1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 79 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 80 81 /* Pretend that each entry is of this size in directory's i_size */ 82 #define BOGO_DIRENT_SIZE 20 83 84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 85 #define SHORT_SYMLINK_LEN 128 86 87 /* 88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 89 * inode->i_private (with i_mutex making sure that it has only one user at 90 * a time): we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 94 pgoff_t start; /* start of range currently being fallocated */ 95 pgoff_t next; /* the next page offset to be fallocated */ 96 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 98 }; 99 100 /* Flag allocation requirements to shmem_getpage */ 101 enum sgp_type { 102 SGP_READ, /* don't exceed i_size, don't allocate page */ 103 SGP_CACHE, /* don't exceed i_size, may allocate page */ 104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, 125 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type); 126 127 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp) 129 { 130 return shmem_getpage_gfp(inode, index, pagep, sgp, 131 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 132 } 133 134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 135 { 136 return sb->s_fs_info; 137 } 138 139 /* 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 141 * for shared memory and for shared anonymous (/dev/zero) mappings 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 143 * consistent with the pre-accounting of private mappings ... 144 */ 145 static inline int shmem_acct_size(unsigned long flags, loff_t size) 146 { 147 return (flags & VM_NORESERVE) ? 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 149 } 150 151 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 152 { 153 if (!(flags & VM_NORESERVE)) 154 vm_unacct_memory(VM_ACCT(size)); 155 } 156 157 static inline int shmem_reacct_size(unsigned long flags, 158 loff_t oldsize, loff_t newsize) 159 { 160 if (!(flags & VM_NORESERVE)) { 161 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 162 return security_vm_enough_memory_mm(current->mm, 163 VM_ACCT(newsize) - VM_ACCT(oldsize)); 164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 166 } 167 return 0; 168 } 169 170 /* 171 * ... whereas tmpfs objects are accounted incrementally as 172 * pages are allocated, in order to allow large sparse files. 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 175 */ 176 static inline int shmem_acct_block(unsigned long flags) 177 { 178 return (flags & VM_NORESERVE) ? 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0; 180 } 181 182 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 183 { 184 if (flags & VM_NORESERVE) 185 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 186 } 187 188 static const struct super_operations shmem_ops; 189 static const struct address_space_operations shmem_aops; 190 static const struct file_operations shmem_file_operations; 191 static const struct inode_operations shmem_inode_operations; 192 static const struct inode_operations shmem_dir_inode_operations; 193 static const struct inode_operations shmem_special_inode_operations; 194 static const struct vm_operations_struct shmem_vm_ops; 195 196 static LIST_HEAD(shmem_swaplist); 197 static DEFINE_MUTEX(shmem_swaplist_mutex); 198 199 static int shmem_reserve_inode(struct super_block *sb) 200 { 201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 202 if (sbinfo->max_inodes) { 203 spin_lock(&sbinfo->stat_lock); 204 if (!sbinfo->free_inodes) { 205 spin_unlock(&sbinfo->stat_lock); 206 return -ENOSPC; 207 } 208 sbinfo->free_inodes--; 209 spin_unlock(&sbinfo->stat_lock); 210 } 211 return 0; 212 } 213 214 static void shmem_free_inode(struct super_block *sb) 215 { 216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 217 if (sbinfo->max_inodes) { 218 spin_lock(&sbinfo->stat_lock); 219 sbinfo->free_inodes++; 220 spin_unlock(&sbinfo->stat_lock); 221 } 222 } 223 224 /** 225 * shmem_recalc_inode - recalculate the block usage of an inode 226 * @inode: inode to recalc 227 * 228 * We have to calculate the free blocks since the mm can drop 229 * undirtied hole pages behind our back. 230 * 231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 233 * 234 * It has to be called with the spinlock held. 235 */ 236 static void shmem_recalc_inode(struct inode *inode) 237 { 238 struct shmem_inode_info *info = SHMEM_I(inode); 239 long freed; 240 241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 242 if (freed > 0) { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 244 if (sbinfo->max_blocks) 245 percpu_counter_add(&sbinfo->used_blocks, -freed); 246 info->alloced -= freed; 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 248 shmem_unacct_blocks(info->flags, freed); 249 } 250 } 251 252 /* 253 * Replace item expected in radix tree by a new item, while holding tree lock. 254 */ 255 static int shmem_radix_tree_replace(struct address_space *mapping, 256 pgoff_t index, void *expected, void *replacement) 257 { 258 void **pslot; 259 void *item; 260 261 VM_BUG_ON(!expected); 262 VM_BUG_ON(!replacement); 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 264 if (!pslot) 265 return -ENOENT; 266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 267 if (item != expected) 268 return -ENOENT; 269 radix_tree_replace_slot(pslot, replacement); 270 return 0; 271 } 272 273 /* 274 * Sometimes, before we decide whether to proceed or to fail, we must check 275 * that an entry was not already brought back from swap by a racing thread. 276 * 277 * Checking page is not enough: by the time a SwapCache page is locked, it 278 * might be reused, and again be SwapCache, using the same swap as before. 279 */ 280 static bool shmem_confirm_swap(struct address_space *mapping, 281 pgoff_t index, swp_entry_t swap) 282 { 283 void *item; 284 285 rcu_read_lock(); 286 item = radix_tree_lookup(&mapping->page_tree, index); 287 rcu_read_unlock(); 288 return item == swp_to_radix_entry(swap); 289 } 290 291 /* 292 * Like add_to_page_cache_locked, but error if expected item has gone. 293 */ 294 static int shmem_add_to_page_cache(struct page *page, 295 struct address_space *mapping, 296 pgoff_t index, void *expected) 297 { 298 int error; 299 300 VM_BUG_ON_PAGE(!PageLocked(page), page); 301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 302 303 get_page(page); 304 page->mapping = mapping; 305 page->index = index; 306 307 spin_lock_irq(&mapping->tree_lock); 308 if (!expected) 309 error = radix_tree_insert(&mapping->page_tree, index, page); 310 else 311 error = shmem_radix_tree_replace(mapping, index, expected, 312 page); 313 if (!error) { 314 mapping->nrpages++; 315 __inc_zone_page_state(page, NR_FILE_PAGES); 316 __inc_zone_page_state(page, NR_SHMEM); 317 spin_unlock_irq(&mapping->tree_lock); 318 } else { 319 page->mapping = NULL; 320 spin_unlock_irq(&mapping->tree_lock); 321 put_page(page); 322 } 323 return error; 324 } 325 326 /* 327 * Like delete_from_page_cache, but substitutes swap for page. 328 */ 329 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 330 { 331 struct address_space *mapping = page->mapping; 332 int error; 333 334 spin_lock_irq(&mapping->tree_lock); 335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 336 page->mapping = NULL; 337 mapping->nrpages--; 338 __dec_zone_page_state(page, NR_FILE_PAGES); 339 __dec_zone_page_state(page, NR_SHMEM); 340 spin_unlock_irq(&mapping->tree_lock); 341 put_page(page); 342 BUG_ON(error); 343 } 344 345 /* 346 * Remove swap entry from radix tree, free the swap and its page cache. 347 */ 348 static int shmem_free_swap(struct address_space *mapping, 349 pgoff_t index, void *radswap) 350 { 351 void *old; 352 353 spin_lock_irq(&mapping->tree_lock); 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 355 spin_unlock_irq(&mapping->tree_lock); 356 if (old != radswap) 357 return -ENOENT; 358 free_swap_and_cache(radix_to_swp_entry(radswap)); 359 return 0; 360 } 361 362 /* 363 * Determine (in bytes) how many of the shmem object's pages mapped by the 364 * given offsets are swapped out. 365 * 366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 367 * as long as the inode doesn't go away and racy results are not a problem. 368 */ 369 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 370 pgoff_t start, pgoff_t end) 371 { 372 struct radix_tree_iter iter; 373 void **slot; 374 struct page *page; 375 unsigned long swapped = 0; 376 377 rcu_read_lock(); 378 379 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 380 if (iter.index >= end) 381 break; 382 383 page = radix_tree_deref_slot(slot); 384 385 if (radix_tree_deref_retry(page)) { 386 slot = radix_tree_iter_retry(&iter); 387 continue; 388 } 389 390 if (radix_tree_exceptional_entry(page)) 391 swapped++; 392 393 if (need_resched()) { 394 cond_resched_rcu(); 395 slot = radix_tree_iter_next(&iter); 396 } 397 } 398 399 rcu_read_unlock(); 400 401 return swapped << PAGE_SHIFT; 402 } 403 404 /* 405 * Determine (in bytes) how many of the shmem object's pages mapped by the 406 * given vma is swapped out. 407 * 408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 409 * as long as the inode doesn't go away and racy results are not a problem. 410 */ 411 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 412 { 413 struct inode *inode = file_inode(vma->vm_file); 414 struct shmem_inode_info *info = SHMEM_I(inode); 415 struct address_space *mapping = inode->i_mapping; 416 unsigned long swapped; 417 418 /* Be careful as we don't hold info->lock */ 419 swapped = READ_ONCE(info->swapped); 420 421 /* 422 * The easier cases are when the shmem object has nothing in swap, or 423 * the vma maps it whole. Then we can simply use the stats that we 424 * already track. 425 */ 426 if (!swapped) 427 return 0; 428 429 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 430 return swapped << PAGE_SHIFT; 431 432 /* Here comes the more involved part */ 433 return shmem_partial_swap_usage(mapping, 434 linear_page_index(vma, vma->vm_start), 435 linear_page_index(vma, vma->vm_end)); 436 } 437 438 /* 439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 440 */ 441 void shmem_unlock_mapping(struct address_space *mapping) 442 { 443 struct pagevec pvec; 444 pgoff_t indices[PAGEVEC_SIZE]; 445 pgoff_t index = 0; 446 447 pagevec_init(&pvec, 0); 448 /* 449 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 450 */ 451 while (!mapping_unevictable(mapping)) { 452 /* 453 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 454 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 455 */ 456 pvec.nr = find_get_entries(mapping, index, 457 PAGEVEC_SIZE, pvec.pages, indices); 458 if (!pvec.nr) 459 break; 460 index = indices[pvec.nr - 1] + 1; 461 pagevec_remove_exceptionals(&pvec); 462 check_move_unevictable_pages(pvec.pages, pvec.nr); 463 pagevec_release(&pvec); 464 cond_resched(); 465 } 466 } 467 468 /* 469 * Remove range of pages and swap entries from radix tree, and free them. 470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 471 */ 472 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 473 bool unfalloc) 474 { 475 struct address_space *mapping = inode->i_mapping; 476 struct shmem_inode_info *info = SHMEM_I(inode); 477 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 478 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 479 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 480 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 481 struct pagevec pvec; 482 pgoff_t indices[PAGEVEC_SIZE]; 483 long nr_swaps_freed = 0; 484 pgoff_t index; 485 int i; 486 487 if (lend == -1) 488 end = -1; /* unsigned, so actually very big */ 489 490 pagevec_init(&pvec, 0); 491 index = start; 492 while (index < end) { 493 pvec.nr = find_get_entries(mapping, index, 494 min(end - index, (pgoff_t)PAGEVEC_SIZE), 495 pvec.pages, indices); 496 if (!pvec.nr) 497 break; 498 for (i = 0; i < pagevec_count(&pvec); i++) { 499 struct page *page = pvec.pages[i]; 500 501 index = indices[i]; 502 if (index >= end) 503 break; 504 505 if (radix_tree_exceptional_entry(page)) { 506 if (unfalloc) 507 continue; 508 nr_swaps_freed += !shmem_free_swap(mapping, 509 index, page); 510 continue; 511 } 512 513 if (!trylock_page(page)) 514 continue; 515 if (!unfalloc || !PageUptodate(page)) { 516 if (page->mapping == mapping) { 517 VM_BUG_ON_PAGE(PageWriteback(page), page); 518 truncate_inode_page(mapping, page); 519 } 520 } 521 unlock_page(page); 522 } 523 pagevec_remove_exceptionals(&pvec); 524 pagevec_release(&pvec); 525 cond_resched(); 526 index++; 527 } 528 529 if (partial_start) { 530 struct page *page = NULL; 531 shmem_getpage(inode, start - 1, &page, SGP_READ); 532 if (page) { 533 unsigned int top = PAGE_SIZE; 534 if (start > end) { 535 top = partial_end; 536 partial_end = 0; 537 } 538 zero_user_segment(page, partial_start, top); 539 set_page_dirty(page); 540 unlock_page(page); 541 put_page(page); 542 } 543 } 544 if (partial_end) { 545 struct page *page = NULL; 546 shmem_getpage(inode, end, &page, SGP_READ); 547 if (page) { 548 zero_user_segment(page, 0, partial_end); 549 set_page_dirty(page); 550 unlock_page(page); 551 put_page(page); 552 } 553 } 554 if (start >= end) 555 return; 556 557 index = start; 558 while (index < end) { 559 cond_resched(); 560 561 pvec.nr = find_get_entries(mapping, index, 562 min(end - index, (pgoff_t)PAGEVEC_SIZE), 563 pvec.pages, indices); 564 if (!pvec.nr) { 565 /* If all gone or hole-punch or unfalloc, we're done */ 566 if (index == start || end != -1) 567 break; 568 /* But if truncating, restart to make sure all gone */ 569 index = start; 570 continue; 571 } 572 for (i = 0; i < pagevec_count(&pvec); i++) { 573 struct page *page = pvec.pages[i]; 574 575 index = indices[i]; 576 if (index >= end) 577 break; 578 579 if (radix_tree_exceptional_entry(page)) { 580 if (unfalloc) 581 continue; 582 if (shmem_free_swap(mapping, index, page)) { 583 /* Swap was replaced by page: retry */ 584 index--; 585 break; 586 } 587 nr_swaps_freed++; 588 continue; 589 } 590 591 lock_page(page); 592 if (!unfalloc || !PageUptodate(page)) { 593 if (page->mapping == mapping) { 594 VM_BUG_ON_PAGE(PageWriteback(page), page); 595 truncate_inode_page(mapping, page); 596 } else { 597 /* Page was replaced by swap: retry */ 598 unlock_page(page); 599 index--; 600 break; 601 } 602 } 603 unlock_page(page); 604 } 605 pagevec_remove_exceptionals(&pvec); 606 pagevec_release(&pvec); 607 index++; 608 } 609 610 spin_lock(&info->lock); 611 info->swapped -= nr_swaps_freed; 612 shmem_recalc_inode(inode); 613 spin_unlock(&info->lock); 614 } 615 616 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 617 { 618 shmem_undo_range(inode, lstart, lend, false); 619 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 620 } 621 EXPORT_SYMBOL_GPL(shmem_truncate_range); 622 623 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 624 struct kstat *stat) 625 { 626 struct inode *inode = dentry->d_inode; 627 struct shmem_inode_info *info = SHMEM_I(inode); 628 629 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 630 spin_lock(&info->lock); 631 shmem_recalc_inode(inode); 632 spin_unlock(&info->lock); 633 } 634 generic_fillattr(inode, stat); 635 return 0; 636 } 637 638 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 639 { 640 struct inode *inode = d_inode(dentry); 641 struct shmem_inode_info *info = SHMEM_I(inode); 642 int error; 643 644 error = inode_change_ok(inode, attr); 645 if (error) 646 return error; 647 648 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 649 loff_t oldsize = inode->i_size; 650 loff_t newsize = attr->ia_size; 651 652 /* protected by i_mutex */ 653 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 654 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 655 return -EPERM; 656 657 if (newsize != oldsize) { 658 error = shmem_reacct_size(SHMEM_I(inode)->flags, 659 oldsize, newsize); 660 if (error) 661 return error; 662 i_size_write(inode, newsize); 663 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 664 } 665 if (newsize <= oldsize) { 666 loff_t holebegin = round_up(newsize, PAGE_SIZE); 667 if (oldsize > holebegin) 668 unmap_mapping_range(inode->i_mapping, 669 holebegin, 0, 1); 670 if (info->alloced) 671 shmem_truncate_range(inode, 672 newsize, (loff_t)-1); 673 /* unmap again to remove racily COWed private pages */ 674 if (oldsize > holebegin) 675 unmap_mapping_range(inode->i_mapping, 676 holebegin, 0, 1); 677 } 678 } 679 680 setattr_copy(inode, attr); 681 if (attr->ia_valid & ATTR_MODE) 682 error = posix_acl_chmod(inode, inode->i_mode); 683 return error; 684 } 685 686 static void shmem_evict_inode(struct inode *inode) 687 { 688 struct shmem_inode_info *info = SHMEM_I(inode); 689 690 if (inode->i_mapping->a_ops == &shmem_aops) { 691 shmem_unacct_size(info->flags, inode->i_size); 692 inode->i_size = 0; 693 shmem_truncate_range(inode, 0, (loff_t)-1); 694 if (!list_empty(&info->swaplist)) { 695 mutex_lock(&shmem_swaplist_mutex); 696 list_del_init(&info->swaplist); 697 mutex_unlock(&shmem_swaplist_mutex); 698 } 699 } 700 701 simple_xattrs_free(&info->xattrs); 702 WARN_ON(inode->i_blocks); 703 shmem_free_inode(inode->i_sb); 704 clear_inode(inode); 705 } 706 707 /* 708 * If swap found in inode, free it and move page from swapcache to filecache. 709 */ 710 static int shmem_unuse_inode(struct shmem_inode_info *info, 711 swp_entry_t swap, struct page **pagep) 712 { 713 struct address_space *mapping = info->vfs_inode.i_mapping; 714 void *radswap; 715 pgoff_t index; 716 gfp_t gfp; 717 int error = 0; 718 719 radswap = swp_to_radix_entry(swap); 720 index = radix_tree_locate_item(&mapping->page_tree, radswap); 721 if (index == -1) 722 return -EAGAIN; /* tell shmem_unuse we found nothing */ 723 724 /* 725 * Move _head_ to start search for next from here. 726 * But be careful: shmem_evict_inode checks list_empty without taking 727 * mutex, and there's an instant in list_move_tail when info->swaplist 728 * would appear empty, if it were the only one on shmem_swaplist. 729 */ 730 if (shmem_swaplist.next != &info->swaplist) 731 list_move_tail(&shmem_swaplist, &info->swaplist); 732 733 gfp = mapping_gfp_mask(mapping); 734 if (shmem_should_replace_page(*pagep, gfp)) { 735 mutex_unlock(&shmem_swaplist_mutex); 736 error = shmem_replace_page(pagep, gfp, info, index); 737 mutex_lock(&shmem_swaplist_mutex); 738 /* 739 * We needed to drop mutex to make that restrictive page 740 * allocation, but the inode might have been freed while we 741 * dropped it: although a racing shmem_evict_inode() cannot 742 * complete without emptying the radix_tree, our page lock 743 * on this swapcache page is not enough to prevent that - 744 * free_swap_and_cache() of our swap entry will only 745 * trylock_page(), removing swap from radix_tree whatever. 746 * 747 * We must not proceed to shmem_add_to_page_cache() if the 748 * inode has been freed, but of course we cannot rely on 749 * inode or mapping or info to check that. However, we can 750 * safely check if our swap entry is still in use (and here 751 * it can't have got reused for another page): if it's still 752 * in use, then the inode cannot have been freed yet, and we 753 * can safely proceed (if it's no longer in use, that tells 754 * nothing about the inode, but we don't need to unuse swap). 755 */ 756 if (!page_swapcount(*pagep)) 757 error = -ENOENT; 758 } 759 760 /* 761 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 762 * but also to hold up shmem_evict_inode(): so inode cannot be freed 763 * beneath us (pagelock doesn't help until the page is in pagecache). 764 */ 765 if (!error) 766 error = shmem_add_to_page_cache(*pagep, mapping, index, 767 radswap); 768 if (error != -ENOMEM) { 769 /* 770 * Truncation and eviction use free_swap_and_cache(), which 771 * only does trylock page: if we raced, best clean up here. 772 */ 773 delete_from_swap_cache(*pagep); 774 set_page_dirty(*pagep); 775 if (!error) { 776 spin_lock(&info->lock); 777 info->swapped--; 778 spin_unlock(&info->lock); 779 swap_free(swap); 780 } 781 } 782 return error; 783 } 784 785 /* 786 * Search through swapped inodes to find and replace swap by page. 787 */ 788 int shmem_unuse(swp_entry_t swap, struct page *page) 789 { 790 struct list_head *this, *next; 791 struct shmem_inode_info *info; 792 struct mem_cgroup *memcg; 793 int error = 0; 794 795 /* 796 * There's a faint possibility that swap page was replaced before 797 * caller locked it: caller will come back later with the right page. 798 */ 799 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 800 goto out; 801 802 /* 803 * Charge page using GFP_KERNEL while we can wait, before taking 804 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 805 * Charged back to the user (not to caller) when swap account is used. 806 */ 807 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 808 false); 809 if (error) 810 goto out; 811 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 812 error = -EAGAIN; 813 814 mutex_lock(&shmem_swaplist_mutex); 815 list_for_each_safe(this, next, &shmem_swaplist) { 816 info = list_entry(this, struct shmem_inode_info, swaplist); 817 if (info->swapped) 818 error = shmem_unuse_inode(info, swap, &page); 819 else 820 list_del_init(&info->swaplist); 821 cond_resched(); 822 if (error != -EAGAIN) 823 break; 824 /* found nothing in this: move on to search the next */ 825 } 826 mutex_unlock(&shmem_swaplist_mutex); 827 828 if (error) { 829 if (error != -ENOMEM) 830 error = 0; 831 mem_cgroup_cancel_charge(page, memcg, false); 832 } else 833 mem_cgroup_commit_charge(page, memcg, true, false); 834 out: 835 unlock_page(page); 836 put_page(page); 837 return error; 838 } 839 840 /* 841 * Move the page from the page cache to the swap cache. 842 */ 843 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 844 { 845 struct shmem_inode_info *info; 846 struct address_space *mapping; 847 struct inode *inode; 848 swp_entry_t swap; 849 pgoff_t index; 850 851 BUG_ON(!PageLocked(page)); 852 mapping = page->mapping; 853 index = page->index; 854 inode = mapping->host; 855 info = SHMEM_I(inode); 856 if (info->flags & VM_LOCKED) 857 goto redirty; 858 if (!total_swap_pages) 859 goto redirty; 860 861 /* 862 * Our capabilities prevent regular writeback or sync from ever calling 863 * shmem_writepage; but a stacking filesystem might use ->writepage of 864 * its underlying filesystem, in which case tmpfs should write out to 865 * swap only in response to memory pressure, and not for the writeback 866 * threads or sync. 867 */ 868 if (!wbc->for_reclaim) { 869 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 870 goto redirty; 871 } 872 873 /* 874 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 875 * value into swapfile.c, the only way we can correctly account for a 876 * fallocated page arriving here is now to initialize it and write it. 877 * 878 * That's okay for a page already fallocated earlier, but if we have 879 * not yet completed the fallocation, then (a) we want to keep track 880 * of this page in case we have to undo it, and (b) it may not be a 881 * good idea to continue anyway, once we're pushing into swap. So 882 * reactivate the page, and let shmem_fallocate() quit when too many. 883 */ 884 if (!PageUptodate(page)) { 885 if (inode->i_private) { 886 struct shmem_falloc *shmem_falloc; 887 spin_lock(&inode->i_lock); 888 shmem_falloc = inode->i_private; 889 if (shmem_falloc && 890 !shmem_falloc->waitq && 891 index >= shmem_falloc->start && 892 index < shmem_falloc->next) 893 shmem_falloc->nr_unswapped++; 894 else 895 shmem_falloc = NULL; 896 spin_unlock(&inode->i_lock); 897 if (shmem_falloc) 898 goto redirty; 899 } 900 clear_highpage(page); 901 flush_dcache_page(page); 902 SetPageUptodate(page); 903 } 904 905 swap = get_swap_page(); 906 if (!swap.val) 907 goto redirty; 908 909 if (mem_cgroup_try_charge_swap(page, swap)) 910 goto free_swap; 911 912 /* 913 * Add inode to shmem_unuse()'s list of swapped-out inodes, 914 * if it's not already there. Do it now before the page is 915 * moved to swap cache, when its pagelock no longer protects 916 * the inode from eviction. But don't unlock the mutex until 917 * we've incremented swapped, because shmem_unuse_inode() will 918 * prune a !swapped inode from the swaplist under this mutex. 919 */ 920 mutex_lock(&shmem_swaplist_mutex); 921 if (list_empty(&info->swaplist)) 922 list_add_tail(&info->swaplist, &shmem_swaplist); 923 924 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 925 spin_lock(&info->lock); 926 shmem_recalc_inode(inode); 927 info->swapped++; 928 spin_unlock(&info->lock); 929 930 swap_shmem_alloc(swap); 931 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 932 933 mutex_unlock(&shmem_swaplist_mutex); 934 BUG_ON(page_mapped(page)); 935 swap_writepage(page, wbc); 936 return 0; 937 } 938 939 mutex_unlock(&shmem_swaplist_mutex); 940 free_swap: 941 swapcache_free(swap); 942 redirty: 943 set_page_dirty(page); 944 if (wbc->for_reclaim) 945 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 946 unlock_page(page); 947 return 0; 948 } 949 950 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 951 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 952 { 953 char buffer[64]; 954 955 if (!mpol || mpol->mode == MPOL_DEFAULT) 956 return; /* show nothing */ 957 958 mpol_to_str(buffer, sizeof(buffer), mpol); 959 960 seq_printf(seq, ",mpol=%s", buffer); 961 } 962 963 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 964 { 965 struct mempolicy *mpol = NULL; 966 if (sbinfo->mpol) { 967 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 968 mpol = sbinfo->mpol; 969 mpol_get(mpol); 970 spin_unlock(&sbinfo->stat_lock); 971 } 972 return mpol; 973 } 974 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 975 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 976 { 977 } 978 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 979 { 980 return NULL; 981 } 982 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 983 #ifndef CONFIG_NUMA 984 #define vm_policy vm_private_data 985 #endif 986 987 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 988 struct shmem_inode_info *info, pgoff_t index) 989 { 990 struct vm_area_struct pvma; 991 struct page *page; 992 993 /* Create a pseudo vma that just contains the policy */ 994 pvma.vm_start = 0; 995 /* Bias interleave by inode number to distribute better across nodes */ 996 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 997 pvma.vm_ops = NULL; 998 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 999 1000 page = swapin_readahead(swap, gfp, &pvma, 0); 1001 1002 /* Drop reference taken by mpol_shared_policy_lookup() */ 1003 mpol_cond_put(pvma.vm_policy); 1004 1005 return page; 1006 } 1007 1008 static struct page *shmem_alloc_page(gfp_t gfp, 1009 struct shmem_inode_info *info, pgoff_t index) 1010 { 1011 struct vm_area_struct pvma; 1012 struct page *page; 1013 1014 /* Create a pseudo vma that just contains the policy */ 1015 pvma.vm_start = 0; 1016 /* Bias interleave by inode number to distribute better across nodes */ 1017 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 1018 pvma.vm_ops = NULL; 1019 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1020 1021 page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false); 1022 if (page) { 1023 __SetPageLocked(page); 1024 __SetPageSwapBacked(page); 1025 } 1026 1027 /* Drop reference taken by mpol_shared_policy_lookup() */ 1028 mpol_cond_put(pvma.vm_policy); 1029 1030 return page; 1031 } 1032 1033 /* 1034 * When a page is moved from swapcache to shmem filecache (either by the 1035 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1036 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1037 * ignorance of the mapping it belongs to. If that mapping has special 1038 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1039 * we may need to copy to a suitable page before moving to filecache. 1040 * 1041 * In a future release, this may well be extended to respect cpuset and 1042 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1043 * but for now it is a simple matter of zone. 1044 */ 1045 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1046 { 1047 return page_zonenum(page) > gfp_zone(gfp); 1048 } 1049 1050 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1051 struct shmem_inode_info *info, pgoff_t index) 1052 { 1053 struct page *oldpage, *newpage; 1054 struct address_space *swap_mapping; 1055 pgoff_t swap_index; 1056 int error; 1057 1058 oldpage = *pagep; 1059 swap_index = page_private(oldpage); 1060 swap_mapping = page_mapping(oldpage); 1061 1062 /* 1063 * We have arrived here because our zones are constrained, so don't 1064 * limit chance of success by further cpuset and node constraints. 1065 */ 1066 gfp &= ~GFP_CONSTRAINT_MASK; 1067 newpage = shmem_alloc_page(gfp, info, index); 1068 if (!newpage) 1069 return -ENOMEM; 1070 1071 get_page(newpage); 1072 copy_highpage(newpage, oldpage); 1073 flush_dcache_page(newpage); 1074 1075 SetPageUptodate(newpage); 1076 set_page_private(newpage, swap_index); 1077 SetPageSwapCache(newpage); 1078 1079 /* 1080 * Our caller will very soon move newpage out of swapcache, but it's 1081 * a nice clean interface for us to replace oldpage by newpage there. 1082 */ 1083 spin_lock_irq(&swap_mapping->tree_lock); 1084 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1085 newpage); 1086 if (!error) { 1087 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1088 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1089 } 1090 spin_unlock_irq(&swap_mapping->tree_lock); 1091 1092 if (unlikely(error)) { 1093 /* 1094 * Is this possible? I think not, now that our callers check 1095 * both PageSwapCache and page_private after getting page lock; 1096 * but be defensive. Reverse old to newpage for clear and free. 1097 */ 1098 oldpage = newpage; 1099 } else { 1100 mem_cgroup_migrate(oldpage, newpage); 1101 lru_cache_add_anon(newpage); 1102 *pagep = newpage; 1103 } 1104 1105 ClearPageSwapCache(oldpage); 1106 set_page_private(oldpage, 0); 1107 1108 unlock_page(oldpage); 1109 put_page(oldpage); 1110 put_page(oldpage); 1111 return error; 1112 } 1113 1114 /* 1115 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1116 * 1117 * If we allocate a new one we do not mark it dirty. That's up to the 1118 * vm. If we swap it in we mark it dirty since we also free the swap 1119 * entry since a page cannot live in both the swap and page cache. 1120 * 1121 * fault_mm and fault_type are only supplied by shmem_fault: 1122 * otherwise they are NULL. 1123 */ 1124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1126 struct mm_struct *fault_mm, int *fault_type) 1127 { 1128 struct address_space *mapping = inode->i_mapping; 1129 struct shmem_inode_info *info; 1130 struct shmem_sb_info *sbinfo; 1131 struct mm_struct *charge_mm; 1132 struct mem_cgroup *memcg; 1133 struct page *page; 1134 swp_entry_t swap; 1135 int error; 1136 int once = 0; 1137 int alloced = 0; 1138 1139 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1140 return -EFBIG; 1141 repeat: 1142 swap.val = 0; 1143 page = find_lock_entry(mapping, index); 1144 if (radix_tree_exceptional_entry(page)) { 1145 swap = radix_to_swp_entry(page); 1146 page = NULL; 1147 } 1148 1149 if (sgp <= SGP_CACHE && 1150 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1151 error = -EINVAL; 1152 goto unlock; 1153 } 1154 1155 if (page && sgp == SGP_WRITE) 1156 mark_page_accessed(page); 1157 1158 /* fallocated page? */ 1159 if (page && !PageUptodate(page)) { 1160 if (sgp != SGP_READ) 1161 goto clear; 1162 unlock_page(page); 1163 put_page(page); 1164 page = NULL; 1165 } 1166 if (page || (sgp == SGP_READ && !swap.val)) { 1167 *pagep = page; 1168 return 0; 1169 } 1170 1171 /* 1172 * Fast cache lookup did not find it: 1173 * bring it back from swap or allocate. 1174 */ 1175 info = SHMEM_I(inode); 1176 sbinfo = SHMEM_SB(inode->i_sb); 1177 charge_mm = fault_mm ? : current->mm; 1178 1179 if (swap.val) { 1180 /* Look it up and read it in.. */ 1181 page = lookup_swap_cache(swap); 1182 if (!page) { 1183 /* Or update major stats only when swapin succeeds?? */ 1184 if (fault_type) { 1185 *fault_type |= VM_FAULT_MAJOR; 1186 count_vm_event(PGMAJFAULT); 1187 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT); 1188 } 1189 /* Here we actually start the io */ 1190 page = shmem_swapin(swap, gfp, info, index); 1191 if (!page) { 1192 error = -ENOMEM; 1193 goto failed; 1194 } 1195 } 1196 1197 /* We have to do this with page locked to prevent races */ 1198 lock_page(page); 1199 if (!PageSwapCache(page) || page_private(page) != swap.val || 1200 !shmem_confirm_swap(mapping, index, swap)) { 1201 error = -EEXIST; /* try again */ 1202 goto unlock; 1203 } 1204 if (!PageUptodate(page)) { 1205 error = -EIO; 1206 goto failed; 1207 } 1208 wait_on_page_writeback(page); 1209 1210 if (shmem_should_replace_page(page, gfp)) { 1211 error = shmem_replace_page(&page, gfp, info, index); 1212 if (error) 1213 goto failed; 1214 } 1215 1216 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1217 false); 1218 if (!error) { 1219 error = shmem_add_to_page_cache(page, mapping, index, 1220 swp_to_radix_entry(swap)); 1221 /* 1222 * We already confirmed swap under page lock, and make 1223 * no memory allocation here, so usually no possibility 1224 * of error; but free_swap_and_cache() only trylocks a 1225 * page, so it is just possible that the entry has been 1226 * truncated or holepunched since swap was confirmed. 1227 * shmem_undo_range() will have done some of the 1228 * unaccounting, now delete_from_swap_cache() will do 1229 * the rest. 1230 * Reset swap.val? No, leave it so "failed" goes back to 1231 * "repeat": reading a hole and writing should succeed. 1232 */ 1233 if (error) { 1234 mem_cgroup_cancel_charge(page, memcg, false); 1235 delete_from_swap_cache(page); 1236 } 1237 } 1238 if (error) 1239 goto failed; 1240 1241 mem_cgroup_commit_charge(page, memcg, true, false); 1242 1243 spin_lock(&info->lock); 1244 info->swapped--; 1245 shmem_recalc_inode(inode); 1246 spin_unlock(&info->lock); 1247 1248 if (sgp == SGP_WRITE) 1249 mark_page_accessed(page); 1250 1251 delete_from_swap_cache(page); 1252 set_page_dirty(page); 1253 swap_free(swap); 1254 1255 } else { 1256 if (shmem_acct_block(info->flags)) { 1257 error = -ENOSPC; 1258 goto failed; 1259 } 1260 if (sbinfo->max_blocks) { 1261 if (percpu_counter_compare(&sbinfo->used_blocks, 1262 sbinfo->max_blocks) >= 0) { 1263 error = -ENOSPC; 1264 goto unacct; 1265 } 1266 percpu_counter_inc(&sbinfo->used_blocks); 1267 } 1268 1269 page = shmem_alloc_page(gfp, info, index); 1270 if (!page) { 1271 error = -ENOMEM; 1272 goto decused; 1273 } 1274 if (sgp == SGP_WRITE) 1275 __SetPageReferenced(page); 1276 1277 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1278 false); 1279 if (error) 1280 goto decused; 1281 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1282 if (!error) { 1283 error = shmem_add_to_page_cache(page, mapping, index, 1284 NULL); 1285 radix_tree_preload_end(); 1286 } 1287 if (error) { 1288 mem_cgroup_cancel_charge(page, memcg, false); 1289 goto decused; 1290 } 1291 mem_cgroup_commit_charge(page, memcg, false, false); 1292 lru_cache_add_anon(page); 1293 1294 spin_lock(&info->lock); 1295 info->alloced++; 1296 inode->i_blocks += BLOCKS_PER_PAGE; 1297 shmem_recalc_inode(inode); 1298 spin_unlock(&info->lock); 1299 alloced = true; 1300 1301 /* 1302 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1303 */ 1304 if (sgp == SGP_FALLOC) 1305 sgp = SGP_WRITE; 1306 clear: 1307 /* 1308 * Let SGP_WRITE caller clear ends if write does not fill page; 1309 * but SGP_FALLOC on a page fallocated earlier must initialize 1310 * it now, lest undo on failure cancel our earlier guarantee. 1311 */ 1312 if (sgp != SGP_WRITE) { 1313 clear_highpage(page); 1314 flush_dcache_page(page); 1315 SetPageUptodate(page); 1316 } 1317 } 1318 1319 /* Perhaps the file has been truncated since we checked */ 1320 if (sgp <= SGP_CACHE && 1321 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1322 if (alloced) { 1323 ClearPageDirty(page); 1324 delete_from_page_cache(page); 1325 spin_lock(&info->lock); 1326 shmem_recalc_inode(inode); 1327 spin_unlock(&info->lock); 1328 } 1329 error = -EINVAL; 1330 goto unlock; 1331 } 1332 *pagep = page; 1333 return 0; 1334 1335 /* 1336 * Error recovery. 1337 */ 1338 decused: 1339 if (sbinfo->max_blocks) 1340 percpu_counter_add(&sbinfo->used_blocks, -1); 1341 unacct: 1342 shmem_unacct_blocks(info->flags, 1); 1343 failed: 1344 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1345 error = -EEXIST; 1346 unlock: 1347 if (page) { 1348 unlock_page(page); 1349 put_page(page); 1350 } 1351 if (error == -ENOSPC && !once++) { 1352 info = SHMEM_I(inode); 1353 spin_lock(&info->lock); 1354 shmem_recalc_inode(inode); 1355 spin_unlock(&info->lock); 1356 goto repeat; 1357 } 1358 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1359 goto repeat; 1360 return error; 1361 } 1362 1363 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1364 { 1365 struct inode *inode = file_inode(vma->vm_file); 1366 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1367 int error; 1368 int ret = VM_FAULT_LOCKED; 1369 1370 /* 1371 * Trinity finds that probing a hole which tmpfs is punching can 1372 * prevent the hole-punch from ever completing: which in turn 1373 * locks writers out with its hold on i_mutex. So refrain from 1374 * faulting pages into the hole while it's being punched. Although 1375 * shmem_undo_range() does remove the additions, it may be unable to 1376 * keep up, as each new page needs its own unmap_mapping_range() call, 1377 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1378 * 1379 * It does not matter if we sometimes reach this check just before the 1380 * hole-punch begins, so that one fault then races with the punch: 1381 * we just need to make racing faults a rare case. 1382 * 1383 * The implementation below would be much simpler if we just used a 1384 * standard mutex or completion: but we cannot take i_mutex in fault, 1385 * and bloating every shmem inode for this unlikely case would be sad. 1386 */ 1387 if (unlikely(inode->i_private)) { 1388 struct shmem_falloc *shmem_falloc; 1389 1390 spin_lock(&inode->i_lock); 1391 shmem_falloc = inode->i_private; 1392 if (shmem_falloc && 1393 shmem_falloc->waitq && 1394 vmf->pgoff >= shmem_falloc->start && 1395 vmf->pgoff < shmem_falloc->next) { 1396 wait_queue_head_t *shmem_falloc_waitq; 1397 DEFINE_WAIT(shmem_fault_wait); 1398 1399 ret = VM_FAULT_NOPAGE; 1400 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1401 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1402 /* It's polite to up mmap_sem if we can */ 1403 up_read(&vma->vm_mm->mmap_sem); 1404 ret = VM_FAULT_RETRY; 1405 } 1406 1407 shmem_falloc_waitq = shmem_falloc->waitq; 1408 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1409 TASK_UNINTERRUPTIBLE); 1410 spin_unlock(&inode->i_lock); 1411 schedule(); 1412 1413 /* 1414 * shmem_falloc_waitq points into the shmem_fallocate() 1415 * stack of the hole-punching task: shmem_falloc_waitq 1416 * is usually invalid by the time we reach here, but 1417 * finish_wait() does not dereference it in that case; 1418 * though i_lock needed lest racing with wake_up_all(). 1419 */ 1420 spin_lock(&inode->i_lock); 1421 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1422 spin_unlock(&inode->i_lock); 1423 return ret; 1424 } 1425 spin_unlock(&inode->i_lock); 1426 } 1427 1428 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 1429 gfp, vma->vm_mm, &ret); 1430 if (error) 1431 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1432 return ret; 1433 } 1434 1435 #ifdef CONFIG_NUMA 1436 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1437 { 1438 struct inode *inode = file_inode(vma->vm_file); 1439 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1440 } 1441 1442 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1443 unsigned long addr) 1444 { 1445 struct inode *inode = file_inode(vma->vm_file); 1446 pgoff_t index; 1447 1448 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1449 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1450 } 1451 #endif 1452 1453 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1454 { 1455 struct inode *inode = file_inode(file); 1456 struct shmem_inode_info *info = SHMEM_I(inode); 1457 int retval = -ENOMEM; 1458 1459 spin_lock(&info->lock); 1460 if (lock && !(info->flags & VM_LOCKED)) { 1461 if (!user_shm_lock(inode->i_size, user)) 1462 goto out_nomem; 1463 info->flags |= VM_LOCKED; 1464 mapping_set_unevictable(file->f_mapping); 1465 } 1466 if (!lock && (info->flags & VM_LOCKED) && user) { 1467 user_shm_unlock(inode->i_size, user); 1468 info->flags &= ~VM_LOCKED; 1469 mapping_clear_unevictable(file->f_mapping); 1470 } 1471 retval = 0; 1472 1473 out_nomem: 1474 spin_unlock(&info->lock); 1475 return retval; 1476 } 1477 1478 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1479 { 1480 file_accessed(file); 1481 vma->vm_ops = &shmem_vm_ops; 1482 return 0; 1483 } 1484 1485 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1486 umode_t mode, dev_t dev, unsigned long flags) 1487 { 1488 struct inode *inode; 1489 struct shmem_inode_info *info; 1490 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1491 1492 if (shmem_reserve_inode(sb)) 1493 return NULL; 1494 1495 inode = new_inode(sb); 1496 if (inode) { 1497 inode->i_ino = get_next_ino(); 1498 inode_init_owner(inode, dir, mode); 1499 inode->i_blocks = 0; 1500 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1501 inode->i_generation = get_seconds(); 1502 info = SHMEM_I(inode); 1503 memset(info, 0, (char *)inode - (char *)info); 1504 spin_lock_init(&info->lock); 1505 info->seals = F_SEAL_SEAL; 1506 info->flags = flags & VM_NORESERVE; 1507 INIT_LIST_HEAD(&info->swaplist); 1508 simple_xattrs_init(&info->xattrs); 1509 cache_no_acl(inode); 1510 1511 switch (mode & S_IFMT) { 1512 default: 1513 inode->i_op = &shmem_special_inode_operations; 1514 init_special_inode(inode, mode, dev); 1515 break; 1516 case S_IFREG: 1517 inode->i_mapping->a_ops = &shmem_aops; 1518 inode->i_op = &shmem_inode_operations; 1519 inode->i_fop = &shmem_file_operations; 1520 mpol_shared_policy_init(&info->policy, 1521 shmem_get_sbmpol(sbinfo)); 1522 break; 1523 case S_IFDIR: 1524 inc_nlink(inode); 1525 /* Some things misbehave if size == 0 on a directory */ 1526 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1527 inode->i_op = &shmem_dir_inode_operations; 1528 inode->i_fop = &simple_dir_operations; 1529 break; 1530 case S_IFLNK: 1531 /* 1532 * Must not load anything in the rbtree, 1533 * mpol_free_shared_policy will not be called. 1534 */ 1535 mpol_shared_policy_init(&info->policy, NULL); 1536 break; 1537 } 1538 } else 1539 shmem_free_inode(sb); 1540 return inode; 1541 } 1542 1543 bool shmem_mapping(struct address_space *mapping) 1544 { 1545 if (!mapping->host) 1546 return false; 1547 1548 return mapping->host->i_sb->s_op == &shmem_ops; 1549 } 1550 1551 #ifdef CONFIG_TMPFS 1552 static const struct inode_operations shmem_symlink_inode_operations; 1553 static const struct inode_operations shmem_short_symlink_operations; 1554 1555 #ifdef CONFIG_TMPFS_XATTR 1556 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1557 #else 1558 #define shmem_initxattrs NULL 1559 #endif 1560 1561 static int 1562 shmem_write_begin(struct file *file, struct address_space *mapping, 1563 loff_t pos, unsigned len, unsigned flags, 1564 struct page **pagep, void **fsdata) 1565 { 1566 struct inode *inode = mapping->host; 1567 struct shmem_inode_info *info = SHMEM_I(inode); 1568 pgoff_t index = pos >> PAGE_SHIFT; 1569 1570 /* i_mutex is held by caller */ 1571 if (unlikely(info->seals)) { 1572 if (info->seals & F_SEAL_WRITE) 1573 return -EPERM; 1574 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1575 return -EPERM; 1576 } 1577 1578 return shmem_getpage(inode, index, pagep, SGP_WRITE); 1579 } 1580 1581 static int 1582 shmem_write_end(struct file *file, struct address_space *mapping, 1583 loff_t pos, unsigned len, unsigned copied, 1584 struct page *page, void *fsdata) 1585 { 1586 struct inode *inode = mapping->host; 1587 1588 if (pos + copied > inode->i_size) 1589 i_size_write(inode, pos + copied); 1590 1591 if (!PageUptodate(page)) { 1592 if (copied < PAGE_SIZE) { 1593 unsigned from = pos & (PAGE_SIZE - 1); 1594 zero_user_segments(page, 0, from, 1595 from + copied, PAGE_SIZE); 1596 } 1597 SetPageUptodate(page); 1598 } 1599 set_page_dirty(page); 1600 unlock_page(page); 1601 put_page(page); 1602 1603 return copied; 1604 } 1605 1606 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1607 { 1608 struct file *file = iocb->ki_filp; 1609 struct inode *inode = file_inode(file); 1610 struct address_space *mapping = inode->i_mapping; 1611 pgoff_t index; 1612 unsigned long offset; 1613 enum sgp_type sgp = SGP_READ; 1614 int error = 0; 1615 ssize_t retval = 0; 1616 loff_t *ppos = &iocb->ki_pos; 1617 1618 /* 1619 * Might this read be for a stacking filesystem? Then when reading 1620 * holes of a sparse file, we actually need to allocate those pages, 1621 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1622 */ 1623 if (!iter_is_iovec(to)) 1624 sgp = SGP_CACHE; 1625 1626 index = *ppos >> PAGE_SHIFT; 1627 offset = *ppos & ~PAGE_MASK; 1628 1629 for (;;) { 1630 struct page *page = NULL; 1631 pgoff_t end_index; 1632 unsigned long nr, ret; 1633 loff_t i_size = i_size_read(inode); 1634 1635 end_index = i_size >> PAGE_SHIFT; 1636 if (index > end_index) 1637 break; 1638 if (index == end_index) { 1639 nr = i_size & ~PAGE_MASK; 1640 if (nr <= offset) 1641 break; 1642 } 1643 1644 error = shmem_getpage(inode, index, &page, sgp); 1645 if (error) { 1646 if (error == -EINVAL) 1647 error = 0; 1648 break; 1649 } 1650 if (page) { 1651 if (sgp == SGP_CACHE) 1652 set_page_dirty(page); 1653 unlock_page(page); 1654 } 1655 1656 /* 1657 * We must evaluate after, since reads (unlike writes) 1658 * are called without i_mutex protection against truncate 1659 */ 1660 nr = PAGE_SIZE; 1661 i_size = i_size_read(inode); 1662 end_index = i_size >> PAGE_SHIFT; 1663 if (index == end_index) { 1664 nr = i_size & ~PAGE_MASK; 1665 if (nr <= offset) { 1666 if (page) 1667 put_page(page); 1668 break; 1669 } 1670 } 1671 nr -= offset; 1672 1673 if (page) { 1674 /* 1675 * If users can be writing to this page using arbitrary 1676 * virtual addresses, take care about potential aliasing 1677 * before reading the page on the kernel side. 1678 */ 1679 if (mapping_writably_mapped(mapping)) 1680 flush_dcache_page(page); 1681 /* 1682 * Mark the page accessed if we read the beginning. 1683 */ 1684 if (!offset) 1685 mark_page_accessed(page); 1686 } else { 1687 page = ZERO_PAGE(0); 1688 get_page(page); 1689 } 1690 1691 /* 1692 * Ok, we have the page, and it's up-to-date, so 1693 * now we can copy it to user space... 1694 */ 1695 ret = copy_page_to_iter(page, offset, nr, to); 1696 retval += ret; 1697 offset += ret; 1698 index += offset >> PAGE_SHIFT; 1699 offset &= ~PAGE_MASK; 1700 1701 put_page(page); 1702 if (!iov_iter_count(to)) 1703 break; 1704 if (ret < nr) { 1705 error = -EFAULT; 1706 break; 1707 } 1708 cond_resched(); 1709 } 1710 1711 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 1712 file_accessed(file); 1713 return retval ? retval : error; 1714 } 1715 1716 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1717 struct pipe_inode_info *pipe, size_t len, 1718 unsigned int flags) 1719 { 1720 struct address_space *mapping = in->f_mapping; 1721 struct inode *inode = mapping->host; 1722 unsigned int loff, nr_pages, req_pages; 1723 struct page *pages[PIPE_DEF_BUFFERS]; 1724 struct partial_page partial[PIPE_DEF_BUFFERS]; 1725 struct page *page; 1726 pgoff_t index, end_index; 1727 loff_t isize, left; 1728 int error, page_nr; 1729 struct splice_pipe_desc spd = { 1730 .pages = pages, 1731 .partial = partial, 1732 .nr_pages_max = PIPE_DEF_BUFFERS, 1733 .flags = flags, 1734 .ops = &page_cache_pipe_buf_ops, 1735 .spd_release = spd_release_page, 1736 }; 1737 1738 isize = i_size_read(inode); 1739 if (unlikely(*ppos >= isize)) 1740 return 0; 1741 1742 left = isize - *ppos; 1743 if (unlikely(left < len)) 1744 len = left; 1745 1746 if (splice_grow_spd(pipe, &spd)) 1747 return -ENOMEM; 1748 1749 index = *ppos >> PAGE_SHIFT; 1750 loff = *ppos & ~PAGE_MASK; 1751 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT; 1752 nr_pages = min(req_pages, spd.nr_pages_max); 1753 1754 spd.nr_pages = find_get_pages_contig(mapping, index, 1755 nr_pages, spd.pages); 1756 index += spd.nr_pages; 1757 error = 0; 1758 1759 while (spd.nr_pages < nr_pages) { 1760 error = shmem_getpage(inode, index, &page, SGP_CACHE); 1761 if (error) 1762 break; 1763 unlock_page(page); 1764 spd.pages[spd.nr_pages++] = page; 1765 index++; 1766 } 1767 1768 index = *ppos >> PAGE_SHIFT; 1769 nr_pages = spd.nr_pages; 1770 spd.nr_pages = 0; 1771 1772 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1773 unsigned int this_len; 1774 1775 if (!len) 1776 break; 1777 1778 this_len = min_t(unsigned long, len, PAGE_SIZE - loff); 1779 page = spd.pages[page_nr]; 1780 1781 if (!PageUptodate(page) || page->mapping != mapping) { 1782 error = shmem_getpage(inode, index, &page, SGP_CACHE); 1783 if (error) 1784 break; 1785 unlock_page(page); 1786 put_page(spd.pages[page_nr]); 1787 spd.pages[page_nr] = page; 1788 } 1789 1790 isize = i_size_read(inode); 1791 end_index = (isize - 1) >> PAGE_SHIFT; 1792 if (unlikely(!isize || index > end_index)) 1793 break; 1794 1795 if (end_index == index) { 1796 unsigned int plen; 1797 1798 plen = ((isize - 1) & ~PAGE_MASK) + 1; 1799 if (plen <= loff) 1800 break; 1801 1802 this_len = min(this_len, plen - loff); 1803 len = this_len; 1804 } 1805 1806 spd.partial[page_nr].offset = loff; 1807 spd.partial[page_nr].len = this_len; 1808 len -= this_len; 1809 loff = 0; 1810 spd.nr_pages++; 1811 index++; 1812 } 1813 1814 while (page_nr < nr_pages) 1815 put_page(spd.pages[page_nr++]); 1816 1817 if (spd.nr_pages) 1818 error = splice_to_pipe(pipe, &spd); 1819 1820 splice_shrink_spd(&spd); 1821 1822 if (error > 0) { 1823 *ppos += error; 1824 file_accessed(in); 1825 } 1826 return error; 1827 } 1828 1829 /* 1830 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1831 */ 1832 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1833 pgoff_t index, pgoff_t end, int whence) 1834 { 1835 struct page *page; 1836 struct pagevec pvec; 1837 pgoff_t indices[PAGEVEC_SIZE]; 1838 bool done = false; 1839 int i; 1840 1841 pagevec_init(&pvec, 0); 1842 pvec.nr = 1; /* start small: we may be there already */ 1843 while (!done) { 1844 pvec.nr = find_get_entries(mapping, index, 1845 pvec.nr, pvec.pages, indices); 1846 if (!pvec.nr) { 1847 if (whence == SEEK_DATA) 1848 index = end; 1849 break; 1850 } 1851 for (i = 0; i < pvec.nr; i++, index++) { 1852 if (index < indices[i]) { 1853 if (whence == SEEK_HOLE) { 1854 done = true; 1855 break; 1856 } 1857 index = indices[i]; 1858 } 1859 page = pvec.pages[i]; 1860 if (page && !radix_tree_exceptional_entry(page)) { 1861 if (!PageUptodate(page)) 1862 page = NULL; 1863 } 1864 if (index >= end || 1865 (page && whence == SEEK_DATA) || 1866 (!page && whence == SEEK_HOLE)) { 1867 done = true; 1868 break; 1869 } 1870 } 1871 pagevec_remove_exceptionals(&pvec); 1872 pagevec_release(&pvec); 1873 pvec.nr = PAGEVEC_SIZE; 1874 cond_resched(); 1875 } 1876 return index; 1877 } 1878 1879 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1880 { 1881 struct address_space *mapping = file->f_mapping; 1882 struct inode *inode = mapping->host; 1883 pgoff_t start, end; 1884 loff_t new_offset; 1885 1886 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1887 return generic_file_llseek_size(file, offset, whence, 1888 MAX_LFS_FILESIZE, i_size_read(inode)); 1889 inode_lock(inode); 1890 /* We're holding i_mutex so we can access i_size directly */ 1891 1892 if (offset < 0) 1893 offset = -EINVAL; 1894 else if (offset >= inode->i_size) 1895 offset = -ENXIO; 1896 else { 1897 start = offset >> PAGE_SHIFT; 1898 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1899 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1900 new_offset <<= PAGE_SHIFT; 1901 if (new_offset > offset) { 1902 if (new_offset < inode->i_size) 1903 offset = new_offset; 1904 else if (whence == SEEK_DATA) 1905 offset = -ENXIO; 1906 else 1907 offset = inode->i_size; 1908 } 1909 } 1910 1911 if (offset >= 0) 1912 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1913 inode_unlock(inode); 1914 return offset; 1915 } 1916 1917 /* 1918 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1919 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1920 */ 1921 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1922 #define LAST_SCAN 4 /* about 150ms max */ 1923 1924 static void shmem_tag_pins(struct address_space *mapping) 1925 { 1926 struct radix_tree_iter iter; 1927 void **slot; 1928 pgoff_t start; 1929 struct page *page; 1930 1931 lru_add_drain(); 1932 start = 0; 1933 rcu_read_lock(); 1934 1935 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1936 page = radix_tree_deref_slot(slot); 1937 if (!page || radix_tree_exception(page)) { 1938 if (radix_tree_deref_retry(page)) { 1939 slot = radix_tree_iter_retry(&iter); 1940 continue; 1941 } 1942 } else if (page_count(page) - page_mapcount(page) > 1) { 1943 spin_lock_irq(&mapping->tree_lock); 1944 radix_tree_tag_set(&mapping->page_tree, iter.index, 1945 SHMEM_TAG_PINNED); 1946 spin_unlock_irq(&mapping->tree_lock); 1947 } 1948 1949 if (need_resched()) { 1950 cond_resched_rcu(); 1951 slot = radix_tree_iter_next(&iter); 1952 } 1953 } 1954 rcu_read_unlock(); 1955 } 1956 1957 /* 1958 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1959 * via get_user_pages(), drivers might have some pending I/O without any active 1960 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1961 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1962 * them to be dropped. 1963 * The caller must guarantee that no new user will acquire writable references 1964 * to those pages to avoid races. 1965 */ 1966 static int shmem_wait_for_pins(struct address_space *mapping) 1967 { 1968 struct radix_tree_iter iter; 1969 void **slot; 1970 pgoff_t start; 1971 struct page *page; 1972 int error, scan; 1973 1974 shmem_tag_pins(mapping); 1975 1976 error = 0; 1977 for (scan = 0; scan <= LAST_SCAN; scan++) { 1978 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1979 break; 1980 1981 if (!scan) 1982 lru_add_drain_all(); 1983 else if (schedule_timeout_killable((HZ << scan) / 200)) 1984 scan = LAST_SCAN; 1985 1986 start = 0; 1987 rcu_read_lock(); 1988 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1989 start, SHMEM_TAG_PINNED) { 1990 1991 page = radix_tree_deref_slot(slot); 1992 if (radix_tree_exception(page)) { 1993 if (radix_tree_deref_retry(page)) { 1994 slot = radix_tree_iter_retry(&iter); 1995 continue; 1996 } 1997 1998 page = NULL; 1999 } 2000 2001 if (page && 2002 page_count(page) - page_mapcount(page) != 1) { 2003 if (scan < LAST_SCAN) 2004 goto continue_resched; 2005 2006 /* 2007 * On the last scan, we clean up all those tags 2008 * we inserted; but make a note that we still 2009 * found pages pinned. 2010 */ 2011 error = -EBUSY; 2012 } 2013 2014 spin_lock_irq(&mapping->tree_lock); 2015 radix_tree_tag_clear(&mapping->page_tree, 2016 iter.index, SHMEM_TAG_PINNED); 2017 spin_unlock_irq(&mapping->tree_lock); 2018 continue_resched: 2019 if (need_resched()) { 2020 cond_resched_rcu(); 2021 slot = radix_tree_iter_next(&iter); 2022 } 2023 } 2024 rcu_read_unlock(); 2025 } 2026 2027 return error; 2028 } 2029 2030 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2031 F_SEAL_SHRINK | \ 2032 F_SEAL_GROW | \ 2033 F_SEAL_WRITE) 2034 2035 int shmem_add_seals(struct file *file, unsigned int seals) 2036 { 2037 struct inode *inode = file_inode(file); 2038 struct shmem_inode_info *info = SHMEM_I(inode); 2039 int error; 2040 2041 /* 2042 * SEALING 2043 * Sealing allows multiple parties to share a shmem-file but restrict 2044 * access to a specific subset of file operations. Seals can only be 2045 * added, but never removed. This way, mutually untrusted parties can 2046 * share common memory regions with a well-defined policy. A malicious 2047 * peer can thus never perform unwanted operations on a shared object. 2048 * 2049 * Seals are only supported on special shmem-files and always affect 2050 * the whole underlying inode. Once a seal is set, it may prevent some 2051 * kinds of access to the file. Currently, the following seals are 2052 * defined: 2053 * SEAL_SEAL: Prevent further seals from being set on this file 2054 * SEAL_SHRINK: Prevent the file from shrinking 2055 * SEAL_GROW: Prevent the file from growing 2056 * SEAL_WRITE: Prevent write access to the file 2057 * 2058 * As we don't require any trust relationship between two parties, we 2059 * must prevent seals from being removed. Therefore, sealing a file 2060 * only adds a given set of seals to the file, it never touches 2061 * existing seals. Furthermore, the "setting seals"-operation can be 2062 * sealed itself, which basically prevents any further seal from being 2063 * added. 2064 * 2065 * Semantics of sealing are only defined on volatile files. Only 2066 * anonymous shmem files support sealing. More importantly, seals are 2067 * never written to disk. Therefore, there's no plan to support it on 2068 * other file types. 2069 */ 2070 2071 if (file->f_op != &shmem_file_operations) 2072 return -EINVAL; 2073 if (!(file->f_mode & FMODE_WRITE)) 2074 return -EPERM; 2075 if (seals & ~(unsigned int)F_ALL_SEALS) 2076 return -EINVAL; 2077 2078 inode_lock(inode); 2079 2080 if (info->seals & F_SEAL_SEAL) { 2081 error = -EPERM; 2082 goto unlock; 2083 } 2084 2085 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2086 error = mapping_deny_writable(file->f_mapping); 2087 if (error) 2088 goto unlock; 2089 2090 error = shmem_wait_for_pins(file->f_mapping); 2091 if (error) { 2092 mapping_allow_writable(file->f_mapping); 2093 goto unlock; 2094 } 2095 } 2096 2097 info->seals |= seals; 2098 error = 0; 2099 2100 unlock: 2101 inode_unlock(inode); 2102 return error; 2103 } 2104 EXPORT_SYMBOL_GPL(shmem_add_seals); 2105 2106 int shmem_get_seals(struct file *file) 2107 { 2108 if (file->f_op != &shmem_file_operations) 2109 return -EINVAL; 2110 2111 return SHMEM_I(file_inode(file))->seals; 2112 } 2113 EXPORT_SYMBOL_GPL(shmem_get_seals); 2114 2115 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2116 { 2117 long error; 2118 2119 switch (cmd) { 2120 case F_ADD_SEALS: 2121 /* disallow upper 32bit */ 2122 if (arg > UINT_MAX) 2123 return -EINVAL; 2124 2125 error = shmem_add_seals(file, arg); 2126 break; 2127 case F_GET_SEALS: 2128 error = shmem_get_seals(file); 2129 break; 2130 default: 2131 error = -EINVAL; 2132 break; 2133 } 2134 2135 return error; 2136 } 2137 2138 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2139 loff_t len) 2140 { 2141 struct inode *inode = file_inode(file); 2142 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2143 struct shmem_inode_info *info = SHMEM_I(inode); 2144 struct shmem_falloc shmem_falloc; 2145 pgoff_t start, index, end; 2146 int error; 2147 2148 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2149 return -EOPNOTSUPP; 2150 2151 inode_lock(inode); 2152 2153 if (mode & FALLOC_FL_PUNCH_HOLE) { 2154 struct address_space *mapping = file->f_mapping; 2155 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2156 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2157 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2158 2159 /* protected by i_mutex */ 2160 if (info->seals & F_SEAL_WRITE) { 2161 error = -EPERM; 2162 goto out; 2163 } 2164 2165 shmem_falloc.waitq = &shmem_falloc_waitq; 2166 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2167 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2168 spin_lock(&inode->i_lock); 2169 inode->i_private = &shmem_falloc; 2170 spin_unlock(&inode->i_lock); 2171 2172 if ((u64)unmap_end > (u64)unmap_start) 2173 unmap_mapping_range(mapping, unmap_start, 2174 1 + unmap_end - unmap_start, 0); 2175 shmem_truncate_range(inode, offset, offset + len - 1); 2176 /* No need to unmap again: hole-punching leaves COWed pages */ 2177 2178 spin_lock(&inode->i_lock); 2179 inode->i_private = NULL; 2180 wake_up_all(&shmem_falloc_waitq); 2181 spin_unlock(&inode->i_lock); 2182 error = 0; 2183 goto out; 2184 } 2185 2186 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2187 error = inode_newsize_ok(inode, offset + len); 2188 if (error) 2189 goto out; 2190 2191 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2192 error = -EPERM; 2193 goto out; 2194 } 2195 2196 start = offset >> PAGE_SHIFT; 2197 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2198 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2199 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2200 error = -ENOSPC; 2201 goto out; 2202 } 2203 2204 shmem_falloc.waitq = NULL; 2205 shmem_falloc.start = start; 2206 shmem_falloc.next = start; 2207 shmem_falloc.nr_falloced = 0; 2208 shmem_falloc.nr_unswapped = 0; 2209 spin_lock(&inode->i_lock); 2210 inode->i_private = &shmem_falloc; 2211 spin_unlock(&inode->i_lock); 2212 2213 for (index = start; index < end; index++) { 2214 struct page *page; 2215 2216 /* 2217 * Good, the fallocate(2) manpage permits EINTR: we may have 2218 * been interrupted because we are using up too much memory. 2219 */ 2220 if (signal_pending(current)) 2221 error = -EINTR; 2222 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2223 error = -ENOMEM; 2224 else 2225 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2226 if (error) { 2227 /* Remove the !PageUptodate pages we added */ 2228 if (index > start) { 2229 shmem_undo_range(inode, 2230 (loff_t)start << PAGE_SHIFT, 2231 ((loff_t)index << PAGE_SHIFT) - 1, true); 2232 } 2233 goto undone; 2234 } 2235 2236 /* 2237 * Inform shmem_writepage() how far we have reached. 2238 * No need for lock or barrier: we have the page lock. 2239 */ 2240 shmem_falloc.next++; 2241 if (!PageUptodate(page)) 2242 shmem_falloc.nr_falloced++; 2243 2244 /* 2245 * If !PageUptodate, leave it that way so that freeable pages 2246 * can be recognized if we need to rollback on error later. 2247 * But set_page_dirty so that memory pressure will swap rather 2248 * than free the pages we are allocating (and SGP_CACHE pages 2249 * might still be clean: we now need to mark those dirty too). 2250 */ 2251 set_page_dirty(page); 2252 unlock_page(page); 2253 put_page(page); 2254 cond_resched(); 2255 } 2256 2257 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2258 i_size_write(inode, offset + len); 2259 inode->i_ctime = CURRENT_TIME; 2260 undone: 2261 spin_lock(&inode->i_lock); 2262 inode->i_private = NULL; 2263 spin_unlock(&inode->i_lock); 2264 out: 2265 inode_unlock(inode); 2266 return error; 2267 } 2268 2269 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2270 { 2271 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2272 2273 buf->f_type = TMPFS_MAGIC; 2274 buf->f_bsize = PAGE_SIZE; 2275 buf->f_namelen = NAME_MAX; 2276 if (sbinfo->max_blocks) { 2277 buf->f_blocks = sbinfo->max_blocks; 2278 buf->f_bavail = 2279 buf->f_bfree = sbinfo->max_blocks - 2280 percpu_counter_sum(&sbinfo->used_blocks); 2281 } 2282 if (sbinfo->max_inodes) { 2283 buf->f_files = sbinfo->max_inodes; 2284 buf->f_ffree = sbinfo->free_inodes; 2285 } 2286 /* else leave those fields 0 like simple_statfs */ 2287 return 0; 2288 } 2289 2290 /* 2291 * File creation. Allocate an inode, and we're done.. 2292 */ 2293 static int 2294 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2295 { 2296 struct inode *inode; 2297 int error = -ENOSPC; 2298 2299 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2300 if (inode) { 2301 error = simple_acl_create(dir, inode); 2302 if (error) 2303 goto out_iput; 2304 error = security_inode_init_security(inode, dir, 2305 &dentry->d_name, 2306 shmem_initxattrs, NULL); 2307 if (error && error != -EOPNOTSUPP) 2308 goto out_iput; 2309 2310 error = 0; 2311 dir->i_size += BOGO_DIRENT_SIZE; 2312 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2313 d_instantiate(dentry, inode); 2314 dget(dentry); /* Extra count - pin the dentry in core */ 2315 } 2316 return error; 2317 out_iput: 2318 iput(inode); 2319 return error; 2320 } 2321 2322 static int 2323 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2324 { 2325 struct inode *inode; 2326 int error = -ENOSPC; 2327 2328 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2329 if (inode) { 2330 error = security_inode_init_security(inode, dir, 2331 NULL, 2332 shmem_initxattrs, NULL); 2333 if (error && error != -EOPNOTSUPP) 2334 goto out_iput; 2335 error = simple_acl_create(dir, inode); 2336 if (error) 2337 goto out_iput; 2338 d_tmpfile(dentry, inode); 2339 } 2340 return error; 2341 out_iput: 2342 iput(inode); 2343 return error; 2344 } 2345 2346 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2347 { 2348 int error; 2349 2350 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2351 return error; 2352 inc_nlink(dir); 2353 return 0; 2354 } 2355 2356 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2357 bool excl) 2358 { 2359 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2360 } 2361 2362 /* 2363 * Link a file.. 2364 */ 2365 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2366 { 2367 struct inode *inode = d_inode(old_dentry); 2368 int ret; 2369 2370 /* 2371 * No ordinary (disk based) filesystem counts links as inodes; 2372 * but each new link needs a new dentry, pinning lowmem, and 2373 * tmpfs dentries cannot be pruned until they are unlinked. 2374 */ 2375 ret = shmem_reserve_inode(inode->i_sb); 2376 if (ret) 2377 goto out; 2378 2379 dir->i_size += BOGO_DIRENT_SIZE; 2380 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2381 inc_nlink(inode); 2382 ihold(inode); /* New dentry reference */ 2383 dget(dentry); /* Extra pinning count for the created dentry */ 2384 d_instantiate(dentry, inode); 2385 out: 2386 return ret; 2387 } 2388 2389 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2390 { 2391 struct inode *inode = d_inode(dentry); 2392 2393 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2394 shmem_free_inode(inode->i_sb); 2395 2396 dir->i_size -= BOGO_DIRENT_SIZE; 2397 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2398 drop_nlink(inode); 2399 dput(dentry); /* Undo the count from "create" - this does all the work */ 2400 return 0; 2401 } 2402 2403 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2404 { 2405 if (!simple_empty(dentry)) 2406 return -ENOTEMPTY; 2407 2408 drop_nlink(d_inode(dentry)); 2409 drop_nlink(dir); 2410 return shmem_unlink(dir, dentry); 2411 } 2412 2413 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2414 { 2415 bool old_is_dir = d_is_dir(old_dentry); 2416 bool new_is_dir = d_is_dir(new_dentry); 2417 2418 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2419 if (old_is_dir) { 2420 drop_nlink(old_dir); 2421 inc_nlink(new_dir); 2422 } else { 2423 drop_nlink(new_dir); 2424 inc_nlink(old_dir); 2425 } 2426 } 2427 old_dir->i_ctime = old_dir->i_mtime = 2428 new_dir->i_ctime = new_dir->i_mtime = 2429 d_inode(old_dentry)->i_ctime = 2430 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2431 2432 return 0; 2433 } 2434 2435 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2436 { 2437 struct dentry *whiteout; 2438 int error; 2439 2440 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2441 if (!whiteout) 2442 return -ENOMEM; 2443 2444 error = shmem_mknod(old_dir, whiteout, 2445 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2446 dput(whiteout); 2447 if (error) 2448 return error; 2449 2450 /* 2451 * Cheat and hash the whiteout while the old dentry is still in 2452 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2453 * 2454 * d_lookup() will consistently find one of them at this point, 2455 * not sure which one, but that isn't even important. 2456 */ 2457 d_rehash(whiteout); 2458 return 0; 2459 } 2460 2461 /* 2462 * The VFS layer already does all the dentry stuff for rename, 2463 * we just have to decrement the usage count for the target if 2464 * it exists so that the VFS layer correctly free's it when it 2465 * gets overwritten. 2466 */ 2467 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2468 { 2469 struct inode *inode = d_inode(old_dentry); 2470 int they_are_dirs = S_ISDIR(inode->i_mode); 2471 2472 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2473 return -EINVAL; 2474 2475 if (flags & RENAME_EXCHANGE) 2476 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2477 2478 if (!simple_empty(new_dentry)) 2479 return -ENOTEMPTY; 2480 2481 if (flags & RENAME_WHITEOUT) { 2482 int error; 2483 2484 error = shmem_whiteout(old_dir, old_dentry); 2485 if (error) 2486 return error; 2487 } 2488 2489 if (d_really_is_positive(new_dentry)) { 2490 (void) shmem_unlink(new_dir, new_dentry); 2491 if (they_are_dirs) { 2492 drop_nlink(d_inode(new_dentry)); 2493 drop_nlink(old_dir); 2494 } 2495 } else if (they_are_dirs) { 2496 drop_nlink(old_dir); 2497 inc_nlink(new_dir); 2498 } 2499 2500 old_dir->i_size -= BOGO_DIRENT_SIZE; 2501 new_dir->i_size += BOGO_DIRENT_SIZE; 2502 old_dir->i_ctime = old_dir->i_mtime = 2503 new_dir->i_ctime = new_dir->i_mtime = 2504 inode->i_ctime = CURRENT_TIME; 2505 return 0; 2506 } 2507 2508 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2509 { 2510 int error; 2511 int len; 2512 struct inode *inode; 2513 struct page *page; 2514 struct shmem_inode_info *info; 2515 2516 len = strlen(symname) + 1; 2517 if (len > PAGE_SIZE) 2518 return -ENAMETOOLONG; 2519 2520 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2521 if (!inode) 2522 return -ENOSPC; 2523 2524 error = security_inode_init_security(inode, dir, &dentry->d_name, 2525 shmem_initxattrs, NULL); 2526 if (error) { 2527 if (error != -EOPNOTSUPP) { 2528 iput(inode); 2529 return error; 2530 } 2531 error = 0; 2532 } 2533 2534 info = SHMEM_I(inode); 2535 inode->i_size = len-1; 2536 if (len <= SHORT_SYMLINK_LEN) { 2537 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 2538 if (!inode->i_link) { 2539 iput(inode); 2540 return -ENOMEM; 2541 } 2542 inode->i_op = &shmem_short_symlink_operations; 2543 } else { 2544 inode_nohighmem(inode); 2545 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 2546 if (error) { 2547 iput(inode); 2548 return error; 2549 } 2550 inode->i_mapping->a_ops = &shmem_aops; 2551 inode->i_op = &shmem_symlink_inode_operations; 2552 memcpy(page_address(page), symname, len); 2553 SetPageUptodate(page); 2554 set_page_dirty(page); 2555 unlock_page(page); 2556 put_page(page); 2557 } 2558 dir->i_size += BOGO_DIRENT_SIZE; 2559 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2560 d_instantiate(dentry, inode); 2561 dget(dentry); 2562 return 0; 2563 } 2564 2565 static void shmem_put_link(void *arg) 2566 { 2567 mark_page_accessed(arg); 2568 put_page(arg); 2569 } 2570 2571 static const char *shmem_get_link(struct dentry *dentry, 2572 struct inode *inode, 2573 struct delayed_call *done) 2574 { 2575 struct page *page = NULL; 2576 int error; 2577 if (!dentry) { 2578 page = find_get_page(inode->i_mapping, 0); 2579 if (!page) 2580 return ERR_PTR(-ECHILD); 2581 if (!PageUptodate(page)) { 2582 put_page(page); 2583 return ERR_PTR(-ECHILD); 2584 } 2585 } else { 2586 error = shmem_getpage(inode, 0, &page, SGP_READ); 2587 if (error) 2588 return ERR_PTR(error); 2589 unlock_page(page); 2590 } 2591 set_delayed_call(done, shmem_put_link, page); 2592 return page_address(page); 2593 } 2594 2595 #ifdef CONFIG_TMPFS_XATTR 2596 /* 2597 * Superblocks without xattr inode operations may get some security.* xattr 2598 * support from the LSM "for free". As soon as we have any other xattrs 2599 * like ACLs, we also need to implement the security.* handlers at 2600 * filesystem level, though. 2601 */ 2602 2603 /* 2604 * Callback for security_inode_init_security() for acquiring xattrs. 2605 */ 2606 static int shmem_initxattrs(struct inode *inode, 2607 const struct xattr *xattr_array, 2608 void *fs_info) 2609 { 2610 struct shmem_inode_info *info = SHMEM_I(inode); 2611 const struct xattr *xattr; 2612 struct simple_xattr *new_xattr; 2613 size_t len; 2614 2615 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2616 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2617 if (!new_xattr) 2618 return -ENOMEM; 2619 2620 len = strlen(xattr->name) + 1; 2621 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2622 GFP_KERNEL); 2623 if (!new_xattr->name) { 2624 kfree(new_xattr); 2625 return -ENOMEM; 2626 } 2627 2628 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2629 XATTR_SECURITY_PREFIX_LEN); 2630 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2631 xattr->name, len); 2632 2633 simple_xattr_list_add(&info->xattrs, new_xattr); 2634 } 2635 2636 return 0; 2637 } 2638 2639 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 2640 struct dentry *unused, struct inode *inode, 2641 const char *name, void *buffer, size_t size) 2642 { 2643 struct shmem_inode_info *info = SHMEM_I(inode); 2644 2645 name = xattr_full_name(handler, name); 2646 return simple_xattr_get(&info->xattrs, name, buffer, size); 2647 } 2648 2649 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 2650 struct dentry *unused, struct inode *inode, 2651 const char *name, const void *value, 2652 size_t size, int flags) 2653 { 2654 struct shmem_inode_info *info = SHMEM_I(inode); 2655 2656 name = xattr_full_name(handler, name); 2657 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2658 } 2659 2660 static const struct xattr_handler shmem_security_xattr_handler = { 2661 .prefix = XATTR_SECURITY_PREFIX, 2662 .get = shmem_xattr_handler_get, 2663 .set = shmem_xattr_handler_set, 2664 }; 2665 2666 static const struct xattr_handler shmem_trusted_xattr_handler = { 2667 .prefix = XATTR_TRUSTED_PREFIX, 2668 .get = shmem_xattr_handler_get, 2669 .set = shmem_xattr_handler_set, 2670 }; 2671 2672 static const struct xattr_handler *shmem_xattr_handlers[] = { 2673 #ifdef CONFIG_TMPFS_POSIX_ACL 2674 &posix_acl_access_xattr_handler, 2675 &posix_acl_default_xattr_handler, 2676 #endif 2677 &shmem_security_xattr_handler, 2678 &shmem_trusted_xattr_handler, 2679 NULL 2680 }; 2681 2682 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2683 { 2684 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2685 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 2686 } 2687 #endif /* CONFIG_TMPFS_XATTR */ 2688 2689 static const struct inode_operations shmem_short_symlink_operations = { 2690 .readlink = generic_readlink, 2691 .get_link = simple_get_link, 2692 #ifdef CONFIG_TMPFS_XATTR 2693 .setxattr = generic_setxattr, 2694 .getxattr = generic_getxattr, 2695 .listxattr = shmem_listxattr, 2696 .removexattr = generic_removexattr, 2697 #endif 2698 }; 2699 2700 static const struct inode_operations shmem_symlink_inode_operations = { 2701 .readlink = generic_readlink, 2702 .get_link = shmem_get_link, 2703 #ifdef CONFIG_TMPFS_XATTR 2704 .setxattr = generic_setxattr, 2705 .getxattr = generic_getxattr, 2706 .listxattr = shmem_listxattr, 2707 .removexattr = generic_removexattr, 2708 #endif 2709 }; 2710 2711 static struct dentry *shmem_get_parent(struct dentry *child) 2712 { 2713 return ERR_PTR(-ESTALE); 2714 } 2715 2716 static int shmem_match(struct inode *ino, void *vfh) 2717 { 2718 __u32 *fh = vfh; 2719 __u64 inum = fh[2]; 2720 inum = (inum << 32) | fh[1]; 2721 return ino->i_ino == inum && fh[0] == ino->i_generation; 2722 } 2723 2724 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2725 struct fid *fid, int fh_len, int fh_type) 2726 { 2727 struct inode *inode; 2728 struct dentry *dentry = NULL; 2729 u64 inum; 2730 2731 if (fh_len < 3) 2732 return NULL; 2733 2734 inum = fid->raw[2]; 2735 inum = (inum << 32) | fid->raw[1]; 2736 2737 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2738 shmem_match, fid->raw); 2739 if (inode) { 2740 dentry = d_find_alias(inode); 2741 iput(inode); 2742 } 2743 2744 return dentry; 2745 } 2746 2747 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2748 struct inode *parent) 2749 { 2750 if (*len < 3) { 2751 *len = 3; 2752 return FILEID_INVALID; 2753 } 2754 2755 if (inode_unhashed(inode)) { 2756 /* Unfortunately insert_inode_hash is not idempotent, 2757 * so as we hash inodes here rather than at creation 2758 * time, we need a lock to ensure we only try 2759 * to do it once 2760 */ 2761 static DEFINE_SPINLOCK(lock); 2762 spin_lock(&lock); 2763 if (inode_unhashed(inode)) 2764 __insert_inode_hash(inode, 2765 inode->i_ino + inode->i_generation); 2766 spin_unlock(&lock); 2767 } 2768 2769 fh[0] = inode->i_generation; 2770 fh[1] = inode->i_ino; 2771 fh[2] = ((__u64)inode->i_ino) >> 32; 2772 2773 *len = 3; 2774 return 1; 2775 } 2776 2777 static const struct export_operations shmem_export_ops = { 2778 .get_parent = shmem_get_parent, 2779 .encode_fh = shmem_encode_fh, 2780 .fh_to_dentry = shmem_fh_to_dentry, 2781 }; 2782 2783 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2784 bool remount) 2785 { 2786 char *this_char, *value, *rest; 2787 struct mempolicy *mpol = NULL; 2788 uid_t uid; 2789 gid_t gid; 2790 2791 while (options != NULL) { 2792 this_char = options; 2793 for (;;) { 2794 /* 2795 * NUL-terminate this option: unfortunately, 2796 * mount options form a comma-separated list, 2797 * but mpol's nodelist may also contain commas. 2798 */ 2799 options = strchr(options, ','); 2800 if (options == NULL) 2801 break; 2802 options++; 2803 if (!isdigit(*options)) { 2804 options[-1] = '\0'; 2805 break; 2806 } 2807 } 2808 if (!*this_char) 2809 continue; 2810 if ((value = strchr(this_char,'=')) != NULL) { 2811 *value++ = 0; 2812 } else { 2813 pr_err("tmpfs: No value for mount option '%s'\n", 2814 this_char); 2815 goto error; 2816 } 2817 2818 if (!strcmp(this_char,"size")) { 2819 unsigned long long size; 2820 size = memparse(value,&rest); 2821 if (*rest == '%') { 2822 size <<= PAGE_SHIFT; 2823 size *= totalram_pages; 2824 do_div(size, 100); 2825 rest++; 2826 } 2827 if (*rest) 2828 goto bad_val; 2829 sbinfo->max_blocks = 2830 DIV_ROUND_UP(size, PAGE_SIZE); 2831 } else if (!strcmp(this_char,"nr_blocks")) { 2832 sbinfo->max_blocks = memparse(value, &rest); 2833 if (*rest) 2834 goto bad_val; 2835 } else if (!strcmp(this_char,"nr_inodes")) { 2836 sbinfo->max_inodes = memparse(value, &rest); 2837 if (*rest) 2838 goto bad_val; 2839 } else if (!strcmp(this_char,"mode")) { 2840 if (remount) 2841 continue; 2842 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2843 if (*rest) 2844 goto bad_val; 2845 } else if (!strcmp(this_char,"uid")) { 2846 if (remount) 2847 continue; 2848 uid = simple_strtoul(value, &rest, 0); 2849 if (*rest) 2850 goto bad_val; 2851 sbinfo->uid = make_kuid(current_user_ns(), uid); 2852 if (!uid_valid(sbinfo->uid)) 2853 goto bad_val; 2854 } else if (!strcmp(this_char,"gid")) { 2855 if (remount) 2856 continue; 2857 gid = simple_strtoul(value, &rest, 0); 2858 if (*rest) 2859 goto bad_val; 2860 sbinfo->gid = make_kgid(current_user_ns(), gid); 2861 if (!gid_valid(sbinfo->gid)) 2862 goto bad_val; 2863 } else if (!strcmp(this_char,"mpol")) { 2864 mpol_put(mpol); 2865 mpol = NULL; 2866 if (mpol_parse_str(value, &mpol)) 2867 goto bad_val; 2868 } else { 2869 pr_err("tmpfs: Bad mount option %s\n", this_char); 2870 goto error; 2871 } 2872 } 2873 sbinfo->mpol = mpol; 2874 return 0; 2875 2876 bad_val: 2877 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 2878 value, this_char); 2879 error: 2880 mpol_put(mpol); 2881 return 1; 2882 2883 } 2884 2885 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2886 { 2887 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2888 struct shmem_sb_info config = *sbinfo; 2889 unsigned long inodes; 2890 int error = -EINVAL; 2891 2892 config.mpol = NULL; 2893 if (shmem_parse_options(data, &config, true)) 2894 return error; 2895 2896 spin_lock(&sbinfo->stat_lock); 2897 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2898 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2899 goto out; 2900 if (config.max_inodes < inodes) 2901 goto out; 2902 /* 2903 * Those tests disallow limited->unlimited while any are in use; 2904 * but we must separately disallow unlimited->limited, because 2905 * in that case we have no record of how much is already in use. 2906 */ 2907 if (config.max_blocks && !sbinfo->max_blocks) 2908 goto out; 2909 if (config.max_inodes && !sbinfo->max_inodes) 2910 goto out; 2911 2912 error = 0; 2913 sbinfo->max_blocks = config.max_blocks; 2914 sbinfo->max_inodes = config.max_inodes; 2915 sbinfo->free_inodes = config.max_inodes - inodes; 2916 2917 /* 2918 * Preserve previous mempolicy unless mpol remount option was specified. 2919 */ 2920 if (config.mpol) { 2921 mpol_put(sbinfo->mpol); 2922 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2923 } 2924 out: 2925 spin_unlock(&sbinfo->stat_lock); 2926 return error; 2927 } 2928 2929 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2930 { 2931 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2932 2933 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2934 seq_printf(seq, ",size=%luk", 2935 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 2936 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2937 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2938 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2939 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2940 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2941 seq_printf(seq, ",uid=%u", 2942 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2943 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2944 seq_printf(seq, ",gid=%u", 2945 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2946 shmem_show_mpol(seq, sbinfo->mpol); 2947 return 0; 2948 } 2949 2950 #define MFD_NAME_PREFIX "memfd:" 2951 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2952 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2953 2954 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2955 2956 SYSCALL_DEFINE2(memfd_create, 2957 const char __user *, uname, 2958 unsigned int, flags) 2959 { 2960 struct shmem_inode_info *info; 2961 struct file *file; 2962 int fd, error; 2963 char *name; 2964 long len; 2965 2966 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2967 return -EINVAL; 2968 2969 /* length includes terminating zero */ 2970 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2971 if (len <= 0) 2972 return -EFAULT; 2973 if (len > MFD_NAME_MAX_LEN + 1) 2974 return -EINVAL; 2975 2976 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2977 if (!name) 2978 return -ENOMEM; 2979 2980 strcpy(name, MFD_NAME_PREFIX); 2981 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2982 error = -EFAULT; 2983 goto err_name; 2984 } 2985 2986 /* terminating-zero may have changed after strnlen_user() returned */ 2987 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2988 error = -EFAULT; 2989 goto err_name; 2990 } 2991 2992 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 2993 if (fd < 0) { 2994 error = fd; 2995 goto err_name; 2996 } 2997 2998 file = shmem_file_setup(name, 0, VM_NORESERVE); 2999 if (IS_ERR(file)) { 3000 error = PTR_ERR(file); 3001 goto err_fd; 3002 } 3003 info = SHMEM_I(file_inode(file)); 3004 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3005 file->f_flags |= O_RDWR | O_LARGEFILE; 3006 if (flags & MFD_ALLOW_SEALING) 3007 info->seals &= ~F_SEAL_SEAL; 3008 3009 fd_install(fd, file); 3010 kfree(name); 3011 return fd; 3012 3013 err_fd: 3014 put_unused_fd(fd); 3015 err_name: 3016 kfree(name); 3017 return error; 3018 } 3019 3020 #endif /* CONFIG_TMPFS */ 3021 3022 static void shmem_put_super(struct super_block *sb) 3023 { 3024 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3025 3026 percpu_counter_destroy(&sbinfo->used_blocks); 3027 mpol_put(sbinfo->mpol); 3028 kfree(sbinfo); 3029 sb->s_fs_info = NULL; 3030 } 3031 3032 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3033 { 3034 struct inode *inode; 3035 struct shmem_sb_info *sbinfo; 3036 int err = -ENOMEM; 3037 3038 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3039 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3040 L1_CACHE_BYTES), GFP_KERNEL); 3041 if (!sbinfo) 3042 return -ENOMEM; 3043 3044 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3045 sbinfo->uid = current_fsuid(); 3046 sbinfo->gid = current_fsgid(); 3047 sb->s_fs_info = sbinfo; 3048 3049 #ifdef CONFIG_TMPFS 3050 /* 3051 * Per default we only allow half of the physical ram per 3052 * tmpfs instance, limiting inodes to one per page of lowmem; 3053 * but the internal instance is left unlimited. 3054 */ 3055 if (!(sb->s_flags & MS_KERNMOUNT)) { 3056 sbinfo->max_blocks = shmem_default_max_blocks(); 3057 sbinfo->max_inodes = shmem_default_max_inodes(); 3058 if (shmem_parse_options(data, sbinfo, false)) { 3059 err = -EINVAL; 3060 goto failed; 3061 } 3062 } else { 3063 sb->s_flags |= MS_NOUSER; 3064 } 3065 sb->s_export_op = &shmem_export_ops; 3066 sb->s_flags |= MS_NOSEC; 3067 #else 3068 sb->s_flags |= MS_NOUSER; 3069 #endif 3070 3071 spin_lock_init(&sbinfo->stat_lock); 3072 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3073 goto failed; 3074 sbinfo->free_inodes = sbinfo->max_inodes; 3075 3076 sb->s_maxbytes = MAX_LFS_FILESIZE; 3077 sb->s_blocksize = PAGE_SIZE; 3078 sb->s_blocksize_bits = PAGE_SHIFT; 3079 sb->s_magic = TMPFS_MAGIC; 3080 sb->s_op = &shmem_ops; 3081 sb->s_time_gran = 1; 3082 #ifdef CONFIG_TMPFS_XATTR 3083 sb->s_xattr = shmem_xattr_handlers; 3084 #endif 3085 #ifdef CONFIG_TMPFS_POSIX_ACL 3086 sb->s_flags |= MS_POSIXACL; 3087 #endif 3088 3089 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3090 if (!inode) 3091 goto failed; 3092 inode->i_uid = sbinfo->uid; 3093 inode->i_gid = sbinfo->gid; 3094 sb->s_root = d_make_root(inode); 3095 if (!sb->s_root) 3096 goto failed; 3097 return 0; 3098 3099 failed: 3100 shmem_put_super(sb); 3101 return err; 3102 } 3103 3104 static struct kmem_cache *shmem_inode_cachep; 3105 3106 static struct inode *shmem_alloc_inode(struct super_block *sb) 3107 { 3108 struct shmem_inode_info *info; 3109 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3110 if (!info) 3111 return NULL; 3112 return &info->vfs_inode; 3113 } 3114 3115 static void shmem_destroy_callback(struct rcu_head *head) 3116 { 3117 struct inode *inode = container_of(head, struct inode, i_rcu); 3118 if (S_ISLNK(inode->i_mode)) 3119 kfree(inode->i_link); 3120 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3121 } 3122 3123 static void shmem_destroy_inode(struct inode *inode) 3124 { 3125 if (S_ISREG(inode->i_mode)) 3126 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3127 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3128 } 3129 3130 static void shmem_init_inode(void *foo) 3131 { 3132 struct shmem_inode_info *info = foo; 3133 inode_init_once(&info->vfs_inode); 3134 } 3135 3136 static int shmem_init_inodecache(void) 3137 { 3138 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3139 sizeof(struct shmem_inode_info), 3140 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3141 return 0; 3142 } 3143 3144 static void shmem_destroy_inodecache(void) 3145 { 3146 kmem_cache_destroy(shmem_inode_cachep); 3147 } 3148 3149 static const struct address_space_operations shmem_aops = { 3150 .writepage = shmem_writepage, 3151 .set_page_dirty = __set_page_dirty_no_writeback, 3152 #ifdef CONFIG_TMPFS 3153 .write_begin = shmem_write_begin, 3154 .write_end = shmem_write_end, 3155 #endif 3156 #ifdef CONFIG_MIGRATION 3157 .migratepage = migrate_page, 3158 #endif 3159 .error_remove_page = generic_error_remove_page, 3160 }; 3161 3162 static const struct file_operations shmem_file_operations = { 3163 .mmap = shmem_mmap, 3164 #ifdef CONFIG_TMPFS 3165 .llseek = shmem_file_llseek, 3166 .read_iter = shmem_file_read_iter, 3167 .write_iter = generic_file_write_iter, 3168 .fsync = noop_fsync, 3169 .splice_read = shmem_file_splice_read, 3170 .splice_write = iter_file_splice_write, 3171 .fallocate = shmem_fallocate, 3172 #endif 3173 }; 3174 3175 static const struct inode_operations shmem_inode_operations = { 3176 .getattr = shmem_getattr, 3177 .setattr = shmem_setattr, 3178 #ifdef CONFIG_TMPFS_XATTR 3179 .setxattr = generic_setxattr, 3180 .getxattr = generic_getxattr, 3181 .listxattr = shmem_listxattr, 3182 .removexattr = generic_removexattr, 3183 .set_acl = simple_set_acl, 3184 #endif 3185 }; 3186 3187 static const struct inode_operations shmem_dir_inode_operations = { 3188 #ifdef CONFIG_TMPFS 3189 .create = shmem_create, 3190 .lookup = simple_lookup, 3191 .link = shmem_link, 3192 .unlink = shmem_unlink, 3193 .symlink = shmem_symlink, 3194 .mkdir = shmem_mkdir, 3195 .rmdir = shmem_rmdir, 3196 .mknod = shmem_mknod, 3197 .rename2 = shmem_rename2, 3198 .tmpfile = shmem_tmpfile, 3199 #endif 3200 #ifdef CONFIG_TMPFS_XATTR 3201 .setxattr = generic_setxattr, 3202 .getxattr = generic_getxattr, 3203 .listxattr = shmem_listxattr, 3204 .removexattr = generic_removexattr, 3205 #endif 3206 #ifdef CONFIG_TMPFS_POSIX_ACL 3207 .setattr = shmem_setattr, 3208 .set_acl = simple_set_acl, 3209 #endif 3210 }; 3211 3212 static const struct inode_operations shmem_special_inode_operations = { 3213 #ifdef CONFIG_TMPFS_XATTR 3214 .setxattr = generic_setxattr, 3215 .getxattr = generic_getxattr, 3216 .listxattr = shmem_listxattr, 3217 .removexattr = generic_removexattr, 3218 #endif 3219 #ifdef CONFIG_TMPFS_POSIX_ACL 3220 .setattr = shmem_setattr, 3221 .set_acl = simple_set_acl, 3222 #endif 3223 }; 3224 3225 static const struct super_operations shmem_ops = { 3226 .alloc_inode = shmem_alloc_inode, 3227 .destroy_inode = shmem_destroy_inode, 3228 #ifdef CONFIG_TMPFS 3229 .statfs = shmem_statfs, 3230 .remount_fs = shmem_remount_fs, 3231 .show_options = shmem_show_options, 3232 #endif 3233 .evict_inode = shmem_evict_inode, 3234 .drop_inode = generic_delete_inode, 3235 .put_super = shmem_put_super, 3236 }; 3237 3238 static const struct vm_operations_struct shmem_vm_ops = { 3239 .fault = shmem_fault, 3240 .map_pages = filemap_map_pages, 3241 #ifdef CONFIG_NUMA 3242 .set_policy = shmem_set_policy, 3243 .get_policy = shmem_get_policy, 3244 #endif 3245 }; 3246 3247 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3248 int flags, const char *dev_name, void *data) 3249 { 3250 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3251 } 3252 3253 static struct file_system_type shmem_fs_type = { 3254 .owner = THIS_MODULE, 3255 .name = "tmpfs", 3256 .mount = shmem_mount, 3257 .kill_sb = kill_litter_super, 3258 .fs_flags = FS_USERNS_MOUNT, 3259 }; 3260 3261 int __init shmem_init(void) 3262 { 3263 int error; 3264 3265 /* If rootfs called this, don't re-init */ 3266 if (shmem_inode_cachep) 3267 return 0; 3268 3269 error = shmem_init_inodecache(); 3270 if (error) 3271 goto out3; 3272 3273 error = register_filesystem(&shmem_fs_type); 3274 if (error) { 3275 pr_err("Could not register tmpfs\n"); 3276 goto out2; 3277 } 3278 3279 shm_mnt = kern_mount(&shmem_fs_type); 3280 if (IS_ERR(shm_mnt)) { 3281 error = PTR_ERR(shm_mnt); 3282 pr_err("Could not kern_mount tmpfs\n"); 3283 goto out1; 3284 } 3285 return 0; 3286 3287 out1: 3288 unregister_filesystem(&shmem_fs_type); 3289 out2: 3290 shmem_destroy_inodecache(); 3291 out3: 3292 shm_mnt = ERR_PTR(error); 3293 return error; 3294 } 3295 3296 #else /* !CONFIG_SHMEM */ 3297 3298 /* 3299 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3300 * 3301 * This is intended for small system where the benefits of the full 3302 * shmem code (swap-backed and resource-limited) are outweighed by 3303 * their complexity. On systems without swap this code should be 3304 * effectively equivalent, but much lighter weight. 3305 */ 3306 3307 static struct file_system_type shmem_fs_type = { 3308 .name = "tmpfs", 3309 .mount = ramfs_mount, 3310 .kill_sb = kill_litter_super, 3311 .fs_flags = FS_USERNS_MOUNT, 3312 }; 3313 3314 int __init shmem_init(void) 3315 { 3316 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3317 3318 shm_mnt = kern_mount(&shmem_fs_type); 3319 BUG_ON(IS_ERR(shm_mnt)); 3320 3321 return 0; 3322 } 3323 3324 int shmem_unuse(swp_entry_t swap, struct page *page) 3325 { 3326 return 0; 3327 } 3328 3329 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3330 { 3331 return 0; 3332 } 3333 3334 void shmem_unlock_mapping(struct address_space *mapping) 3335 { 3336 } 3337 3338 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3339 { 3340 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3341 } 3342 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3343 3344 #define shmem_vm_ops generic_file_vm_ops 3345 #define shmem_file_operations ramfs_file_operations 3346 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3347 #define shmem_acct_size(flags, size) 0 3348 #define shmem_unacct_size(flags, size) do {} while (0) 3349 3350 #endif /* CONFIG_SHMEM */ 3351 3352 /* common code */ 3353 3354 static struct dentry_operations anon_ops = { 3355 .d_dname = simple_dname 3356 }; 3357 3358 static struct file *__shmem_file_setup(const char *name, loff_t size, 3359 unsigned long flags, unsigned int i_flags) 3360 { 3361 struct file *res; 3362 struct inode *inode; 3363 struct path path; 3364 struct super_block *sb; 3365 struct qstr this; 3366 3367 if (IS_ERR(shm_mnt)) 3368 return ERR_CAST(shm_mnt); 3369 3370 if (size < 0 || size > MAX_LFS_FILESIZE) 3371 return ERR_PTR(-EINVAL); 3372 3373 if (shmem_acct_size(flags, size)) 3374 return ERR_PTR(-ENOMEM); 3375 3376 res = ERR_PTR(-ENOMEM); 3377 this.name = name; 3378 this.len = strlen(name); 3379 this.hash = 0; /* will go */ 3380 sb = shm_mnt->mnt_sb; 3381 path.mnt = mntget(shm_mnt); 3382 path.dentry = d_alloc_pseudo(sb, &this); 3383 if (!path.dentry) 3384 goto put_memory; 3385 d_set_d_op(path.dentry, &anon_ops); 3386 3387 res = ERR_PTR(-ENOSPC); 3388 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3389 if (!inode) 3390 goto put_memory; 3391 3392 inode->i_flags |= i_flags; 3393 d_instantiate(path.dentry, inode); 3394 inode->i_size = size; 3395 clear_nlink(inode); /* It is unlinked */ 3396 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3397 if (IS_ERR(res)) 3398 goto put_path; 3399 3400 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3401 &shmem_file_operations); 3402 if (IS_ERR(res)) 3403 goto put_path; 3404 3405 return res; 3406 3407 put_memory: 3408 shmem_unacct_size(flags, size); 3409 put_path: 3410 path_put(&path); 3411 return res; 3412 } 3413 3414 /** 3415 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3416 * kernel internal. There will be NO LSM permission checks against the 3417 * underlying inode. So users of this interface must do LSM checks at a 3418 * higher layer. The users are the big_key and shm implementations. LSM 3419 * checks are provided at the key or shm level rather than the inode. 3420 * @name: name for dentry (to be seen in /proc/<pid>/maps 3421 * @size: size to be set for the file 3422 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3423 */ 3424 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3425 { 3426 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3427 } 3428 3429 /** 3430 * shmem_file_setup - get an unlinked file living in tmpfs 3431 * @name: name for dentry (to be seen in /proc/<pid>/maps 3432 * @size: size to be set for the file 3433 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3434 */ 3435 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3436 { 3437 return __shmem_file_setup(name, size, flags, 0); 3438 } 3439 EXPORT_SYMBOL_GPL(shmem_file_setup); 3440 3441 /** 3442 * shmem_zero_setup - setup a shared anonymous mapping 3443 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3444 */ 3445 int shmem_zero_setup(struct vm_area_struct *vma) 3446 { 3447 struct file *file; 3448 loff_t size = vma->vm_end - vma->vm_start; 3449 3450 /* 3451 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3452 * between XFS directory reading and selinux: since this file is only 3453 * accessible to the user through its mapping, use S_PRIVATE flag to 3454 * bypass file security, in the same way as shmem_kernel_file_setup(). 3455 */ 3456 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3457 if (IS_ERR(file)) 3458 return PTR_ERR(file); 3459 3460 if (vma->vm_file) 3461 fput(vma->vm_file); 3462 vma->vm_file = file; 3463 vma->vm_ops = &shmem_vm_ops; 3464 return 0; 3465 } 3466 3467 /** 3468 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3469 * @mapping: the page's address_space 3470 * @index: the page index 3471 * @gfp: the page allocator flags to use if allocating 3472 * 3473 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3474 * with any new page allocations done using the specified allocation flags. 3475 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3476 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3477 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3478 * 3479 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3480 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3481 */ 3482 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3483 pgoff_t index, gfp_t gfp) 3484 { 3485 #ifdef CONFIG_SHMEM 3486 struct inode *inode = mapping->host; 3487 struct page *page; 3488 int error; 3489 3490 BUG_ON(mapping->a_ops != &shmem_aops); 3491 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 3492 gfp, NULL, NULL); 3493 if (error) 3494 page = ERR_PTR(error); 3495 else 3496 unlock_page(page); 3497 return page; 3498 #else 3499 /* 3500 * The tiny !SHMEM case uses ramfs without swap 3501 */ 3502 return read_cache_page_gfp(mapping, index, gfp); 3503 #endif 3504 } 3505 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3506