xref: /openbmc/linux/mm/shmem.c (revision 09d62154)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 		struct page **pagep, enum sgp_type sgp,
126 		gfp_t gfp, struct vm_area_struct *vma,
127 		struct vm_fault *vmf, vm_fault_t *fault_type);
128 
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130 		struct page **pagep, enum sgp_type sgp)
131 {
132 	return shmem_getpage_gfp(inode, index, pagep, sgp,
133 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135 
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 	return sb->s_fs_info;
139 }
140 
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 	return (flags & VM_NORESERVE) ?
150 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152 
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 	if (!(flags & VM_NORESERVE))
156 		vm_unacct_memory(VM_ACCT(size));
157 }
158 
159 static inline int shmem_reacct_size(unsigned long flags,
160 		loff_t oldsize, loff_t newsize)
161 {
162 	if (!(flags & VM_NORESERVE)) {
163 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 			return security_vm_enough_memory_mm(current->mm,
165 					VM_ACCT(newsize) - VM_ACCT(oldsize));
166 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 	}
169 	return 0;
170 }
171 
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180 	if (!(flags & VM_NORESERVE))
181 		return 0;
182 
183 	return security_vm_enough_memory_mm(current->mm,
184 			pages * VM_ACCT(PAGE_SIZE));
185 }
186 
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189 	if (flags & VM_NORESERVE)
190 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192 
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195 	struct shmem_inode_info *info = SHMEM_I(inode);
196 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 
198 	if (shmem_acct_block(info->flags, pages))
199 		return false;
200 
201 	if (sbinfo->max_blocks) {
202 		if (percpu_counter_compare(&sbinfo->used_blocks,
203 					   sbinfo->max_blocks - pages) > 0)
204 			goto unacct;
205 		percpu_counter_add(&sbinfo->used_blocks, pages);
206 	}
207 
208 	return true;
209 
210 unacct:
211 	shmem_unacct_blocks(info->flags, pages);
212 	return false;
213 }
214 
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (sbinfo->max_blocks)
221 		percpu_counter_sub(&sbinfo->used_blocks, pages);
222 	shmem_unacct_blocks(info->flags, pages);
223 }
224 
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233 
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236 	return vma->vm_ops == &shmem_vm_ops;
237 }
238 
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241 
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 	if (sbinfo->max_inodes) {
246 		spin_lock(&sbinfo->stat_lock);
247 		if (!sbinfo->free_inodes) {
248 			spin_unlock(&sbinfo->stat_lock);
249 			return -ENOSPC;
250 		}
251 		sbinfo->free_inodes--;
252 		spin_unlock(&sbinfo->stat_lock);
253 	}
254 	return 0;
255 }
256 
257 static void shmem_free_inode(struct super_block *sb)
258 {
259 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 	if (sbinfo->max_inodes) {
261 		spin_lock(&sbinfo->stat_lock);
262 		sbinfo->free_inodes++;
263 		spin_unlock(&sbinfo->stat_lock);
264 	}
265 }
266 
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281 	struct shmem_inode_info *info = SHMEM_I(inode);
282 	long freed;
283 
284 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 	if (freed > 0) {
286 		info->alloced -= freed;
287 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 		shmem_inode_unacct_blocks(inode, freed);
289 	}
290 }
291 
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294 	struct shmem_inode_info *info = SHMEM_I(inode);
295 	unsigned long flags;
296 
297 	if (!shmem_inode_acct_block(inode, pages))
298 		return false;
299 
300 	spin_lock_irqsave(&info->lock, flags);
301 	info->alloced += pages;
302 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
303 	shmem_recalc_inode(inode);
304 	spin_unlock_irqrestore(&info->lock, flags);
305 	inode->i_mapping->nrpages += pages;
306 
307 	return true;
308 }
309 
310 void shmem_uncharge(struct inode *inode, long pages)
311 {
312 	struct shmem_inode_info *info = SHMEM_I(inode);
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&info->lock, flags);
316 	info->alloced -= pages;
317 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318 	shmem_recalc_inode(inode);
319 	spin_unlock_irqrestore(&info->lock, flags);
320 
321 	shmem_inode_unacct_blocks(inode, pages);
322 }
323 
324 /*
325  * Replace item expected in radix tree by a new item, while holding tree lock.
326  */
327 static int shmem_radix_tree_replace(struct address_space *mapping,
328 			pgoff_t index, void *expected, void *replacement)
329 {
330 	struct radix_tree_node *node;
331 	void __rcu **pslot;
332 	void *item;
333 
334 	VM_BUG_ON(!expected);
335 	VM_BUG_ON(!replacement);
336 	item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
337 	if (!item)
338 		return -ENOENT;
339 	if (item != expected)
340 		return -ENOENT;
341 	__radix_tree_replace(&mapping->i_pages, node, pslot,
342 			     replacement, NULL);
343 	return 0;
344 }
345 
346 /*
347  * Sometimes, before we decide whether to proceed or to fail, we must check
348  * that an entry was not already brought back from swap by a racing thread.
349  *
350  * Checking page is not enough: by the time a SwapCache page is locked, it
351  * might be reused, and again be SwapCache, using the same swap as before.
352  */
353 static bool shmem_confirm_swap(struct address_space *mapping,
354 			       pgoff_t index, swp_entry_t swap)
355 {
356 	void *item;
357 
358 	rcu_read_lock();
359 	item = radix_tree_lookup(&mapping->i_pages, index);
360 	rcu_read_unlock();
361 	return item == swp_to_radix_entry(swap);
362 }
363 
364 /*
365  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
366  *
367  * SHMEM_HUGE_NEVER:
368  *	disables huge pages for the mount;
369  * SHMEM_HUGE_ALWAYS:
370  *	enables huge pages for the mount;
371  * SHMEM_HUGE_WITHIN_SIZE:
372  *	only allocate huge pages if the page will be fully within i_size,
373  *	also respect fadvise()/madvise() hints;
374  * SHMEM_HUGE_ADVISE:
375  *	only allocate huge pages if requested with fadvise()/madvise();
376  */
377 
378 #define SHMEM_HUGE_NEVER	0
379 #define SHMEM_HUGE_ALWAYS	1
380 #define SHMEM_HUGE_WITHIN_SIZE	2
381 #define SHMEM_HUGE_ADVISE	3
382 
383 /*
384  * Special values.
385  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
386  *
387  * SHMEM_HUGE_DENY:
388  *	disables huge on shm_mnt and all mounts, for emergency use;
389  * SHMEM_HUGE_FORCE:
390  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
391  *
392  */
393 #define SHMEM_HUGE_DENY		(-1)
394 #define SHMEM_HUGE_FORCE	(-2)
395 
396 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
397 /* ifdef here to avoid bloating shmem.o when not necessary */
398 
399 static int shmem_huge __read_mostly;
400 
401 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
402 static int shmem_parse_huge(const char *str)
403 {
404 	if (!strcmp(str, "never"))
405 		return SHMEM_HUGE_NEVER;
406 	if (!strcmp(str, "always"))
407 		return SHMEM_HUGE_ALWAYS;
408 	if (!strcmp(str, "within_size"))
409 		return SHMEM_HUGE_WITHIN_SIZE;
410 	if (!strcmp(str, "advise"))
411 		return SHMEM_HUGE_ADVISE;
412 	if (!strcmp(str, "deny"))
413 		return SHMEM_HUGE_DENY;
414 	if (!strcmp(str, "force"))
415 		return SHMEM_HUGE_FORCE;
416 	return -EINVAL;
417 }
418 
419 static const char *shmem_format_huge(int huge)
420 {
421 	switch (huge) {
422 	case SHMEM_HUGE_NEVER:
423 		return "never";
424 	case SHMEM_HUGE_ALWAYS:
425 		return "always";
426 	case SHMEM_HUGE_WITHIN_SIZE:
427 		return "within_size";
428 	case SHMEM_HUGE_ADVISE:
429 		return "advise";
430 	case SHMEM_HUGE_DENY:
431 		return "deny";
432 	case SHMEM_HUGE_FORCE:
433 		return "force";
434 	default:
435 		VM_BUG_ON(1);
436 		return "bad_val";
437 	}
438 }
439 #endif
440 
441 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
442 		struct shrink_control *sc, unsigned long nr_to_split)
443 {
444 	LIST_HEAD(list), *pos, *next;
445 	LIST_HEAD(to_remove);
446 	struct inode *inode;
447 	struct shmem_inode_info *info;
448 	struct page *page;
449 	unsigned long batch = sc ? sc->nr_to_scan : 128;
450 	int removed = 0, split = 0;
451 
452 	if (list_empty(&sbinfo->shrinklist))
453 		return SHRINK_STOP;
454 
455 	spin_lock(&sbinfo->shrinklist_lock);
456 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
457 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 
459 		/* pin the inode */
460 		inode = igrab(&info->vfs_inode);
461 
462 		/* inode is about to be evicted */
463 		if (!inode) {
464 			list_del_init(&info->shrinklist);
465 			removed++;
466 			goto next;
467 		}
468 
469 		/* Check if there's anything to gain */
470 		if (round_up(inode->i_size, PAGE_SIZE) ==
471 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
472 			list_move(&info->shrinklist, &to_remove);
473 			removed++;
474 			goto next;
475 		}
476 
477 		list_move(&info->shrinklist, &list);
478 next:
479 		if (!--batch)
480 			break;
481 	}
482 	spin_unlock(&sbinfo->shrinklist_lock);
483 
484 	list_for_each_safe(pos, next, &to_remove) {
485 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
486 		inode = &info->vfs_inode;
487 		list_del_init(&info->shrinklist);
488 		iput(inode);
489 	}
490 
491 	list_for_each_safe(pos, next, &list) {
492 		int ret;
493 
494 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
495 		inode = &info->vfs_inode;
496 
497 		if (nr_to_split && split >= nr_to_split)
498 			goto leave;
499 
500 		page = find_get_page(inode->i_mapping,
501 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
502 		if (!page)
503 			goto drop;
504 
505 		/* No huge page at the end of the file: nothing to split */
506 		if (!PageTransHuge(page)) {
507 			put_page(page);
508 			goto drop;
509 		}
510 
511 		/*
512 		 * Leave the inode on the list if we failed to lock
513 		 * the page at this time.
514 		 *
515 		 * Waiting for the lock may lead to deadlock in the
516 		 * reclaim path.
517 		 */
518 		if (!trylock_page(page)) {
519 			put_page(page);
520 			goto leave;
521 		}
522 
523 		ret = split_huge_page(page);
524 		unlock_page(page);
525 		put_page(page);
526 
527 		/* If split failed leave the inode on the list */
528 		if (ret)
529 			goto leave;
530 
531 		split++;
532 drop:
533 		list_del_init(&info->shrinklist);
534 		removed++;
535 leave:
536 		iput(inode);
537 	}
538 
539 	spin_lock(&sbinfo->shrinklist_lock);
540 	list_splice_tail(&list, &sbinfo->shrinklist);
541 	sbinfo->shrinklist_len -= removed;
542 	spin_unlock(&sbinfo->shrinklist_lock);
543 
544 	return split;
545 }
546 
547 static long shmem_unused_huge_scan(struct super_block *sb,
548 		struct shrink_control *sc)
549 {
550 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551 
552 	if (!READ_ONCE(sbinfo->shrinklist_len))
553 		return SHRINK_STOP;
554 
555 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
556 }
557 
558 static long shmem_unused_huge_count(struct super_block *sb,
559 		struct shrink_control *sc)
560 {
561 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
562 	return READ_ONCE(sbinfo->shrinklist_len);
563 }
564 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 
566 #define shmem_huge SHMEM_HUGE_DENY
567 
568 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
569 		struct shrink_control *sc, unsigned long nr_to_split)
570 {
571 	return 0;
572 }
573 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
574 
575 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
576 {
577 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
578 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
579 	    shmem_huge != SHMEM_HUGE_DENY)
580 		return true;
581 	return false;
582 }
583 
584 /*
585  * Like add_to_page_cache_locked, but error if expected item has gone.
586  */
587 static int shmem_add_to_page_cache(struct page *page,
588 				   struct address_space *mapping,
589 				   pgoff_t index, void *expected)
590 {
591 	int error, nr = hpage_nr_pages(page);
592 
593 	VM_BUG_ON_PAGE(PageTail(page), page);
594 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
595 	VM_BUG_ON_PAGE(!PageLocked(page), page);
596 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
597 	VM_BUG_ON(expected && PageTransHuge(page));
598 
599 	page_ref_add(page, nr);
600 	page->mapping = mapping;
601 	page->index = index;
602 
603 	xa_lock_irq(&mapping->i_pages);
604 	if (PageTransHuge(page)) {
605 		void __rcu **results;
606 		pgoff_t idx;
607 		int i;
608 
609 		error = 0;
610 		if (radix_tree_gang_lookup_slot(&mapping->i_pages,
611 					&results, &idx, index, 1) &&
612 				idx < index + HPAGE_PMD_NR) {
613 			error = -EEXIST;
614 		}
615 
616 		if (!error) {
617 			for (i = 0; i < HPAGE_PMD_NR; i++) {
618 				error = radix_tree_insert(&mapping->i_pages,
619 						index + i, page + i);
620 				VM_BUG_ON(error);
621 			}
622 			count_vm_event(THP_FILE_ALLOC);
623 		}
624 	} else if (!expected) {
625 		error = radix_tree_insert(&mapping->i_pages, index, page);
626 	} else {
627 		error = shmem_radix_tree_replace(mapping, index, expected,
628 								 page);
629 	}
630 
631 	if (!error) {
632 		mapping->nrpages += nr;
633 		if (PageTransHuge(page))
634 			__inc_node_page_state(page, NR_SHMEM_THPS);
635 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
636 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
637 		xa_unlock_irq(&mapping->i_pages);
638 	} else {
639 		page->mapping = NULL;
640 		xa_unlock_irq(&mapping->i_pages);
641 		page_ref_sub(page, nr);
642 	}
643 	return error;
644 }
645 
646 /*
647  * Like delete_from_page_cache, but substitutes swap for page.
648  */
649 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
650 {
651 	struct address_space *mapping = page->mapping;
652 	int error;
653 
654 	VM_BUG_ON_PAGE(PageCompound(page), page);
655 
656 	xa_lock_irq(&mapping->i_pages);
657 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
658 	page->mapping = NULL;
659 	mapping->nrpages--;
660 	__dec_node_page_state(page, NR_FILE_PAGES);
661 	__dec_node_page_state(page, NR_SHMEM);
662 	xa_unlock_irq(&mapping->i_pages);
663 	put_page(page);
664 	BUG_ON(error);
665 }
666 
667 /*
668  * Remove swap entry from radix tree, free the swap and its page cache.
669  */
670 static int shmem_free_swap(struct address_space *mapping,
671 			   pgoff_t index, void *radswap)
672 {
673 	void *old;
674 
675 	xa_lock_irq(&mapping->i_pages);
676 	old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
677 	xa_unlock_irq(&mapping->i_pages);
678 	if (old != radswap)
679 		return -ENOENT;
680 	free_swap_and_cache(radix_to_swp_entry(radswap));
681 	return 0;
682 }
683 
684 /*
685  * Determine (in bytes) how many of the shmem object's pages mapped by the
686  * given offsets are swapped out.
687  *
688  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
689  * as long as the inode doesn't go away and racy results are not a problem.
690  */
691 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
692 						pgoff_t start, pgoff_t end)
693 {
694 	struct radix_tree_iter iter;
695 	void __rcu **slot;
696 	struct page *page;
697 	unsigned long swapped = 0;
698 
699 	rcu_read_lock();
700 
701 	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
702 		if (iter.index >= end)
703 			break;
704 
705 		page = radix_tree_deref_slot(slot);
706 
707 		if (radix_tree_deref_retry(page)) {
708 			slot = radix_tree_iter_retry(&iter);
709 			continue;
710 		}
711 
712 		if (radix_tree_exceptional_entry(page))
713 			swapped++;
714 
715 		if (need_resched()) {
716 			slot = radix_tree_iter_resume(slot, &iter);
717 			cond_resched_rcu();
718 		}
719 	}
720 
721 	rcu_read_unlock();
722 
723 	return swapped << PAGE_SHIFT;
724 }
725 
726 /*
727  * Determine (in bytes) how many of the shmem object's pages mapped by the
728  * given vma is swapped out.
729  *
730  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
731  * as long as the inode doesn't go away and racy results are not a problem.
732  */
733 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
734 {
735 	struct inode *inode = file_inode(vma->vm_file);
736 	struct shmem_inode_info *info = SHMEM_I(inode);
737 	struct address_space *mapping = inode->i_mapping;
738 	unsigned long swapped;
739 
740 	/* Be careful as we don't hold info->lock */
741 	swapped = READ_ONCE(info->swapped);
742 
743 	/*
744 	 * The easier cases are when the shmem object has nothing in swap, or
745 	 * the vma maps it whole. Then we can simply use the stats that we
746 	 * already track.
747 	 */
748 	if (!swapped)
749 		return 0;
750 
751 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
752 		return swapped << PAGE_SHIFT;
753 
754 	/* Here comes the more involved part */
755 	return shmem_partial_swap_usage(mapping,
756 			linear_page_index(vma, vma->vm_start),
757 			linear_page_index(vma, vma->vm_end));
758 }
759 
760 /*
761  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
762  */
763 void shmem_unlock_mapping(struct address_space *mapping)
764 {
765 	struct pagevec pvec;
766 	pgoff_t indices[PAGEVEC_SIZE];
767 	pgoff_t index = 0;
768 
769 	pagevec_init(&pvec);
770 	/*
771 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
772 	 */
773 	while (!mapping_unevictable(mapping)) {
774 		/*
775 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
776 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
777 		 */
778 		pvec.nr = find_get_entries(mapping, index,
779 					   PAGEVEC_SIZE, pvec.pages, indices);
780 		if (!pvec.nr)
781 			break;
782 		index = indices[pvec.nr - 1] + 1;
783 		pagevec_remove_exceptionals(&pvec);
784 		check_move_unevictable_pages(pvec.pages, pvec.nr);
785 		pagevec_release(&pvec);
786 		cond_resched();
787 	}
788 }
789 
790 /*
791  * Remove range of pages and swap entries from radix tree, and free them.
792  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
793  */
794 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
795 								 bool unfalloc)
796 {
797 	struct address_space *mapping = inode->i_mapping;
798 	struct shmem_inode_info *info = SHMEM_I(inode);
799 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
800 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
801 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
802 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
803 	struct pagevec pvec;
804 	pgoff_t indices[PAGEVEC_SIZE];
805 	long nr_swaps_freed = 0;
806 	pgoff_t index;
807 	int i;
808 
809 	if (lend == -1)
810 		end = -1;	/* unsigned, so actually very big */
811 
812 	pagevec_init(&pvec);
813 	index = start;
814 	while (index < end) {
815 		pvec.nr = find_get_entries(mapping, index,
816 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
817 			pvec.pages, indices);
818 		if (!pvec.nr)
819 			break;
820 		for (i = 0; i < pagevec_count(&pvec); i++) {
821 			struct page *page = pvec.pages[i];
822 
823 			index = indices[i];
824 			if (index >= end)
825 				break;
826 
827 			if (radix_tree_exceptional_entry(page)) {
828 				if (unfalloc)
829 					continue;
830 				nr_swaps_freed += !shmem_free_swap(mapping,
831 								index, page);
832 				continue;
833 			}
834 
835 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
836 
837 			if (!trylock_page(page))
838 				continue;
839 
840 			if (PageTransTail(page)) {
841 				/* Middle of THP: zero out the page */
842 				clear_highpage(page);
843 				unlock_page(page);
844 				continue;
845 			} else if (PageTransHuge(page)) {
846 				if (index == round_down(end, HPAGE_PMD_NR)) {
847 					/*
848 					 * Range ends in the middle of THP:
849 					 * zero out the page
850 					 */
851 					clear_highpage(page);
852 					unlock_page(page);
853 					continue;
854 				}
855 				index += HPAGE_PMD_NR - 1;
856 				i += HPAGE_PMD_NR - 1;
857 			}
858 
859 			if (!unfalloc || !PageUptodate(page)) {
860 				VM_BUG_ON_PAGE(PageTail(page), page);
861 				if (page_mapping(page) == mapping) {
862 					VM_BUG_ON_PAGE(PageWriteback(page), page);
863 					truncate_inode_page(mapping, page);
864 				}
865 			}
866 			unlock_page(page);
867 		}
868 		pagevec_remove_exceptionals(&pvec);
869 		pagevec_release(&pvec);
870 		cond_resched();
871 		index++;
872 	}
873 
874 	if (partial_start) {
875 		struct page *page = NULL;
876 		shmem_getpage(inode, start - 1, &page, SGP_READ);
877 		if (page) {
878 			unsigned int top = PAGE_SIZE;
879 			if (start > end) {
880 				top = partial_end;
881 				partial_end = 0;
882 			}
883 			zero_user_segment(page, partial_start, top);
884 			set_page_dirty(page);
885 			unlock_page(page);
886 			put_page(page);
887 		}
888 	}
889 	if (partial_end) {
890 		struct page *page = NULL;
891 		shmem_getpage(inode, end, &page, SGP_READ);
892 		if (page) {
893 			zero_user_segment(page, 0, partial_end);
894 			set_page_dirty(page);
895 			unlock_page(page);
896 			put_page(page);
897 		}
898 	}
899 	if (start >= end)
900 		return;
901 
902 	index = start;
903 	while (index < end) {
904 		cond_resched();
905 
906 		pvec.nr = find_get_entries(mapping, index,
907 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
908 				pvec.pages, indices);
909 		if (!pvec.nr) {
910 			/* If all gone or hole-punch or unfalloc, we're done */
911 			if (index == start || end != -1)
912 				break;
913 			/* But if truncating, restart to make sure all gone */
914 			index = start;
915 			continue;
916 		}
917 		for (i = 0; i < pagevec_count(&pvec); i++) {
918 			struct page *page = pvec.pages[i];
919 
920 			index = indices[i];
921 			if (index >= end)
922 				break;
923 
924 			if (radix_tree_exceptional_entry(page)) {
925 				if (unfalloc)
926 					continue;
927 				if (shmem_free_swap(mapping, index, page)) {
928 					/* Swap was replaced by page: retry */
929 					index--;
930 					break;
931 				}
932 				nr_swaps_freed++;
933 				continue;
934 			}
935 
936 			lock_page(page);
937 
938 			if (PageTransTail(page)) {
939 				/* Middle of THP: zero out the page */
940 				clear_highpage(page);
941 				unlock_page(page);
942 				/*
943 				 * Partial thp truncate due 'start' in middle
944 				 * of THP: don't need to look on these pages
945 				 * again on !pvec.nr restart.
946 				 */
947 				if (index != round_down(end, HPAGE_PMD_NR))
948 					start++;
949 				continue;
950 			} else if (PageTransHuge(page)) {
951 				if (index == round_down(end, HPAGE_PMD_NR)) {
952 					/*
953 					 * Range ends in the middle of THP:
954 					 * zero out the page
955 					 */
956 					clear_highpage(page);
957 					unlock_page(page);
958 					continue;
959 				}
960 				index += HPAGE_PMD_NR - 1;
961 				i += HPAGE_PMD_NR - 1;
962 			}
963 
964 			if (!unfalloc || !PageUptodate(page)) {
965 				VM_BUG_ON_PAGE(PageTail(page), page);
966 				if (page_mapping(page) == mapping) {
967 					VM_BUG_ON_PAGE(PageWriteback(page), page);
968 					truncate_inode_page(mapping, page);
969 				} else {
970 					/* Page was replaced by swap: retry */
971 					unlock_page(page);
972 					index--;
973 					break;
974 				}
975 			}
976 			unlock_page(page);
977 		}
978 		pagevec_remove_exceptionals(&pvec);
979 		pagevec_release(&pvec);
980 		index++;
981 	}
982 
983 	spin_lock_irq(&info->lock);
984 	info->swapped -= nr_swaps_freed;
985 	shmem_recalc_inode(inode);
986 	spin_unlock_irq(&info->lock);
987 }
988 
989 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
990 {
991 	shmem_undo_range(inode, lstart, lend, false);
992 	inode->i_ctime = inode->i_mtime = current_time(inode);
993 }
994 EXPORT_SYMBOL_GPL(shmem_truncate_range);
995 
996 static int shmem_getattr(const struct path *path, struct kstat *stat,
997 			 u32 request_mask, unsigned int query_flags)
998 {
999 	struct inode *inode = path->dentry->d_inode;
1000 	struct shmem_inode_info *info = SHMEM_I(inode);
1001 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1002 
1003 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1004 		spin_lock_irq(&info->lock);
1005 		shmem_recalc_inode(inode);
1006 		spin_unlock_irq(&info->lock);
1007 	}
1008 	generic_fillattr(inode, stat);
1009 
1010 	if (is_huge_enabled(sb_info))
1011 		stat->blksize = HPAGE_PMD_SIZE;
1012 
1013 	return 0;
1014 }
1015 
1016 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1017 {
1018 	struct inode *inode = d_inode(dentry);
1019 	struct shmem_inode_info *info = SHMEM_I(inode);
1020 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1021 	int error;
1022 
1023 	error = setattr_prepare(dentry, attr);
1024 	if (error)
1025 		return error;
1026 
1027 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1028 		loff_t oldsize = inode->i_size;
1029 		loff_t newsize = attr->ia_size;
1030 
1031 		/* protected by i_mutex */
1032 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1033 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1034 			return -EPERM;
1035 
1036 		if (newsize != oldsize) {
1037 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1038 					oldsize, newsize);
1039 			if (error)
1040 				return error;
1041 			i_size_write(inode, newsize);
1042 			inode->i_ctime = inode->i_mtime = current_time(inode);
1043 		}
1044 		if (newsize <= oldsize) {
1045 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1046 			if (oldsize > holebegin)
1047 				unmap_mapping_range(inode->i_mapping,
1048 							holebegin, 0, 1);
1049 			if (info->alloced)
1050 				shmem_truncate_range(inode,
1051 							newsize, (loff_t)-1);
1052 			/* unmap again to remove racily COWed private pages */
1053 			if (oldsize > holebegin)
1054 				unmap_mapping_range(inode->i_mapping,
1055 							holebegin, 0, 1);
1056 
1057 			/*
1058 			 * Part of the huge page can be beyond i_size: subject
1059 			 * to shrink under memory pressure.
1060 			 */
1061 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1062 				spin_lock(&sbinfo->shrinklist_lock);
1063 				/*
1064 				 * _careful to defend against unlocked access to
1065 				 * ->shrink_list in shmem_unused_huge_shrink()
1066 				 */
1067 				if (list_empty_careful(&info->shrinklist)) {
1068 					list_add_tail(&info->shrinklist,
1069 							&sbinfo->shrinklist);
1070 					sbinfo->shrinklist_len++;
1071 				}
1072 				spin_unlock(&sbinfo->shrinklist_lock);
1073 			}
1074 		}
1075 	}
1076 
1077 	setattr_copy(inode, attr);
1078 	if (attr->ia_valid & ATTR_MODE)
1079 		error = posix_acl_chmod(inode, inode->i_mode);
1080 	return error;
1081 }
1082 
1083 static void shmem_evict_inode(struct inode *inode)
1084 {
1085 	struct shmem_inode_info *info = SHMEM_I(inode);
1086 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1087 
1088 	if (inode->i_mapping->a_ops == &shmem_aops) {
1089 		shmem_unacct_size(info->flags, inode->i_size);
1090 		inode->i_size = 0;
1091 		shmem_truncate_range(inode, 0, (loff_t)-1);
1092 		if (!list_empty(&info->shrinklist)) {
1093 			spin_lock(&sbinfo->shrinklist_lock);
1094 			if (!list_empty(&info->shrinklist)) {
1095 				list_del_init(&info->shrinklist);
1096 				sbinfo->shrinklist_len--;
1097 			}
1098 			spin_unlock(&sbinfo->shrinklist_lock);
1099 		}
1100 		if (!list_empty(&info->swaplist)) {
1101 			mutex_lock(&shmem_swaplist_mutex);
1102 			list_del_init(&info->swaplist);
1103 			mutex_unlock(&shmem_swaplist_mutex);
1104 		}
1105 	}
1106 
1107 	simple_xattrs_free(&info->xattrs);
1108 	WARN_ON(inode->i_blocks);
1109 	shmem_free_inode(inode->i_sb);
1110 	clear_inode(inode);
1111 }
1112 
1113 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1114 {
1115 	struct radix_tree_iter iter;
1116 	void __rcu **slot;
1117 	unsigned long found = -1;
1118 	unsigned int checked = 0;
1119 
1120 	rcu_read_lock();
1121 	radix_tree_for_each_slot(slot, root, &iter, 0) {
1122 		void *entry = radix_tree_deref_slot(slot);
1123 
1124 		if (radix_tree_deref_retry(entry)) {
1125 			slot = radix_tree_iter_retry(&iter);
1126 			continue;
1127 		}
1128 		if (entry == item) {
1129 			found = iter.index;
1130 			break;
1131 		}
1132 		checked++;
1133 		if ((checked % 4096) != 0)
1134 			continue;
1135 		slot = radix_tree_iter_resume(slot, &iter);
1136 		cond_resched_rcu();
1137 	}
1138 
1139 	rcu_read_unlock();
1140 	return found;
1141 }
1142 
1143 /*
1144  * If swap found in inode, free it and move page from swapcache to filecache.
1145  */
1146 static int shmem_unuse_inode(struct shmem_inode_info *info,
1147 			     swp_entry_t swap, struct page **pagep)
1148 {
1149 	struct address_space *mapping = info->vfs_inode.i_mapping;
1150 	void *radswap;
1151 	pgoff_t index;
1152 	gfp_t gfp;
1153 	int error = 0;
1154 
1155 	radswap = swp_to_radix_entry(swap);
1156 	index = find_swap_entry(&mapping->i_pages, radswap);
1157 	if (index == -1)
1158 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1159 
1160 	/*
1161 	 * Move _head_ to start search for next from here.
1162 	 * But be careful: shmem_evict_inode checks list_empty without taking
1163 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1164 	 * would appear empty, if it were the only one on shmem_swaplist.
1165 	 */
1166 	if (shmem_swaplist.next != &info->swaplist)
1167 		list_move_tail(&shmem_swaplist, &info->swaplist);
1168 
1169 	gfp = mapping_gfp_mask(mapping);
1170 	if (shmem_should_replace_page(*pagep, gfp)) {
1171 		mutex_unlock(&shmem_swaplist_mutex);
1172 		error = shmem_replace_page(pagep, gfp, info, index);
1173 		mutex_lock(&shmem_swaplist_mutex);
1174 		/*
1175 		 * We needed to drop mutex to make that restrictive page
1176 		 * allocation, but the inode might have been freed while we
1177 		 * dropped it: although a racing shmem_evict_inode() cannot
1178 		 * complete without emptying the radix_tree, our page lock
1179 		 * on this swapcache page is not enough to prevent that -
1180 		 * free_swap_and_cache() of our swap entry will only
1181 		 * trylock_page(), removing swap from radix_tree whatever.
1182 		 *
1183 		 * We must not proceed to shmem_add_to_page_cache() if the
1184 		 * inode has been freed, but of course we cannot rely on
1185 		 * inode or mapping or info to check that.  However, we can
1186 		 * safely check if our swap entry is still in use (and here
1187 		 * it can't have got reused for another page): if it's still
1188 		 * in use, then the inode cannot have been freed yet, and we
1189 		 * can safely proceed (if it's no longer in use, that tells
1190 		 * nothing about the inode, but we don't need to unuse swap).
1191 		 */
1192 		if (!page_swapcount(*pagep))
1193 			error = -ENOENT;
1194 	}
1195 
1196 	/*
1197 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1198 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1199 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1200 	 */
1201 	if (!error)
1202 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1203 						radswap);
1204 	if (error != -ENOMEM) {
1205 		/*
1206 		 * Truncation and eviction use free_swap_and_cache(), which
1207 		 * only does trylock page: if we raced, best clean up here.
1208 		 */
1209 		delete_from_swap_cache(*pagep);
1210 		set_page_dirty(*pagep);
1211 		if (!error) {
1212 			spin_lock_irq(&info->lock);
1213 			info->swapped--;
1214 			spin_unlock_irq(&info->lock);
1215 			swap_free(swap);
1216 		}
1217 	}
1218 	return error;
1219 }
1220 
1221 /*
1222  * Search through swapped inodes to find and replace swap by page.
1223  */
1224 int shmem_unuse(swp_entry_t swap, struct page *page)
1225 {
1226 	struct list_head *this, *next;
1227 	struct shmem_inode_info *info;
1228 	struct mem_cgroup *memcg;
1229 	int error = 0;
1230 
1231 	/*
1232 	 * There's a faint possibility that swap page was replaced before
1233 	 * caller locked it: caller will come back later with the right page.
1234 	 */
1235 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1236 		goto out;
1237 
1238 	/*
1239 	 * Charge page using GFP_KERNEL while we can wait, before taking
1240 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1241 	 * Charged back to the user (not to caller) when swap account is used.
1242 	 */
1243 	error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1244 					    &memcg, false);
1245 	if (error)
1246 		goto out;
1247 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1248 	error = -EAGAIN;
1249 
1250 	mutex_lock(&shmem_swaplist_mutex);
1251 	list_for_each_safe(this, next, &shmem_swaplist) {
1252 		info = list_entry(this, struct shmem_inode_info, swaplist);
1253 		if (info->swapped)
1254 			error = shmem_unuse_inode(info, swap, &page);
1255 		else
1256 			list_del_init(&info->swaplist);
1257 		cond_resched();
1258 		if (error != -EAGAIN)
1259 			break;
1260 		/* found nothing in this: move on to search the next */
1261 	}
1262 	mutex_unlock(&shmem_swaplist_mutex);
1263 
1264 	if (error) {
1265 		if (error != -ENOMEM)
1266 			error = 0;
1267 		mem_cgroup_cancel_charge(page, memcg, false);
1268 	} else
1269 		mem_cgroup_commit_charge(page, memcg, true, false);
1270 out:
1271 	unlock_page(page);
1272 	put_page(page);
1273 	return error;
1274 }
1275 
1276 /*
1277  * Move the page from the page cache to the swap cache.
1278  */
1279 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1280 {
1281 	struct shmem_inode_info *info;
1282 	struct address_space *mapping;
1283 	struct inode *inode;
1284 	swp_entry_t swap;
1285 	pgoff_t index;
1286 
1287 	VM_BUG_ON_PAGE(PageCompound(page), page);
1288 	BUG_ON(!PageLocked(page));
1289 	mapping = page->mapping;
1290 	index = page->index;
1291 	inode = mapping->host;
1292 	info = SHMEM_I(inode);
1293 	if (info->flags & VM_LOCKED)
1294 		goto redirty;
1295 	if (!total_swap_pages)
1296 		goto redirty;
1297 
1298 	/*
1299 	 * Our capabilities prevent regular writeback or sync from ever calling
1300 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1301 	 * its underlying filesystem, in which case tmpfs should write out to
1302 	 * swap only in response to memory pressure, and not for the writeback
1303 	 * threads or sync.
1304 	 */
1305 	if (!wbc->for_reclaim) {
1306 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1307 		goto redirty;
1308 	}
1309 
1310 	/*
1311 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1312 	 * value into swapfile.c, the only way we can correctly account for a
1313 	 * fallocated page arriving here is now to initialize it and write it.
1314 	 *
1315 	 * That's okay for a page already fallocated earlier, but if we have
1316 	 * not yet completed the fallocation, then (a) we want to keep track
1317 	 * of this page in case we have to undo it, and (b) it may not be a
1318 	 * good idea to continue anyway, once we're pushing into swap.  So
1319 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1320 	 */
1321 	if (!PageUptodate(page)) {
1322 		if (inode->i_private) {
1323 			struct shmem_falloc *shmem_falloc;
1324 			spin_lock(&inode->i_lock);
1325 			shmem_falloc = inode->i_private;
1326 			if (shmem_falloc &&
1327 			    !shmem_falloc->waitq &&
1328 			    index >= shmem_falloc->start &&
1329 			    index < shmem_falloc->next)
1330 				shmem_falloc->nr_unswapped++;
1331 			else
1332 				shmem_falloc = NULL;
1333 			spin_unlock(&inode->i_lock);
1334 			if (shmem_falloc)
1335 				goto redirty;
1336 		}
1337 		clear_highpage(page);
1338 		flush_dcache_page(page);
1339 		SetPageUptodate(page);
1340 	}
1341 
1342 	swap = get_swap_page(page);
1343 	if (!swap.val)
1344 		goto redirty;
1345 
1346 	/*
1347 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1348 	 * if it's not already there.  Do it now before the page is
1349 	 * moved to swap cache, when its pagelock no longer protects
1350 	 * the inode from eviction.  But don't unlock the mutex until
1351 	 * we've incremented swapped, because shmem_unuse_inode() will
1352 	 * prune a !swapped inode from the swaplist under this mutex.
1353 	 */
1354 	mutex_lock(&shmem_swaplist_mutex);
1355 	if (list_empty(&info->swaplist))
1356 		list_add_tail(&info->swaplist, &shmem_swaplist);
1357 
1358 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1359 		spin_lock_irq(&info->lock);
1360 		shmem_recalc_inode(inode);
1361 		info->swapped++;
1362 		spin_unlock_irq(&info->lock);
1363 
1364 		swap_shmem_alloc(swap);
1365 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1366 
1367 		mutex_unlock(&shmem_swaplist_mutex);
1368 		BUG_ON(page_mapped(page));
1369 		swap_writepage(page, wbc);
1370 		return 0;
1371 	}
1372 
1373 	mutex_unlock(&shmem_swaplist_mutex);
1374 	put_swap_page(page, swap);
1375 redirty:
1376 	set_page_dirty(page);
1377 	if (wbc->for_reclaim)
1378 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1379 	unlock_page(page);
1380 	return 0;
1381 }
1382 
1383 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1384 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1385 {
1386 	char buffer[64];
1387 
1388 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1389 		return;		/* show nothing */
1390 
1391 	mpol_to_str(buffer, sizeof(buffer), mpol);
1392 
1393 	seq_printf(seq, ",mpol=%s", buffer);
1394 }
1395 
1396 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1397 {
1398 	struct mempolicy *mpol = NULL;
1399 	if (sbinfo->mpol) {
1400 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1401 		mpol = sbinfo->mpol;
1402 		mpol_get(mpol);
1403 		spin_unlock(&sbinfo->stat_lock);
1404 	}
1405 	return mpol;
1406 }
1407 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1408 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1409 {
1410 }
1411 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413 	return NULL;
1414 }
1415 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1416 #ifndef CONFIG_NUMA
1417 #define vm_policy vm_private_data
1418 #endif
1419 
1420 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1421 		struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 	/* Create a pseudo vma that just contains the policy */
1424 	vma_init(vma, NULL);
1425 	/* Bias interleave by inode number to distribute better across nodes */
1426 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1427 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1428 }
1429 
1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1431 {
1432 	/* Drop reference taken by mpol_shared_policy_lookup() */
1433 	mpol_cond_put(vma->vm_policy);
1434 }
1435 
1436 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1437 			struct shmem_inode_info *info, pgoff_t index)
1438 {
1439 	struct vm_area_struct pvma;
1440 	struct page *page;
1441 	struct vm_fault vmf;
1442 
1443 	shmem_pseudo_vma_init(&pvma, info, index);
1444 	vmf.vma = &pvma;
1445 	vmf.address = 0;
1446 	page = swap_cluster_readahead(swap, gfp, &vmf);
1447 	shmem_pseudo_vma_destroy(&pvma);
1448 
1449 	return page;
1450 }
1451 
1452 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1453 		struct shmem_inode_info *info, pgoff_t index)
1454 {
1455 	struct vm_area_struct pvma;
1456 	struct inode *inode = &info->vfs_inode;
1457 	struct address_space *mapping = inode->i_mapping;
1458 	pgoff_t idx, hindex;
1459 	void __rcu **results;
1460 	struct page *page;
1461 
1462 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463 		return NULL;
1464 
1465 	hindex = round_down(index, HPAGE_PMD_NR);
1466 	rcu_read_lock();
1467 	if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1468 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1469 		rcu_read_unlock();
1470 		return NULL;
1471 	}
1472 	rcu_read_unlock();
1473 
1474 	shmem_pseudo_vma_init(&pvma, info, hindex);
1475 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1476 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1477 	shmem_pseudo_vma_destroy(&pvma);
1478 	if (page)
1479 		prep_transhuge_page(page);
1480 	return page;
1481 }
1482 
1483 static struct page *shmem_alloc_page(gfp_t gfp,
1484 			struct shmem_inode_info *info, pgoff_t index)
1485 {
1486 	struct vm_area_struct pvma;
1487 	struct page *page;
1488 
1489 	shmem_pseudo_vma_init(&pvma, info, index);
1490 	page = alloc_page_vma(gfp, &pvma, 0);
1491 	shmem_pseudo_vma_destroy(&pvma);
1492 
1493 	return page;
1494 }
1495 
1496 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1497 		struct inode *inode,
1498 		pgoff_t index, bool huge)
1499 {
1500 	struct shmem_inode_info *info = SHMEM_I(inode);
1501 	struct page *page;
1502 	int nr;
1503 	int err = -ENOSPC;
1504 
1505 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1506 		huge = false;
1507 	nr = huge ? HPAGE_PMD_NR : 1;
1508 
1509 	if (!shmem_inode_acct_block(inode, nr))
1510 		goto failed;
1511 
1512 	if (huge)
1513 		page = shmem_alloc_hugepage(gfp, info, index);
1514 	else
1515 		page = shmem_alloc_page(gfp, info, index);
1516 	if (page) {
1517 		__SetPageLocked(page);
1518 		__SetPageSwapBacked(page);
1519 		return page;
1520 	}
1521 
1522 	err = -ENOMEM;
1523 	shmem_inode_unacct_blocks(inode, nr);
1524 failed:
1525 	return ERR_PTR(err);
1526 }
1527 
1528 /*
1529  * When a page is moved from swapcache to shmem filecache (either by the
1530  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532  * ignorance of the mapping it belongs to.  If that mapping has special
1533  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534  * we may need to copy to a suitable page before moving to filecache.
1535  *
1536  * In a future release, this may well be extended to respect cpuset and
1537  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538  * but for now it is a simple matter of zone.
1539  */
1540 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1541 {
1542 	return page_zonenum(page) > gfp_zone(gfp);
1543 }
1544 
1545 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1546 				struct shmem_inode_info *info, pgoff_t index)
1547 {
1548 	struct page *oldpage, *newpage;
1549 	struct address_space *swap_mapping;
1550 	pgoff_t swap_index;
1551 	int error;
1552 
1553 	oldpage = *pagep;
1554 	swap_index = page_private(oldpage);
1555 	swap_mapping = page_mapping(oldpage);
1556 
1557 	/*
1558 	 * We have arrived here because our zones are constrained, so don't
1559 	 * limit chance of success by further cpuset and node constraints.
1560 	 */
1561 	gfp &= ~GFP_CONSTRAINT_MASK;
1562 	newpage = shmem_alloc_page(gfp, info, index);
1563 	if (!newpage)
1564 		return -ENOMEM;
1565 
1566 	get_page(newpage);
1567 	copy_highpage(newpage, oldpage);
1568 	flush_dcache_page(newpage);
1569 
1570 	__SetPageLocked(newpage);
1571 	__SetPageSwapBacked(newpage);
1572 	SetPageUptodate(newpage);
1573 	set_page_private(newpage, swap_index);
1574 	SetPageSwapCache(newpage);
1575 
1576 	/*
1577 	 * Our caller will very soon move newpage out of swapcache, but it's
1578 	 * a nice clean interface for us to replace oldpage by newpage there.
1579 	 */
1580 	xa_lock_irq(&swap_mapping->i_pages);
1581 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1582 								   newpage);
1583 	if (!error) {
1584 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1585 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1586 	}
1587 	xa_unlock_irq(&swap_mapping->i_pages);
1588 
1589 	if (unlikely(error)) {
1590 		/*
1591 		 * Is this possible?  I think not, now that our callers check
1592 		 * both PageSwapCache and page_private after getting page lock;
1593 		 * but be defensive.  Reverse old to newpage for clear and free.
1594 		 */
1595 		oldpage = newpage;
1596 	} else {
1597 		mem_cgroup_migrate(oldpage, newpage);
1598 		lru_cache_add_anon(newpage);
1599 		*pagep = newpage;
1600 	}
1601 
1602 	ClearPageSwapCache(oldpage);
1603 	set_page_private(oldpage, 0);
1604 
1605 	unlock_page(oldpage);
1606 	put_page(oldpage);
1607 	put_page(oldpage);
1608 	return error;
1609 }
1610 
1611 /*
1612  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1613  *
1614  * If we allocate a new one we do not mark it dirty. That's up to the
1615  * vm. If we swap it in we mark it dirty since we also free the swap
1616  * entry since a page cannot live in both the swap and page cache.
1617  *
1618  * fault_mm and fault_type are only supplied by shmem_fault:
1619  * otherwise they are NULL.
1620  */
1621 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1622 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1623 	struct vm_area_struct *vma, struct vm_fault *vmf,
1624 			vm_fault_t *fault_type)
1625 {
1626 	struct address_space *mapping = inode->i_mapping;
1627 	struct shmem_inode_info *info = SHMEM_I(inode);
1628 	struct shmem_sb_info *sbinfo;
1629 	struct mm_struct *charge_mm;
1630 	struct mem_cgroup *memcg;
1631 	struct page *page;
1632 	swp_entry_t swap;
1633 	enum sgp_type sgp_huge = sgp;
1634 	pgoff_t hindex = index;
1635 	int error;
1636 	int once = 0;
1637 	int alloced = 0;
1638 
1639 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1640 		return -EFBIG;
1641 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1642 		sgp = SGP_CACHE;
1643 repeat:
1644 	swap.val = 0;
1645 	page = find_lock_entry(mapping, index);
1646 	if (radix_tree_exceptional_entry(page)) {
1647 		swap = radix_to_swp_entry(page);
1648 		page = NULL;
1649 	}
1650 
1651 	if (sgp <= SGP_CACHE &&
1652 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1653 		error = -EINVAL;
1654 		goto unlock;
1655 	}
1656 
1657 	if (page && sgp == SGP_WRITE)
1658 		mark_page_accessed(page);
1659 
1660 	/* fallocated page? */
1661 	if (page && !PageUptodate(page)) {
1662 		if (sgp != SGP_READ)
1663 			goto clear;
1664 		unlock_page(page);
1665 		put_page(page);
1666 		page = NULL;
1667 	}
1668 	if (page || (sgp == SGP_READ && !swap.val)) {
1669 		*pagep = page;
1670 		return 0;
1671 	}
1672 
1673 	/*
1674 	 * Fast cache lookup did not find it:
1675 	 * bring it back from swap or allocate.
1676 	 */
1677 	sbinfo = SHMEM_SB(inode->i_sb);
1678 	charge_mm = vma ? vma->vm_mm : current->mm;
1679 
1680 	if (swap.val) {
1681 		/* Look it up and read it in.. */
1682 		page = lookup_swap_cache(swap, NULL, 0);
1683 		if (!page) {
1684 			/* Or update major stats only when swapin succeeds?? */
1685 			if (fault_type) {
1686 				*fault_type |= VM_FAULT_MAJOR;
1687 				count_vm_event(PGMAJFAULT);
1688 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1689 			}
1690 			/* Here we actually start the io */
1691 			page = shmem_swapin(swap, gfp, info, index);
1692 			if (!page) {
1693 				error = -ENOMEM;
1694 				goto failed;
1695 			}
1696 		}
1697 
1698 		/* We have to do this with page locked to prevent races */
1699 		lock_page(page);
1700 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1701 		    !shmem_confirm_swap(mapping, index, swap)) {
1702 			error = -EEXIST;	/* try again */
1703 			goto unlock;
1704 		}
1705 		if (!PageUptodate(page)) {
1706 			error = -EIO;
1707 			goto failed;
1708 		}
1709 		wait_on_page_writeback(page);
1710 
1711 		if (shmem_should_replace_page(page, gfp)) {
1712 			error = shmem_replace_page(&page, gfp, info, index);
1713 			if (error)
1714 				goto failed;
1715 		}
1716 
1717 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1718 				false);
1719 		if (!error) {
1720 			error = shmem_add_to_page_cache(page, mapping, index,
1721 						swp_to_radix_entry(swap));
1722 			/*
1723 			 * We already confirmed swap under page lock, and make
1724 			 * no memory allocation here, so usually no possibility
1725 			 * of error; but free_swap_and_cache() only trylocks a
1726 			 * page, so it is just possible that the entry has been
1727 			 * truncated or holepunched since swap was confirmed.
1728 			 * shmem_undo_range() will have done some of the
1729 			 * unaccounting, now delete_from_swap_cache() will do
1730 			 * the rest.
1731 			 * Reset swap.val? No, leave it so "failed" goes back to
1732 			 * "repeat": reading a hole and writing should succeed.
1733 			 */
1734 			if (error) {
1735 				mem_cgroup_cancel_charge(page, memcg, false);
1736 				delete_from_swap_cache(page);
1737 			}
1738 		}
1739 		if (error)
1740 			goto failed;
1741 
1742 		mem_cgroup_commit_charge(page, memcg, true, false);
1743 
1744 		spin_lock_irq(&info->lock);
1745 		info->swapped--;
1746 		shmem_recalc_inode(inode);
1747 		spin_unlock_irq(&info->lock);
1748 
1749 		if (sgp == SGP_WRITE)
1750 			mark_page_accessed(page);
1751 
1752 		delete_from_swap_cache(page);
1753 		set_page_dirty(page);
1754 		swap_free(swap);
1755 
1756 	} else {
1757 		if (vma && userfaultfd_missing(vma)) {
1758 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1759 			return 0;
1760 		}
1761 
1762 		/* shmem_symlink() */
1763 		if (mapping->a_ops != &shmem_aops)
1764 			goto alloc_nohuge;
1765 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1766 			goto alloc_nohuge;
1767 		if (shmem_huge == SHMEM_HUGE_FORCE)
1768 			goto alloc_huge;
1769 		switch (sbinfo->huge) {
1770 			loff_t i_size;
1771 			pgoff_t off;
1772 		case SHMEM_HUGE_NEVER:
1773 			goto alloc_nohuge;
1774 		case SHMEM_HUGE_WITHIN_SIZE:
1775 			off = round_up(index, HPAGE_PMD_NR);
1776 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1777 			if (i_size >= HPAGE_PMD_SIZE &&
1778 					i_size >> PAGE_SHIFT >= off)
1779 				goto alloc_huge;
1780 			/* fallthrough */
1781 		case SHMEM_HUGE_ADVISE:
1782 			if (sgp_huge == SGP_HUGE)
1783 				goto alloc_huge;
1784 			/* TODO: implement fadvise() hints */
1785 			goto alloc_nohuge;
1786 		}
1787 
1788 alloc_huge:
1789 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1790 		if (IS_ERR(page)) {
1791 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1792 					index, false);
1793 		}
1794 		if (IS_ERR(page)) {
1795 			int retry = 5;
1796 			error = PTR_ERR(page);
1797 			page = NULL;
1798 			if (error != -ENOSPC)
1799 				goto failed;
1800 			/*
1801 			 * Try to reclaim some spece by splitting a huge page
1802 			 * beyond i_size on the filesystem.
1803 			 */
1804 			while (retry--) {
1805 				int ret;
1806 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1807 				if (ret == SHRINK_STOP)
1808 					break;
1809 				if (ret)
1810 					goto alloc_nohuge;
1811 			}
1812 			goto failed;
1813 		}
1814 
1815 		if (PageTransHuge(page))
1816 			hindex = round_down(index, HPAGE_PMD_NR);
1817 		else
1818 			hindex = index;
1819 
1820 		if (sgp == SGP_WRITE)
1821 			__SetPageReferenced(page);
1822 
1823 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1824 				PageTransHuge(page));
1825 		if (error)
1826 			goto unacct;
1827 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1828 				compound_order(page));
1829 		if (!error) {
1830 			error = shmem_add_to_page_cache(page, mapping, hindex,
1831 							NULL);
1832 			radix_tree_preload_end();
1833 		}
1834 		if (error) {
1835 			mem_cgroup_cancel_charge(page, memcg,
1836 					PageTransHuge(page));
1837 			goto unacct;
1838 		}
1839 		mem_cgroup_commit_charge(page, memcg, false,
1840 				PageTransHuge(page));
1841 		lru_cache_add_anon(page);
1842 
1843 		spin_lock_irq(&info->lock);
1844 		info->alloced += 1 << compound_order(page);
1845 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1846 		shmem_recalc_inode(inode);
1847 		spin_unlock_irq(&info->lock);
1848 		alloced = true;
1849 
1850 		if (PageTransHuge(page) &&
1851 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1852 				hindex + HPAGE_PMD_NR - 1) {
1853 			/*
1854 			 * Part of the huge page is beyond i_size: subject
1855 			 * to shrink under memory pressure.
1856 			 */
1857 			spin_lock(&sbinfo->shrinklist_lock);
1858 			/*
1859 			 * _careful to defend against unlocked access to
1860 			 * ->shrink_list in shmem_unused_huge_shrink()
1861 			 */
1862 			if (list_empty_careful(&info->shrinklist)) {
1863 				list_add_tail(&info->shrinklist,
1864 						&sbinfo->shrinklist);
1865 				sbinfo->shrinklist_len++;
1866 			}
1867 			spin_unlock(&sbinfo->shrinklist_lock);
1868 		}
1869 
1870 		/*
1871 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1872 		 */
1873 		if (sgp == SGP_FALLOC)
1874 			sgp = SGP_WRITE;
1875 clear:
1876 		/*
1877 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1878 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1879 		 * it now, lest undo on failure cancel our earlier guarantee.
1880 		 */
1881 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1882 			struct page *head = compound_head(page);
1883 			int i;
1884 
1885 			for (i = 0; i < (1 << compound_order(head)); i++) {
1886 				clear_highpage(head + i);
1887 				flush_dcache_page(head + i);
1888 			}
1889 			SetPageUptodate(head);
1890 		}
1891 	}
1892 
1893 	/* Perhaps the file has been truncated since we checked */
1894 	if (sgp <= SGP_CACHE &&
1895 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1896 		if (alloced) {
1897 			ClearPageDirty(page);
1898 			delete_from_page_cache(page);
1899 			spin_lock_irq(&info->lock);
1900 			shmem_recalc_inode(inode);
1901 			spin_unlock_irq(&info->lock);
1902 		}
1903 		error = -EINVAL;
1904 		goto unlock;
1905 	}
1906 	*pagep = page + index - hindex;
1907 	return 0;
1908 
1909 	/*
1910 	 * Error recovery.
1911 	 */
1912 unacct:
1913 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1914 
1915 	if (PageTransHuge(page)) {
1916 		unlock_page(page);
1917 		put_page(page);
1918 		goto alloc_nohuge;
1919 	}
1920 failed:
1921 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1922 		error = -EEXIST;
1923 unlock:
1924 	if (page) {
1925 		unlock_page(page);
1926 		put_page(page);
1927 	}
1928 	if (error == -ENOSPC && !once++) {
1929 		spin_lock_irq(&info->lock);
1930 		shmem_recalc_inode(inode);
1931 		spin_unlock_irq(&info->lock);
1932 		goto repeat;
1933 	}
1934 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1935 		goto repeat;
1936 	return error;
1937 }
1938 
1939 /*
1940  * This is like autoremove_wake_function, but it removes the wait queue
1941  * entry unconditionally - even if something else had already woken the
1942  * target.
1943  */
1944 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1945 {
1946 	int ret = default_wake_function(wait, mode, sync, key);
1947 	list_del_init(&wait->entry);
1948 	return ret;
1949 }
1950 
1951 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1952 {
1953 	struct vm_area_struct *vma = vmf->vma;
1954 	struct inode *inode = file_inode(vma->vm_file);
1955 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1956 	enum sgp_type sgp;
1957 	int err;
1958 	vm_fault_t ret = VM_FAULT_LOCKED;
1959 
1960 	/*
1961 	 * Trinity finds that probing a hole which tmpfs is punching can
1962 	 * prevent the hole-punch from ever completing: which in turn
1963 	 * locks writers out with its hold on i_mutex.  So refrain from
1964 	 * faulting pages into the hole while it's being punched.  Although
1965 	 * shmem_undo_range() does remove the additions, it may be unable to
1966 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1967 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1968 	 *
1969 	 * It does not matter if we sometimes reach this check just before the
1970 	 * hole-punch begins, so that one fault then races with the punch:
1971 	 * we just need to make racing faults a rare case.
1972 	 *
1973 	 * The implementation below would be much simpler if we just used a
1974 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1975 	 * and bloating every shmem inode for this unlikely case would be sad.
1976 	 */
1977 	if (unlikely(inode->i_private)) {
1978 		struct shmem_falloc *shmem_falloc;
1979 
1980 		spin_lock(&inode->i_lock);
1981 		shmem_falloc = inode->i_private;
1982 		if (shmem_falloc &&
1983 		    shmem_falloc->waitq &&
1984 		    vmf->pgoff >= shmem_falloc->start &&
1985 		    vmf->pgoff < shmem_falloc->next) {
1986 			wait_queue_head_t *shmem_falloc_waitq;
1987 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1988 
1989 			ret = VM_FAULT_NOPAGE;
1990 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1991 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1992 				/* It's polite to up mmap_sem if we can */
1993 				up_read(&vma->vm_mm->mmap_sem);
1994 				ret = VM_FAULT_RETRY;
1995 			}
1996 
1997 			shmem_falloc_waitq = shmem_falloc->waitq;
1998 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1999 					TASK_UNINTERRUPTIBLE);
2000 			spin_unlock(&inode->i_lock);
2001 			schedule();
2002 
2003 			/*
2004 			 * shmem_falloc_waitq points into the shmem_fallocate()
2005 			 * stack of the hole-punching task: shmem_falloc_waitq
2006 			 * is usually invalid by the time we reach here, but
2007 			 * finish_wait() does not dereference it in that case;
2008 			 * though i_lock needed lest racing with wake_up_all().
2009 			 */
2010 			spin_lock(&inode->i_lock);
2011 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2012 			spin_unlock(&inode->i_lock);
2013 			return ret;
2014 		}
2015 		spin_unlock(&inode->i_lock);
2016 	}
2017 
2018 	sgp = SGP_CACHE;
2019 
2020 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2021 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2022 		sgp = SGP_NOHUGE;
2023 	else if (vma->vm_flags & VM_HUGEPAGE)
2024 		sgp = SGP_HUGE;
2025 
2026 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2027 				  gfp, vma, vmf, &ret);
2028 	if (err)
2029 		return vmf_error(err);
2030 	return ret;
2031 }
2032 
2033 unsigned long shmem_get_unmapped_area(struct file *file,
2034 				      unsigned long uaddr, unsigned long len,
2035 				      unsigned long pgoff, unsigned long flags)
2036 {
2037 	unsigned long (*get_area)(struct file *,
2038 		unsigned long, unsigned long, unsigned long, unsigned long);
2039 	unsigned long addr;
2040 	unsigned long offset;
2041 	unsigned long inflated_len;
2042 	unsigned long inflated_addr;
2043 	unsigned long inflated_offset;
2044 
2045 	if (len > TASK_SIZE)
2046 		return -ENOMEM;
2047 
2048 	get_area = current->mm->get_unmapped_area;
2049 	addr = get_area(file, uaddr, len, pgoff, flags);
2050 
2051 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2052 		return addr;
2053 	if (IS_ERR_VALUE(addr))
2054 		return addr;
2055 	if (addr & ~PAGE_MASK)
2056 		return addr;
2057 	if (addr > TASK_SIZE - len)
2058 		return addr;
2059 
2060 	if (shmem_huge == SHMEM_HUGE_DENY)
2061 		return addr;
2062 	if (len < HPAGE_PMD_SIZE)
2063 		return addr;
2064 	if (flags & MAP_FIXED)
2065 		return addr;
2066 	/*
2067 	 * Our priority is to support MAP_SHARED mapped hugely;
2068 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2069 	 * But if caller specified an address hint, respect that as before.
2070 	 */
2071 	if (uaddr)
2072 		return addr;
2073 
2074 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2075 		struct super_block *sb;
2076 
2077 		if (file) {
2078 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2079 			sb = file_inode(file)->i_sb;
2080 		} else {
2081 			/*
2082 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2083 			 * for "/dev/zero", to create a shared anonymous object.
2084 			 */
2085 			if (IS_ERR(shm_mnt))
2086 				return addr;
2087 			sb = shm_mnt->mnt_sb;
2088 		}
2089 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2090 			return addr;
2091 	}
2092 
2093 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2094 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2095 		return addr;
2096 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2097 		return addr;
2098 
2099 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2100 	if (inflated_len > TASK_SIZE)
2101 		return addr;
2102 	if (inflated_len < len)
2103 		return addr;
2104 
2105 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2106 	if (IS_ERR_VALUE(inflated_addr))
2107 		return addr;
2108 	if (inflated_addr & ~PAGE_MASK)
2109 		return addr;
2110 
2111 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2112 	inflated_addr += offset - inflated_offset;
2113 	if (inflated_offset > offset)
2114 		inflated_addr += HPAGE_PMD_SIZE;
2115 
2116 	if (inflated_addr > TASK_SIZE - len)
2117 		return addr;
2118 	return inflated_addr;
2119 }
2120 
2121 #ifdef CONFIG_NUMA
2122 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2123 {
2124 	struct inode *inode = file_inode(vma->vm_file);
2125 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2126 }
2127 
2128 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2129 					  unsigned long addr)
2130 {
2131 	struct inode *inode = file_inode(vma->vm_file);
2132 	pgoff_t index;
2133 
2134 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2135 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2136 }
2137 #endif
2138 
2139 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2140 {
2141 	struct inode *inode = file_inode(file);
2142 	struct shmem_inode_info *info = SHMEM_I(inode);
2143 	int retval = -ENOMEM;
2144 
2145 	spin_lock_irq(&info->lock);
2146 	if (lock && !(info->flags & VM_LOCKED)) {
2147 		if (!user_shm_lock(inode->i_size, user))
2148 			goto out_nomem;
2149 		info->flags |= VM_LOCKED;
2150 		mapping_set_unevictable(file->f_mapping);
2151 	}
2152 	if (!lock && (info->flags & VM_LOCKED) && user) {
2153 		user_shm_unlock(inode->i_size, user);
2154 		info->flags &= ~VM_LOCKED;
2155 		mapping_clear_unevictable(file->f_mapping);
2156 	}
2157 	retval = 0;
2158 
2159 out_nomem:
2160 	spin_unlock_irq(&info->lock);
2161 	return retval;
2162 }
2163 
2164 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2165 {
2166 	file_accessed(file);
2167 	vma->vm_ops = &shmem_vm_ops;
2168 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2169 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2170 			(vma->vm_end & HPAGE_PMD_MASK)) {
2171 		khugepaged_enter(vma, vma->vm_flags);
2172 	}
2173 	return 0;
2174 }
2175 
2176 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2177 				     umode_t mode, dev_t dev, unsigned long flags)
2178 {
2179 	struct inode *inode;
2180 	struct shmem_inode_info *info;
2181 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2182 
2183 	if (shmem_reserve_inode(sb))
2184 		return NULL;
2185 
2186 	inode = new_inode(sb);
2187 	if (inode) {
2188 		inode->i_ino = get_next_ino();
2189 		inode_init_owner(inode, dir, mode);
2190 		inode->i_blocks = 0;
2191 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2192 		inode->i_generation = prandom_u32();
2193 		info = SHMEM_I(inode);
2194 		memset(info, 0, (char *)inode - (char *)info);
2195 		spin_lock_init(&info->lock);
2196 		info->seals = F_SEAL_SEAL;
2197 		info->flags = flags & VM_NORESERVE;
2198 		INIT_LIST_HEAD(&info->shrinklist);
2199 		INIT_LIST_HEAD(&info->swaplist);
2200 		simple_xattrs_init(&info->xattrs);
2201 		cache_no_acl(inode);
2202 
2203 		switch (mode & S_IFMT) {
2204 		default:
2205 			inode->i_op = &shmem_special_inode_operations;
2206 			init_special_inode(inode, mode, dev);
2207 			break;
2208 		case S_IFREG:
2209 			inode->i_mapping->a_ops = &shmem_aops;
2210 			inode->i_op = &shmem_inode_operations;
2211 			inode->i_fop = &shmem_file_operations;
2212 			mpol_shared_policy_init(&info->policy,
2213 						 shmem_get_sbmpol(sbinfo));
2214 			break;
2215 		case S_IFDIR:
2216 			inc_nlink(inode);
2217 			/* Some things misbehave if size == 0 on a directory */
2218 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2219 			inode->i_op = &shmem_dir_inode_operations;
2220 			inode->i_fop = &simple_dir_operations;
2221 			break;
2222 		case S_IFLNK:
2223 			/*
2224 			 * Must not load anything in the rbtree,
2225 			 * mpol_free_shared_policy will not be called.
2226 			 */
2227 			mpol_shared_policy_init(&info->policy, NULL);
2228 			break;
2229 		}
2230 
2231 		lockdep_annotate_inode_mutex_key(inode);
2232 	} else
2233 		shmem_free_inode(sb);
2234 	return inode;
2235 }
2236 
2237 bool shmem_mapping(struct address_space *mapping)
2238 {
2239 	return mapping->a_ops == &shmem_aops;
2240 }
2241 
2242 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2243 				  pmd_t *dst_pmd,
2244 				  struct vm_area_struct *dst_vma,
2245 				  unsigned long dst_addr,
2246 				  unsigned long src_addr,
2247 				  bool zeropage,
2248 				  struct page **pagep)
2249 {
2250 	struct inode *inode = file_inode(dst_vma->vm_file);
2251 	struct shmem_inode_info *info = SHMEM_I(inode);
2252 	struct address_space *mapping = inode->i_mapping;
2253 	gfp_t gfp = mapping_gfp_mask(mapping);
2254 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2255 	struct mem_cgroup *memcg;
2256 	spinlock_t *ptl;
2257 	void *page_kaddr;
2258 	struct page *page;
2259 	pte_t _dst_pte, *dst_pte;
2260 	int ret;
2261 
2262 	ret = -ENOMEM;
2263 	if (!shmem_inode_acct_block(inode, 1))
2264 		goto out;
2265 
2266 	if (!*pagep) {
2267 		page = shmem_alloc_page(gfp, info, pgoff);
2268 		if (!page)
2269 			goto out_unacct_blocks;
2270 
2271 		if (!zeropage) {	/* mcopy_atomic */
2272 			page_kaddr = kmap_atomic(page);
2273 			ret = copy_from_user(page_kaddr,
2274 					     (const void __user *)src_addr,
2275 					     PAGE_SIZE);
2276 			kunmap_atomic(page_kaddr);
2277 
2278 			/* fallback to copy_from_user outside mmap_sem */
2279 			if (unlikely(ret)) {
2280 				*pagep = page;
2281 				shmem_inode_unacct_blocks(inode, 1);
2282 				/* don't free the page */
2283 				return -EFAULT;
2284 			}
2285 		} else {		/* mfill_zeropage_atomic */
2286 			clear_highpage(page);
2287 		}
2288 	} else {
2289 		page = *pagep;
2290 		*pagep = NULL;
2291 	}
2292 
2293 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2294 	__SetPageLocked(page);
2295 	__SetPageSwapBacked(page);
2296 	__SetPageUptodate(page);
2297 
2298 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2299 	if (ret)
2300 		goto out_release;
2301 
2302 	ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2303 	if (!ret) {
2304 		ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2305 		radix_tree_preload_end();
2306 	}
2307 	if (ret)
2308 		goto out_release_uncharge;
2309 
2310 	mem_cgroup_commit_charge(page, memcg, false, false);
2311 
2312 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2313 	if (dst_vma->vm_flags & VM_WRITE)
2314 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2315 
2316 	ret = -EEXIST;
2317 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2318 	if (!pte_none(*dst_pte))
2319 		goto out_release_uncharge_unlock;
2320 
2321 	lru_cache_add_anon(page);
2322 
2323 	spin_lock(&info->lock);
2324 	info->alloced++;
2325 	inode->i_blocks += BLOCKS_PER_PAGE;
2326 	shmem_recalc_inode(inode);
2327 	spin_unlock(&info->lock);
2328 
2329 	inc_mm_counter(dst_mm, mm_counter_file(page));
2330 	page_add_file_rmap(page, false);
2331 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2332 
2333 	/* No need to invalidate - it was non-present before */
2334 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2335 	unlock_page(page);
2336 	pte_unmap_unlock(dst_pte, ptl);
2337 	ret = 0;
2338 out:
2339 	return ret;
2340 out_release_uncharge_unlock:
2341 	pte_unmap_unlock(dst_pte, ptl);
2342 out_release_uncharge:
2343 	mem_cgroup_cancel_charge(page, memcg, false);
2344 out_release:
2345 	unlock_page(page);
2346 	put_page(page);
2347 out_unacct_blocks:
2348 	shmem_inode_unacct_blocks(inode, 1);
2349 	goto out;
2350 }
2351 
2352 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2353 			   pmd_t *dst_pmd,
2354 			   struct vm_area_struct *dst_vma,
2355 			   unsigned long dst_addr,
2356 			   unsigned long src_addr,
2357 			   struct page **pagep)
2358 {
2359 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2360 				      dst_addr, src_addr, false, pagep);
2361 }
2362 
2363 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2364 			     pmd_t *dst_pmd,
2365 			     struct vm_area_struct *dst_vma,
2366 			     unsigned long dst_addr)
2367 {
2368 	struct page *page = NULL;
2369 
2370 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2371 				      dst_addr, 0, true, &page);
2372 }
2373 
2374 #ifdef CONFIG_TMPFS
2375 static const struct inode_operations shmem_symlink_inode_operations;
2376 static const struct inode_operations shmem_short_symlink_operations;
2377 
2378 #ifdef CONFIG_TMPFS_XATTR
2379 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2380 #else
2381 #define shmem_initxattrs NULL
2382 #endif
2383 
2384 static int
2385 shmem_write_begin(struct file *file, struct address_space *mapping,
2386 			loff_t pos, unsigned len, unsigned flags,
2387 			struct page **pagep, void **fsdata)
2388 {
2389 	struct inode *inode = mapping->host;
2390 	struct shmem_inode_info *info = SHMEM_I(inode);
2391 	pgoff_t index = pos >> PAGE_SHIFT;
2392 
2393 	/* i_mutex is held by caller */
2394 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2395 		if (info->seals & F_SEAL_WRITE)
2396 			return -EPERM;
2397 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2398 			return -EPERM;
2399 	}
2400 
2401 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2402 }
2403 
2404 static int
2405 shmem_write_end(struct file *file, struct address_space *mapping,
2406 			loff_t pos, unsigned len, unsigned copied,
2407 			struct page *page, void *fsdata)
2408 {
2409 	struct inode *inode = mapping->host;
2410 
2411 	if (pos + copied > inode->i_size)
2412 		i_size_write(inode, pos + copied);
2413 
2414 	if (!PageUptodate(page)) {
2415 		struct page *head = compound_head(page);
2416 		if (PageTransCompound(page)) {
2417 			int i;
2418 
2419 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2420 				if (head + i == page)
2421 					continue;
2422 				clear_highpage(head + i);
2423 				flush_dcache_page(head + i);
2424 			}
2425 		}
2426 		if (copied < PAGE_SIZE) {
2427 			unsigned from = pos & (PAGE_SIZE - 1);
2428 			zero_user_segments(page, 0, from,
2429 					from + copied, PAGE_SIZE);
2430 		}
2431 		SetPageUptodate(head);
2432 	}
2433 	set_page_dirty(page);
2434 	unlock_page(page);
2435 	put_page(page);
2436 
2437 	return copied;
2438 }
2439 
2440 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2441 {
2442 	struct file *file = iocb->ki_filp;
2443 	struct inode *inode = file_inode(file);
2444 	struct address_space *mapping = inode->i_mapping;
2445 	pgoff_t index;
2446 	unsigned long offset;
2447 	enum sgp_type sgp = SGP_READ;
2448 	int error = 0;
2449 	ssize_t retval = 0;
2450 	loff_t *ppos = &iocb->ki_pos;
2451 
2452 	/*
2453 	 * Might this read be for a stacking filesystem?  Then when reading
2454 	 * holes of a sparse file, we actually need to allocate those pages,
2455 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2456 	 */
2457 	if (!iter_is_iovec(to))
2458 		sgp = SGP_CACHE;
2459 
2460 	index = *ppos >> PAGE_SHIFT;
2461 	offset = *ppos & ~PAGE_MASK;
2462 
2463 	for (;;) {
2464 		struct page *page = NULL;
2465 		pgoff_t end_index;
2466 		unsigned long nr, ret;
2467 		loff_t i_size = i_size_read(inode);
2468 
2469 		end_index = i_size >> PAGE_SHIFT;
2470 		if (index > end_index)
2471 			break;
2472 		if (index == end_index) {
2473 			nr = i_size & ~PAGE_MASK;
2474 			if (nr <= offset)
2475 				break;
2476 		}
2477 
2478 		error = shmem_getpage(inode, index, &page, sgp);
2479 		if (error) {
2480 			if (error == -EINVAL)
2481 				error = 0;
2482 			break;
2483 		}
2484 		if (page) {
2485 			if (sgp == SGP_CACHE)
2486 				set_page_dirty(page);
2487 			unlock_page(page);
2488 		}
2489 
2490 		/*
2491 		 * We must evaluate after, since reads (unlike writes)
2492 		 * are called without i_mutex protection against truncate
2493 		 */
2494 		nr = PAGE_SIZE;
2495 		i_size = i_size_read(inode);
2496 		end_index = i_size >> PAGE_SHIFT;
2497 		if (index == end_index) {
2498 			nr = i_size & ~PAGE_MASK;
2499 			if (nr <= offset) {
2500 				if (page)
2501 					put_page(page);
2502 				break;
2503 			}
2504 		}
2505 		nr -= offset;
2506 
2507 		if (page) {
2508 			/*
2509 			 * If users can be writing to this page using arbitrary
2510 			 * virtual addresses, take care about potential aliasing
2511 			 * before reading the page on the kernel side.
2512 			 */
2513 			if (mapping_writably_mapped(mapping))
2514 				flush_dcache_page(page);
2515 			/*
2516 			 * Mark the page accessed if we read the beginning.
2517 			 */
2518 			if (!offset)
2519 				mark_page_accessed(page);
2520 		} else {
2521 			page = ZERO_PAGE(0);
2522 			get_page(page);
2523 		}
2524 
2525 		/*
2526 		 * Ok, we have the page, and it's up-to-date, so
2527 		 * now we can copy it to user space...
2528 		 */
2529 		ret = copy_page_to_iter(page, offset, nr, to);
2530 		retval += ret;
2531 		offset += ret;
2532 		index += offset >> PAGE_SHIFT;
2533 		offset &= ~PAGE_MASK;
2534 
2535 		put_page(page);
2536 		if (!iov_iter_count(to))
2537 			break;
2538 		if (ret < nr) {
2539 			error = -EFAULT;
2540 			break;
2541 		}
2542 		cond_resched();
2543 	}
2544 
2545 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2546 	file_accessed(file);
2547 	return retval ? retval : error;
2548 }
2549 
2550 /*
2551  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2552  */
2553 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2554 				    pgoff_t index, pgoff_t end, int whence)
2555 {
2556 	struct page *page;
2557 	struct pagevec pvec;
2558 	pgoff_t indices[PAGEVEC_SIZE];
2559 	bool done = false;
2560 	int i;
2561 
2562 	pagevec_init(&pvec);
2563 	pvec.nr = 1;		/* start small: we may be there already */
2564 	while (!done) {
2565 		pvec.nr = find_get_entries(mapping, index,
2566 					pvec.nr, pvec.pages, indices);
2567 		if (!pvec.nr) {
2568 			if (whence == SEEK_DATA)
2569 				index = end;
2570 			break;
2571 		}
2572 		for (i = 0; i < pvec.nr; i++, index++) {
2573 			if (index < indices[i]) {
2574 				if (whence == SEEK_HOLE) {
2575 					done = true;
2576 					break;
2577 				}
2578 				index = indices[i];
2579 			}
2580 			page = pvec.pages[i];
2581 			if (page && !radix_tree_exceptional_entry(page)) {
2582 				if (!PageUptodate(page))
2583 					page = NULL;
2584 			}
2585 			if (index >= end ||
2586 			    (page && whence == SEEK_DATA) ||
2587 			    (!page && whence == SEEK_HOLE)) {
2588 				done = true;
2589 				break;
2590 			}
2591 		}
2592 		pagevec_remove_exceptionals(&pvec);
2593 		pagevec_release(&pvec);
2594 		pvec.nr = PAGEVEC_SIZE;
2595 		cond_resched();
2596 	}
2597 	return index;
2598 }
2599 
2600 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2601 {
2602 	struct address_space *mapping = file->f_mapping;
2603 	struct inode *inode = mapping->host;
2604 	pgoff_t start, end;
2605 	loff_t new_offset;
2606 
2607 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2608 		return generic_file_llseek_size(file, offset, whence,
2609 					MAX_LFS_FILESIZE, i_size_read(inode));
2610 	inode_lock(inode);
2611 	/* We're holding i_mutex so we can access i_size directly */
2612 
2613 	if (offset < 0)
2614 		offset = -EINVAL;
2615 	else if (offset >= inode->i_size)
2616 		offset = -ENXIO;
2617 	else {
2618 		start = offset >> PAGE_SHIFT;
2619 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2620 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2621 		new_offset <<= PAGE_SHIFT;
2622 		if (new_offset > offset) {
2623 			if (new_offset < inode->i_size)
2624 				offset = new_offset;
2625 			else if (whence == SEEK_DATA)
2626 				offset = -ENXIO;
2627 			else
2628 				offset = inode->i_size;
2629 		}
2630 	}
2631 
2632 	if (offset >= 0)
2633 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2634 	inode_unlock(inode);
2635 	return offset;
2636 }
2637 
2638 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2639 							 loff_t len)
2640 {
2641 	struct inode *inode = file_inode(file);
2642 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2643 	struct shmem_inode_info *info = SHMEM_I(inode);
2644 	struct shmem_falloc shmem_falloc;
2645 	pgoff_t start, index, end;
2646 	int error;
2647 
2648 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2649 		return -EOPNOTSUPP;
2650 
2651 	inode_lock(inode);
2652 
2653 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2654 		struct address_space *mapping = file->f_mapping;
2655 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2656 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2657 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2658 
2659 		/* protected by i_mutex */
2660 		if (info->seals & F_SEAL_WRITE) {
2661 			error = -EPERM;
2662 			goto out;
2663 		}
2664 
2665 		shmem_falloc.waitq = &shmem_falloc_waitq;
2666 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2667 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2668 		spin_lock(&inode->i_lock);
2669 		inode->i_private = &shmem_falloc;
2670 		spin_unlock(&inode->i_lock);
2671 
2672 		if ((u64)unmap_end > (u64)unmap_start)
2673 			unmap_mapping_range(mapping, unmap_start,
2674 					    1 + unmap_end - unmap_start, 0);
2675 		shmem_truncate_range(inode, offset, offset + len - 1);
2676 		/* No need to unmap again: hole-punching leaves COWed pages */
2677 
2678 		spin_lock(&inode->i_lock);
2679 		inode->i_private = NULL;
2680 		wake_up_all(&shmem_falloc_waitq);
2681 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2682 		spin_unlock(&inode->i_lock);
2683 		error = 0;
2684 		goto out;
2685 	}
2686 
2687 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2688 	error = inode_newsize_ok(inode, offset + len);
2689 	if (error)
2690 		goto out;
2691 
2692 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2693 		error = -EPERM;
2694 		goto out;
2695 	}
2696 
2697 	start = offset >> PAGE_SHIFT;
2698 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2700 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2701 		error = -ENOSPC;
2702 		goto out;
2703 	}
2704 
2705 	shmem_falloc.waitq = NULL;
2706 	shmem_falloc.start = start;
2707 	shmem_falloc.next  = start;
2708 	shmem_falloc.nr_falloced = 0;
2709 	shmem_falloc.nr_unswapped = 0;
2710 	spin_lock(&inode->i_lock);
2711 	inode->i_private = &shmem_falloc;
2712 	spin_unlock(&inode->i_lock);
2713 
2714 	for (index = start; index < end; index++) {
2715 		struct page *page;
2716 
2717 		/*
2718 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2719 		 * been interrupted because we are using up too much memory.
2720 		 */
2721 		if (signal_pending(current))
2722 			error = -EINTR;
2723 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2724 			error = -ENOMEM;
2725 		else
2726 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2727 		if (error) {
2728 			/* Remove the !PageUptodate pages we added */
2729 			if (index > start) {
2730 				shmem_undo_range(inode,
2731 				    (loff_t)start << PAGE_SHIFT,
2732 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2733 			}
2734 			goto undone;
2735 		}
2736 
2737 		/*
2738 		 * Inform shmem_writepage() how far we have reached.
2739 		 * No need for lock or barrier: we have the page lock.
2740 		 */
2741 		shmem_falloc.next++;
2742 		if (!PageUptodate(page))
2743 			shmem_falloc.nr_falloced++;
2744 
2745 		/*
2746 		 * If !PageUptodate, leave it that way so that freeable pages
2747 		 * can be recognized if we need to rollback on error later.
2748 		 * But set_page_dirty so that memory pressure will swap rather
2749 		 * than free the pages we are allocating (and SGP_CACHE pages
2750 		 * might still be clean: we now need to mark those dirty too).
2751 		 */
2752 		set_page_dirty(page);
2753 		unlock_page(page);
2754 		put_page(page);
2755 		cond_resched();
2756 	}
2757 
2758 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2759 		i_size_write(inode, offset + len);
2760 	inode->i_ctime = current_time(inode);
2761 undone:
2762 	spin_lock(&inode->i_lock);
2763 	inode->i_private = NULL;
2764 	spin_unlock(&inode->i_lock);
2765 out:
2766 	inode_unlock(inode);
2767 	return error;
2768 }
2769 
2770 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2771 {
2772 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2773 
2774 	buf->f_type = TMPFS_MAGIC;
2775 	buf->f_bsize = PAGE_SIZE;
2776 	buf->f_namelen = NAME_MAX;
2777 	if (sbinfo->max_blocks) {
2778 		buf->f_blocks = sbinfo->max_blocks;
2779 		buf->f_bavail =
2780 		buf->f_bfree  = sbinfo->max_blocks -
2781 				percpu_counter_sum(&sbinfo->used_blocks);
2782 	}
2783 	if (sbinfo->max_inodes) {
2784 		buf->f_files = sbinfo->max_inodes;
2785 		buf->f_ffree = sbinfo->free_inodes;
2786 	}
2787 	/* else leave those fields 0 like simple_statfs */
2788 	return 0;
2789 }
2790 
2791 /*
2792  * File creation. Allocate an inode, and we're done..
2793  */
2794 static int
2795 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2796 {
2797 	struct inode *inode;
2798 	int error = -ENOSPC;
2799 
2800 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2801 	if (inode) {
2802 		error = simple_acl_create(dir, inode);
2803 		if (error)
2804 			goto out_iput;
2805 		error = security_inode_init_security(inode, dir,
2806 						     &dentry->d_name,
2807 						     shmem_initxattrs, NULL);
2808 		if (error && error != -EOPNOTSUPP)
2809 			goto out_iput;
2810 
2811 		error = 0;
2812 		dir->i_size += BOGO_DIRENT_SIZE;
2813 		dir->i_ctime = dir->i_mtime = current_time(dir);
2814 		d_instantiate(dentry, inode);
2815 		dget(dentry); /* Extra count - pin the dentry in core */
2816 	}
2817 	return error;
2818 out_iput:
2819 	iput(inode);
2820 	return error;
2821 }
2822 
2823 static int
2824 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2825 {
2826 	struct inode *inode;
2827 	int error = -ENOSPC;
2828 
2829 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2830 	if (inode) {
2831 		error = security_inode_init_security(inode, dir,
2832 						     NULL,
2833 						     shmem_initxattrs, NULL);
2834 		if (error && error != -EOPNOTSUPP)
2835 			goto out_iput;
2836 		error = simple_acl_create(dir, inode);
2837 		if (error)
2838 			goto out_iput;
2839 		d_tmpfile(dentry, inode);
2840 	}
2841 	return error;
2842 out_iput:
2843 	iput(inode);
2844 	return error;
2845 }
2846 
2847 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2848 {
2849 	int error;
2850 
2851 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2852 		return error;
2853 	inc_nlink(dir);
2854 	return 0;
2855 }
2856 
2857 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2858 		bool excl)
2859 {
2860 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2861 }
2862 
2863 /*
2864  * Link a file..
2865  */
2866 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2867 {
2868 	struct inode *inode = d_inode(old_dentry);
2869 	int ret;
2870 
2871 	/*
2872 	 * No ordinary (disk based) filesystem counts links as inodes;
2873 	 * but each new link needs a new dentry, pinning lowmem, and
2874 	 * tmpfs dentries cannot be pruned until they are unlinked.
2875 	 */
2876 	ret = shmem_reserve_inode(inode->i_sb);
2877 	if (ret)
2878 		goto out;
2879 
2880 	dir->i_size += BOGO_DIRENT_SIZE;
2881 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2882 	inc_nlink(inode);
2883 	ihold(inode);	/* New dentry reference */
2884 	dget(dentry);		/* Extra pinning count for the created dentry */
2885 	d_instantiate(dentry, inode);
2886 out:
2887 	return ret;
2888 }
2889 
2890 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2891 {
2892 	struct inode *inode = d_inode(dentry);
2893 
2894 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2895 		shmem_free_inode(inode->i_sb);
2896 
2897 	dir->i_size -= BOGO_DIRENT_SIZE;
2898 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2899 	drop_nlink(inode);
2900 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2901 	return 0;
2902 }
2903 
2904 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2905 {
2906 	if (!simple_empty(dentry))
2907 		return -ENOTEMPTY;
2908 
2909 	drop_nlink(d_inode(dentry));
2910 	drop_nlink(dir);
2911 	return shmem_unlink(dir, dentry);
2912 }
2913 
2914 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2915 {
2916 	bool old_is_dir = d_is_dir(old_dentry);
2917 	bool new_is_dir = d_is_dir(new_dentry);
2918 
2919 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2920 		if (old_is_dir) {
2921 			drop_nlink(old_dir);
2922 			inc_nlink(new_dir);
2923 		} else {
2924 			drop_nlink(new_dir);
2925 			inc_nlink(old_dir);
2926 		}
2927 	}
2928 	old_dir->i_ctime = old_dir->i_mtime =
2929 	new_dir->i_ctime = new_dir->i_mtime =
2930 	d_inode(old_dentry)->i_ctime =
2931 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2932 
2933 	return 0;
2934 }
2935 
2936 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2937 {
2938 	struct dentry *whiteout;
2939 	int error;
2940 
2941 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2942 	if (!whiteout)
2943 		return -ENOMEM;
2944 
2945 	error = shmem_mknod(old_dir, whiteout,
2946 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2947 	dput(whiteout);
2948 	if (error)
2949 		return error;
2950 
2951 	/*
2952 	 * Cheat and hash the whiteout while the old dentry is still in
2953 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2954 	 *
2955 	 * d_lookup() will consistently find one of them at this point,
2956 	 * not sure which one, but that isn't even important.
2957 	 */
2958 	d_rehash(whiteout);
2959 	return 0;
2960 }
2961 
2962 /*
2963  * The VFS layer already does all the dentry stuff for rename,
2964  * we just have to decrement the usage count for the target if
2965  * it exists so that the VFS layer correctly free's it when it
2966  * gets overwritten.
2967  */
2968 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2969 {
2970 	struct inode *inode = d_inode(old_dentry);
2971 	int they_are_dirs = S_ISDIR(inode->i_mode);
2972 
2973 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2974 		return -EINVAL;
2975 
2976 	if (flags & RENAME_EXCHANGE)
2977 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2978 
2979 	if (!simple_empty(new_dentry))
2980 		return -ENOTEMPTY;
2981 
2982 	if (flags & RENAME_WHITEOUT) {
2983 		int error;
2984 
2985 		error = shmem_whiteout(old_dir, old_dentry);
2986 		if (error)
2987 			return error;
2988 	}
2989 
2990 	if (d_really_is_positive(new_dentry)) {
2991 		(void) shmem_unlink(new_dir, new_dentry);
2992 		if (they_are_dirs) {
2993 			drop_nlink(d_inode(new_dentry));
2994 			drop_nlink(old_dir);
2995 		}
2996 	} else if (they_are_dirs) {
2997 		drop_nlink(old_dir);
2998 		inc_nlink(new_dir);
2999 	}
3000 
3001 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3002 	new_dir->i_size += BOGO_DIRENT_SIZE;
3003 	old_dir->i_ctime = old_dir->i_mtime =
3004 	new_dir->i_ctime = new_dir->i_mtime =
3005 	inode->i_ctime = current_time(old_dir);
3006 	return 0;
3007 }
3008 
3009 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3010 {
3011 	int error;
3012 	int len;
3013 	struct inode *inode;
3014 	struct page *page;
3015 
3016 	len = strlen(symname) + 1;
3017 	if (len > PAGE_SIZE)
3018 		return -ENAMETOOLONG;
3019 
3020 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3021 				VM_NORESERVE);
3022 	if (!inode)
3023 		return -ENOSPC;
3024 
3025 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3026 					     shmem_initxattrs, NULL);
3027 	if (error) {
3028 		if (error != -EOPNOTSUPP) {
3029 			iput(inode);
3030 			return error;
3031 		}
3032 		error = 0;
3033 	}
3034 
3035 	inode->i_size = len-1;
3036 	if (len <= SHORT_SYMLINK_LEN) {
3037 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3038 		if (!inode->i_link) {
3039 			iput(inode);
3040 			return -ENOMEM;
3041 		}
3042 		inode->i_op = &shmem_short_symlink_operations;
3043 	} else {
3044 		inode_nohighmem(inode);
3045 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3046 		if (error) {
3047 			iput(inode);
3048 			return error;
3049 		}
3050 		inode->i_mapping->a_ops = &shmem_aops;
3051 		inode->i_op = &shmem_symlink_inode_operations;
3052 		memcpy(page_address(page), symname, len);
3053 		SetPageUptodate(page);
3054 		set_page_dirty(page);
3055 		unlock_page(page);
3056 		put_page(page);
3057 	}
3058 	dir->i_size += BOGO_DIRENT_SIZE;
3059 	dir->i_ctime = dir->i_mtime = current_time(dir);
3060 	d_instantiate(dentry, inode);
3061 	dget(dentry);
3062 	return 0;
3063 }
3064 
3065 static void shmem_put_link(void *arg)
3066 {
3067 	mark_page_accessed(arg);
3068 	put_page(arg);
3069 }
3070 
3071 static const char *shmem_get_link(struct dentry *dentry,
3072 				  struct inode *inode,
3073 				  struct delayed_call *done)
3074 {
3075 	struct page *page = NULL;
3076 	int error;
3077 	if (!dentry) {
3078 		page = find_get_page(inode->i_mapping, 0);
3079 		if (!page)
3080 			return ERR_PTR(-ECHILD);
3081 		if (!PageUptodate(page)) {
3082 			put_page(page);
3083 			return ERR_PTR(-ECHILD);
3084 		}
3085 	} else {
3086 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3087 		if (error)
3088 			return ERR_PTR(error);
3089 		unlock_page(page);
3090 	}
3091 	set_delayed_call(done, shmem_put_link, page);
3092 	return page_address(page);
3093 }
3094 
3095 #ifdef CONFIG_TMPFS_XATTR
3096 /*
3097  * Superblocks without xattr inode operations may get some security.* xattr
3098  * support from the LSM "for free". As soon as we have any other xattrs
3099  * like ACLs, we also need to implement the security.* handlers at
3100  * filesystem level, though.
3101  */
3102 
3103 /*
3104  * Callback for security_inode_init_security() for acquiring xattrs.
3105  */
3106 static int shmem_initxattrs(struct inode *inode,
3107 			    const struct xattr *xattr_array,
3108 			    void *fs_info)
3109 {
3110 	struct shmem_inode_info *info = SHMEM_I(inode);
3111 	const struct xattr *xattr;
3112 	struct simple_xattr *new_xattr;
3113 	size_t len;
3114 
3115 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3116 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3117 		if (!new_xattr)
3118 			return -ENOMEM;
3119 
3120 		len = strlen(xattr->name) + 1;
3121 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3122 					  GFP_KERNEL);
3123 		if (!new_xattr->name) {
3124 			kfree(new_xattr);
3125 			return -ENOMEM;
3126 		}
3127 
3128 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3129 		       XATTR_SECURITY_PREFIX_LEN);
3130 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3131 		       xattr->name, len);
3132 
3133 		simple_xattr_list_add(&info->xattrs, new_xattr);
3134 	}
3135 
3136 	return 0;
3137 }
3138 
3139 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3140 				   struct dentry *unused, struct inode *inode,
3141 				   const char *name, void *buffer, size_t size)
3142 {
3143 	struct shmem_inode_info *info = SHMEM_I(inode);
3144 
3145 	name = xattr_full_name(handler, name);
3146 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3147 }
3148 
3149 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3150 				   struct dentry *unused, struct inode *inode,
3151 				   const char *name, const void *value,
3152 				   size_t size, int flags)
3153 {
3154 	struct shmem_inode_info *info = SHMEM_I(inode);
3155 
3156 	name = xattr_full_name(handler, name);
3157 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3158 }
3159 
3160 static const struct xattr_handler shmem_security_xattr_handler = {
3161 	.prefix = XATTR_SECURITY_PREFIX,
3162 	.get = shmem_xattr_handler_get,
3163 	.set = shmem_xattr_handler_set,
3164 };
3165 
3166 static const struct xattr_handler shmem_trusted_xattr_handler = {
3167 	.prefix = XATTR_TRUSTED_PREFIX,
3168 	.get = shmem_xattr_handler_get,
3169 	.set = shmem_xattr_handler_set,
3170 };
3171 
3172 static const struct xattr_handler *shmem_xattr_handlers[] = {
3173 #ifdef CONFIG_TMPFS_POSIX_ACL
3174 	&posix_acl_access_xattr_handler,
3175 	&posix_acl_default_xattr_handler,
3176 #endif
3177 	&shmem_security_xattr_handler,
3178 	&shmem_trusted_xattr_handler,
3179 	NULL
3180 };
3181 
3182 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3183 {
3184 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3185 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3186 }
3187 #endif /* CONFIG_TMPFS_XATTR */
3188 
3189 static const struct inode_operations shmem_short_symlink_operations = {
3190 	.get_link	= simple_get_link,
3191 #ifdef CONFIG_TMPFS_XATTR
3192 	.listxattr	= shmem_listxattr,
3193 #endif
3194 };
3195 
3196 static const struct inode_operations shmem_symlink_inode_operations = {
3197 	.get_link	= shmem_get_link,
3198 #ifdef CONFIG_TMPFS_XATTR
3199 	.listxattr	= shmem_listxattr,
3200 #endif
3201 };
3202 
3203 static struct dentry *shmem_get_parent(struct dentry *child)
3204 {
3205 	return ERR_PTR(-ESTALE);
3206 }
3207 
3208 static int shmem_match(struct inode *ino, void *vfh)
3209 {
3210 	__u32 *fh = vfh;
3211 	__u64 inum = fh[2];
3212 	inum = (inum << 32) | fh[1];
3213 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3214 }
3215 
3216 /* Find any alias of inode, but prefer a hashed alias */
3217 static struct dentry *shmem_find_alias(struct inode *inode)
3218 {
3219 	struct dentry *alias = d_find_alias(inode);
3220 
3221 	return alias ?: d_find_any_alias(inode);
3222 }
3223 
3224 
3225 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3226 		struct fid *fid, int fh_len, int fh_type)
3227 {
3228 	struct inode *inode;
3229 	struct dentry *dentry = NULL;
3230 	u64 inum;
3231 
3232 	if (fh_len < 3)
3233 		return NULL;
3234 
3235 	inum = fid->raw[2];
3236 	inum = (inum << 32) | fid->raw[1];
3237 
3238 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3239 			shmem_match, fid->raw);
3240 	if (inode) {
3241 		dentry = shmem_find_alias(inode);
3242 		iput(inode);
3243 	}
3244 
3245 	return dentry;
3246 }
3247 
3248 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3249 				struct inode *parent)
3250 {
3251 	if (*len < 3) {
3252 		*len = 3;
3253 		return FILEID_INVALID;
3254 	}
3255 
3256 	if (inode_unhashed(inode)) {
3257 		/* Unfortunately insert_inode_hash is not idempotent,
3258 		 * so as we hash inodes here rather than at creation
3259 		 * time, we need a lock to ensure we only try
3260 		 * to do it once
3261 		 */
3262 		static DEFINE_SPINLOCK(lock);
3263 		spin_lock(&lock);
3264 		if (inode_unhashed(inode))
3265 			__insert_inode_hash(inode,
3266 					    inode->i_ino + inode->i_generation);
3267 		spin_unlock(&lock);
3268 	}
3269 
3270 	fh[0] = inode->i_generation;
3271 	fh[1] = inode->i_ino;
3272 	fh[2] = ((__u64)inode->i_ino) >> 32;
3273 
3274 	*len = 3;
3275 	return 1;
3276 }
3277 
3278 static const struct export_operations shmem_export_ops = {
3279 	.get_parent     = shmem_get_parent,
3280 	.encode_fh      = shmem_encode_fh,
3281 	.fh_to_dentry	= shmem_fh_to_dentry,
3282 };
3283 
3284 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3285 			       bool remount)
3286 {
3287 	char *this_char, *value, *rest;
3288 	struct mempolicy *mpol = NULL;
3289 	uid_t uid;
3290 	gid_t gid;
3291 
3292 	while (options != NULL) {
3293 		this_char = options;
3294 		for (;;) {
3295 			/*
3296 			 * NUL-terminate this option: unfortunately,
3297 			 * mount options form a comma-separated list,
3298 			 * but mpol's nodelist may also contain commas.
3299 			 */
3300 			options = strchr(options, ',');
3301 			if (options == NULL)
3302 				break;
3303 			options++;
3304 			if (!isdigit(*options)) {
3305 				options[-1] = '\0';
3306 				break;
3307 			}
3308 		}
3309 		if (!*this_char)
3310 			continue;
3311 		if ((value = strchr(this_char,'=')) != NULL) {
3312 			*value++ = 0;
3313 		} else {
3314 			pr_err("tmpfs: No value for mount option '%s'\n",
3315 			       this_char);
3316 			goto error;
3317 		}
3318 
3319 		if (!strcmp(this_char,"size")) {
3320 			unsigned long long size;
3321 			size = memparse(value,&rest);
3322 			if (*rest == '%') {
3323 				size <<= PAGE_SHIFT;
3324 				size *= totalram_pages;
3325 				do_div(size, 100);
3326 				rest++;
3327 			}
3328 			if (*rest)
3329 				goto bad_val;
3330 			sbinfo->max_blocks =
3331 				DIV_ROUND_UP(size, PAGE_SIZE);
3332 		} else if (!strcmp(this_char,"nr_blocks")) {
3333 			sbinfo->max_blocks = memparse(value, &rest);
3334 			if (*rest)
3335 				goto bad_val;
3336 		} else if (!strcmp(this_char,"nr_inodes")) {
3337 			sbinfo->max_inodes = memparse(value, &rest);
3338 			if (*rest)
3339 				goto bad_val;
3340 		} else if (!strcmp(this_char,"mode")) {
3341 			if (remount)
3342 				continue;
3343 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3344 			if (*rest)
3345 				goto bad_val;
3346 		} else if (!strcmp(this_char,"uid")) {
3347 			if (remount)
3348 				continue;
3349 			uid = simple_strtoul(value, &rest, 0);
3350 			if (*rest)
3351 				goto bad_val;
3352 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3353 			if (!uid_valid(sbinfo->uid))
3354 				goto bad_val;
3355 		} else if (!strcmp(this_char,"gid")) {
3356 			if (remount)
3357 				continue;
3358 			gid = simple_strtoul(value, &rest, 0);
3359 			if (*rest)
3360 				goto bad_val;
3361 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3362 			if (!gid_valid(sbinfo->gid))
3363 				goto bad_val;
3364 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3365 		} else if (!strcmp(this_char, "huge")) {
3366 			int huge;
3367 			huge = shmem_parse_huge(value);
3368 			if (huge < 0)
3369 				goto bad_val;
3370 			if (!has_transparent_hugepage() &&
3371 					huge != SHMEM_HUGE_NEVER)
3372 				goto bad_val;
3373 			sbinfo->huge = huge;
3374 #endif
3375 #ifdef CONFIG_NUMA
3376 		} else if (!strcmp(this_char,"mpol")) {
3377 			mpol_put(mpol);
3378 			mpol = NULL;
3379 			if (mpol_parse_str(value, &mpol))
3380 				goto bad_val;
3381 #endif
3382 		} else {
3383 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3384 			goto error;
3385 		}
3386 	}
3387 	sbinfo->mpol = mpol;
3388 	return 0;
3389 
3390 bad_val:
3391 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3392 	       value, this_char);
3393 error:
3394 	mpol_put(mpol);
3395 	return 1;
3396 
3397 }
3398 
3399 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3400 {
3401 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3402 	struct shmem_sb_info config = *sbinfo;
3403 	unsigned long inodes;
3404 	int error = -EINVAL;
3405 
3406 	config.mpol = NULL;
3407 	if (shmem_parse_options(data, &config, true))
3408 		return error;
3409 
3410 	spin_lock(&sbinfo->stat_lock);
3411 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3412 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3413 		goto out;
3414 	if (config.max_inodes < inodes)
3415 		goto out;
3416 	/*
3417 	 * Those tests disallow limited->unlimited while any are in use;
3418 	 * but we must separately disallow unlimited->limited, because
3419 	 * in that case we have no record of how much is already in use.
3420 	 */
3421 	if (config.max_blocks && !sbinfo->max_blocks)
3422 		goto out;
3423 	if (config.max_inodes && !sbinfo->max_inodes)
3424 		goto out;
3425 
3426 	error = 0;
3427 	sbinfo->huge = config.huge;
3428 	sbinfo->max_blocks  = config.max_blocks;
3429 	sbinfo->max_inodes  = config.max_inodes;
3430 	sbinfo->free_inodes = config.max_inodes - inodes;
3431 
3432 	/*
3433 	 * Preserve previous mempolicy unless mpol remount option was specified.
3434 	 */
3435 	if (config.mpol) {
3436 		mpol_put(sbinfo->mpol);
3437 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3438 	}
3439 out:
3440 	spin_unlock(&sbinfo->stat_lock);
3441 	return error;
3442 }
3443 
3444 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3445 {
3446 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3447 
3448 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3449 		seq_printf(seq, ",size=%luk",
3450 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3451 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3452 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3453 	if (sbinfo->mode != (0777 | S_ISVTX))
3454 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3455 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3456 		seq_printf(seq, ",uid=%u",
3457 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3458 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3459 		seq_printf(seq, ",gid=%u",
3460 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3461 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3462 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3463 	if (sbinfo->huge)
3464 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3465 #endif
3466 	shmem_show_mpol(seq, sbinfo->mpol);
3467 	return 0;
3468 }
3469 
3470 #endif /* CONFIG_TMPFS */
3471 
3472 static void shmem_put_super(struct super_block *sb)
3473 {
3474 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3475 
3476 	percpu_counter_destroy(&sbinfo->used_blocks);
3477 	mpol_put(sbinfo->mpol);
3478 	kfree(sbinfo);
3479 	sb->s_fs_info = NULL;
3480 }
3481 
3482 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3483 {
3484 	struct inode *inode;
3485 	struct shmem_sb_info *sbinfo;
3486 	int err = -ENOMEM;
3487 
3488 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3489 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3490 				L1_CACHE_BYTES), GFP_KERNEL);
3491 	if (!sbinfo)
3492 		return -ENOMEM;
3493 
3494 	sbinfo->mode = 0777 | S_ISVTX;
3495 	sbinfo->uid = current_fsuid();
3496 	sbinfo->gid = current_fsgid();
3497 	sb->s_fs_info = sbinfo;
3498 
3499 #ifdef CONFIG_TMPFS
3500 	/*
3501 	 * Per default we only allow half of the physical ram per
3502 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3503 	 * but the internal instance is left unlimited.
3504 	 */
3505 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3506 		sbinfo->max_blocks = shmem_default_max_blocks();
3507 		sbinfo->max_inodes = shmem_default_max_inodes();
3508 		if (shmem_parse_options(data, sbinfo, false)) {
3509 			err = -EINVAL;
3510 			goto failed;
3511 		}
3512 	} else {
3513 		sb->s_flags |= SB_NOUSER;
3514 	}
3515 	sb->s_export_op = &shmem_export_ops;
3516 	sb->s_flags |= SB_NOSEC;
3517 #else
3518 	sb->s_flags |= SB_NOUSER;
3519 #endif
3520 
3521 	spin_lock_init(&sbinfo->stat_lock);
3522 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3523 		goto failed;
3524 	sbinfo->free_inodes = sbinfo->max_inodes;
3525 	spin_lock_init(&sbinfo->shrinklist_lock);
3526 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3527 
3528 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3529 	sb->s_blocksize = PAGE_SIZE;
3530 	sb->s_blocksize_bits = PAGE_SHIFT;
3531 	sb->s_magic = TMPFS_MAGIC;
3532 	sb->s_op = &shmem_ops;
3533 	sb->s_time_gran = 1;
3534 #ifdef CONFIG_TMPFS_XATTR
3535 	sb->s_xattr = shmem_xattr_handlers;
3536 #endif
3537 #ifdef CONFIG_TMPFS_POSIX_ACL
3538 	sb->s_flags |= SB_POSIXACL;
3539 #endif
3540 	uuid_gen(&sb->s_uuid);
3541 
3542 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3543 	if (!inode)
3544 		goto failed;
3545 	inode->i_uid = sbinfo->uid;
3546 	inode->i_gid = sbinfo->gid;
3547 	sb->s_root = d_make_root(inode);
3548 	if (!sb->s_root)
3549 		goto failed;
3550 	return 0;
3551 
3552 failed:
3553 	shmem_put_super(sb);
3554 	return err;
3555 }
3556 
3557 static struct kmem_cache *shmem_inode_cachep;
3558 
3559 static struct inode *shmem_alloc_inode(struct super_block *sb)
3560 {
3561 	struct shmem_inode_info *info;
3562 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3563 	if (!info)
3564 		return NULL;
3565 	return &info->vfs_inode;
3566 }
3567 
3568 static void shmem_destroy_callback(struct rcu_head *head)
3569 {
3570 	struct inode *inode = container_of(head, struct inode, i_rcu);
3571 	if (S_ISLNK(inode->i_mode))
3572 		kfree(inode->i_link);
3573 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3574 }
3575 
3576 static void shmem_destroy_inode(struct inode *inode)
3577 {
3578 	if (S_ISREG(inode->i_mode))
3579 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3580 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3581 }
3582 
3583 static void shmem_init_inode(void *foo)
3584 {
3585 	struct shmem_inode_info *info = foo;
3586 	inode_init_once(&info->vfs_inode);
3587 }
3588 
3589 static void shmem_init_inodecache(void)
3590 {
3591 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3592 				sizeof(struct shmem_inode_info),
3593 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3594 }
3595 
3596 static void shmem_destroy_inodecache(void)
3597 {
3598 	kmem_cache_destroy(shmem_inode_cachep);
3599 }
3600 
3601 static const struct address_space_operations shmem_aops = {
3602 	.writepage	= shmem_writepage,
3603 	.set_page_dirty	= __set_page_dirty_no_writeback,
3604 #ifdef CONFIG_TMPFS
3605 	.write_begin	= shmem_write_begin,
3606 	.write_end	= shmem_write_end,
3607 #endif
3608 #ifdef CONFIG_MIGRATION
3609 	.migratepage	= migrate_page,
3610 #endif
3611 	.error_remove_page = generic_error_remove_page,
3612 };
3613 
3614 static const struct file_operations shmem_file_operations = {
3615 	.mmap		= shmem_mmap,
3616 	.get_unmapped_area = shmem_get_unmapped_area,
3617 #ifdef CONFIG_TMPFS
3618 	.llseek		= shmem_file_llseek,
3619 	.read_iter	= shmem_file_read_iter,
3620 	.write_iter	= generic_file_write_iter,
3621 	.fsync		= noop_fsync,
3622 	.splice_read	= generic_file_splice_read,
3623 	.splice_write	= iter_file_splice_write,
3624 	.fallocate	= shmem_fallocate,
3625 #endif
3626 };
3627 
3628 static const struct inode_operations shmem_inode_operations = {
3629 	.getattr	= shmem_getattr,
3630 	.setattr	= shmem_setattr,
3631 #ifdef CONFIG_TMPFS_XATTR
3632 	.listxattr	= shmem_listxattr,
3633 	.set_acl	= simple_set_acl,
3634 #endif
3635 };
3636 
3637 static const struct inode_operations shmem_dir_inode_operations = {
3638 #ifdef CONFIG_TMPFS
3639 	.create		= shmem_create,
3640 	.lookup		= simple_lookup,
3641 	.link		= shmem_link,
3642 	.unlink		= shmem_unlink,
3643 	.symlink	= shmem_symlink,
3644 	.mkdir		= shmem_mkdir,
3645 	.rmdir		= shmem_rmdir,
3646 	.mknod		= shmem_mknod,
3647 	.rename		= shmem_rename2,
3648 	.tmpfile	= shmem_tmpfile,
3649 #endif
3650 #ifdef CONFIG_TMPFS_XATTR
3651 	.listxattr	= shmem_listxattr,
3652 #endif
3653 #ifdef CONFIG_TMPFS_POSIX_ACL
3654 	.setattr	= shmem_setattr,
3655 	.set_acl	= simple_set_acl,
3656 #endif
3657 };
3658 
3659 static const struct inode_operations shmem_special_inode_operations = {
3660 #ifdef CONFIG_TMPFS_XATTR
3661 	.listxattr	= shmem_listxattr,
3662 #endif
3663 #ifdef CONFIG_TMPFS_POSIX_ACL
3664 	.setattr	= shmem_setattr,
3665 	.set_acl	= simple_set_acl,
3666 #endif
3667 };
3668 
3669 static const struct super_operations shmem_ops = {
3670 	.alloc_inode	= shmem_alloc_inode,
3671 	.destroy_inode	= shmem_destroy_inode,
3672 #ifdef CONFIG_TMPFS
3673 	.statfs		= shmem_statfs,
3674 	.remount_fs	= shmem_remount_fs,
3675 	.show_options	= shmem_show_options,
3676 #endif
3677 	.evict_inode	= shmem_evict_inode,
3678 	.drop_inode	= generic_delete_inode,
3679 	.put_super	= shmem_put_super,
3680 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3681 	.nr_cached_objects	= shmem_unused_huge_count,
3682 	.free_cached_objects	= shmem_unused_huge_scan,
3683 #endif
3684 };
3685 
3686 static const struct vm_operations_struct shmem_vm_ops = {
3687 	.fault		= shmem_fault,
3688 	.map_pages	= filemap_map_pages,
3689 #ifdef CONFIG_NUMA
3690 	.set_policy     = shmem_set_policy,
3691 	.get_policy     = shmem_get_policy,
3692 #endif
3693 };
3694 
3695 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3696 	int flags, const char *dev_name, void *data)
3697 {
3698 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3699 }
3700 
3701 static struct file_system_type shmem_fs_type = {
3702 	.owner		= THIS_MODULE,
3703 	.name		= "tmpfs",
3704 	.mount		= shmem_mount,
3705 	.kill_sb	= kill_litter_super,
3706 	.fs_flags	= FS_USERNS_MOUNT,
3707 };
3708 
3709 int __init shmem_init(void)
3710 {
3711 	int error;
3712 
3713 	/* If rootfs called this, don't re-init */
3714 	if (shmem_inode_cachep)
3715 		return 0;
3716 
3717 	shmem_init_inodecache();
3718 
3719 	error = register_filesystem(&shmem_fs_type);
3720 	if (error) {
3721 		pr_err("Could not register tmpfs\n");
3722 		goto out2;
3723 	}
3724 
3725 	shm_mnt = kern_mount(&shmem_fs_type);
3726 	if (IS_ERR(shm_mnt)) {
3727 		error = PTR_ERR(shm_mnt);
3728 		pr_err("Could not kern_mount tmpfs\n");
3729 		goto out1;
3730 	}
3731 
3732 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3733 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3734 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3735 	else
3736 		shmem_huge = 0; /* just in case it was patched */
3737 #endif
3738 	return 0;
3739 
3740 out1:
3741 	unregister_filesystem(&shmem_fs_type);
3742 out2:
3743 	shmem_destroy_inodecache();
3744 	shm_mnt = ERR_PTR(error);
3745 	return error;
3746 }
3747 
3748 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3749 static ssize_t shmem_enabled_show(struct kobject *kobj,
3750 		struct kobj_attribute *attr, char *buf)
3751 {
3752 	int values[] = {
3753 		SHMEM_HUGE_ALWAYS,
3754 		SHMEM_HUGE_WITHIN_SIZE,
3755 		SHMEM_HUGE_ADVISE,
3756 		SHMEM_HUGE_NEVER,
3757 		SHMEM_HUGE_DENY,
3758 		SHMEM_HUGE_FORCE,
3759 	};
3760 	int i, count;
3761 
3762 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3763 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3764 
3765 		count += sprintf(buf + count, fmt,
3766 				shmem_format_huge(values[i]));
3767 	}
3768 	buf[count - 1] = '\n';
3769 	return count;
3770 }
3771 
3772 static ssize_t shmem_enabled_store(struct kobject *kobj,
3773 		struct kobj_attribute *attr, const char *buf, size_t count)
3774 {
3775 	char tmp[16];
3776 	int huge;
3777 
3778 	if (count + 1 > sizeof(tmp))
3779 		return -EINVAL;
3780 	memcpy(tmp, buf, count);
3781 	tmp[count] = '\0';
3782 	if (count && tmp[count - 1] == '\n')
3783 		tmp[count - 1] = '\0';
3784 
3785 	huge = shmem_parse_huge(tmp);
3786 	if (huge == -EINVAL)
3787 		return -EINVAL;
3788 	if (!has_transparent_hugepage() &&
3789 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3790 		return -EINVAL;
3791 
3792 	shmem_huge = huge;
3793 	if (shmem_huge > SHMEM_HUGE_DENY)
3794 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3795 	return count;
3796 }
3797 
3798 struct kobj_attribute shmem_enabled_attr =
3799 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3800 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3801 
3802 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3803 bool shmem_huge_enabled(struct vm_area_struct *vma)
3804 {
3805 	struct inode *inode = file_inode(vma->vm_file);
3806 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3807 	loff_t i_size;
3808 	pgoff_t off;
3809 
3810 	if (shmem_huge == SHMEM_HUGE_FORCE)
3811 		return true;
3812 	if (shmem_huge == SHMEM_HUGE_DENY)
3813 		return false;
3814 	switch (sbinfo->huge) {
3815 		case SHMEM_HUGE_NEVER:
3816 			return false;
3817 		case SHMEM_HUGE_ALWAYS:
3818 			return true;
3819 		case SHMEM_HUGE_WITHIN_SIZE:
3820 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3821 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3822 			if (i_size >= HPAGE_PMD_SIZE &&
3823 					i_size >> PAGE_SHIFT >= off)
3824 				return true;
3825 			/* fall through */
3826 		case SHMEM_HUGE_ADVISE:
3827 			/* TODO: implement fadvise() hints */
3828 			return (vma->vm_flags & VM_HUGEPAGE);
3829 		default:
3830 			VM_BUG_ON(1);
3831 			return false;
3832 	}
3833 }
3834 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3835 
3836 #else /* !CONFIG_SHMEM */
3837 
3838 /*
3839  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3840  *
3841  * This is intended for small system where the benefits of the full
3842  * shmem code (swap-backed and resource-limited) are outweighed by
3843  * their complexity. On systems without swap this code should be
3844  * effectively equivalent, but much lighter weight.
3845  */
3846 
3847 static struct file_system_type shmem_fs_type = {
3848 	.name		= "tmpfs",
3849 	.mount		= ramfs_mount,
3850 	.kill_sb	= kill_litter_super,
3851 	.fs_flags	= FS_USERNS_MOUNT,
3852 };
3853 
3854 int __init shmem_init(void)
3855 {
3856 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3857 
3858 	shm_mnt = kern_mount(&shmem_fs_type);
3859 	BUG_ON(IS_ERR(shm_mnt));
3860 
3861 	return 0;
3862 }
3863 
3864 int shmem_unuse(swp_entry_t swap, struct page *page)
3865 {
3866 	return 0;
3867 }
3868 
3869 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3870 {
3871 	return 0;
3872 }
3873 
3874 void shmem_unlock_mapping(struct address_space *mapping)
3875 {
3876 }
3877 
3878 #ifdef CONFIG_MMU
3879 unsigned long shmem_get_unmapped_area(struct file *file,
3880 				      unsigned long addr, unsigned long len,
3881 				      unsigned long pgoff, unsigned long flags)
3882 {
3883 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3884 }
3885 #endif
3886 
3887 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3888 {
3889 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3890 }
3891 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3892 
3893 #define shmem_vm_ops				generic_file_vm_ops
3894 #define shmem_file_operations			ramfs_file_operations
3895 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3896 #define shmem_acct_size(flags, size)		0
3897 #define shmem_unacct_size(flags, size)		do {} while (0)
3898 
3899 #endif /* CONFIG_SHMEM */
3900 
3901 /* common code */
3902 
3903 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3904 				       unsigned long flags, unsigned int i_flags)
3905 {
3906 	struct inode *inode;
3907 	struct file *res;
3908 
3909 	if (IS_ERR(mnt))
3910 		return ERR_CAST(mnt);
3911 
3912 	if (size < 0 || size > MAX_LFS_FILESIZE)
3913 		return ERR_PTR(-EINVAL);
3914 
3915 	if (shmem_acct_size(flags, size))
3916 		return ERR_PTR(-ENOMEM);
3917 
3918 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3919 				flags);
3920 	if (unlikely(!inode)) {
3921 		shmem_unacct_size(flags, size);
3922 		return ERR_PTR(-ENOSPC);
3923 	}
3924 	inode->i_flags |= i_flags;
3925 	inode->i_size = size;
3926 	clear_nlink(inode);	/* It is unlinked */
3927 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3928 	if (!IS_ERR(res))
3929 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3930 				&shmem_file_operations);
3931 	if (IS_ERR(res))
3932 		iput(inode);
3933 	return res;
3934 }
3935 
3936 /**
3937  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3938  * 	kernel internal.  There will be NO LSM permission checks against the
3939  * 	underlying inode.  So users of this interface must do LSM checks at a
3940  *	higher layer.  The users are the big_key and shm implementations.  LSM
3941  *	checks are provided at the key or shm level rather than the inode.
3942  * @name: name for dentry (to be seen in /proc/<pid>/maps
3943  * @size: size to be set for the file
3944  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3945  */
3946 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3947 {
3948 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3949 }
3950 
3951 /**
3952  * shmem_file_setup - get an unlinked file living in tmpfs
3953  * @name: name for dentry (to be seen in /proc/<pid>/maps
3954  * @size: size to be set for the file
3955  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3956  */
3957 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3958 {
3959 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3960 }
3961 EXPORT_SYMBOL_GPL(shmem_file_setup);
3962 
3963 /**
3964  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3965  * @mnt: the tmpfs mount where the file will be created
3966  * @name: name for dentry (to be seen in /proc/<pid>/maps
3967  * @size: size to be set for the file
3968  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3969  */
3970 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3971 				       loff_t size, unsigned long flags)
3972 {
3973 	return __shmem_file_setup(mnt, name, size, flags, 0);
3974 }
3975 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3976 
3977 /**
3978  * shmem_zero_setup - setup a shared anonymous mapping
3979  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3980  */
3981 int shmem_zero_setup(struct vm_area_struct *vma)
3982 {
3983 	struct file *file;
3984 	loff_t size = vma->vm_end - vma->vm_start;
3985 
3986 	/*
3987 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3988 	 * between XFS directory reading and selinux: since this file is only
3989 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3990 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3991 	 */
3992 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3993 	if (IS_ERR(file))
3994 		return PTR_ERR(file);
3995 
3996 	if (vma->vm_file)
3997 		fput(vma->vm_file);
3998 	vma->vm_file = file;
3999 	vma->vm_ops = &shmem_vm_ops;
4000 
4001 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4002 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4003 			(vma->vm_end & HPAGE_PMD_MASK)) {
4004 		khugepaged_enter(vma, vma->vm_flags);
4005 	}
4006 
4007 	return 0;
4008 }
4009 
4010 /**
4011  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4012  * @mapping:	the page's address_space
4013  * @index:	the page index
4014  * @gfp:	the page allocator flags to use if allocating
4015  *
4016  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4017  * with any new page allocations done using the specified allocation flags.
4018  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4019  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4020  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4021  *
4022  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4023  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4024  */
4025 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4026 					 pgoff_t index, gfp_t gfp)
4027 {
4028 #ifdef CONFIG_SHMEM
4029 	struct inode *inode = mapping->host;
4030 	struct page *page;
4031 	int error;
4032 
4033 	BUG_ON(mapping->a_ops != &shmem_aops);
4034 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4035 				  gfp, NULL, NULL, NULL);
4036 	if (error)
4037 		page = ERR_PTR(error);
4038 	else
4039 		unlock_page(page);
4040 	return page;
4041 #else
4042 	/*
4043 	 * The tiny !SHMEM case uses ramfs without swap
4044 	 */
4045 	return read_cache_page_gfp(mapping, index, gfp);
4046 #endif
4047 }
4048 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4049