xref: /openbmc/linux/mm/shmem.c (revision 0d456bad)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 /*
81  * shmem_fallocate and shmem_writepage communicate via inode->i_private
82  * (with i_mutex making sure that it has only one user at a time):
83  * we would prefer not to enlarge the shmem inode just for that.
84  */
85 struct shmem_falloc {
86 	pgoff_t start;		/* start of range currently being fallocated */
87 	pgoff_t next;		/* the next page offset to be fallocated */
88 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
89 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
90 };
91 
92 /* Flag allocation requirements to shmem_getpage */
93 enum sgp_type {
94 	SGP_READ,	/* don't exceed i_size, don't allocate page */
95 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
96 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
97 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
98 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
99 };
100 
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 	return totalram_pages / 2;
105 }
106 
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112 
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 				struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118 
119 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120 	struct page **pagep, enum sgp_type sgp, int *fault_type)
121 {
122 	return shmem_getpage_gfp(inode, index, pagep, sgp,
123 			mapping_gfp_mask(inode->i_mapping), fault_type);
124 }
125 
126 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127 {
128 	return sb->s_fs_info;
129 }
130 
131 /*
132  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133  * for shared memory and for shared anonymous (/dev/zero) mappings
134  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135  * consistent with the pre-accounting of private mappings ...
136  */
137 static inline int shmem_acct_size(unsigned long flags, loff_t size)
138 {
139 	return (flags & VM_NORESERVE) ?
140 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
141 }
142 
143 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144 {
145 	if (!(flags & VM_NORESERVE))
146 		vm_unacct_memory(VM_ACCT(size));
147 }
148 
149 /*
150  * ... whereas tmpfs objects are accounted incrementally as
151  * pages are allocated, in order to allow huge sparse files.
152  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154  */
155 static inline int shmem_acct_block(unsigned long flags)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
159 }
160 
161 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162 {
163 	if (flags & VM_NORESERVE)
164 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165 }
166 
167 static const struct super_operations shmem_ops;
168 static const struct address_space_operations shmem_aops;
169 static const struct file_operations shmem_file_operations;
170 static const struct inode_operations shmem_inode_operations;
171 static const struct inode_operations shmem_dir_inode_operations;
172 static const struct inode_operations shmem_special_inode_operations;
173 static const struct vm_operations_struct shmem_vm_ops;
174 
175 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
176 	.ra_pages	= 0,	/* No readahead */
177 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
178 };
179 
180 static LIST_HEAD(shmem_swaplist);
181 static DEFINE_MUTEX(shmem_swaplist_mutex);
182 
183 static int shmem_reserve_inode(struct super_block *sb)
184 {
185 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186 	if (sbinfo->max_inodes) {
187 		spin_lock(&sbinfo->stat_lock);
188 		if (!sbinfo->free_inodes) {
189 			spin_unlock(&sbinfo->stat_lock);
190 			return -ENOSPC;
191 		}
192 		sbinfo->free_inodes--;
193 		spin_unlock(&sbinfo->stat_lock);
194 	}
195 	return 0;
196 }
197 
198 static void shmem_free_inode(struct super_block *sb)
199 {
200 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201 	if (sbinfo->max_inodes) {
202 		spin_lock(&sbinfo->stat_lock);
203 		sbinfo->free_inodes++;
204 		spin_unlock(&sbinfo->stat_lock);
205 	}
206 }
207 
208 /**
209  * shmem_recalc_inode - recalculate the block usage of an inode
210  * @inode: inode to recalc
211  *
212  * We have to calculate the free blocks since the mm can drop
213  * undirtied hole pages behind our back.
214  *
215  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
216  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217  *
218  * It has to be called with the spinlock held.
219  */
220 static void shmem_recalc_inode(struct inode *inode)
221 {
222 	struct shmem_inode_info *info = SHMEM_I(inode);
223 	long freed;
224 
225 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226 	if (freed > 0) {
227 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 		if (sbinfo->max_blocks)
229 			percpu_counter_add(&sbinfo->used_blocks, -freed);
230 		info->alloced -= freed;
231 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232 		shmem_unacct_blocks(info->flags, freed);
233 	}
234 }
235 
236 /*
237  * Replace item expected in radix tree by a new item, while holding tree lock.
238  */
239 static int shmem_radix_tree_replace(struct address_space *mapping,
240 			pgoff_t index, void *expected, void *replacement)
241 {
242 	void **pslot;
243 	void *item = NULL;
244 
245 	VM_BUG_ON(!expected);
246 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247 	if (pslot)
248 		item = radix_tree_deref_slot_protected(pslot,
249 							&mapping->tree_lock);
250 	if (item != expected)
251 		return -ENOENT;
252 	if (replacement)
253 		radix_tree_replace_slot(pslot, replacement);
254 	else
255 		radix_tree_delete(&mapping->page_tree, index);
256 	return 0;
257 }
258 
259 /*
260  * Sometimes, before we decide whether to proceed or to fail, we must check
261  * that an entry was not already brought back from swap by a racing thread.
262  *
263  * Checking page is not enough: by the time a SwapCache page is locked, it
264  * might be reused, and again be SwapCache, using the same swap as before.
265  */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267 			       pgoff_t index, swp_entry_t swap)
268 {
269 	void *item;
270 
271 	rcu_read_lock();
272 	item = radix_tree_lookup(&mapping->page_tree, index);
273 	rcu_read_unlock();
274 	return item == swp_to_radix_entry(swap);
275 }
276 
277 /*
278  * Like add_to_page_cache_locked, but error if expected item has gone.
279  */
280 static int shmem_add_to_page_cache(struct page *page,
281 				   struct address_space *mapping,
282 				   pgoff_t index, gfp_t gfp, void *expected)
283 {
284 	int error;
285 
286 	VM_BUG_ON(!PageLocked(page));
287 	VM_BUG_ON(!PageSwapBacked(page));
288 
289 	page_cache_get(page);
290 	page->mapping = mapping;
291 	page->index = index;
292 
293 	spin_lock_irq(&mapping->tree_lock);
294 	if (!expected)
295 		error = radix_tree_insert(&mapping->page_tree, index, page);
296 	else
297 		error = shmem_radix_tree_replace(mapping, index, expected,
298 								 page);
299 	if (!error) {
300 		mapping->nrpages++;
301 		__inc_zone_page_state(page, NR_FILE_PAGES);
302 		__inc_zone_page_state(page, NR_SHMEM);
303 		spin_unlock_irq(&mapping->tree_lock);
304 	} else {
305 		page->mapping = NULL;
306 		spin_unlock_irq(&mapping->tree_lock);
307 		page_cache_release(page);
308 	}
309 	return error;
310 }
311 
312 /*
313  * Like delete_from_page_cache, but substitutes swap for page.
314  */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317 	struct address_space *mapping = page->mapping;
318 	int error;
319 
320 	spin_lock_irq(&mapping->tree_lock);
321 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 	page->mapping = NULL;
323 	mapping->nrpages--;
324 	__dec_zone_page_state(page, NR_FILE_PAGES);
325 	__dec_zone_page_state(page, NR_SHMEM);
326 	spin_unlock_irq(&mapping->tree_lock);
327 	page_cache_release(page);
328 	BUG_ON(error);
329 }
330 
331 /*
332  * Like find_get_pages, but collecting swap entries as well as pages.
333  */
334 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335 					pgoff_t start, unsigned int nr_pages,
336 					struct page **pages, pgoff_t *indices)
337 {
338 	unsigned int i;
339 	unsigned int ret;
340 	unsigned int nr_found;
341 
342 	rcu_read_lock();
343 restart:
344 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345 				(void ***)pages, indices, start, nr_pages);
346 	ret = 0;
347 	for (i = 0; i < nr_found; i++) {
348 		struct page *page;
349 repeat:
350 		page = radix_tree_deref_slot((void **)pages[i]);
351 		if (unlikely(!page))
352 			continue;
353 		if (radix_tree_exception(page)) {
354 			if (radix_tree_deref_retry(page))
355 				goto restart;
356 			/*
357 			 * Otherwise, we must be storing a swap entry
358 			 * here as an exceptional entry: so return it
359 			 * without attempting to raise page count.
360 			 */
361 			goto export;
362 		}
363 		if (!page_cache_get_speculative(page))
364 			goto repeat;
365 
366 		/* Has the page moved? */
367 		if (unlikely(page != *((void **)pages[i]))) {
368 			page_cache_release(page);
369 			goto repeat;
370 		}
371 export:
372 		indices[ret] = indices[i];
373 		pages[ret] = page;
374 		ret++;
375 	}
376 	if (unlikely(!ret && nr_found))
377 		goto restart;
378 	rcu_read_unlock();
379 	return ret;
380 }
381 
382 /*
383  * Remove swap entry from radix tree, free the swap and its page cache.
384  */
385 static int shmem_free_swap(struct address_space *mapping,
386 			   pgoff_t index, void *radswap)
387 {
388 	int error;
389 
390 	spin_lock_irq(&mapping->tree_lock);
391 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392 	spin_unlock_irq(&mapping->tree_lock);
393 	if (!error)
394 		free_swap_and_cache(radix_to_swp_entry(radswap));
395 	return error;
396 }
397 
398 /*
399  * Pagevec may contain swap entries, so shuffle up pages before releasing.
400  */
401 static void shmem_deswap_pagevec(struct pagevec *pvec)
402 {
403 	int i, j;
404 
405 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406 		struct page *page = pvec->pages[i];
407 		if (!radix_tree_exceptional_entry(page))
408 			pvec->pages[j++] = page;
409 	}
410 	pvec->nr = j;
411 }
412 
413 /*
414  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415  */
416 void shmem_unlock_mapping(struct address_space *mapping)
417 {
418 	struct pagevec pvec;
419 	pgoff_t indices[PAGEVEC_SIZE];
420 	pgoff_t index = 0;
421 
422 	pagevec_init(&pvec, 0);
423 	/*
424 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425 	 */
426 	while (!mapping_unevictable(mapping)) {
427 		/*
428 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430 		 */
431 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432 					PAGEVEC_SIZE, pvec.pages, indices);
433 		if (!pvec.nr)
434 			break;
435 		index = indices[pvec.nr - 1] + 1;
436 		shmem_deswap_pagevec(&pvec);
437 		check_move_unevictable_pages(pvec.pages, pvec.nr);
438 		pagevec_release(&pvec);
439 		cond_resched();
440 	}
441 }
442 
443 /*
444  * Remove range of pages and swap entries from radix tree, and free them.
445  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
446  */
447 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448 								 bool unfalloc)
449 {
450 	struct address_space *mapping = inode->i_mapping;
451 	struct shmem_inode_info *info = SHMEM_I(inode);
452 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
453 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
456 	struct pagevec pvec;
457 	pgoff_t indices[PAGEVEC_SIZE];
458 	long nr_swaps_freed = 0;
459 	pgoff_t index;
460 	int i;
461 
462 	if (lend == -1)
463 		end = -1;	/* unsigned, so actually very big */
464 
465 	pagevec_init(&pvec, 0);
466 	index = start;
467 	while (index < end) {
468 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
469 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
470 							pvec.pages, indices);
471 		if (!pvec.nr)
472 			break;
473 		mem_cgroup_uncharge_start();
474 		for (i = 0; i < pagevec_count(&pvec); i++) {
475 			struct page *page = pvec.pages[i];
476 
477 			index = indices[i];
478 			if (index >= end)
479 				break;
480 
481 			if (radix_tree_exceptional_entry(page)) {
482 				if (unfalloc)
483 					continue;
484 				nr_swaps_freed += !shmem_free_swap(mapping,
485 								index, page);
486 				continue;
487 			}
488 
489 			if (!trylock_page(page))
490 				continue;
491 			if (!unfalloc || !PageUptodate(page)) {
492 				if (page->mapping == mapping) {
493 					VM_BUG_ON(PageWriteback(page));
494 					truncate_inode_page(mapping, page);
495 				}
496 			}
497 			unlock_page(page);
498 		}
499 		shmem_deswap_pagevec(&pvec);
500 		pagevec_release(&pvec);
501 		mem_cgroup_uncharge_end();
502 		cond_resched();
503 		index++;
504 	}
505 
506 	if (partial_start) {
507 		struct page *page = NULL;
508 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509 		if (page) {
510 			unsigned int top = PAGE_CACHE_SIZE;
511 			if (start > end) {
512 				top = partial_end;
513 				partial_end = 0;
514 			}
515 			zero_user_segment(page, partial_start, top);
516 			set_page_dirty(page);
517 			unlock_page(page);
518 			page_cache_release(page);
519 		}
520 	}
521 	if (partial_end) {
522 		struct page *page = NULL;
523 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
524 		if (page) {
525 			zero_user_segment(page, 0, partial_end);
526 			set_page_dirty(page);
527 			unlock_page(page);
528 			page_cache_release(page);
529 		}
530 	}
531 	if (start >= end)
532 		return;
533 
534 	index = start;
535 	for ( ; ; ) {
536 		cond_resched();
537 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
538 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
539 							pvec.pages, indices);
540 		if (!pvec.nr) {
541 			if (index == start || unfalloc)
542 				break;
543 			index = start;
544 			continue;
545 		}
546 		if ((index == start || unfalloc) && indices[0] >= end) {
547 			shmem_deswap_pagevec(&pvec);
548 			pagevec_release(&pvec);
549 			break;
550 		}
551 		mem_cgroup_uncharge_start();
552 		for (i = 0; i < pagevec_count(&pvec); i++) {
553 			struct page *page = pvec.pages[i];
554 
555 			index = indices[i];
556 			if (index >= end)
557 				break;
558 
559 			if (radix_tree_exceptional_entry(page)) {
560 				if (unfalloc)
561 					continue;
562 				nr_swaps_freed += !shmem_free_swap(mapping,
563 								index, page);
564 				continue;
565 			}
566 
567 			lock_page(page);
568 			if (!unfalloc || !PageUptodate(page)) {
569 				if (page->mapping == mapping) {
570 					VM_BUG_ON(PageWriteback(page));
571 					truncate_inode_page(mapping, page);
572 				}
573 			}
574 			unlock_page(page);
575 		}
576 		shmem_deswap_pagevec(&pvec);
577 		pagevec_release(&pvec);
578 		mem_cgroup_uncharge_end();
579 		index++;
580 	}
581 
582 	spin_lock(&info->lock);
583 	info->swapped -= nr_swaps_freed;
584 	shmem_recalc_inode(inode);
585 	spin_unlock(&info->lock);
586 }
587 
588 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589 {
590 	shmem_undo_range(inode, lstart, lend, false);
591 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
592 }
593 EXPORT_SYMBOL_GPL(shmem_truncate_range);
594 
595 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
596 {
597 	struct inode *inode = dentry->d_inode;
598 	int error;
599 
600 	error = inode_change_ok(inode, attr);
601 	if (error)
602 		return error;
603 
604 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605 		loff_t oldsize = inode->i_size;
606 		loff_t newsize = attr->ia_size;
607 
608 		if (newsize != oldsize) {
609 			i_size_write(inode, newsize);
610 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611 		}
612 		if (newsize < oldsize) {
613 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
614 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615 			shmem_truncate_range(inode, newsize, (loff_t)-1);
616 			/* unmap again to remove racily COWed private pages */
617 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618 		}
619 	}
620 
621 	setattr_copy(inode, attr);
622 #ifdef CONFIG_TMPFS_POSIX_ACL
623 	if (attr->ia_valid & ATTR_MODE)
624 		error = generic_acl_chmod(inode);
625 #endif
626 	return error;
627 }
628 
629 static void shmem_evict_inode(struct inode *inode)
630 {
631 	struct shmem_inode_info *info = SHMEM_I(inode);
632 
633 	if (inode->i_mapping->a_ops == &shmem_aops) {
634 		shmem_unacct_size(info->flags, inode->i_size);
635 		inode->i_size = 0;
636 		shmem_truncate_range(inode, 0, (loff_t)-1);
637 		if (!list_empty(&info->swaplist)) {
638 			mutex_lock(&shmem_swaplist_mutex);
639 			list_del_init(&info->swaplist);
640 			mutex_unlock(&shmem_swaplist_mutex);
641 		}
642 	} else
643 		kfree(info->symlink);
644 
645 	simple_xattrs_free(&info->xattrs);
646 	WARN_ON(inode->i_blocks);
647 	shmem_free_inode(inode->i_sb);
648 	clear_inode(inode);
649 }
650 
651 /*
652  * If swap found in inode, free it and move page from swapcache to filecache.
653  */
654 static int shmem_unuse_inode(struct shmem_inode_info *info,
655 			     swp_entry_t swap, struct page **pagep)
656 {
657 	struct address_space *mapping = info->vfs_inode.i_mapping;
658 	void *radswap;
659 	pgoff_t index;
660 	gfp_t gfp;
661 	int error = 0;
662 
663 	radswap = swp_to_radix_entry(swap);
664 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
665 	if (index == -1)
666 		return 0;
667 
668 	/*
669 	 * Move _head_ to start search for next from here.
670 	 * But be careful: shmem_evict_inode checks list_empty without taking
671 	 * mutex, and there's an instant in list_move_tail when info->swaplist
672 	 * would appear empty, if it were the only one on shmem_swaplist.
673 	 */
674 	if (shmem_swaplist.next != &info->swaplist)
675 		list_move_tail(&shmem_swaplist, &info->swaplist);
676 
677 	gfp = mapping_gfp_mask(mapping);
678 	if (shmem_should_replace_page(*pagep, gfp)) {
679 		mutex_unlock(&shmem_swaplist_mutex);
680 		error = shmem_replace_page(pagep, gfp, info, index);
681 		mutex_lock(&shmem_swaplist_mutex);
682 		/*
683 		 * We needed to drop mutex to make that restrictive page
684 		 * allocation, but the inode might have been freed while we
685 		 * dropped it: although a racing shmem_evict_inode() cannot
686 		 * complete without emptying the radix_tree, our page lock
687 		 * on this swapcache page is not enough to prevent that -
688 		 * free_swap_and_cache() of our swap entry will only
689 		 * trylock_page(), removing swap from radix_tree whatever.
690 		 *
691 		 * We must not proceed to shmem_add_to_page_cache() if the
692 		 * inode has been freed, but of course we cannot rely on
693 		 * inode or mapping or info to check that.  However, we can
694 		 * safely check if our swap entry is still in use (and here
695 		 * it can't have got reused for another page): if it's still
696 		 * in use, then the inode cannot have been freed yet, and we
697 		 * can safely proceed (if it's no longer in use, that tells
698 		 * nothing about the inode, but we don't need to unuse swap).
699 		 */
700 		if (!page_swapcount(*pagep))
701 			error = -ENOENT;
702 	}
703 
704 	/*
705 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707 	 * beneath us (pagelock doesn't help until the page is in pagecache).
708 	 */
709 	if (!error)
710 		error = shmem_add_to_page_cache(*pagep, mapping, index,
711 						GFP_NOWAIT, radswap);
712 	if (error != -ENOMEM) {
713 		/*
714 		 * Truncation and eviction use free_swap_and_cache(), which
715 		 * only does trylock page: if we raced, best clean up here.
716 		 */
717 		delete_from_swap_cache(*pagep);
718 		set_page_dirty(*pagep);
719 		if (!error) {
720 			spin_lock(&info->lock);
721 			info->swapped--;
722 			spin_unlock(&info->lock);
723 			swap_free(swap);
724 		}
725 		error = 1;	/* not an error, but entry was found */
726 	}
727 	return error;
728 }
729 
730 /*
731  * Search through swapped inodes to find and replace swap by page.
732  */
733 int shmem_unuse(swp_entry_t swap, struct page *page)
734 {
735 	struct list_head *this, *next;
736 	struct shmem_inode_info *info;
737 	int found = 0;
738 	int error = 0;
739 
740 	/*
741 	 * There's a faint possibility that swap page was replaced before
742 	 * caller locked it: caller will come back later with the right page.
743 	 */
744 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745 		goto out;
746 
747 	/*
748 	 * Charge page using GFP_KERNEL while we can wait, before taking
749 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750 	 * Charged back to the user (not to caller) when swap account is used.
751 	 */
752 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753 	if (error)
754 		goto out;
755 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
756 
757 	mutex_lock(&shmem_swaplist_mutex);
758 	list_for_each_safe(this, next, &shmem_swaplist) {
759 		info = list_entry(this, struct shmem_inode_info, swaplist);
760 		if (info->swapped)
761 			found = shmem_unuse_inode(info, swap, &page);
762 		else
763 			list_del_init(&info->swaplist);
764 		cond_resched();
765 		if (found)
766 			break;
767 	}
768 	mutex_unlock(&shmem_swaplist_mutex);
769 
770 	if (found < 0)
771 		error = found;
772 out:
773 	unlock_page(page);
774 	page_cache_release(page);
775 	return error;
776 }
777 
778 /*
779  * Move the page from the page cache to the swap cache.
780  */
781 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782 {
783 	struct shmem_inode_info *info;
784 	struct address_space *mapping;
785 	struct inode *inode;
786 	swp_entry_t swap;
787 	pgoff_t index;
788 
789 	BUG_ON(!PageLocked(page));
790 	mapping = page->mapping;
791 	index = page->index;
792 	inode = mapping->host;
793 	info = SHMEM_I(inode);
794 	if (info->flags & VM_LOCKED)
795 		goto redirty;
796 	if (!total_swap_pages)
797 		goto redirty;
798 
799 	/*
800 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
801 	 * sync from ever calling shmem_writepage; but a stacking filesystem
802 	 * might use ->writepage of its underlying filesystem, in which case
803 	 * tmpfs should write out to swap only in response to memory pressure,
804 	 * and not for the writeback threads or sync.
805 	 */
806 	if (!wbc->for_reclaim) {
807 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
808 		goto redirty;
809 	}
810 
811 	/*
812 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813 	 * value into swapfile.c, the only way we can correctly account for a
814 	 * fallocated page arriving here is now to initialize it and write it.
815 	 *
816 	 * That's okay for a page already fallocated earlier, but if we have
817 	 * not yet completed the fallocation, then (a) we want to keep track
818 	 * of this page in case we have to undo it, and (b) it may not be a
819 	 * good idea to continue anyway, once we're pushing into swap.  So
820 	 * reactivate the page, and let shmem_fallocate() quit when too many.
821 	 */
822 	if (!PageUptodate(page)) {
823 		if (inode->i_private) {
824 			struct shmem_falloc *shmem_falloc;
825 			spin_lock(&inode->i_lock);
826 			shmem_falloc = inode->i_private;
827 			if (shmem_falloc &&
828 			    index >= shmem_falloc->start &&
829 			    index < shmem_falloc->next)
830 				shmem_falloc->nr_unswapped++;
831 			else
832 				shmem_falloc = NULL;
833 			spin_unlock(&inode->i_lock);
834 			if (shmem_falloc)
835 				goto redirty;
836 		}
837 		clear_highpage(page);
838 		flush_dcache_page(page);
839 		SetPageUptodate(page);
840 	}
841 
842 	swap = get_swap_page();
843 	if (!swap.val)
844 		goto redirty;
845 
846 	/*
847 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848 	 * if it's not already there.  Do it now before the page is
849 	 * moved to swap cache, when its pagelock no longer protects
850 	 * the inode from eviction.  But don't unlock the mutex until
851 	 * we've incremented swapped, because shmem_unuse_inode() will
852 	 * prune a !swapped inode from the swaplist under this mutex.
853 	 */
854 	mutex_lock(&shmem_swaplist_mutex);
855 	if (list_empty(&info->swaplist))
856 		list_add_tail(&info->swaplist, &shmem_swaplist);
857 
858 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
859 		swap_shmem_alloc(swap);
860 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
861 
862 		spin_lock(&info->lock);
863 		info->swapped++;
864 		shmem_recalc_inode(inode);
865 		spin_unlock(&info->lock);
866 
867 		mutex_unlock(&shmem_swaplist_mutex);
868 		BUG_ON(page_mapped(page));
869 		swap_writepage(page, wbc);
870 		return 0;
871 	}
872 
873 	mutex_unlock(&shmem_swaplist_mutex);
874 	swapcache_free(swap, NULL);
875 redirty:
876 	set_page_dirty(page);
877 	if (wbc->for_reclaim)
878 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
879 	unlock_page(page);
880 	return 0;
881 }
882 
883 #ifdef CONFIG_NUMA
884 #ifdef CONFIG_TMPFS
885 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
886 {
887 	char buffer[64];
888 
889 	if (!mpol || mpol->mode == MPOL_DEFAULT)
890 		return;		/* show nothing */
891 
892 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
893 
894 	seq_printf(seq, ",mpol=%s", buffer);
895 }
896 
897 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
898 {
899 	struct mempolicy *mpol = NULL;
900 	if (sbinfo->mpol) {
901 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
902 		mpol = sbinfo->mpol;
903 		mpol_get(mpol);
904 		spin_unlock(&sbinfo->stat_lock);
905 	}
906 	return mpol;
907 }
908 #endif /* CONFIG_TMPFS */
909 
910 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911 			struct shmem_inode_info *info, pgoff_t index)
912 {
913 	struct vm_area_struct pvma;
914 	struct page *page;
915 
916 	/* Create a pseudo vma that just contains the policy */
917 	pvma.vm_start = 0;
918 	/* Bias interleave by inode number to distribute better across nodes */
919 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
920 	pvma.vm_ops = NULL;
921 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
922 
923 	page = swapin_readahead(swap, gfp, &pvma, 0);
924 
925 	/* Drop reference taken by mpol_shared_policy_lookup() */
926 	mpol_cond_put(pvma.vm_policy);
927 
928 	return page;
929 }
930 
931 static struct page *shmem_alloc_page(gfp_t gfp,
932 			struct shmem_inode_info *info, pgoff_t index)
933 {
934 	struct vm_area_struct pvma;
935 	struct page *page;
936 
937 	/* Create a pseudo vma that just contains the policy */
938 	pvma.vm_start = 0;
939 	/* Bias interleave by inode number to distribute better across nodes */
940 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
941 	pvma.vm_ops = NULL;
942 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
943 
944 	page = alloc_page_vma(gfp, &pvma, 0);
945 
946 	/* Drop reference taken by mpol_shared_policy_lookup() */
947 	mpol_cond_put(pvma.vm_policy);
948 
949 	return page;
950 }
951 #else /* !CONFIG_NUMA */
952 #ifdef CONFIG_TMPFS
953 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
954 {
955 }
956 #endif /* CONFIG_TMPFS */
957 
958 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
959 			struct shmem_inode_info *info, pgoff_t index)
960 {
961 	return swapin_readahead(swap, gfp, NULL, 0);
962 }
963 
964 static inline struct page *shmem_alloc_page(gfp_t gfp,
965 			struct shmem_inode_info *info, pgoff_t index)
966 {
967 	return alloc_page(gfp);
968 }
969 #endif /* CONFIG_NUMA */
970 
971 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
972 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
973 {
974 	return NULL;
975 }
976 #endif
977 
978 /*
979  * When a page is moved from swapcache to shmem filecache (either by the
980  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
981  * shmem_unuse_inode()), it may have been read in earlier from swap, in
982  * ignorance of the mapping it belongs to.  If that mapping has special
983  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
984  * we may need to copy to a suitable page before moving to filecache.
985  *
986  * In a future release, this may well be extended to respect cpuset and
987  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
988  * but for now it is a simple matter of zone.
989  */
990 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
991 {
992 	return page_zonenum(page) > gfp_zone(gfp);
993 }
994 
995 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
996 				struct shmem_inode_info *info, pgoff_t index)
997 {
998 	struct page *oldpage, *newpage;
999 	struct address_space *swap_mapping;
1000 	pgoff_t swap_index;
1001 	int error;
1002 
1003 	oldpage = *pagep;
1004 	swap_index = page_private(oldpage);
1005 	swap_mapping = page_mapping(oldpage);
1006 
1007 	/*
1008 	 * We have arrived here because our zones are constrained, so don't
1009 	 * limit chance of success by further cpuset and node constraints.
1010 	 */
1011 	gfp &= ~GFP_CONSTRAINT_MASK;
1012 	newpage = shmem_alloc_page(gfp, info, index);
1013 	if (!newpage)
1014 		return -ENOMEM;
1015 
1016 	page_cache_get(newpage);
1017 	copy_highpage(newpage, oldpage);
1018 	flush_dcache_page(newpage);
1019 
1020 	__set_page_locked(newpage);
1021 	SetPageUptodate(newpage);
1022 	SetPageSwapBacked(newpage);
1023 	set_page_private(newpage, swap_index);
1024 	SetPageSwapCache(newpage);
1025 
1026 	/*
1027 	 * Our caller will very soon move newpage out of swapcache, but it's
1028 	 * a nice clean interface for us to replace oldpage by newpage there.
1029 	 */
1030 	spin_lock_irq(&swap_mapping->tree_lock);
1031 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1032 								   newpage);
1033 	if (!error) {
1034 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1035 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1036 	}
1037 	spin_unlock_irq(&swap_mapping->tree_lock);
1038 
1039 	if (unlikely(error)) {
1040 		/*
1041 		 * Is this possible?  I think not, now that our callers check
1042 		 * both PageSwapCache and page_private after getting page lock;
1043 		 * but be defensive.  Reverse old to newpage for clear and free.
1044 		 */
1045 		oldpage = newpage;
1046 	} else {
1047 		mem_cgroup_replace_page_cache(oldpage, newpage);
1048 		lru_cache_add_anon(newpage);
1049 		*pagep = newpage;
1050 	}
1051 
1052 	ClearPageSwapCache(oldpage);
1053 	set_page_private(oldpage, 0);
1054 
1055 	unlock_page(oldpage);
1056 	page_cache_release(oldpage);
1057 	page_cache_release(oldpage);
1058 	return error;
1059 }
1060 
1061 /*
1062  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1063  *
1064  * If we allocate a new one we do not mark it dirty. That's up to the
1065  * vm. If we swap it in we mark it dirty since we also free the swap
1066  * entry since a page cannot live in both the swap and page cache
1067  */
1068 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1069 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1070 {
1071 	struct address_space *mapping = inode->i_mapping;
1072 	struct shmem_inode_info *info;
1073 	struct shmem_sb_info *sbinfo;
1074 	struct page *page;
1075 	swp_entry_t swap;
1076 	int error;
1077 	int once = 0;
1078 	int alloced = 0;
1079 
1080 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1081 		return -EFBIG;
1082 repeat:
1083 	swap.val = 0;
1084 	page = find_lock_page(mapping, index);
1085 	if (radix_tree_exceptional_entry(page)) {
1086 		swap = radix_to_swp_entry(page);
1087 		page = NULL;
1088 	}
1089 
1090 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1091 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1092 		error = -EINVAL;
1093 		goto failed;
1094 	}
1095 
1096 	/* fallocated page? */
1097 	if (page && !PageUptodate(page)) {
1098 		if (sgp != SGP_READ)
1099 			goto clear;
1100 		unlock_page(page);
1101 		page_cache_release(page);
1102 		page = NULL;
1103 	}
1104 	if (page || (sgp == SGP_READ && !swap.val)) {
1105 		*pagep = page;
1106 		return 0;
1107 	}
1108 
1109 	/*
1110 	 * Fast cache lookup did not find it:
1111 	 * bring it back from swap or allocate.
1112 	 */
1113 	info = SHMEM_I(inode);
1114 	sbinfo = SHMEM_SB(inode->i_sb);
1115 
1116 	if (swap.val) {
1117 		/* Look it up and read it in.. */
1118 		page = lookup_swap_cache(swap);
1119 		if (!page) {
1120 			/* here we actually do the io */
1121 			if (fault_type)
1122 				*fault_type |= VM_FAULT_MAJOR;
1123 			page = shmem_swapin(swap, gfp, info, index);
1124 			if (!page) {
1125 				error = -ENOMEM;
1126 				goto failed;
1127 			}
1128 		}
1129 
1130 		/* We have to do this with page locked to prevent races */
1131 		lock_page(page);
1132 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1133 		    !shmem_confirm_swap(mapping, index, swap)) {
1134 			error = -EEXIST;	/* try again */
1135 			goto unlock;
1136 		}
1137 		if (!PageUptodate(page)) {
1138 			error = -EIO;
1139 			goto failed;
1140 		}
1141 		wait_on_page_writeback(page);
1142 
1143 		if (shmem_should_replace_page(page, gfp)) {
1144 			error = shmem_replace_page(&page, gfp, info, index);
1145 			if (error)
1146 				goto failed;
1147 		}
1148 
1149 		error = mem_cgroup_cache_charge(page, current->mm,
1150 						gfp & GFP_RECLAIM_MASK);
1151 		if (!error) {
1152 			error = shmem_add_to_page_cache(page, mapping, index,
1153 						gfp, swp_to_radix_entry(swap));
1154 			/*
1155 			 * We already confirmed swap under page lock, and make
1156 			 * no memory allocation here, so usually no possibility
1157 			 * of error; but free_swap_and_cache() only trylocks a
1158 			 * page, so it is just possible that the entry has been
1159 			 * truncated or holepunched since swap was confirmed.
1160 			 * shmem_undo_range() will have done some of the
1161 			 * unaccounting, now delete_from_swap_cache() will do
1162 			 * the rest (including mem_cgroup_uncharge_swapcache).
1163 			 * Reset swap.val? No, leave it so "failed" goes back to
1164 			 * "repeat": reading a hole and writing should succeed.
1165 			 */
1166 			if (error)
1167 				delete_from_swap_cache(page);
1168 		}
1169 		if (error)
1170 			goto failed;
1171 
1172 		spin_lock(&info->lock);
1173 		info->swapped--;
1174 		shmem_recalc_inode(inode);
1175 		spin_unlock(&info->lock);
1176 
1177 		delete_from_swap_cache(page);
1178 		set_page_dirty(page);
1179 		swap_free(swap);
1180 
1181 	} else {
1182 		if (shmem_acct_block(info->flags)) {
1183 			error = -ENOSPC;
1184 			goto failed;
1185 		}
1186 		if (sbinfo->max_blocks) {
1187 			if (percpu_counter_compare(&sbinfo->used_blocks,
1188 						sbinfo->max_blocks) >= 0) {
1189 				error = -ENOSPC;
1190 				goto unacct;
1191 			}
1192 			percpu_counter_inc(&sbinfo->used_blocks);
1193 		}
1194 
1195 		page = shmem_alloc_page(gfp, info, index);
1196 		if (!page) {
1197 			error = -ENOMEM;
1198 			goto decused;
1199 		}
1200 
1201 		SetPageSwapBacked(page);
1202 		__set_page_locked(page);
1203 		error = mem_cgroup_cache_charge(page, current->mm,
1204 						gfp & GFP_RECLAIM_MASK);
1205 		if (error)
1206 			goto decused;
1207 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1208 		if (!error) {
1209 			error = shmem_add_to_page_cache(page, mapping, index,
1210 							gfp, NULL);
1211 			radix_tree_preload_end();
1212 		}
1213 		if (error) {
1214 			mem_cgroup_uncharge_cache_page(page);
1215 			goto decused;
1216 		}
1217 		lru_cache_add_anon(page);
1218 
1219 		spin_lock(&info->lock);
1220 		info->alloced++;
1221 		inode->i_blocks += BLOCKS_PER_PAGE;
1222 		shmem_recalc_inode(inode);
1223 		spin_unlock(&info->lock);
1224 		alloced = true;
1225 
1226 		/*
1227 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228 		 */
1229 		if (sgp == SGP_FALLOC)
1230 			sgp = SGP_WRITE;
1231 clear:
1232 		/*
1233 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 		 * it now, lest undo on failure cancel our earlier guarantee.
1236 		 */
1237 		if (sgp != SGP_WRITE) {
1238 			clear_highpage(page);
1239 			flush_dcache_page(page);
1240 			SetPageUptodate(page);
1241 		}
1242 		if (sgp == SGP_DIRTY)
1243 			set_page_dirty(page);
1244 	}
1245 
1246 	/* Perhaps the file has been truncated since we checked */
1247 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1248 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249 		error = -EINVAL;
1250 		if (alloced)
1251 			goto trunc;
1252 		else
1253 			goto failed;
1254 	}
1255 	*pagep = page;
1256 	return 0;
1257 
1258 	/*
1259 	 * Error recovery.
1260 	 */
1261 trunc:
1262 	info = SHMEM_I(inode);
1263 	ClearPageDirty(page);
1264 	delete_from_page_cache(page);
1265 	spin_lock(&info->lock);
1266 	info->alloced--;
1267 	inode->i_blocks -= BLOCKS_PER_PAGE;
1268 	spin_unlock(&info->lock);
1269 decused:
1270 	sbinfo = SHMEM_SB(inode->i_sb);
1271 	if (sbinfo->max_blocks)
1272 		percpu_counter_add(&sbinfo->used_blocks, -1);
1273 unacct:
1274 	shmem_unacct_blocks(info->flags, 1);
1275 failed:
1276 	if (swap.val && error != -EINVAL &&
1277 	    !shmem_confirm_swap(mapping, index, swap))
1278 		error = -EEXIST;
1279 unlock:
1280 	if (page) {
1281 		unlock_page(page);
1282 		page_cache_release(page);
1283 	}
1284 	if (error == -ENOSPC && !once++) {
1285 		info = SHMEM_I(inode);
1286 		spin_lock(&info->lock);
1287 		shmem_recalc_inode(inode);
1288 		spin_unlock(&info->lock);
1289 		goto repeat;
1290 	}
1291 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1292 		goto repeat;
1293 	return error;
1294 }
1295 
1296 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1297 {
1298 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1299 	int error;
1300 	int ret = VM_FAULT_LOCKED;
1301 
1302 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1303 	if (error)
1304 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1305 
1306 	if (ret & VM_FAULT_MAJOR) {
1307 		count_vm_event(PGMAJFAULT);
1308 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1309 	}
1310 	return ret;
1311 }
1312 
1313 #ifdef CONFIG_NUMA
1314 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1315 {
1316 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1318 }
1319 
1320 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1321 					  unsigned long addr)
1322 {
1323 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1324 	pgoff_t index;
1325 
1326 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1327 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1328 }
1329 #endif
1330 
1331 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1332 {
1333 	struct inode *inode = file->f_path.dentry->d_inode;
1334 	struct shmem_inode_info *info = SHMEM_I(inode);
1335 	int retval = -ENOMEM;
1336 
1337 	spin_lock(&info->lock);
1338 	if (lock && !(info->flags & VM_LOCKED)) {
1339 		if (!user_shm_lock(inode->i_size, user))
1340 			goto out_nomem;
1341 		info->flags |= VM_LOCKED;
1342 		mapping_set_unevictable(file->f_mapping);
1343 	}
1344 	if (!lock && (info->flags & VM_LOCKED) && user) {
1345 		user_shm_unlock(inode->i_size, user);
1346 		info->flags &= ~VM_LOCKED;
1347 		mapping_clear_unevictable(file->f_mapping);
1348 	}
1349 	retval = 0;
1350 
1351 out_nomem:
1352 	spin_unlock(&info->lock);
1353 	return retval;
1354 }
1355 
1356 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1357 {
1358 	file_accessed(file);
1359 	vma->vm_ops = &shmem_vm_ops;
1360 	return 0;
1361 }
1362 
1363 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1364 				     umode_t mode, dev_t dev, unsigned long flags)
1365 {
1366 	struct inode *inode;
1367 	struct shmem_inode_info *info;
1368 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1369 
1370 	if (shmem_reserve_inode(sb))
1371 		return NULL;
1372 
1373 	inode = new_inode(sb);
1374 	if (inode) {
1375 		inode->i_ino = get_next_ino();
1376 		inode_init_owner(inode, dir, mode);
1377 		inode->i_blocks = 0;
1378 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1379 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1380 		inode->i_generation = get_seconds();
1381 		info = SHMEM_I(inode);
1382 		memset(info, 0, (char *)inode - (char *)info);
1383 		spin_lock_init(&info->lock);
1384 		info->flags = flags & VM_NORESERVE;
1385 		INIT_LIST_HEAD(&info->swaplist);
1386 		simple_xattrs_init(&info->xattrs);
1387 		cache_no_acl(inode);
1388 
1389 		switch (mode & S_IFMT) {
1390 		default:
1391 			inode->i_op = &shmem_special_inode_operations;
1392 			init_special_inode(inode, mode, dev);
1393 			break;
1394 		case S_IFREG:
1395 			inode->i_mapping->a_ops = &shmem_aops;
1396 			inode->i_op = &shmem_inode_operations;
1397 			inode->i_fop = &shmem_file_operations;
1398 			mpol_shared_policy_init(&info->policy,
1399 						 shmem_get_sbmpol(sbinfo));
1400 			break;
1401 		case S_IFDIR:
1402 			inc_nlink(inode);
1403 			/* Some things misbehave if size == 0 on a directory */
1404 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1405 			inode->i_op = &shmem_dir_inode_operations;
1406 			inode->i_fop = &simple_dir_operations;
1407 			break;
1408 		case S_IFLNK:
1409 			/*
1410 			 * Must not load anything in the rbtree,
1411 			 * mpol_free_shared_policy will not be called.
1412 			 */
1413 			mpol_shared_policy_init(&info->policy, NULL);
1414 			break;
1415 		}
1416 	} else
1417 		shmem_free_inode(sb);
1418 	return inode;
1419 }
1420 
1421 #ifdef CONFIG_TMPFS
1422 static const struct inode_operations shmem_symlink_inode_operations;
1423 static const struct inode_operations shmem_short_symlink_operations;
1424 
1425 #ifdef CONFIG_TMPFS_XATTR
1426 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1427 #else
1428 #define shmem_initxattrs NULL
1429 #endif
1430 
1431 static int
1432 shmem_write_begin(struct file *file, struct address_space *mapping,
1433 			loff_t pos, unsigned len, unsigned flags,
1434 			struct page **pagep, void **fsdata)
1435 {
1436 	struct inode *inode = mapping->host;
1437 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1438 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1439 }
1440 
1441 static int
1442 shmem_write_end(struct file *file, struct address_space *mapping,
1443 			loff_t pos, unsigned len, unsigned copied,
1444 			struct page *page, void *fsdata)
1445 {
1446 	struct inode *inode = mapping->host;
1447 
1448 	if (pos + copied > inode->i_size)
1449 		i_size_write(inode, pos + copied);
1450 
1451 	if (!PageUptodate(page)) {
1452 		if (copied < PAGE_CACHE_SIZE) {
1453 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1454 			zero_user_segments(page, 0, from,
1455 					from + copied, PAGE_CACHE_SIZE);
1456 		}
1457 		SetPageUptodate(page);
1458 	}
1459 	set_page_dirty(page);
1460 	unlock_page(page);
1461 	page_cache_release(page);
1462 
1463 	return copied;
1464 }
1465 
1466 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1467 {
1468 	struct inode *inode = filp->f_path.dentry->d_inode;
1469 	struct address_space *mapping = inode->i_mapping;
1470 	pgoff_t index;
1471 	unsigned long offset;
1472 	enum sgp_type sgp = SGP_READ;
1473 
1474 	/*
1475 	 * Might this read be for a stacking filesystem?  Then when reading
1476 	 * holes of a sparse file, we actually need to allocate those pages,
1477 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1478 	 */
1479 	if (segment_eq(get_fs(), KERNEL_DS))
1480 		sgp = SGP_DIRTY;
1481 
1482 	index = *ppos >> PAGE_CACHE_SHIFT;
1483 	offset = *ppos & ~PAGE_CACHE_MASK;
1484 
1485 	for (;;) {
1486 		struct page *page = NULL;
1487 		pgoff_t end_index;
1488 		unsigned long nr, ret;
1489 		loff_t i_size = i_size_read(inode);
1490 
1491 		end_index = i_size >> PAGE_CACHE_SHIFT;
1492 		if (index > end_index)
1493 			break;
1494 		if (index == end_index) {
1495 			nr = i_size & ~PAGE_CACHE_MASK;
1496 			if (nr <= offset)
1497 				break;
1498 		}
1499 
1500 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1501 		if (desc->error) {
1502 			if (desc->error == -EINVAL)
1503 				desc->error = 0;
1504 			break;
1505 		}
1506 		if (page)
1507 			unlock_page(page);
1508 
1509 		/*
1510 		 * We must evaluate after, since reads (unlike writes)
1511 		 * are called without i_mutex protection against truncate
1512 		 */
1513 		nr = PAGE_CACHE_SIZE;
1514 		i_size = i_size_read(inode);
1515 		end_index = i_size >> PAGE_CACHE_SHIFT;
1516 		if (index == end_index) {
1517 			nr = i_size & ~PAGE_CACHE_MASK;
1518 			if (nr <= offset) {
1519 				if (page)
1520 					page_cache_release(page);
1521 				break;
1522 			}
1523 		}
1524 		nr -= offset;
1525 
1526 		if (page) {
1527 			/*
1528 			 * If users can be writing to this page using arbitrary
1529 			 * virtual addresses, take care about potential aliasing
1530 			 * before reading the page on the kernel side.
1531 			 */
1532 			if (mapping_writably_mapped(mapping))
1533 				flush_dcache_page(page);
1534 			/*
1535 			 * Mark the page accessed if we read the beginning.
1536 			 */
1537 			if (!offset)
1538 				mark_page_accessed(page);
1539 		} else {
1540 			page = ZERO_PAGE(0);
1541 			page_cache_get(page);
1542 		}
1543 
1544 		/*
1545 		 * Ok, we have the page, and it's up-to-date, so
1546 		 * now we can copy it to user space...
1547 		 *
1548 		 * The actor routine returns how many bytes were actually used..
1549 		 * NOTE! This may not be the same as how much of a user buffer
1550 		 * we filled up (we may be padding etc), so we can only update
1551 		 * "pos" here (the actor routine has to update the user buffer
1552 		 * pointers and the remaining count).
1553 		 */
1554 		ret = actor(desc, page, offset, nr);
1555 		offset += ret;
1556 		index += offset >> PAGE_CACHE_SHIFT;
1557 		offset &= ~PAGE_CACHE_MASK;
1558 
1559 		page_cache_release(page);
1560 		if (ret != nr || !desc->count)
1561 			break;
1562 
1563 		cond_resched();
1564 	}
1565 
1566 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1567 	file_accessed(filp);
1568 }
1569 
1570 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1571 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1572 {
1573 	struct file *filp = iocb->ki_filp;
1574 	ssize_t retval;
1575 	unsigned long seg;
1576 	size_t count;
1577 	loff_t *ppos = &iocb->ki_pos;
1578 
1579 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1580 	if (retval)
1581 		return retval;
1582 
1583 	for (seg = 0; seg < nr_segs; seg++) {
1584 		read_descriptor_t desc;
1585 
1586 		desc.written = 0;
1587 		desc.arg.buf = iov[seg].iov_base;
1588 		desc.count = iov[seg].iov_len;
1589 		if (desc.count == 0)
1590 			continue;
1591 		desc.error = 0;
1592 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1593 		retval += desc.written;
1594 		if (desc.error) {
1595 			retval = retval ?: desc.error;
1596 			break;
1597 		}
1598 		if (desc.count > 0)
1599 			break;
1600 	}
1601 	return retval;
1602 }
1603 
1604 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1605 				struct pipe_inode_info *pipe, size_t len,
1606 				unsigned int flags)
1607 {
1608 	struct address_space *mapping = in->f_mapping;
1609 	struct inode *inode = mapping->host;
1610 	unsigned int loff, nr_pages, req_pages;
1611 	struct page *pages[PIPE_DEF_BUFFERS];
1612 	struct partial_page partial[PIPE_DEF_BUFFERS];
1613 	struct page *page;
1614 	pgoff_t index, end_index;
1615 	loff_t isize, left;
1616 	int error, page_nr;
1617 	struct splice_pipe_desc spd = {
1618 		.pages = pages,
1619 		.partial = partial,
1620 		.nr_pages_max = PIPE_DEF_BUFFERS,
1621 		.flags = flags,
1622 		.ops = &page_cache_pipe_buf_ops,
1623 		.spd_release = spd_release_page,
1624 	};
1625 
1626 	isize = i_size_read(inode);
1627 	if (unlikely(*ppos >= isize))
1628 		return 0;
1629 
1630 	left = isize - *ppos;
1631 	if (unlikely(left < len))
1632 		len = left;
1633 
1634 	if (splice_grow_spd(pipe, &spd))
1635 		return -ENOMEM;
1636 
1637 	index = *ppos >> PAGE_CACHE_SHIFT;
1638 	loff = *ppos & ~PAGE_CACHE_MASK;
1639 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1640 	nr_pages = min(req_pages, pipe->buffers);
1641 
1642 	spd.nr_pages = find_get_pages_contig(mapping, index,
1643 						nr_pages, spd.pages);
1644 	index += spd.nr_pages;
1645 	error = 0;
1646 
1647 	while (spd.nr_pages < nr_pages) {
1648 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1649 		if (error)
1650 			break;
1651 		unlock_page(page);
1652 		spd.pages[spd.nr_pages++] = page;
1653 		index++;
1654 	}
1655 
1656 	index = *ppos >> PAGE_CACHE_SHIFT;
1657 	nr_pages = spd.nr_pages;
1658 	spd.nr_pages = 0;
1659 
1660 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1661 		unsigned int this_len;
1662 
1663 		if (!len)
1664 			break;
1665 
1666 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1667 		page = spd.pages[page_nr];
1668 
1669 		if (!PageUptodate(page) || page->mapping != mapping) {
1670 			error = shmem_getpage(inode, index, &page,
1671 							SGP_CACHE, NULL);
1672 			if (error)
1673 				break;
1674 			unlock_page(page);
1675 			page_cache_release(spd.pages[page_nr]);
1676 			spd.pages[page_nr] = page;
1677 		}
1678 
1679 		isize = i_size_read(inode);
1680 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1681 		if (unlikely(!isize || index > end_index))
1682 			break;
1683 
1684 		if (end_index == index) {
1685 			unsigned int plen;
1686 
1687 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1688 			if (plen <= loff)
1689 				break;
1690 
1691 			this_len = min(this_len, plen - loff);
1692 			len = this_len;
1693 		}
1694 
1695 		spd.partial[page_nr].offset = loff;
1696 		spd.partial[page_nr].len = this_len;
1697 		len -= this_len;
1698 		loff = 0;
1699 		spd.nr_pages++;
1700 		index++;
1701 	}
1702 
1703 	while (page_nr < nr_pages)
1704 		page_cache_release(spd.pages[page_nr++]);
1705 
1706 	if (spd.nr_pages)
1707 		error = splice_to_pipe(pipe, &spd);
1708 
1709 	splice_shrink_spd(&spd);
1710 
1711 	if (error > 0) {
1712 		*ppos += error;
1713 		file_accessed(in);
1714 	}
1715 	return error;
1716 }
1717 
1718 /*
1719  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1720  */
1721 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1722 				    pgoff_t index, pgoff_t end, int whence)
1723 {
1724 	struct page *page;
1725 	struct pagevec pvec;
1726 	pgoff_t indices[PAGEVEC_SIZE];
1727 	bool done = false;
1728 	int i;
1729 
1730 	pagevec_init(&pvec, 0);
1731 	pvec.nr = 1;		/* start small: we may be there already */
1732 	while (!done) {
1733 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1734 					pvec.nr, pvec.pages, indices);
1735 		if (!pvec.nr) {
1736 			if (whence == SEEK_DATA)
1737 				index = end;
1738 			break;
1739 		}
1740 		for (i = 0; i < pvec.nr; i++, index++) {
1741 			if (index < indices[i]) {
1742 				if (whence == SEEK_HOLE) {
1743 					done = true;
1744 					break;
1745 				}
1746 				index = indices[i];
1747 			}
1748 			page = pvec.pages[i];
1749 			if (page && !radix_tree_exceptional_entry(page)) {
1750 				if (!PageUptodate(page))
1751 					page = NULL;
1752 			}
1753 			if (index >= end ||
1754 			    (page && whence == SEEK_DATA) ||
1755 			    (!page && whence == SEEK_HOLE)) {
1756 				done = true;
1757 				break;
1758 			}
1759 		}
1760 		shmem_deswap_pagevec(&pvec);
1761 		pagevec_release(&pvec);
1762 		pvec.nr = PAGEVEC_SIZE;
1763 		cond_resched();
1764 	}
1765 	return index;
1766 }
1767 
1768 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1769 {
1770 	struct address_space *mapping = file->f_mapping;
1771 	struct inode *inode = mapping->host;
1772 	pgoff_t start, end;
1773 	loff_t new_offset;
1774 
1775 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1776 		return generic_file_llseek_size(file, offset, whence,
1777 					MAX_LFS_FILESIZE, i_size_read(inode));
1778 	mutex_lock(&inode->i_mutex);
1779 	/* We're holding i_mutex so we can access i_size directly */
1780 
1781 	if (offset < 0)
1782 		offset = -EINVAL;
1783 	else if (offset >= inode->i_size)
1784 		offset = -ENXIO;
1785 	else {
1786 		start = offset >> PAGE_CACHE_SHIFT;
1787 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1788 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1789 		new_offset <<= PAGE_CACHE_SHIFT;
1790 		if (new_offset > offset) {
1791 			if (new_offset < inode->i_size)
1792 				offset = new_offset;
1793 			else if (whence == SEEK_DATA)
1794 				offset = -ENXIO;
1795 			else
1796 				offset = inode->i_size;
1797 		}
1798 	}
1799 
1800 	if (offset >= 0 && offset != file->f_pos) {
1801 		file->f_pos = offset;
1802 		file->f_version = 0;
1803 	}
1804 	mutex_unlock(&inode->i_mutex);
1805 	return offset;
1806 }
1807 
1808 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1809 							 loff_t len)
1810 {
1811 	struct inode *inode = file->f_path.dentry->d_inode;
1812 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1813 	struct shmem_falloc shmem_falloc;
1814 	pgoff_t start, index, end;
1815 	int error;
1816 
1817 	mutex_lock(&inode->i_mutex);
1818 
1819 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1820 		struct address_space *mapping = file->f_mapping;
1821 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1822 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1823 
1824 		if ((u64)unmap_end > (u64)unmap_start)
1825 			unmap_mapping_range(mapping, unmap_start,
1826 					    1 + unmap_end - unmap_start, 0);
1827 		shmem_truncate_range(inode, offset, offset + len - 1);
1828 		/* No need to unmap again: hole-punching leaves COWed pages */
1829 		error = 0;
1830 		goto out;
1831 	}
1832 
1833 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1834 	error = inode_newsize_ok(inode, offset + len);
1835 	if (error)
1836 		goto out;
1837 
1838 	start = offset >> PAGE_CACHE_SHIFT;
1839 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1840 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1841 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1842 		error = -ENOSPC;
1843 		goto out;
1844 	}
1845 
1846 	shmem_falloc.start = start;
1847 	shmem_falloc.next  = start;
1848 	shmem_falloc.nr_falloced = 0;
1849 	shmem_falloc.nr_unswapped = 0;
1850 	spin_lock(&inode->i_lock);
1851 	inode->i_private = &shmem_falloc;
1852 	spin_unlock(&inode->i_lock);
1853 
1854 	for (index = start; index < end; index++) {
1855 		struct page *page;
1856 
1857 		/*
1858 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1859 		 * been interrupted because we are using up too much memory.
1860 		 */
1861 		if (signal_pending(current))
1862 			error = -EINTR;
1863 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1864 			error = -ENOMEM;
1865 		else
1866 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1867 									NULL);
1868 		if (error) {
1869 			/* Remove the !PageUptodate pages we added */
1870 			shmem_undo_range(inode,
1871 				(loff_t)start << PAGE_CACHE_SHIFT,
1872 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1873 			goto undone;
1874 		}
1875 
1876 		/*
1877 		 * Inform shmem_writepage() how far we have reached.
1878 		 * No need for lock or barrier: we have the page lock.
1879 		 */
1880 		shmem_falloc.next++;
1881 		if (!PageUptodate(page))
1882 			shmem_falloc.nr_falloced++;
1883 
1884 		/*
1885 		 * If !PageUptodate, leave it that way so that freeable pages
1886 		 * can be recognized if we need to rollback on error later.
1887 		 * But set_page_dirty so that memory pressure will swap rather
1888 		 * than free the pages we are allocating (and SGP_CACHE pages
1889 		 * might still be clean: we now need to mark those dirty too).
1890 		 */
1891 		set_page_dirty(page);
1892 		unlock_page(page);
1893 		page_cache_release(page);
1894 		cond_resched();
1895 	}
1896 
1897 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1898 		i_size_write(inode, offset + len);
1899 	inode->i_ctime = CURRENT_TIME;
1900 undone:
1901 	spin_lock(&inode->i_lock);
1902 	inode->i_private = NULL;
1903 	spin_unlock(&inode->i_lock);
1904 out:
1905 	mutex_unlock(&inode->i_mutex);
1906 	return error;
1907 }
1908 
1909 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1910 {
1911 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1912 
1913 	buf->f_type = TMPFS_MAGIC;
1914 	buf->f_bsize = PAGE_CACHE_SIZE;
1915 	buf->f_namelen = NAME_MAX;
1916 	if (sbinfo->max_blocks) {
1917 		buf->f_blocks = sbinfo->max_blocks;
1918 		buf->f_bavail =
1919 		buf->f_bfree  = sbinfo->max_blocks -
1920 				percpu_counter_sum(&sbinfo->used_blocks);
1921 	}
1922 	if (sbinfo->max_inodes) {
1923 		buf->f_files = sbinfo->max_inodes;
1924 		buf->f_ffree = sbinfo->free_inodes;
1925 	}
1926 	/* else leave those fields 0 like simple_statfs */
1927 	return 0;
1928 }
1929 
1930 /*
1931  * File creation. Allocate an inode, and we're done..
1932  */
1933 static int
1934 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1935 {
1936 	struct inode *inode;
1937 	int error = -ENOSPC;
1938 
1939 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1940 	if (inode) {
1941 		error = security_inode_init_security(inode, dir,
1942 						     &dentry->d_name,
1943 						     shmem_initxattrs, NULL);
1944 		if (error) {
1945 			if (error != -EOPNOTSUPP) {
1946 				iput(inode);
1947 				return error;
1948 			}
1949 		}
1950 #ifdef CONFIG_TMPFS_POSIX_ACL
1951 		error = generic_acl_init(inode, dir);
1952 		if (error) {
1953 			iput(inode);
1954 			return error;
1955 		}
1956 #else
1957 		error = 0;
1958 #endif
1959 		dir->i_size += BOGO_DIRENT_SIZE;
1960 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1961 		d_instantiate(dentry, inode);
1962 		dget(dentry); /* Extra count - pin the dentry in core */
1963 	}
1964 	return error;
1965 }
1966 
1967 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1968 {
1969 	int error;
1970 
1971 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1972 		return error;
1973 	inc_nlink(dir);
1974 	return 0;
1975 }
1976 
1977 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1978 		bool excl)
1979 {
1980 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1981 }
1982 
1983 /*
1984  * Link a file..
1985  */
1986 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1987 {
1988 	struct inode *inode = old_dentry->d_inode;
1989 	int ret;
1990 
1991 	/*
1992 	 * No ordinary (disk based) filesystem counts links as inodes;
1993 	 * but each new link needs a new dentry, pinning lowmem, and
1994 	 * tmpfs dentries cannot be pruned until they are unlinked.
1995 	 */
1996 	ret = shmem_reserve_inode(inode->i_sb);
1997 	if (ret)
1998 		goto out;
1999 
2000 	dir->i_size += BOGO_DIRENT_SIZE;
2001 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2002 	inc_nlink(inode);
2003 	ihold(inode);	/* New dentry reference */
2004 	dget(dentry);		/* Extra pinning count for the created dentry */
2005 	d_instantiate(dentry, inode);
2006 out:
2007 	return ret;
2008 }
2009 
2010 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2011 {
2012 	struct inode *inode = dentry->d_inode;
2013 
2014 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2015 		shmem_free_inode(inode->i_sb);
2016 
2017 	dir->i_size -= BOGO_DIRENT_SIZE;
2018 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2019 	drop_nlink(inode);
2020 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2021 	return 0;
2022 }
2023 
2024 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2025 {
2026 	if (!simple_empty(dentry))
2027 		return -ENOTEMPTY;
2028 
2029 	drop_nlink(dentry->d_inode);
2030 	drop_nlink(dir);
2031 	return shmem_unlink(dir, dentry);
2032 }
2033 
2034 /*
2035  * The VFS layer already does all the dentry stuff for rename,
2036  * we just have to decrement the usage count for the target if
2037  * it exists so that the VFS layer correctly free's it when it
2038  * gets overwritten.
2039  */
2040 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2041 {
2042 	struct inode *inode = old_dentry->d_inode;
2043 	int they_are_dirs = S_ISDIR(inode->i_mode);
2044 
2045 	if (!simple_empty(new_dentry))
2046 		return -ENOTEMPTY;
2047 
2048 	if (new_dentry->d_inode) {
2049 		(void) shmem_unlink(new_dir, new_dentry);
2050 		if (they_are_dirs)
2051 			drop_nlink(old_dir);
2052 	} else if (they_are_dirs) {
2053 		drop_nlink(old_dir);
2054 		inc_nlink(new_dir);
2055 	}
2056 
2057 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2058 	new_dir->i_size += BOGO_DIRENT_SIZE;
2059 	old_dir->i_ctime = old_dir->i_mtime =
2060 	new_dir->i_ctime = new_dir->i_mtime =
2061 	inode->i_ctime = CURRENT_TIME;
2062 	return 0;
2063 }
2064 
2065 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2066 {
2067 	int error;
2068 	int len;
2069 	struct inode *inode;
2070 	struct page *page;
2071 	char *kaddr;
2072 	struct shmem_inode_info *info;
2073 
2074 	len = strlen(symname) + 1;
2075 	if (len > PAGE_CACHE_SIZE)
2076 		return -ENAMETOOLONG;
2077 
2078 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2079 	if (!inode)
2080 		return -ENOSPC;
2081 
2082 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2083 					     shmem_initxattrs, NULL);
2084 	if (error) {
2085 		if (error != -EOPNOTSUPP) {
2086 			iput(inode);
2087 			return error;
2088 		}
2089 		error = 0;
2090 	}
2091 
2092 	info = SHMEM_I(inode);
2093 	inode->i_size = len-1;
2094 	if (len <= SHORT_SYMLINK_LEN) {
2095 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2096 		if (!info->symlink) {
2097 			iput(inode);
2098 			return -ENOMEM;
2099 		}
2100 		inode->i_op = &shmem_short_symlink_operations;
2101 	} else {
2102 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2103 		if (error) {
2104 			iput(inode);
2105 			return error;
2106 		}
2107 		inode->i_mapping->a_ops = &shmem_aops;
2108 		inode->i_op = &shmem_symlink_inode_operations;
2109 		kaddr = kmap_atomic(page);
2110 		memcpy(kaddr, symname, len);
2111 		kunmap_atomic(kaddr);
2112 		SetPageUptodate(page);
2113 		set_page_dirty(page);
2114 		unlock_page(page);
2115 		page_cache_release(page);
2116 	}
2117 	dir->i_size += BOGO_DIRENT_SIZE;
2118 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2119 	d_instantiate(dentry, inode);
2120 	dget(dentry);
2121 	return 0;
2122 }
2123 
2124 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2125 {
2126 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2127 	return NULL;
2128 }
2129 
2130 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2131 {
2132 	struct page *page = NULL;
2133 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2134 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2135 	if (page)
2136 		unlock_page(page);
2137 	return page;
2138 }
2139 
2140 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2141 {
2142 	if (!IS_ERR(nd_get_link(nd))) {
2143 		struct page *page = cookie;
2144 		kunmap(page);
2145 		mark_page_accessed(page);
2146 		page_cache_release(page);
2147 	}
2148 }
2149 
2150 #ifdef CONFIG_TMPFS_XATTR
2151 /*
2152  * Superblocks without xattr inode operations may get some security.* xattr
2153  * support from the LSM "for free". As soon as we have any other xattrs
2154  * like ACLs, we also need to implement the security.* handlers at
2155  * filesystem level, though.
2156  */
2157 
2158 /*
2159  * Callback for security_inode_init_security() for acquiring xattrs.
2160  */
2161 static int shmem_initxattrs(struct inode *inode,
2162 			    const struct xattr *xattr_array,
2163 			    void *fs_info)
2164 {
2165 	struct shmem_inode_info *info = SHMEM_I(inode);
2166 	const struct xattr *xattr;
2167 	struct simple_xattr *new_xattr;
2168 	size_t len;
2169 
2170 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2171 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2172 		if (!new_xattr)
2173 			return -ENOMEM;
2174 
2175 		len = strlen(xattr->name) + 1;
2176 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2177 					  GFP_KERNEL);
2178 		if (!new_xattr->name) {
2179 			kfree(new_xattr);
2180 			return -ENOMEM;
2181 		}
2182 
2183 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2184 		       XATTR_SECURITY_PREFIX_LEN);
2185 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2186 		       xattr->name, len);
2187 
2188 		simple_xattr_list_add(&info->xattrs, new_xattr);
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 static const struct xattr_handler *shmem_xattr_handlers[] = {
2195 #ifdef CONFIG_TMPFS_POSIX_ACL
2196 	&generic_acl_access_handler,
2197 	&generic_acl_default_handler,
2198 #endif
2199 	NULL
2200 };
2201 
2202 static int shmem_xattr_validate(const char *name)
2203 {
2204 	struct { const char *prefix; size_t len; } arr[] = {
2205 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2206 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2207 	};
2208 	int i;
2209 
2210 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2211 		size_t preflen = arr[i].len;
2212 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2213 			if (!name[preflen])
2214 				return -EINVAL;
2215 			return 0;
2216 		}
2217 	}
2218 	return -EOPNOTSUPP;
2219 }
2220 
2221 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2222 			      void *buffer, size_t size)
2223 {
2224 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2225 	int err;
2226 
2227 	/*
2228 	 * If this is a request for a synthetic attribute in the system.*
2229 	 * namespace use the generic infrastructure to resolve a handler
2230 	 * for it via sb->s_xattr.
2231 	 */
2232 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2233 		return generic_getxattr(dentry, name, buffer, size);
2234 
2235 	err = shmem_xattr_validate(name);
2236 	if (err)
2237 		return err;
2238 
2239 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2240 }
2241 
2242 static int shmem_setxattr(struct dentry *dentry, const char *name,
2243 			  const void *value, size_t size, int flags)
2244 {
2245 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2246 	int err;
2247 
2248 	/*
2249 	 * If this is a request for a synthetic attribute in the system.*
2250 	 * namespace use the generic infrastructure to resolve a handler
2251 	 * for it via sb->s_xattr.
2252 	 */
2253 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2254 		return generic_setxattr(dentry, name, value, size, flags);
2255 
2256 	err = shmem_xattr_validate(name);
2257 	if (err)
2258 		return err;
2259 
2260 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2261 }
2262 
2263 static int shmem_removexattr(struct dentry *dentry, const char *name)
2264 {
2265 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2266 	int err;
2267 
2268 	/*
2269 	 * If this is a request for a synthetic attribute in the system.*
2270 	 * namespace use the generic infrastructure to resolve a handler
2271 	 * for it via sb->s_xattr.
2272 	 */
2273 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2274 		return generic_removexattr(dentry, name);
2275 
2276 	err = shmem_xattr_validate(name);
2277 	if (err)
2278 		return err;
2279 
2280 	return simple_xattr_remove(&info->xattrs, name);
2281 }
2282 
2283 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2284 {
2285 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2286 	return simple_xattr_list(&info->xattrs, buffer, size);
2287 }
2288 #endif /* CONFIG_TMPFS_XATTR */
2289 
2290 static const struct inode_operations shmem_short_symlink_operations = {
2291 	.readlink	= generic_readlink,
2292 	.follow_link	= shmem_follow_short_symlink,
2293 #ifdef CONFIG_TMPFS_XATTR
2294 	.setxattr	= shmem_setxattr,
2295 	.getxattr	= shmem_getxattr,
2296 	.listxattr	= shmem_listxattr,
2297 	.removexattr	= shmem_removexattr,
2298 #endif
2299 };
2300 
2301 static const struct inode_operations shmem_symlink_inode_operations = {
2302 	.readlink	= generic_readlink,
2303 	.follow_link	= shmem_follow_link,
2304 	.put_link	= shmem_put_link,
2305 #ifdef CONFIG_TMPFS_XATTR
2306 	.setxattr	= shmem_setxattr,
2307 	.getxattr	= shmem_getxattr,
2308 	.listxattr	= shmem_listxattr,
2309 	.removexattr	= shmem_removexattr,
2310 #endif
2311 };
2312 
2313 static struct dentry *shmem_get_parent(struct dentry *child)
2314 {
2315 	return ERR_PTR(-ESTALE);
2316 }
2317 
2318 static int shmem_match(struct inode *ino, void *vfh)
2319 {
2320 	__u32 *fh = vfh;
2321 	__u64 inum = fh[2];
2322 	inum = (inum << 32) | fh[1];
2323 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2324 }
2325 
2326 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2327 		struct fid *fid, int fh_len, int fh_type)
2328 {
2329 	struct inode *inode;
2330 	struct dentry *dentry = NULL;
2331 	u64 inum;
2332 
2333 	if (fh_len < 3)
2334 		return NULL;
2335 
2336 	inum = fid->raw[2];
2337 	inum = (inum << 32) | fid->raw[1];
2338 
2339 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2340 			shmem_match, fid->raw);
2341 	if (inode) {
2342 		dentry = d_find_alias(inode);
2343 		iput(inode);
2344 	}
2345 
2346 	return dentry;
2347 }
2348 
2349 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2350 				struct inode *parent)
2351 {
2352 	if (*len < 3) {
2353 		*len = 3;
2354 		return 255;
2355 	}
2356 
2357 	if (inode_unhashed(inode)) {
2358 		/* Unfortunately insert_inode_hash is not idempotent,
2359 		 * so as we hash inodes here rather than at creation
2360 		 * time, we need a lock to ensure we only try
2361 		 * to do it once
2362 		 */
2363 		static DEFINE_SPINLOCK(lock);
2364 		spin_lock(&lock);
2365 		if (inode_unhashed(inode))
2366 			__insert_inode_hash(inode,
2367 					    inode->i_ino + inode->i_generation);
2368 		spin_unlock(&lock);
2369 	}
2370 
2371 	fh[0] = inode->i_generation;
2372 	fh[1] = inode->i_ino;
2373 	fh[2] = ((__u64)inode->i_ino) >> 32;
2374 
2375 	*len = 3;
2376 	return 1;
2377 }
2378 
2379 static const struct export_operations shmem_export_ops = {
2380 	.get_parent     = shmem_get_parent,
2381 	.encode_fh      = shmem_encode_fh,
2382 	.fh_to_dentry	= shmem_fh_to_dentry,
2383 };
2384 
2385 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2386 			       bool remount)
2387 {
2388 	char *this_char, *value, *rest;
2389 	uid_t uid;
2390 	gid_t gid;
2391 
2392 	while (options != NULL) {
2393 		this_char = options;
2394 		for (;;) {
2395 			/*
2396 			 * NUL-terminate this option: unfortunately,
2397 			 * mount options form a comma-separated list,
2398 			 * but mpol's nodelist may also contain commas.
2399 			 */
2400 			options = strchr(options, ',');
2401 			if (options == NULL)
2402 				break;
2403 			options++;
2404 			if (!isdigit(*options)) {
2405 				options[-1] = '\0';
2406 				break;
2407 			}
2408 		}
2409 		if (!*this_char)
2410 			continue;
2411 		if ((value = strchr(this_char,'=')) != NULL) {
2412 			*value++ = 0;
2413 		} else {
2414 			printk(KERN_ERR
2415 			    "tmpfs: No value for mount option '%s'\n",
2416 			    this_char);
2417 			return 1;
2418 		}
2419 
2420 		if (!strcmp(this_char,"size")) {
2421 			unsigned long long size;
2422 			size = memparse(value,&rest);
2423 			if (*rest == '%') {
2424 				size <<= PAGE_SHIFT;
2425 				size *= totalram_pages;
2426 				do_div(size, 100);
2427 				rest++;
2428 			}
2429 			if (*rest)
2430 				goto bad_val;
2431 			sbinfo->max_blocks =
2432 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2433 		} else if (!strcmp(this_char,"nr_blocks")) {
2434 			sbinfo->max_blocks = memparse(value, &rest);
2435 			if (*rest)
2436 				goto bad_val;
2437 		} else if (!strcmp(this_char,"nr_inodes")) {
2438 			sbinfo->max_inodes = memparse(value, &rest);
2439 			if (*rest)
2440 				goto bad_val;
2441 		} else if (!strcmp(this_char,"mode")) {
2442 			if (remount)
2443 				continue;
2444 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2445 			if (*rest)
2446 				goto bad_val;
2447 		} else if (!strcmp(this_char,"uid")) {
2448 			if (remount)
2449 				continue;
2450 			uid = simple_strtoul(value, &rest, 0);
2451 			if (*rest)
2452 				goto bad_val;
2453 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2454 			if (!uid_valid(sbinfo->uid))
2455 				goto bad_val;
2456 		} else if (!strcmp(this_char,"gid")) {
2457 			if (remount)
2458 				continue;
2459 			gid = simple_strtoul(value, &rest, 0);
2460 			if (*rest)
2461 				goto bad_val;
2462 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2463 			if (!gid_valid(sbinfo->gid))
2464 				goto bad_val;
2465 		} else if (!strcmp(this_char,"mpol")) {
2466 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2467 				goto bad_val;
2468 		} else {
2469 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2470 			       this_char);
2471 			return 1;
2472 		}
2473 	}
2474 	return 0;
2475 
2476 bad_val:
2477 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2478 	       value, this_char);
2479 	return 1;
2480 
2481 }
2482 
2483 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2484 {
2485 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2486 	struct shmem_sb_info config = *sbinfo;
2487 	unsigned long inodes;
2488 	int error = -EINVAL;
2489 
2490 	if (shmem_parse_options(data, &config, true))
2491 		return error;
2492 
2493 	spin_lock(&sbinfo->stat_lock);
2494 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2495 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2496 		goto out;
2497 	if (config.max_inodes < inodes)
2498 		goto out;
2499 	/*
2500 	 * Those tests disallow limited->unlimited while any are in use;
2501 	 * but we must separately disallow unlimited->limited, because
2502 	 * in that case we have no record of how much is already in use.
2503 	 */
2504 	if (config.max_blocks && !sbinfo->max_blocks)
2505 		goto out;
2506 	if (config.max_inodes && !sbinfo->max_inodes)
2507 		goto out;
2508 
2509 	error = 0;
2510 	sbinfo->max_blocks  = config.max_blocks;
2511 	sbinfo->max_inodes  = config.max_inodes;
2512 	sbinfo->free_inodes = config.max_inodes - inodes;
2513 
2514 	mpol_put(sbinfo->mpol);
2515 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2516 out:
2517 	spin_unlock(&sbinfo->stat_lock);
2518 	return error;
2519 }
2520 
2521 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2522 {
2523 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2524 
2525 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2526 		seq_printf(seq, ",size=%luk",
2527 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2528 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2529 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2530 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2531 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2532 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2533 		seq_printf(seq, ",uid=%u",
2534 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2535 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2536 		seq_printf(seq, ",gid=%u",
2537 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2538 	shmem_show_mpol(seq, sbinfo->mpol);
2539 	return 0;
2540 }
2541 #endif /* CONFIG_TMPFS */
2542 
2543 static void shmem_put_super(struct super_block *sb)
2544 {
2545 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2546 
2547 	percpu_counter_destroy(&sbinfo->used_blocks);
2548 	kfree(sbinfo);
2549 	sb->s_fs_info = NULL;
2550 }
2551 
2552 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2553 {
2554 	struct inode *inode;
2555 	struct shmem_sb_info *sbinfo;
2556 	int err = -ENOMEM;
2557 
2558 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2559 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2560 				L1_CACHE_BYTES), GFP_KERNEL);
2561 	if (!sbinfo)
2562 		return -ENOMEM;
2563 
2564 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2565 	sbinfo->uid = current_fsuid();
2566 	sbinfo->gid = current_fsgid();
2567 	sb->s_fs_info = sbinfo;
2568 
2569 #ifdef CONFIG_TMPFS
2570 	/*
2571 	 * Per default we only allow half of the physical ram per
2572 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2573 	 * but the internal instance is left unlimited.
2574 	 */
2575 	if (!(sb->s_flags & MS_NOUSER)) {
2576 		sbinfo->max_blocks = shmem_default_max_blocks();
2577 		sbinfo->max_inodes = shmem_default_max_inodes();
2578 		if (shmem_parse_options(data, sbinfo, false)) {
2579 			err = -EINVAL;
2580 			goto failed;
2581 		}
2582 	}
2583 	sb->s_export_op = &shmem_export_ops;
2584 	sb->s_flags |= MS_NOSEC;
2585 #else
2586 	sb->s_flags |= MS_NOUSER;
2587 #endif
2588 
2589 	spin_lock_init(&sbinfo->stat_lock);
2590 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2591 		goto failed;
2592 	sbinfo->free_inodes = sbinfo->max_inodes;
2593 
2594 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2595 	sb->s_blocksize = PAGE_CACHE_SIZE;
2596 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2597 	sb->s_magic = TMPFS_MAGIC;
2598 	sb->s_op = &shmem_ops;
2599 	sb->s_time_gran = 1;
2600 #ifdef CONFIG_TMPFS_XATTR
2601 	sb->s_xattr = shmem_xattr_handlers;
2602 #endif
2603 #ifdef CONFIG_TMPFS_POSIX_ACL
2604 	sb->s_flags |= MS_POSIXACL;
2605 #endif
2606 
2607 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2608 	if (!inode)
2609 		goto failed;
2610 	inode->i_uid = sbinfo->uid;
2611 	inode->i_gid = sbinfo->gid;
2612 	sb->s_root = d_make_root(inode);
2613 	if (!sb->s_root)
2614 		goto failed;
2615 	return 0;
2616 
2617 failed:
2618 	shmem_put_super(sb);
2619 	return err;
2620 }
2621 
2622 static struct kmem_cache *shmem_inode_cachep;
2623 
2624 static struct inode *shmem_alloc_inode(struct super_block *sb)
2625 {
2626 	struct shmem_inode_info *info;
2627 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2628 	if (!info)
2629 		return NULL;
2630 	return &info->vfs_inode;
2631 }
2632 
2633 static void shmem_destroy_callback(struct rcu_head *head)
2634 {
2635 	struct inode *inode = container_of(head, struct inode, i_rcu);
2636 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2637 }
2638 
2639 static void shmem_destroy_inode(struct inode *inode)
2640 {
2641 	if (S_ISREG(inode->i_mode))
2642 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2643 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2644 }
2645 
2646 static void shmem_init_inode(void *foo)
2647 {
2648 	struct shmem_inode_info *info = foo;
2649 	inode_init_once(&info->vfs_inode);
2650 }
2651 
2652 static int shmem_init_inodecache(void)
2653 {
2654 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2655 				sizeof(struct shmem_inode_info),
2656 				0, SLAB_PANIC, shmem_init_inode);
2657 	return 0;
2658 }
2659 
2660 static void shmem_destroy_inodecache(void)
2661 {
2662 	kmem_cache_destroy(shmem_inode_cachep);
2663 }
2664 
2665 static const struct address_space_operations shmem_aops = {
2666 	.writepage	= shmem_writepage,
2667 	.set_page_dirty	= __set_page_dirty_no_writeback,
2668 #ifdef CONFIG_TMPFS
2669 	.write_begin	= shmem_write_begin,
2670 	.write_end	= shmem_write_end,
2671 #endif
2672 	.migratepage	= migrate_page,
2673 	.error_remove_page = generic_error_remove_page,
2674 };
2675 
2676 static const struct file_operations shmem_file_operations = {
2677 	.mmap		= shmem_mmap,
2678 #ifdef CONFIG_TMPFS
2679 	.llseek		= shmem_file_llseek,
2680 	.read		= do_sync_read,
2681 	.write		= do_sync_write,
2682 	.aio_read	= shmem_file_aio_read,
2683 	.aio_write	= generic_file_aio_write,
2684 	.fsync		= noop_fsync,
2685 	.splice_read	= shmem_file_splice_read,
2686 	.splice_write	= generic_file_splice_write,
2687 	.fallocate	= shmem_fallocate,
2688 #endif
2689 };
2690 
2691 static const struct inode_operations shmem_inode_operations = {
2692 	.setattr	= shmem_setattr,
2693 #ifdef CONFIG_TMPFS_XATTR
2694 	.setxattr	= shmem_setxattr,
2695 	.getxattr	= shmem_getxattr,
2696 	.listxattr	= shmem_listxattr,
2697 	.removexattr	= shmem_removexattr,
2698 #endif
2699 };
2700 
2701 static const struct inode_operations shmem_dir_inode_operations = {
2702 #ifdef CONFIG_TMPFS
2703 	.create		= shmem_create,
2704 	.lookup		= simple_lookup,
2705 	.link		= shmem_link,
2706 	.unlink		= shmem_unlink,
2707 	.symlink	= shmem_symlink,
2708 	.mkdir		= shmem_mkdir,
2709 	.rmdir		= shmem_rmdir,
2710 	.mknod		= shmem_mknod,
2711 	.rename		= shmem_rename,
2712 #endif
2713 #ifdef CONFIG_TMPFS_XATTR
2714 	.setxattr	= shmem_setxattr,
2715 	.getxattr	= shmem_getxattr,
2716 	.listxattr	= shmem_listxattr,
2717 	.removexattr	= shmem_removexattr,
2718 #endif
2719 #ifdef CONFIG_TMPFS_POSIX_ACL
2720 	.setattr	= shmem_setattr,
2721 #endif
2722 };
2723 
2724 static const struct inode_operations shmem_special_inode_operations = {
2725 #ifdef CONFIG_TMPFS_XATTR
2726 	.setxattr	= shmem_setxattr,
2727 	.getxattr	= shmem_getxattr,
2728 	.listxattr	= shmem_listxattr,
2729 	.removexattr	= shmem_removexattr,
2730 #endif
2731 #ifdef CONFIG_TMPFS_POSIX_ACL
2732 	.setattr	= shmem_setattr,
2733 #endif
2734 };
2735 
2736 static const struct super_operations shmem_ops = {
2737 	.alloc_inode	= shmem_alloc_inode,
2738 	.destroy_inode	= shmem_destroy_inode,
2739 #ifdef CONFIG_TMPFS
2740 	.statfs		= shmem_statfs,
2741 	.remount_fs	= shmem_remount_fs,
2742 	.show_options	= shmem_show_options,
2743 #endif
2744 	.evict_inode	= shmem_evict_inode,
2745 	.drop_inode	= generic_delete_inode,
2746 	.put_super	= shmem_put_super,
2747 };
2748 
2749 static const struct vm_operations_struct shmem_vm_ops = {
2750 	.fault		= shmem_fault,
2751 #ifdef CONFIG_NUMA
2752 	.set_policy     = shmem_set_policy,
2753 	.get_policy     = shmem_get_policy,
2754 #endif
2755 	.remap_pages	= generic_file_remap_pages,
2756 };
2757 
2758 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2759 	int flags, const char *dev_name, void *data)
2760 {
2761 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2762 }
2763 
2764 static struct file_system_type shmem_fs_type = {
2765 	.owner		= THIS_MODULE,
2766 	.name		= "tmpfs",
2767 	.mount		= shmem_mount,
2768 	.kill_sb	= kill_litter_super,
2769 };
2770 
2771 int __init shmem_init(void)
2772 {
2773 	int error;
2774 
2775 	error = bdi_init(&shmem_backing_dev_info);
2776 	if (error)
2777 		goto out4;
2778 
2779 	error = shmem_init_inodecache();
2780 	if (error)
2781 		goto out3;
2782 
2783 	error = register_filesystem(&shmem_fs_type);
2784 	if (error) {
2785 		printk(KERN_ERR "Could not register tmpfs\n");
2786 		goto out2;
2787 	}
2788 
2789 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2790 				 shmem_fs_type.name, NULL);
2791 	if (IS_ERR(shm_mnt)) {
2792 		error = PTR_ERR(shm_mnt);
2793 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2794 		goto out1;
2795 	}
2796 	return 0;
2797 
2798 out1:
2799 	unregister_filesystem(&shmem_fs_type);
2800 out2:
2801 	shmem_destroy_inodecache();
2802 out3:
2803 	bdi_destroy(&shmem_backing_dev_info);
2804 out4:
2805 	shm_mnt = ERR_PTR(error);
2806 	return error;
2807 }
2808 
2809 #else /* !CONFIG_SHMEM */
2810 
2811 /*
2812  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2813  *
2814  * This is intended for small system where the benefits of the full
2815  * shmem code (swap-backed and resource-limited) are outweighed by
2816  * their complexity. On systems without swap this code should be
2817  * effectively equivalent, but much lighter weight.
2818  */
2819 
2820 #include <linux/ramfs.h>
2821 
2822 static struct file_system_type shmem_fs_type = {
2823 	.name		= "tmpfs",
2824 	.mount		= ramfs_mount,
2825 	.kill_sb	= kill_litter_super,
2826 };
2827 
2828 int __init shmem_init(void)
2829 {
2830 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2831 
2832 	shm_mnt = kern_mount(&shmem_fs_type);
2833 	BUG_ON(IS_ERR(shm_mnt));
2834 
2835 	return 0;
2836 }
2837 
2838 int shmem_unuse(swp_entry_t swap, struct page *page)
2839 {
2840 	return 0;
2841 }
2842 
2843 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2844 {
2845 	return 0;
2846 }
2847 
2848 void shmem_unlock_mapping(struct address_space *mapping)
2849 {
2850 }
2851 
2852 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2853 {
2854 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2855 }
2856 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2857 
2858 #define shmem_vm_ops				generic_file_vm_ops
2859 #define shmem_file_operations			ramfs_file_operations
2860 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2861 #define shmem_acct_size(flags, size)		0
2862 #define shmem_unacct_size(flags, size)		do {} while (0)
2863 
2864 #endif /* CONFIG_SHMEM */
2865 
2866 /* common code */
2867 
2868 /**
2869  * shmem_file_setup - get an unlinked file living in tmpfs
2870  * @name: name for dentry (to be seen in /proc/<pid>/maps
2871  * @size: size to be set for the file
2872  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2873  */
2874 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2875 {
2876 	int error;
2877 	struct file *file;
2878 	struct inode *inode;
2879 	struct path path;
2880 	struct dentry *root;
2881 	struct qstr this;
2882 
2883 	if (IS_ERR(shm_mnt))
2884 		return (void *)shm_mnt;
2885 
2886 	if (size < 0 || size > MAX_LFS_FILESIZE)
2887 		return ERR_PTR(-EINVAL);
2888 
2889 	if (shmem_acct_size(flags, size))
2890 		return ERR_PTR(-ENOMEM);
2891 
2892 	error = -ENOMEM;
2893 	this.name = name;
2894 	this.len = strlen(name);
2895 	this.hash = 0; /* will go */
2896 	root = shm_mnt->mnt_root;
2897 	path.dentry = d_alloc(root, &this);
2898 	if (!path.dentry)
2899 		goto put_memory;
2900 	path.mnt = mntget(shm_mnt);
2901 
2902 	error = -ENOSPC;
2903 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2904 	if (!inode)
2905 		goto put_dentry;
2906 
2907 	d_instantiate(path.dentry, inode);
2908 	inode->i_size = size;
2909 	clear_nlink(inode);	/* It is unlinked */
2910 #ifndef CONFIG_MMU
2911 	error = ramfs_nommu_expand_for_mapping(inode, size);
2912 	if (error)
2913 		goto put_dentry;
2914 #endif
2915 
2916 	error = -ENFILE;
2917 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2918 		  &shmem_file_operations);
2919 	if (!file)
2920 		goto put_dentry;
2921 
2922 	return file;
2923 
2924 put_dentry:
2925 	path_put(&path);
2926 put_memory:
2927 	shmem_unacct_size(flags, size);
2928 	return ERR_PTR(error);
2929 }
2930 EXPORT_SYMBOL_GPL(shmem_file_setup);
2931 
2932 /**
2933  * shmem_zero_setup - setup a shared anonymous mapping
2934  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2935  */
2936 int shmem_zero_setup(struct vm_area_struct *vma)
2937 {
2938 	struct file *file;
2939 	loff_t size = vma->vm_end - vma->vm_start;
2940 
2941 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2942 	if (IS_ERR(file))
2943 		return PTR_ERR(file);
2944 
2945 	if (vma->vm_file)
2946 		fput(vma->vm_file);
2947 	vma->vm_file = file;
2948 	vma->vm_ops = &shmem_vm_ops;
2949 	return 0;
2950 }
2951 
2952 /**
2953  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2954  * @mapping:	the page's address_space
2955  * @index:	the page index
2956  * @gfp:	the page allocator flags to use if allocating
2957  *
2958  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2959  * with any new page allocations done using the specified allocation flags.
2960  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2961  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2962  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2963  *
2964  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2965  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2966  */
2967 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2968 					 pgoff_t index, gfp_t gfp)
2969 {
2970 #ifdef CONFIG_SHMEM
2971 	struct inode *inode = mapping->host;
2972 	struct page *page;
2973 	int error;
2974 
2975 	BUG_ON(mapping->a_ops != &shmem_aops);
2976 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2977 	if (error)
2978 		page = ERR_PTR(error);
2979 	else
2980 		unlock_page(page);
2981 	return page;
2982 #else
2983 	/*
2984 	 * The tiny !SHMEM case uses ramfs without swap
2985 	 */
2986 	return read_cache_page_gfp(mapping, index, gfp);
2987 #endif
2988 }
2989 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2990