 { 3485 char *options = data; 3486 3487 if (options) { 3488 int err = security_sb_eat_lsm_opts(options, &fc->security); 3489 if (err) 3490 return err; 3491 } 3492 3493 while (options != NULL) { 3494 char *this_char = options; 3495 for (;;) { 3496 /* 3497 * NUL-terminate this option: unfortunately, 3498 * mount options form a comma-separated list, 3499 * but mpol's nodelist may also contain commas. 3500 */ 3501 options = strchr(options, ','); 3502 if (options == NULL) 3503 break; 3504 options++; 3505 if (!isdigit(*options)) { 3506 options[-1] = '\0'; 3507 break; 3508 } 3509 } 3510 if (*this_char) { 3511 char *value = strchr(this_char,'='); 3512 size_t len = 0; 3513 int err; 3514 3515 if (value) { 3516 *value++ = '\0'; 3517 len = strlen(value); 3518 } 3519 err = vfs_parse_fs_string(fc, this_char, value, len); 3520 if (err < 0) 3521 return err; 3522 } 3523 } 3524 return 0; 3525 } 3526 3527 /* 3528 * Reconfigure a shmem filesystem. 3529 * 3530 * Note that we disallow change from limited->unlimited blocks/inodes while any 3531 * are in use; but we must separately disallow unlimited->limited, because in 3532 * that case we have no record of how much is already in use. 3533 */ 3534 static int shmem_reconfigure(struct fs_context *fc) 3535 { 3536 struct shmem_options *ctx = fc->fs_private; 3537 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3538 unsigned long inodes; 3539 const char *err; 3540 3541 spin_lock(&sbinfo->stat_lock); 3542 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3543 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3544 if (!sbinfo->max_blocks) { 3545 err = "Cannot retroactively limit size"; 3546 goto out; 3547 } 3548 if (percpu_counter_compare(&sbinfo->used_blocks, 3549 ctx->blocks) > 0) { 3550 err = "Too small a size for current use"; 3551 goto out; 3552 } 3553 } 3554 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3555 if (!sbinfo->max_inodes) { 3556 err = "Cannot retroactively limit inodes"; 3557 goto out; 3558 } 3559 if (ctx->inodes < inodes) { 3560 err = "Too few inodes for current use"; 3561 goto out; 3562 } 3563 } 3564 3565 if (ctx->seen & SHMEM_SEEN_HUGE) 3566 sbinfo->huge = ctx->huge; 3567 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3568 sbinfo->max_blocks = ctx->blocks; 3569 if (ctx->seen & SHMEM_SEEN_INODES) { 3570 sbinfo->max_inodes = ctx->inodes; 3571 sbinfo->free_inodes = ctx->inodes - inodes; 3572 } 3573 3574 /* 3575 * Preserve previous mempolicy unless mpol remount option was specified. 3576 */ 3577 if (ctx->mpol) { 3578 mpol_put(sbinfo->mpol); 3579 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3580 ctx->mpol = NULL; 3581 } 3582 spin_unlock(&sbinfo->stat_lock); 3583 return 0; 3584 out: 3585 spin_unlock(&sbinfo->stat_lock); 3586 return invalfc(fc, "%s", err); 3587 } 3588 3589 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3590 { 3591 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3592 3593 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3594 seq_printf(seq, ",size=%luk", 3595 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3596 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3597 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3598 if (sbinfo->mode != (0777 | S_ISVTX)) 3599 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3600 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3601 seq_printf(seq, ",uid=%u", 3602 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3603 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3604 seq_printf(seq, ",gid=%u", 3605 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3606 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3607 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3608 if (sbinfo->huge) 3609 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3610 #endif 3611 shmem_show_mpol(seq, sbinfo->mpol); 3612 return 0; 3613 } 3614 3615 #endif /* CONFIG_TMPFS */ 3616 3617 static void shmem_put_super(struct super_block *sb) 3618 { 3619 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3620 3621 percpu_counter_destroy(&sbinfo->used_blocks); 3622 mpol_put(sbinfo->mpol); 3623 kfree(sbinfo); 3624 sb->s_fs_info = NULL; 3625 } 3626 3627 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3628 { 3629 struct shmem_options *ctx = fc->fs_private; 3630 struct inode *inode; 3631 struct shmem_sb_info *sbinfo; 3632 int err = -ENOMEM; 3633 3634 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3635 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3636 L1_CACHE_BYTES), GFP_KERNEL); 3637 if (!sbinfo) 3638 return -ENOMEM; 3639 3640 sb->s_fs_info = sbinfo; 3641 3642 #ifdef CONFIG_TMPFS 3643 /* 3644 * Per default we only allow half of the physical ram per 3645 * tmpfs instance, limiting inodes to one per page of lowmem; 3646 * but the internal instance is left unlimited. 3647 */ 3648 if (!(sb->s_flags & SB_KERNMOUNT)) { 3649 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3650 ctx->blocks = shmem_default_max_blocks(); 3651 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3652 ctx->inodes = shmem_default_max_inodes(); 3653 } else { 3654 sb->s_flags |= SB_NOUSER; 3655 } 3656 sb->s_export_op = &shmem_export_ops; 3657 sb->s_flags |= SB_NOSEC; 3658 #else 3659 sb->s_flags |= SB_NOUSER; 3660 #endif 3661 sbinfo->max_blocks = ctx->blocks; 3662 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3663 sbinfo->uid = ctx->uid; 3664 sbinfo->gid = ctx->gid; 3665 sbinfo->mode = ctx->mode; 3666 sbinfo->huge = ctx->huge; 3667 sbinfo->mpol = ctx->mpol; 3668 ctx->mpol = NULL; 3669 3670 spin_lock_init(&sbinfo->stat_lock); 3671 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3672 goto failed; 3673 spin_lock_init(&sbinfo->shrinklist_lock); 3674 INIT_LIST_HEAD(&sbinfo->shrinklist); 3675 3676 sb->s_maxbytes = MAX_LFS_FILESIZE; 3677 sb->s_blocksize = PAGE_SIZE; 3678 sb->s_blocksize_bits = PAGE_SHIFT; 3679 sb->s_magic = TMPFS_MAGIC; 3680 sb->s_op = &shmem_ops; 3681 sb->s_time_gran = 1; 3682 #ifdef CONFIG_TMPFS_XATTR 3683 sb->s_xattr = shmem_xattr_handlers; 3684 #endif 3685 #ifdef CONFIG_TMPFS_POSIX_ACL 3686 sb->s_flags |= SB_POSIXACL; 3687 #endif 3688 uuid_gen(&sb->s_uuid); 3689 3690 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3691 if (!inode) 3692 goto failed; 3693 inode->i_uid = sbinfo->uid; 3694 inode->i_gid = sbinfo->gid; 3695 sb->s_root = d_make_root(inode); 3696 if (!sb->s_root) 3697 goto failed; 3698 return 0; 3699 3700 failed: 3701 shmem_put_super(sb); 3702 return err; 3703 } 3704 3705 static int shmem_get_tree(struct fs_context *fc) 3706 { 3707 return get_tree_nodev(fc, shmem_fill_super); 3708 } 3709 3710 static void shmem_free_fc(struct fs_context *fc) 3711 { 3712 struct shmem_options *ctx = fc->fs_private; 3713 3714 if (ctx) { 3715 mpol_put(ctx->mpol); 3716 kfree(ctx); 3717 } 3718 } 3719 3720 static const struct fs_context_operations shmem_fs_context_ops = { 3721 .free = shmem_free_fc, 3722 .get_tree = shmem_get_tree, 3723 #ifdef CONFIG_TMPFS 3724 .parse_monolithic = shmem_parse_options, 3725 .parse_param = shmem_parse_one, 3726 .reconfigure = shmem_reconfigure, 3727 #endif 3728 }; 3729 3730 static struct kmem_cache *shmem_inode_cachep; 3731 3732 static struct inode *shmem_alloc_inode(struct super_block *sb) 3733 { 3734 struct shmem_inode_info *info; 3735 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3736 if (!info) 3737 return NULL; 3738 return &info->vfs_inode; 3739 } 3740 3741 static void shmem_free_in_core_inode(struct inode *inode) 3742 { 3743 if (S_ISLNK(inode->i_mode)) 3744 kfree(inode->i_link); 3745 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3746 } 3747 3748 static void shmem_destroy_inode(struct inode *inode) 3749 { 3750 if (S_ISREG(inode->i_mode)) 3751 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3752 } 3753 3754 static void shmem_init_inode(void *foo) 3755 { 3756 struct shmem_inode_info *info = foo; 3757 inode_init_once(&info->vfs_inode); 3758 } 3759 3760 static void shmem_init_inodecache(void) 3761 { 3762 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3763 sizeof(struct shmem_inode_info), 3764 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3765 } 3766 3767 static void shmem_destroy_inodecache(void) 3768 { 3769 kmem_cache_destroy(shmem_inode_cachep); 3770 } 3771 3772 static const struct address_space_operations shmem_aops = { 3773 .writepage = shmem_writepage, 3774 .set_page_dirty = __set_page_dirty_no_writeback, 3775 #ifdef CONFIG_TMPFS 3776 .write_begin = shmem_write_begin, 3777 .write_end = shmem_write_end, 3778 #endif 3779 #ifdef CONFIG_MIGRATION 3780 .migratepage = migrate_page, 3781 #endif 3782 .error_remove_page = generic_error_remove_page, 3783 }; 3784 3785 static const struct file_operations shmem_file_operations = { 3786 .mmap = shmem_mmap, 3787 .get_unmapped_area = shmem_get_unmapped_area, 3788 #ifdef CONFIG_TMPFS 3789 .llseek = shmem_file_llseek, 3790 .read_iter = shmem_file_read_iter, 3791 .write_iter = generic_file_write_iter, 3792 .fsync = noop_fsync, 3793 .splice_read = generic_file_splice_read, 3794 .splice_write = iter_file_splice_write, 3795 .fallocate = shmem_fallocate, 3796 #endif 3797 }; 3798 3799 static const struct inode_operations shmem_inode_operations = { 3800 .getattr = shmem_getattr, 3801 .setattr = shmem_setattr, 3802 #ifdef CONFIG_TMPFS_XATTR 3803 .listxattr = shmem_listxattr, 3804 .set_acl = simple_set_acl, 3805 #endif 3806 }; 3807 3808 static const struct inode_operations shmem_dir_inode_operations = { 3809 #ifdef CONFIG_TMPFS 3810 .create = shmem_create, 3811 .lookup = simple_lookup, 3812 .link = shmem_link, 3813 .unlink = shmem_unlink, 3814 .symlink = shmem_symlink, 3815 .mkdir = shmem_mkdir, 3816 .rmdir = shmem_rmdir, 3817 .mknod = shmem_mknod, 3818 .rename = shmem_rename2, 3819 .tmpfile = shmem_tmpfile, 3820 #endif 3821 #ifdef CONFIG_TMPFS_XATTR 3822 .listxattr = shmem_listxattr, 3823 #endif 3824 #ifdef CONFIG_TMPFS_POSIX_ACL 3825 .setattr = shmem_setattr, 3826 .set_acl = simple_set_acl, 3827 #endif 3828 }; 3829 3830 static const struct inode_operations shmem_special_inode_operations = { 3831 #ifdef CONFIG_TMPFS_XATTR 3832 .listxattr = shmem_listxattr, 3833 #endif 3834 #ifdef CONFIG_TMPFS_POSIX_ACL 3835 .setattr = shmem_setattr, 3836 .set_acl = simple_set_acl, 3837 #endif 3838 }; 3839 3840 static const struct super_operations shmem_ops = { 3841 .alloc_inode = shmem_alloc_inode, 3842 .free_inode = shmem_free_in_core_inode, 3843 .destroy_inode = shmem_destroy_inode, 3844 #ifdef CONFIG_TMPFS 3845 .statfs = shmem_statfs, 3846 .show_options = shmem_show_options, 3847 #endif 3848 .evict_inode = shmem_evict_inode, 3849 .drop_inode = generic_delete_inode, 3850 .put_super = shmem_put_super, 3851 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3852 .nr_cached_objects = shmem_unused_huge_count, 3853 .free_cached_objects = shmem_unused_huge_scan, 3854 #endif 3855 }; 3856 3857 static const struct vm_operations_struct shmem_vm_ops = { 3858 .fault = shmem_fault, 3859 .map_pages = filemap_map_pages, 3860 #ifdef CONFIG_NUMA 3861 .set_policy = shmem_set_policy, 3862 .get_policy = shmem_get_policy, 3863 #endif 3864 }; 3865 3866 int shmem_init_fs_context(struct fs_context *fc) 3867 { 3868 struct shmem_options *ctx; 3869 3870 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3871 if (!ctx) 3872 return -ENOMEM; 3873 3874 ctx->mode = 0777 | S_ISVTX; 3875 ctx->uid = current_fsuid(); 3876 ctx->gid = current_fsgid(); 3877 3878 fc->fs_private = ctx; 3879 fc->ops = &shmem_fs_context_ops; 3880 return 0; 3881 } 3882 3883 static struct file_system_type shmem_fs_type = { 3884 .owner = THIS_MODULE, 3885 .name = "tmpfs", 3886 .init_fs_context = shmem_init_fs_context, 3887 #ifdef CONFIG_TMPFS 3888 .parameters = shmem_fs_parameters, 3889 #endif 3890 .kill_sb = kill_litter_super, 3891 .fs_flags = FS_USERNS_MOUNT, 3892 }; 3893 3894 int __init shmem_init(void) 3895 { 3896 int error; 3897 3898 shmem_init_inodecache(); 3899 3900 error = register_filesystem(&shmem_fs_type); 3901 if (error) { 3902 pr_err("Could not register tmpfs\n"); 3903 goto out2; 3904 } 3905 3906 shm_mnt = kern_mount(&shmem_fs_type); 3907 if (IS_ERR(shm_mnt)) { 3908 error = PTR_ERR(shm_mnt); 3909 pr_err("Could not kern_mount tmpfs\n"); 3910 goto out1; 3911 } 3912 3913 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3914 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3915 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3916 else 3917 shmem_huge = 0; /* just in case it was patched */ 3918 #endif 3919 return 0; 3920 3921 out1: 3922 unregister_filesystem(&shmem_fs_type); 3923 out2: 3924 shmem_destroy_inodecache(); 3925 shm_mnt = ERR_PTR(error); 3926 return error; 3927 } 3928 3929 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3930 static ssize_t shmem_enabled_show(struct kobject *kobj, 3931 struct kobj_attribute *attr, char *buf) 3932 { 3933 static const int values[] = { 3934 SHMEM_HUGE_ALWAYS, 3935 SHMEM_HUGE_WITHIN_SIZE, 3936 SHMEM_HUGE_ADVISE, 3937 SHMEM_HUGE_NEVER, 3938 SHMEM_HUGE_DENY, 3939 SHMEM_HUGE_FORCE, 3940 }; 3941 int i, count; 3942 3943 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3944 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3945 3946 count += sprintf(buf + count, fmt, 3947 shmem_format_huge(values[i])); 3948 } 3949 buf[count - 1] = '\n'; 3950 return count; 3951 } 3952 3953 static ssize_t shmem_enabled_store(struct kobject *kobj, 3954 struct kobj_attribute *attr, const char *buf, size_t count) 3955 { 3956 char tmp[16]; 3957 int huge; 3958 3959 if (count + 1 > sizeof(tmp)) 3960 return -EINVAL; 3961 memcpy(tmp, buf, count); 3962 tmp[count] = '\0'; 3963 if (count && tmp[count - 1] == '\n') 3964 tmp[count - 1] = '\0'; 3965 3966 huge = shmem_parse_huge(tmp); 3967 if (huge == -EINVAL) 3968 return -EINVAL; 3969 if (!has_transparent_hugepage() && 3970 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3971 return -EINVAL; 3972 3973 shmem_huge = huge; 3974 if (shmem_huge > SHMEM_HUGE_DENY) 3975 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3976 return count; 3977 } 3978 3979 struct kobj_attribute shmem_enabled_attr = 3980 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3981 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3982 3983 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3984 bool shmem_huge_enabled(struct vm_area_struct *vma) 3985 { 3986 struct inode *inode = file_inode(vma->vm_file); 3987 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3988 loff_t i_size; 3989 pgoff_t off; 3990 3991 if ((vma->vm_flags & VM_NOHUGEPAGE) || 3992 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 3993 return false; 3994 if (shmem_huge == SHMEM_HUGE_FORCE) 3995 return true; 3996 if (shmem_huge == SHMEM_HUGE_DENY) 3997 return false; 3998 switch (sbinfo->huge) { 3999 case SHMEM_HUGE_NEVER: 4000 return false; 4001 case SHMEM_HUGE_ALWAYS: 4002 return true; 4003 case SHMEM_HUGE_WITHIN_SIZE: 4004 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4005 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4006 if (i_size >= HPAGE_PMD_SIZE && 4007 i_size >> PAGE_SHIFT >= off) 4008 return true; 4009 /* fall through */ 4010 case SHMEM_HUGE_ADVISE: 4011 /* TODO: implement fadvise() hints */ 4012 return (vma->vm_flags & VM_HUGEPAGE); 4013 default: 4014 VM_BUG_ON(1); 4015 return false; 4016 } 4017 } 4018 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4019 4020 #else /* !CONFIG_SHMEM */ 4021 4022 /* 4023 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4024 * 4025 * This is intended for small system where the benefits of the full 4026 * shmem code (swap-backed and resource-limited) are outweighed by 4027 * their complexity. On systems without swap this code should be 4028 * effectively equivalent, but much lighter weight. 4029 */ 4030 4031 static struct file_system_type shmem_fs_type = { 4032 .name = "tmpfs", 4033 .init_fs_context = ramfs_init_fs_context, 4034 .parameters = ramfs_fs_parameters, 4035 .kill_sb = kill_litter_super, 4036 .fs_flags = FS_USERNS_MOUNT, 4037 }; 4038 4039 int __init shmem_init(void) 4040 { 4041 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4042 4043 shm_mnt = kern_mount(&shmem_fs_type); 4044 BUG_ON(IS_ERR(shm_mnt)); 4045 4046 return 0; 4047 } 4048 4049 int shmem_unuse(unsigned int type, bool frontswap, 4050 unsigned long *fs_pages_to_unuse) 4051 { 4052 return 0; 4053 } 4054 4055 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4056 { 4057 return 0; 4058 } 4059 4060 void shmem_unlock_mapping(struct address_space *mapping) 4061 { 4062 } 4063 4064 #ifdef CONFIG_MMU 4065 unsigned long shmem_get_unmapped_area(struct file *file, 4066 unsigned long addr, unsigned long len, 4067 unsigned long pgoff, unsigned long flags) 4068 { 4069 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4070 } 4071 #endif 4072 4073 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4074 { 4075 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4076 } 4077 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4078 4079 #define shmem_vm_ops generic_file_vm_ops 4080 #define shmem_file_operations ramfs_file_operations 4081 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4082 #define shmem_acct_size(flags, size) 0 4083 #define shmem_unacct_size(flags, size) do {} while (0) 4084 4085 #endif /* CONFIG_SHMEM */ 4086 4087 /* common code */ 4088 4089 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4090 unsigned long flags, unsigned int i_flags) 4091 { 4092 struct inode *inode; 4093 struct file *res; 4094 4095 if (IS_ERR(mnt)) 4096 return ERR_CAST(mnt); 4097 4098 if (size < 0 || size > MAX_LFS_FILESIZE) 4099 return ERR_PTR(-EINVAL); 4100 4101 if (shmem_acct_size(flags, size)) 4102 return ERR_PTR(-ENOMEM); 4103 4104 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4105 flags); 4106 if (unlikely(!inode)) { 4107 shmem_unacct_size(flags, size); 4108 return ERR_PTR(-ENOSPC); 4109 } 4110 inode->i_flags |= i_flags; 4111 inode->i_size = size; 4112 clear_nlink(inode); /* It is unlinked */ 4113 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4114 if (!IS_ERR(res)) 4115 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4116 &shmem_file_operations); 4117 if (IS_ERR(res)) 4118 iput(inode); 4119 return res; 4120 } 4121 4122 /** 4123 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4124 * kernel internal. There will be NO LSM permission checks against the 4125 * underlying inode. So users of this interface must do LSM checks at a 4126 * higher layer. The users are the big_key and shm implementations. LSM 4127 * checks are provided at the key or shm level rather than the inode. 4128 * @name: name for dentry (to be seen in /proc/<pid>/maps 4129 * @size: size to be set for the file 4130 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4131 */ 4132 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4133 { 4134 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4135 } 4136 4137 /** 4138 * shmem_file_setup - get an unlinked file living in tmpfs 4139 * @name: name for dentry (to be seen in /proc/<pid>/maps 4140 * @size: size to be set for the file 4141 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4142 */ 4143 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4144 { 4145 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4146 } 4147 EXPORT_SYMBOL_GPL(shmem_file_setup); 4148 4149 /** 4150 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4151 * @mnt: the tmpfs mount where the file will be created 4152 * @name: name for dentry (to be seen in /proc/<pid>/maps 4153 * @size: size to be set for the file 4154 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4155 */ 4156 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4157 loff_t size, unsigned long flags) 4158 { 4159 return __shmem_file_setup(mnt, name, size, flags, 0); 4160 } 4161 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4162 4163 /** 4164 * shmem_zero_setup - setup a shared anonymous mapping 4165 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4166 */ 4167 int shmem_zero_setup(struct vm_area_struct *vma) 4168 { 4169 struct file *file; 4170 loff_t size = vma->vm_end - vma->vm_start; 4171 4172 /* 4173 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4174 * between XFS directory reading and selinux: since this file is only 4175 * accessible to the user through its mapping, use S_PRIVATE flag to 4176 * bypass file security, in the same way as shmem_kernel_file_setup(). 4177 */ 4178 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4179 if (IS_ERR(file)) 4180 return PTR_ERR(file); 4181 4182 if (vma->vm_file) 4183 fput(vma->vm_file); 4184 vma->vm_file = file; 4185 vma->vm_ops = &shmem_vm_ops; 4186 4187 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4188 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4189 (vma->vm_end & HPAGE_PMD_MASK)) { 4190 khugepaged_enter(vma, vma->vm_flags); 4191 } 4192 4193 return 0; 4194 } 4195 4196 /** 4197 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4198 * @mapping: the page's address_space 4199 * @index: the page index 4200 * @gfp: the page allocator flags to use if allocating 4201 * 4202 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4203 * with any new page allocations done using the specified allocation flags. 4204 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4205 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4206 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4207 * 4208 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4209 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4210 */ 4211 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4212 pgoff_t index, gfp_t gfp) 4213 { 4214 #ifdef CONFIG_SHMEM 4215 struct inode *inode = mapping->host; 4216 struct page *page; 4217 int error; 4218 4219 BUG_ON(mapping->a_ops != &shmem_aops); 4220 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4221 gfp, NULL, NULL, NULL); 4222 if (error) 4223 page = ERR_PTR(error); 4224 else 4225 unlock_page(page); 4226 return page; 4227 #else 4228 /* 4229 * The tiny !SHMEM case uses ramfs without swap 4230 */ 4231 return read_cache_page_gfp(mapping, index, gfp); 4232 #endif 4233 } 4234 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4235