1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/blkdev.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 140 struct page **pagep, enum sgp_type sgp, 141 gfp_t gfp, struct vm_area_struct *vma, 142 vm_fault_t *fault_type); 143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 struct vm_fault *vmf, vm_fault_t *fault_type); 147 148 int shmem_getpage(struct inode *inode, pgoff_t index, 149 struct page **pagep, enum sgp_type sgp) 150 { 151 return shmem_getpage_gfp(inode, index, pagep, sgp, 152 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 153 } 154 155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 156 { 157 return sb->s_fs_info; 158 } 159 160 /* 161 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 162 * for shared memory and for shared anonymous (/dev/zero) mappings 163 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 164 * consistent with the pre-accounting of private mappings ... 165 */ 166 static inline int shmem_acct_size(unsigned long flags, loff_t size) 167 { 168 return (flags & VM_NORESERVE) ? 169 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 170 } 171 172 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 173 { 174 if (!(flags & VM_NORESERVE)) 175 vm_unacct_memory(VM_ACCT(size)); 176 } 177 178 static inline int shmem_reacct_size(unsigned long flags, 179 loff_t oldsize, loff_t newsize) 180 { 181 if (!(flags & VM_NORESERVE)) { 182 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 183 return security_vm_enough_memory_mm(current->mm, 184 VM_ACCT(newsize) - VM_ACCT(oldsize)); 185 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 186 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 187 } 188 return 0; 189 } 190 191 /* 192 * ... whereas tmpfs objects are accounted incrementally as 193 * pages are allocated, in order to allow large sparse files. 194 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 195 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 196 */ 197 static inline int shmem_acct_block(unsigned long flags, long pages) 198 { 199 if (!(flags & VM_NORESERVE)) 200 return 0; 201 202 return security_vm_enough_memory_mm(current->mm, 203 pages * VM_ACCT(PAGE_SIZE)); 204 } 205 206 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 207 { 208 if (flags & VM_NORESERVE) 209 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 210 } 211 212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 213 { 214 struct shmem_inode_info *info = SHMEM_I(inode); 215 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 216 217 if (shmem_acct_block(info->flags, pages)) 218 return false; 219 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 percpu_counter_add(&sbinfo->used_blocks, pages); 225 } 226 227 return true; 228 229 unacct: 230 shmem_unacct_blocks(info->flags, pages); 231 return false; 232 } 233 234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 235 { 236 struct shmem_inode_info *info = SHMEM_I(inode); 237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 238 239 if (sbinfo->max_blocks) 240 percpu_counter_sub(&sbinfo->used_blocks, pages); 241 shmem_unacct_blocks(info->flags, pages); 242 } 243 244 static const struct super_operations shmem_ops; 245 const struct address_space_operations shmem_aops; 246 static const struct file_operations shmem_file_operations; 247 static const struct inode_operations shmem_inode_operations; 248 static const struct inode_operations shmem_dir_inode_operations; 249 static const struct inode_operations shmem_special_inode_operations; 250 static const struct vm_operations_struct shmem_vm_ops; 251 static struct file_system_type shmem_fs_type; 252 253 bool vma_is_shmem(struct vm_area_struct *vma) 254 { 255 return vma->vm_ops == &shmem_vm_ops; 256 } 257 258 static LIST_HEAD(shmem_swaplist); 259 static DEFINE_MUTEX(shmem_swaplist_mutex); 260 261 /* 262 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 263 * produces a novel ino for the newly allocated inode. 264 * 265 * It may also be called when making a hard link to permit the space needed by 266 * each dentry. However, in that case, no new inode number is needed since that 267 * internally draws from another pool of inode numbers (currently global 268 * get_next_ino()). This case is indicated by passing NULL as inop. 269 */ 270 #define SHMEM_INO_BATCH 1024 271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 272 { 273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 274 ino_t ino; 275 276 if (!(sb->s_flags & SB_KERNMOUNT)) { 277 raw_spin_lock(&sbinfo->stat_lock); 278 if (sbinfo->max_inodes) { 279 if (!sbinfo->free_inodes) { 280 raw_spin_unlock(&sbinfo->stat_lock); 281 return -ENOSPC; 282 } 283 sbinfo->free_inodes--; 284 } 285 if (inop) { 286 ino = sbinfo->next_ino++; 287 if (unlikely(is_zero_ino(ino))) 288 ino = sbinfo->next_ino++; 289 if (unlikely(!sbinfo->full_inums && 290 ino > UINT_MAX)) { 291 /* 292 * Emulate get_next_ino uint wraparound for 293 * compatibility 294 */ 295 if (IS_ENABLED(CONFIG_64BIT)) 296 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 297 __func__, MINOR(sb->s_dev)); 298 sbinfo->next_ino = 1; 299 ino = sbinfo->next_ino++; 300 } 301 *inop = ino; 302 } 303 raw_spin_unlock(&sbinfo->stat_lock); 304 } else if (inop) { 305 /* 306 * __shmem_file_setup, one of our callers, is lock-free: it 307 * doesn't hold stat_lock in shmem_reserve_inode since 308 * max_inodes is always 0, and is called from potentially 309 * unknown contexts. As such, use a per-cpu batched allocator 310 * which doesn't require the per-sb stat_lock unless we are at 311 * the batch boundary. 312 * 313 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 314 * shmem mounts are not exposed to userspace, so we don't need 315 * to worry about things like glibc compatibility. 316 */ 317 ino_t *next_ino; 318 319 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 320 ino = *next_ino; 321 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 322 raw_spin_lock(&sbinfo->stat_lock); 323 ino = sbinfo->next_ino; 324 sbinfo->next_ino += SHMEM_INO_BATCH; 325 raw_spin_unlock(&sbinfo->stat_lock); 326 if (unlikely(is_zero_ino(ino))) 327 ino++; 328 } 329 *inop = ino; 330 *next_ino = ++ino; 331 put_cpu(); 332 } 333 334 return 0; 335 } 336 337 static void shmem_free_inode(struct super_block *sb) 338 { 339 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 340 if (sbinfo->max_inodes) { 341 raw_spin_lock(&sbinfo->stat_lock); 342 sbinfo->free_inodes++; 343 raw_spin_unlock(&sbinfo->stat_lock); 344 } 345 } 346 347 /** 348 * shmem_recalc_inode - recalculate the block usage of an inode 349 * @inode: inode to recalc 350 * 351 * We have to calculate the free blocks since the mm can drop 352 * undirtied hole pages behind our back. 353 * 354 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 355 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 356 * 357 * It has to be called with the spinlock held. 358 */ 359 static void shmem_recalc_inode(struct inode *inode) 360 { 361 struct shmem_inode_info *info = SHMEM_I(inode); 362 long freed; 363 364 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 365 if (freed > 0) { 366 info->alloced -= freed; 367 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 368 shmem_inode_unacct_blocks(inode, freed); 369 } 370 } 371 372 bool shmem_charge(struct inode *inode, long pages) 373 { 374 struct shmem_inode_info *info = SHMEM_I(inode); 375 unsigned long flags; 376 377 if (!shmem_inode_acct_block(inode, pages)) 378 return false; 379 380 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 381 inode->i_mapping->nrpages += pages; 382 383 spin_lock_irqsave(&info->lock, flags); 384 info->alloced += pages; 385 inode->i_blocks += pages * BLOCKS_PER_PAGE; 386 shmem_recalc_inode(inode); 387 spin_unlock_irqrestore(&info->lock, flags); 388 389 return true; 390 } 391 392 void shmem_uncharge(struct inode *inode, long pages) 393 { 394 struct shmem_inode_info *info = SHMEM_I(inode); 395 unsigned long flags; 396 397 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 398 399 spin_lock_irqsave(&info->lock, flags); 400 info->alloced -= pages; 401 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 402 shmem_recalc_inode(inode); 403 spin_unlock_irqrestore(&info->lock, flags); 404 405 shmem_inode_unacct_blocks(inode, pages); 406 } 407 408 /* 409 * Replace item expected in xarray by a new item, while holding xa_lock. 410 */ 411 static int shmem_replace_entry(struct address_space *mapping, 412 pgoff_t index, void *expected, void *replacement) 413 { 414 XA_STATE(xas, &mapping->i_pages, index); 415 void *item; 416 417 VM_BUG_ON(!expected); 418 VM_BUG_ON(!replacement); 419 item = xas_load(&xas); 420 if (item != expected) 421 return -ENOENT; 422 xas_store(&xas, replacement); 423 return 0; 424 } 425 426 /* 427 * Sometimes, before we decide whether to proceed or to fail, we must check 428 * that an entry was not already brought back from swap by a racing thread. 429 * 430 * Checking page is not enough: by the time a SwapCache page is locked, it 431 * might be reused, and again be SwapCache, using the same swap as before. 432 */ 433 static bool shmem_confirm_swap(struct address_space *mapping, 434 pgoff_t index, swp_entry_t swap) 435 { 436 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 437 } 438 439 /* 440 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 441 * 442 * SHMEM_HUGE_NEVER: 443 * disables huge pages for the mount; 444 * SHMEM_HUGE_ALWAYS: 445 * enables huge pages for the mount; 446 * SHMEM_HUGE_WITHIN_SIZE: 447 * only allocate huge pages if the page will be fully within i_size, 448 * also respect fadvise()/madvise() hints; 449 * SHMEM_HUGE_ADVISE: 450 * only allocate huge pages if requested with fadvise()/madvise(); 451 */ 452 453 #define SHMEM_HUGE_NEVER 0 454 #define SHMEM_HUGE_ALWAYS 1 455 #define SHMEM_HUGE_WITHIN_SIZE 2 456 #define SHMEM_HUGE_ADVISE 3 457 458 /* 459 * Special values. 460 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 461 * 462 * SHMEM_HUGE_DENY: 463 * disables huge on shm_mnt and all mounts, for emergency use; 464 * SHMEM_HUGE_FORCE: 465 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 466 * 467 */ 468 #define SHMEM_HUGE_DENY (-1) 469 #define SHMEM_HUGE_FORCE (-2) 470 471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 472 /* ifdef here to avoid bloating shmem.o when not necessary */ 473 474 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 475 476 bool shmem_is_huge(struct vm_area_struct *vma, 477 struct inode *inode, pgoff_t index) 478 { 479 loff_t i_size; 480 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 485 return false; 486 if (shmem_huge == SHMEM_HUGE_FORCE) 487 return true; 488 489 switch (SHMEM_SB(inode->i_sb)->huge) { 490 case SHMEM_HUGE_ALWAYS: 491 return true; 492 case SHMEM_HUGE_WITHIN_SIZE: 493 index = round_up(index, HPAGE_PMD_NR); 494 i_size = round_up(i_size_read(inode), PAGE_SIZE); 495 if (i_size >= HPAGE_PMD_SIZE && (i_size >> PAGE_SHIFT) >= index) 496 return true; 497 fallthrough; 498 case SHMEM_HUGE_ADVISE: 499 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 500 return true; 501 fallthrough; 502 default: 503 return false; 504 } 505 } 506 507 #if defined(CONFIG_SYSFS) 508 static int shmem_parse_huge(const char *str) 509 { 510 if (!strcmp(str, "never")) 511 return SHMEM_HUGE_NEVER; 512 if (!strcmp(str, "always")) 513 return SHMEM_HUGE_ALWAYS; 514 if (!strcmp(str, "within_size")) 515 return SHMEM_HUGE_WITHIN_SIZE; 516 if (!strcmp(str, "advise")) 517 return SHMEM_HUGE_ADVISE; 518 if (!strcmp(str, "deny")) 519 return SHMEM_HUGE_DENY; 520 if (!strcmp(str, "force")) 521 return SHMEM_HUGE_FORCE; 522 return -EINVAL; 523 } 524 #endif 525 526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 527 static const char *shmem_format_huge(int huge) 528 { 529 switch (huge) { 530 case SHMEM_HUGE_NEVER: 531 return "never"; 532 case SHMEM_HUGE_ALWAYS: 533 return "always"; 534 case SHMEM_HUGE_WITHIN_SIZE: 535 return "within_size"; 536 case SHMEM_HUGE_ADVISE: 537 return "advise"; 538 case SHMEM_HUGE_DENY: 539 return "deny"; 540 case SHMEM_HUGE_FORCE: 541 return "force"; 542 default: 543 VM_BUG_ON(1); 544 return "bad_val"; 545 } 546 } 547 #endif 548 549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 550 struct shrink_control *sc, unsigned long nr_to_split) 551 { 552 LIST_HEAD(list), *pos, *next; 553 LIST_HEAD(to_remove); 554 struct inode *inode; 555 struct shmem_inode_info *info; 556 struct page *page; 557 unsigned long batch = sc ? sc->nr_to_scan : 128; 558 int removed = 0, split = 0; 559 560 if (list_empty(&sbinfo->shrinklist)) 561 return SHRINK_STOP; 562 563 spin_lock(&sbinfo->shrinklist_lock); 564 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 567 /* pin the inode */ 568 inode = igrab(&info->vfs_inode); 569 570 /* inode is about to be evicted */ 571 if (!inode) { 572 list_del_init(&info->shrinklist); 573 removed++; 574 goto next; 575 } 576 577 /* Check if there's anything to gain */ 578 if (round_up(inode->i_size, PAGE_SIZE) == 579 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 580 list_move(&info->shrinklist, &to_remove); 581 removed++; 582 goto next; 583 } 584 585 list_move(&info->shrinklist, &list); 586 next: 587 if (!--batch) 588 break; 589 } 590 spin_unlock(&sbinfo->shrinklist_lock); 591 592 list_for_each_safe(pos, next, &to_remove) { 593 info = list_entry(pos, struct shmem_inode_info, shrinklist); 594 inode = &info->vfs_inode; 595 list_del_init(&info->shrinklist); 596 iput(inode); 597 } 598 599 list_for_each_safe(pos, next, &list) { 600 int ret; 601 602 info = list_entry(pos, struct shmem_inode_info, shrinklist); 603 inode = &info->vfs_inode; 604 605 if (nr_to_split && split >= nr_to_split) 606 goto leave; 607 608 page = find_get_page(inode->i_mapping, 609 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 610 if (!page) 611 goto drop; 612 613 /* No huge page at the end of the file: nothing to split */ 614 if (!PageTransHuge(page)) { 615 put_page(page); 616 goto drop; 617 } 618 619 /* 620 * Leave the inode on the list if we failed to lock 621 * the page at this time. 622 * 623 * Waiting for the lock may lead to deadlock in the 624 * reclaim path. 625 */ 626 if (!trylock_page(page)) { 627 put_page(page); 628 goto leave; 629 } 630 631 ret = split_huge_page(page); 632 unlock_page(page); 633 put_page(page); 634 635 /* If split failed leave the inode on the list */ 636 if (ret) 637 goto leave; 638 639 split++; 640 drop: 641 list_del_init(&info->shrinklist); 642 removed++; 643 leave: 644 iput(inode); 645 } 646 647 spin_lock(&sbinfo->shrinklist_lock); 648 list_splice_tail(&list, &sbinfo->shrinklist); 649 sbinfo->shrinklist_len -= removed; 650 spin_unlock(&sbinfo->shrinklist_lock); 651 652 return split; 653 } 654 655 static long shmem_unused_huge_scan(struct super_block *sb, 656 struct shrink_control *sc) 657 { 658 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 659 660 if (!READ_ONCE(sbinfo->shrinklist_len)) 661 return SHRINK_STOP; 662 663 return shmem_unused_huge_shrink(sbinfo, sc, 0); 664 } 665 666 static long shmem_unused_huge_count(struct super_block *sb, 667 struct shrink_control *sc) 668 { 669 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 670 return READ_ONCE(sbinfo->shrinklist_len); 671 } 672 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 673 674 #define shmem_huge SHMEM_HUGE_DENY 675 676 bool shmem_is_huge(struct vm_area_struct *vma, 677 struct inode *inode, pgoff_t index) 678 { 679 return false; 680 } 681 682 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 683 struct shrink_control *sc, unsigned long nr_to_split) 684 { 685 return 0; 686 } 687 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 688 689 /* 690 * Like add_to_page_cache_locked, but error if expected item has gone. 691 */ 692 static int shmem_add_to_page_cache(struct page *page, 693 struct address_space *mapping, 694 pgoff_t index, void *expected, gfp_t gfp, 695 struct mm_struct *charge_mm) 696 { 697 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 698 unsigned long i = 0; 699 unsigned long nr = compound_nr(page); 700 int error; 701 702 VM_BUG_ON_PAGE(PageTail(page), page); 703 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 704 VM_BUG_ON_PAGE(!PageLocked(page), page); 705 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 706 VM_BUG_ON(expected && PageTransHuge(page)); 707 708 page_ref_add(page, nr); 709 page->mapping = mapping; 710 page->index = index; 711 712 if (!PageSwapCache(page)) { 713 error = mem_cgroup_charge(page, charge_mm, gfp); 714 if (error) { 715 if (PageTransHuge(page)) { 716 count_vm_event(THP_FILE_FALLBACK); 717 count_vm_event(THP_FILE_FALLBACK_CHARGE); 718 } 719 goto error; 720 } 721 } 722 cgroup_throttle_swaprate(page, gfp); 723 724 do { 725 void *entry; 726 xas_lock_irq(&xas); 727 entry = xas_find_conflict(&xas); 728 if (entry != expected) 729 xas_set_err(&xas, -EEXIST); 730 xas_create_range(&xas); 731 if (xas_error(&xas)) 732 goto unlock; 733 next: 734 xas_store(&xas, page); 735 if (++i < nr) { 736 xas_next(&xas); 737 goto next; 738 } 739 if (PageTransHuge(page)) { 740 count_vm_event(THP_FILE_ALLOC); 741 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); 742 } 743 mapping->nrpages += nr; 744 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 745 __mod_lruvec_page_state(page, NR_SHMEM, nr); 746 unlock: 747 xas_unlock_irq(&xas); 748 } while (xas_nomem(&xas, gfp)); 749 750 if (xas_error(&xas)) { 751 error = xas_error(&xas); 752 goto error; 753 } 754 755 return 0; 756 error: 757 page->mapping = NULL; 758 page_ref_sub(page, nr); 759 return error; 760 } 761 762 /* 763 * Like delete_from_page_cache, but substitutes swap for page. 764 */ 765 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 766 { 767 struct address_space *mapping = page->mapping; 768 int error; 769 770 VM_BUG_ON_PAGE(PageCompound(page), page); 771 772 xa_lock_irq(&mapping->i_pages); 773 error = shmem_replace_entry(mapping, page->index, page, radswap); 774 page->mapping = NULL; 775 mapping->nrpages--; 776 __dec_lruvec_page_state(page, NR_FILE_PAGES); 777 __dec_lruvec_page_state(page, NR_SHMEM); 778 xa_unlock_irq(&mapping->i_pages); 779 put_page(page); 780 BUG_ON(error); 781 } 782 783 /* 784 * Remove swap entry from page cache, free the swap and its page cache. 785 */ 786 static int shmem_free_swap(struct address_space *mapping, 787 pgoff_t index, void *radswap) 788 { 789 void *old; 790 791 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 792 if (old != radswap) 793 return -ENOENT; 794 free_swap_and_cache(radix_to_swp_entry(radswap)); 795 return 0; 796 } 797 798 /* 799 * Determine (in bytes) how many of the shmem object's pages mapped by the 800 * given offsets are swapped out. 801 * 802 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 803 * as long as the inode doesn't go away and racy results are not a problem. 804 */ 805 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 806 pgoff_t start, pgoff_t end) 807 { 808 XA_STATE(xas, &mapping->i_pages, start); 809 struct page *page; 810 unsigned long swapped = 0; 811 812 rcu_read_lock(); 813 xas_for_each(&xas, page, end - 1) { 814 if (xas_retry(&xas, page)) 815 continue; 816 if (xa_is_value(page)) 817 swapped++; 818 819 if (need_resched()) { 820 xas_pause(&xas); 821 cond_resched_rcu(); 822 } 823 } 824 825 rcu_read_unlock(); 826 827 return swapped << PAGE_SHIFT; 828 } 829 830 /* 831 * Determine (in bytes) how many of the shmem object's pages mapped by the 832 * given vma is swapped out. 833 * 834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 835 * as long as the inode doesn't go away and racy results are not a problem. 836 */ 837 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 838 { 839 struct inode *inode = file_inode(vma->vm_file); 840 struct shmem_inode_info *info = SHMEM_I(inode); 841 struct address_space *mapping = inode->i_mapping; 842 unsigned long swapped; 843 844 /* Be careful as we don't hold info->lock */ 845 swapped = READ_ONCE(info->swapped); 846 847 /* 848 * The easier cases are when the shmem object has nothing in swap, or 849 * the vma maps it whole. Then we can simply use the stats that we 850 * already track. 851 */ 852 if (!swapped) 853 return 0; 854 855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 856 return swapped << PAGE_SHIFT; 857 858 /* Here comes the more involved part */ 859 return shmem_partial_swap_usage(mapping, 860 linear_page_index(vma, vma->vm_start), 861 linear_page_index(vma, vma->vm_end)); 862 } 863 864 /* 865 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 866 */ 867 void shmem_unlock_mapping(struct address_space *mapping) 868 { 869 struct pagevec pvec; 870 pgoff_t index = 0; 871 872 pagevec_init(&pvec); 873 /* 874 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 875 */ 876 while (!mapping_unevictable(mapping)) { 877 if (!pagevec_lookup(&pvec, mapping, &index)) 878 break; 879 check_move_unevictable_pages(&pvec); 880 pagevec_release(&pvec); 881 cond_resched(); 882 } 883 } 884 885 /* 886 * Check whether a hole-punch or truncation needs to split a huge page, 887 * returning true if no split was required, or the split has been successful. 888 * 889 * Eviction (or truncation to 0 size) should never need to split a huge page; 890 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 891 * head, and then succeeded to trylock on tail. 892 * 893 * A split can only succeed when there are no additional references on the 894 * huge page: so the split below relies upon find_get_entries() having stopped 895 * when it found a subpage of the huge page, without getting further references. 896 */ 897 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 898 { 899 if (!PageTransCompound(page)) 900 return true; 901 902 /* Just proceed to delete a huge page wholly within the range punched */ 903 if (PageHead(page) && 904 page->index >= start && page->index + HPAGE_PMD_NR <= end) 905 return true; 906 907 /* Try to split huge page, so we can truly punch the hole or truncate */ 908 return split_huge_page(page) >= 0; 909 } 910 911 /* 912 * Remove range of pages and swap entries from page cache, and free them. 913 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 914 */ 915 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 916 bool unfalloc) 917 { 918 struct address_space *mapping = inode->i_mapping; 919 struct shmem_inode_info *info = SHMEM_I(inode); 920 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 921 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 922 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 923 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 924 struct pagevec pvec; 925 pgoff_t indices[PAGEVEC_SIZE]; 926 long nr_swaps_freed = 0; 927 pgoff_t index; 928 int i; 929 930 if (lend == -1) 931 end = -1; /* unsigned, so actually very big */ 932 933 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 934 info->fallocend = start; 935 936 pagevec_init(&pvec); 937 index = start; 938 while (index < end && find_lock_entries(mapping, index, end - 1, 939 &pvec, indices)) { 940 for (i = 0; i < pagevec_count(&pvec); i++) { 941 struct page *page = pvec.pages[i]; 942 943 index = indices[i]; 944 945 if (xa_is_value(page)) { 946 if (unfalloc) 947 continue; 948 nr_swaps_freed += !shmem_free_swap(mapping, 949 index, page); 950 continue; 951 } 952 index += thp_nr_pages(page) - 1; 953 954 if (!unfalloc || !PageUptodate(page)) 955 truncate_inode_page(mapping, page); 956 unlock_page(page); 957 } 958 pagevec_remove_exceptionals(&pvec); 959 pagevec_release(&pvec); 960 cond_resched(); 961 index++; 962 } 963 964 if (partial_start) { 965 struct page *page = NULL; 966 shmem_getpage(inode, start - 1, &page, SGP_READ); 967 if (page) { 968 unsigned int top = PAGE_SIZE; 969 if (start > end) { 970 top = partial_end; 971 partial_end = 0; 972 } 973 zero_user_segment(page, partial_start, top); 974 set_page_dirty(page); 975 unlock_page(page); 976 put_page(page); 977 } 978 } 979 if (partial_end) { 980 struct page *page = NULL; 981 shmem_getpage(inode, end, &page, SGP_READ); 982 if (page) { 983 zero_user_segment(page, 0, partial_end); 984 set_page_dirty(page); 985 unlock_page(page); 986 put_page(page); 987 } 988 } 989 if (start >= end) 990 return; 991 992 index = start; 993 while (index < end) { 994 cond_resched(); 995 996 if (!find_get_entries(mapping, index, end - 1, &pvec, 997 indices)) { 998 /* If all gone or hole-punch or unfalloc, we're done */ 999 if (index == start || end != -1) 1000 break; 1001 /* But if truncating, restart to make sure all gone */ 1002 index = start; 1003 continue; 1004 } 1005 for (i = 0; i < pagevec_count(&pvec); i++) { 1006 struct page *page = pvec.pages[i]; 1007 1008 index = indices[i]; 1009 if (xa_is_value(page)) { 1010 if (unfalloc) 1011 continue; 1012 if (shmem_free_swap(mapping, index, page)) { 1013 /* Swap was replaced by page: retry */ 1014 index--; 1015 break; 1016 } 1017 nr_swaps_freed++; 1018 continue; 1019 } 1020 1021 lock_page(page); 1022 1023 if (!unfalloc || !PageUptodate(page)) { 1024 if (page_mapping(page) != mapping) { 1025 /* Page was replaced by swap: retry */ 1026 unlock_page(page); 1027 index--; 1028 break; 1029 } 1030 VM_BUG_ON_PAGE(PageWriteback(page), page); 1031 if (shmem_punch_compound(page, start, end)) 1032 truncate_inode_page(mapping, page); 1033 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1034 /* Wipe the page and don't get stuck */ 1035 clear_highpage(page); 1036 flush_dcache_page(page); 1037 set_page_dirty(page); 1038 if (index < 1039 round_up(start, HPAGE_PMD_NR)) 1040 start = index + 1; 1041 } 1042 } 1043 unlock_page(page); 1044 } 1045 pagevec_remove_exceptionals(&pvec); 1046 pagevec_release(&pvec); 1047 index++; 1048 } 1049 1050 spin_lock_irq(&info->lock); 1051 info->swapped -= nr_swaps_freed; 1052 shmem_recalc_inode(inode); 1053 spin_unlock_irq(&info->lock); 1054 } 1055 1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1057 { 1058 shmem_undo_range(inode, lstart, lend, false); 1059 inode->i_ctime = inode->i_mtime = current_time(inode); 1060 } 1061 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1062 1063 static int shmem_getattr(struct user_namespace *mnt_userns, 1064 const struct path *path, struct kstat *stat, 1065 u32 request_mask, unsigned int query_flags) 1066 { 1067 struct inode *inode = path->dentry->d_inode; 1068 struct shmem_inode_info *info = SHMEM_I(inode); 1069 1070 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1071 spin_lock_irq(&info->lock); 1072 shmem_recalc_inode(inode); 1073 spin_unlock_irq(&info->lock); 1074 } 1075 generic_fillattr(&init_user_ns, inode, stat); 1076 1077 if (shmem_is_huge(NULL, inode, 0)) 1078 stat->blksize = HPAGE_PMD_SIZE; 1079 1080 return 0; 1081 } 1082 1083 static int shmem_setattr(struct user_namespace *mnt_userns, 1084 struct dentry *dentry, struct iattr *attr) 1085 { 1086 struct inode *inode = d_inode(dentry); 1087 struct shmem_inode_info *info = SHMEM_I(inode); 1088 int error; 1089 1090 error = setattr_prepare(&init_user_ns, dentry, attr); 1091 if (error) 1092 return error; 1093 1094 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1095 loff_t oldsize = inode->i_size; 1096 loff_t newsize = attr->ia_size; 1097 1098 /* protected by i_rwsem */ 1099 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1100 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1101 return -EPERM; 1102 1103 if (newsize != oldsize) { 1104 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1105 oldsize, newsize); 1106 if (error) 1107 return error; 1108 i_size_write(inode, newsize); 1109 inode->i_ctime = inode->i_mtime = current_time(inode); 1110 } 1111 if (newsize <= oldsize) { 1112 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1113 if (oldsize > holebegin) 1114 unmap_mapping_range(inode->i_mapping, 1115 holebegin, 0, 1); 1116 if (info->alloced) 1117 shmem_truncate_range(inode, 1118 newsize, (loff_t)-1); 1119 /* unmap again to remove racily COWed private pages */ 1120 if (oldsize > holebegin) 1121 unmap_mapping_range(inode->i_mapping, 1122 holebegin, 0, 1); 1123 } 1124 } 1125 1126 setattr_copy(&init_user_ns, inode, attr); 1127 if (attr->ia_valid & ATTR_MODE) 1128 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1129 return error; 1130 } 1131 1132 static void shmem_evict_inode(struct inode *inode) 1133 { 1134 struct shmem_inode_info *info = SHMEM_I(inode); 1135 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1136 1137 if (shmem_mapping(inode->i_mapping)) { 1138 shmem_unacct_size(info->flags, inode->i_size); 1139 inode->i_size = 0; 1140 shmem_truncate_range(inode, 0, (loff_t)-1); 1141 if (!list_empty(&info->shrinklist)) { 1142 spin_lock(&sbinfo->shrinklist_lock); 1143 if (!list_empty(&info->shrinklist)) { 1144 list_del_init(&info->shrinklist); 1145 sbinfo->shrinklist_len--; 1146 } 1147 spin_unlock(&sbinfo->shrinklist_lock); 1148 } 1149 while (!list_empty(&info->swaplist)) { 1150 /* Wait while shmem_unuse() is scanning this inode... */ 1151 wait_var_event(&info->stop_eviction, 1152 !atomic_read(&info->stop_eviction)); 1153 mutex_lock(&shmem_swaplist_mutex); 1154 /* ...but beware of the race if we peeked too early */ 1155 if (!atomic_read(&info->stop_eviction)) 1156 list_del_init(&info->swaplist); 1157 mutex_unlock(&shmem_swaplist_mutex); 1158 } 1159 } 1160 1161 simple_xattrs_free(&info->xattrs); 1162 WARN_ON(inode->i_blocks); 1163 shmem_free_inode(inode->i_sb); 1164 clear_inode(inode); 1165 } 1166 1167 static int shmem_find_swap_entries(struct address_space *mapping, 1168 pgoff_t start, unsigned int nr_entries, 1169 struct page **entries, pgoff_t *indices, 1170 unsigned int type, bool frontswap) 1171 { 1172 XA_STATE(xas, &mapping->i_pages, start); 1173 struct page *page; 1174 swp_entry_t entry; 1175 unsigned int ret = 0; 1176 1177 if (!nr_entries) 1178 return 0; 1179 1180 rcu_read_lock(); 1181 xas_for_each(&xas, page, ULONG_MAX) { 1182 if (xas_retry(&xas, page)) 1183 continue; 1184 1185 if (!xa_is_value(page)) 1186 continue; 1187 1188 entry = radix_to_swp_entry(page); 1189 if (swp_type(entry) != type) 1190 continue; 1191 if (frontswap && 1192 !frontswap_test(swap_info[type], swp_offset(entry))) 1193 continue; 1194 1195 indices[ret] = xas.xa_index; 1196 entries[ret] = page; 1197 1198 if (need_resched()) { 1199 xas_pause(&xas); 1200 cond_resched_rcu(); 1201 } 1202 if (++ret == nr_entries) 1203 break; 1204 } 1205 rcu_read_unlock(); 1206 1207 return ret; 1208 } 1209 1210 /* 1211 * Move the swapped pages for an inode to page cache. Returns the count 1212 * of pages swapped in, or the error in case of failure. 1213 */ 1214 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1215 pgoff_t *indices) 1216 { 1217 int i = 0; 1218 int ret = 0; 1219 int error = 0; 1220 struct address_space *mapping = inode->i_mapping; 1221 1222 for (i = 0; i < pvec.nr; i++) { 1223 struct page *page = pvec.pages[i]; 1224 1225 if (!xa_is_value(page)) 1226 continue; 1227 error = shmem_swapin_page(inode, indices[i], 1228 &page, SGP_CACHE, 1229 mapping_gfp_mask(mapping), 1230 NULL, NULL); 1231 if (error == 0) { 1232 unlock_page(page); 1233 put_page(page); 1234 ret++; 1235 } 1236 if (error == -ENOMEM) 1237 break; 1238 error = 0; 1239 } 1240 return error ? error : ret; 1241 } 1242 1243 /* 1244 * If swap found in inode, free it and move page from swapcache to filecache. 1245 */ 1246 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1247 bool frontswap, unsigned long *fs_pages_to_unuse) 1248 { 1249 struct address_space *mapping = inode->i_mapping; 1250 pgoff_t start = 0; 1251 struct pagevec pvec; 1252 pgoff_t indices[PAGEVEC_SIZE]; 1253 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1254 int ret = 0; 1255 1256 pagevec_init(&pvec); 1257 do { 1258 unsigned int nr_entries = PAGEVEC_SIZE; 1259 1260 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1261 nr_entries = *fs_pages_to_unuse; 1262 1263 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1264 pvec.pages, indices, 1265 type, frontswap); 1266 if (pvec.nr == 0) { 1267 ret = 0; 1268 break; 1269 } 1270 1271 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1272 if (ret < 0) 1273 break; 1274 1275 if (frontswap_partial) { 1276 *fs_pages_to_unuse -= ret; 1277 if (*fs_pages_to_unuse == 0) { 1278 ret = FRONTSWAP_PAGES_UNUSED; 1279 break; 1280 } 1281 } 1282 1283 start = indices[pvec.nr - 1]; 1284 } while (true); 1285 1286 return ret; 1287 } 1288 1289 /* 1290 * Read all the shared memory data that resides in the swap 1291 * device 'type' back into memory, so the swap device can be 1292 * unused. 1293 */ 1294 int shmem_unuse(unsigned int type, bool frontswap, 1295 unsigned long *fs_pages_to_unuse) 1296 { 1297 struct shmem_inode_info *info, *next; 1298 int error = 0; 1299 1300 if (list_empty(&shmem_swaplist)) 1301 return 0; 1302 1303 mutex_lock(&shmem_swaplist_mutex); 1304 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1305 if (!info->swapped) { 1306 list_del_init(&info->swaplist); 1307 continue; 1308 } 1309 /* 1310 * Drop the swaplist mutex while searching the inode for swap; 1311 * but before doing so, make sure shmem_evict_inode() will not 1312 * remove placeholder inode from swaplist, nor let it be freed 1313 * (igrab() would protect from unlink, but not from unmount). 1314 */ 1315 atomic_inc(&info->stop_eviction); 1316 mutex_unlock(&shmem_swaplist_mutex); 1317 1318 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1319 fs_pages_to_unuse); 1320 cond_resched(); 1321 1322 mutex_lock(&shmem_swaplist_mutex); 1323 next = list_next_entry(info, swaplist); 1324 if (!info->swapped) 1325 list_del_init(&info->swaplist); 1326 if (atomic_dec_and_test(&info->stop_eviction)) 1327 wake_up_var(&info->stop_eviction); 1328 if (error) 1329 break; 1330 } 1331 mutex_unlock(&shmem_swaplist_mutex); 1332 1333 return error; 1334 } 1335 1336 /* 1337 * Move the page from the page cache to the swap cache. 1338 */ 1339 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1340 { 1341 struct shmem_inode_info *info; 1342 struct address_space *mapping; 1343 struct inode *inode; 1344 swp_entry_t swap; 1345 pgoff_t index; 1346 1347 /* 1348 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1349 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1350 * and its shmem_writeback() needs them to be split when swapping. 1351 */ 1352 if (PageTransCompound(page)) { 1353 /* Ensure the subpages are still dirty */ 1354 SetPageDirty(page); 1355 if (split_huge_page(page) < 0) 1356 goto redirty; 1357 ClearPageDirty(page); 1358 } 1359 1360 BUG_ON(!PageLocked(page)); 1361 mapping = page->mapping; 1362 index = page->index; 1363 inode = mapping->host; 1364 info = SHMEM_I(inode); 1365 if (info->flags & VM_LOCKED) 1366 goto redirty; 1367 if (!total_swap_pages) 1368 goto redirty; 1369 1370 /* 1371 * Our capabilities prevent regular writeback or sync from ever calling 1372 * shmem_writepage; but a stacking filesystem might use ->writepage of 1373 * its underlying filesystem, in which case tmpfs should write out to 1374 * swap only in response to memory pressure, and not for the writeback 1375 * threads or sync. 1376 */ 1377 if (!wbc->for_reclaim) { 1378 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1379 goto redirty; 1380 } 1381 1382 /* 1383 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1384 * value into swapfile.c, the only way we can correctly account for a 1385 * fallocated page arriving here is now to initialize it and write it. 1386 * 1387 * That's okay for a page already fallocated earlier, but if we have 1388 * not yet completed the fallocation, then (a) we want to keep track 1389 * of this page in case we have to undo it, and (b) it may not be a 1390 * good idea to continue anyway, once we're pushing into swap. So 1391 * reactivate the page, and let shmem_fallocate() quit when too many. 1392 */ 1393 if (!PageUptodate(page)) { 1394 if (inode->i_private) { 1395 struct shmem_falloc *shmem_falloc; 1396 spin_lock(&inode->i_lock); 1397 shmem_falloc = inode->i_private; 1398 if (shmem_falloc && 1399 !shmem_falloc->waitq && 1400 index >= shmem_falloc->start && 1401 index < shmem_falloc->next) 1402 shmem_falloc->nr_unswapped++; 1403 else 1404 shmem_falloc = NULL; 1405 spin_unlock(&inode->i_lock); 1406 if (shmem_falloc) 1407 goto redirty; 1408 } 1409 clear_highpage(page); 1410 flush_dcache_page(page); 1411 SetPageUptodate(page); 1412 } 1413 1414 swap = get_swap_page(page); 1415 if (!swap.val) 1416 goto redirty; 1417 1418 /* 1419 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1420 * if it's not already there. Do it now before the page is 1421 * moved to swap cache, when its pagelock no longer protects 1422 * the inode from eviction. But don't unlock the mutex until 1423 * we've incremented swapped, because shmem_unuse_inode() will 1424 * prune a !swapped inode from the swaplist under this mutex. 1425 */ 1426 mutex_lock(&shmem_swaplist_mutex); 1427 if (list_empty(&info->swaplist)) 1428 list_add(&info->swaplist, &shmem_swaplist); 1429 1430 if (add_to_swap_cache(page, swap, 1431 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1432 NULL) == 0) { 1433 spin_lock_irq(&info->lock); 1434 shmem_recalc_inode(inode); 1435 info->swapped++; 1436 spin_unlock_irq(&info->lock); 1437 1438 swap_shmem_alloc(swap); 1439 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1440 1441 mutex_unlock(&shmem_swaplist_mutex); 1442 BUG_ON(page_mapped(page)); 1443 swap_writepage(page, wbc); 1444 return 0; 1445 } 1446 1447 mutex_unlock(&shmem_swaplist_mutex); 1448 put_swap_page(page, swap); 1449 redirty: 1450 set_page_dirty(page); 1451 if (wbc->for_reclaim) 1452 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1453 unlock_page(page); 1454 return 0; 1455 } 1456 1457 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1458 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1459 { 1460 char buffer[64]; 1461 1462 if (!mpol || mpol->mode == MPOL_DEFAULT) 1463 return; /* show nothing */ 1464 1465 mpol_to_str(buffer, sizeof(buffer), mpol); 1466 1467 seq_printf(seq, ",mpol=%s", buffer); 1468 } 1469 1470 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1471 { 1472 struct mempolicy *mpol = NULL; 1473 if (sbinfo->mpol) { 1474 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1475 mpol = sbinfo->mpol; 1476 mpol_get(mpol); 1477 raw_spin_unlock(&sbinfo->stat_lock); 1478 } 1479 return mpol; 1480 } 1481 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1482 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1483 { 1484 } 1485 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1486 { 1487 return NULL; 1488 } 1489 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1490 #ifndef CONFIG_NUMA 1491 #define vm_policy vm_private_data 1492 #endif 1493 1494 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1495 struct shmem_inode_info *info, pgoff_t index) 1496 { 1497 /* Create a pseudo vma that just contains the policy */ 1498 vma_init(vma, NULL); 1499 /* Bias interleave by inode number to distribute better across nodes */ 1500 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1501 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1502 } 1503 1504 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1505 { 1506 /* Drop reference taken by mpol_shared_policy_lookup() */ 1507 mpol_cond_put(vma->vm_policy); 1508 } 1509 1510 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1511 struct shmem_inode_info *info, pgoff_t index) 1512 { 1513 struct vm_area_struct pvma; 1514 struct page *page; 1515 struct vm_fault vmf = { 1516 .vma = &pvma, 1517 }; 1518 1519 shmem_pseudo_vma_init(&pvma, info, index); 1520 page = swap_cluster_readahead(swap, gfp, &vmf); 1521 shmem_pseudo_vma_destroy(&pvma); 1522 1523 return page; 1524 } 1525 1526 /* 1527 * Make sure huge_gfp is always more limited than limit_gfp. 1528 * Some of the flags set permissions, while others set limitations. 1529 */ 1530 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1531 { 1532 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1533 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1534 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1535 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1536 1537 /* Allow allocations only from the originally specified zones. */ 1538 result |= zoneflags; 1539 1540 /* 1541 * Minimize the result gfp by taking the union with the deny flags, 1542 * and the intersection of the allow flags. 1543 */ 1544 result |= (limit_gfp & denyflags); 1545 result |= (huge_gfp & limit_gfp) & allowflags; 1546 1547 return result; 1548 } 1549 1550 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1551 struct shmem_inode_info *info, pgoff_t index) 1552 { 1553 struct vm_area_struct pvma; 1554 struct address_space *mapping = info->vfs_inode.i_mapping; 1555 pgoff_t hindex; 1556 struct page *page; 1557 1558 hindex = round_down(index, HPAGE_PMD_NR); 1559 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1560 XA_PRESENT)) 1561 return NULL; 1562 1563 shmem_pseudo_vma_init(&pvma, info, hindex); 1564 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), 1565 true); 1566 shmem_pseudo_vma_destroy(&pvma); 1567 if (page) 1568 prep_transhuge_page(page); 1569 else 1570 count_vm_event(THP_FILE_FALLBACK); 1571 return page; 1572 } 1573 1574 static struct page *shmem_alloc_page(gfp_t gfp, 1575 struct shmem_inode_info *info, pgoff_t index) 1576 { 1577 struct vm_area_struct pvma; 1578 struct page *page; 1579 1580 shmem_pseudo_vma_init(&pvma, info, index); 1581 page = alloc_page_vma(gfp, &pvma, 0); 1582 shmem_pseudo_vma_destroy(&pvma); 1583 1584 return page; 1585 } 1586 1587 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1588 struct inode *inode, 1589 pgoff_t index, bool huge) 1590 { 1591 struct shmem_inode_info *info = SHMEM_I(inode); 1592 struct page *page; 1593 int nr; 1594 int err = -ENOSPC; 1595 1596 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1597 huge = false; 1598 nr = huge ? HPAGE_PMD_NR : 1; 1599 1600 if (!shmem_inode_acct_block(inode, nr)) 1601 goto failed; 1602 1603 if (huge) 1604 page = shmem_alloc_hugepage(gfp, info, index); 1605 else 1606 page = shmem_alloc_page(gfp, info, index); 1607 if (page) { 1608 __SetPageLocked(page); 1609 __SetPageSwapBacked(page); 1610 return page; 1611 } 1612 1613 err = -ENOMEM; 1614 shmem_inode_unacct_blocks(inode, nr); 1615 failed: 1616 return ERR_PTR(err); 1617 } 1618 1619 /* 1620 * When a page is moved from swapcache to shmem filecache (either by the 1621 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1622 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1623 * ignorance of the mapping it belongs to. If that mapping has special 1624 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1625 * we may need to copy to a suitable page before moving to filecache. 1626 * 1627 * In a future release, this may well be extended to respect cpuset and 1628 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1629 * but for now it is a simple matter of zone. 1630 */ 1631 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1632 { 1633 return page_zonenum(page) > gfp_zone(gfp); 1634 } 1635 1636 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1637 struct shmem_inode_info *info, pgoff_t index) 1638 { 1639 struct page *oldpage, *newpage; 1640 struct address_space *swap_mapping; 1641 swp_entry_t entry; 1642 pgoff_t swap_index; 1643 int error; 1644 1645 oldpage = *pagep; 1646 entry.val = page_private(oldpage); 1647 swap_index = swp_offset(entry); 1648 swap_mapping = page_mapping(oldpage); 1649 1650 /* 1651 * We have arrived here because our zones are constrained, so don't 1652 * limit chance of success by further cpuset and node constraints. 1653 */ 1654 gfp &= ~GFP_CONSTRAINT_MASK; 1655 newpage = shmem_alloc_page(gfp, info, index); 1656 if (!newpage) 1657 return -ENOMEM; 1658 1659 get_page(newpage); 1660 copy_highpage(newpage, oldpage); 1661 flush_dcache_page(newpage); 1662 1663 __SetPageLocked(newpage); 1664 __SetPageSwapBacked(newpage); 1665 SetPageUptodate(newpage); 1666 set_page_private(newpage, entry.val); 1667 SetPageSwapCache(newpage); 1668 1669 /* 1670 * Our caller will very soon move newpage out of swapcache, but it's 1671 * a nice clean interface for us to replace oldpage by newpage there. 1672 */ 1673 xa_lock_irq(&swap_mapping->i_pages); 1674 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1675 if (!error) { 1676 mem_cgroup_migrate(oldpage, newpage); 1677 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1678 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1679 } 1680 xa_unlock_irq(&swap_mapping->i_pages); 1681 1682 if (unlikely(error)) { 1683 /* 1684 * Is this possible? I think not, now that our callers check 1685 * both PageSwapCache and page_private after getting page lock; 1686 * but be defensive. Reverse old to newpage for clear and free. 1687 */ 1688 oldpage = newpage; 1689 } else { 1690 lru_cache_add(newpage); 1691 *pagep = newpage; 1692 } 1693 1694 ClearPageSwapCache(oldpage); 1695 set_page_private(oldpage, 0); 1696 1697 unlock_page(oldpage); 1698 put_page(oldpage); 1699 put_page(oldpage); 1700 return error; 1701 } 1702 1703 /* 1704 * Swap in the page pointed to by *pagep. 1705 * Caller has to make sure that *pagep contains a valid swapped page. 1706 * Returns 0 and the page in pagep if success. On failure, returns the 1707 * error code and NULL in *pagep. 1708 */ 1709 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1710 struct page **pagep, enum sgp_type sgp, 1711 gfp_t gfp, struct vm_area_struct *vma, 1712 vm_fault_t *fault_type) 1713 { 1714 struct address_space *mapping = inode->i_mapping; 1715 struct shmem_inode_info *info = SHMEM_I(inode); 1716 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1717 struct page *page; 1718 swp_entry_t swap; 1719 int error; 1720 1721 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1722 swap = radix_to_swp_entry(*pagep); 1723 *pagep = NULL; 1724 1725 /* Look it up and read it in.. */ 1726 page = lookup_swap_cache(swap, NULL, 0); 1727 if (!page) { 1728 /* Or update major stats only when swapin succeeds?? */ 1729 if (fault_type) { 1730 *fault_type |= VM_FAULT_MAJOR; 1731 count_vm_event(PGMAJFAULT); 1732 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1733 } 1734 /* Here we actually start the io */ 1735 page = shmem_swapin(swap, gfp, info, index); 1736 if (!page) { 1737 error = -ENOMEM; 1738 goto failed; 1739 } 1740 } 1741 1742 /* We have to do this with page locked to prevent races */ 1743 lock_page(page); 1744 if (!PageSwapCache(page) || page_private(page) != swap.val || 1745 !shmem_confirm_swap(mapping, index, swap)) { 1746 error = -EEXIST; 1747 goto unlock; 1748 } 1749 if (!PageUptodate(page)) { 1750 error = -EIO; 1751 goto failed; 1752 } 1753 wait_on_page_writeback(page); 1754 1755 /* 1756 * Some architectures may have to restore extra metadata to the 1757 * physical page after reading from swap. 1758 */ 1759 arch_swap_restore(swap, page); 1760 1761 if (shmem_should_replace_page(page, gfp)) { 1762 error = shmem_replace_page(&page, gfp, info, index); 1763 if (error) 1764 goto failed; 1765 } 1766 1767 error = shmem_add_to_page_cache(page, mapping, index, 1768 swp_to_radix_entry(swap), gfp, 1769 charge_mm); 1770 if (error) 1771 goto failed; 1772 1773 spin_lock_irq(&info->lock); 1774 info->swapped--; 1775 shmem_recalc_inode(inode); 1776 spin_unlock_irq(&info->lock); 1777 1778 if (sgp == SGP_WRITE) 1779 mark_page_accessed(page); 1780 1781 delete_from_swap_cache(page); 1782 set_page_dirty(page); 1783 swap_free(swap); 1784 1785 *pagep = page; 1786 return 0; 1787 failed: 1788 if (!shmem_confirm_swap(mapping, index, swap)) 1789 error = -EEXIST; 1790 unlock: 1791 if (page) { 1792 unlock_page(page); 1793 put_page(page); 1794 } 1795 1796 return error; 1797 } 1798 1799 /* 1800 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1801 * 1802 * If we allocate a new one we do not mark it dirty. That's up to the 1803 * vm. If we swap it in we mark it dirty since we also free the swap 1804 * entry since a page cannot live in both the swap and page cache. 1805 * 1806 * vma, vmf, and fault_type are only supplied by shmem_fault: 1807 * otherwise they are NULL. 1808 */ 1809 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1810 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1811 struct vm_area_struct *vma, struct vm_fault *vmf, 1812 vm_fault_t *fault_type) 1813 { 1814 struct address_space *mapping = inode->i_mapping; 1815 struct shmem_inode_info *info = SHMEM_I(inode); 1816 struct shmem_sb_info *sbinfo; 1817 struct mm_struct *charge_mm; 1818 struct page *page; 1819 pgoff_t hindex = index; 1820 gfp_t huge_gfp; 1821 int error; 1822 int once = 0; 1823 int alloced = 0; 1824 1825 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1826 return -EFBIG; 1827 repeat: 1828 if (sgp <= SGP_CACHE && 1829 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1830 return -EINVAL; 1831 } 1832 1833 sbinfo = SHMEM_SB(inode->i_sb); 1834 charge_mm = vma ? vma->vm_mm : NULL; 1835 1836 page = pagecache_get_page(mapping, index, 1837 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); 1838 1839 if (page && vma && userfaultfd_minor(vma)) { 1840 if (!xa_is_value(page)) { 1841 unlock_page(page); 1842 put_page(page); 1843 } 1844 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1845 return 0; 1846 } 1847 1848 if (xa_is_value(page)) { 1849 error = shmem_swapin_page(inode, index, &page, 1850 sgp, gfp, vma, fault_type); 1851 if (error == -EEXIST) 1852 goto repeat; 1853 1854 *pagep = page; 1855 return error; 1856 } 1857 1858 if (page) { 1859 hindex = page->index; 1860 if (sgp == SGP_WRITE) 1861 mark_page_accessed(page); 1862 if (PageUptodate(page)) 1863 goto out; 1864 /* fallocated page */ 1865 if (sgp != SGP_READ) 1866 goto clear; 1867 unlock_page(page); 1868 put_page(page); 1869 } 1870 1871 /* 1872 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1873 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1874 */ 1875 *pagep = NULL; 1876 if (sgp == SGP_READ) 1877 return 0; 1878 if (sgp == SGP_NOALLOC) 1879 return -ENOENT; 1880 1881 /* 1882 * Fast cache lookup and swap lookup did not find it: allocate. 1883 */ 1884 1885 if (vma && userfaultfd_missing(vma)) { 1886 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1887 return 0; 1888 } 1889 1890 /* Never use a huge page for shmem_symlink() */ 1891 if (S_ISLNK(inode->i_mode)) 1892 goto alloc_nohuge; 1893 if (!shmem_is_huge(vma, inode, index)) 1894 goto alloc_nohuge; 1895 1896 huge_gfp = vma_thp_gfp_mask(vma); 1897 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1898 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); 1899 if (IS_ERR(page)) { 1900 alloc_nohuge: 1901 page = shmem_alloc_and_acct_page(gfp, inode, 1902 index, false); 1903 } 1904 if (IS_ERR(page)) { 1905 int retry = 5; 1906 1907 error = PTR_ERR(page); 1908 page = NULL; 1909 if (error != -ENOSPC) 1910 goto unlock; 1911 /* 1912 * Try to reclaim some space by splitting a huge page 1913 * beyond i_size on the filesystem. 1914 */ 1915 while (retry--) { 1916 int ret; 1917 1918 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1919 if (ret == SHRINK_STOP) 1920 break; 1921 if (ret) 1922 goto alloc_nohuge; 1923 } 1924 goto unlock; 1925 } 1926 1927 if (PageTransHuge(page)) 1928 hindex = round_down(index, HPAGE_PMD_NR); 1929 else 1930 hindex = index; 1931 1932 if (sgp == SGP_WRITE) 1933 __SetPageReferenced(page); 1934 1935 error = shmem_add_to_page_cache(page, mapping, hindex, 1936 NULL, gfp & GFP_RECLAIM_MASK, 1937 charge_mm); 1938 if (error) 1939 goto unacct; 1940 lru_cache_add(page); 1941 1942 spin_lock_irq(&info->lock); 1943 info->alloced += compound_nr(page); 1944 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1945 shmem_recalc_inode(inode); 1946 spin_unlock_irq(&info->lock); 1947 alloced = true; 1948 1949 if (PageTransHuge(page) && 1950 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1951 hindex + HPAGE_PMD_NR - 1) { 1952 /* 1953 * Part of the huge page is beyond i_size: subject 1954 * to shrink under memory pressure. 1955 */ 1956 spin_lock(&sbinfo->shrinklist_lock); 1957 /* 1958 * _careful to defend against unlocked access to 1959 * ->shrink_list in shmem_unused_huge_shrink() 1960 */ 1961 if (list_empty_careful(&info->shrinklist)) { 1962 list_add_tail(&info->shrinklist, 1963 &sbinfo->shrinklist); 1964 sbinfo->shrinklist_len++; 1965 } 1966 spin_unlock(&sbinfo->shrinklist_lock); 1967 } 1968 1969 /* 1970 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1971 */ 1972 if (sgp == SGP_FALLOC) 1973 sgp = SGP_WRITE; 1974 clear: 1975 /* 1976 * Let SGP_WRITE caller clear ends if write does not fill page; 1977 * but SGP_FALLOC on a page fallocated earlier must initialize 1978 * it now, lest undo on failure cancel our earlier guarantee. 1979 */ 1980 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1981 int i; 1982 1983 for (i = 0; i < compound_nr(page); i++) { 1984 clear_highpage(page + i); 1985 flush_dcache_page(page + i); 1986 } 1987 SetPageUptodate(page); 1988 } 1989 1990 /* Perhaps the file has been truncated since we checked */ 1991 if (sgp <= SGP_CACHE && 1992 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1993 if (alloced) { 1994 ClearPageDirty(page); 1995 delete_from_page_cache(page); 1996 spin_lock_irq(&info->lock); 1997 shmem_recalc_inode(inode); 1998 spin_unlock_irq(&info->lock); 1999 } 2000 error = -EINVAL; 2001 goto unlock; 2002 } 2003 out: 2004 *pagep = page + index - hindex; 2005 return 0; 2006 2007 /* 2008 * Error recovery. 2009 */ 2010 unacct: 2011 shmem_inode_unacct_blocks(inode, compound_nr(page)); 2012 2013 if (PageTransHuge(page)) { 2014 unlock_page(page); 2015 put_page(page); 2016 goto alloc_nohuge; 2017 } 2018 unlock: 2019 if (page) { 2020 unlock_page(page); 2021 put_page(page); 2022 } 2023 if (error == -ENOSPC && !once++) { 2024 spin_lock_irq(&info->lock); 2025 shmem_recalc_inode(inode); 2026 spin_unlock_irq(&info->lock); 2027 goto repeat; 2028 } 2029 if (error == -EEXIST) 2030 goto repeat; 2031 return error; 2032 } 2033 2034 /* 2035 * This is like autoremove_wake_function, but it removes the wait queue 2036 * entry unconditionally - even if something else had already woken the 2037 * target. 2038 */ 2039 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2040 { 2041 int ret = default_wake_function(wait, mode, sync, key); 2042 list_del_init(&wait->entry); 2043 return ret; 2044 } 2045 2046 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2047 { 2048 struct vm_area_struct *vma = vmf->vma; 2049 struct inode *inode = file_inode(vma->vm_file); 2050 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2051 int err; 2052 vm_fault_t ret = VM_FAULT_LOCKED; 2053 2054 /* 2055 * Trinity finds that probing a hole which tmpfs is punching can 2056 * prevent the hole-punch from ever completing: which in turn 2057 * locks writers out with its hold on i_rwsem. So refrain from 2058 * faulting pages into the hole while it's being punched. Although 2059 * shmem_undo_range() does remove the additions, it may be unable to 2060 * keep up, as each new page needs its own unmap_mapping_range() call, 2061 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2062 * 2063 * It does not matter if we sometimes reach this check just before the 2064 * hole-punch begins, so that one fault then races with the punch: 2065 * we just need to make racing faults a rare case. 2066 * 2067 * The implementation below would be much simpler if we just used a 2068 * standard mutex or completion: but we cannot take i_rwsem in fault, 2069 * and bloating every shmem inode for this unlikely case would be sad. 2070 */ 2071 if (unlikely(inode->i_private)) { 2072 struct shmem_falloc *shmem_falloc; 2073 2074 spin_lock(&inode->i_lock); 2075 shmem_falloc = inode->i_private; 2076 if (shmem_falloc && 2077 shmem_falloc->waitq && 2078 vmf->pgoff >= shmem_falloc->start && 2079 vmf->pgoff < shmem_falloc->next) { 2080 struct file *fpin; 2081 wait_queue_head_t *shmem_falloc_waitq; 2082 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2083 2084 ret = VM_FAULT_NOPAGE; 2085 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2086 if (fpin) 2087 ret = VM_FAULT_RETRY; 2088 2089 shmem_falloc_waitq = shmem_falloc->waitq; 2090 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2091 TASK_UNINTERRUPTIBLE); 2092 spin_unlock(&inode->i_lock); 2093 schedule(); 2094 2095 /* 2096 * shmem_falloc_waitq points into the shmem_fallocate() 2097 * stack of the hole-punching task: shmem_falloc_waitq 2098 * is usually invalid by the time we reach here, but 2099 * finish_wait() does not dereference it in that case; 2100 * though i_lock needed lest racing with wake_up_all(). 2101 */ 2102 spin_lock(&inode->i_lock); 2103 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2104 spin_unlock(&inode->i_lock); 2105 2106 if (fpin) 2107 fput(fpin); 2108 return ret; 2109 } 2110 spin_unlock(&inode->i_lock); 2111 } 2112 2113 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2114 gfp, vma, vmf, &ret); 2115 if (err) 2116 return vmf_error(err); 2117 return ret; 2118 } 2119 2120 unsigned long shmem_get_unmapped_area(struct file *file, 2121 unsigned long uaddr, unsigned long len, 2122 unsigned long pgoff, unsigned long flags) 2123 { 2124 unsigned long (*get_area)(struct file *, 2125 unsigned long, unsigned long, unsigned long, unsigned long); 2126 unsigned long addr; 2127 unsigned long offset; 2128 unsigned long inflated_len; 2129 unsigned long inflated_addr; 2130 unsigned long inflated_offset; 2131 2132 if (len > TASK_SIZE) 2133 return -ENOMEM; 2134 2135 get_area = current->mm->get_unmapped_area; 2136 addr = get_area(file, uaddr, len, pgoff, flags); 2137 2138 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2139 return addr; 2140 if (IS_ERR_VALUE(addr)) 2141 return addr; 2142 if (addr & ~PAGE_MASK) 2143 return addr; 2144 if (addr > TASK_SIZE - len) 2145 return addr; 2146 2147 if (shmem_huge == SHMEM_HUGE_DENY) 2148 return addr; 2149 if (len < HPAGE_PMD_SIZE) 2150 return addr; 2151 if (flags & MAP_FIXED) 2152 return addr; 2153 /* 2154 * Our priority is to support MAP_SHARED mapped hugely; 2155 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2156 * But if caller specified an address hint and we allocated area there 2157 * successfully, respect that as before. 2158 */ 2159 if (uaddr == addr) 2160 return addr; 2161 2162 if (shmem_huge != SHMEM_HUGE_FORCE) { 2163 struct super_block *sb; 2164 2165 if (file) { 2166 VM_BUG_ON(file->f_op != &shmem_file_operations); 2167 sb = file_inode(file)->i_sb; 2168 } else { 2169 /* 2170 * Called directly from mm/mmap.c, or drivers/char/mem.c 2171 * for "/dev/zero", to create a shared anonymous object. 2172 */ 2173 if (IS_ERR(shm_mnt)) 2174 return addr; 2175 sb = shm_mnt->mnt_sb; 2176 } 2177 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2178 return addr; 2179 } 2180 2181 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2182 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2183 return addr; 2184 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2185 return addr; 2186 2187 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2188 if (inflated_len > TASK_SIZE) 2189 return addr; 2190 if (inflated_len < len) 2191 return addr; 2192 2193 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2194 if (IS_ERR_VALUE(inflated_addr)) 2195 return addr; 2196 if (inflated_addr & ~PAGE_MASK) 2197 return addr; 2198 2199 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2200 inflated_addr += offset - inflated_offset; 2201 if (inflated_offset > offset) 2202 inflated_addr += HPAGE_PMD_SIZE; 2203 2204 if (inflated_addr > TASK_SIZE - len) 2205 return addr; 2206 return inflated_addr; 2207 } 2208 2209 #ifdef CONFIG_NUMA 2210 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2211 { 2212 struct inode *inode = file_inode(vma->vm_file); 2213 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2214 } 2215 2216 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2217 unsigned long addr) 2218 { 2219 struct inode *inode = file_inode(vma->vm_file); 2220 pgoff_t index; 2221 2222 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2223 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2224 } 2225 #endif 2226 2227 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2228 { 2229 struct inode *inode = file_inode(file); 2230 struct shmem_inode_info *info = SHMEM_I(inode); 2231 int retval = -ENOMEM; 2232 2233 /* 2234 * What serializes the accesses to info->flags? 2235 * ipc_lock_object() when called from shmctl_do_lock(), 2236 * no serialization needed when called from shm_destroy(). 2237 */ 2238 if (lock && !(info->flags & VM_LOCKED)) { 2239 if (!user_shm_lock(inode->i_size, ucounts)) 2240 goto out_nomem; 2241 info->flags |= VM_LOCKED; 2242 mapping_set_unevictable(file->f_mapping); 2243 } 2244 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2245 user_shm_unlock(inode->i_size, ucounts); 2246 info->flags &= ~VM_LOCKED; 2247 mapping_clear_unevictable(file->f_mapping); 2248 } 2249 retval = 0; 2250 2251 out_nomem: 2252 return retval; 2253 } 2254 2255 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2256 { 2257 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2258 int ret; 2259 2260 ret = seal_check_future_write(info->seals, vma); 2261 if (ret) 2262 return ret; 2263 2264 /* arm64 - allow memory tagging on RAM-based files */ 2265 vma->vm_flags |= VM_MTE_ALLOWED; 2266 2267 file_accessed(file); 2268 vma->vm_ops = &shmem_vm_ops; 2269 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2270 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2271 (vma->vm_end & HPAGE_PMD_MASK)) { 2272 khugepaged_enter(vma, vma->vm_flags); 2273 } 2274 return 0; 2275 } 2276 2277 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2278 umode_t mode, dev_t dev, unsigned long flags) 2279 { 2280 struct inode *inode; 2281 struct shmem_inode_info *info; 2282 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2283 ino_t ino; 2284 2285 if (shmem_reserve_inode(sb, &ino)) 2286 return NULL; 2287 2288 inode = new_inode(sb); 2289 if (inode) { 2290 inode->i_ino = ino; 2291 inode_init_owner(&init_user_ns, inode, dir, mode); 2292 inode->i_blocks = 0; 2293 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2294 inode->i_generation = prandom_u32(); 2295 info = SHMEM_I(inode); 2296 memset(info, 0, (char *)inode - (char *)info); 2297 spin_lock_init(&info->lock); 2298 atomic_set(&info->stop_eviction, 0); 2299 info->seals = F_SEAL_SEAL; 2300 info->flags = flags & VM_NORESERVE; 2301 INIT_LIST_HEAD(&info->shrinklist); 2302 INIT_LIST_HEAD(&info->swaplist); 2303 simple_xattrs_init(&info->xattrs); 2304 cache_no_acl(inode); 2305 2306 switch (mode & S_IFMT) { 2307 default: 2308 inode->i_op = &shmem_special_inode_operations; 2309 init_special_inode(inode, mode, dev); 2310 break; 2311 case S_IFREG: 2312 inode->i_mapping->a_ops = &shmem_aops; 2313 inode->i_op = &shmem_inode_operations; 2314 inode->i_fop = &shmem_file_operations; 2315 mpol_shared_policy_init(&info->policy, 2316 shmem_get_sbmpol(sbinfo)); 2317 break; 2318 case S_IFDIR: 2319 inc_nlink(inode); 2320 /* Some things misbehave if size == 0 on a directory */ 2321 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2322 inode->i_op = &shmem_dir_inode_operations; 2323 inode->i_fop = &simple_dir_operations; 2324 break; 2325 case S_IFLNK: 2326 /* 2327 * Must not load anything in the rbtree, 2328 * mpol_free_shared_policy will not be called. 2329 */ 2330 mpol_shared_policy_init(&info->policy, NULL); 2331 break; 2332 } 2333 2334 lockdep_annotate_inode_mutex_key(inode); 2335 } else 2336 shmem_free_inode(sb); 2337 return inode; 2338 } 2339 2340 #ifdef CONFIG_USERFAULTFD 2341 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2342 pmd_t *dst_pmd, 2343 struct vm_area_struct *dst_vma, 2344 unsigned long dst_addr, 2345 unsigned long src_addr, 2346 bool zeropage, 2347 struct page **pagep) 2348 { 2349 struct inode *inode = file_inode(dst_vma->vm_file); 2350 struct shmem_inode_info *info = SHMEM_I(inode); 2351 struct address_space *mapping = inode->i_mapping; 2352 gfp_t gfp = mapping_gfp_mask(mapping); 2353 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2354 void *page_kaddr; 2355 struct page *page; 2356 int ret; 2357 pgoff_t max_off; 2358 2359 if (!shmem_inode_acct_block(inode, 1)) { 2360 /* 2361 * We may have got a page, returned -ENOENT triggering a retry, 2362 * and now we find ourselves with -ENOMEM. Release the page, to 2363 * avoid a BUG_ON in our caller. 2364 */ 2365 if (unlikely(*pagep)) { 2366 put_page(*pagep); 2367 *pagep = NULL; 2368 } 2369 return -ENOMEM; 2370 } 2371 2372 if (!*pagep) { 2373 ret = -ENOMEM; 2374 page = shmem_alloc_page(gfp, info, pgoff); 2375 if (!page) 2376 goto out_unacct_blocks; 2377 2378 if (!zeropage) { /* COPY */ 2379 page_kaddr = kmap_atomic(page); 2380 ret = copy_from_user(page_kaddr, 2381 (const void __user *)src_addr, 2382 PAGE_SIZE); 2383 kunmap_atomic(page_kaddr); 2384 2385 /* fallback to copy_from_user outside mmap_lock */ 2386 if (unlikely(ret)) { 2387 *pagep = page; 2388 ret = -ENOENT; 2389 /* don't free the page */ 2390 goto out_unacct_blocks; 2391 } 2392 } else { /* ZEROPAGE */ 2393 clear_highpage(page); 2394 } 2395 } else { 2396 page = *pagep; 2397 *pagep = NULL; 2398 } 2399 2400 VM_BUG_ON(PageLocked(page)); 2401 VM_BUG_ON(PageSwapBacked(page)); 2402 __SetPageLocked(page); 2403 __SetPageSwapBacked(page); 2404 __SetPageUptodate(page); 2405 2406 ret = -EFAULT; 2407 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2408 if (unlikely(pgoff >= max_off)) 2409 goto out_release; 2410 2411 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2412 gfp & GFP_RECLAIM_MASK, dst_mm); 2413 if (ret) 2414 goto out_release; 2415 2416 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2417 page, true, false); 2418 if (ret) 2419 goto out_delete_from_cache; 2420 2421 spin_lock_irq(&info->lock); 2422 info->alloced++; 2423 inode->i_blocks += BLOCKS_PER_PAGE; 2424 shmem_recalc_inode(inode); 2425 spin_unlock_irq(&info->lock); 2426 2427 SetPageDirty(page); 2428 unlock_page(page); 2429 return 0; 2430 out_delete_from_cache: 2431 delete_from_page_cache(page); 2432 out_release: 2433 unlock_page(page); 2434 put_page(page); 2435 out_unacct_blocks: 2436 shmem_inode_unacct_blocks(inode, 1); 2437 return ret; 2438 } 2439 #endif /* CONFIG_USERFAULTFD */ 2440 2441 #ifdef CONFIG_TMPFS 2442 static const struct inode_operations shmem_symlink_inode_operations; 2443 static const struct inode_operations shmem_short_symlink_operations; 2444 2445 #ifdef CONFIG_TMPFS_XATTR 2446 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2447 #else 2448 #define shmem_initxattrs NULL 2449 #endif 2450 2451 static int 2452 shmem_write_begin(struct file *file, struct address_space *mapping, 2453 loff_t pos, unsigned len, unsigned flags, 2454 struct page **pagep, void **fsdata) 2455 { 2456 struct inode *inode = mapping->host; 2457 struct shmem_inode_info *info = SHMEM_I(inode); 2458 pgoff_t index = pos >> PAGE_SHIFT; 2459 2460 /* i_rwsem is held by caller */ 2461 if (unlikely(info->seals & (F_SEAL_GROW | 2462 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2463 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2464 return -EPERM; 2465 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2466 return -EPERM; 2467 } 2468 2469 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2470 } 2471 2472 static int 2473 shmem_write_end(struct file *file, struct address_space *mapping, 2474 loff_t pos, unsigned len, unsigned copied, 2475 struct page *page, void *fsdata) 2476 { 2477 struct inode *inode = mapping->host; 2478 2479 if (pos + copied > inode->i_size) 2480 i_size_write(inode, pos + copied); 2481 2482 if (!PageUptodate(page)) { 2483 struct page *head = compound_head(page); 2484 if (PageTransCompound(page)) { 2485 int i; 2486 2487 for (i = 0; i < HPAGE_PMD_NR; i++) { 2488 if (head + i == page) 2489 continue; 2490 clear_highpage(head + i); 2491 flush_dcache_page(head + i); 2492 } 2493 } 2494 if (copied < PAGE_SIZE) { 2495 unsigned from = pos & (PAGE_SIZE - 1); 2496 zero_user_segments(page, 0, from, 2497 from + copied, PAGE_SIZE); 2498 } 2499 SetPageUptodate(head); 2500 } 2501 set_page_dirty(page); 2502 unlock_page(page); 2503 put_page(page); 2504 2505 return copied; 2506 } 2507 2508 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2509 { 2510 struct file *file = iocb->ki_filp; 2511 struct inode *inode = file_inode(file); 2512 struct address_space *mapping = inode->i_mapping; 2513 pgoff_t index; 2514 unsigned long offset; 2515 enum sgp_type sgp = SGP_READ; 2516 int error = 0; 2517 ssize_t retval = 0; 2518 loff_t *ppos = &iocb->ki_pos; 2519 2520 /* 2521 * Might this read be for a stacking filesystem? Then when reading 2522 * holes of a sparse file, we actually need to allocate those pages, 2523 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2524 */ 2525 if (!iter_is_iovec(to)) 2526 sgp = SGP_CACHE; 2527 2528 index = *ppos >> PAGE_SHIFT; 2529 offset = *ppos & ~PAGE_MASK; 2530 2531 for (;;) { 2532 struct page *page = NULL; 2533 pgoff_t end_index; 2534 unsigned long nr, ret; 2535 loff_t i_size = i_size_read(inode); 2536 2537 end_index = i_size >> PAGE_SHIFT; 2538 if (index > end_index) 2539 break; 2540 if (index == end_index) { 2541 nr = i_size & ~PAGE_MASK; 2542 if (nr <= offset) 2543 break; 2544 } 2545 2546 error = shmem_getpage(inode, index, &page, sgp); 2547 if (error) { 2548 if (error == -EINVAL) 2549 error = 0; 2550 break; 2551 } 2552 if (page) { 2553 if (sgp == SGP_CACHE) 2554 set_page_dirty(page); 2555 unlock_page(page); 2556 } 2557 2558 /* 2559 * We must evaluate after, since reads (unlike writes) 2560 * are called without i_rwsem protection against truncate 2561 */ 2562 nr = PAGE_SIZE; 2563 i_size = i_size_read(inode); 2564 end_index = i_size >> PAGE_SHIFT; 2565 if (index == end_index) { 2566 nr = i_size & ~PAGE_MASK; 2567 if (nr <= offset) { 2568 if (page) 2569 put_page(page); 2570 break; 2571 } 2572 } 2573 nr -= offset; 2574 2575 if (page) { 2576 /* 2577 * If users can be writing to this page using arbitrary 2578 * virtual addresses, take care about potential aliasing 2579 * before reading the page on the kernel side. 2580 */ 2581 if (mapping_writably_mapped(mapping)) 2582 flush_dcache_page(page); 2583 /* 2584 * Mark the page accessed if we read the beginning. 2585 */ 2586 if (!offset) 2587 mark_page_accessed(page); 2588 } else { 2589 page = ZERO_PAGE(0); 2590 get_page(page); 2591 } 2592 2593 /* 2594 * Ok, we have the page, and it's up-to-date, so 2595 * now we can copy it to user space... 2596 */ 2597 ret = copy_page_to_iter(page, offset, nr, to); 2598 retval += ret; 2599 offset += ret; 2600 index += offset >> PAGE_SHIFT; 2601 offset &= ~PAGE_MASK; 2602 2603 put_page(page); 2604 if (!iov_iter_count(to)) 2605 break; 2606 if (ret < nr) { 2607 error = -EFAULT; 2608 break; 2609 } 2610 cond_resched(); 2611 } 2612 2613 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2614 file_accessed(file); 2615 return retval ? retval : error; 2616 } 2617 2618 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2619 { 2620 struct address_space *mapping = file->f_mapping; 2621 struct inode *inode = mapping->host; 2622 2623 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2624 return generic_file_llseek_size(file, offset, whence, 2625 MAX_LFS_FILESIZE, i_size_read(inode)); 2626 if (offset < 0) 2627 return -ENXIO; 2628 2629 inode_lock(inode); 2630 /* We're holding i_rwsem so we can access i_size directly */ 2631 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2632 if (offset >= 0) 2633 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2634 inode_unlock(inode); 2635 return offset; 2636 } 2637 2638 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2639 loff_t len) 2640 { 2641 struct inode *inode = file_inode(file); 2642 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2643 struct shmem_inode_info *info = SHMEM_I(inode); 2644 struct shmem_falloc shmem_falloc; 2645 pgoff_t start, index, end, undo_fallocend; 2646 int error; 2647 2648 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2649 return -EOPNOTSUPP; 2650 2651 inode_lock(inode); 2652 2653 if (mode & FALLOC_FL_PUNCH_HOLE) { 2654 struct address_space *mapping = file->f_mapping; 2655 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2656 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2657 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2658 2659 /* protected by i_rwsem */ 2660 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2661 error = -EPERM; 2662 goto out; 2663 } 2664 2665 shmem_falloc.waitq = &shmem_falloc_waitq; 2666 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2667 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2668 spin_lock(&inode->i_lock); 2669 inode->i_private = &shmem_falloc; 2670 spin_unlock(&inode->i_lock); 2671 2672 if ((u64)unmap_end > (u64)unmap_start) 2673 unmap_mapping_range(mapping, unmap_start, 2674 1 + unmap_end - unmap_start, 0); 2675 shmem_truncate_range(inode, offset, offset + len - 1); 2676 /* No need to unmap again: hole-punching leaves COWed pages */ 2677 2678 spin_lock(&inode->i_lock); 2679 inode->i_private = NULL; 2680 wake_up_all(&shmem_falloc_waitq); 2681 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2682 spin_unlock(&inode->i_lock); 2683 error = 0; 2684 goto out; 2685 } 2686 2687 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2688 error = inode_newsize_ok(inode, offset + len); 2689 if (error) 2690 goto out; 2691 2692 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2693 error = -EPERM; 2694 goto out; 2695 } 2696 2697 start = offset >> PAGE_SHIFT; 2698 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2699 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2700 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2701 error = -ENOSPC; 2702 goto out; 2703 } 2704 2705 shmem_falloc.waitq = NULL; 2706 shmem_falloc.start = start; 2707 shmem_falloc.next = start; 2708 shmem_falloc.nr_falloced = 0; 2709 shmem_falloc.nr_unswapped = 0; 2710 spin_lock(&inode->i_lock); 2711 inode->i_private = &shmem_falloc; 2712 spin_unlock(&inode->i_lock); 2713 2714 /* 2715 * info->fallocend is only relevant when huge pages might be 2716 * involved: to prevent split_huge_page() freeing fallocated 2717 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2718 */ 2719 undo_fallocend = info->fallocend; 2720 if (info->fallocend < end) 2721 info->fallocend = end; 2722 2723 for (index = start; index < end; ) { 2724 struct page *page; 2725 2726 /* 2727 * Good, the fallocate(2) manpage permits EINTR: we may have 2728 * been interrupted because we are using up too much memory. 2729 */ 2730 if (signal_pending(current)) 2731 error = -EINTR; 2732 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2733 error = -ENOMEM; 2734 else 2735 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2736 if (error) { 2737 info->fallocend = undo_fallocend; 2738 /* Remove the !PageUptodate pages we added */ 2739 if (index > start) { 2740 shmem_undo_range(inode, 2741 (loff_t)start << PAGE_SHIFT, 2742 ((loff_t)index << PAGE_SHIFT) - 1, true); 2743 } 2744 goto undone; 2745 } 2746 2747 index++; 2748 /* 2749 * Here is a more important optimization than it appears: 2750 * a second SGP_FALLOC on the same huge page will clear it, 2751 * making it PageUptodate and un-undoable if we fail later. 2752 */ 2753 if (PageTransCompound(page)) { 2754 index = round_up(index, HPAGE_PMD_NR); 2755 /* Beware 32-bit wraparound */ 2756 if (!index) 2757 index--; 2758 } 2759 2760 /* 2761 * Inform shmem_writepage() how far we have reached. 2762 * No need for lock or barrier: we have the page lock. 2763 */ 2764 if (!PageUptodate(page)) 2765 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2766 shmem_falloc.next = index; 2767 2768 /* 2769 * If !PageUptodate, leave it that way so that freeable pages 2770 * can be recognized if we need to rollback on error later. 2771 * But set_page_dirty so that memory pressure will swap rather 2772 * than free the pages we are allocating (and SGP_CACHE pages 2773 * might still be clean: we now need to mark those dirty too). 2774 */ 2775 set_page_dirty(page); 2776 unlock_page(page); 2777 put_page(page); 2778 cond_resched(); 2779 } 2780 2781 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2782 i_size_write(inode, offset + len); 2783 inode->i_ctime = current_time(inode); 2784 undone: 2785 spin_lock(&inode->i_lock); 2786 inode->i_private = NULL; 2787 spin_unlock(&inode->i_lock); 2788 out: 2789 inode_unlock(inode); 2790 return error; 2791 } 2792 2793 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2794 { 2795 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2796 2797 buf->f_type = TMPFS_MAGIC; 2798 buf->f_bsize = PAGE_SIZE; 2799 buf->f_namelen = NAME_MAX; 2800 if (sbinfo->max_blocks) { 2801 buf->f_blocks = sbinfo->max_blocks; 2802 buf->f_bavail = 2803 buf->f_bfree = sbinfo->max_blocks - 2804 percpu_counter_sum(&sbinfo->used_blocks); 2805 } 2806 if (sbinfo->max_inodes) { 2807 buf->f_files = sbinfo->max_inodes; 2808 buf->f_ffree = sbinfo->free_inodes; 2809 } 2810 /* else leave those fields 0 like simple_statfs */ 2811 2812 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2813 2814 return 0; 2815 } 2816 2817 /* 2818 * File creation. Allocate an inode, and we're done.. 2819 */ 2820 static int 2821 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2822 struct dentry *dentry, umode_t mode, dev_t dev) 2823 { 2824 struct inode *inode; 2825 int error = -ENOSPC; 2826 2827 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2828 if (inode) { 2829 error = simple_acl_create(dir, inode); 2830 if (error) 2831 goto out_iput; 2832 error = security_inode_init_security(inode, dir, 2833 &dentry->d_name, 2834 shmem_initxattrs, NULL); 2835 if (error && error != -EOPNOTSUPP) 2836 goto out_iput; 2837 2838 error = 0; 2839 dir->i_size += BOGO_DIRENT_SIZE; 2840 dir->i_ctime = dir->i_mtime = current_time(dir); 2841 d_instantiate(dentry, inode); 2842 dget(dentry); /* Extra count - pin the dentry in core */ 2843 } 2844 return error; 2845 out_iput: 2846 iput(inode); 2847 return error; 2848 } 2849 2850 static int 2851 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2852 struct dentry *dentry, umode_t mode) 2853 { 2854 struct inode *inode; 2855 int error = -ENOSPC; 2856 2857 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2858 if (inode) { 2859 error = security_inode_init_security(inode, dir, 2860 NULL, 2861 shmem_initxattrs, NULL); 2862 if (error && error != -EOPNOTSUPP) 2863 goto out_iput; 2864 error = simple_acl_create(dir, inode); 2865 if (error) 2866 goto out_iput; 2867 d_tmpfile(dentry, inode); 2868 } 2869 return error; 2870 out_iput: 2871 iput(inode); 2872 return error; 2873 } 2874 2875 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2876 struct dentry *dentry, umode_t mode) 2877 { 2878 int error; 2879 2880 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2881 mode | S_IFDIR, 0))) 2882 return error; 2883 inc_nlink(dir); 2884 return 0; 2885 } 2886 2887 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2888 struct dentry *dentry, umode_t mode, bool excl) 2889 { 2890 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2891 } 2892 2893 /* 2894 * Link a file.. 2895 */ 2896 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2897 { 2898 struct inode *inode = d_inode(old_dentry); 2899 int ret = 0; 2900 2901 /* 2902 * No ordinary (disk based) filesystem counts links as inodes; 2903 * but each new link needs a new dentry, pinning lowmem, and 2904 * tmpfs dentries cannot be pruned until they are unlinked. 2905 * But if an O_TMPFILE file is linked into the tmpfs, the 2906 * first link must skip that, to get the accounting right. 2907 */ 2908 if (inode->i_nlink) { 2909 ret = shmem_reserve_inode(inode->i_sb, NULL); 2910 if (ret) 2911 goto out; 2912 } 2913 2914 dir->i_size += BOGO_DIRENT_SIZE; 2915 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2916 inc_nlink(inode); 2917 ihold(inode); /* New dentry reference */ 2918 dget(dentry); /* Extra pinning count for the created dentry */ 2919 d_instantiate(dentry, inode); 2920 out: 2921 return ret; 2922 } 2923 2924 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2925 { 2926 struct inode *inode = d_inode(dentry); 2927 2928 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2929 shmem_free_inode(inode->i_sb); 2930 2931 dir->i_size -= BOGO_DIRENT_SIZE; 2932 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2933 drop_nlink(inode); 2934 dput(dentry); /* Undo the count from "create" - this does all the work */ 2935 return 0; 2936 } 2937 2938 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2939 { 2940 if (!simple_empty(dentry)) 2941 return -ENOTEMPTY; 2942 2943 drop_nlink(d_inode(dentry)); 2944 drop_nlink(dir); 2945 return shmem_unlink(dir, dentry); 2946 } 2947 2948 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2949 { 2950 bool old_is_dir = d_is_dir(old_dentry); 2951 bool new_is_dir = d_is_dir(new_dentry); 2952 2953 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2954 if (old_is_dir) { 2955 drop_nlink(old_dir); 2956 inc_nlink(new_dir); 2957 } else { 2958 drop_nlink(new_dir); 2959 inc_nlink(old_dir); 2960 } 2961 } 2962 old_dir->i_ctime = old_dir->i_mtime = 2963 new_dir->i_ctime = new_dir->i_mtime = 2964 d_inode(old_dentry)->i_ctime = 2965 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2966 2967 return 0; 2968 } 2969 2970 static int shmem_whiteout(struct user_namespace *mnt_userns, 2971 struct inode *old_dir, struct dentry *old_dentry) 2972 { 2973 struct dentry *whiteout; 2974 int error; 2975 2976 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2977 if (!whiteout) 2978 return -ENOMEM; 2979 2980 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 2981 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2982 dput(whiteout); 2983 if (error) 2984 return error; 2985 2986 /* 2987 * Cheat and hash the whiteout while the old dentry is still in 2988 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2989 * 2990 * d_lookup() will consistently find one of them at this point, 2991 * not sure which one, but that isn't even important. 2992 */ 2993 d_rehash(whiteout); 2994 return 0; 2995 } 2996 2997 /* 2998 * The VFS layer already does all the dentry stuff for rename, 2999 * we just have to decrement the usage count for the target if 3000 * it exists so that the VFS layer correctly free's it when it 3001 * gets overwritten. 3002 */ 3003 static int shmem_rename2(struct user_namespace *mnt_userns, 3004 struct inode *old_dir, struct dentry *old_dentry, 3005 struct inode *new_dir, struct dentry *new_dentry, 3006 unsigned int flags) 3007 { 3008 struct inode *inode = d_inode(old_dentry); 3009 int they_are_dirs = S_ISDIR(inode->i_mode); 3010 3011 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3012 return -EINVAL; 3013 3014 if (flags & RENAME_EXCHANGE) 3015 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3016 3017 if (!simple_empty(new_dentry)) 3018 return -ENOTEMPTY; 3019 3020 if (flags & RENAME_WHITEOUT) { 3021 int error; 3022 3023 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3024 if (error) 3025 return error; 3026 } 3027 3028 if (d_really_is_positive(new_dentry)) { 3029 (void) shmem_unlink(new_dir, new_dentry); 3030 if (they_are_dirs) { 3031 drop_nlink(d_inode(new_dentry)); 3032 drop_nlink(old_dir); 3033 } 3034 } else if (they_are_dirs) { 3035 drop_nlink(old_dir); 3036 inc_nlink(new_dir); 3037 } 3038 3039 old_dir->i_size -= BOGO_DIRENT_SIZE; 3040 new_dir->i_size += BOGO_DIRENT_SIZE; 3041 old_dir->i_ctime = old_dir->i_mtime = 3042 new_dir->i_ctime = new_dir->i_mtime = 3043 inode->i_ctime = current_time(old_dir); 3044 return 0; 3045 } 3046 3047 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3048 struct dentry *dentry, const char *symname) 3049 { 3050 int error; 3051 int len; 3052 struct inode *inode; 3053 struct page *page; 3054 3055 len = strlen(symname) + 1; 3056 if (len > PAGE_SIZE) 3057 return -ENAMETOOLONG; 3058 3059 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3060 VM_NORESERVE); 3061 if (!inode) 3062 return -ENOSPC; 3063 3064 error = security_inode_init_security(inode, dir, &dentry->d_name, 3065 shmem_initxattrs, NULL); 3066 if (error && error != -EOPNOTSUPP) { 3067 iput(inode); 3068 return error; 3069 } 3070 3071 inode->i_size = len-1; 3072 if (len <= SHORT_SYMLINK_LEN) { 3073 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3074 if (!inode->i_link) { 3075 iput(inode); 3076 return -ENOMEM; 3077 } 3078 inode->i_op = &shmem_short_symlink_operations; 3079 } else { 3080 inode_nohighmem(inode); 3081 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3082 if (error) { 3083 iput(inode); 3084 return error; 3085 } 3086 inode->i_mapping->a_ops = &shmem_aops; 3087 inode->i_op = &shmem_symlink_inode_operations; 3088 memcpy(page_address(page), symname, len); 3089 SetPageUptodate(page); 3090 set_page_dirty(page); 3091 unlock_page(page); 3092 put_page(page); 3093 } 3094 dir->i_size += BOGO_DIRENT_SIZE; 3095 dir->i_ctime = dir->i_mtime = current_time(dir); 3096 d_instantiate(dentry, inode); 3097 dget(dentry); 3098 return 0; 3099 } 3100 3101 static void shmem_put_link(void *arg) 3102 { 3103 mark_page_accessed(arg); 3104 put_page(arg); 3105 } 3106 3107 static const char *shmem_get_link(struct dentry *dentry, 3108 struct inode *inode, 3109 struct delayed_call *done) 3110 { 3111 struct page *page = NULL; 3112 int error; 3113 if (!dentry) { 3114 page = find_get_page(inode->i_mapping, 0); 3115 if (!page) 3116 return ERR_PTR(-ECHILD); 3117 if (!PageUptodate(page)) { 3118 put_page(page); 3119 return ERR_PTR(-ECHILD); 3120 } 3121 } else { 3122 error = shmem_getpage(inode, 0, &page, SGP_READ); 3123 if (error) 3124 return ERR_PTR(error); 3125 unlock_page(page); 3126 } 3127 set_delayed_call(done, shmem_put_link, page); 3128 return page_address(page); 3129 } 3130 3131 #ifdef CONFIG_TMPFS_XATTR 3132 /* 3133 * Superblocks without xattr inode operations may get some security.* xattr 3134 * support from the LSM "for free". As soon as we have any other xattrs 3135 * like ACLs, we also need to implement the security.* handlers at 3136 * filesystem level, though. 3137 */ 3138 3139 /* 3140 * Callback for security_inode_init_security() for acquiring xattrs. 3141 */ 3142 static int shmem_initxattrs(struct inode *inode, 3143 const struct xattr *xattr_array, 3144 void *fs_info) 3145 { 3146 struct shmem_inode_info *info = SHMEM_I(inode); 3147 const struct xattr *xattr; 3148 struct simple_xattr *new_xattr; 3149 size_t len; 3150 3151 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3152 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3153 if (!new_xattr) 3154 return -ENOMEM; 3155 3156 len = strlen(xattr->name) + 1; 3157 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3158 GFP_KERNEL); 3159 if (!new_xattr->name) { 3160 kvfree(new_xattr); 3161 return -ENOMEM; 3162 } 3163 3164 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3165 XATTR_SECURITY_PREFIX_LEN); 3166 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3167 xattr->name, len); 3168 3169 simple_xattr_list_add(&info->xattrs, new_xattr); 3170 } 3171 3172 return 0; 3173 } 3174 3175 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3176 struct dentry *unused, struct inode *inode, 3177 const char *name, void *buffer, size_t size) 3178 { 3179 struct shmem_inode_info *info = SHMEM_I(inode); 3180 3181 name = xattr_full_name(handler, name); 3182 return simple_xattr_get(&info->xattrs, name, buffer, size); 3183 } 3184 3185 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3186 struct user_namespace *mnt_userns, 3187 struct dentry *unused, struct inode *inode, 3188 const char *name, const void *value, 3189 size_t size, int flags) 3190 { 3191 struct shmem_inode_info *info = SHMEM_I(inode); 3192 3193 name = xattr_full_name(handler, name); 3194 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3195 } 3196 3197 static const struct xattr_handler shmem_security_xattr_handler = { 3198 .prefix = XATTR_SECURITY_PREFIX, 3199 .get = shmem_xattr_handler_get, 3200 .set = shmem_xattr_handler_set, 3201 }; 3202 3203 static const struct xattr_handler shmem_trusted_xattr_handler = { 3204 .prefix = XATTR_TRUSTED_PREFIX, 3205 .get = shmem_xattr_handler_get, 3206 .set = shmem_xattr_handler_set, 3207 }; 3208 3209 static const struct xattr_handler *shmem_xattr_handlers[] = { 3210 #ifdef CONFIG_TMPFS_POSIX_ACL 3211 &posix_acl_access_xattr_handler, 3212 &posix_acl_default_xattr_handler, 3213 #endif 3214 &shmem_security_xattr_handler, 3215 &shmem_trusted_xattr_handler, 3216 NULL 3217 }; 3218 3219 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3220 { 3221 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3222 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3223 } 3224 #endif /* CONFIG_TMPFS_XATTR */ 3225 3226 static const struct inode_operations shmem_short_symlink_operations = { 3227 .get_link = simple_get_link, 3228 #ifdef CONFIG_TMPFS_XATTR 3229 .listxattr = shmem_listxattr, 3230 #endif 3231 }; 3232 3233 static const struct inode_operations shmem_symlink_inode_operations = { 3234 .get_link = shmem_get_link, 3235 #ifdef CONFIG_TMPFS_XATTR 3236 .listxattr = shmem_listxattr, 3237 #endif 3238 }; 3239 3240 static struct dentry *shmem_get_parent(struct dentry *child) 3241 { 3242 return ERR_PTR(-ESTALE); 3243 } 3244 3245 static int shmem_match(struct inode *ino, void *vfh) 3246 { 3247 __u32 *fh = vfh; 3248 __u64 inum = fh[2]; 3249 inum = (inum << 32) | fh[1]; 3250 return ino->i_ino == inum && fh[0] == ino->i_generation; 3251 } 3252 3253 /* Find any alias of inode, but prefer a hashed alias */ 3254 static struct dentry *shmem_find_alias(struct inode *inode) 3255 { 3256 struct dentry *alias = d_find_alias(inode); 3257 3258 return alias ?: d_find_any_alias(inode); 3259 } 3260 3261 3262 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3263 struct fid *fid, int fh_len, int fh_type) 3264 { 3265 struct inode *inode; 3266 struct dentry *dentry = NULL; 3267 u64 inum; 3268 3269 if (fh_len < 3) 3270 return NULL; 3271 3272 inum = fid->raw[2]; 3273 inum = (inum << 32) | fid->raw[1]; 3274 3275 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3276 shmem_match, fid->raw); 3277 if (inode) { 3278 dentry = shmem_find_alias(inode); 3279 iput(inode); 3280 } 3281 3282 return dentry; 3283 } 3284 3285 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3286 struct inode *parent) 3287 { 3288 if (*len < 3) { 3289 *len = 3; 3290 return FILEID_INVALID; 3291 } 3292 3293 if (inode_unhashed(inode)) { 3294 /* Unfortunately insert_inode_hash is not idempotent, 3295 * so as we hash inodes here rather than at creation 3296 * time, we need a lock to ensure we only try 3297 * to do it once 3298 */ 3299 static DEFINE_SPINLOCK(lock); 3300 spin_lock(&lock); 3301 if (inode_unhashed(inode)) 3302 __insert_inode_hash(inode, 3303 inode->i_ino + inode->i_generation); 3304 spin_unlock(&lock); 3305 } 3306 3307 fh[0] = inode->i_generation; 3308 fh[1] = inode->i_ino; 3309 fh[2] = ((__u64)inode->i_ino) >> 32; 3310 3311 *len = 3; 3312 return 1; 3313 } 3314 3315 static const struct export_operations shmem_export_ops = { 3316 .get_parent = shmem_get_parent, 3317 .encode_fh = shmem_encode_fh, 3318 .fh_to_dentry = shmem_fh_to_dentry, 3319 }; 3320 3321 enum shmem_param { 3322 Opt_gid, 3323 Opt_huge, 3324 Opt_mode, 3325 Opt_mpol, 3326 Opt_nr_blocks, 3327 Opt_nr_inodes, 3328 Opt_size, 3329 Opt_uid, 3330 Opt_inode32, 3331 Opt_inode64, 3332 }; 3333 3334 static const struct constant_table shmem_param_enums_huge[] = { 3335 {"never", SHMEM_HUGE_NEVER }, 3336 {"always", SHMEM_HUGE_ALWAYS }, 3337 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3338 {"advise", SHMEM_HUGE_ADVISE }, 3339 {} 3340 }; 3341 3342 const struct fs_parameter_spec shmem_fs_parameters[] = { 3343 fsparam_u32 ("gid", Opt_gid), 3344 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3345 fsparam_u32oct("mode", Opt_mode), 3346 fsparam_string("mpol", Opt_mpol), 3347 fsparam_string("nr_blocks", Opt_nr_blocks), 3348 fsparam_string("nr_inodes", Opt_nr_inodes), 3349 fsparam_string("size", Opt_size), 3350 fsparam_u32 ("uid", Opt_uid), 3351 fsparam_flag ("inode32", Opt_inode32), 3352 fsparam_flag ("inode64", Opt_inode64), 3353 {} 3354 }; 3355 3356 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3357 { 3358 struct shmem_options *ctx = fc->fs_private; 3359 struct fs_parse_result result; 3360 unsigned long long size; 3361 char *rest; 3362 int opt; 3363 3364 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3365 if (opt < 0) 3366 return opt; 3367 3368 switch (opt) { 3369 case Opt_size: 3370 size = memparse(param->string, &rest); 3371 if (*rest == '%') { 3372 size <<= PAGE_SHIFT; 3373 size *= totalram_pages(); 3374 do_div(size, 100); 3375 rest++; 3376 } 3377 if (*rest) 3378 goto bad_value; 3379 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3380 ctx->seen |= SHMEM_SEEN_BLOCKS; 3381 break; 3382 case Opt_nr_blocks: 3383 ctx->blocks = memparse(param->string, &rest); 3384 if (*rest) 3385 goto bad_value; 3386 ctx->seen |= SHMEM_SEEN_BLOCKS; 3387 break; 3388 case Opt_nr_inodes: 3389 ctx->inodes = memparse(param->string, &rest); 3390 if (*rest) 3391 goto bad_value; 3392 ctx->seen |= SHMEM_SEEN_INODES; 3393 break; 3394 case Opt_mode: 3395 ctx->mode = result.uint_32 & 07777; 3396 break; 3397 case Opt_uid: 3398 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3399 if (!uid_valid(ctx->uid)) 3400 goto bad_value; 3401 break; 3402 case Opt_gid: 3403 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3404 if (!gid_valid(ctx->gid)) 3405 goto bad_value; 3406 break; 3407 case Opt_huge: 3408 ctx->huge = result.uint_32; 3409 if (ctx->huge != SHMEM_HUGE_NEVER && 3410 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3411 has_transparent_hugepage())) 3412 goto unsupported_parameter; 3413 ctx->seen |= SHMEM_SEEN_HUGE; 3414 break; 3415 case Opt_mpol: 3416 if (IS_ENABLED(CONFIG_NUMA)) { 3417 mpol_put(ctx->mpol); 3418 ctx->mpol = NULL; 3419 if (mpol_parse_str(param->string, &ctx->mpol)) 3420 goto bad_value; 3421 break; 3422 } 3423 goto unsupported_parameter; 3424 case Opt_inode32: 3425 ctx->full_inums = false; 3426 ctx->seen |= SHMEM_SEEN_INUMS; 3427 break; 3428 case Opt_inode64: 3429 if (sizeof(ino_t) < 8) { 3430 return invalfc(fc, 3431 "Cannot use inode64 with <64bit inums in kernel\n"); 3432 } 3433 ctx->full_inums = true; 3434 ctx->seen |= SHMEM_SEEN_INUMS; 3435 break; 3436 } 3437 return 0; 3438 3439 unsupported_parameter: 3440 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3441 bad_value: 3442 return invalfc(fc, "Bad value for '%s'", param->key); 3443 } 3444 3445 static int shmem_parse_options(struct fs_context *fc, void *data) 3446 { 3447 char *options = data; 3448 3449 if (options) { 3450 int err = security_sb_eat_lsm_opts(options, &fc->security); 3451 if (err) 3452 return err; 3453 } 3454 3455 while (options != NULL) { 3456 char *this_char = options; 3457 for (;;) { 3458 /* 3459 * NUL-terminate this option: unfortunately, 3460 * mount options form a comma-separated list, 3461 * but mpol's nodelist may also contain commas. 3462 */ 3463 options = strchr(options, ','); 3464 if (options == NULL) 3465 break; 3466 options++; 3467 if (!isdigit(*options)) { 3468 options[-1] = '\0'; 3469 break; 3470 } 3471 } 3472 if (*this_char) { 3473 char *value = strchr(this_char, '='); 3474 size_t len = 0; 3475 int err; 3476 3477 if (value) { 3478 *value++ = '\0'; 3479 len = strlen(value); 3480 } 3481 err = vfs_parse_fs_string(fc, this_char, value, len); 3482 if (err < 0) 3483 return err; 3484 } 3485 } 3486 return 0; 3487 } 3488 3489 /* 3490 * Reconfigure a shmem filesystem. 3491 * 3492 * Note that we disallow change from limited->unlimited blocks/inodes while any 3493 * are in use; but we must separately disallow unlimited->limited, because in 3494 * that case we have no record of how much is already in use. 3495 */ 3496 static int shmem_reconfigure(struct fs_context *fc) 3497 { 3498 struct shmem_options *ctx = fc->fs_private; 3499 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3500 unsigned long inodes; 3501 struct mempolicy *mpol = NULL; 3502 const char *err; 3503 3504 raw_spin_lock(&sbinfo->stat_lock); 3505 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3506 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3507 if (!sbinfo->max_blocks) { 3508 err = "Cannot retroactively limit size"; 3509 goto out; 3510 } 3511 if (percpu_counter_compare(&sbinfo->used_blocks, 3512 ctx->blocks) > 0) { 3513 err = "Too small a size for current use"; 3514 goto out; 3515 } 3516 } 3517 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3518 if (!sbinfo->max_inodes) { 3519 err = "Cannot retroactively limit inodes"; 3520 goto out; 3521 } 3522 if (ctx->inodes < inodes) { 3523 err = "Too few inodes for current use"; 3524 goto out; 3525 } 3526 } 3527 3528 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3529 sbinfo->next_ino > UINT_MAX) { 3530 err = "Current inum too high to switch to 32-bit inums"; 3531 goto out; 3532 } 3533 3534 if (ctx->seen & SHMEM_SEEN_HUGE) 3535 sbinfo->huge = ctx->huge; 3536 if (ctx->seen & SHMEM_SEEN_INUMS) 3537 sbinfo->full_inums = ctx->full_inums; 3538 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3539 sbinfo->max_blocks = ctx->blocks; 3540 if (ctx->seen & SHMEM_SEEN_INODES) { 3541 sbinfo->max_inodes = ctx->inodes; 3542 sbinfo->free_inodes = ctx->inodes - inodes; 3543 } 3544 3545 /* 3546 * Preserve previous mempolicy unless mpol remount option was specified. 3547 */ 3548 if (ctx->mpol) { 3549 mpol = sbinfo->mpol; 3550 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3551 ctx->mpol = NULL; 3552 } 3553 raw_spin_unlock(&sbinfo->stat_lock); 3554 mpol_put(mpol); 3555 return 0; 3556 out: 3557 raw_spin_unlock(&sbinfo->stat_lock); 3558 return invalfc(fc, "%s", err); 3559 } 3560 3561 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3562 { 3563 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3564 3565 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3566 seq_printf(seq, ",size=%luk", 3567 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3568 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3569 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3570 if (sbinfo->mode != (0777 | S_ISVTX)) 3571 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3572 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3573 seq_printf(seq, ",uid=%u", 3574 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3575 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3576 seq_printf(seq, ",gid=%u", 3577 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3578 3579 /* 3580 * Showing inode{64,32} might be useful even if it's the system default, 3581 * since then people don't have to resort to checking both here and 3582 * /proc/config.gz to confirm 64-bit inums were successfully applied 3583 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3584 * 3585 * We hide it when inode64 isn't the default and we are using 32-bit 3586 * inodes, since that probably just means the feature isn't even under 3587 * consideration. 3588 * 3589 * As such: 3590 * 3591 * +-----------------+-----------------+ 3592 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3593 * +------------------+-----------------+-----------------+ 3594 * | full_inums=true | show | show | 3595 * | full_inums=false | show | hide | 3596 * +------------------+-----------------+-----------------+ 3597 * 3598 */ 3599 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3600 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3602 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3603 if (sbinfo->huge) 3604 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3605 #endif 3606 shmem_show_mpol(seq, sbinfo->mpol); 3607 return 0; 3608 } 3609 3610 #endif /* CONFIG_TMPFS */ 3611 3612 static void shmem_put_super(struct super_block *sb) 3613 { 3614 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3615 3616 free_percpu(sbinfo->ino_batch); 3617 percpu_counter_destroy(&sbinfo->used_blocks); 3618 mpol_put(sbinfo->mpol); 3619 kfree(sbinfo); 3620 sb->s_fs_info = NULL; 3621 } 3622 3623 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3624 { 3625 struct shmem_options *ctx = fc->fs_private; 3626 struct inode *inode; 3627 struct shmem_sb_info *sbinfo; 3628 3629 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3630 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3631 L1_CACHE_BYTES), GFP_KERNEL); 3632 if (!sbinfo) 3633 return -ENOMEM; 3634 3635 sb->s_fs_info = sbinfo; 3636 3637 #ifdef CONFIG_TMPFS 3638 /* 3639 * Per default we only allow half of the physical ram per 3640 * tmpfs instance, limiting inodes to one per page of lowmem; 3641 * but the internal instance is left unlimited. 3642 */ 3643 if (!(sb->s_flags & SB_KERNMOUNT)) { 3644 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3645 ctx->blocks = shmem_default_max_blocks(); 3646 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3647 ctx->inodes = shmem_default_max_inodes(); 3648 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3649 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3650 } else { 3651 sb->s_flags |= SB_NOUSER; 3652 } 3653 sb->s_export_op = &shmem_export_ops; 3654 sb->s_flags |= SB_NOSEC; 3655 #else 3656 sb->s_flags |= SB_NOUSER; 3657 #endif 3658 sbinfo->max_blocks = ctx->blocks; 3659 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3660 if (sb->s_flags & SB_KERNMOUNT) { 3661 sbinfo->ino_batch = alloc_percpu(ino_t); 3662 if (!sbinfo->ino_batch) 3663 goto failed; 3664 } 3665 sbinfo->uid = ctx->uid; 3666 sbinfo->gid = ctx->gid; 3667 sbinfo->full_inums = ctx->full_inums; 3668 sbinfo->mode = ctx->mode; 3669 sbinfo->huge = ctx->huge; 3670 sbinfo->mpol = ctx->mpol; 3671 ctx->mpol = NULL; 3672 3673 raw_spin_lock_init(&sbinfo->stat_lock); 3674 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3675 goto failed; 3676 spin_lock_init(&sbinfo->shrinklist_lock); 3677 INIT_LIST_HEAD(&sbinfo->shrinklist); 3678 3679 sb->s_maxbytes = MAX_LFS_FILESIZE; 3680 sb->s_blocksize = PAGE_SIZE; 3681 sb->s_blocksize_bits = PAGE_SHIFT; 3682 sb->s_magic = TMPFS_MAGIC; 3683 sb->s_op = &shmem_ops; 3684 sb->s_time_gran = 1; 3685 #ifdef CONFIG_TMPFS_XATTR 3686 sb->s_xattr = shmem_xattr_handlers; 3687 #endif 3688 #ifdef CONFIG_TMPFS_POSIX_ACL 3689 sb->s_flags |= SB_POSIXACL; 3690 #endif 3691 uuid_gen(&sb->s_uuid); 3692 3693 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3694 if (!inode) 3695 goto failed; 3696 inode->i_uid = sbinfo->uid; 3697 inode->i_gid = sbinfo->gid; 3698 sb->s_root = d_make_root(inode); 3699 if (!sb->s_root) 3700 goto failed; 3701 return 0; 3702 3703 failed: 3704 shmem_put_super(sb); 3705 return -ENOMEM; 3706 } 3707 3708 static int shmem_get_tree(struct fs_context *fc) 3709 { 3710 return get_tree_nodev(fc, shmem_fill_super); 3711 } 3712 3713 static void shmem_free_fc(struct fs_context *fc) 3714 { 3715 struct shmem_options *ctx = fc->fs_private; 3716 3717 if (ctx) { 3718 mpol_put(ctx->mpol); 3719 kfree(ctx); 3720 } 3721 } 3722 3723 static const struct fs_context_operations shmem_fs_context_ops = { 3724 .free = shmem_free_fc, 3725 .get_tree = shmem_get_tree, 3726 #ifdef CONFIG_TMPFS 3727 .parse_monolithic = shmem_parse_options, 3728 .parse_param = shmem_parse_one, 3729 .reconfigure = shmem_reconfigure, 3730 #endif 3731 }; 3732 3733 static struct kmem_cache *shmem_inode_cachep; 3734 3735 static struct inode *shmem_alloc_inode(struct super_block *sb) 3736 { 3737 struct shmem_inode_info *info; 3738 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3739 if (!info) 3740 return NULL; 3741 return &info->vfs_inode; 3742 } 3743 3744 static void shmem_free_in_core_inode(struct inode *inode) 3745 { 3746 if (S_ISLNK(inode->i_mode)) 3747 kfree(inode->i_link); 3748 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3749 } 3750 3751 static void shmem_destroy_inode(struct inode *inode) 3752 { 3753 if (S_ISREG(inode->i_mode)) 3754 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3755 } 3756 3757 static void shmem_init_inode(void *foo) 3758 { 3759 struct shmem_inode_info *info = foo; 3760 inode_init_once(&info->vfs_inode); 3761 } 3762 3763 static void shmem_init_inodecache(void) 3764 { 3765 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3766 sizeof(struct shmem_inode_info), 3767 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3768 } 3769 3770 static void shmem_destroy_inodecache(void) 3771 { 3772 kmem_cache_destroy(shmem_inode_cachep); 3773 } 3774 3775 const struct address_space_operations shmem_aops = { 3776 .writepage = shmem_writepage, 3777 .set_page_dirty = __set_page_dirty_no_writeback, 3778 #ifdef CONFIG_TMPFS 3779 .write_begin = shmem_write_begin, 3780 .write_end = shmem_write_end, 3781 #endif 3782 #ifdef CONFIG_MIGRATION 3783 .migratepage = migrate_page, 3784 #endif 3785 .error_remove_page = generic_error_remove_page, 3786 }; 3787 EXPORT_SYMBOL(shmem_aops); 3788 3789 static const struct file_operations shmem_file_operations = { 3790 .mmap = shmem_mmap, 3791 .get_unmapped_area = shmem_get_unmapped_area, 3792 #ifdef CONFIG_TMPFS 3793 .llseek = shmem_file_llseek, 3794 .read_iter = shmem_file_read_iter, 3795 .write_iter = generic_file_write_iter, 3796 .fsync = noop_fsync, 3797 .splice_read = generic_file_splice_read, 3798 .splice_write = iter_file_splice_write, 3799 .fallocate = shmem_fallocate, 3800 #endif 3801 }; 3802 3803 static const struct inode_operations shmem_inode_operations = { 3804 .getattr = shmem_getattr, 3805 .setattr = shmem_setattr, 3806 #ifdef CONFIG_TMPFS_XATTR 3807 .listxattr = shmem_listxattr, 3808 .set_acl = simple_set_acl, 3809 #endif 3810 }; 3811 3812 static const struct inode_operations shmem_dir_inode_operations = { 3813 #ifdef CONFIG_TMPFS 3814 .create = shmem_create, 3815 .lookup = simple_lookup, 3816 .link = shmem_link, 3817 .unlink = shmem_unlink, 3818 .symlink = shmem_symlink, 3819 .mkdir = shmem_mkdir, 3820 .rmdir = shmem_rmdir, 3821 .mknod = shmem_mknod, 3822 .rename = shmem_rename2, 3823 .tmpfile = shmem_tmpfile, 3824 #endif 3825 #ifdef CONFIG_TMPFS_XATTR 3826 .listxattr = shmem_listxattr, 3827 #endif 3828 #ifdef CONFIG_TMPFS_POSIX_ACL 3829 .setattr = shmem_setattr, 3830 .set_acl = simple_set_acl, 3831 #endif 3832 }; 3833 3834 static const struct inode_operations shmem_special_inode_operations = { 3835 #ifdef CONFIG_TMPFS_XATTR 3836 .listxattr = shmem_listxattr, 3837 #endif 3838 #ifdef CONFIG_TMPFS_POSIX_ACL 3839 .setattr = shmem_setattr, 3840 .set_acl = simple_set_acl, 3841 #endif 3842 }; 3843 3844 static const struct super_operations shmem_ops = { 3845 .alloc_inode = shmem_alloc_inode, 3846 .free_inode = shmem_free_in_core_inode, 3847 .destroy_inode = shmem_destroy_inode, 3848 #ifdef CONFIG_TMPFS 3849 .statfs = shmem_statfs, 3850 .show_options = shmem_show_options, 3851 #endif 3852 .evict_inode = shmem_evict_inode, 3853 .drop_inode = generic_delete_inode, 3854 .put_super = shmem_put_super, 3855 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3856 .nr_cached_objects = shmem_unused_huge_count, 3857 .free_cached_objects = shmem_unused_huge_scan, 3858 #endif 3859 }; 3860 3861 static const struct vm_operations_struct shmem_vm_ops = { 3862 .fault = shmem_fault, 3863 .map_pages = filemap_map_pages, 3864 #ifdef CONFIG_NUMA 3865 .set_policy = shmem_set_policy, 3866 .get_policy = shmem_get_policy, 3867 #endif 3868 }; 3869 3870 int shmem_init_fs_context(struct fs_context *fc) 3871 { 3872 struct shmem_options *ctx; 3873 3874 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3875 if (!ctx) 3876 return -ENOMEM; 3877 3878 ctx->mode = 0777 | S_ISVTX; 3879 ctx->uid = current_fsuid(); 3880 ctx->gid = current_fsgid(); 3881 3882 fc->fs_private = ctx; 3883 fc->ops = &shmem_fs_context_ops; 3884 return 0; 3885 } 3886 3887 static struct file_system_type shmem_fs_type = { 3888 .owner = THIS_MODULE, 3889 .name = "tmpfs", 3890 .init_fs_context = shmem_init_fs_context, 3891 #ifdef CONFIG_TMPFS 3892 .parameters = shmem_fs_parameters, 3893 #endif 3894 .kill_sb = kill_litter_super, 3895 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, 3896 }; 3897 3898 int __init shmem_init(void) 3899 { 3900 int error; 3901 3902 shmem_init_inodecache(); 3903 3904 error = register_filesystem(&shmem_fs_type); 3905 if (error) { 3906 pr_err("Could not register tmpfs\n"); 3907 goto out2; 3908 } 3909 3910 shm_mnt = kern_mount(&shmem_fs_type); 3911 if (IS_ERR(shm_mnt)) { 3912 error = PTR_ERR(shm_mnt); 3913 pr_err("Could not kern_mount tmpfs\n"); 3914 goto out1; 3915 } 3916 3917 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3918 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3919 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3920 else 3921 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 3922 #endif 3923 return 0; 3924 3925 out1: 3926 unregister_filesystem(&shmem_fs_type); 3927 out2: 3928 shmem_destroy_inodecache(); 3929 shm_mnt = ERR_PTR(error); 3930 return error; 3931 } 3932 3933 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3934 static ssize_t shmem_enabled_show(struct kobject *kobj, 3935 struct kobj_attribute *attr, char *buf) 3936 { 3937 static const int values[] = { 3938 SHMEM_HUGE_ALWAYS, 3939 SHMEM_HUGE_WITHIN_SIZE, 3940 SHMEM_HUGE_ADVISE, 3941 SHMEM_HUGE_NEVER, 3942 SHMEM_HUGE_DENY, 3943 SHMEM_HUGE_FORCE, 3944 }; 3945 int len = 0; 3946 int i; 3947 3948 for (i = 0; i < ARRAY_SIZE(values); i++) { 3949 len += sysfs_emit_at(buf, len, 3950 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 3951 i ? " " : "", 3952 shmem_format_huge(values[i])); 3953 } 3954 3955 len += sysfs_emit_at(buf, len, "\n"); 3956 3957 return len; 3958 } 3959 3960 static ssize_t shmem_enabled_store(struct kobject *kobj, 3961 struct kobj_attribute *attr, const char *buf, size_t count) 3962 { 3963 char tmp[16]; 3964 int huge; 3965 3966 if (count + 1 > sizeof(tmp)) 3967 return -EINVAL; 3968 memcpy(tmp, buf, count); 3969 tmp[count] = '\0'; 3970 if (count && tmp[count - 1] == '\n') 3971 tmp[count - 1] = '\0'; 3972 3973 huge = shmem_parse_huge(tmp); 3974 if (huge == -EINVAL) 3975 return -EINVAL; 3976 if (!has_transparent_hugepage() && 3977 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3978 return -EINVAL; 3979 3980 shmem_huge = huge; 3981 if (shmem_huge > SHMEM_HUGE_DENY) 3982 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3983 return count; 3984 } 3985 3986 struct kobj_attribute shmem_enabled_attr = 3987 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3988 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3989 3990 #else /* !CONFIG_SHMEM */ 3991 3992 /* 3993 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3994 * 3995 * This is intended for small system where the benefits of the full 3996 * shmem code (swap-backed and resource-limited) are outweighed by 3997 * their complexity. On systems without swap this code should be 3998 * effectively equivalent, but much lighter weight. 3999 */ 4000 4001 static struct file_system_type shmem_fs_type = { 4002 .name = "tmpfs", 4003 .init_fs_context = ramfs_init_fs_context, 4004 .parameters = ramfs_fs_parameters, 4005 .kill_sb = kill_litter_super, 4006 .fs_flags = FS_USERNS_MOUNT, 4007 }; 4008 4009 int __init shmem_init(void) 4010 { 4011 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4012 4013 shm_mnt = kern_mount(&shmem_fs_type); 4014 BUG_ON(IS_ERR(shm_mnt)); 4015 4016 return 0; 4017 } 4018 4019 int shmem_unuse(unsigned int type, bool frontswap, 4020 unsigned long *fs_pages_to_unuse) 4021 { 4022 return 0; 4023 } 4024 4025 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4026 { 4027 return 0; 4028 } 4029 4030 void shmem_unlock_mapping(struct address_space *mapping) 4031 { 4032 } 4033 4034 #ifdef CONFIG_MMU 4035 unsigned long shmem_get_unmapped_area(struct file *file, 4036 unsigned long addr, unsigned long len, 4037 unsigned long pgoff, unsigned long flags) 4038 { 4039 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4040 } 4041 #endif 4042 4043 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4044 { 4045 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4046 } 4047 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4048 4049 #define shmem_vm_ops generic_file_vm_ops 4050 #define shmem_file_operations ramfs_file_operations 4051 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4052 #define shmem_acct_size(flags, size) 0 4053 #define shmem_unacct_size(flags, size) do {} while (0) 4054 4055 #endif /* CONFIG_SHMEM */ 4056 4057 /* common code */ 4058 4059 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4060 unsigned long flags, unsigned int i_flags) 4061 { 4062 struct inode *inode; 4063 struct file *res; 4064 4065 if (IS_ERR(mnt)) 4066 return ERR_CAST(mnt); 4067 4068 if (size < 0 || size > MAX_LFS_FILESIZE) 4069 return ERR_PTR(-EINVAL); 4070 4071 if (shmem_acct_size(flags, size)) 4072 return ERR_PTR(-ENOMEM); 4073 4074 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4075 flags); 4076 if (unlikely(!inode)) { 4077 shmem_unacct_size(flags, size); 4078 return ERR_PTR(-ENOSPC); 4079 } 4080 inode->i_flags |= i_flags; 4081 inode->i_size = size; 4082 clear_nlink(inode); /* It is unlinked */ 4083 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4084 if (!IS_ERR(res)) 4085 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4086 &shmem_file_operations); 4087 if (IS_ERR(res)) 4088 iput(inode); 4089 return res; 4090 } 4091 4092 /** 4093 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4094 * kernel internal. There will be NO LSM permission checks against the 4095 * underlying inode. So users of this interface must do LSM checks at a 4096 * higher layer. The users are the big_key and shm implementations. LSM 4097 * checks are provided at the key or shm level rather than the inode. 4098 * @name: name for dentry (to be seen in /proc/<pid>/maps 4099 * @size: size to be set for the file 4100 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4101 */ 4102 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4103 { 4104 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4105 } 4106 4107 /** 4108 * shmem_file_setup - get an unlinked file living in tmpfs 4109 * @name: name for dentry (to be seen in /proc/<pid>/maps 4110 * @size: size to be set for the file 4111 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4112 */ 4113 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4114 { 4115 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4116 } 4117 EXPORT_SYMBOL_GPL(shmem_file_setup); 4118 4119 /** 4120 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4121 * @mnt: the tmpfs mount where the file will be created 4122 * @name: name for dentry (to be seen in /proc/<pid>/maps 4123 * @size: size to be set for the file 4124 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4125 */ 4126 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4127 loff_t size, unsigned long flags) 4128 { 4129 return __shmem_file_setup(mnt, name, size, flags, 0); 4130 } 4131 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4132 4133 /** 4134 * shmem_zero_setup - setup a shared anonymous mapping 4135 * @vma: the vma to be mmapped is prepared by do_mmap 4136 */ 4137 int shmem_zero_setup(struct vm_area_struct *vma) 4138 { 4139 struct file *file; 4140 loff_t size = vma->vm_end - vma->vm_start; 4141 4142 /* 4143 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4144 * between XFS directory reading and selinux: since this file is only 4145 * accessible to the user through its mapping, use S_PRIVATE flag to 4146 * bypass file security, in the same way as shmem_kernel_file_setup(). 4147 */ 4148 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4149 if (IS_ERR(file)) 4150 return PTR_ERR(file); 4151 4152 if (vma->vm_file) 4153 fput(vma->vm_file); 4154 vma->vm_file = file; 4155 vma->vm_ops = &shmem_vm_ops; 4156 4157 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4158 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4159 (vma->vm_end & HPAGE_PMD_MASK)) { 4160 khugepaged_enter(vma, vma->vm_flags); 4161 } 4162 4163 return 0; 4164 } 4165 4166 /** 4167 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4168 * @mapping: the page's address_space 4169 * @index: the page index 4170 * @gfp: the page allocator flags to use if allocating 4171 * 4172 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4173 * with any new page allocations done using the specified allocation flags. 4174 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4175 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4176 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4177 * 4178 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4179 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4180 */ 4181 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4182 pgoff_t index, gfp_t gfp) 4183 { 4184 #ifdef CONFIG_SHMEM 4185 struct inode *inode = mapping->host; 4186 struct page *page; 4187 int error; 4188 4189 BUG_ON(!shmem_mapping(mapping)); 4190 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4191 gfp, NULL, NULL, NULL); 4192 if (error) 4193 page = ERR_PTR(error); 4194 else 4195 unlock_page(page); 4196 return page; 4197 #else 4198 /* 4199 * The tiny !SHMEM case uses ramfs without swap 4200 */ 4201 return read_cache_page_gfp(mapping, index, gfp); 4202 #endif 4203 } 4204 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4205