xref: /openbmc/linux/mm/shmem.c (revision 0317cd52)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36 
37 static struct vfsmount *shm_mnt;
38 
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45 
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73 
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76 
77 #include "internal.h"
78 
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81 
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84 
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87 
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 	pgoff_t start;		/* start of range currently being fallocated */
96 	pgoff_t next;		/* the next page offset to be fallocated */
97 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
98 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
99 };
100 
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 	return totalram_pages / 2;
105 }
106 
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112 
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 				struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 		struct page **pagep, enum sgp_type sgp,
118 		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119 
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 		struct page **pagep, enum sgp_type sgp)
122 {
123 	return shmem_getpage_gfp(inode, index, pagep, sgp,
124 		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126 
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 	return sb->s_fs_info;
130 }
131 
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 	return (flags & VM_NORESERVE) ?
141 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143 
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 	if (!(flags & VM_NORESERVE))
147 		vm_unacct_memory(VM_ACCT(size));
148 }
149 
150 static inline int shmem_reacct_size(unsigned long flags,
151 		loff_t oldsize, loff_t newsize)
152 {
153 	if (!(flags & VM_NORESERVE)) {
154 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 			return security_vm_enough_memory_mm(current->mm,
156 					VM_ACCT(newsize) - VM_ACCT(oldsize));
157 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 	}
160 	return 0;
161 }
162 
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 	if (!(flags & VM_NORESERVE))
172 		return 0;
173 
174 	return security_vm_enough_memory_mm(current->mm,
175 			pages * VM_ACCT(PAGE_SIZE));
176 }
177 
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 	if (flags & VM_NORESERVE)
181 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183 
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192 
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195 
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 	if (sbinfo->max_inodes) {
200 		spin_lock(&sbinfo->stat_lock);
201 		if (!sbinfo->free_inodes) {
202 			spin_unlock(&sbinfo->stat_lock);
203 			return -ENOSPC;
204 		}
205 		sbinfo->free_inodes--;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 	return 0;
209 }
210 
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 	if (sbinfo->max_inodes) {
215 		spin_lock(&sbinfo->stat_lock);
216 		sbinfo->free_inodes++;
217 		spin_unlock(&sbinfo->stat_lock);
218 	}
219 }
220 
221 /**
222  * shmem_recalc_inode - recalculate the block usage of an inode
223  * @inode: inode to recalc
224  *
225  * We have to calculate the free blocks since the mm can drop
226  * undirtied hole pages behind our back.
227  *
228  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
229  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230  *
231  * It has to be called with the spinlock held.
232  */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	long freed;
237 
238 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 	if (freed > 0) {
240 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 		if (sbinfo->max_blocks)
242 			percpu_counter_add(&sbinfo->used_blocks, -freed);
243 		info->alloced -= freed;
244 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 		shmem_unacct_blocks(info->flags, freed);
246 	}
247 }
248 
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 	struct shmem_inode_info *info = SHMEM_I(inode);
252 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 	unsigned long flags;
254 
255 	if (shmem_acct_block(info->flags, pages))
256 		return false;
257 	spin_lock_irqsave(&info->lock, flags);
258 	info->alloced += pages;
259 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 	shmem_recalc_inode(inode);
261 	spin_unlock_irqrestore(&info->lock, flags);
262 	inode->i_mapping->nrpages += pages;
263 
264 	if (!sbinfo->max_blocks)
265 		return true;
266 	if (percpu_counter_compare(&sbinfo->used_blocks,
267 				sbinfo->max_blocks - pages) > 0) {
268 		inode->i_mapping->nrpages -= pages;
269 		spin_lock_irqsave(&info->lock, flags);
270 		info->alloced -= pages;
271 		shmem_recalc_inode(inode);
272 		spin_unlock_irqrestore(&info->lock, flags);
273 
274 		return false;
275 	}
276 	percpu_counter_add(&sbinfo->used_blocks, pages);
277 	return true;
278 }
279 
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 	struct shmem_inode_info *info = SHMEM_I(inode);
283 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&info->lock, flags);
287 	info->alloced -= pages;
288 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 	shmem_recalc_inode(inode);
290 	spin_unlock_irqrestore(&info->lock, flags);
291 
292 	if (sbinfo->max_blocks)
293 		percpu_counter_sub(&sbinfo->used_blocks, pages);
294 }
295 
296 /*
297  * Replace item expected in radix tree by a new item, while holding tree lock.
298  */
299 static int shmem_radix_tree_replace(struct address_space *mapping,
300 			pgoff_t index, void *expected, void *replacement)
301 {
302 	void **pslot;
303 	void *item;
304 
305 	VM_BUG_ON(!expected);
306 	VM_BUG_ON(!replacement);
307 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
308 	if (!pslot)
309 		return -ENOENT;
310 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
311 	if (item != expected)
312 		return -ENOENT;
313 	radix_tree_replace_slot(pslot, replacement);
314 	return 0;
315 }
316 
317 /*
318  * Sometimes, before we decide whether to proceed or to fail, we must check
319  * that an entry was not already brought back from swap by a racing thread.
320  *
321  * Checking page is not enough: by the time a SwapCache page is locked, it
322  * might be reused, and again be SwapCache, using the same swap as before.
323  */
324 static bool shmem_confirm_swap(struct address_space *mapping,
325 			       pgoff_t index, swp_entry_t swap)
326 {
327 	void *item;
328 
329 	rcu_read_lock();
330 	item = radix_tree_lookup(&mapping->page_tree, index);
331 	rcu_read_unlock();
332 	return item == swp_to_radix_entry(swap);
333 }
334 
335 /*
336  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
337  *
338  * SHMEM_HUGE_NEVER:
339  *	disables huge pages for the mount;
340  * SHMEM_HUGE_ALWAYS:
341  *	enables huge pages for the mount;
342  * SHMEM_HUGE_WITHIN_SIZE:
343  *	only allocate huge pages if the page will be fully within i_size,
344  *	also respect fadvise()/madvise() hints;
345  * SHMEM_HUGE_ADVISE:
346  *	only allocate huge pages if requested with fadvise()/madvise();
347  */
348 
349 #define SHMEM_HUGE_NEVER	0
350 #define SHMEM_HUGE_ALWAYS	1
351 #define SHMEM_HUGE_WITHIN_SIZE	2
352 #define SHMEM_HUGE_ADVISE	3
353 
354 /*
355  * Special values.
356  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
357  *
358  * SHMEM_HUGE_DENY:
359  *	disables huge on shm_mnt and all mounts, for emergency use;
360  * SHMEM_HUGE_FORCE:
361  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
362  *
363  */
364 #define SHMEM_HUGE_DENY		(-1)
365 #define SHMEM_HUGE_FORCE	(-2)
366 
367 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
368 /* ifdef here to avoid bloating shmem.o when not necessary */
369 
370 int shmem_huge __read_mostly;
371 
372 static int shmem_parse_huge(const char *str)
373 {
374 	if (!strcmp(str, "never"))
375 		return SHMEM_HUGE_NEVER;
376 	if (!strcmp(str, "always"))
377 		return SHMEM_HUGE_ALWAYS;
378 	if (!strcmp(str, "within_size"))
379 		return SHMEM_HUGE_WITHIN_SIZE;
380 	if (!strcmp(str, "advise"))
381 		return SHMEM_HUGE_ADVISE;
382 	if (!strcmp(str, "deny"))
383 		return SHMEM_HUGE_DENY;
384 	if (!strcmp(str, "force"))
385 		return SHMEM_HUGE_FORCE;
386 	return -EINVAL;
387 }
388 
389 static const char *shmem_format_huge(int huge)
390 {
391 	switch (huge) {
392 	case SHMEM_HUGE_NEVER:
393 		return "never";
394 	case SHMEM_HUGE_ALWAYS:
395 		return "always";
396 	case SHMEM_HUGE_WITHIN_SIZE:
397 		return "within_size";
398 	case SHMEM_HUGE_ADVISE:
399 		return "advise";
400 	case SHMEM_HUGE_DENY:
401 		return "deny";
402 	case SHMEM_HUGE_FORCE:
403 		return "force";
404 	default:
405 		VM_BUG_ON(1);
406 		return "bad_val";
407 	}
408 }
409 
410 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
411 		struct shrink_control *sc, unsigned long nr_to_split)
412 {
413 	LIST_HEAD(list), *pos, *next;
414 	struct inode *inode;
415 	struct shmem_inode_info *info;
416 	struct page *page;
417 	unsigned long batch = sc ? sc->nr_to_scan : 128;
418 	int removed = 0, split = 0;
419 
420 	if (list_empty(&sbinfo->shrinklist))
421 		return SHRINK_STOP;
422 
423 	spin_lock(&sbinfo->shrinklist_lock);
424 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
425 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
426 
427 		/* pin the inode */
428 		inode = igrab(&info->vfs_inode);
429 
430 		/* inode is about to be evicted */
431 		if (!inode) {
432 			list_del_init(&info->shrinklist);
433 			removed++;
434 			goto next;
435 		}
436 
437 		/* Check if there's anything to gain */
438 		if (round_up(inode->i_size, PAGE_SIZE) ==
439 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
440 			list_del_init(&info->shrinklist);
441 			removed++;
442 			iput(inode);
443 			goto next;
444 		}
445 
446 		list_move(&info->shrinklist, &list);
447 next:
448 		if (!--batch)
449 			break;
450 	}
451 	spin_unlock(&sbinfo->shrinklist_lock);
452 
453 	list_for_each_safe(pos, next, &list) {
454 		int ret;
455 
456 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
457 		inode = &info->vfs_inode;
458 
459 		if (nr_to_split && split >= nr_to_split) {
460 			iput(inode);
461 			continue;
462 		}
463 
464 		page = find_lock_page(inode->i_mapping,
465 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
466 		if (!page)
467 			goto drop;
468 
469 		if (!PageTransHuge(page)) {
470 			unlock_page(page);
471 			put_page(page);
472 			goto drop;
473 		}
474 
475 		ret = split_huge_page(page);
476 		unlock_page(page);
477 		put_page(page);
478 
479 		if (ret) {
480 			/* split failed: leave it on the list */
481 			iput(inode);
482 			continue;
483 		}
484 
485 		split++;
486 drop:
487 		list_del_init(&info->shrinklist);
488 		removed++;
489 		iput(inode);
490 	}
491 
492 	spin_lock(&sbinfo->shrinklist_lock);
493 	list_splice_tail(&list, &sbinfo->shrinklist);
494 	sbinfo->shrinklist_len -= removed;
495 	spin_unlock(&sbinfo->shrinklist_lock);
496 
497 	return split;
498 }
499 
500 static long shmem_unused_huge_scan(struct super_block *sb,
501 		struct shrink_control *sc)
502 {
503 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
504 
505 	if (!READ_ONCE(sbinfo->shrinklist_len))
506 		return SHRINK_STOP;
507 
508 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
509 }
510 
511 static long shmem_unused_huge_count(struct super_block *sb,
512 		struct shrink_control *sc)
513 {
514 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
515 	return READ_ONCE(sbinfo->shrinklist_len);
516 }
517 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
518 
519 #define shmem_huge SHMEM_HUGE_DENY
520 
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 		struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 	return 0;
525 }
526 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
527 
528 /*
529  * Like add_to_page_cache_locked, but error if expected item has gone.
530  */
531 static int shmem_add_to_page_cache(struct page *page,
532 				   struct address_space *mapping,
533 				   pgoff_t index, void *expected)
534 {
535 	int error, nr = hpage_nr_pages(page);
536 
537 	VM_BUG_ON_PAGE(PageTail(page), page);
538 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
539 	VM_BUG_ON_PAGE(!PageLocked(page), page);
540 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
541 	VM_BUG_ON(expected && PageTransHuge(page));
542 
543 	page_ref_add(page, nr);
544 	page->mapping = mapping;
545 	page->index = index;
546 
547 	spin_lock_irq(&mapping->tree_lock);
548 	if (PageTransHuge(page)) {
549 		void __rcu **results;
550 		pgoff_t idx;
551 		int i;
552 
553 		error = 0;
554 		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
555 					&results, &idx, index, 1) &&
556 				idx < index + HPAGE_PMD_NR) {
557 			error = -EEXIST;
558 		}
559 
560 		if (!error) {
561 			for (i = 0; i < HPAGE_PMD_NR; i++) {
562 				error = radix_tree_insert(&mapping->page_tree,
563 						index + i, page + i);
564 				VM_BUG_ON(error);
565 			}
566 			count_vm_event(THP_FILE_ALLOC);
567 		}
568 	} else if (!expected) {
569 		error = radix_tree_insert(&mapping->page_tree, index, page);
570 	} else {
571 		error = shmem_radix_tree_replace(mapping, index, expected,
572 								 page);
573 	}
574 
575 	if (!error) {
576 		mapping->nrpages += nr;
577 		if (PageTransHuge(page))
578 			__inc_node_page_state(page, NR_SHMEM_THPS);
579 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
580 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
581 		spin_unlock_irq(&mapping->tree_lock);
582 	} else {
583 		page->mapping = NULL;
584 		spin_unlock_irq(&mapping->tree_lock);
585 		page_ref_sub(page, nr);
586 	}
587 	return error;
588 }
589 
590 /*
591  * Like delete_from_page_cache, but substitutes swap for page.
592  */
593 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
594 {
595 	struct address_space *mapping = page->mapping;
596 	int error;
597 
598 	VM_BUG_ON_PAGE(PageCompound(page), page);
599 
600 	spin_lock_irq(&mapping->tree_lock);
601 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
602 	page->mapping = NULL;
603 	mapping->nrpages--;
604 	__dec_node_page_state(page, NR_FILE_PAGES);
605 	__dec_node_page_state(page, NR_SHMEM);
606 	spin_unlock_irq(&mapping->tree_lock);
607 	put_page(page);
608 	BUG_ON(error);
609 }
610 
611 /*
612  * Remove swap entry from radix tree, free the swap and its page cache.
613  */
614 static int shmem_free_swap(struct address_space *mapping,
615 			   pgoff_t index, void *radswap)
616 {
617 	void *old;
618 
619 	spin_lock_irq(&mapping->tree_lock);
620 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
621 	spin_unlock_irq(&mapping->tree_lock);
622 	if (old != radswap)
623 		return -ENOENT;
624 	free_swap_and_cache(radix_to_swp_entry(radswap));
625 	return 0;
626 }
627 
628 /*
629  * Determine (in bytes) how many of the shmem object's pages mapped by the
630  * given offsets are swapped out.
631  *
632  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
633  * as long as the inode doesn't go away and racy results are not a problem.
634  */
635 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
636 						pgoff_t start, pgoff_t end)
637 {
638 	struct radix_tree_iter iter;
639 	void **slot;
640 	struct page *page;
641 	unsigned long swapped = 0;
642 
643 	rcu_read_lock();
644 
645 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
646 		if (iter.index >= end)
647 			break;
648 
649 		page = radix_tree_deref_slot(slot);
650 
651 		if (radix_tree_deref_retry(page)) {
652 			slot = radix_tree_iter_retry(&iter);
653 			continue;
654 		}
655 
656 		if (radix_tree_exceptional_entry(page))
657 			swapped++;
658 
659 		if (need_resched()) {
660 			cond_resched_rcu();
661 			slot = radix_tree_iter_next(&iter);
662 		}
663 	}
664 
665 	rcu_read_unlock();
666 
667 	return swapped << PAGE_SHIFT;
668 }
669 
670 /*
671  * Determine (in bytes) how many of the shmem object's pages mapped by the
672  * given vma is swapped out.
673  *
674  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
675  * as long as the inode doesn't go away and racy results are not a problem.
676  */
677 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
678 {
679 	struct inode *inode = file_inode(vma->vm_file);
680 	struct shmem_inode_info *info = SHMEM_I(inode);
681 	struct address_space *mapping = inode->i_mapping;
682 	unsigned long swapped;
683 
684 	/* Be careful as we don't hold info->lock */
685 	swapped = READ_ONCE(info->swapped);
686 
687 	/*
688 	 * The easier cases are when the shmem object has nothing in swap, or
689 	 * the vma maps it whole. Then we can simply use the stats that we
690 	 * already track.
691 	 */
692 	if (!swapped)
693 		return 0;
694 
695 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
696 		return swapped << PAGE_SHIFT;
697 
698 	/* Here comes the more involved part */
699 	return shmem_partial_swap_usage(mapping,
700 			linear_page_index(vma, vma->vm_start),
701 			linear_page_index(vma, vma->vm_end));
702 }
703 
704 /*
705  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
706  */
707 void shmem_unlock_mapping(struct address_space *mapping)
708 {
709 	struct pagevec pvec;
710 	pgoff_t indices[PAGEVEC_SIZE];
711 	pgoff_t index = 0;
712 
713 	pagevec_init(&pvec, 0);
714 	/*
715 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
716 	 */
717 	while (!mapping_unevictable(mapping)) {
718 		/*
719 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
720 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
721 		 */
722 		pvec.nr = find_get_entries(mapping, index,
723 					   PAGEVEC_SIZE, pvec.pages, indices);
724 		if (!pvec.nr)
725 			break;
726 		index = indices[pvec.nr - 1] + 1;
727 		pagevec_remove_exceptionals(&pvec);
728 		check_move_unevictable_pages(pvec.pages, pvec.nr);
729 		pagevec_release(&pvec);
730 		cond_resched();
731 	}
732 }
733 
734 /*
735  * Remove range of pages and swap entries from radix tree, and free them.
736  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
737  */
738 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
739 								 bool unfalloc)
740 {
741 	struct address_space *mapping = inode->i_mapping;
742 	struct shmem_inode_info *info = SHMEM_I(inode);
743 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
744 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
745 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
746 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
747 	struct pagevec pvec;
748 	pgoff_t indices[PAGEVEC_SIZE];
749 	long nr_swaps_freed = 0;
750 	pgoff_t index;
751 	int i;
752 
753 	if (lend == -1)
754 		end = -1;	/* unsigned, so actually very big */
755 
756 	pagevec_init(&pvec, 0);
757 	index = start;
758 	while (index < end) {
759 		pvec.nr = find_get_entries(mapping, index,
760 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
761 			pvec.pages, indices);
762 		if (!pvec.nr)
763 			break;
764 		for (i = 0; i < pagevec_count(&pvec); i++) {
765 			struct page *page = pvec.pages[i];
766 
767 			index = indices[i];
768 			if (index >= end)
769 				break;
770 
771 			if (radix_tree_exceptional_entry(page)) {
772 				if (unfalloc)
773 					continue;
774 				nr_swaps_freed += !shmem_free_swap(mapping,
775 								index, page);
776 				continue;
777 			}
778 
779 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
780 
781 			if (!trylock_page(page))
782 				continue;
783 
784 			if (PageTransTail(page)) {
785 				/* Middle of THP: zero out the page */
786 				clear_highpage(page);
787 				unlock_page(page);
788 				continue;
789 			} else if (PageTransHuge(page)) {
790 				if (index == round_down(end, HPAGE_PMD_NR)) {
791 					/*
792 					 * Range ends in the middle of THP:
793 					 * zero out the page
794 					 */
795 					clear_highpage(page);
796 					unlock_page(page);
797 					continue;
798 				}
799 				index += HPAGE_PMD_NR - 1;
800 				i += HPAGE_PMD_NR - 1;
801 			}
802 
803 			if (!unfalloc || !PageUptodate(page)) {
804 				VM_BUG_ON_PAGE(PageTail(page), page);
805 				if (page_mapping(page) == mapping) {
806 					VM_BUG_ON_PAGE(PageWriteback(page), page);
807 					truncate_inode_page(mapping, page);
808 				}
809 			}
810 			unlock_page(page);
811 		}
812 		pagevec_remove_exceptionals(&pvec);
813 		pagevec_release(&pvec);
814 		cond_resched();
815 		index++;
816 	}
817 
818 	if (partial_start) {
819 		struct page *page = NULL;
820 		shmem_getpage(inode, start - 1, &page, SGP_READ);
821 		if (page) {
822 			unsigned int top = PAGE_SIZE;
823 			if (start > end) {
824 				top = partial_end;
825 				partial_end = 0;
826 			}
827 			zero_user_segment(page, partial_start, top);
828 			set_page_dirty(page);
829 			unlock_page(page);
830 			put_page(page);
831 		}
832 	}
833 	if (partial_end) {
834 		struct page *page = NULL;
835 		shmem_getpage(inode, end, &page, SGP_READ);
836 		if (page) {
837 			zero_user_segment(page, 0, partial_end);
838 			set_page_dirty(page);
839 			unlock_page(page);
840 			put_page(page);
841 		}
842 	}
843 	if (start >= end)
844 		return;
845 
846 	index = start;
847 	while (index < end) {
848 		cond_resched();
849 
850 		pvec.nr = find_get_entries(mapping, index,
851 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
852 				pvec.pages, indices);
853 		if (!pvec.nr) {
854 			/* If all gone or hole-punch or unfalloc, we're done */
855 			if (index == start || end != -1)
856 				break;
857 			/* But if truncating, restart to make sure all gone */
858 			index = start;
859 			continue;
860 		}
861 		for (i = 0; i < pagevec_count(&pvec); i++) {
862 			struct page *page = pvec.pages[i];
863 
864 			index = indices[i];
865 			if (index >= end)
866 				break;
867 
868 			if (radix_tree_exceptional_entry(page)) {
869 				if (unfalloc)
870 					continue;
871 				if (shmem_free_swap(mapping, index, page)) {
872 					/* Swap was replaced by page: retry */
873 					index--;
874 					break;
875 				}
876 				nr_swaps_freed++;
877 				continue;
878 			}
879 
880 			lock_page(page);
881 
882 			if (PageTransTail(page)) {
883 				/* Middle of THP: zero out the page */
884 				clear_highpage(page);
885 				unlock_page(page);
886 				/*
887 				 * Partial thp truncate due 'start' in middle
888 				 * of THP: don't need to look on these pages
889 				 * again on !pvec.nr restart.
890 				 */
891 				if (index != round_down(end, HPAGE_PMD_NR))
892 					start++;
893 				continue;
894 			} else if (PageTransHuge(page)) {
895 				if (index == round_down(end, HPAGE_PMD_NR)) {
896 					/*
897 					 * Range ends in the middle of THP:
898 					 * zero out the page
899 					 */
900 					clear_highpage(page);
901 					unlock_page(page);
902 					continue;
903 				}
904 				index += HPAGE_PMD_NR - 1;
905 				i += HPAGE_PMD_NR - 1;
906 			}
907 
908 			if (!unfalloc || !PageUptodate(page)) {
909 				VM_BUG_ON_PAGE(PageTail(page), page);
910 				if (page_mapping(page) == mapping) {
911 					VM_BUG_ON_PAGE(PageWriteback(page), page);
912 					truncate_inode_page(mapping, page);
913 				} else {
914 					/* Page was replaced by swap: retry */
915 					unlock_page(page);
916 					index--;
917 					break;
918 				}
919 			}
920 			unlock_page(page);
921 		}
922 		pagevec_remove_exceptionals(&pvec);
923 		pagevec_release(&pvec);
924 		index++;
925 	}
926 
927 	spin_lock_irq(&info->lock);
928 	info->swapped -= nr_swaps_freed;
929 	shmem_recalc_inode(inode);
930 	spin_unlock_irq(&info->lock);
931 }
932 
933 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
934 {
935 	shmem_undo_range(inode, lstart, lend, false);
936 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
937 }
938 EXPORT_SYMBOL_GPL(shmem_truncate_range);
939 
940 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
941 			 struct kstat *stat)
942 {
943 	struct inode *inode = dentry->d_inode;
944 	struct shmem_inode_info *info = SHMEM_I(inode);
945 
946 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
947 		spin_lock_irq(&info->lock);
948 		shmem_recalc_inode(inode);
949 		spin_unlock_irq(&info->lock);
950 	}
951 	generic_fillattr(inode, stat);
952 	return 0;
953 }
954 
955 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
956 {
957 	struct inode *inode = d_inode(dentry);
958 	struct shmem_inode_info *info = SHMEM_I(inode);
959 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
960 	int error;
961 
962 	error = inode_change_ok(inode, attr);
963 	if (error)
964 		return error;
965 
966 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
967 		loff_t oldsize = inode->i_size;
968 		loff_t newsize = attr->ia_size;
969 
970 		/* protected by i_mutex */
971 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
972 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
973 			return -EPERM;
974 
975 		if (newsize != oldsize) {
976 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
977 					oldsize, newsize);
978 			if (error)
979 				return error;
980 			i_size_write(inode, newsize);
981 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
982 		}
983 		if (newsize <= oldsize) {
984 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
985 			if (oldsize > holebegin)
986 				unmap_mapping_range(inode->i_mapping,
987 							holebegin, 0, 1);
988 			if (info->alloced)
989 				shmem_truncate_range(inode,
990 							newsize, (loff_t)-1);
991 			/* unmap again to remove racily COWed private pages */
992 			if (oldsize > holebegin)
993 				unmap_mapping_range(inode->i_mapping,
994 							holebegin, 0, 1);
995 
996 			/*
997 			 * Part of the huge page can be beyond i_size: subject
998 			 * to shrink under memory pressure.
999 			 */
1000 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1001 				spin_lock(&sbinfo->shrinklist_lock);
1002 				if (list_empty(&info->shrinklist)) {
1003 					list_add_tail(&info->shrinklist,
1004 							&sbinfo->shrinklist);
1005 					sbinfo->shrinklist_len++;
1006 				}
1007 				spin_unlock(&sbinfo->shrinklist_lock);
1008 			}
1009 		}
1010 	}
1011 
1012 	setattr_copy(inode, attr);
1013 	if (attr->ia_valid & ATTR_MODE)
1014 		error = posix_acl_chmod(inode, inode->i_mode);
1015 	return error;
1016 }
1017 
1018 static void shmem_evict_inode(struct inode *inode)
1019 {
1020 	struct shmem_inode_info *info = SHMEM_I(inode);
1021 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022 
1023 	if (inode->i_mapping->a_ops == &shmem_aops) {
1024 		shmem_unacct_size(info->flags, inode->i_size);
1025 		inode->i_size = 0;
1026 		shmem_truncate_range(inode, 0, (loff_t)-1);
1027 		if (!list_empty(&info->shrinklist)) {
1028 			spin_lock(&sbinfo->shrinklist_lock);
1029 			if (!list_empty(&info->shrinklist)) {
1030 				list_del_init(&info->shrinklist);
1031 				sbinfo->shrinklist_len--;
1032 			}
1033 			spin_unlock(&sbinfo->shrinklist_lock);
1034 		}
1035 		if (!list_empty(&info->swaplist)) {
1036 			mutex_lock(&shmem_swaplist_mutex);
1037 			list_del_init(&info->swaplist);
1038 			mutex_unlock(&shmem_swaplist_mutex);
1039 		}
1040 	}
1041 
1042 	simple_xattrs_free(&info->xattrs);
1043 	WARN_ON(inode->i_blocks);
1044 	shmem_free_inode(inode->i_sb);
1045 	clear_inode(inode);
1046 }
1047 
1048 /*
1049  * If swap found in inode, free it and move page from swapcache to filecache.
1050  */
1051 static int shmem_unuse_inode(struct shmem_inode_info *info,
1052 			     swp_entry_t swap, struct page **pagep)
1053 {
1054 	struct address_space *mapping = info->vfs_inode.i_mapping;
1055 	void *radswap;
1056 	pgoff_t index;
1057 	gfp_t gfp;
1058 	int error = 0;
1059 
1060 	radswap = swp_to_radix_entry(swap);
1061 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
1062 	if (index == -1)
1063 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1064 
1065 	/*
1066 	 * Move _head_ to start search for next from here.
1067 	 * But be careful: shmem_evict_inode checks list_empty without taking
1068 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1069 	 * would appear empty, if it were the only one on shmem_swaplist.
1070 	 */
1071 	if (shmem_swaplist.next != &info->swaplist)
1072 		list_move_tail(&shmem_swaplist, &info->swaplist);
1073 
1074 	gfp = mapping_gfp_mask(mapping);
1075 	if (shmem_should_replace_page(*pagep, gfp)) {
1076 		mutex_unlock(&shmem_swaplist_mutex);
1077 		error = shmem_replace_page(pagep, gfp, info, index);
1078 		mutex_lock(&shmem_swaplist_mutex);
1079 		/*
1080 		 * We needed to drop mutex to make that restrictive page
1081 		 * allocation, but the inode might have been freed while we
1082 		 * dropped it: although a racing shmem_evict_inode() cannot
1083 		 * complete without emptying the radix_tree, our page lock
1084 		 * on this swapcache page is not enough to prevent that -
1085 		 * free_swap_and_cache() of our swap entry will only
1086 		 * trylock_page(), removing swap from radix_tree whatever.
1087 		 *
1088 		 * We must not proceed to shmem_add_to_page_cache() if the
1089 		 * inode has been freed, but of course we cannot rely on
1090 		 * inode or mapping or info to check that.  However, we can
1091 		 * safely check if our swap entry is still in use (and here
1092 		 * it can't have got reused for another page): if it's still
1093 		 * in use, then the inode cannot have been freed yet, and we
1094 		 * can safely proceed (if it's no longer in use, that tells
1095 		 * nothing about the inode, but we don't need to unuse swap).
1096 		 */
1097 		if (!page_swapcount(*pagep))
1098 			error = -ENOENT;
1099 	}
1100 
1101 	/*
1102 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1103 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1104 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1105 	 */
1106 	if (!error)
1107 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1108 						radswap);
1109 	if (error != -ENOMEM) {
1110 		/*
1111 		 * Truncation and eviction use free_swap_and_cache(), which
1112 		 * only does trylock page: if we raced, best clean up here.
1113 		 */
1114 		delete_from_swap_cache(*pagep);
1115 		set_page_dirty(*pagep);
1116 		if (!error) {
1117 			spin_lock_irq(&info->lock);
1118 			info->swapped--;
1119 			spin_unlock_irq(&info->lock);
1120 			swap_free(swap);
1121 		}
1122 	}
1123 	return error;
1124 }
1125 
1126 /*
1127  * Search through swapped inodes to find and replace swap by page.
1128  */
1129 int shmem_unuse(swp_entry_t swap, struct page *page)
1130 {
1131 	struct list_head *this, *next;
1132 	struct shmem_inode_info *info;
1133 	struct mem_cgroup *memcg;
1134 	int error = 0;
1135 
1136 	/*
1137 	 * There's a faint possibility that swap page was replaced before
1138 	 * caller locked it: caller will come back later with the right page.
1139 	 */
1140 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1141 		goto out;
1142 
1143 	/*
1144 	 * Charge page using GFP_KERNEL while we can wait, before taking
1145 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1146 	 * Charged back to the user (not to caller) when swap account is used.
1147 	 */
1148 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1149 			false);
1150 	if (error)
1151 		goto out;
1152 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1153 	error = -EAGAIN;
1154 
1155 	mutex_lock(&shmem_swaplist_mutex);
1156 	list_for_each_safe(this, next, &shmem_swaplist) {
1157 		info = list_entry(this, struct shmem_inode_info, swaplist);
1158 		if (info->swapped)
1159 			error = shmem_unuse_inode(info, swap, &page);
1160 		else
1161 			list_del_init(&info->swaplist);
1162 		cond_resched();
1163 		if (error != -EAGAIN)
1164 			break;
1165 		/* found nothing in this: move on to search the next */
1166 	}
1167 	mutex_unlock(&shmem_swaplist_mutex);
1168 
1169 	if (error) {
1170 		if (error != -ENOMEM)
1171 			error = 0;
1172 		mem_cgroup_cancel_charge(page, memcg, false);
1173 	} else
1174 		mem_cgroup_commit_charge(page, memcg, true, false);
1175 out:
1176 	unlock_page(page);
1177 	put_page(page);
1178 	return error;
1179 }
1180 
1181 /*
1182  * Move the page from the page cache to the swap cache.
1183  */
1184 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1185 {
1186 	struct shmem_inode_info *info;
1187 	struct address_space *mapping;
1188 	struct inode *inode;
1189 	swp_entry_t swap;
1190 	pgoff_t index;
1191 
1192 	VM_BUG_ON_PAGE(PageCompound(page), page);
1193 	BUG_ON(!PageLocked(page));
1194 	mapping = page->mapping;
1195 	index = page->index;
1196 	inode = mapping->host;
1197 	info = SHMEM_I(inode);
1198 	if (info->flags & VM_LOCKED)
1199 		goto redirty;
1200 	if (!total_swap_pages)
1201 		goto redirty;
1202 
1203 	/*
1204 	 * Our capabilities prevent regular writeback or sync from ever calling
1205 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1206 	 * its underlying filesystem, in which case tmpfs should write out to
1207 	 * swap only in response to memory pressure, and not for the writeback
1208 	 * threads or sync.
1209 	 */
1210 	if (!wbc->for_reclaim) {
1211 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1212 		goto redirty;
1213 	}
1214 
1215 	/*
1216 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1217 	 * value into swapfile.c, the only way we can correctly account for a
1218 	 * fallocated page arriving here is now to initialize it and write it.
1219 	 *
1220 	 * That's okay for a page already fallocated earlier, but if we have
1221 	 * not yet completed the fallocation, then (a) we want to keep track
1222 	 * of this page in case we have to undo it, and (b) it may not be a
1223 	 * good idea to continue anyway, once we're pushing into swap.  So
1224 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1225 	 */
1226 	if (!PageUptodate(page)) {
1227 		if (inode->i_private) {
1228 			struct shmem_falloc *shmem_falloc;
1229 			spin_lock(&inode->i_lock);
1230 			shmem_falloc = inode->i_private;
1231 			if (shmem_falloc &&
1232 			    !shmem_falloc->waitq &&
1233 			    index >= shmem_falloc->start &&
1234 			    index < shmem_falloc->next)
1235 				shmem_falloc->nr_unswapped++;
1236 			else
1237 				shmem_falloc = NULL;
1238 			spin_unlock(&inode->i_lock);
1239 			if (shmem_falloc)
1240 				goto redirty;
1241 		}
1242 		clear_highpage(page);
1243 		flush_dcache_page(page);
1244 		SetPageUptodate(page);
1245 	}
1246 
1247 	swap = get_swap_page();
1248 	if (!swap.val)
1249 		goto redirty;
1250 
1251 	if (mem_cgroup_try_charge_swap(page, swap))
1252 		goto free_swap;
1253 
1254 	/*
1255 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1256 	 * if it's not already there.  Do it now before the page is
1257 	 * moved to swap cache, when its pagelock no longer protects
1258 	 * the inode from eviction.  But don't unlock the mutex until
1259 	 * we've incremented swapped, because shmem_unuse_inode() will
1260 	 * prune a !swapped inode from the swaplist under this mutex.
1261 	 */
1262 	mutex_lock(&shmem_swaplist_mutex);
1263 	if (list_empty(&info->swaplist))
1264 		list_add_tail(&info->swaplist, &shmem_swaplist);
1265 
1266 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1267 		spin_lock_irq(&info->lock);
1268 		shmem_recalc_inode(inode);
1269 		info->swapped++;
1270 		spin_unlock_irq(&info->lock);
1271 
1272 		swap_shmem_alloc(swap);
1273 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1274 
1275 		mutex_unlock(&shmem_swaplist_mutex);
1276 		BUG_ON(page_mapped(page));
1277 		swap_writepage(page, wbc);
1278 		return 0;
1279 	}
1280 
1281 	mutex_unlock(&shmem_swaplist_mutex);
1282 free_swap:
1283 	swapcache_free(swap);
1284 redirty:
1285 	set_page_dirty(page);
1286 	if (wbc->for_reclaim)
1287 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1288 	unlock_page(page);
1289 	return 0;
1290 }
1291 
1292 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1293 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1294 {
1295 	char buffer[64];
1296 
1297 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1298 		return;		/* show nothing */
1299 
1300 	mpol_to_str(buffer, sizeof(buffer), mpol);
1301 
1302 	seq_printf(seq, ",mpol=%s", buffer);
1303 }
1304 
1305 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1306 {
1307 	struct mempolicy *mpol = NULL;
1308 	if (sbinfo->mpol) {
1309 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1310 		mpol = sbinfo->mpol;
1311 		mpol_get(mpol);
1312 		spin_unlock(&sbinfo->stat_lock);
1313 	}
1314 	return mpol;
1315 }
1316 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1317 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1318 {
1319 }
1320 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1321 {
1322 	return NULL;
1323 }
1324 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1325 #ifndef CONFIG_NUMA
1326 #define vm_policy vm_private_data
1327 #endif
1328 
1329 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1330 		struct shmem_inode_info *info, pgoff_t index)
1331 {
1332 	/* Create a pseudo vma that just contains the policy */
1333 	vma->vm_start = 0;
1334 	/* Bias interleave by inode number to distribute better across nodes */
1335 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1336 	vma->vm_ops = NULL;
1337 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1338 }
1339 
1340 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1341 {
1342 	/* Drop reference taken by mpol_shared_policy_lookup() */
1343 	mpol_cond_put(vma->vm_policy);
1344 }
1345 
1346 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1347 			struct shmem_inode_info *info, pgoff_t index)
1348 {
1349 	struct vm_area_struct pvma;
1350 	struct page *page;
1351 
1352 	shmem_pseudo_vma_init(&pvma, info, index);
1353 	page = swapin_readahead(swap, gfp, &pvma, 0);
1354 	shmem_pseudo_vma_destroy(&pvma);
1355 
1356 	return page;
1357 }
1358 
1359 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1360 		struct shmem_inode_info *info, pgoff_t index)
1361 {
1362 	struct vm_area_struct pvma;
1363 	struct inode *inode = &info->vfs_inode;
1364 	struct address_space *mapping = inode->i_mapping;
1365 	pgoff_t idx, hindex;
1366 	void __rcu **results;
1367 	struct page *page;
1368 
1369 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1370 		return NULL;
1371 
1372 	hindex = round_down(index, HPAGE_PMD_NR);
1373 	rcu_read_lock();
1374 	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1375 				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1376 		rcu_read_unlock();
1377 		return NULL;
1378 	}
1379 	rcu_read_unlock();
1380 
1381 	shmem_pseudo_vma_init(&pvma, info, hindex);
1382 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1383 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1384 	shmem_pseudo_vma_destroy(&pvma);
1385 	if (page)
1386 		prep_transhuge_page(page);
1387 	return page;
1388 }
1389 
1390 static struct page *shmem_alloc_page(gfp_t gfp,
1391 			struct shmem_inode_info *info, pgoff_t index)
1392 {
1393 	struct vm_area_struct pvma;
1394 	struct page *page;
1395 
1396 	shmem_pseudo_vma_init(&pvma, info, index);
1397 	page = alloc_page_vma(gfp, &pvma, 0);
1398 	shmem_pseudo_vma_destroy(&pvma);
1399 
1400 	return page;
1401 }
1402 
1403 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1404 		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1405 		pgoff_t index, bool huge)
1406 {
1407 	struct page *page;
1408 	int nr;
1409 	int err = -ENOSPC;
1410 
1411 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1412 		huge = false;
1413 	nr = huge ? HPAGE_PMD_NR : 1;
1414 
1415 	if (shmem_acct_block(info->flags, nr))
1416 		goto failed;
1417 	if (sbinfo->max_blocks) {
1418 		if (percpu_counter_compare(&sbinfo->used_blocks,
1419 					sbinfo->max_blocks - nr) > 0)
1420 			goto unacct;
1421 		percpu_counter_add(&sbinfo->used_blocks, nr);
1422 	}
1423 
1424 	if (huge)
1425 		page = shmem_alloc_hugepage(gfp, info, index);
1426 	else
1427 		page = shmem_alloc_page(gfp, info, index);
1428 	if (page) {
1429 		__SetPageLocked(page);
1430 		__SetPageSwapBacked(page);
1431 		return page;
1432 	}
1433 
1434 	err = -ENOMEM;
1435 	if (sbinfo->max_blocks)
1436 		percpu_counter_add(&sbinfo->used_blocks, -nr);
1437 unacct:
1438 	shmem_unacct_blocks(info->flags, nr);
1439 failed:
1440 	return ERR_PTR(err);
1441 }
1442 
1443 /*
1444  * When a page is moved from swapcache to shmem filecache (either by the
1445  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1446  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1447  * ignorance of the mapping it belongs to.  If that mapping has special
1448  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1449  * we may need to copy to a suitable page before moving to filecache.
1450  *
1451  * In a future release, this may well be extended to respect cpuset and
1452  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1453  * but for now it is a simple matter of zone.
1454  */
1455 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1456 {
1457 	return page_zonenum(page) > gfp_zone(gfp);
1458 }
1459 
1460 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1461 				struct shmem_inode_info *info, pgoff_t index)
1462 {
1463 	struct page *oldpage, *newpage;
1464 	struct address_space *swap_mapping;
1465 	pgoff_t swap_index;
1466 	int error;
1467 
1468 	oldpage = *pagep;
1469 	swap_index = page_private(oldpage);
1470 	swap_mapping = page_mapping(oldpage);
1471 
1472 	/*
1473 	 * We have arrived here because our zones are constrained, so don't
1474 	 * limit chance of success by further cpuset and node constraints.
1475 	 */
1476 	gfp &= ~GFP_CONSTRAINT_MASK;
1477 	newpage = shmem_alloc_page(gfp, info, index);
1478 	if (!newpage)
1479 		return -ENOMEM;
1480 
1481 	get_page(newpage);
1482 	copy_highpage(newpage, oldpage);
1483 	flush_dcache_page(newpage);
1484 
1485 	SetPageUptodate(newpage);
1486 	set_page_private(newpage, swap_index);
1487 	SetPageSwapCache(newpage);
1488 
1489 	/*
1490 	 * Our caller will very soon move newpage out of swapcache, but it's
1491 	 * a nice clean interface for us to replace oldpage by newpage there.
1492 	 */
1493 	spin_lock_irq(&swap_mapping->tree_lock);
1494 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1495 								   newpage);
1496 	if (!error) {
1497 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1498 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1499 	}
1500 	spin_unlock_irq(&swap_mapping->tree_lock);
1501 
1502 	if (unlikely(error)) {
1503 		/*
1504 		 * Is this possible?  I think not, now that our callers check
1505 		 * both PageSwapCache and page_private after getting page lock;
1506 		 * but be defensive.  Reverse old to newpage for clear and free.
1507 		 */
1508 		oldpage = newpage;
1509 	} else {
1510 		mem_cgroup_migrate(oldpage, newpage);
1511 		lru_cache_add_anon(newpage);
1512 		*pagep = newpage;
1513 	}
1514 
1515 	ClearPageSwapCache(oldpage);
1516 	set_page_private(oldpage, 0);
1517 
1518 	unlock_page(oldpage);
1519 	put_page(oldpage);
1520 	put_page(oldpage);
1521 	return error;
1522 }
1523 
1524 /*
1525  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1526  *
1527  * If we allocate a new one we do not mark it dirty. That's up to the
1528  * vm. If we swap it in we mark it dirty since we also free the swap
1529  * entry since a page cannot live in both the swap and page cache.
1530  *
1531  * fault_mm and fault_type are only supplied by shmem_fault:
1532  * otherwise they are NULL.
1533  */
1534 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1535 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1536 	struct mm_struct *fault_mm, int *fault_type)
1537 {
1538 	struct address_space *mapping = inode->i_mapping;
1539 	struct shmem_inode_info *info;
1540 	struct shmem_sb_info *sbinfo;
1541 	struct mm_struct *charge_mm;
1542 	struct mem_cgroup *memcg;
1543 	struct page *page;
1544 	swp_entry_t swap;
1545 	enum sgp_type sgp_huge = sgp;
1546 	pgoff_t hindex = index;
1547 	int error;
1548 	int once = 0;
1549 	int alloced = 0;
1550 
1551 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1552 		return -EFBIG;
1553 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1554 		sgp = SGP_CACHE;
1555 repeat:
1556 	swap.val = 0;
1557 	page = find_lock_entry(mapping, index);
1558 	if (radix_tree_exceptional_entry(page)) {
1559 		swap = radix_to_swp_entry(page);
1560 		page = NULL;
1561 	}
1562 
1563 	if (sgp <= SGP_CACHE &&
1564 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1565 		error = -EINVAL;
1566 		goto unlock;
1567 	}
1568 
1569 	if (page && sgp == SGP_WRITE)
1570 		mark_page_accessed(page);
1571 
1572 	/* fallocated page? */
1573 	if (page && !PageUptodate(page)) {
1574 		if (sgp != SGP_READ)
1575 			goto clear;
1576 		unlock_page(page);
1577 		put_page(page);
1578 		page = NULL;
1579 	}
1580 	if (page || (sgp == SGP_READ && !swap.val)) {
1581 		*pagep = page;
1582 		return 0;
1583 	}
1584 
1585 	/*
1586 	 * Fast cache lookup did not find it:
1587 	 * bring it back from swap or allocate.
1588 	 */
1589 	info = SHMEM_I(inode);
1590 	sbinfo = SHMEM_SB(inode->i_sb);
1591 	charge_mm = fault_mm ? : current->mm;
1592 
1593 	if (swap.val) {
1594 		/* Look it up and read it in.. */
1595 		page = lookup_swap_cache(swap);
1596 		if (!page) {
1597 			/* Or update major stats only when swapin succeeds?? */
1598 			if (fault_type) {
1599 				*fault_type |= VM_FAULT_MAJOR;
1600 				count_vm_event(PGMAJFAULT);
1601 				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1602 			}
1603 			/* Here we actually start the io */
1604 			page = shmem_swapin(swap, gfp, info, index);
1605 			if (!page) {
1606 				error = -ENOMEM;
1607 				goto failed;
1608 			}
1609 		}
1610 
1611 		/* We have to do this with page locked to prevent races */
1612 		lock_page(page);
1613 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1614 		    !shmem_confirm_swap(mapping, index, swap)) {
1615 			error = -EEXIST;	/* try again */
1616 			goto unlock;
1617 		}
1618 		if (!PageUptodate(page)) {
1619 			error = -EIO;
1620 			goto failed;
1621 		}
1622 		wait_on_page_writeback(page);
1623 
1624 		if (shmem_should_replace_page(page, gfp)) {
1625 			error = shmem_replace_page(&page, gfp, info, index);
1626 			if (error)
1627 				goto failed;
1628 		}
1629 
1630 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1631 				false);
1632 		if (!error) {
1633 			error = shmem_add_to_page_cache(page, mapping, index,
1634 						swp_to_radix_entry(swap));
1635 			/*
1636 			 * We already confirmed swap under page lock, and make
1637 			 * no memory allocation here, so usually no possibility
1638 			 * of error; but free_swap_and_cache() only trylocks a
1639 			 * page, so it is just possible that the entry has been
1640 			 * truncated or holepunched since swap was confirmed.
1641 			 * shmem_undo_range() will have done some of the
1642 			 * unaccounting, now delete_from_swap_cache() will do
1643 			 * the rest.
1644 			 * Reset swap.val? No, leave it so "failed" goes back to
1645 			 * "repeat": reading a hole and writing should succeed.
1646 			 */
1647 			if (error) {
1648 				mem_cgroup_cancel_charge(page, memcg, false);
1649 				delete_from_swap_cache(page);
1650 			}
1651 		}
1652 		if (error)
1653 			goto failed;
1654 
1655 		mem_cgroup_commit_charge(page, memcg, true, false);
1656 
1657 		spin_lock_irq(&info->lock);
1658 		info->swapped--;
1659 		shmem_recalc_inode(inode);
1660 		spin_unlock_irq(&info->lock);
1661 
1662 		if (sgp == SGP_WRITE)
1663 			mark_page_accessed(page);
1664 
1665 		delete_from_swap_cache(page);
1666 		set_page_dirty(page);
1667 		swap_free(swap);
1668 
1669 	} else {
1670 		/* shmem_symlink() */
1671 		if (mapping->a_ops != &shmem_aops)
1672 			goto alloc_nohuge;
1673 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1674 			goto alloc_nohuge;
1675 		if (shmem_huge == SHMEM_HUGE_FORCE)
1676 			goto alloc_huge;
1677 		switch (sbinfo->huge) {
1678 			loff_t i_size;
1679 			pgoff_t off;
1680 		case SHMEM_HUGE_NEVER:
1681 			goto alloc_nohuge;
1682 		case SHMEM_HUGE_WITHIN_SIZE:
1683 			off = round_up(index, HPAGE_PMD_NR);
1684 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1685 			if (i_size >= HPAGE_PMD_SIZE &&
1686 					i_size >> PAGE_SHIFT >= off)
1687 				goto alloc_huge;
1688 			/* fallthrough */
1689 		case SHMEM_HUGE_ADVISE:
1690 			if (sgp_huge == SGP_HUGE)
1691 				goto alloc_huge;
1692 			/* TODO: implement fadvise() hints */
1693 			goto alloc_nohuge;
1694 		}
1695 
1696 alloc_huge:
1697 		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1698 				index, true);
1699 		if (IS_ERR(page)) {
1700 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1701 					index, false);
1702 		}
1703 		if (IS_ERR(page)) {
1704 			int retry = 5;
1705 			error = PTR_ERR(page);
1706 			page = NULL;
1707 			if (error != -ENOSPC)
1708 				goto failed;
1709 			/*
1710 			 * Try to reclaim some spece by splitting a huge page
1711 			 * beyond i_size on the filesystem.
1712 			 */
1713 			while (retry--) {
1714 				int ret;
1715 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1716 				if (ret == SHRINK_STOP)
1717 					break;
1718 				if (ret)
1719 					goto alloc_nohuge;
1720 			}
1721 			goto failed;
1722 		}
1723 
1724 		if (PageTransHuge(page))
1725 			hindex = round_down(index, HPAGE_PMD_NR);
1726 		else
1727 			hindex = index;
1728 
1729 		if (sgp == SGP_WRITE)
1730 			__SetPageReferenced(page);
1731 
1732 		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1733 				PageTransHuge(page));
1734 		if (error)
1735 			goto unacct;
1736 		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1737 				compound_order(page));
1738 		if (!error) {
1739 			error = shmem_add_to_page_cache(page, mapping, hindex,
1740 							NULL);
1741 			radix_tree_preload_end();
1742 		}
1743 		if (error) {
1744 			mem_cgroup_cancel_charge(page, memcg,
1745 					PageTransHuge(page));
1746 			goto unacct;
1747 		}
1748 		mem_cgroup_commit_charge(page, memcg, false,
1749 				PageTransHuge(page));
1750 		lru_cache_add_anon(page);
1751 
1752 		spin_lock_irq(&info->lock);
1753 		info->alloced += 1 << compound_order(page);
1754 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1755 		shmem_recalc_inode(inode);
1756 		spin_unlock_irq(&info->lock);
1757 		alloced = true;
1758 
1759 		if (PageTransHuge(page) &&
1760 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1761 				hindex + HPAGE_PMD_NR - 1) {
1762 			/*
1763 			 * Part of the huge page is beyond i_size: subject
1764 			 * to shrink under memory pressure.
1765 			 */
1766 			spin_lock(&sbinfo->shrinklist_lock);
1767 			if (list_empty(&info->shrinklist)) {
1768 				list_add_tail(&info->shrinklist,
1769 						&sbinfo->shrinklist);
1770 				sbinfo->shrinklist_len++;
1771 			}
1772 			spin_unlock(&sbinfo->shrinklist_lock);
1773 		}
1774 
1775 		/*
1776 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1777 		 */
1778 		if (sgp == SGP_FALLOC)
1779 			sgp = SGP_WRITE;
1780 clear:
1781 		/*
1782 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1783 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1784 		 * it now, lest undo on failure cancel our earlier guarantee.
1785 		 */
1786 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1787 			struct page *head = compound_head(page);
1788 			int i;
1789 
1790 			for (i = 0; i < (1 << compound_order(head)); i++) {
1791 				clear_highpage(head + i);
1792 				flush_dcache_page(head + i);
1793 			}
1794 			SetPageUptodate(head);
1795 		}
1796 	}
1797 
1798 	/* Perhaps the file has been truncated since we checked */
1799 	if (sgp <= SGP_CACHE &&
1800 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1801 		if (alloced) {
1802 			ClearPageDirty(page);
1803 			delete_from_page_cache(page);
1804 			spin_lock_irq(&info->lock);
1805 			shmem_recalc_inode(inode);
1806 			spin_unlock_irq(&info->lock);
1807 		}
1808 		error = -EINVAL;
1809 		goto unlock;
1810 	}
1811 	*pagep = page + index - hindex;
1812 	return 0;
1813 
1814 	/*
1815 	 * Error recovery.
1816 	 */
1817 unacct:
1818 	if (sbinfo->max_blocks)
1819 		percpu_counter_sub(&sbinfo->used_blocks,
1820 				1 << compound_order(page));
1821 	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1822 
1823 	if (PageTransHuge(page)) {
1824 		unlock_page(page);
1825 		put_page(page);
1826 		goto alloc_nohuge;
1827 	}
1828 failed:
1829 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1830 		error = -EEXIST;
1831 unlock:
1832 	if (page) {
1833 		unlock_page(page);
1834 		put_page(page);
1835 	}
1836 	if (error == -ENOSPC && !once++) {
1837 		info = SHMEM_I(inode);
1838 		spin_lock_irq(&info->lock);
1839 		shmem_recalc_inode(inode);
1840 		spin_unlock_irq(&info->lock);
1841 		goto repeat;
1842 	}
1843 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1844 		goto repeat;
1845 	return error;
1846 }
1847 
1848 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1849 {
1850 	struct inode *inode = file_inode(vma->vm_file);
1851 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1852 	enum sgp_type sgp;
1853 	int error;
1854 	int ret = VM_FAULT_LOCKED;
1855 
1856 	/*
1857 	 * Trinity finds that probing a hole which tmpfs is punching can
1858 	 * prevent the hole-punch from ever completing: which in turn
1859 	 * locks writers out with its hold on i_mutex.  So refrain from
1860 	 * faulting pages into the hole while it's being punched.  Although
1861 	 * shmem_undo_range() does remove the additions, it may be unable to
1862 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1863 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1864 	 *
1865 	 * It does not matter if we sometimes reach this check just before the
1866 	 * hole-punch begins, so that one fault then races with the punch:
1867 	 * we just need to make racing faults a rare case.
1868 	 *
1869 	 * The implementation below would be much simpler if we just used a
1870 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1871 	 * and bloating every shmem inode for this unlikely case would be sad.
1872 	 */
1873 	if (unlikely(inode->i_private)) {
1874 		struct shmem_falloc *shmem_falloc;
1875 
1876 		spin_lock(&inode->i_lock);
1877 		shmem_falloc = inode->i_private;
1878 		if (shmem_falloc &&
1879 		    shmem_falloc->waitq &&
1880 		    vmf->pgoff >= shmem_falloc->start &&
1881 		    vmf->pgoff < shmem_falloc->next) {
1882 			wait_queue_head_t *shmem_falloc_waitq;
1883 			DEFINE_WAIT(shmem_fault_wait);
1884 
1885 			ret = VM_FAULT_NOPAGE;
1886 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1887 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1888 				/* It's polite to up mmap_sem if we can */
1889 				up_read(&vma->vm_mm->mmap_sem);
1890 				ret = VM_FAULT_RETRY;
1891 			}
1892 
1893 			shmem_falloc_waitq = shmem_falloc->waitq;
1894 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1895 					TASK_UNINTERRUPTIBLE);
1896 			spin_unlock(&inode->i_lock);
1897 			schedule();
1898 
1899 			/*
1900 			 * shmem_falloc_waitq points into the shmem_fallocate()
1901 			 * stack of the hole-punching task: shmem_falloc_waitq
1902 			 * is usually invalid by the time we reach here, but
1903 			 * finish_wait() does not dereference it in that case;
1904 			 * though i_lock needed lest racing with wake_up_all().
1905 			 */
1906 			spin_lock(&inode->i_lock);
1907 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1908 			spin_unlock(&inode->i_lock);
1909 			return ret;
1910 		}
1911 		spin_unlock(&inode->i_lock);
1912 	}
1913 
1914 	sgp = SGP_CACHE;
1915 	if (vma->vm_flags & VM_HUGEPAGE)
1916 		sgp = SGP_HUGE;
1917 	else if (vma->vm_flags & VM_NOHUGEPAGE)
1918 		sgp = SGP_NOHUGE;
1919 
1920 	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1921 				  gfp, vma->vm_mm, &ret);
1922 	if (error)
1923 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1924 	return ret;
1925 }
1926 
1927 unsigned long shmem_get_unmapped_area(struct file *file,
1928 				      unsigned long uaddr, unsigned long len,
1929 				      unsigned long pgoff, unsigned long flags)
1930 {
1931 	unsigned long (*get_area)(struct file *,
1932 		unsigned long, unsigned long, unsigned long, unsigned long);
1933 	unsigned long addr;
1934 	unsigned long offset;
1935 	unsigned long inflated_len;
1936 	unsigned long inflated_addr;
1937 	unsigned long inflated_offset;
1938 
1939 	if (len > TASK_SIZE)
1940 		return -ENOMEM;
1941 
1942 	get_area = current->mm->get_unmapped_area;
1943 	addr = get_area(file, uaddr, len, pgoff, flags);
1944 
1945 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1946 		return addr;
1947 	if (IS_ERR_VALUE(addr))
1948 		return addr;
1949 	if (addr & ~PAGE_MASK)
1950 		return addr;
1951 	if (addr > TASK_SIZE - len)
1952 		return addr;
1953 
1954 	if (shmem_huge == SHMEM_HUGE_DENY)
1955 		return addr;
1956 	if (len < HPAGE_PMD_SIZE)
1957 		return addr;
1958 	if (flags & MAP_FIXED)
1959 		return addr;
1960 	/*
1961 	 * Our priority is to support MAP_SHARED mapped hugely;
1962 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1963 	 * But if caller specified an address hint, respect that as before.
1964 	 */
1965 	if (uaddr)
1966 		return addr;
1967 
1968 	if (shmem_huge != SHMEM_HUGE_FORCE) {
1969 		struct super_block *sb;
1970 
1971 		if (file) {
1972 			VM_BUG_ON(file->f_op != &shmem_file_operations);
1973 			sb = file_inode(file)->i_sb;
1974 		} else {
1975 			/*
1976 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
1977 			 * for "/dev/zero", to create a shared anonymous object.
1978 			 */
1979 			if (IS_ERR(shm_mnt))
1980 				return addr;
1981 			sb = shm_mnt->mnt_sb;
1982 		}
1983 		if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1984 			return addr;
1985 	}
1986 
1987 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1988 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1989 		return addr;
1990 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1991 		return addr;
1992 
1993 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1994 	if (inflated_len > TASK_SIZE)
1995 		return addr;
1996 	if (inflated_len < len)
1997 		return addr;
1998 
1999 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2000 	if (IS_ERR_VALUE(inflated_addr))
2001 		return addr;
2002 	if (inflated_addr & ~PAGE_MASK)
2003 		return addr;
2004 
2005 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2006 	inflated_addr += offset - inflated_offset;
2007 	if (inflated_offset > offset)
2008 		inflated_addr += HPAGE_PMD_SIZE;
2009 
2010 	if (inflated_addr > TASK_SIZE - len)
2011 		return addr;
2012 	return inflated_addr;
2013 }
2014 
2015 #ifdef CONFIG_NUMA
2016 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2017 {
2018 	struct inode *inode = file_inode(vma->vm_file);
2019 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2020 }
2021 
2022 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2023 					  unsigned long addr)
2024 {
2025 	struct inode *inode = file_inode(vma->vm_file);
2026 	pgoff_t index;
2027 
2028 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2029 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2030 }
2031 #endif
2032 
2033 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2034 {
2035 	struct inode *inode = file_inode(file);
2036 	struct shmem_inode_info *info = SHMEM_I(inode);
2037 	int retval = -ENOMEM;
2038 
2039 	spin_lock_irq(&info->lock);
2040 	if (lock && !(info->flags & VM_LOCKED)) {
2041 		if (!user_shm_lock(inode->i_size, user))
2042 			goto out_nomem;
2043 		info->flags |= VM_LOCKED;
2044 		mapping_set_unevictable(file->f_mapping);
2045 	}
2046 	if (!lock && (info->flags & VM_LOCKED) && user) {
2047 		user_shm_unlock(inode->i_size, user);
2048 		info->flags &= ~VM_LOCKED;
2049 		mapping_clear_unevictable(file->f_mapping);
2050 	}
2051 	retval = 0;
2052 
2053 out_nomem:
2054 	spin_unlock_irq(&info->lock);
2055 	return retval;
2056 }
2057 
2058 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2059 {
2060 	file_accessed(file);
2061 	vma->vm_ops = &shmem_vm_ops;
2062 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2063 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2064 			(vma->vm_end & HPAGE_PMD_MASK)) {
2065 		khugepaged_enter(vma, vma->vm_flags);
2066 	}
2067 	return 0;
2068 }
2069 
2070 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2071 				     umode_t mode, dev_t dev, unsigned long flags)
2072 {
2073 	struct inode *inode;
2074 	struct shmem_inode_info *info;
2075 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2076 
2077 	if (shmem_reserve_inode(sb))
2078 		return NULL;
2079 
2080 	inode = new_inode(sb);
2081 	if (inode) {
2082 		inode->i_ino = get_next_ino();
2083 		inode_init_owner(inode, dir, mode);
2084 		inode->i_blocks = 0;
2085 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2086 		inode->i_generation = get_seconds();
2087 		info = SHMEM_I(inode);
2088 		memset(info, 0, (char *)inode - (char *)info);
2089 		spin_lock_init(&info->lock);
2090 		info->seals = F_SEAL_SEAL;
2091 		info->flags = flags & VM_NORESERVE;
2092 		INIT_LIST_HEAD(&info->shrinklist);
2093 		INIT_LIST_HEAD(&info->swaplist);
2094 		simple_xattrs_init(&info->xattrs);
2095 		cache_no_acl(inode);
2096 
2097 		switch (mode & S_IFMT) {
2098 		default:
2099 			inode->i_op = &shmem_special_inode_operations;
2100 			init_special_inode(inode, mode, dev);
2101 			break;
2102 		case S_IFREG:
2103 			inode->i_mapping->a_ops = &shmem_aops;
2104 			inode->i_op = &shmem_inode_operations;
2105 			inode->i_fop = &shmem_file_operations;
2106 			mpol_shared_policy_init(&info->policy,
2107 						 shmem_get_sbmpol(sbinfo));
2108 			break;
2109 		case S_IFDIR:
2110 			inc_nlink(inode);
2111 			/* Some things misbehave if size == 0 on a directory */
2112 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2113 			inode->i_op = &shmem_dir_inode_operations;
2114 			inode->i_fop = &simple_dir_operations;
2115 			break;
2116 		case S_IFLNK:
2117 			/*
2118 			 * Must not load anything in the rbtree,
2119 			 * mpol_free_shared_policy will not be called.
2120 			 */
2121 			mpol_shared_policy_init(&info->policy, NULL);
2122 			break;
2123 		}
2124 	} else
2125 		shmem_free_inode(sb);
2126 	return inode;
2127 }
2128 
2129 bool shmem_mapping(struct address_space *mapping)
2130 {
2131 	if (!mapping->host)
2132 		return false;
2133 
2134 	return mapping->host->i_sb->s_op == &shmem_ops;
2135 }
2136 
2137 #ifdef CONFIG_TMPFS
2138 static const struct inode_operations shmem_symlink_inode_operations;
2139 static const struct inode_operations shmem_short_symlink_operations;
2140 
2141 #ifdef CONFIG_TMPFS_XATTR
2142 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2143 #else
2144 #define shmem_initxattrs NULL
2145 #endif
2146 
2147 static int
2148 shmem_write_begin(struct file *file, struct address_space *mapping,
2149 			loff_t pos, unsigned len, unsigned flags,
2150 			struct page **pagep, void **fsdata)
2151 {
2152 	struct inode *inode = mapping->host;
2153 	struct shmem_inode_info *info = SHMEM_I(inode);
2154 	pgoff_t index = pos >> PAGE_SHIFT;
2155 
2156 	/* i_mutex is held by caller */
2157 	if (unlikely(info->seals)) {
2158 		if (info->seals & F_SEAL_WRITE)
2159 			return -EPERM;
2160 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2161 			return -EPERM;
2162 	}
2163 
2164 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2165 }
2166 
2167 static int
2168 shmem_write_end(struct file *file, struct address_space *mapping,
2169 			loff_t pos, unsigned len, unsigned copied,
2170 			struct page *page, void *fsdata)
2171 {
2172 	struct inode *inode = mapping->host;
2173 
2174 	if (pos + copied > inode->i_size)
2175 		i_size_write(inode, pos + copied);
2176 
2177 	if (!PageUptodate(page)) {
2178 		struct page *head = compound_head(page);
2179 		if (PageTransCompound(page)) {
2180 			int i;
2181 
2182 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2183 				if (head + i == page)
2184 					continue;
2185 				clear_highpage(head + i);
2186 				flush_dcache_page(head + i);
2187 			}
2188 		}
2189 		if (copied < PAGE_SIZE) {
2190 			unsigned from = pos & (PAGE_SIZE - 1);
2191 			zero_user_segments(page, 0, from,
2192 					from + copied, PAGE_SIZE);
2193 		}
2194 		SetPageUptodate(head);
2195 	}
2196 	set_page_dirty(page);
2197 	unlock_page(page);
2198 	put_page(page);
2199 
2200 	return copied;
2201 }
2202 
2203 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2204 {
2205 	struct file *file = iocb->ki_filp;
2206 	struct inode *inode = file_inode(file);
2207 	struct address_space *mapping = inode->i_mapping;
2208 	pgoff_t index;
2209 	unsigned long offset;
2210 	enum sgp_type sgp = SGP_READ;
2211 	int error = 0;
2212 	ssize_t retval = 0;
2213 	loff_t *ppos = &iocb->ki_pos;
2214 
2215 	/*
2216 	 * Might this read be for a stacking filesystem?  Then when reading
2217 	 * holes of a sparse file, we actually need to allocate those pages,
2218 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2219 	 */
2220 	if (!iter_is_iovec(to))
2221 		sgp = SGP_CACHE;
2222 
2223 	index = *ppos >> PAGE_SHIFT;
2224 	offset = *ppos & ~PAGE_MASK;
2225 
2226 	for (;;) {
2227 		struct page *page = NULL;
2228 		pgoff_t end_index;
2229 		unsigned long nr, ret;
2230 		loff_t i_size = i_size_read(inode);
2231 
2232 		end_index = i_size >> PAGE_SHIFT;
2233 		if (index > end_index)
2234 			break;
2235 		if (index == end_index) {
2236 			nr = i_size & ~PAGE_MASK;
2237 			if (nr <= offset)
2238 				break;
2239 		}
2240 
2241 		error = shmem_getpage(inode, index, &page, sgp);
2242 		if (error) {
2243 			if (error == -EINVAL)
2244 				error = 0;
2245 			break;
2246 		}
2247 		if (page) {
2248 			if (sgp == SGP_CACHE)
2249 				set_page_dirty(page);
2250 			unlock_page(page);
2251 		}
2252 
2253 		/*
2254 		 * We must evaluate after, since reads (unlike writes)
2255 		 * are called without i_mutex protection against truncate
2256 		 */
2257 		nr = PAGE_SIZE;
2258 		i_size = i_size_read(inode);
2259 		end_index = i_size >> PAGE_SHIFT;
2260 		if (index == end_index) {
2261 			nr = i_size & ~PAGE_MASK;
2262 			if (nr <= offset) {
2263 				if (page)
2264 					put_page(page);
2265 				break;
2266 			}
2267 		}
2268 		nr -= offset;
2269 
2270 		if (page) {
2271 			/*
2272 			 * If users can be writing to this page using arbitrary
2273 			 * virtual addresses, take care about potential aliasing
2274 			 * before reading the page on the kernel side.
2275 			 */
2276 			if (mapping_writably_mapped(mapping))
2277 				flush_dcache_page(page);
2278 			/*
2279 			 * Mark the page accessed if we read the beginning.
2280 			 */
2281 			if (!offset)
2282 				mark_page_accessed(page);
2283 		} else {
2284 			page = ZERO_PAGE(0);
2285 			get_page(page);
2286 		}
2287 
2288 		/*
2289 		 * Ok, we have the page, and it's up-to-date, so
2290 		 * now we can copy it to user space...
2291 		 */
2292 		ret = copy_page_to_iter(page, offset, nr, to);
2293 		retval += ret;
2294 		offset += ret;
2295 		index += offset >> PAGE_SHIFT;
2296 		offset &= ~PAGE_MASK;
2297 
2298 		put_page(page);
2299 		if (!iov_iter_count(to))
2300 			break;
2301 		if (ret < nr) {
2302 			error = -EFAULT;
2303 			break;
2304 		}
2305 		cond_resched();
2306 	}
2307 
2308 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2309 	file_accessed(file);
2310 	return retval ? retval : error;
2311 }
2312 
2313 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2314 				struct pipe_inode_info *pipe, size_t len,
2315 				unsigned int flags)
2316 {
2317 	struct address_space *mapping = in->f_mapping;
2318 	struct inode *inode = mapping->host;
2319 	unsigned int loff, nr_pages, req_pages;
2320 	struct page *pages[PIPE_DEF_BUFFERS];
2321 	struct partial_page partial[PIPE_DEF_BUFFERS];
2322 	struct page *page;
2323 	pgoff_t index, end_index;
2324 	loff_t isize, left;
2325 	int error, page_nr;
2326 	struct splice_pipe_desc spd = {
2327 		.pages = pages,
2328 		.partial = partial,
2329 		.nr_pages_max = PIPE_DEF_BUFFERS,
2330 		.flags = flags,
2331 		.ops = &page_cache_pipe_buf_ops,
2332 		.spd_release = spd_release_page,
2333 	};
2334 
2335 	isize = i_size_read(inode);
2336 	if (unlikely(*ppos >= isize))
2337 		return 0;
2338 
2339 	left = isize - *ppos;
2340 	if (unlikely(left < len))
2341 		len = left;
2342 
2343 	if (splice_grow_spd(pipe, &spd))
2344 		return -ENOMEM;
2345 
2346 	index = *ppos >> PAGE_SHIFT;
2347 	loff = *ppos & ~PAGE_MASK;
2348 	req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
2349 	nr_pages = min(req_pages, spd.nr_pages_max);
2350 
2351 	spd.nr_pages = find_get_pages_contig(mapping, index,
2352 						nr_pages, spd.pages);
2353 	index += spd.nr_pages;
2354 	error = 0;
2355 
2356 	while (spd.nr_pages < nr_pages) {
2357 		error = shmem_getpage(inode, index, &page, SGP_CACHE);
2358 		if (error)
2359 			break;
2360 		unlock_page(page);
2361 		spd.pages[spd.nr_pages++] = page;
2362 		index++;
2363 	}
2364 
2365 	index = *ppos >> PAGE_SHIFT;
2366 	nr_pages = spd.nr_pages;
2367 	spd.nr_pages = 0;
2368 
2369 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2370 		unsigned int this_len;
2371 
2372 		if (!len)
2373 			break;
2374 
2375 		this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
2376 		page = spd.pages[page_nr];
2377 
2378 		if (!PageUptodate(page) || page->mapping != mapping) {
2379 			error = shmem_getpage(inode, index, &page, SGP_CACHE);
2380 			if (error)
2381 				break;
2382 			unlock_page(page);
2383 			put_page(spd.pages[page_nr]);
2384 			spd.pages[page_nr] = page;
2385 		}
2386 
2387 		isize = i_size_read(inode);
2388 		end_index = (isize - 1) >> PAGE_SHIFT;
2389 		if (unlikely(!isize || index > end_index))
2390 			break;
2391 
2392 		if (end_index == index) {
2393 			unsigned int plen;
2394 
2395 			plen = ((isize - 1) & ~PAGE_MASK) + 1;
2396 			if (plen <= loff)
2397 				break;
2398 
2399 			this_len = min(this_len, plen - loff);
2400 			len = this_len;
2401 		}
2402 
2403 		spd.partial[page_nr].offset = loff;
2404 		spd.partial[page_nr].len = this_len;
2405 		len -= this_len;
2406 		loff = 0;
2407 		spd.nr_pages++;
2408 		index++;
2409 	}
2410 
2411 	while (page_nr < nr_pages)
2412 		put_page(spd.pages[page_nr++]);
2413 
2414 	if (spd.nr_pages)
2415 		error = splice_to_pipe(pipe, &spd);
2416 
2417 	splice_shrink_spd(&spd);
2418 
2419 	if (error > 0) {
2420 		*ppos += error;
2421 		file_accessed(in);
2422 	}
2423 	return error;
2424 }
2425 
2426 /*
2427  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2428  */
2429 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2430 				    pgoff_t index, pgoff_t end, int whence)
2431 {
2432 	struct page *page;
2433 	struct pagevec pvec;
2434 	pgoff_t indices[PAGEVEC_SIZE];
2435 	bool done = false;
2436 	int i;
2437 
2438 	pagevec_init(&pvec, 0);
2439 	pvec.nr = 1;		/* start small: we may be there already */
2440 	while (!done) {
2441 		pvec.nr = find_get_entries(mapping, index,
2442 					pvec.nr, pvec.pages, indices);
2443 		if (!pvec.nr) {
2444 			if (whence == SEEK_DATA)
2445 				index = end;
2446 			break;
2447 		}
2448 		for (i = 0; i < pvec.nr; i++, index++) {
2449 			if (index < indices[i]) {
2450 				if (whence == SEEK_HOLE) {
2451 					done = true;
2452 					break;
2453 				}
2454 				index = indices[i];
2455 			}
2456 			page = pvec.pages[i];
2457 			if (page && !radix_tree_exceptional_entry(page)) {
2458 				if (!PageUptodate(page))
2459 					page = NULL;
2460 			}
2461 			if (index >= end ||
2462 			    (page && whence == SEEK_DATA) ||
2463 			    (!page && whence == SEEK_HOLE)) {
2464 				done = true;
2465 				break;
2466 			}
2467 		}
2468 		pagevec_remove_exceptionals(&pvec);
2469 		pagevec_release(&pvec);
2470 		pvec.nr = PAGEVEC_SIZE;
2471 		cond_resched();
2472 	}
2473 	return index;
2474 }
2475 
2476 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2477 {
2478 	struct address_space *mapping = file->f_mapping;
2479 	struct inode *inode = mapping->host;
2480 	pgoff_t start, end;
2481 	loff_t new_offset;
2482 
2483 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2484 		return generic_file_llseek_size(file, offset, whence,
2485 					MAX_LFS_FILESIZE, i_size_read(inode));
2486 	inode_lock(inode);
2487 	/* We're holding i_mutex so we can access i_size directly */
2488 
2489 	if (offset < 0)
2490 		offset = -EINVAL;
2491 	else if (offset >= inode->i_size)
2492 		offset = -ENXIO;
2493 	else {
2494 		start = offset >> PAGE_SHIFT;
2495 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2496 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2497 		new_offset <<= PAGE_SHIFT;
2498 		if (new_offset > offset) {
2499 			if (new_offset < inode->i_size)
2500 				offset = new_offset;
2501 			else if (whence == SEEK_DATA)
2502 				offset = -ENXIO;
2503 			else
2504 				offset = inode->i_size;
2505 		}
2506 	}
2507 
2508 	if (offset >= 0)
2509 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2510 	inode_unlock(inode);
2511 	return offset;
2512 }
2513 
2514 /*
2515  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2516  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2517  */
2518 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2519 #define LAST_SCAN               4       /* about 150ms max */
2520 
2521 static void shmem_tag_pins(struct address_space *mapping)
2522 {
2523 	struct radix_tree_iter iter;
2524 	void **slot;
2525 	pgoff_t start;
2526 	struct page *page;
2527 
2528 	lru_add_drain();
2529 	start = 0;
2530 	rcu_read_lock();
2531 
2532 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2533 		page = radix_tree_deref_slot(slot);
2534 		if (!page || radix_tree_exception(page)) {
2535 			if (radix_tree_deref_retry(page)) {
2536 				slot = radix_tree_iter_retry(&iter);
2537 				continue;
2538 			}
2539 		} else if (page_count(page) - page_mapcount(page) > 1) {
2540 			spin_lock_irq(&mapping->tree_lock);
2541 			radix_tree_tag_set(&mapping->page_tree, iter.index,
2542 					   SHMEM_TAG_PINNED);
2543 			spin_unlock_irq(&mapping->tree_lock);
2544 		}
2545 
2546 		if (need_resched()) {
2547 			cond_resched_rcu();
2548 			slot = radix_tree_iter_next(&iter);
2549 		}
2550 	}
2551 	rcu_read_unlock();
2552 }
2553 
2554 /*
2555  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2556  * via get_user_pages(), drivers might have some pending I/O without any active
2557  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2558  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2559  * them to be dropped.
2560  * The caller must guarantee that no new user will acquire writable references
2561  * to those pages to avoid races.
2562  */
2563 static int shmem_wait_for_pins(struct address_space *mapping)
2564 {
2565 	struct radix_tree_iter iter;
2566 	void **slot;
2567 	pgoff_t start;
2568 	struct page *page;
2569 	int error, scan;
2570 
2571 	shmem_tag_pins(mapping);
2572 
2573 	error = 0;
2574 	for (scan = 0; scan <= LAST_SCAN; scan++) {
2575 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2576 			break;
2577 
2578 		if (!scan)
2579 			lru_add_drain_all();
2580 		else if (schedule_timeout_killable((HZ << scan) / 200))
2581 			scan = LAST_SCAN;
2582 
2583 		start = 0;
2584 		rcu_read_lock();
2585 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2586 					   start, SHMEM_TAG_PINNED) {
2587 
2588 			page = radix_tree_deref_slot(slot);
2589 			if (radix_tree_exception(page)) {
2590 				if (radix_tree_deref_retry(page)) {
2591 					slot = radix_tree_iter_retry(&iter);
2592 					continue;
2593 				}
2594 
2595 				page = NULL;
2596 			}
2597 
2598 			if (page &&
2599 			    page_count(page) - page_mapcount(page) != 1) {
2600 				if (scan < LAST_SCAN)
2601 					goto continue_resched;
2602 
2603 				/*
2604 				 * On the last scan, we clean up all those tags
2605 				 * we inserted; but make a note that we still
2606 				 * found pages pinned.
2607 				 */
2608 				error = -EBUSY;
2609 			}
2610 
2611 			spin_lock_irq(&mapping->tree_lock);
2612 			radix_tree_tag_clear(&mapping->page_tree,
2613 					     iter.index, SHMEM_TAG_PINNED);
2614 			spin_unlock_irq(&mapping->tree_lock);
2615 continue_resched:
2616 			if (need_resched()) {
2617 				cond_resched_rcu();
2618 				slot = radix_tree_iter_next(&iter);
2619 			}
2620 		}
2621 		rcu_read_unlock();
2622 	}
2623 
2624 	return error;
2625 }
2626 
2627 #define F_ALL_SEALS (F_SEAL_SEAL | \
2628 		     F_SEAL_SHRINK | \
2629 		     F_SEAL_GROW | \
2630 		     F_SEAL_WRITE)
2631 
2632 int shmem_add_seals(struct file *file, unsigned int seals)
2633 {
2634 	struct inode *inode = file_inode(file);
2635 	struct shmem_inode_info *info = SHMEM_I(inode);
2636 	int error;
2637 
2638 	/*
2639 	 * SEALING
2640 	 * Sealing allows multiple parties to share a shmem-file but restrict
2641 	 * access to a specific subset of file operations. Seals can only be
2642 	 * added, but never removed. This way, mutually untrusted parties can
2643 	 * share common memory regions with a well-defined policy. A malicious
2644 	 * peer can thus never perform unwanted operations on a shared object.
2645 	 *
2646 	 * Seals are only supported on special shmem-files and always affect
2647 	 * the whole underlying inode. Once a seal is set, it may prevent some
2648 	 * kinds of access to the file. Currently, the following seals are
2649 	 * defined:
2650 	 *   SEAL_SEAL: Prevent further seals from being set on this file
2651 	 *   SEAL_SHRINK: Prevent the file from shrinking
2652 	 *   SEAL_GROW: Prevent the file from growing
2653 	 *   SEAL_WRITE: Prevent write access to the file
2654 	 *
2655 	 * As we don't require any trust relationship between two parties, we
2656 	 * must prevent seals from being removed. Therefore, sealing a file
2657 	 * only adds a given set of seals to the file, it never touches
2658 	 * existing seals. Furthermore, the "setting seals"-operation can be
2659 	 * sealed itself, which basically prevents any further seal from being
2660 	 * added.
2661 	 *
2662 	 * Semantics of sealing are only defined on volatile files. Only
2663 	 * anonymous shmem files support sealing. More importantly, seals are
2664 	 * never written to disk. Therefore, there's no plan to support it on
2665 	 * other file types.
2666 	 */
2667 
2668 	if (file->f_op != &shmem_file_operations)
2669 		return -EINVAL;
2670 	if (!(file->f_mode & FMODE_WRITE))
2671 		return -EPERM;
2672 	if (seals & ~(unsigned int)F_ALL_SEALS)
2673 		return -EINVAL;
2674 
2675 	inode_lock(inode);
2676 
2677 	if (info->seals & F_SEAL_SEAL) {
2678 		error = -EPERM;
2679 		goto unlock;
2680 	}
2681 
2682 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2683 		error = mapping_deny_writable(file->f_mapping);
2684 		if (error)
2685 			goto unlock;
2686 
2687 		error = shmem_wait_for_pins(file->f_mapping);
2688 		if (error) {
2689 			mapping_allow_writable(file->f_mapping);
2690 			goto unlock;
2691 		}
2692 	}
2693 
2694 	info->seals |= seals;
2695 	error = 0;
2696 
2697 unlock:
2698 	inode_unlock(inode);
2699 	return error;
2700 }
2701 EXPORT_SYMBOL_GPL(shmem_add_seals);
2702 
2703 int shmem_get_seals(struct file *file)
2704 {
2705 	if (file->f_op != &shmem_file_operations)
2706 		return -EINVAL;
2707 
2708 	return SHMEM_I(file_inode(file))->seals;
2709 }
2710 EXPORT_SYMBOL_GPL(shmem_get_seals);
2711 
2712 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2713 {
2714 	long error;
2715 
2716 	switch (cmd) {
2717 	case F_ADD_SEALS:
2718 		/* disallow upper 32bit */
2719 		if (arg > UINT_MAX)
2720 			return -EINVAL;
2721 
2722 		error = shmem_add_seals(file, arg);
2723 		break;
2724 	case F_GET_SEALS:
2725 		error = shmem_get_seals(file);
2726 		break;
2727 	default:
2728 		error = -EINVAL;
2729 		break;
2730 	}
2731 
2732 	return error;
2733 }
2734 
2735 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2736 							 loff_t len)
2737 {
2738 	struct inode *inode = file_inode(file);
2739 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2740 	struct shmem_inode_info *info = SHMEM_I(inode);
2741 	struct shmem_falloc shmem_falloc;
2742 	pgoff_t start, index, end;
2743 	int error;
2744 
2745 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2746 		return -EOPNOTSUPP;
2747 
2748 	inode_lock(inode);
2749 
2750 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2751 		struct address_space *mapping = file->f_mapping;
2752 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2753 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2754 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2755 
2756 		/* protected by i_mutex */
2757 		if (info->seals & F_SEAL_WRITE) {
2758 			error = -EPERM;
2759 			goto out;
2760 		}
2761 
2762 		shmem_falloc.waitq = &shmem_falloc_waitq;
2763 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2764 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2765 		spin_lock(&inode->i_lock);
2766 		inode->i_private = &shmem_falloc;
2767 		spin_unlock(&inode->i_lock);
2768 
2769 		if ((u64)unmap_end > (u64)unmap_start)
2770 			unmap_mapping_range(mapping, unmap_start,
2771 					    1 + unmap_end - unmap_start, 0);
2772 		shmem_truncate_range(inode, offset, offset + len - 1);
2773 		/* No need to unmap again: hole-punching leaves COWed pages */
2774 
2775 		spin_lock(&inode->i_lock);
2776 		inode->i_private = NULL;
2777 		wake_up_all(&shmem_falloc_waitq);
2778 		spin_unlock(&inode->i_lock);
2779 		error = 0;
2780 		goto out;
2781 	}
2782 
2783 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2784 	error = inode_newsize_ok(inode, offset + len);
2785 	if (error)
2786 		goto out;
2787 
2788 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2789 		error = -EPERM;
2790 		goto out;
2791 	}
2792 
2793 	start = offset >> PAGE_SHIFT;
2794 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2795 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2796 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2797 		error = -ENOSPC;
2798 		goto out;
2799 	}
2800 
2801 	shmem_falloc.waitq = NULL;
2802 	shmem_falloc.start = start;
2803 	shmem_falloc.next  = start;
2804 	shmem_falloc.nr_falloced = 0;
2805 	shmem_falloc.nr_unswapped = 0;
2806 	spin_lock(&inode->i_lock);
2807 	inode->i_private = &shmem_falloc;
2808 	spin_unlock(&inode->i_lock);
2809 
2810 	for (index = start; index < end; index++) {
2811 		struct page *page;
2812 
2813 		/*
2814 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2815 		 * been interrupted because we are using up too much memory.
2816 		 */
2817 		if (signal_pending(current))
2818 			error = -EINTR;
2819 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2820 			error = -ENOMEM;
2821 		else
2822 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2823 		if (error) {
2824 			/* Remove the !PageUptodate pages we added */
2825 			if (index > start) {
2826 				shmem_undo_range(inode,
2827 				    (loff_t)start << PAGE_SHIFT,
2828 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2829 			}
2830 			goto undone;
2831 		}
2832 
2833 		/*
2834 		 * Inform shmem_writepage() how far we have reached.
2835 		 * No need for lock or barrier: we have the page lock.
2836 		 */
2837 		shmem_falloc.next++;
2838 		if (!PageUptodate(page))
2839 			shmem_falloc.nr_falloced++;
2840 
2841 		/*
2842 		 * If !PageUptodate, leave it that way so that freeable pages
2843 		 * can be recognized if we need to rollback on error later.
2844 		 * But set_page_dirty so that memory pressure will swap rather
2845 		 * than free the pages we are allocating (and SGP_CACHE pages
2846 		 * might still be clean: we now need to mark those dirty too).
2847 		 */
2848 		set_page_dirty(page);
2849 		unlock_page(page);
2850 		put_page(page);
2851 		cond_resched();
2852 	}
2853 
2854 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2855 		i_size_write(inode, offset + len);
2856 	inode->i_ctime = CURRENT_TIME;
2857 undone:
2858 	spin_lock(&inode->i_lock);
2859 	inode->i_private = NULL;
2860 	spin_unlock(&inode->i_lock);
2861 out:
2862 	inode_unlock(inode);
2863 	return error;
2864 }
2865 
2866 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2867 {
2868 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2869 
2870 	buf->f_type = TMPFS_MAGIC;
2871 	buf->f_bsize = PAGE_SIZE;
2872 	buf->f_namelen = NAME_MAX;
2873 	if (sbinfo->max_blocks) {
2874 		buf->f_blocks = sbinfo->max_blocks;
2875 		buf->f_bavail =
2876 		buf->f_bfree  = sbinfo->max_blocks -
2877 				percpu_counter_sum(&sbinfo->used_blocks);
2878 	}
2879 	if (sbinfo->max_inodes) {
2880 		buf->f_files = sbinfo->max_inodes;
2881 		buf->f_ffree = sbinfo->free_inodes;
2882 	}
2883 	/* else leave those fields 0 like simple_statfs */
2884 	return 0;
2885 }
2886 
2887 /*
2888  * File creation. Allocate an inode, and we're done..
2889  */
2890 static int
2891 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892 {
2893 	struct inode *inode;
2894 	int error = -ENOSPC;
2895 
2896 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2897 	if (inode) {
2898 		error = simple_acl_create(dir, inode);
2899 		if (error)
2900 			goto out_iput;
2901 		error = security_inode_init_security(inode, dir,
2902 						     &dentry->d_name,
2903 						     shmem_initxattrs, NULL);
2904 		if (error && error != -EOPNOTSUPP)
2905 			goto out_iput;
2906 
2907 		error = 0;
2908 		dir->i_size += BOGO_DIRENT_SIZE;
2909 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2910 		d_instantiate(dentry, inode);
2911 		dget(dentry); /* Extra count - pin the dentry in core */
2912 	}
2913 	return error;
2914 out_iput:
2915 	iput(inode);
2916 	return error;
2917 }
2918 
2919 static int
2920 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2921 {
2922 	struct inode *inode;
2923 	int error = -ENOSPC;
2924 
2925 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2926 	if (inode) {
2927 		error = security_inode_init_security(inode, dir,
2928 						     NULL,
2929 						     shmem_initxattrs, NULL);
2930 		if (error && error != -EOPNOTSUPP)
2931 			goto out_iput;
2932 		error = simple_acl_create(dir, inode);
2933 		if (error)
2934 			goto out_iput;
2935 		d_tmpfile(dentry, inode);
2936 	}
2937 	return error;
2938 out_iput:
2939 	iput(inode);
2940 	return error;
2941 }
2942 
2943 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2944 {
2945 	int error;
2946 
2947 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2948 		return error;
2949 	inc_nlink(dir);
2950 	return 0;
2951 }
2952 
2953 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2954 		bool excl)
2955 {
2956 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2957 }
2958 
2959 /*
2960  * Link a file..
2961  */
2962 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2963 {
2964 	struct inode *inode = d_inode(old_dentry);
2965 	int ret;
2966 
2967 	/*
2968 	 * No ordinary (disk based) filesystem counts links as inodes;
2969 	 * but each new link needs a new dentry, pinning lowmem, and
2970 	 * tmpfs dentries cannot be pruned until they are unlinked.
2971 	 */
2972 	ret = shmem_reserve_inode(inode->i_sb);
2973 	if (ret)
2974 		goto out;
2975 
2976 	dir->i_size += BOGO_DIRENT_SIZE;
2977 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2978 	inc_nlink(inode);
2979 	ihold(inode);	/* New dentry reference */
2980 	dget(dentry);		/* Extra pinning count for the created dentry */
2981 	d_instantiate(dentry, inode);
2982 out:
2983 	return ret;
2984 }
2985 
2986 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2987 {
2988 	struct inode *inode = d_inode(dentry);
2989 
2990 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2991 		shmem_free_inode(inode->i_sb);
2992 
2993 	dir->i_size -= BOGO_DIRENT_SIZE;
2994 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2995 	drop_nlink(inode);
2996 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2997 	return 0;
2998 }
2999 
3000 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3001 {
3002 	if (!simple_empty(dentry))
3003 		return -ENOTEMPTY;
3004 
3005 	drop_nlink(d_inode(dentry));
3006 	drop_nlink(dir);
3007 	return shmem_unlink(dir, dentry);
3008 }
3009 
3010 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3011 {
3012 	bool old_is_dir = d_is_dir(old_dentry);
3013 	bool new_is_dir = d_is_dir(new_dentry);
3014 
3015 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3016 		if (old_is_dir) {
3017 			drop_nlink(old_dir);
3018 			inc_nlink(new_dir);
3019 		} else {
3020 			drop_nlink(new_dir);
3021 			inc_nlink(old_dir);
3022 		}
3023 	}
3024 	old_dir->i_ctime = old_dir->i_mtime =
3025 	new_dir->i_ctime = new_dir->i_mtime =
3026 	d_inode(old_dentry)->i_ctime =
3027 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
3028 
3029 	return 0;
3030 }
3031 
3032 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3033 {
3034 	struct dentry *whiteout;
3035 	int error;
3036 
3037 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3038 	if (!whiteout)
3039 		return -ENOMEM;
3040 
3041 	error = shmem_mknod(old_dir, whiteout,
3042 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3043 	dput(whiteout);
3044 	if (error)
3045 		return error;
3046 
3047 	/*
3048 	 * Cheat and hash the whiteout while the old dentry is still in
3049 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3050 	 *
3051 	 * d_lookup() will consistently find one of them at this point,
3052 	 * not sure which one, but that isn't even important.
3053 	 */
3054 	d_rehash(whiteout);
3055 	return 0;
3056 }
3057 
3058 /*
3059  * The VFS layer already does all the dentry stuff for rename,
3060  * we just have to decrement the usage count for the target if
3061  * it exists so that the VFS layer correctly free's it when it
3062  * gets overwritten.
3063  */
3064 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3065 {
3066 	struct inode *inode = d_inode(old_dentry);
3067 	int they_are_dirs = S_ISDIR(inode->i_mode);
3068 
3069 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3070 		return -EINVAL;
3071 
3072 	if (flags & RENAME_EXCHANGE)
3073 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3074 
3075 	if (!simple_empty(new_dentry))
3076 		return -ENOTEMPTY;
3077 
3078 	if (flags & RENAME_WHITEOUT) {
3079 		int error;
3080 
3081 		error = shmem_whiteout(old_dir, old_dentry);
3082 		if (error)
3083 			return error;
3084 	}
3085 
3086 	if (d_really_is_positive(new_dentry)) {
3087 		(void) shmem_unlink(new_dir, new_dentry);
3088 		if (they_are_dirs) {
3089 			drop_nlink(d_inode(new_dentry));
3090 			drop_nlink(old_dir);
3091 		}
3092 	} else if (they_are_dirs) {
3093 		drop_nlink(old_dir);
3094 		inc_nlink(new_dir);
3095 	}
3096 
3097 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3098 	new_dir->i_size += BOGO_DIRENT_SIZE;
3099 	old_dir->i_ctime = old_dir->i_mtime =
3100 	new_dir->i_ctime = new_dir->i_mtime =
3101 	inode->i_ctime = CURRENT_TIME;
3102 	return 0;
3103 }
3104 
3105 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3106 {
3107 	int error;
3108 	int len;
3109 	struct inode *inode;
3110 	struct page *page;
3111 	struct shmem_inode_info *info;
3112 
3113 	len = strlen(symname) + 1;
3114 	if (len > PAGE_SIZE)
3115 		return -ENAMETOOLONG;
3116 
3117 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3118 	if (!inode)
3119 		return -ENOSPC;
3120 
3121 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3122 					     shmem_initxattrs, NULL);
3123 	if (error) {
3124 		if (error != -EOPNOTSUPP) {
3125 			iput(inode);
3126 			return error;
3127 		}
3128 		error = 0;
3129 	}
3130 
3131 	info = SHMEM_I(inode);
3132 	inode->i_size = len-1;
3133 	if (len <= SHORT_SYMLINK_LEN) {
3134 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3135 		if (!inode->i_link) {
3136 			iput(inode);
3137 			return -ENOMEM;
3138 		}
3139 		inode->i_op = &shmem_short_symlink_operations;
3140 	} else {
3141 		inode_nohighmem(inode);
3142 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3143 		if (error) {
3144 			iput(inode);
3145 			return error;
3146 		}
3147 		inode->i_mapping->a_ops = &shmem_aops;
3148 		inode->i_op = &shmem_symlink_inode_operations;
3149 		memcpy(page_address(page), symname, len);
3150 		SetPageUptodate(page);
3151 		set_page_dirty(page);
3152 		unlock_page(page);
3153 		put_page(page);
3154 	}
3155 	dir->i_size += BOGO_DIRENT_SIZE;
3156 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
3157 	d_instantiate(dentry, inode);
3158 	dget(dentry);
3159 	return 0;
3160 }
3161 
3162 static void shmem_put_link(void *arg)
3163 {
3164 	mark_page_accessed(arg);
3165 	put_page(arg);
3166 }
3167 
3168 static const char *shmem_get_link(struct dentry *dentry,
3169 				  struct inode *inode,
3170 				  struct delayed_call *done)
3171 {
3172 	struct page *page = NULL;
3173 	int error;
3174 	if (!dentry) {
3175 		page = find_get_page(inode->i_mapping, 0);
3176 		if (!page)
3177 			return ERR_PTR(-ECHILD);
3178 		if (!PageUptodate(page)) {
3179 			put_page(page);
3180 			return ERR_PTR(-ECHILD);
3181 		}
3182 	} else {
3183 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3184 		if (error)
3185 			return ERR_PTR(error);
3186 		unlock_page(page);
3187 	}
3188 	set_delayed_call(done, shmem_put_link, page);
3189 	return page_address(page);
3190 }
3191 
3192 #ifdef CONFIG_TMPFS_XATTR
3193 /*
3194  * Superblocks without xattr inode operations may get some security.* xattr
3195  * support from the LSM "for free". As soon as we have any other xattrs
3196  * like ACLs, we also need to implement the security.* handlers at
3197  * filesystem level, though.
3198  */
3199 
3200 /*
3201  * Callback for security_inode_init_security() for acquiring xattrs.
3202  */
3203 static int shmem_initxattrs(struct inode *inode,
3204 			    const struct xattr *xattr_array,
3205 			    void *fs_info)
3206 {
3207 	struct shmem_inode_info *info = SHMEM_I(inode);
3208 	const struct xattr *xattr;
3209 	struct simple_xattr *new_xattr;
3210 	size_t len;
3211 
3212 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3213 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3214 		if (!new_xattr)
3215 			return -ENOMEM;
3216 
3217 		len = strlen(xattr->name) + 1;
3218 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3219 					  GFP_KERNEL);
3220 		if (!new_xattr->name) {
3221 			kfree(new_xattr);
3222 			return -ENOMEM;
3223 		}
3224 
3225 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3226 		       XATTR_SECURITY_PREFIX_LEN);
3227 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3228 		       xattr->name, len);
3229 
3230 		simple_xattr_list_add(&info->xattrs, new_xattr);
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3237 				   struct dentry *unused, struct inode *inode,
3238 				   const char *name, void *buffer, size_t size)
3239 {
3240 	struct shmem_inode_info *info = SHMEM_I(inode);
3241 
3242 	name = xattr_full_name(handler, name);
3243 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3244 }
3245 
3246 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3247 				   struct dentry *unused, struct inode *inode,
3248 				   const char *name, const void *value,
3249 				   size_t size, int flags)
3250 {
3251 	struct shmem_inode_info *info = SHMEM_I(inode);
3252 
3253 	name = xattr_full_name(handler, name);
3254 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3255 }
3256 
3257 static const struct xattr_handler shmem_security_xattr_handler = {
3258 	.prefix = XATTR_SECURITY_PREFIX,
3259 	.get = shmem_xattr_handler_get,
3260 	.set = shmem_xattr_handler_set,
3261 };
3262 
3263 static const struct xattr_handler shmem_trusted_xattr_handler = {
3264 	.prefix = XATTR_TRUSTED_PREFIX,
3265 	.get = shmem_xattr_handler_get,
3266 	.set = shmem_xattr_handler_set,
3267 };
3268 
3269 static const struct xattr_handler *shmem_xattr_handlers[] = {
3270 #ifdef CONFIG_TMPFS_POSIX_ACL
3271 	&posix_acl_access_xattr_handler,
3272 	&posix_acl_default_xattr_handler,
3273 #endif
3274 	&shmem_security_xattr_handler,
3275 	&shmem_trusted_xattr_handler,
3276 	NULL
3277 };
3278 
3279 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3280 {
3281 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3282 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3283 }
3284 #endif /* CONFIG_TMPFS_XATTR */
3285 
3286 static const struct inode_operations shmem_short_symlink_operations = {
3287 	.readlink	= generic_readlink,
3288 	.get_link	= simple_get_link,
3289 #ifdef CONFIG_TMPFS_XATTR
3290 	.setxattr	= generic_setxattr,
3291 	.getxattr	= generic_getxattr,
3292 	.listxattr	= shmem_listxattr,
3293 	.removexattr	= generic_removexattr,
3294 #endif
3295 };
3296 
3297 static const struct inode_operations shmem_symlink_inode_operations = {
3298 	.readlink	= generic_readlink,
3299 	.get_link	= shmem_get_link,
3300 #ifdef CONFIG_TMPFS_XATTR
3301 	.setxattr	= generic_setxattr,
3302 	.getxattr	= generic_getxattr,
3303 	.listxattr	= shmem_listxattr,
3304 	.removexattr	= generic_removexattr,
3305 #endif
3306 };
3307 
3308 static struct dentry *shmem_get_parent(struct dentry *child)
3309 {
3310 	return ERR_PTR(-ESTALE);
3311 }
3312 
3313 static int shmem_match(struct inode *ino, void *vfh)
3314 {
3315 	__u32 *fh = vfh;
3316 	__u64 inum = fh[2];
3317 	inum = (inum << 32) | fh[1];
3318 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3319 }
3320 
3321 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3322 		struct fid *fid, int fh_len, int fh_type)
3323 {
3324 	struct inode *inode;
3325 	struct dentry *dentry = NULL;
3326 	u64 inum;
3327 
3328 	if (fh_len < 3)
3329 		return NULL;
3330 
3331 	inum = fid->raw[2];
3332 	inum = (inum << 32) | fid->raw[1];
3333 
3334 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3335 			shmem_match, fid->raw);
3336 	if (inode) {
3337 		dentry = d_find_alias(inode);
3338 		iput(inode);
3339 	}
3340 
3341 	return dentry;
3342 }
3343 
3344 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3345 				struct inode *parent)
3346 {
3347 	if (*len < 3) {
3348 		*len = 3;
3349 		return FILEID_INVALID;
3350 	}
3351 
3352 	if (inode_unhashed(inode)) {
3353 		/* Unfortunately insert_inode_hash is not idempotent,
3354 		 * so as we hash inodes here rather than at creation
3355 		 * time, we need a lock to ensure we only try
3356 		 * to do it once
3357 		 */
3358 		static DEFINE_SPINLOCK(lock);
3359 		spin_lock(&lock);
3360 		if (inode_unhashed(inode))
3361 			__insert_inode_hash(inode,
3362 					    inode->i_ino + inode->i_generation);
3363 		spin_unlock(&lock);
3364 	}
3365 
3366 	fh[0] = inode->i_generation;
3367 	fh[1] = inode->i_ino;
3368 	fh[2] = ((__u64)inode->i_ino) >> 32;
3369 
3370 	*len = 3;
3371 	return 1;
3372 }
3373 
3374 static const struct export_operations shmem_export_ops = {
3375 	.get_parent     = shmem_get_parent,
3376 	.encode_fh      = shmem_encode_fh,
3377 	.fh_to_dentry	= shmem_fh_to_dentry,
3378 };
3379 
3380 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3381 			       bool remount)
3382 {
3383 	char *this_char, *value, *rest;
3384 	struct mempolicy *mpol = NULL;
3385 	uid_t uid;
3386 	gid_t gid;
3387 
3388 	while (options != NULL) {
3389 		this_char = options;
3390 		for (;;) {
3391 			/*
3392 			 * NUL-terminate this option: unfortunately,
3393 			 * mount options form a comma-separated list,
3394 			 * but mpol's nodelist may also contain commas.
3395 			 */
3396 			options = strchr(options, ',');
3397 			if (options == NULL)
3398 				break;
3399 			options++;
3400 			if (!isdigit(*options)) {
3401 				options[-1] = '\0';
3402 				break;
3403 			}
3404 		}
3405 		if (!*this_char)
3406 			continue;
3407 		if ((value = strchr(this_char,'=')) != NULL) {
3408 			*value++ = 0;
3409 		} else {
3410 			pr_err("tmpfs: No value for mount option '%s'\n",
3411 			       this_char);
3412 			goto error;
3413 		}
3414 
3415 		if (!strcmp(this_char,"size")) {
3416 			unsigned long long size;
3417 			size = memparse(value,&rest);
3418 			if (*rest == '%') {
3419 				size <<= PAGE_SHIFT;
3420 				size *= totalram_pages;
3421 				do_div(size, 100);
3422 				rest++;
3423 			}
3424 			if (*rest)
3425 				goto bad_val;
3426 			sbinfo->max_blocks =
3427 				DIV_ROUND_UP(size, PAGE_SIZE);
3428 		} else if (!strcmp(this_char,"nr_blocks")) {
3429 			sbinfo->max_blocks = memparse(value, &rest);
3430 			if (*rest)
3431 				goto bad_val;
3432 		} else if (!strcmp(this_char,"nr_inodes")) {
3433 			sbinfo->max_inodes = memparse(value, &rest);
3434 			if (*rest)
3435 				goto bad_val;
3436 		} else if (!strcmp(this_char,"mode")) {
3437 			if (remount)
3438 				continue;
3439 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3440 			if (*rest)
3441 				goto bad_val;
3442 		} else if (!strcmp(this_char,"uid")) {
3443 			if (remount)
3444 				continue;
3445 			uid = simple_strtoul(value, &rest, 0);
3446 			if (*rest)
3447 				goto bad_val;
3448 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3449 			if (!uid_valid(sbinfo->uid))
3450 				goto bad_val;
3451 		} else if (!strcmp(this_char,"gid")) {
3452 			if (remount)
3453 				continue;
3454 			gid = simple_strtoul(value, &rest, 0);
3455 			if (*rest)
3456 				goto bad_val;
3457 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3458 			if (!gid_valid(sbinfo->gid))
3459 				goto bad_val;
3460 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3461 		} else if (!strcmp(this_char, "huge")) {
3462 			int huge;
3463 			huge = shmem_parse_huge(value);
3464 			if (huge < 0)
3465 				goto bad_val;
3466 			if (!has_transparent_hugepage() &&
3467 					huge != SHMEM_HUGE_NEVER)
3468 				goto bad_val;
3469 			sbinfo->huge = huge;
3470 #endif
3471 #ifdef CONFIG_NUMA
3472 		} else if (!strcmp(this_char,"mpol")) {
3473 			mpol_put(mpol);
3474 			mpol = NULL;
3475 			if (mpol_parse_str(value, &mpol))
3476 				goto bad_val;
3477 #endif
3478 		} else {
3479 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3480 			goto error;
3481 		}
3482 	}
3483 	sbinfo->mpol = mpol;
3484 	return 0;
3485 
3486 bad_val:
3487 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3488 	       value, this_char);
3489 error:
3490 	mpol_put(mpol);
3491 	return 1;
3492 
3493 }
3494 
3495 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3496 {
3497 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3498 	struct shmem_sb_info config = *sbinfo;
3499 	unsigned long inodes;
3500 	int error = -EINVAL;
3501 
3502 	config.mpol = NULL;
3503 	if (shmem_parse_options(data, &config, true))
3504 		return error;
3505 
3506 	spin_lock(&sbinfo->stat_lock);
3507 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3508 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3509 		goto out;
3510 	if (config.max_inodes < inodes)
3511 		goto out;
3512 	/*
3513 	 * Those tests disallow limited->unlimited while any are in use;
3514 	 * but we must separately disallow unlimited->limited, because
3515 	 * in that case we have no record of how much is already in use.
3516 	 */
3517 	if (config.max_blocks && !sbinfo->max_blocks)
3518 		goto out;
3519 	if (config.max_inodes && !sbinfo->max_inodes)
3520 		goto out;
3521 
3522 	error = 0;
3523 	sbinfo->huge = config.huge;
3524 	sbinfo->max_blocks  = config.max_blocks;
3525 	sbinfo->max_inodes  = config.max_inodes;
3526 	sbinfo->free_inodes = config.max_inodes - inodes;
3527 
3528 	/*
3529 	 * Preserve previous mempolicy unless mpol remount option was specified.
3530 	 */
3531 	if (config.mpol) {
3532 		mpol_put(sbinfo->mpol);
3533 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3534 	}
3535 out:
3536 	spin_unlock(&sbinfo->stat_lock);
3537 	return error;
3538 }
3539 
3540 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3541 {
3542 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3543 
3544 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3545 		seq_printf(seq, ",size=%luk",
3546 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3547 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3548 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3549 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3550 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3551 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3552 		seq_printf(seq, ",uid=%u",
3553 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3554 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3555 		seq_printf(seq, ",gid=%u",
3556 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3557 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3558 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3559 	if (sbinfo->huge)
3560 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3561 #endif
3562 	shmem_show_mpol(seq, sbinfo->mpol);
3563 	return 0;
3564 }
3565 
3566 #define MFD_NAME_PREFIX "memfd:"
3567 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3568 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3569 
3570 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3571 
3572 SYSCALL_DEFINE2(memfd_create,
3573 		const char __user *, uname,
3574 		unsigned int, flags)
3575 {
3576 	struct shmem_inode_info *info;
3577 	struct file *file;
3578 	int fd, error;
3579 	char *name;
3580 	long len;
3581 
3582 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3583 		return -EINVAL;
3584 
3585 	/* length includes terminating zero */
3586 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3587 	if (len <= 0)
3588 		return -EFAULT;
3589 	if (len > MFD_NAME_MAX_LEN + 1)
3590 		return -EINVAL;
3591 
3592 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3593 	if (!name)
3594 		return -ENOMEM;
3595 
3596 	strcpy(name, MFD_NAME_PREFIX);
3597 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3598 		error = -EFAULT;
3599 		goto err_name;
3600 	}
3601 
3602 	/* terminating-zero may have changed after strnlen_user() returned */
3603 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3604 		error = -EFAULT;
3605 		goto err_name;
3606 	}
3607 
3608 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3609 	if (fd < 0) {
3610 		error = fd;
3611 		goto err_name;
3612 	}
3613 
3614 	file = shmem_file_setup(name, 0, VM_NORESERVE);
3615 	if (IS_ERR(file)) {
3616 		error = PTR_ERR(file);
3617 		goto err_fd;
3618 	}
3619 	info = SHMEM_I(file_inode(file));
3620 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3621 	file->f_flags |= O_RDWR | O_LARGEFILE;
3622 	if (flags & MFD_ALLOW_SEALING)
3623 		info->seals &= ~F_SEAL_SEAL;
3624 
3625 	fd_install(fd, file);
3626 	kfree(name);
3627 	return fd;
3628 
3629 err_fd:
3630 	put_unused_fd(fd);
3631 err_name:
3632 	kfree(name);
3633 	return error;
3634 }
3635 
3636 #endif /* CONFIG_TMPFS */
3637 
3638 static void shmem_put_super(struct super_block *sb)
3639 {
3640 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3641 
3642 	percpu_counter_destroy(&sbinfo->used_blocks);
3643 	mpol_put(sbinfo->mpol);
3644 	kfree(sbinfo);
3645 	sb->s_fs_info = NULL;
3646 }
3647 
3648 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3649 {
3650 	struct inode *inode;
3651 	struct shmem_sb_info *sbinfo;
3652 	int err = -ENOMEM;
3653 
3654 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3655 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3656 				L1_CACHE_BYTES), GFP_KERNEL);
3657 	if (!sbinfo)
3658 		return -ENOMEM;
3659 
3660 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3661 	sbinfo->uid = current_fsuid();
3662 	sbinfo->gid = current_fsgid();
3663 	sb->s_fs_info = sbinfo;
3664 
3665 #ifdef CONFIG_TMPFS
3666 	/*
3667 	 * Per default we only allow half of the physical ram per
3668 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3669 	 * but the internal instance is left unlimited.
3670 	 */
3671 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3672 		sbinfo->max_blocks = shmem_default_max_blocks();
3673 		sbinfo->max_inodes = shmem_default_max_inodes();
3674 		if (shmem_parse_options(data, sbinfo, false)) {
3675 			err = -EINVAL;
3676 			goto failed;
3677 		}
3678 	} else {
3679 		sb->s_flags |= MS_NOUSER;
3680 	}
3681 	sb->s_export_op = &shmem_export_ops;
3682 	sb->s_flags |= MS_NOSEC;
3683 #else
3684 	sb->s_flags |= MS_NOUSER;
3685 #endif
3686 
3687 	spin_lock_init(&sbinfo->stat_lock);
3688 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3689 		goto failed;
3690 	sbinfo->free_inodes = sbinfo->max_inodes;
3691 	spin_lock_init(&sbinfo->shrinklist_lock);
3692 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3693 
3694 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3695 	sb->s_blocksize = PAGE_SIZE;
3696 	sb->s_blocksize_bits = PAGE_SHIFT;
3697 	sb->s_magic = TMPFS_MAGIC;
3698 	sb->s_op = &shmem_ops;
3699 	sb->s_time_gran = 1;
3700 #ifdef CONFIG_TMPFS_XATTR
3701 	sb->s_xattr = shmem_xattr_handlers;
3702 #endif
3703 #ifdef CONFIG_TMPFS_POSIX_ACL
3704 	sb->s_flags |= MS_POSIXACL;
3705 #endif
3706 
3707 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3708 	if (!inode)
3709 		goto failed;
3710 	inode->i_uid = sbinfo->uid;
3711 	inode->i_gid = sbinfo->gid;
3712 	sb->s_root = d_make_root(inode);
3713 	if (!sb->s_root)
3714 		goto failed;
3715 	return 0;
3716 
3717 failed:
3718 	shmem_put_super(sb);
3719 	return err;
3720 }
3721 
3722 static struct kmem_cache *shmem_inode_cachep;
3723 
3724 static struct inode *shmem_alloc_inode(struct super_block *sb)
3725 {
3726 	struct shmem_inode_info *info;
3727 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3728 	if (!info)
3729 		return NULL;
3730 	return &info->vfs_inode;
3731 }
3732 
3733 static void shmem_destroy_callback(struct rcu_head *head)
3734 {
3735 	struct inode *inode = container_of(head, struct inode, i_rcu);
3736 	if (S_ISLNK(inode->i_mode))
3737 		kfree(inode->i_link);
3738 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3739 }
3740 
3741 static void shmem_destroy_inode(struct inode *inode)
3742 {
3743 	if (S_ISREG(inode->i_mode))
3744 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3745 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3746 }
3747 
3748 static void shmem_init_inode(void *foo)
3749 {
3750 	struct shmem_inode_info *info = foo;
3751 	inode_init_once(&info->vfs_inode);
3752 }
3753 
3754 static int shmem_init_inodecache(void)
3755 {
3756 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3757 				sizeof(struct shmem_inode_info),
3758 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3759 	return 0;
3760 }
3761 
3762 static void shmem_destroy_inodecache(void)
3763 {
3764 	kmem_cache_destroy(shmem_inode_cachep);
3765 }
3766 
3767 static const struct address_space_operations shmem_aops = {
3768 	.writepage	= shmem_writepage,
3769 	.set_page_dirty	= __set_page_dirty_no_writeback,
3770 #ifdef CONFIG_TMPFS
3771 	.write_begin	= shmem_write_begin,
3772 	.write_end	= shmem_write_end,
3773 #endif
3774 #ifdef CONFIG_MIGRATION
3775 	.migratepage	= migrate_page,
3776 #endif
3777 	.error_remove_page = generic_error_remove_page,
3778 };
3779 
3780 static const struct file_operations shmem_file_operations = {
3781 	.mmap		= shmem_mmap,
3782 	.get_unmapped_area = shmem_get_unmapped_area,
3783 #ifdef CONFIG_TMPFS
3784 	.llseek		= shmem_file_llseek,
3785 	.read_iter	= shmem_file_read_iter,
3786 	.write_iter	= generic_file_write_iter,
3787 	.fsync		= noop_fsync,
3788 	.splice_read	= shmem_file_splice_read,
3789 	.splice_write	= iter_file_splice_write,
3790 	.fallocate	= shmem_fallocate,
3791 #endif
3792 };
3793 
3794 static const struct inode_operations shmem_inode_operations = {
3795 	.getattr	= shmem_getattr,
3796 	.setattr	= shmem_setattr,
3797 #ifdef CONFIG_TMPFS_XATTR
3798 	.setxattr	= generic_setxattr,
3799 	.getxattr	= generic_getxattr,
3800 	.listxattr	= shmem_listxattr,
3801 	.removexattr	= generic_removexattr,
3802 	.set_acl	= simple_set_acl,
3803 #endif
3804 };
3805 
3806 static const struct inode_operations shmem_dir_inode_operations = {
3807 #ifdef CONFIG_TMPFS
3808 	.create		= shmem_create,
3809 	.lookup		= simple_lookup,
3810 	.link		= shmem_link,
3811 	.unlink		= shmem_unlink,
3812 	.symlink	= shmem_symlink,
3813 	.mkdir		= shmem_mkdir,
3814 	.rmdir		= shmem_rmdir,
3815 	.mknod		= shmem_mknod,
3816 	.rename2	= shmem_rename2,
3817 	.tmpfile	= shmem_tmpfile,
3818 #endif
3819 #ifdef CONFIG_TMPFS_XATTR
3820 	.setxattr	= generic_setxattr,
3821 	.getxattr	= generic_getxattr,
3822 	.listxattr	= shmem_listxattr,
3823 	.removexattr	= generic_removexattr,
3824 #endif
3825 #ifdef CONFIG_TMPFS_POSIX_ACL
3826 	.setattr	= shmem_setattr,
3827 	.set_acl	= simple_set_acl,
3828 #endif
3829 };
3830 
3831 static const struct inode_operations shmem_special_inode_operations = {
3832 #ifdef CONFIG_TMPFS_XATTR
3833 	.setxattr	= generic_setxattr,
3834 	.getxattr	= generic_getxattr,
3835 	.listxattr	= shmem_listxattr,
3836 	.removexattr	= generic_removexattr,
3837 #endif
3838 #ifdef CONFIG_TMPFS_POSIX_ACL
3839 	.setattr	= shmem_setattr,
3840 	.set_acl	= simple_set_acl,
3841 #endif
3842 };
3843 
3844 static const struct super_operations shmem_ops = {
3845 	.alloc_inode	= shmem_alloc_inode,
3846 	.destroy_inode	= shmem_destroy_inode,
3847 #ifdef CONFIG_TMPFS
3848 	.statfs		= shmem_statfs,
3849 	.remount_fs	= shmem_remount_fs,
3850 	.show_options	= shmem_show_options,
3851 #endif
3852 	.evict_inode	= shmem_evict_inode,
3853 	.drop_inode	= generic_delete_inode,
3854 	.put_super	= shmem_put_super,
3855 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3856 	.nr_cached_objects	= shmem_unused_huge_count,
3857 	.free_cached_objects	= shmem_unused_huge_scan,
3858 #endif
3859 };
3860 
3861 static const struct vm_operations_struct shmem_vm_ops = {
3862 	.fault		= shmem_fault,
3863 	.map_pages	= filemap_map_pages,
3864 #ifdef CONFIG_NUMA
3865 	.set_policy     = shmem_set_policy,
3866 	.get_policy     = shmem_get_policy,
3867 #endif
3868 };
3869 
3870 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3871 	int flags, const char *dev_name, void *data)
3872 {
3873 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3874 }
3875 
3876 static struct file_system_type shmem_fs_type = {
3877 	.owner		= THIS_MODULE,
3878 	.name		= "tmpfs",
3879 	.mount		= shmem_mount,
3880 	.kill_sb	= kill_litter_super,
3881 	.fs_flags	= FS_USERNS_MOUNT,
3882 };
3883 
3884 int __init shmem_init(void)
3885 {
3886 	int error;
3887 
3888 	/* If rootfs called this, don't re-init */
3889 	if (shmem_inode_cachep)
3890 		return 0;
3891 
3892 	error = shmem_init_inodecache();
3893 	if (error)
3894 		goto out3;
3895 
3896 	error = register_filesystem(&shmem_fs_type);
3897 	if (error) {
3898 		pr_err("Could not register tmpfs\n");
3899 		goto out2;
3900 	}
3901 
3902 	shm_mnt = kern_mount(&shmem_fs_type);
3903 	if (IS_ERR(shm_mnt)) {
3904 		error = PTR_ERR(shm_mnt);
3905 		pr_err("Could not kern_mount tmpfs\n");
3906 		goto out1;
3907 	}
3908 
3909 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3910 	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3911 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3912 	else
3913 		shmem_huge = 0; /* just in case it was patched */
3914 #endif
3915 	return 0;
3916 
3917 out1:
3918 	unregister_filesystem(&shmem_fs_type);
3919 out2:
3920 	shmem_destroy_inodecache();
3921 out3:
3922 	shm_mnt = ERR_PTR(error);
3923 	return error;
3924 }
3925 
3926 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3927 static ssize_t shmem_enabled_show(struct kobject *kobj,
3928 		struct kobj_attribute *attr, char *buf)
3929 {
3930 	int values[] = {
3931 		SHMEM_HUGE_ALWAYS,
3932 		SHMEM_HUGE_WITHIN_SIZE,
3933 		SHMEM_HUGE_ADVISE,
3934 		SHMEM_HUGE_NEVER,
3935 		SHMEM_HUGE_DENY,
3936 		SHMEM_HUGE_FORCE,
3937 	};
3938 	int i, count;
3939 
3940 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3941 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3942 
3943 		count += sprintf(buf + count, fmt,
3944 				shmem_format_huge(values[i]));
3945 	}
3946 	buf[count - 1] = '\n';
3947 	return count;
3948 }
3949 
3950 static ssize_t shmem_enabled_store(struct kobject *kobj,
3951 		struct kobj_attribute *attr, const char *buf, size_t count)
3952 {
3953 	char tmp[16];
3954 	int huge;
3955 
3956 	if (count + 1 > sizeof(tmp))
3957 		return -EINVAL;
3958 	memcpy(tmp, buf, count);
3959 	tmp[count] = '\0';
3960 	if (count && tmp[count - 1] == '\n')
3961 		tmp[count - 1] = '\0';
3962 
3963 	huge = shmem_parse_huge(tmp);
3964 	if (huge == -EINVAL)
3965 		return -EINVAL;
3966 	if (!has_transparent_hugepage() &&
3967 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3968 		return -EINVAL;
3969 
3970 	shmem_huge = huge;
3971 	if (shmem_huge < SHMEM_HUGE_DENY)
3972 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3973 	return count;
3974 }
3975 
3976 struct kobj_attribute shmem_enabled_attr =
3977 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3978 
3979 bool shmem_huge_enabled(struct vm_area_struct *vma)
3980 {
3981 	struct inode *inode = file_inode(vma->vm_file);
3982 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3983 	loff_t i_size;
3984 	pgoff_t off;
3985 
3986 	if (shmem_huge == SHMEM_HUGE_FORCE)
3987 		return true;
3988 	if (shmem_huge == SHMEM_HUGE_DENY)
3989 		return false;
3990 	switch (sbinfo->huge) {
3991 		case SHMEM_HUGE_NEVER:
3992 			return false;
3993 		case SHMEM_HUGE_ALWAYS:
3994 			return true;
3995 		case SHMEM_HUGE_WITHIN_SIZE:
3996 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3997 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3998 			if (i_size >= HPAGE_PMD_SIZE &&
3999 					i_size >> PAGE_SHIFT >= off)
4000 				return true;
4001 		case SHMEM_HUGE_ADVISE:
4002 			/* TODO: implement fadvise() hints */
4003 			return (vma->vm_flags & VM_HUGEPAGE);
4004 		default:
4005 			VM_BUG_ON(1);
4006 			return false;
4007 	}
4008 }
4009 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4010 
4011 #else /* !CONFIG_SHMEM */
4012 
4013 /*
4014  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4015  *
4016  * This is intended for small system where the benefits of the full
4017  * shmem code (swap-backed and resource-limited) are outweighed by
4018  * their complexity. On systems without swap this code should be
4019  * effectively equivalent, but much lighter weight.
4020  */
4021 
4022 static struct file_system_type shmem_fs_type = {
4023 	.name		= "tmpfs",
4024 	.mount		= ramfs_mount,
4025 	.kill_sb	= kill_litter_super,
4026 	.fs_flags	= FS_USERNS_MOUNT,
4027 };
4028 
4029 int __init shmem_init(void)
4030 {
4031 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4032 
4033 	shm_mnt = kern_mount(&shmem_fs_type);
4034 	BUG_ON(IS_ERR(shm_mnt));
4035 
4036 	return 0;
4037 }
4038 
4039 int shmem_unuse(swp_entry_t swap, struct page *page)
4040 {
4041 	return 0;
4042 }
4043 
4044 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4045 {
4046 	return 0;
4047 }
4048 
4049 void shmem_unlock_mapping(struct address_space *mapping)
4050 {
4051 }
4052 
4053 #ifdef CONFIG_MMU
4054 unsigned long shmem_get_unmapped_area(struct file *file,
4055 				      unsigned long addr, unsigned long len,
4056 				      unsigned long pgoff, unsigned long flags)
4057 {
4058 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4059 }
4060 #endif
4061 
4062 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4063 {
4064 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4065 }
4066 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4067 
4068 #define shmem_vm_ops				generic_file_vm_ops
4069 #define shmem_file_operations			ramfs_file_operations
4070 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4071 #define shmem_acct_size(flags, size)		0
4072 #define shmem_unacct_size(flags, size)		do {} while (0)
4073 
4074 #endif /* CONFIG_SHMEM */
4075 
4076 /* common code */
4077 
4078 static struct dentry_operations anon_ops = {
4079 	.d_dname = simple_dname
4080 };
4081 
4082 static struct file *__shmem_file_setup(const char *name, loff_t size,
4083 				       unsigned long flags, unsigned int i_flags)
4084 {
4085 	struct file *res;
4086 	struct inode *inode;
4087 	struct path path;
4088 	struct super_block *sb;
4089 	struct qstr this;
4090 
4091 	if (IS_ERR(shm_mnt))
4092 		return ERR_CAST(shm_mnt);
4093 
4094 	if (size < 0 || size > MAX_LFS_FILESIZE)
4095 		return ERR_PTR(-EINVAL);
4096 
4097 	if (shmem_acct_size(flags, size))
4098 		return ERR_PTR(-ENOMEM);
4099 
4100 	res = ERR_PTR(-ENOMEM);
4101 	this.name = name;
4102 	this.len = strlen(name);
4103 	this.hash = 0; /* will go */
4104 	sb = shm_mnt->mnt_sb;
4105 	path.mnt = mntget(shm_mnt);
4106 	path.dentry = d_alloc_pseudo(sb, &this);
4107 	if (!path.dentry)
4108 		goto put_memory;
4109 	d_set_d_op(path.dentry, &anon_ops);
4110 
4111 	res = ERR_PTR(-ENOSPC);
4112 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4113 	if (!inode)
4114 		goto put_memory;
4115 
4116 	inode->i_flags |= i_flags;
4117 	d_instantiate(path.dentry, inode);
4118 	inode->i_size = size;
4119 	clear_nlink(inode);	/* It is unlinked */
4120 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4121 	if (IS_ERR(res))
4122 		goto put_path;
4123 
4124 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4125 		  &shmem_file_operations);
4126 	if (IS_ERR(res))
4127 		goto put_path;
4128 
4129 	return res;
4130 
4131 put_memory:
4132 	shmem_unacct_size(flags, size);
4133 put_path:
4134 	path_put(&path);
4135 	return res;
4136 }
4137 
4138 /**
4139  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4140  * 	kernel internal.  There will be NO LSM permission checks against the
4141  * 	underlying inode.  So users of this interface must do LSM checks at a
4142  *	higher layer.  The users are the big_key and shm implementations.  LSM
4143  *	checks are provided at the key or shm level rather than the inode.
4144  * @name: name for dentry (to be seen in /proc/<pid>/maps
4145  * @size: size to be set for the file
4146  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4147  */
4148 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4149 {
4150 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4151 }
4152 
4153 /**
4154  * shmem_file_setup - get an unlinked file living in tmpfs
4155  * @name: name for dentry (to be seen in /proc/<pid>/maps
4156  * @size: size to be set for the file
4157  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4158  */
4159 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4160 {
4161 	return __shmem_file_setup(name, size, flags, 0);
4162 }
4163 EXPORT_SYMBOL_GPL(shmem_file_setup);
4164 
4165 /**
4166  * shmem_zero_setup - setup a shared anonymous mapping
4167  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4168  */
4169 int shmem_zero_setup(struct vm_area_struct *vma)
4170 {
4171 	struct file *file;
4172 	loff_t size = vma->vm_end - vma->vm_start;
4173 
4174 	/*
4175 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4176 	 * between XFS directory reading and selinux: since this file is only
4177 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4178 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4179 	 */
4180 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4181 	if (IS_ERR(file))
4182 		return PTR_ERR(file);
4183 
4184 	if (vma->vm_file)
4185 		fput(vma->vm_file);
4186 	vma->vm_file = file;
4187 	vma->vm_ops = &shmem_vm_ops;
4188 
4189 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4190 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4191 			(vma->vm_end & HPAGE_PMD_MASK)) {
4192 		khugepaged_enter(vma, vma->vm_flags);
4193 	}
4194 
4195 	return 0;
4196 }
4197 
4198 /**
4199  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4200  * @mapping:	the page's address_space
4201  * @index:	the page index
4202  * @gfp:	the page allocator flags to use if allocating
4203  *
4204  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4205  * with any new page allocations done using the specified allocation flags.
4206  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4207  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4208  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4209  *
4210  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4211  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4212  */
4213 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4214 					 pgoff_t index, gfp_t gfp)
4215 {
4216 #ifdef CONFIG_SHMEM
4217 	struct inode *inode = mapping->host;
4218 	struct page *page;
4219 	int error;
4220 
4221 	BUG_ON(mapping->a_ops != &shmem_aops);
4222 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4223 				  gfp, NULL, NULL);
4224 	if (error)
4225 		page = ERR_PTR(error);
4226 	else
4227 		unlock_page(page);
4228 	return page;
4229 #else
4230 	/*
4231 	 * The tiny !SHMEM case uses ramfs without swap
4232 	 */
4233 	return read_cache_page_gfp(mapping, index, gfp);
4234 #endif
4235 }
4236 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4237