xref: /openbmc/linux/mm/shmem.c (revision 05bcf503)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 /*
81  * shmem_fallocate and shmem_writepage communicate via inode->i_private
82  * (with i_mutex making sure that it has only one user at a time):
83  * we would prefer not to enlarge the shmem inode just for that.
84  */
85 struct shmem_falloc {
86 	pgoff_t start;		/* start of range currently being fallocated */
87 	pgoff_t next;		/* the next page offset to be fallocated */
88 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
89 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
90 };
91 
92 /* Flag allocation requirements to shmem_getpage */
93 enum sgp_type {
94 	SGP_READ,	/* don't exceed i_size, don't allocate page */
95 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
96 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
97 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
98 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
99 };
100 
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 	return totalram_pages / 2;
105 }
106 
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112 
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 				struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118 
119 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120 	struct page **pagep, enum sgp_type sgp, int *fault_type)
121 {
122 	return shmem_getpage_gfp(inode, index, pagep, sgp,
123 			mapping_gfp_mask(inode->i_mapping), fault_type);
124 }
125 
126 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127 {
128 	return sb->s_fs_info;
129 }
130 
131 /*
132  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133  * for shared memory and for shared anonymous (/dev/zero) mappings
134  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135  * consistent with the pre-accounting of private mappings ...
136  */
137 static inline int shmem_acct_size(unsigned long flags, loff_t size)
138 {
139 	return (flags & VM_NORESERVE) ?
140 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
141 }
142 
143 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144 {
145 	if (!(flags & VM_NORESERVE))
146 		vm_unacct_memory(VM_ACCT(size));
147 }
148 
149 /*
150  * ... whereas tmpfs objects are accounted incrementally as
151  * pages are allocated, in order to allow huge sparse files.
152  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154  */
155 static inline int shmem_acct_block(unsigned long flags)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
159 }
160 
161 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162 {
163 	if (flags & VM_NORESERVE)
164 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165 }
166 
167 static const struct super_operations shmem_ops;
168 static const struct address_space_operations shmem_aops;
169 static const struct file_operations shmem_file_operations;
170 static const struct inode_operations shmem_inode_operations;
171 static const struct inode_operations shmem_dir_inode_operations;
172 static const struct inode_operations shmem_special_inode_operations;
173 static const struct vm_operations_struct shmem_vm_ops;
174 
175 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
176 	.ra_pages	= 0,	/* No readahead */
177 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
178 };
179 
180 static LIST_HEAD(shmem_swaplist);
181 static DEFINE_MUTEX(shmem_swaplist_mutex);
182 
183 static int shmem_reserve_inode(struct super_block *sb)
184 {
185 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186 	if (sbinfo->max_inodes) {
187 		spin_lock(&sbinfo->stat_lock);
188 		if (!sbinfo->free_inodes) {
189 			spin_unlock(&sbinfo->stat_lock);
190 			return -ENOSPC;
191 		}
192 		sbinfo->free_inodes--;
193 		spin_unlock(&sbinfo->stat_lock);
194 	}
195 	return 0;
196 }
197 
198 static void shmem_free_inode(struct super_block *sb)
199 {
200 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201 	if (sbinfo->max_inodes) {
202 		spin_lock(&sbinfo->stat_lock);
203 		sbinfo->free_inodes++;
204 		spin_unlock(&sbinfo->stat_lock);
205 	}
206 }
207 
208 /**
209  * shmem_recalc_inode - recalculate the block usage of an inode
210  * @inode: inode to recalc
211  *
212  * We have to calculate the free blocks since the mm can drop
213  * undirtied hole pages behind our back.
214  *
215  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
216  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217  *
218  * It has to be called with the spinlock held.
219  */
220 static void shmem_recalc_inode(struct inode *inode)
221 {
222 	struct shmem_inode_info *info = SHMEM_I(inode);
223 	long freed;
224 
225 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226 	if (freed > 0) {
227 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 		if (sbinfo->max_blocks)
229 			percpu_counter_add(&sbinfo->used_blocks, -freed);
230 		info->alloced -= freed;
231 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232 		shmem_unacct_blocks(info->flags, freed);
233 	}
234 }
235 
236 /*
237  * Replace item expected in radix tree by a new item, while holding tree lock.
238  */
239 static int shmem_radix_tree_replace(struct address_space *mapping,
240 			pgoff_t index, void *expected, void *replacement)
241 {
242 	void **pslot;
243 	void *item = NULL;
244 
245 	VM_BUG_ON(!expected);
246 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247 	if (pslot)
248 		item = radix_tree_deref_slot_protected(pslot,
249 							&mapping->tree_lock);
250 	if (item != expected)
251 		return -ENOENT;
252 	if (replacement)
253 		radix_tree_replace_slot(pslot, replacement);
254 	else
255 		radix_tree_delete(&mapping->page_tree, index);
256 	return 0;
257 }
258 
259 /*
260  * Sometimes, before we decide whether to proceed or to fail, we must check
261  * that an entry was not already brought back from swap by a racing thread.
262  *
263  * Checking page is not enough: by the time a SwapCache page is locked, it
264  * might be reused, and again be SwapCache, using the same swap as before.
265  */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267 			       pgoff_t index, swp_entry_t swap)
268 {
269 	void *item;
270 
271 	rcu_read_lock();
272 	item = radix_tree_lookup(&mapping->page_tree, index);
273 	rcu_read_unlock();
274 	return item == swp_to_radix_entry(swap);
275 }
276 
277 /*
278  * Like add_to_page_cache_locked, but error if expected item has gone.
279  */
280 static int shmem_add_to_page_cache(struct page *page,
281 				   struct address_space *mapping,
282 				   pgoff_t index, gfp_t gfp, void *expected)
283 {
284 	int error;
285 
286 	VM_BUG_ON(!PageLocked(page));
287 	VM_BUG_ON(!PageSwapBacked(page));
288 
289 	page_cache_get(page);
290 	page->mapping = mapping;
291 	page->index = index;
292 
293 	spin_lock_irq(&mapping->tree_lock);
294 	if (!expected)
295 		error = radix_tree_insert(&mapping->page_tree, index, page);
296 	else
297 		error = shmem_radix_tree_replace(mapping, index, expected,
298 								 page);
299 	if (!error) {
300 		mapping->nrpages++;
301 		__inc_zone_page_state(page, NR_FILE_PAGES);
302 		__inc_zone_page_state(page, NR_SHMEM);
303 		spin_unlock_irq(&mapping->tree_lock);
304 	} else {
305 		page->mapping = NULL;
306 		spin_unlock_irq(&mapping->tree_lock);
307 		page_cache_release(page);
308 	}
309 	return error;
310 }
311 
312 /*
313  * Like delete_from_page_cache, but substitutes swap for page.
314  */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317 	struct address_space *mapping = page->mapping;
318 	int error;
319 
320 	spin_lock_irq(&mapping->tree_lock);
321 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 	page->mapping = NULL;
323 	mapping->nrpages--;
324 	__dec_zone_page_state(page, NR_FILE_PAGES);
325 	__dec_zone_page_state(page, NR_SHMEM);
326 	spin_unlock_irq(&mapping->tree_lock);
327 	page_cache_release(page);
328 	BUG_ON(error);
329 }
330 
331 /*
332  * Like find_get_pages, but collecting swap entries as well as pages.
333  */
334 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335 					pgoff_t start, unsigned int nr_pages,
336 					struct page **pages, pgoff_t *indices)
337 {
338 	unsigned int i;
339 	unsigned int ret;
340 	unsigned int nr_found;
341 
342 	rcu_read_lock();
343 restart:
344 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345 				(void ***)pages, indices, start, nr_pages);
346 	ret = 0;
347 	for (i = 0; i < nr_found; i++) {
348 		struct page *page;
349 repeat:
350 		page = radix_tree_deref_slot((void **)pages[i]);
351 		if (unlikely(!page))
352 			continue;
353 		if (radix_tree_exception(page)) {
354 			if (radix_tree_deref_retry(page))
355 				goto restart;
356 			/*
357 			 * Otherwise, we must be storing a swap entry
358 			 * here as an exceptional entry: so return it
359 			 * without attempting to raise page count.
360 			 */
361 			goto export;
362 		}
363 		if (!page_cache_get_speculative(page))
364 			goto repeat;
365 
366 		/* Has the page moved? */
367 		if (unlikely(page != *((void **)pages[i]))) {
368 			page_cache_release(page);
369 			goto repeat;
370 		}
371 export:
372 		indices[ret] = indices[i];
373 		pages[ret] = page;
374 		ret++;
375 	}
376 	if (unlikely(!ret && nr_found))
377 		goto restart;
378 	rcu_read_unlock();
379 	return ret;
380 }
381 
382 /*
383  * Remove swap entry from radix tree, free the swap and its page cache.
384  */
385 static int shmem_free_swap(struct address_space *mapping,
386 			   pgoff_t index, void *radswap)
387 {
388 	int error;
389 
390 	spin_lock_irq(&mapping->tree_lock);
391 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392 	spin_unlock_irq(&mapping->tree_lock);
393 	if (!error)
394 		free_swap_and_cache(radix_to_swp_entry(radswap));
395 	return error;
396 }
397 
398 /*
399  * Pagevec may contain swap entries, so shuffle up pages before releasing.
400  */
401 static void shmem_deswap_pagevec(struct pagevec *pvec)
402 {
403 	int i, j;
404 
405 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406 		struct page *page = pvec->pages[i];
407 		if (!radix_tree_exceptional_entry(page))
408 			pvec->pages[j++] = page;
409 	}
410 	pvec->nr = j;
411 }
412 
413 /*
414  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415  */
416 void shmem_unlock_mapping(struct address_space *mapping)
417 {
418 	struct pagevec pvec;
419 	pgoff_t indices[PAGEVEC_SIZE];
420 	pgoff_t index = 0;
421 
422 	pagevec_init(&pvec, 0);
423 	/*
424 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425 	 */
426 	while (!mapping_unevictable(mapping)) {
427 		/*
428 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430 		 */
431 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432 					PAGEVEC_SIZE, pvec.pages, indices);
433 		if (!pvec.nr)
434 			break;
435 		index = indices[pvec.nr - 1] + 1;
436 		shmem_deswap_pagevec(&pvec);
437 		check_move_unevictable_pages(pvec.pages, pvec.nr);
438 		pagevec_release(&pvec);
439 		cond_resched();
440 	}
441 }
442 
443 /*
444  * Remove range of pages and swap entries from radix tree, and free them.
445  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
446  */
447 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448 								 bool unfalloc)
449 {
450 	struct address_space *mapping = inode->i_mapping;
451 	struct shmem_inode_info *info = SHMEM_I(inode);
452 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
453 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
456 	struct pagevec pvec;
457 	pgoff_t indices[PAGEVEC_SIZE];
458 	long nr_swaps_freed = 0;
459 	pgoff_t index;
460 	int i;
461 
462 	if (lend == -1)
463 		end = -1;	/* unsigned, so actually very big */
464 
465 	pagevec_init(&pvec, 0);
466 	index = start;
467 	while (index < end) {
468 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
469 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
470 							pvec.pages, indices);
471 		if (!pvec.nr)
472 			break;
473 		mem_cgroup_uncharge_start();
474 		for (i = 0; i < pagevec_count(&pvec); i++) {
475 			struct page *page = pvec.pages[i];
476 
477 			index = indices[i];
478 			if (index >= end)
479 				break;
480 
481 			if (radix_tree_exceptional_entry(page)) {
482 				if (unfalloc)
483 					continue;
484 				nr_swaps_freed += !shmem_free_swap(mapping,
485 								index, page);
486 				continue;
487 			}
488 
489 			if (!trylock_page(page))
490 				continue;
491 			if (!unfalloc || !PageUptodate(page)) {
492 				if (page->mapping == mapping) {
493 					VM_BUG_ON(PageWriteback(page));
494 					truncate_inode_page(mapping, page);
495 				}
496 			}
497 			unlock_page(page);
498 		}
499 		shmem_deswap_pagevec(&pvec);
500 		pagevec_release(&pvec);
501 		mem_cgroup_uncharge_end();
502 		cond_resched();
503 		index++;
504 	}
505 
506 	if (partial_start) {
507 		struct page *page = NULL;
508 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509 		if (page) {
510 			unsigned int top = PAGE_CACHE_SIZE;
511 			if (start > end) {
512 				top = partial_end;
513 				partial_end = 0;
514 			}
515 			zero_user_segment(page, partial_start, top);
516 			set_page_dirty(page);
517 			unlock_page(page);
518 			page_cache_release(page);
519 		}
520 	}
521 	if (partial_end) {
522 		struct page *page = NULL;
523 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
524 		if (page) {
525 			zero_user_segment(page, 0, partial_end);
526 			set_page_dirty(page);
527 			unlock_page(page);
528 			page_cache_release(page);
529 		}
530 	}
531 	if (start >= end)
532 		return;
533 
534 	index = start;
535 	for ( ; ; ) {
536 		cond_resched();
537 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
538 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
539 							pvec.pages, indices);
540 		if (!pvec.nr) {
541 			if (index == start || unfalloc)
542 				break;
543 			index = start;
544 			continue;
545 		}
546 		if ((index == start || unfalloc) && indices[0] >= end) {
547 			shmem_deswap_pagevec(&pvec);
548 			pagevec_release(&pvec);
549 			break;
550 		}
551 		mem_cgroup_uncharge_start();
552 		for (i = 0; i < pagevec_count(&pvec); i++) {
553 			struct page *page = pvec.pages[i];
554 
555 			index = indices[i];
556 			if (index >= end)
557 				break;
558 
559 			if (radix_tree_exceptional_entry(page)) {
560 				if (unfalloc)
561 					continue;
562 				nr_swaps_freed += !shmem_free_swap(mapping,
563 								index, page);
564 				continue;
565 			}
566 
567 			lock_page(page);
568 			if (!unfalloc || !PageUptodate(page)) {
569 				if (page->mapping == mapping) {
570 					VM_BUG_ON(PageWriteback(page));
571 					truncate_inode_page(mapping, page);
572 				}
573 			}
574 			unlock_page(page);
575 		}
576 		shmem_deswap_pagevec(&pvec);
577 		pagevec_release(&pvec);
578 		mem_cgroup_uncharge_end();
579 		index++;
580 	}
581 
582 	spin_lock(&info->lock);
583 	info->swapped -= nr_swaps_freed;
584 	shmem_recalc_inode(inode);
585 	spin_unlock(&info->lock);
586 }
587 
588 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589 {
590 	shmem_undo_range(inode, lstart, lend, false);
591 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
592 }
593 EXPORT_SYMBOL_GPL(shmem_truncate_range);
594 
595 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
596 {
597 	struct inode *inode = dentry->d_inode;
598 	int error;
599 
600 	error = inode_change_ok(inode, attr);
601 	if (error)
602 		return error;
603 
604 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605 		loff_t oldsize = inode->i_size;
606 		loff_t newsize = attr->ia_size;
607 
608 		if (newsize != oldsize) {
609 			i_size_write(inode, newsize);
610 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611 		}
612 		if (newsize < oldsize) {
613 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
614 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615 			shmem_truncate_range(inode, newsize, (loff_t)-1);
616 			/* unmap again to remove racily COWed private pages */
617 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618 		}
619 	}
620 
621 	setattr_copy(inode, attr);
622 #ifdef CONFIG_TMPFS_POSIX_ACL
623 	if (attr->ia_valid & ATTR_MODE)
624 		error = generic_acl_chmod(inode);
625 #endif
626 	return error;
627 }
628 
629 static void shmem_evict_inode(struct inode *inode)
630 {
631 	struct shmem_inode_info *info = SHMEM_I(inode);
632 
633 	if (inode->i_mapping->a_ops == &shmem_aops) {
634 		shmem_unacct_size(info->flags, inode->i_size);
635 		inode->i_size = 0;
636 		shmem_truncate_range(inode, 0, (loff_t)-1);
637 		if (!list_empty(&info->swaplist)) {
638 			mutex_lock(&shmem_swaplist_mutex);
639 			list_del_init(&info->swaplist);
640 			mutex_unlock(&shmem_swaplist_mutex);
641 		}
642 	} else
643 		kfree(info->symlink);
644 
645 	simple_xattrs_free(&info->xattrs);
646 	WARN_ON(inode->i_blocks);
647 	shmem_free_inode(inode->i_sb);
648 	clear_inode(inode);
649 }
650 
651 /*
652  * If swap found in inode, free it and move page from swapcache to filecache.
653  */
654 static int shmem_unuse_inode(struct shmem_inode_info *info,
655 			     swp_entry_t swap, struct page **pagep)
656 {
657 	struct address_space *mapping = info->vfs_inode.i_mapping;
658 	void *radswap;
659 	pgoff_t index;
660 	gfp_t gfp;
661 	int error = 0;
662 
663 	radswap = swp_to_radix_entry(swap);
664 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
665 	if (index == -1)
666 		return 0;
667 
668 	/*
669 	 * Move _head_ to start search for next from here.
670 	 * But be careful: shmem_evict_inode checks list_empty without taking
671 	 * mutex, and there's an instant in list_move_tail when info->swaplist
672 	 * would appear empty, if it were the only one on shmem_swaplist.
673 	 */
674 	if (shmem_swaplist.next != &info->swaplist)
675 		list_move_tail(&shmem_swaplist, &info->swaplist);
676 
677 	gfp = mapping_gfp_mask(mapping);
678 	if (shmem_should_replace_page(*pagep, gfp)) {
679 		mutex_unlock(&shmem_swaplist_mutex);
680 		error = shmem_replace_page(pagep, gfp, info, index);
681 		mutex_lock(&shmem_swaplist_mutex);
682 		/*
683 		 * We needed to drop mutex to make that restrictive page
684 		 * allocation, but the inode might have been freed while we
685 		 * dropped it: although a racing shmem_evict_inode() cannot
686 		 * complete without emptying the radix_tree, our page lock
687 		 * on this swapcache page is not enough to prevent that -
688 		 * free_swap_and_cache() of our swap entry will only
689 		 * trylock_page(), removing swap from radix_tree whatever.
690 		 *
691 		 * We must not proceed to shmem_add_to_page_cache() if the
692 		 * inode has been freed, but of course we cannot rely on
693 		 * inode or mapping or info to check that.  However, we can
694 		 * safely check if our swap entry is still in use (and here
695 		 * it can't have got reused for another page): if it's still
696 		 * in use, then the inode cannot have been freed yet, and we
697 		 * can safely proceed (if it's no longer in use, that tells
698 		 * nothing about the inode, but we don't need to unuse swap).
699 		 */
700 		if (!page_swapcount(*pagep))
701 			error = -ENOENT;
702 	}
703 
704 	/*
705 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707 	 * beneath us (pagelock doesn't help until the page is in pagecache).
708 	 */
709 	if (!error)
710 		error = shmem_add_to_page_cache(*pagep, mapping, index,
711 						GFP_NOWAIT, radswap);
712 	if (error != -ENOMEM) {
713 		/*
714 		 * Truncation and eviction use free_swap_and_cache(), which
715 		 * only does trylock page: if we raced, best clean up here.
716 		 */
717 		delete_from_swap_cache(*pagep);
718 		set_page_dirty(*pagep);
719 		if (!error) {
720 			spin_lock(&info->lock);
721 			info->swapped--;
722 			spin_unlock(&info->lock);
723 			swap_free(swap);
724 		}
725 		error = 1;	/* not an error, but entry was found */
726 	}
727 	return error;
728 }
729 
730 /*
731  * Search through swapped inodes to find and replace swap by page.
732  */
733 int shmem_unuse(swp_entry_t swap, struct page *page)
734 {
735 	struct list_head *this, *next;
736 	struct shmem_inode_info *info;
737 	int found = 0;
738 	int error = 0;
739 
740 	/*
741 	 * There's a faint possibility that swap page was replaced before
742 	 * caller locked it: caller will come back later with the right page.
743 	 */
744 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745 		goto out;
746 
747 	/*
748 	 * Charge page using GFP_KERNEL while we can wait, before taking
749 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750 	 * Charged back to the user (not to caller) when swap account is used.
751 	 */
752 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753 	if (error)
754 		goto out;
755 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
756 
757 	mutex_lock(&shmem_swaplist_mutex);
758 	list_for_each_safe(this, next, &shmem_swaplist) {
759 		info = list_entry(this, struct shmem_inode_info, swaplist);
760 		if (info->swapped)
761 			found = shmem_unuse_inode(info, swap, &page);
762 		else
763 			list_del_init(&info->swaplist);
764 		cond_resched();
765 		if (found)
766 			break;
767 	}
768 	mutex_unlock(&shmem_swaplist_mutex);
769 
770 	if (found < 0)
771 		error = found;
772 out:
773 	unlock_page(page);
774 	page_cache_release(page);
775 	return error;
776 }
777 
778 /*
779  * Move the page from the page cache to the swap cache.
780  */
781 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782 {
783 	struct shmem_inode_info *info;
784 	struct address_space *mapping;
785 	struct inode *inode;
786 	swp_entry_t swap;
787 	pgoff_t index;
788 
789 	BUG_ON(!PageLocked(page));
790 	mapping = page->mapping;
791 	index = page->index;
792 	inode = mapping->host;
793 	info = SHMEM_I(inode);
794 	if (info->flags & VM_LOCKED)
795 		goto redirty;
796 	if (!total_swap_pages)
797 		goto redirty;
798 
799 	/*
800 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
801 	 * sync from ever calling shmem_writepage; but a stacking filesystem
802 	 * might use ->writepage of its underlying filesystem, in which case
803 	 * tmpfs should write out to swap only in response to memory pressure,
804 	 * and not for the writeback threads or sync.
805 	 */
806 	if (!wbc->for_reclaim) {
807 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
808 		goto redirty;
809 	}
810 
811 	/*
812 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813 	 * value into swapfile.c, the only way we can correctly account for a
814 	 * fallocated page arriving here is now to initialize it and write it.
815 	 *
816 	 * That's okay for a page already fallocated earlier, but if we have
817 	 * not yet completed the fallocation, then (a) we want to keep track
818 	 * of this page in case we have to undo it, and (b) it may not be a
819 	 * good idea to continue anyway, once we're pushing into swap.  So
820 	 * reactivate the page, and let shmem_fallocate() quit when too many.
821 	 */
822 	if (!PageUptodate(page)) {
823 		if (inode->i_private) {
824 			struct shmem_falloc *shmem_falloc;
825 			spin_lock(&inode->i_lock);
826 			shmem_falloc = inode->i_private;
827 			if (shmem_falloc &&
828 			    index >= shmem_falloc->start &&
829 			    index < shmem_falloc->next)
830 				shmem_falloc->nr_unswapped++;
831 			else
832 				shmem_falloc = NULL;
833 			spin_unlock(&inode->i_lock);
834 			if (shmem_falloc)
835 				goto redirty;
836 		}
837 		clear_highpage(page);
838 		flush_dcache_page(page);
839 		SetPageUptodate(page);
840 	}
841 
842 	swap = get_swap_page();
843 	if (!swap.val)
844 		goto redirty;
845 
846 	/*
847 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848 	 * if it's not already there.  Do it now before the page is
849 	 * moved to swap cache, when its pagelock no longer protects
850 	 * the inode from eviction.  But don't unlock the mutex until
851 	 * we've incremented swapped, because shmem_unuse_inode() will
852 	 * prune a !swapped inode from the swaplist under this mutex.
853 	 */
854 	mutex_lock(&shmem_swaplist_mutex);
855 	if (list_empty(&info->swaplist))
856 		list_add_tail(&info->swaplist, &shmem_swaplist);
857 
858 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
859 		swap_shmem_alloc(swap);
860 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
861 
862 		spin_lock(&info->lock);
863 		info->swapped++;
864 		shmem_recalc_inode(inode);
865 		spin_unlock(&info->lock);
866 
867 		mutex_unlock(&shmem_swaplist_mutex);
868 		BUG_ON(page_mapped(page));
869 		swap_writepage(page, wbc);
870 		return 0;
871 	}
872 
873 	mutex_unlock(&shmem_swaplist_mutex);
874 	swapcache_free(swap, NULL);
875 redirty:
876 	set_page_dirty(page);
877 	if (wbc->for_reclaim)
878 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
879 	unlock_page(page);
880 	return 0;
881 }
882 
883 #ifdef CONFIG_NUMA
884 #ifdef CONFIG_TMPFS
885 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
886 {
887 	char buffer[64];
888 
889 	if (!mpol || mpol->mode == MPOL_DEFAULT)
890 		return;		/* show nothing */
891 
892 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
893 
894 	seq_printf(seq, ",mpol=%s", buffer);
895 }
896 
897 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
898 {
899 	struct mempolicy *mpol = NULL;
900 	if (sbinfo->mpol) {
901 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
902 		mpol = sbinfo->mpol;
903 		mpol_get(mpol);
904 		spin_unlock(&sbinfo->stat_lock);
905 	}
906 	return mpol;
907 }
908 #endif /* CONFIG_TMPFS */
909 
910 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911 			struct shmem_inode_info *info, pgoff_t index)
912 {
913 	struct mempolicy mpol, *spol;
914 	struct vm_area_struct pvma;
915 
916 	spol = mpol_cond_copy(&mpol,
917 			mpol_shared_policy_lookup(&info->policy, index));
918 
919 	/* Create a pseudo vma that just contains the policy */
920 	pvma.vm_start = 0;
921 	/* Bias interleave by inode number to distribute better across nodes */
922 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
923 	pvma.vm_ops = NULL;
924 	pvma.vm_policy = spol;
925 	return swapin_readahead(swap, gfp, &pvma, 0);
926 }
927 
928 static struct page *shmem_alloc_page(gfp_t gfp,
929 			struct shmem_inode_info *info, pgoff_t index)
930 {
931 	struct vm_area_struct pvma;
932 
933 	/* Create a pseudo vma that just contains the policy */
934 	pvma.vm_start = 0;
935 	/* Bias interleave by inode number to distribute better across nodes */
936 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
937 	pvma.vm_ops = NULL;
938 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
939 
940 	/*
941 	 * alloc_page_vma() will drop the shared policy reference
942 	 */
943 	return alloc_page_vma(gfp, &pvma, 0);
944 }
945 #else /* !CONFIG_NUMA */
946 #ifdef CONFIG_TMPFS
947 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
948 {
949 }
950 #endif /* CONFIG_TMPFS */
951 
952 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953 			struct shmem_inode_info *info, pgoff_t index)
954 {
955 	return swapin_readahead(swap, gfp, NULL, 0);
956 }
957 
958 static inline struct page *shmem_alloc_page(gfp_t gfp,
959 			struct shmem_inode_info *info, pgoff_t index)
960 {
961 	return alloc_page(gfp);
962 }
963 #endif /* CONFIG_NUMA */
964 
965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967 {
968 	return NULL;
969 }
970 #endif
971 
972 /*
973  * When a page is moved from swapcache to shmem filecache (either by the
974  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975  * shmem_unuse_inode()), it may have been read in earlier from swap, in
976  * ignorance of the mapping it belongs to.  If that mapping has special
977  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978  * we may need to copy to a suitable page before moving to filecache.
979  *
980  * In a future release, this may well be extended to respect cpuset and
981  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982  * but for now it is a simple matter of zone.
983  */
984 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985 {
986 	return page_zonenum(page) > gfp_zone(gfp);
987 }
988 
989 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990 				struct shmem_inode_info *info, pgoff_t index)
991 {
992 	struct page *oldpage, *newpage;
993 	struct address_space *swap_mapping;
994 	pgoff_t swap_index;
995 	int error;
996 
997 	oldpage = *pagep;
998 	swap_index = page_private(oldpage);
999 	swap_mapping = page_mapping(oldpage);
1000 
1001 	/*
1002 	 * We have arrived here because our zones are constrained, so don't
1003 	 * limit chance of success by further cpuset and node constraints.
1004 	 */
1005 	gfp &= ~GFP_CONSTRAINT_MASK;
1006 	newpage = shmem_alloc_page(gfp, info, index);
1007 	if (!newpage)
1008 		return -ENOMEM;
1009 
1010 	page_cache_get(newpage);
1011 	copy_highpage(newpage, oldpage);
1012 	flush_dcache_page(newpage);
1013 
1014 	__set_page_locked(newpage);
1015 	SetPageUptodate(newpage);
1016 	SetPageSwapBacked(newpage);
1017 	set_page_private(newpage, swap_index);
1018 	SetPageSwapCache(newpage);
1019 
1020 	/*
1021 	 * Our caller will very soon move newpage out of swapcache, but it's
1022 	 * a nice clean interface for us to replace oldpage by newpage there.
1023 	 */
1024 	spin_lock_irq(&swap_mapping->tree_lock);
1025 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026 								   newpage);
1027 	if (!error) {
1028 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1029 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030 	}
1031 	spin_unlock_irq(&swap_mapping->tree_lock);
1032 
1033 	if (unlikely(error)) {
1034 		/*
1035 		 * Is this possible?  I think not, now that our callers check
1036 		 * both PageSwapCache and page_private after getting page lock;
1037 		 * but be defensive.  Reverse old to newpage for clear and free.
1038 		 */
1039 		oldpage = newpage;
1040 	} else {
1041 		mem_cgroup_replace_page_cache(oldpage, newpage);
1042 		lru_cache_add_anon(newpage);
1043 		*pagep = newpage;
1044 	}
1045 
1046 	ClearPageSwapCache(oldpage);
1047 	set_page_private(oldpage, 0);
1048 
1049 	unlock_page(oldpage);
1050 	page_cache_release(oldpage);
1051 	page_cache_release(oldpage);
1052 	return error;
1053 }
1054 
1055 /*
1056  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1057  *
1058  * If we allocate a new one we do not mark it dirty. That's up to the
1059  * vm. If we swap it in we mark it dirty since we also free the swap
1060  * entry since a page cannot live in both the swap and page cache
1061  */
1062 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1063 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1064 {
1065 	struct address_space *mapping = inode->i_mapping;
1066 	struct shmem_inode_info *info;
1067 	struct shmem_sb_info *sbinfo;
1068 	struct page *page;
1069 	swp_entry_t swap;
1070 	int error;
1071 	int once = 0;
1072 	int alloced = 0;
1073 
1074 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1075 		return -EFBIG;
1076 repeat:
1077 	swap.val = 0;
1078 	page = find_lock_page(mapping, index);
1079 	if (radix_tree_exceptional_entry(page)) {
1080 		swap = radix_to_swp_entry(page);
1081 		page = NULL;
1082 	}
1083 
1084 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1085 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086 		error = -EINVAL;
1087 		goto failed;
1088 	}
1089 
1090 	/* fallocated page? */
1091 	if (page && !PageUptodate(page)) {
1092 		if (sgp != SGP_READ)
1093 			goto clear;
1094 		unlock_page(page);
1095 		page_cache_release(page);
1096 		page = NULL;
1097 	}
1098 	if (page || (sgp == SGP_READ && !swap.val)) {
1099 		*pagep = page;
1100 		return 0;
1101 	}
1102 
1103 	/*
1104 	 * Fast cache lookup did not find it:
1105 	 * bring it back from swap or allocate.
1106 	 */
1107 	info = SHMEM_I(inode);
1108 	sbinfo = SHMEM_SB(inode->i_sb);
1109 
1110 	if (swap.val) {
1111 		/* Look it up and read it in.. */
1112 		page = lookup_swap_cache(swap);
1113 		if (!page) {
1114 			/* here we actually do the io */
1115 			if (fault_type)
1116 				*fault_type |= VM_FAULT_MAJOR;
1117 			page = shmem_swapin(swap, gfp, info, index);
1118 			if (!page) {
1119 				error = -ENOMEM;
1120 				goto failed;
1121 			}
1122 		}
1123 
1124 		/* We have to do this with page locked to prevent races */
1125 		lock_page(page);
1126 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127 		    !shmem_confirm_swap(mapping, index, swap)) {
1128 			error = -EEXIST;	/* try again */
1129 			goto unlock;
1130 		}
1131 		if (!PageUptodate(page)) {
1132 			error = -EIO;
1133 			goto failed;
1134 		}
1135 		wait_on_page_writeback(page);
1136 
1137 		if (shmem_should_replace_page(page, gfp)) {
1138 			error = shmem_replace_page(&page, gfp, info, index);
1139 			if (error)
1140 				goto failed;
1141 		}
1142 
1143 		error = mem_cgroup_cache_charge(page, current->mm,
1144 						gfp & GFP_RECLAIM_MASK);
1145 		if (!error) {
1146 			error = shmem_add_to_page_cache(page, mapping, index,
1147 						gfp, swp_to_radix_entry(swap));
1148 			/*
1149 			 * We already confirmed swap under page lock, and make
1150 			 * no memory allocation here, so usually no possibility
1151 			 * of error; but free_swap_and_cache() only trylocks a
1152 			 * page, so it is just possible that the entry has been
1153 			 * truncated or holepunched since swap was confirmed.
1154 			 * shmem_undo_range() will have done some of the
1155 			 * unaccounting, now delete_from_swap_cache() will do
1156 			 * the rest (including mem_cgroup_uncharge_swapcache).
1157 			 * Reset swap.val? No, leave it so "failed" goes back to
1158 			 * "repeat": reading a hole and writing should succeed.
1159 			 */
1160 			if (error)
1161 				delete_from_swap_cache(page);
1162 		}
1163 		if (error)
1164 			goto failed;
1165 
1166 		spin_lock(&info->lock);
1167 		info->swapped--;
1168 		shmem_recalc_inode(inode);
1169 		spin_unlock(&info->lock);
1170 
1171 		delete_from_swap_cache(page);
1172 		set_page_dirty(page);
1173 		swap_free(swap);
1174 
1175 	} else {
1176 		if (shmem_acct_block(info->flags)) {
1177 			error = -ENOSPC;
1178 			goto failed;
1179 		}
1180 		if (sbinfo->max_blocks) {
1181 			if (percpu_counter_compare(&sbinfo->used_blocks,
1182 						sbinfo->max_blocks) >= 0) {
1183 				error = -ENOSPC;
1184 				goto unacct;
1185 			}
1186 			percpu_counter_inc(&sbinfo->used_blocks);
1187 		}
1188 
1189 		page = shmem_alloc_page(gfp, info, index);
1190 		if (!page) {
1191 			error = -ENOMEM;
1192 			goto decused;
1193 		}
1194 
1195 		SetPageSwapBacked(page);
1196 		__set_page_locked(page);
1197 		error = mem_cgroup_cache_charge(page, current->mm,
1198 						gfp & GFP_RECLAIM_MASK);
1199 		if (error)
1200 			goto decused;
1201 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1202 		if (!error) {
1203 			error = shmem_add_to_page_cache(page, mapping, index,
1204 							gfp, NULL);
1205 			radix_tree_preload_end();
1206 		}
1207 		if (error) {
1208 			mem_cgroup_uncharge_cache_page(page);
1209 			goto decused;
1210 		}
1211 		lru_cache_add_anon(page);
1212 
1213 		spin_lock(&info->lock);
1214 		info->alloced++;
1215 		inode->i_blocks += BLOCKS_PER_PAGE;
1216 		shmem_recalc_inode(inode);
1217 		spin_unlock(&info->lock);
1218 		alloced = true;
1219 
1220 		/*
1221 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1222 		 */
1223 		if (sgp == SGP_FALLOC)
1224 			sgp = SGP_WRITE;
1225 clear:
1226 		/*
1227 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1228 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1229 		 * it now, lest undo on failure cancel our earlier guarantee.
1230 		 */
1231 		if (sgp != SGP_WRITE) {
1232 			clear_highpage(page);
1233 			flush_dcache_page(page);
1234 			SetPageUptodate(page);
1235 		}
1236 		if (sgp == SGP_DIRTY)
1237 			set_page_dirty(page);
1238 	}
1239 
1240 	/* Perhaps the file has been truncated since we checked */
1241 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1242 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1243 		error = -EINVAL;
1244 		if (alloced)
1245 			goto trunc;
1246 		else
1247 			goto failed;
1248 	}
1249 	*pagep = page;
1250 	return 0;
1251 
1252 	/*
1253 	 * Error recovery.
1254 	 */
1255 trunc:
1256 	info = SHMEM_I(inode);
1257 	ClearPageDirty(page);
1258 	delete_from_page_cache(page);
1259 	spin_lock(&info->lock);
1260 	info->alloced--;
1261 	inode->i_blocks -= BLOCKS_PER_PAGE;
1262 	spin_unlock(&info->lock);
1263 decused:
1264 	sbinfo = SHMEM_SB(inode->i_sb);
1265 	if (sbinfo->max_blocks)
1266 		percpu_counter_add(&sbinfo->used_blocks, -1);
1267 unacct:
1268 	shmem_unacct_blocks(info->flags, 1);
1269 failed:
1270 	if (swap.val && error != -EINVAL &&
1271 	    !shmem_confirm_swap(mapping, index, swap))
1272 		error = -EEXIST;
1273 unlock:
1274 	if (page) {
1275 		unlock_page(page);
1276 		page_cache_release(page);
1277 	}
1278 	if (error == -ENOSPC && !once++) {
1279 		info = SHMEM_I(inode);
1280 		spin_lock(&info->lock);
1281 		shmem_recalc_inode(inode);
1282 		spin_unlock(&info->lock);
1283 		goto repeat;
1284 	}
1285 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1286 		goto repeat;
1287 	return error;
1288 }
1289 
1290 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1291 {
1292 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1293 	int error;
1294 	int ret = VM_FAULT_LOCKED;
1295 
1296 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1297 	if (error)
1298 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1299 
1300 	if (ret & VM_FAULT_MAJOR) {
1301 		count_vm_event(PGMAJFAULT);
1302 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1303 	}
1304 	return ret;
1305 }
1306 
1307 #ifdef CONFIG_NUMA
1308 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1309 {
1310 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1311 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1312 }
1313 
1314 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1315 					  unsigned long addr)
1316 {
1317 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1318 	pgoff_t index;
1319 
1320 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1321 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1322 }
1323 #endif
1324 
1325 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1326 {
1327 	struct inode *inode = file->f_path.dentry->d_inode;
1328 	struct shmem_inode_info *info = SHMEM_I(inode);
1329 	int retval = -ENOMEM;
1330 
1331 	spin_lock(&info->lock);
1332 	if (lock && !(info->flags & VM_LOCKED)) {
1333 		if (!user_shm_lock(inode->i_size, user))
1334 			goto out_nomem;
1335 		info->flags |= VM_LOCKED;
1336 		mapping_set_unevictable(file->f_mapping);
1337 	}
1338 	if (!lock && (info->flags & VM_LOCKED) && user) {
1339 		user_shm_unlock(inode->i_size, user);
1340 		info->flags &= ~VM_LOCKED;
1341 		mapping_clear_unevictable(file->f_mapping);
1342 	}
1343 	retval = 0;
1344 
1345 out_nomem:
1346 	spin_unlock(&info->lock);
1347 	return retval;
1348 }
1349 
1350 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1351 {
1352 	file_accessed(file);
1353 	vma->vm_ops = &shmem_vm_ops;
1354 	return 0;
1355 }
1356 
1357 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1358 				     umode_t mode, dev_t dev, unsigned long flags)
1359 {
1360 	struct inode *inode;
1361 	struct shmem_inode_info *info;
1362 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1363 
1364 	if (shmem_reserve_inode(sb))
1365 		return NULL;
1366 
1367 	inode = new_inode(sb);
1368 	if (inode) {
1369 		inode->i_ino = get_next_ino();
1370 		inode_init_owner(inode, dir, mode);
1371 		inode->i_blocks = 0;
1372 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1373 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1374 		inode->i_generation = get_seconds();
1375 		info = SHMEM_I(inode);
1376 		memset(info, 0, (char *)inode - (char *)info);
1377 		spin_lock_init(&info->lock);
1378 		info->flags = flags & VM_NORESERVE;
1379 		INIT_LIST_HEAD(&info->swaplist);
1380 		simple_xattrs_init(&info->xattrs);
1381 		cache_no_acl(inode);
1382 
1383 		switch (mode & S_IFMT) {
1384 		default:
1385 			inode->i_op = &shmem_special_inode_operations;
1386 			init_special_inode(inode, mode, dev);
1387 			break;
1388 		case S_IFREG:
1389 			inode->i_mapping->a_ops = &shmem_aops;
1390 			inode->i_op = &shmem_inode_operations;
1391 			inode->i_fop = &shmem_file_operations;
1392 			mpol_shared_policy_init(&info->policy,
1393 						 shmem_get_sbmpol(sbinfo));
1394 			break;
1395 		case S_IFDIR:
1396 			inc_nlink(inode);
1397 			/* Some things misbehave if size == 0 on a directory */
1398 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1399 			inode->i_op = &shmem_dir_inode_operations;
1400 			inode->i_fop = &simple_dir_operations;
1401 			break;
1402 		case S_IFLNK:
1403 			/*
1404 			 * Must not load anything in the rbtree,
1405 			 * mpol_free_shared_policy will not be called.
1406 			 */
1407 			mpol_shared_policy_init(&info->policy, NULL);
1408 			break;
1409 		}
1410 	} else
1411 		shmem_free_inode(sb);
1412 	return inode;
1413 }
1414 
1415 #ifdef CONFIG_TMPFS
1416 static const struct inode_operations shmem_symlink_inode_operations;
1417 static const struct inode_operations shmem_short_symlink_operations;
1418 
1419 #ifdef CONFIG_TMPFS_XATTR
1420 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1421 #else
1422 #define shmem_initxattrs NULL
1423 #endif
1424 
1425 static int
1426 shmem_write_begin(struct file *file, struct address_space *mapping,
1427 			loff_t pos, unsigned len, unsigned flags,
1428 			struct page **pagep, void **fsdata)
1429 {
1430 	struct inode *inode = mapping->host;
1431 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1432 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1433 }
1434 
1435 static int
1436 shmem_write_end(struct file *file, struct address_space *mapping,
1437 			loff_t pos, unsigned len, unsigned copied,
1438 			struct page *page, void *fsdata)
1439 {
1440 	struct inode *inode = mapping->host;
1441 
1442 	if (pos + copied > inode->i_size)
1443 		i_size_write(inode, pos + copied);
1444 
1445 	if (!PageUptodate(page)) {
1446 		if (copied < PAGE_CACHE_SIZE) {
1447 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1448 			zero_user_segments(page, 0, from,
1449 					from + copied, PAGE_CACHE_SIZE);
1450 		}
1451 		SetPageUptodate(page);
1452 	}
1453 	set_page_dirty(page);
1454 	unlock_page(page);
1455 	page_cache_release(page);
1456 
1457 	return copied;
1458 }
1459 
1460 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1461 {
1462 	struct inode *inode = filp->f_path.dentry->d_inode;
1463 	struct address_space *mapping = inode->i_mapping;
1464 	pgoff_t index;
1465 	unsigned long offset;
1466 	enum sgp_type sgp = SGP_READ;
1467 
1468 	/*
1469 	 * Might this read be for a stacking filesystem?  Then when reading
1470 	 * holes of a sparse file, we actually need to allocate those pages,
1471 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1472 	 */
1473 	if (segment_eq(get_fs(), KERNEL_DS))
1474 		sgp = SGP_DIRTY;
1475 
1476 	index = *ppos >> PAGE_CACHE_SHIFT;
1477 	offset = *ppos & ~PAGE_CACHE_MASK;
1478 
1479 	for (;;) {
1480 		struct page *page = NULL;
1481 		pgoff_t end_index;
1482 		unsigned long nr, ret;
1483 		loff_t i_size = i_size_read(inode);
1484 
1485 		end_index = i_size >> PAGE_CACHE_SHIFT;
1486 		if (index > end_index)
1487 			break;
1488 		if (index == end_index) {
1489 			nr = i_size & ~PAGE_CACHE_MASK;
1490 			if (nr <= offset)
1491 				break;
1492 		}
1493 
1494 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1495 		if (desc->error) {
1496 			if (desc->error == -EINVAL)
1497 				desc->error = 0;
1498 			break;
1499 		}
1500 		if (page)
1501 			unlock_page(page);
1502 
1503 		/*
1504 		 * We must evaluate after, since reads (unlike writes)
1505 		 * are called without i_mutex protection against truncate
1506 		 */
1507 		nr = PAGE_CACHE_SIZE;
1508 		i_size = i_size_read(inode);
1509 		end_index = i_size >> PAGE_CACHE_SHIFT;
1510 		if (index == end_index) {
1511 			nr = i_size & ~PAGE_CACHE_MASK;
1512 			if (nr <= offset) {
1513 				if (page)
1514 					page_cache_release(page);
1515 				break;
1516 			}
1517 		}
1518 		nr -= offset;
1519 
1520 		if (page) {
1521 			/*
1522 			 * If users can be writing to this page using arbitrary
1523 			 * virtual addresses, take care about potential aliasing
1524 			 * before reading the page on the kernel side.
1525 			 */
1526 			if (mapping_writably_mapped(mapping))
1527 				flush_dcache_page(page);
1528 			/*
1529 			 * Mark the page accessed if we read the beginning.
1530 			 */
1531 			if (!offset)
1532 				mark_page_accessed(page);
1533 		} else {
1534 			page = ZERO_PAGE(0);
1535 			page_cache_get(page);
1536 		}
1537 
1538 		/*
1539 		 * Ok, we have the page, and it's up-to-date, so
1540 		 * now we can copy it to user space...
1541 		 *
1542 		 * The actor routine returns how many bytes were actually used..
1543 		 * NOTE! This may not be the same as how much of a user buffer
1544 		 * we filled up (we may be padding etc), so we can only update
1545 		 * "pos" here (the actor routine has to update the user buffer
1546 		 * pointers and the remaining count).
1547 		 */
1548 		ret = actor(desc, page, offset, nr);
1549 		offset += ret;
1550 		index += offset >> PAGE_CACHE_SHIFT;
1551 		offset &= ~PAGE_CACHE_MASK;
1552 
1553 		page_cache_release(page);
1554 		if (ret != nr || !desc->count)
1555 			break;
1556 
1557 		cond_resched();
1558 	}
1559 
1560 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1561 	file_accessed(filp);
1562 }
1563 
1564 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1565 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1566 {
1567 	struct file *filp = iocb->ki_filp;
1568 	ssize_t retval;
1569 	unsigned long seg;
1570 	size_t count;
1571 	loff_t *ppos = &iocb->ki_pos;
1572 
1573 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1574 	if (retval)
1575 		return retval;
1576 
1577 	for (seg = 0; seg < nr_segs; seg++) {
1578 		read_descriptor_t desc;
1579 
1580 		desc.written = 0;
1581 		desc.arg.buf = iov[seg].iov_base;
1582 		desc.count = iov[seg].iov_len;
1583 		if (desc.count == 0)
1584 			continue;
1585 		desc.error = 0;
1586 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1587 		retval += desc.written;
1588 		if (desc.error) {
1589 			retval = retval ?: desc.error;
1590 			break;
1591 		}
1592 		if (desc.count > 0)
1593 			break;
1594 	}
1595 	return retval;
1596 }
1597 
1598 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1599 				struct pipe_inode_info *pipe, size_t len,
1600 				unsigned int flags)
1601 {
1602 	struct address_space *mapping = in->f_mapping;
1603 	struct inode *inode = mapping->host;
1604 	unsigned int loff, nr_pages, req_pages;
1605 	struct page *pages[PIPE_DEF_BUFFERS];
1606 	struct partial_page partial[PIPE_DEF_BUFFERS];
1607 	struct page *page;
1608 	pgoff_t index, end_index;
1609 	loff_t isize, left;
1610 	int error, page_nr;
1611 	struct splice_pipe_desc spd = {
1612 		.pages = pages,
1613 		.partial = partial,
1614 		.nr_pages_max = PIPE_DEF_BUFFERS,
1615 		.flags = flags,
1616 		.ops = &page_cache_pipe_buf_ops,
1617 		.spd_release = spd_release_page,
1618 	};
1619 
1620 	isize = i_size_read(inode);
1621 	if (unlikely(*ppos >= isize))
1622 		return 0;
1623 
1624 	left = isize - *ppos;
1625 	if (unlikely(left < len))
1626 		len = left;
1627 
1628 	if (splice_grow_spd(pipe, &spd))
1629 		return -ENOMEM;
1630 
1631 	index = *ppos >> PAGE_CACHE_SHIFT;
1632 	loff = *ppos & ~PAGE_CACHE_MASK;
1633 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1634 	nr_pages = min(req_pages, pipe->buffers);
1635 
1636 	spd.nr_pages = find_get_pages_contig(mapping, index,
1637 						nr_pages, spd.pages);
1638 	index += spd.nr_pages;
1639 	error = 0;
1640 
1641 	while (spd.nr_pages < nr_pages) {
1642 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1643 		if (error)
1644 			break;
1645 		unlock_page(page);
1646 		spd.pages[spd.nr_pages++] = page;
1647 		index++;
1648 	}
1649 
1650 	index = *ppos >> PAGE_CACHE_SHIFT;
1651 	nr_pages = spd.nr_pages;
1652 	spd.nr_pages = 0;
1653 
1654 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1655 		unsigned int this_len;
1656 
1657 		if (!len)
1658 			break;
1659 
1660 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1661 		page = spd.pages[page_nr];
1662 
1663 		if (!PageUptodate(page) || page->mapping != mapping) {
1664 			error = shmem_getpage(inode, index, &page,
1665 							SGP_CACHE, NULL);
1666 			if (error)
1667 				break;
1668 			unlock_page(page);
1669 			page_cache_release(spd.pages[page_nr]);
1670 			spd.pages[page_nr] = page;
1671 		}
1672 
1673 		isize = i_size_read(inode);
1674 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1675 		if (unlikely(!isize || index > end_index))
1676 			break;
1677 
1678 		if (end_index == index) {
1679 			unsigned int plen;
1680 
1681 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682 			if (plen <= loff)
1683 				break;
1684 
1685 			this_len = min(this_len, plen - loff);
1686 			len = this_len;
1687 		}
1688 
1689 		spd.partial[page_nr].offset = loff;
1690 		spd.partial[page_nr].len = this_len;
1691 		len -= this_len;
1692 		loff = 0;
1693 		spd.nr_pages++;
1694 		index++;
1695 	}
1696 
1697 	while (page_nr < nr_pages)
1698 		page_cache_release(spd.pages[page_nr++]);
1699 
1700 	if (spd.nr_pages)
1701 		error = splice_to_pipe(pipe, &spd);
1702 
1703 	splice_shrink_spd(&spd);
1704 
1705 	if (error > 0) {
1706 		*ppos += error;
1707 		file_accessed(in);
1708 	}
1709 	return error;
1710 }
1711 
1712 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1713 							 loff_t len)
1714 {
1715 	struct inode *inode = file->f_path.dentry->d_inode;
1716 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1717 	struct shmem_falloc shmem_falloc;
1718 	pgoff_t start, index, end;
1719 	int error;
1720 
1721 	mutex_lock(&inode->i_mutex);
1722 
1723 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1724 		struct address_space *mapping = file->f_mapping;
1725 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1726 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1727 
1728 		if ((u64)unmap_end > (u64)unmap_start)
1729 			unmap_mapping_range(mapping, unmap_start,
1730 					    1 + unmap_end - unmap_start, 0);
1731 		shmem_truncate_range(inode, offset, offset + len - 1);
1732 		/* No need to unmap again: hole-punching leaves COWed pages */
1733 		error = 0;
1734 		goto out;
1735 	}
1736 
1737 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1738 	error = inode_newsize_ok(inode, offset + len);
1739 	if (error)
1740 		goto out;
1741 
1742 	start = offset >> PAGE_CACHE_SHIFT;
1743 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1744 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1745 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1746 		error = -ENOSPC;
1747 		goto out;
1748 	}
1749 
1750 	shmem_falloc.start = start;
1751 	shmem_falloc.next  = start;
1752 	shmem_falloc.nr_falloced = 0;
1753 	shmem_falloc.nr_unswapped = 0;
1754 	spin_lock(&inode->i_lock);
1755 	inode->i_private = &shmem_falloc;
1756 	spin_unlock(&inode->i_lock);
1757 
1758 	for (index = start; index < end; index++) {
1759 		struct page *page;
1760 
1761 		/*
1762 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1763 		 * been interrupted because we are using up too much memory.
1764 		 */
1765 		if (signal_pending(current))
1766 			error = -EINTR;
1767 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1768 			error = -ENOMEM;
1769 		else
1770 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1771 									NULL);
1772 		if (error) {
1773 			/* Remove the !PageUptodate pages we added */
1774 			shmem_undo_range(inode,
1775 				(loff_t)start << PAGE_CACHE_SHIFT,
1776 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1777 			goto undone;
1778 		}
1779 
1780 		/*
1781 		 * Inform shmem_writepage() how far we have reached.
1782 		 * No need for lock or barrier: we have the page lock.
1783 		 */
1784 		shmem_falloc.next++;
1785 		if (!PageUptodate(page))
1786 			shmem_falloc.nr_falloced++;
1787 
1788 		/*
1789 		 * If !PageUptodate, leave it that way so that freeable pages
1790 		 * can be recognized if we need to rollback on error later.
1791 		 * But set_page_dirty so that memory pressure will swap rather
1792 		 * than free the pages we are allocating (and SGP_CACHE pages
1793 		 * might still be clean: we now need to mark those dirty too).
1794 		 */
1795 		set_page_dirty(page);
1796 		unlock_page(page);
1797 		page_cache_release(page);
1798 		cond_resched();
1799 	}
1800 
1801 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1802 		i_size_write(inode, offset + len);
1803 	inode->i_ctime = CURRENT_TIME;
1804 undone:
1805 	spin_lock(&inode->i_lock);
1806 	inode->i_private = NULL;
1807 	spin_unlock(&inode->i_lock);
1808 out:
1809 	mutex_unlock(&inode->i_mutex);
1810 	return error;
1811 }
1812 
1813 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1814 {
1815 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1816 
1817 	buf->f_type = TMPFS_MAGIC;
1818 	buf->f_bsize = PAGE_CACHE_SIZE;
1819 	buf->f_namelen = NAME_MAX;
1820 	if (sbinfo->max_blocks) {
1821 		buf->f_blocks = sbinfo->max_blocks;
1822 		buf->f_bavail =
1823 		buf->f_bfree  = sbinfo->max_blocks -
1824 				percpu_counter_sum(&sbinfo->used_blocks);
1825 	}
1826 	if (sbinfo->max_inodes) {
1827 		buf->f_files = sbinfo->max_inodes;
1828 		buf->f_ffree = sbinfo->free_inodes;
1829 	}
1830 	/* else leave those fields 0 like simple_statfs */
1831 	return 0;
1832 }
1833 
1834 /*
1835  * File creation. Allocate an inode, and we're done..
1836  */
1837 static int
1838 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1839 {
1840 	struct inode *inode;
1841 	int error = -ENOSPC;
1842 
1843 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1844 	if (inode) {
1845 		error = security_inode_init_security(inode, dir,
1846 						     &dentry->d_name,
1847 						     shmem_initxattrs, NULL);
1848 		if (error) {
1849 			if (error != -EOPNOTSUPP) {
1850 				iput(inode);
1851 				return error;
1852 			}
1853 		}
1854 #ifdef CONFIG_TMPFS_POSIX_ACL
1855 		error = generic_acl_init(inode, dir);
1856 		if (error) {
1857 			iput(inode);
1858 			return error;
1859 		}
1860 #else
1861 		error = 0;
1862 #endif
1863 		dir->i_size += BOGO_DIRENT_SIZE;
1864 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1865 		d_instantiate(dentry, inode);
1866 		dget(dentry); /* Extra count - pin the dentry in core */
1867 	}
1868 	return error;
1869 }
1870 
1871 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1872 {
1873 	int error;
1874 
1875 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1876 		return error;
1877 	inc_nlink(dir);
1878 	return 0;
1879 }
1880 
1881 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1882 		bool excl)
1883 {
1884 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1885 }
1886 
1887 /*
1888  * Link a file..
1889  */
1890 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1891 {
1892 	struct inode *inode = old_dentry->d_inode;
1893 	int ret;
1894 
1895 	/*
1896 	 * No ordinary (disk based) filesystem counts links as inodes;
1897 	 * but each new link needs a new dentry, pinning lowmem, and
1898 	 * tmpfs dentries cannot be pruned until they are unlinked.
1899 	 */
1900 	ret = shmem_reserve_inode(inode->i_sb);
1901 	if (ret)
1902 		goto out;
1903 
1904 	dir->i_size += BOGO_DIRENT_SIZE;
1905 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1906 	inc_nlink(inode);
1907 	ihold(inode);	/* New dentry reference */
1908 	dget(dentry);		/* Extra pinning count for the created dentry */
1909 	d_instantiate(dentry, inode);
1910 out:
1911 	return ret;
1912 }
1913 
1914 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1915 {
1916 	struct inode *inode = dentry->d_inode;
1917 
1918 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1919 		shmem_free_inode(inode->i_sb);
1920 
1921 	dir->i_size -= BOGO_DIRENT_SIZE;
1922 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1923 	drop_nlink(inode);
1924 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1925 	return 0;
1926 }
1927 
1928 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1929 {
1930 	if (!simple_empty(dentry))
1931 		return -ENOTEMPTY;
1932 
1933 	drop_nlink(dentry->d_inode);
1934 	drop_nlink(dir);
1935 	return shmem_unlink(dir, dentry);
1936 }
1937 
1938 /*
1939  * The VFS layer already does all the dentry stuff for rename,
1940  * we just have to decrement the usage count for the target if
1941  * it exists so that the VFS layer correctly free's it when it
1942  * gets overwritten.
1943  */
1944 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1945 {
1946 	struct inode *inode = old_dentry->d_inode;
1947 	int they_are_dirs = S_ISDIR(inode->i_mode);
1948 
1949 	if (!simple_empty(new_dentry))
1950 		return -ENOTEMPTY;
1951 
1952 	if (new_dentry->d_inode) {
1953 		(void) shmem_unlink(new_dir, new_dentry);
1954 		if (they_are_dirs)
1955 			drop_nlink(old_dir);
1956 	} else if (they_are_dirs) {
1957 		drop_nlink(old_dir);
1958 		inc_nlink(new_dir);
1959 	}
1960 
1961 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1962 	new_dir->i_size += BOGO_DIRENT_SIZE;
1963 	old_dir->i_ctime = old_dir->i_mtime =
1964 	new_dir->i_ctime = new_dir->i_mtime =
1965 	inode->i_ctime = CURRENT_TIME;
1966 	return 0;
1967 }
1968 
1969 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970 {
1971 	int error;
1972 	int len;
1973 	struct inode *inode;
1974 	struct page *page;
1975 	char *kaddr;
1976 	struct shmem_inode_info *info;
1977 
1978 	len = strlen(symname) + 1;
1979 	if (len > PAGE_CACHE_SIZE)
1980 		return -ENAMETOOLONG;
1981 
1982 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1983 	if (!inode)
1984 		return -ENOSPC;
1985 
1986 	error = security_inode_init_security(inode, dir, &dentry->d_name,
1987 					     shmem_initxattrs, NULL);
1988 	if (error) {
1989 		if (error != -EOPNOTSUPP) {
1990 			iput(inode);
1991 			return error;
1992 		}
1993 		error = 0;
1994 	}
1995 
1996 	info = SHMEM_I(inode);
1997 	inode->i_size = len-1;
1998 	if (len <= SHORT_SYMLINK_LEN) {
1999 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2000 		if (!info->symlink) {
2001 			iput(inode);
2002 			return -ENOMEM;
2003 		}
2004 		inode->i_op = &shmem_short_symlink_operations;
2005 	} else {
2006 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2007 		if (error) {
2008 			iput(inode);
2009 			return error;
2010 		}
2011 		inode->i_mapping->a_ops = &shmem_aops;
2012 		inode->i_op = &shmem_symlink_inode_operations;
2013 		kaddr = kmap_atomic(page);
2014 		memcpy(kaddr, symname, len);
2015 		kunmap_atomic(kaddr);
2016 		SetPageUptodate(page);
2017 		set_page_dirty(page);
2018 		unlock_page(page);
2019 		page_cache_release(page);
2020 	}
2021 	dir->i_size += BOGO_DIRENT_SIZE;
2022 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2023 	d_instantiate(dentry, inode);
2024 	dget(dentry);
2025 	return 0;
2026 }
2027 
2028 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2029 {
2030 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2031 	return NULL;
2032 }
2033 
2034 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2035 {
2036 	struct page *page = NULL;
2037 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2038 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2039 	if (page)
2040 		unlock_page(page);
2041 	return page;
2042 }
2043 
2044 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2045 {
2046 	if (!IS_ERR(nd_get_link(nd))) {
2047 		struct page *page = cookie;
2048 		kunmap(page);
2049 		mark_page_accessed(page);
2050 		page_cache_release(page);
2051 	}
2052 }
2053 
2054 #ifdef CONFIG_TMPFS_XATTR
2055 /*
2056  * Superblocks without xattr inode operations may get some security.* xattr
2057  * support from the LSM "for free". As soon as we have any other xattrs
2058  * like ACLs, we also need to implement the security.* handlers at
2059  * filesystem level, though.
2060  */
2061 
2062 /*
2063  * Callback for security_inode_init_security() for acquiring xattrs.
2064  */
2065 static int shmem_initxattrs(struct inode *inode,
2066 			    const struct xattr *xattr_array,
2067 			    void *fs_info)
2068 {
2069 	struct shmem_inode_info *info = SHMEM_I(inode);
2070 	const struct xattr *xattr;
2071 	struct simple_xattr *new_xattr;
2072 	size_t len;
2073 
2074 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2075 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2076 		if (!new_xattr)
2077 			return -ENOMEM;
2078 
2079 		len = strlen(xattr->name) + 1;
2080 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2081 					  GFP_KERNEL);
2082 		if (!new_xattr->name) {
2083 			kfree(new_xattr);
2084 			return -ENOMEM;
2085 		}
2086 
2087 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2088 		       XATTR_SECURITY_PREFIX_LEN);
2089 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2090 		       xattr->name, len);
2091 
2092 		simple_xattr_list_add(&info->xattrs, new_xattr);
2093 	}
2094 
2095 	return 0;
2096 }
2097 
2098 static const struct xattr_handler *shmem_xattr_handlers[] = {
2099 #ifdef CONFIG_TMPFS_POSIX_ACL
2100 	&generic_acl_access_handler,
2101 	&generic_acl_default_handler,
2102 #endif
2103 	NULL
2104 };
2105 
2106 static int shmem_xattr_validate(const char *name)
2107 {
2108 	struct { const char *prefix; size_t len; } arr[] = {
2109 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2110 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2111 	};
2112 	int i;
2113 
2114 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2115 		size_t preflen = arr[i].len;
2116 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2117 			if (!name[preflen])
2118 				return -EINVAL;
2119 			return 0;
2120 		}
2121 	}
2122 	return -EOPNOTSUPP;
2123 }
2124 
2125 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2126 			      void *buffer, size_t size)
2127 {
2128 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2129 	int err;
2130 
2131 	/*
2132 	 * If this is a request for a synthetic attribute in the system.*
2133 	 * namespace use the generic infrastructure to resolve a handler
2134 	 * for it via sb->s_xattr.
2135 	 */
2136 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2137 		return generic_getxattr(dentry, name, buffer, size);
2138 
2139 	err = shmem_xattr_validate(name);
2140 	if (err)
2141 		return err;
2142 
2143 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2144 }
2145 
2146 static int shmem_setxattr(struct dentry *dentry, const char *name,
2147 			  const void *value, size_t size, int flags)
2148 {
2149 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2150 	int err;
2151 
2152 	/*
2153 	 * If this is a request for a synthetic attribute in the system.*
2154 	 * namespace use the generic infrastructure to resolve a handler
2155 	 * for it via sb->s_xattr.
2156 	 */
2157 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2158 		return generic_setxattr(dentry, name, value, size, flags);
2159 
2160 	err = shmem_xattr_validate(name);
2161 	if (err)
2162 		return err;
2163 
2164 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2165 }
2166 
2167 static int shmem_removexattr(struct dentry *dentry, const char *name)
2168 {
2169 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2170 	int err;
2171 
2172 	/*
2173 	 * If this is a request for a synthetic attribute in the system.*
2174 	 * namespace use the generic infrastructure to resolve a handler
2175 	 * for it via sb->s_xattr.
2176 	 */
2177 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2178 		return generic_removexattr(dentry, name);
2179 
2180 	err = shmem_xattr_validate(name);
2181 	if (err)
2182 		return err;
2183 
2184 	return simple_xattr_remove(&info->xattrs, name);
2185 }
2186 
2187 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2188 {
2189 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2190 	return simple_xattr_list(&info->xattrs, buffer, size);
2191 }
2192 #endif /* CONFIG_TMPFS_XATTR */
2193 
2194 static const struct inode_operations shmem_short_symlink_operations = {
2195 	.readlink	= generic_readlink,
2196 	.follow_link	= shmem_follow_short_symlink,
2197 #ifdef CONFIG_TMPFS_XATTR
2198 	.setxattr	= shmem_setxattr,
2199 	.getxattr	= shmem_getxattr,
2200 	.listxattr	= shmem_listxattr,
2201 	.removexattr	= shmem_removexattr,
2202 #endif
2203 };
2204 
2205 static const struct inode_operations shmem_symlink_inode_operations = {
2206 	.readlink	= generic_readlink,
2207 	.follow_link	= shmem_follow_link,
2208 	.put_link	= shmem_put_link,
2209 #ifdef CONFIG_TMPFS_XATTR
2210 	.setxattr	= shmem_setxattr,
2211 	.getxattr	= shmem_getxattr,
2212 	.listxattr	= shmem_listxattr,
2213 	.removexattr	= shmem_removexattr,
2214 #endif
2215 };
2216 
2217 static struct dentry *shmem_get_parent(struct dentry *child)
2218 {
2219 	return ERR_PTR(-ESTALE);
2220 }
2221 
2222 static int shmem_match(struct inode *ino, void *vfh)
2223 {
2224 	__u32 *fh = vfh;
2225 	__u64 inum = fh[2];
2226 	inum = (inum << 32) | fh[1];
2227 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2228 }
2229 
2230 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2231 		struct fid *fid, int fh_len, int fh_type)
2232 {
2233 	struct inode *inode;
2234 	struct dentry *dentry = NULL;
2235 	u64 inum;
2236 
2237 	if (fh_len < 3)
2238 		return NULL;
2239 
2240 	inum = fid->raw[2];
2241 	inum = (inum << 32) | fid->raw[1];
2242 
2243 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2244 			shmem_match, fid->raw);
2245 	if (inode) {
2246 		dentry = d_find_alias(inode);
2247 		iput(inode);
2248 	}
2249 
2250 	return dentry;
2251 }
2252 
2253 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2254 				struct inode *parent)
2255 {
2256 	if (*len < 3) {
2257 		*len = 3;
2258 		return 255;
2259 	}
2260 
2261 	if (inode_unhashed(inode)) {
2262 		/* Unfortunately insert_inode_hash is not idempotent,
2263 		 * so as we hash inodes here rather than at creation
2264 		 * time, we need a lock to ensure we only try
2265 		 * to do it once
2266 		 */
2267 		static DEFINE_SPINLOCK(lock);
2268 		spin_lock(&lock);
2269 		if (inode_unhashed(inode))
2270 			__insert_inode_hash(inode,
2271 					    inode->i_ino + inode->i_generation);
2272 		spin_unlock(&lock);
2273 	}
2274 
2275 	fh[0] = inode->i_generation;
2276 	fh[1] = inode->i_ino;
2277 	fh[2] = ((__u64)inode->i_ino) >> 32;
2278 
2279 	*len = 3;
2280 	return 1;
2281 }
2282 
2283 static const struct export_operations shmem_export_ops = {
2284 	.get_parent     = shmem_get_parent,
2285 	.encode_fh      = shmem_encode_fh,
2286 	.fh_to_dentry	= shmem_fh_to_dentry,
2287 };
2288 
2289 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2290 			       bool remount)
2291 {
2292 	char *this_char, *value, *rest;
2293 	uid_t uid;
2294 	gid_t gid;
2295 
2296 	while (options != NULL) {
2297 		this_char = options;
2298 		for (;;) {
2299 			/*
2300 			 * NUL-terminate this option: unfortunately,
2301 			 * mount options form a comma-separated list,
2302 			 * but mpol's nodelist may also contain commas.
2303 			 */
2304 			options = strchr(options, ',');
2305 			if (options == NULL)
2306 				break;
2307 			options++;
2308 			if (!isdigit(*options)) {
2309 				options[-1] = '\0';
2310 				break;
2311 			}
2312 		}
2313 		if (!*this_char)
2314 			continue;
2315 		if ((value = strchr(this_char,'=')) != NULL) {
2316 			*value++ = 0;
2317 		} else {
2318 			printk(KERN_ERR
2319 			    "tmpfs: No value for mount option '%s'\n",
2320 			    this_char);
2321 			return 1;
2322 		}
2323 
2324 		if (!strcmp(this_char,"size")) {
2325 			unsigned long long size;
2326 			size = memparse(value,&rest);
2327 			if (*rest == '%') {
2328 				size <<= PAGE_SHIFT;
2329 				size *= totalram_pages;
2330 				do_div(size, 100);
2331 				rest++;
2332 			}
2333 			if (*rest)
2334 				goto bad_val;
2335 			sbinfo->max_blocks =
2336 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2337 		} else if (!strcmp(this_char,"nr_blocks")) {
2338 			sbinfo->max_blocks = memparse(value, &rest);
2339 			if (*rest)
2340 				goto bad_val;
2341 		} else if (!strcmp(this_char,"nr_inodes")) {
2342 			sbinfo->max_inodes = memparse(value, &rest);
2343 			if (*rest)
2344 				goto bad_val;
2345 		} else if (!strcmp(this_char,"mode")) {
2346 			if (remount)
2347 				continue;
2348 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2349 			if (*rest)
2350 				goto bad_val;
2351 		} else if (!strcmp(this_char,"uid")) {
2352 			if (remount)
2353 				continue;
2354 			uid = simple_strtoul(value, &rest, 0);
2355 			if (*rest)
2356 				goto bad_val;
2357 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2358 			if (!uid_valid(sbinfo->uid))
2359 				goto bad_val;
2360 		} else if (!strcmp(this_char,"gid")) {
2361 			if (remount)
2362 				continue;
2363 			gid = simple_strtoul(value, &rest, 0);
2364 			if (*rest)
2365 				goto bad_val;
2366 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2367 			if (!gid_valid(sbinfo->gid))
2368 				goto bad_val;
2369 		} else if (!strcmp(this_char,"mpol")) {
2370 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2371 				goto bad_val;
2372 		} else {
2373 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2374 			       this_char);
2375 			return 1;
2376 		}
2377 	}
2378 	return 0;
2379 
2380 bad_val:
2381 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2382 	       value, this_char);
2383 	return 1;
2384 
2385 }
2386 
2387 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2388 {
2389 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2390 	struct shmem_sb_info config = *sbinfo;
2391 	unsigned long inodes;
2392 	int error = -EINVAL;
2393 
2394 	if (shmem_parse_options(data, &config, true))
2395 		return error;
2396 
2397 	spin_lock(&sbinfo->stat_lock);
2398 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2399 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2400 		goto out;
2401 	if (config.max_inodes < inodes)
2402 		goto out;
2403 	/*
2404 	 * Those tests disallow limited->unlimited while any are in use;
2405 	 * but we must separately disallow unlimited->limited, because
2406 	 * in that case we have no record of how much is already in use.
2407 	 */
2408 	if (config.max_blocks && !sbinfo->max_blocks)
2409 		goto out;
2410 	if (config.max_inodes && !sbinfo->max_inodes)
2411 		goto out;
2412 
2413 	error = 0;
2414 	sbinfo->max_blocks  = config.max_blocks;
2415 	sbinfo->max_inodes  = config.max_inodes;
2416 	sbinfo->free_inodes = config.max_inodes - inodes;
2417 
2418 	mpol_put(sbinfo->mpol);
2419 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2420 out:
2421 	spin_unlock(&sbinfo->stat_lock);
2422 	return error;
2423 }
2424 
2425 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2426 {
2427 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2428 
2429 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2430 		seq_printf(seq, ",size=%luk",
2431 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2432 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2433 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2434 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2435 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2436 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2437 		seq_printf(seq, ",uid=%u",
2438 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2439 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2440 		seq_printf(seq, ",gid=%u",
2441 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2442 	shmem_show_mpol(seq, sbinfo->mpol);
2443 	return 0;
2444 }
2445 #endif /* CONFIG_TMPFS */
2446 
2447 static void shmem_put_super(struct super_block *sb)
2448 {
2449 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2450 
2451 	percpu_counter_destroy(&sbinfo->used_blocks);
2452 	kfree(sbinfo);
2453 	sb->s_fs_info = NULL;
2454 }
2455 
2456 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2457 {
2458 	struct inode *inode;
2459 	struct shmem_sb_info *sbinfo;
2460 	int err = -ENOMEM;
2461 
2462 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2463 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2464 				L1_CACHE_BYTES), GFP_KERNEL);
2465 	if (!sbinfo)
2466 		return -ENOMEM;
2467 
2468 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2469 	sbinfo->uid = current_fsuid();
2470 	sbinfo->gid = current_fsgid();
2471 	sb->s_fs_info = sbinfo;
2472 
2473 #ifdef CONFIG_TMPFS
2474 	/*
2475 	 * Per default we only allow half of the physical ram per
2476 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2477 	 * but the internal instance is left unlimited.
2478 	 */
2479 	if (!(sb->s_flags & MS_NOUSER)) {
2480 		sbinfo->max_blocks = shmem_default_max_blocks();
2481 		sbinfo->max_inodes = shmem_default_max_inodes();
2482 		if (shmem_parse_options(data, sbinfo, false)) {
2483 			err = -EINVAL;
2484 			goto failed;
2485 		}
2486 	}
2487 	sb->s_export_op = &shmem_export_ops;
2488 	sb->s_flags |= MS_NOSEC;
2489 #else
2490 	sb->s_flags |= MS_NOUSER;
2491 #endif
2492 
2493 	spin_lock_init(&sbinfo->stat_lock);
2494 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2495 		goto failed;
2496 	sbinfo->free_inodes = sbinfo->max_inodes;
2497 
2498 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2499 	sb->s_blocksize = PAGE_CACHE_SIZE;
2500 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2501 	sb->s_magic = TMPFS_MAGIC;
2502 	sb->s_op = &shmem_ops;
2503 	sb->s_time_gran = 1;
2504 #ifdef CONFIG_TMPFS_XATTR
2505 	sb->s_xattr = shmem_xattr_handlers;
2506 #endif
2507 #ifdef CONFIG_TMPFS_POSIX_ACL
2508 	sb->s_flags |= MS_POSIXACL;
2509 #endif
2510 
2511 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2512 	if (!inode)
2513 		goto failed;
2514 	inode->i_uid = sbinfo->uid;
2515 	inode->i_gid = sbinfo->gid;
2516 	sb->s_root = d_make_root(inode);
2517 	if (!sb->s_root)
2518 		goto failed;
2519 	return 0;
2520 
2521 failed:
2522 	shmem_put_super(sb);
2523 	return err;
2524 }
2525 
2526 static struct kmem_cache *shmem_inode_cachep;
2527 
2528 static struct inode *shmem_alloc_inode(struct super_block *sb)
2529 {
2530 	struct shmem_inode_info *info;
2531 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2532 	if (!info)
2533 		return NULL;
2534 	return &info->vfs_inode;
2535 }
2536 
2537 static void shmem_destroy_callback(struct rcu_head *head)
2538 {
2539 	struct inode *inode = container_of(head, struct inode, i_rcu);
2540 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2541 }
2542 
2543 static void shmem_destroy_inode(struct inode *inode)
2544 {
2545 	if (S_ISREG(inode->i_mode))
2546 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2547 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2548 }
2549 
2550 static void shmem_init_inode(void *foo)
2551 {
2552 	struct shmem_inode_info *info = foo;
2553 	inode_init_once(&info->vfs_inode);
2554 }
2555 
2556 static int shmem_init_inodecache(void)
2557 {
2558 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2559 				sizeof(struct shmem_inode_info),
2560 				0, SLAB_PANIC, shmem_init_inode);
2561 	return 0;
2562 }
2563 
2564 static void shmem_destroy_inodecache(void)
2565 {
2566 	kmem_cache_destroy(shmem_inode_cachep);
2567 }
2568 
2569 static const struct address_space_operations shmem_aops = {
2570 	.writepage	= shmem_writepage,
2571 	.set_page_dirty	= __set_page_dirty_no_writeback,
2572 #ifdef CONFIG_TMPFS
2573 	.write_begin	= shmem_write_begin,
2574 	.write_end	= shmem_write_end,
2575 #endif
2576 	.migratepage	= migrate_page,
2577 	.error_remove_page = generic_error_remove_page,
2578 };
2579 
2580 static const struct file_operations shmem_file_operations = {
2581 	.mmap		= shmem_mmap,
2582 #ifdef CONFIG_TMPFS
2583 	.llseek		= generic_file_llseek,
2584 	.read		= do_sync_read,
2585 	.write		= do_sync_write,
2586 	.aio_read	= shmem_file_aio_read,
2587 	.aio_write	= generic_file_aio_write,
2588 	.fsync		= noop_fsync,
2589 	.splice_read	= shmem_file_splice_read,
2590 	.splice_write	= generic_file_splice_write,
2591 	.fallocate	= shmem_fallocate,
2592 #endif
2593 };
2594 
2595 static const struct inode_operations shmem_inode_operations = {
2596 	.setattr	= shmem_setattr,
2597 #ifdef CONFIG_TMPFS_XATTR
2598 	.setxattr	= shmem_setxattr,
2599 	.getxattr	= shmem_getxattr,
2600 	.listxattr	= shmem_listxattr,
2601 	.removexattr	= shmem_removexattr,
2602 #endif
2603 };
2604 
2605 static const struct inode_operations shmem_dir_inode_operations = {
2606 #ifdef CONFIG_TMPFS
2607 	.create		= shmem_create,
2608 	.lookup		= simple_lookup,
2609 	.link		= shmem_link,
2610 	.unlink		= shmem_unlink,
2611 	.symlink	= shmem_symlink,
2612 	.mkdir		= shmem_mkdir,
2613 	.rmdir		= shmem_rmdir,
2614 	.mknod		= shmem_mknod,
2615 	.rename		= shmem_rename,
2616 #endif
2617 #ifdef CONFIG_TMPFS_XATTR
2618 	.setxattr	= shmem_setxattr,
2619 	.getxattr	= shmem_getxattr,
2620 	.listxattr	= shmem_listxattr,
2621 	.removexattr	= shmem_removexattr,
2622 #endif
2623 #ifdef CONFIG_TMPFS_POSIX_ACL
2624 	.setattr	= shmem_setattr,
2625 #endif
2626 };
2627 
2628 static const struct inode_operations shmem_special_inode_operations = {
2629 #ifdef CONFIG_TMPFS_XATTR
2630 	.setxattr	= shmem_setxattr,
2631 	.getxattr	= shmem_getxattr,
2632 	.listxattr	= shmem_listxattr,
2633 	.removexattr	= shmem_removexattr,
2634 #endif
2635 #ifdef CONFIG_TMPFS_POSIX_ACL
2636 	.setattr	= shmem_setattr,
2637 #endif
2638 };
2639 
2640 static const struct super_operations shmem_ops = {
2641 	.alloc_inode	= shmem_alloc_inode,
2642 	.destroy_inode	= shmem_destroy_inode,
2643 #ifdef CONFIG_TMPFS
2644 	.statfs		= shmem_statfs,
2645 	.remount_fs	= shmem_remount_fs,
2646 	.show_options	= shmem_show_options,
2647 #endif
2648 	.evict_inode	= shmem_evict_inode,
2649 	.drop_inode	= generic_delete_inode,
2650 	.put_super	= shmem_put_super,
2651 };
2652 
2653 static const struct vm_operations_struct shmem_vm_ops = {
2654 	.fault		= shmem_fault,
2655 #ifdef CONFIG_NUMA
2656 	.set_policy     = shmem_set_policy,
2657 	.get_policy     = shmem_get_policy,
2658 #endif
2659 	.remap_pages	= generic_file_remap_pages,
2660 };
2661 
2662 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2663 	int flags, const char *dev_name, void *data)
2664 {
2665 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2666 }
2667 
2668 static struct file_system_type shmem_fs_type = {
2669 	.owner		= THIS_MODULE,
2670 	.name		= "tmpfs",
2671 	.mount		= shmem_mount,
2672 	.kill_sb	= kill_litter_super,
2673 };
2674 
2675 int __init shmem_init(void)
2676 {
2677 	int error;
2678 
2679 	error = bdi_init(&shmem_backing_dev_info);
2680 	if (error)
2681 		goto out4;
2682 
2683 	error = shmem_init_inodecache();
2684 	if (error)
2685 		goto out3;
2686 
2687 	error = register_filesystem(&shmem_fs_type);
2688 	if (error) {
2689 		printk(KERN_ERR "Could not register tmpfs\n");
2690 		goto out2;
2691 	}
2692 
2693 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2694 				 shmem_fs_type.name, NULL);
2695 	if (IS_ERR(shm_mnt)) {
2696 		error = PTR_ERR(shm_mnt);
2697 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2698 		goto out1;
2699 	}
2700 	return 0;
2701 
2702 out1:
2703 	unregister_filesystem(&shmem_fs_type);
2704 out2:
2705 	shmem_destroy_inodecache();
2706 out3:
2707 	bdi_destroy(&shmem_backing_dev_info);
2708 out4:
2709 	shm_mnt = ERR_PTR(error);
2710 	return error;
2711 }
2712 
2713 #else /* !CONFIG_SHMEM */
2714 
2715 /*
2716  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2717  *
2718  * This is intended for small system where the benefits of the full
2719  * shmem code (swap-backed and resource-limited) are outweighed by
2720  * their complexity. On systems without swap this code should be
2721  * effectively equivalent, but much lighter weight.
2722  */
2723 
2724 #include <linux/ramfs.h>
2725 
2726 static struct file_system_type shmem_fs_type = {
2727 	.name		= "tmpfs",
2728 	.mount		= ramfs_mount,
2729 	.kill_sb	= kill_litter_super,
2730 };
2731 
2732 int __init shmem_init(void)
2733 {
2734 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2735 
2736 	shm_mnt = kern_mount(&shmem_fs_type);
2737 	BUG_ON(IS_ERR(shm_mnt));
2738 
2739 	return 0;
2740 }
2741 
2742 int shmem_unuse(swp_entry_t swap, struct page *page)
2743 {
2744 	return 0;
2745 }
2746 
2747 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2748 {
2749 	return 0;
2750 }
2751 
2752 void shmem_unlock_mapping(struct address_space *mapping)
2753 {
2754 }
2755 
2756 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2757 {
2758 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2759 }
2760 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2761 
2762 #define shmem_vm_ops				generic_file_vm_ops
2763 #define shmem_file_operations			ramfs_file_operations
2764 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2765 #define shmem_acct_size(flags, size)		0
2766 #define shmem_unacct_size(flags, size)		do {} while (0)
2767 
2768 #endif /* CONFIG_SHMEM */
2769 
2770 /* common code */
2771 
2772 /**
2773  * shmem_file_setup - get an unlinked file living in tmpfs
2774  * @name: name for dentry (to be seen in /proc/<pid>/maps
2775  * @size: size to be set for the file
2776  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2777  */
2778 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2779 {
2780 	int error;
2781 	struct file *file;
2782 	struct inode *inode;
2783 	struct path path;
2784 	struct dentry *root;
2785 	struct qstr this;
2786 
2787 	if (IS_ERR(shm_mnt))
2788 		return (void *)shm_mnt;
2789 
2790 	if (size < 0 || size > MAX_LFS_FILESIZE)
2791 		return ERR_PTR(-EINVAL);
2792 
2793 	if (shmem_acct_size(flags, size))
2794 		return ERR_PTR(-ENOMEM);
2795 
2796 	error = -ENOMEM;
2797 	this.name = name;
2798 	this.len = strlen(name);
2799 	this.hash = 0; /* will go */
2800 	root = shm_mnt->mnt_root;
2801 	path.dentry = d_alloc(root, &this);
2802 	if (!path.dentry)
2803 		goto put_memory;
2804 	path.mnt = mntget(shm_mnt);
2805 
2806 	error = -ENOSPC;
2807 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2808 	if (!inode)
2809 		goto put_dentry;
2810 
2811 	d_instantiate(path.dentry, inode);
2812 	inode->i_size = size;
2813 	clear_nlink(inode);	/* It is unlinked */
2814 #ifndef CONFIG_MMU
2815 	error = ramfs_nommu_expand_for_mapping(inode, size);
2816 	if (error)
2817 		goto put_dentry;
2818 #endif
2819 
2820 	error = -ENFILE;
2821 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2822 		  &shmem_file_operations);
2823 	if (!file)
2824 		goto put_dentry;
2825 
2826 	return file;
2827 
2828 put_dentry:
2829 	path_put(&path);
2830 put_memory:
2831 	shmem_unacct_size(flags, size);
2832 	return ERR_PTR(error);
2833 }
2834 EXPORT_SYMBOL_GPL(shmem_file_setup);
2835 
2836 /**
2837  * shmem_zero_setup - setup a shared anonymous mapping
2838  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2839  */
2840 int shmem_zero_setup(struct vm_area_struct *vma)
2841 {
2842 	struct file *file;
2843 	loff_t size = vma->vm_end - vma->vm_start;
2844 
2845 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2846 	if (IS_ERR(file))
2847 		return PTR_ERR(file);
2848 
2849 	if (vma->vm_file)
2850 		fput(vma->vm_file);
2851 	vma->vm_file = file;
2852 	vma->vm_ops = &shmem_vm_ops;
2853 	return 0;
2854 }
2855 
2856 /**
2857  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2858  * @mapping:	the page's address_space
2859  * @index:	the page index
2860  * @gfp:	the page allocator flags to use if allocating
2861  *
2862  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2863  * with any new page allocations done using the specified allocation flags.
2864  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2865  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2866  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2867  *
2868  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2869  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2870  */
2871 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2872 					 pgoff_t index, gfp_t gfp)
2873 {
2874 #ifdef CONFIG_SHMEM
2875 	struct inode *inode = mapping->host;
2876 	struct page *page;
2877 	int error;
2878 
2879 	BUG_ON(mapping->a_ops != &shmem_aops);
2880 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2881 	if (error)
2882 		page = ERR_PTR(error);
2883 	else
2884 		unlock_page(page);
2885 	return page;
2886 #else
2887 	/*
2888 	 * The tiny !SHMEM case uses ramfs without swap
2889 	 */
2890 	return read_cache_page_gfp(mapping, index, gfp);
2891 #endif
2892 }
2893 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2894