1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #define SHMEM_SEEN_BLOCKS 1 126 #define SHMEM_SEEN_INODES 2 127 #define SHMEM_SEEN_HUGE 4 128 #define SHMEM_SEEN_INUMS 8 129 #define SHMEM_SEEN_NOSWAP 16 130 #define SHMEM_SEEN_QUOTA 32 131 }; 132 133 #ifdef CONFIG_TMPFS 134 static unsigned long shmem_default_max_blocks(void) 135 { 136 return totalram_pages() / 2; 137 } 138 139 static unsigned long shmem_default_max_inodes(void) 140 { 141 unsigned long nr_pages = totalram_pages(); 142 143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 144 ULONG_MAX / BOGO_INODE_SIZE); 145 } 146 #endif 147 148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 149 struct folio **foliop, enum sgp_type sgp, 150 gfp_t gfp, struct vm_area_struct *vma, 151 vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_block(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) 227 goto unacct; 228 229 percpu_counter_add(&sbinfo->used_blocks, pages); 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool vma_is_anon_shmem(struct vm_area_struct *vma) 267 { 268 return vma->vm_ops == &shmem_anon_vm_ops; 269 } 270 271 bool vma_is_shmem(struct vm_area_struct *vma) 272 { 273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 274 } 275 276 static LIST_HEAD(shmem_swaplist); 277 static DEFINE_MUTEX(shmem_swaplist_mutex); 278 279 #ifdef CONFIG_TMPFS_QUOTA 280 281 static int shmem_enable_quotas(struct super_block *sb, 282 unsigned short quota_types) 283 { 284 int type, err = 0; 285 286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 288 if (!(quota_types & (1 << type))) 289 continue; 290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 291 DQUOT_USAGE_ENABLED | 292 DQUOT_LIMITS_ENABLED); 293 if (err) 294 goto out_err; 295 } 296 return 0; 297 298 out_err: 299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 300 type, err); 301 for (type--; type >= 0; type--) 302 dquot_quota_off(sb, type); 303 return err; 304 } 305 306 static void shmem_disable_quotas(struct super_block *sb) 307 { 308 int type; 309 310 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 311 dquot_quota_off(sb, type); 312 } 313 314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 315 { 316 return SHMEM_I(inode)->i_dquot; 317 } 318 #endif /* CONFIG_TMPFS_QUOTA */ 319 320 /* 321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 322 * produces a novel ino for the newly allocated inode. 323 * 324 * It may also be called when making a hard link to permit the space needed by 325 * each dentry. However, in that case, no new inode number is needed since that 326 * internally draws from another pool of inode numbers (currently global 327 * get_next_ino()). This case is indicated by passing NULL as inop. 328 */ 329 #define SHMEM_INO_BATCH 1024 330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 331 { 332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 333 ino_t ino; 334 335 if (!(sb->s_flags & SB_KERNMOUNT)) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 if (sbinfo->max_inodes) { 338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 339 raw_spin_unlock(&sbinfo->stat_lock); 340 return -ENOSPC; 341 } 342 sbinfo->free_ispace -= BOGO_INODE_SIZE; 343 } 344 if (inop) { 345 ino = sbinfo->next_ino++; 346 if (unlikely(is_zero_ino(ino))) 347 ino = sbinfo->next_ino++; 348 if (unlikely(!sbinfo->full_inums && 349 ino > UINT_MAX)) { 350 /* 351 * Emulate get_next_ino uint wraparound for 352 * compatibility 353 */ 354 if (IS_ENABLED(CONFIG_64BIT)) 355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 356 __func__, MINOR(sb->s_dev)); 357 sbinfo->next_ino = 1; 358 ino = sbinfo->next_ino++; 359 } 360 *inop = ino; 361 } 362 raw_spin_unlock(&sbinfo->stat_lock); 363 } else if (inop) { 364 /* 365 * __shmem_file_setup, one of our callers, is lock-free: it 366 * doesn't hold stat_lock in shmem_reserve_inode since 367 * max_inodes is always 0, and is called from potentially 368 * unknown contexts. As such, use a per-cpu batched allocator 369 * which doesn't require the per-sb stat_lock unless we are at 370 * the batch boundary. 371 * 372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 373 * shmem mounts are not exposed to userspace, so we don't need 374 * to worry about things like glibc compatibility. 375 */ 376 ino_t *next_ino; 377 378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 379 ino = *next_ino; 380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 381 raw_spin_lock(&sbinfo->stat_lock); 382 ino = sbinfo->next_ino; 383 sbinfo->next_ino += SHMEM_INO_BATCH; 384 raw_spin_unlock(&sbinfo->stat_lock); 385 if (unlikely(is_zero_ino(ino))) 386 ino++; 387 } 388 *inop = ino; 389 *next_ino = ++ino; 390 put_cpu(); 391 } 392 393 return 0; 394 } 395 396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 397 { 398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 399 if (sbinfo->max_inodes) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 } 404 } 405 406 /** 407 * shmem_recalc_inode - recalculate the block usage of an inode 408 * @inode: inode to recalc 409 * @alloced: the change in number of pages allocated to inode 410 * @swapped: the change in number of pages swapped from inode 411 * 412 * We have to calculate the free blocks since the mm can drop 413 * undirtied hole pages behind our back. 414 * 415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 417 */ 418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 419 { 420 struct shmem_inode_info *info = SHMEM_I(inode); 421 long freed; 422 423 spin_lock(&info->lock); 424 info->alloced += alloced; 425 info->swapped += swapped; 426 freed = info->alloced - info->swapped - 427 READ_ONCE(inode->i_mapping->nrpages); 428 /* 429 * Special case: whereas normally shmem_recalc_inode() is called 430 * after i_mapping->nrpages has already been adjusted (up or down), 431 * shmem_writepage() has to raise swapped before nrpages is lowered - 432 * to stop a racing shmem_recalc_inode() from thinking that a page has 433 * been freed. Compensate here, to avoid the need for a followup call. 434 */ 435 if (swapped > 0) 436 freed += swapped; 437 if (freed > 0) 438 info->alloced -= freed; 439 spin_unlock(&info->lock); 440 441 /* The quota case may block */ 442 if (freed > 0) 443 shmem_inode_unacct_blocks(inode, freed); 444 } 445 446 bool shmem_charge(struct inode *inode, long pages) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 450 if (shmem_inode_acct_block(inode, pages)) 451 return false; 452 453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 454 xa_lock_irq(&mapping->i_pages); 455 mapping->nrpages += pages; 456 xa_unlock_irq(&mapping->i_pages); 457 458 shmem_recalc_inode(inode, pages, 0); 459 return true; 460 } 461 462 void shmem_uncharge(struct inode *inode, long pages) 463 { 464 /* pages argument is currently unused: keep it to help debugging */ 465 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 466 467 shmem_recalc_inode(inode, 0, 0); 468 } 469 470 /* 471 * Replace item expected in xarray by a new item, while holding xa_lock. 472 */ 473 static int shmem_replace_entry(struct address_space *mapping, 474 pgoff_t index, void *expected, void *replacement) 475 { 476 XA_STATE(xas, &mapping->i_pages, index); 477 void *item; 478 479 VM_BUG_ON(!expected); 480 VM_BUG_ON(!replacement); 481 item = xas_load(&xas); 482 if (item != expected) 483 return -ENOENT; 484 xas_store(&xas, replacement); 485 return 0; 486 } 487 488 /* 489 * Sometimes, before we decide whether to proceed or to fail, we must check 490 * that an entry was not already brought back from swap by a racing thread. 491 * 492 * Checking page is not enough: by the time a SwapCache page is locked, it 493 * might be reused, and again be SwapCache, using the same swap as before. 494 */ 495 static bool shmem_confirm_swap(struct address_space *mapping, 496 pgoff_t index, swp_entry_t swap) 497 { 498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 499 } 500 501 /* 502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 503 * 504 * SHMEM_HUGE_NEVER: 505 * disables huge pages for the mount; 506 * SHMEM_HUGE_ALWAYS: 507 * enables huge pages for the mount; 508 * SHMEM_HUGE_WITHIN_SIZE: 509 * only allocate huge pages if the page will be fully within i_size, 510 * also respect fadvise()/madvise() hints; 511 * SHMEM_HUGE_ADVISE: 512 * only allocate huge pages if requested with fadvise()/madvise(); 513 */ 514 515 #define SHMEM_HUGE_NEVER 0 516 #define SHMEM_HUGE_ALWAYS 1 517 #define SHMEM_HUGE_WITHIN_SIZE 2 518 #define SHMEM_HUGE_ADVISE 3 519 520 /* 521 * Special values. 522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 523 * 524 * SHMEM_HUGE_DENY: 525 * disables huge on shm_mnt and all mounts, for emergency use; 526 * SHMEM_HUGE_FORCE: 527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 528 * 529 */ 530 #define SHMEM_HUGE_DENY (-1) 531 #define SHMEM_HUGE_FORCE (-2) 532 533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 534 /* ifdef here to avoid bloating shmem.o when not necessary */ 535 536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 537 538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index, 539 bool shmem_huge_force, struct mm_struct *mm, 540 unsigned long vm_flags) 541 { 542 loff_t i_size; 543 544 if (!S_ISREG(inode->i_mode)) 545 return false; 546 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 547 return false; 548 if (shmem_huge == SHMEM_HUGE_DENY) 549 return false; 550 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 551 return true; 552 553 switch (SHMEM_SB(inode->i_sb)->huge) { 554 case SHMEM_HUGE_ALWAYS: 555 return true; 556 case SHMEM_HUGE_WITHIN_SIZE: 557 index = round_up(index + 1, HPAGE_PMD_NR); 558 i_size = round_up(i_size_read(inode), PAGE_SIZE); 559 if (i_size >> PAGE_SHIFT >= index) 560 return true; 561 fallthrough; 562 case SHMEM_HUGE_ADVISE: 563 if (mm && (vm_flags & VM_HUGEPAGE)) 564 return true; 565 fallthrough; 566 default: 567 return false; 568 } 569 } 570 571 bool shmem_is_huge(struct inode *inode, pgoff_t index, 572 bool shmem_huge_force, struct mm_struct *mm, 573 unsigned long vm_flags) 574 { 575 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 576 return false; 577 578 return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags); 579 } 580 581 #if defined(CONFIG_SYSFS) 582 static int shmem_parse_huge(const char *str) 583 { 584 if (!strcmp(str, "never")) 585 return SHMEM_HUGE_NEVER; 586 if (!strcmp(str, "always")) 587 return SHMEM_HUGE_ALWAYS; 588 if (!strcmp(str, "within_size")) 589 return SHMEM_HUGE_WITHIN_SIZE; 590 if (!strcmp(str, "advise")) 591 return SHMEM_HUGE_ADVISE; 592 if (!strcmp(str, "deny")) 593 return SHMEM_HUGE_DENY; 594 if (!strcmp(str, "force")) 595 return SHMEM_HUGE_FORCE; 596 return -EINVAL; 597 } 598 #endif 599 600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 601 static const char *shmem_format_huge(int huge) 602 { 603 switch (huge) { 604 case SHMEM_HUGE_NEVER: 605 return "never"; 606 case SHMEM_HUGE_ALWAYS: 607 return "always"; 608 case SHMEM_HUGE_WITHIN_SIZE: 609 return "within_size"; 610 case SHMEM_HUGE_ADVISE: 611 return "advise"; 612 case SHMEM_HUGE_DENY: 613 return "deny"; 614 case SHMEM_HUGE_FORCE: 615 return "force"; 616 default: 617 VM_BUG_ON(1); 618 return "bad_val"; 619 } 620 } 621 #endif 622 623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 624 struct shrink_control *sc, unsigned long nr_to_split) 625 { 626 LIST_HEAD(list), *pos, *next; 627 LIST_HEAD(to_remove); 628 struct inode *inode; 629 struct shmem_inode_info *info; 630 struct folio *folio; 631 unsigned long batch = sc ? sc->nr_to_scan : 128; 632 int split = 0; 633 634 if (list_empty(&sbinfo->shrinklist)) 635 return SHRINK_STOP; 636 637 spin_lock(&sbinfo->shrinklist_lock); 638 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 639 info = list_entry(pos, struct shmem_inode_info, shrinklist); 640 641 /* pin the inode */ 642 inode = igrab(&info->vfs_inode); 643 644 /* inode is about to be evicted */ 645 if (!inode) { 646 list_del_init(&info->shrinklist); 647 goto next; 648 } 649 650 /* Check if there's anything to gain */ 651 if (round_up(inode->i_size, PAGE_SIZE) == 652 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 653 list_move(&info->shrinklist, &to_remove); 654 goto next; 655 } 656 657 list_move(&info->shrinklist, &list); 658 next: 659 sbinfo->shrinklist_len--; 660 if (!--batch) 661 break; 662 } 663 spin_unlock(&sbinfo->shrinklist_lock); 664 665 list_for_each_safe(pos, next, &to_remove) { 666 info = list_entry(pos, struct shmem_inode_info, shrinklist); 667 inode = &info->vfs_inode; 668 list_del_init(&info->shrinklist); 669 iput(inode); 670 } 671 672 list_for_each_safe(pos, next, &list) { 673 int ret; 674 pgoff_t index; 675 676 info = list_entry(pos, struct shmem_inode_info, shrinklist); 677 inode = &info->vfs_inode; 678 679 if (nr_to_split && split >= nr_to_split) 680 goto move_back; 681 682 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 683 folio = filemap_get_folio(inode->i_mapping, index); 684 if (IS_ERR(folio)) 685 goto drop; 686 687 /* No huge page at the end of the file: nothing to split */ 688 if (!folio_test_large(folio)) { 689 folio_put(folio); 690 goto drop; 691 } 692 693 /* 694 * Move the inode on the list back to shrinklist if we failed 695 * to lock the page at this time. 696 * 697 * Waiting for the lock may lead to deadlock in the 698 * reclaim path. 699 */ 700 if (!folio_trylock(folio)) { 701 folio_put(folio); 702 goto move_back; 703 } 704 705 ret = split_folio(folio); 706 folio_unlock(folio); 707 folio_put(folio); 708 709 /* If split failed move the inode on the list back to shrinklist */ 710 if (ret) 711 goto move_back; 712 713 split++; 714 drop: 715 list_del_init(&info->shrinklist); 716 goto put; 717 move_back: 718 /* 719 * Make sure the inode is either on the global list or deleted 720 * from any local list before iput() since it could be deleted 721 * in another thread once we put the inode (then the local list 722 * is corrupted). 723 */ 724 spin_lock(&sbinfo->shrinklist_lock); 725 list_move(&info->shrinklist, &sbinfo->shrinklist); 726 sbinfo->shrinklist_len++; 727 spin_unlock(&sbinfo->shrinklist_lock); 728 put: 729 iput(inode); 730 } 731 732 return split; 733 } 734 735 static long shmem_unused_huge_scan(struct super_block *sb, 736 struct shrink_control *sc) 737 { 738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 739 740 if (!READ_ONCE(sbinfo->shrinklist_len)) 741 return SHRINK_STOP; 742 743 return shmem_unused_huge_shrink(sbinfo, sc, 0); 744 } 745 746 static long shmem_unused_huge_count(struct super_block *sb, 747 struct shrink_control *sc) 748 { 749 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 750 return READ_ONCE(sbinfo->shrinklist_len); 751 } 752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 753 754 #define shmem_huge SHMEM_HUGE_DENY 755 756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 757 struct shrink_control *sc, unsigned long nr_to_split) 758 { 759 return 0; 760 } 761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 762 763 /* 764 * Like filemap_add_folio, but error if expected item has gone. 765 */ 766 static int shmem_add_to_page_cache(struct folio *folio, 767 struct address_space *mapping, 768 pgoff_t index, void *expected, gfp_t gfp, 769 struct mm_struct *charge_mm) 770 { 771 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 772 long nr = folio_nr_pages(folio); 773 int error; 774 775 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 776 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 777 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 778 VM_BUG_ON(expected && folio_test_large(folio)); 779 780 folio_ref_add(folio, nr); 781 folio->mapping = mapping; 782 folio->index = index; 783 784 if (!folio_test_swapcache(folio)) { 785 error = mem_cgroup_charge(folio, charge_mm, gfp); 786 if (error) { 787 if (folio_test_pmd_mappable(folio)) { 788 count_vm_event(THP_FILE_FALLBACK); 789 count_vm_event(THP_FILE_FALLBACK_CHARGE); 790 } 791 goto error; 792 } 793 } 794 folio_throttle_swaprate(folio, gfp); 795 796 do { 797 xas_lock_irq(&xas); 798 if (expected != xas_find_conflict(&xas)) { 799 xas_set_err(&xas, -EEXIST); 800 goto unlock; 801 } 802 if (expected && xas_find_conflict(&xas)) { 803 xas_set_err(&xas, -EEXIST); 804 goto unlock; 805 } 806 xas_store(&xas, folio); 807 if (xas_error(&xas)) 808 goto unlock; 809 if (folio_test_pmd_mappable(folio)) { 810 count_vm_event(THP_FILE_ALLOC); 811 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 812 } 813 mapping->nrpages += nr; 814 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 815 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 816 unlock: 817 xas_unlock_irq(&xas); 818 } while (xas_nomem(&xas, gfp)); 819 820 if (xas_error(&xas)) { 821 error = xas_error(&xas); 822 goto error; 823 } 824 825 return 0; 826 error: 827 folio->mapping = NULL; 828 folio_ref_sub(folio, nr); 829 return error; 830 } 831 832 /* 833 * Like delete_from_page_cache, but substitutes swap for @folio. 834 */ 835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 836 { 837 struct address_space *mapping = folio->mapping; 838 long nr = folio_nr_pages(folio); 839 int error; 840 841 xa_lock_irq(&mapping->i_pages); 842 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 843 folio->mapping = NULL; 844 mapping->nrpages -= nr; 845 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 846 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 847 xa_unlock_irq(&mapping->i_pages); 848 folio_put(folio); 849 BUG_ON(error); 850 } 851 852 /* 853 * Remove swap entry from page cache, free the swap and its page cache. 854 */ 855 static int shmem_free_swap(struct address_space *mapping, 856 pgoff_t index, void *radswap) 857 { 858 void *old; 859 860 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 861 if (old != radswap) 862 return -ENOENT; 863 free_swap_and_cache(radix_to_swp_entry(radswap)); 864 return 0; 865 } 866 867 /* 868 * Determine (in bytes) how many of the shmem object's pages mapped by the 869 * given offsets are swapped out. 870 * 871 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 872 * as long as the inode doesn't go away and racy results are not a problem. 873 */ 874 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 875 pgoff_t start, pgoff_t end) 876 { 877 XA_STATE(xas, &mapping->i_pages, start); 878 struct page *page; 879 unsigned long swapped = 0; 880 unsigned long max = end - 1; 881 882 rcu_read_lock(); 883 xas_for_each(&xas, page, max) { 884 if (xas_retry(&xas, page)) 885 continue; 886 if (xa_is_value(page)) 887 swapped++; 888 if (xas.xa_index == max) 889 break; 890 if (need_resched()) { 891 xas_pause(&xas); 892 cond_resched_rcu(); 893 } 894 } 895 896 rcu_read_unlock(); 897 898 return swapped << PAGE_SHIFT; 899 } 900 901 /* 902 * Determine (in bytes) how many of the shmem object's pages mapped by the 903 * given vma is swapped out. 904 * 905 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 906 * as long as the inode doesn't go away and racy results are not a problem. 907 */ 908 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 909 { 910 struct inode *inode = file_inode(vma->vm_file); 911 struct shmem_inode_info *info = SHMEM_I(inode); 912 struct address_space *mapping = inode->i_mapping; 913 unsigned long swapped; 914 915 /* Be careful as we don't hold info->lock */ 916 swapped = READ_ONCE(info->swapped); 917 918 /* 919 * The easier cases are when the shmem object has nothing in swap, or 920 * the vma maps it whole. Then we can simply use the stats that we 921 * already track. 922 */ 923 if (!swapped) 924 return 0; 925 926 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 927 return swapped << PAGE_SHIFT; 928 929 /* Here comes the more involved part */ 930 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 931 vma->vm_pgoff + vma_pages(vma)); 932 } 933 934 /* 935 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 936 */ 937 void shmem_unlock_mapping(struct address_space *mapping) 938 { 939 struct folio_batch fbatch; 940 pgoff_t index = 0; 941 942 folio_batch_init(&fbatch); 943 /* 944 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 945 */ 946 while (!mapping_unevictable(mapping) && 947 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 948 check_move_unevictable_folios(&fbatch); 949 folio_batch_release(&fbatch); 950 cond_resched(); 951 } 952 } 953 954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 955 { 956 struct folio *folio; 957 958 /* 959 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 960 * beyond i_size, and reports fallocated folios as holes. 961 */ 962 folio = filemap_get_entry(inode->i_mapping, index); 963 if (!folio) 964 return folio; 965 if (!xa_is_value(folio)) { 966 folio_lock(folio); 967 if (folio->mapping == inode->i_mapping) 968 return folio; 969 /* The folio has been swapped out */ 970 folio_unlock(folio); 971 folio_put(folio); 972 } 973 /* 974 * But read a folio back from swap if any of it is within i_size 975 * (although in some cases this is just a waste of time). 976 */ 977 folio = NULL; 978 shmem_get_folio(inode, index, &folio, SGP_READ); 979 return folio; 980 } 981 982 /* 983 * Remove range of pages and swap entries from page cache, and free them. 984 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 985 */ 986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 987 bool unfalloc) 988 { 989 struct address_space *mapping = inode->i_mapping; 990 struct shmem_inode_info *info = SHMEM_I(inode); 991 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 992 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 993 struct folio_batch fbatch; 994 pgoff_t indices[PAGEVEC_SIZE]; 995 struct folio *folio; 996 bool same_folio; 997 long nr_swaps_freed = 0; 998 pgoff_t index; 999 int i; 1000 1001 if (lend == -1) 1002 end = -1; /* unsigned, so actually very big */ 1003 1004 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1005 info->fallocend = start; 1006 1007 folio_batch_init(&fbatch); 1008 index = start; 1009 while (index < end && find_lock_entries(mapping, &index, end - 1, 1010 &fbatch, indices)) { 1011 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1012 folio = fbatch.folios[i]; 1013 1014 if (xa_is_value(folio)) { 1015 if (unfalloc) 1016 continue; 1017 nr_swaps_freed += !shmem_free_swap(mapping, 1018 indices[i], folio); 1019 continue; 1020 } 1021 1022 if (!unfalloc || !folio_test_uptodate(folio)) 1023 truncate_inode_folio(mapping, folio); 1024 folio_unlock(folio); 1025 } 1026 folio_batch_remove_exceptionals(&fbatch); 1027 folio_batch_release(&fbatch); 1028 cond_resched(); 1029 } 1030 1031 /* 1032 * When undoing a failed fallocate, we want none of the partial folio 1033 * zeroing and splitting below, but shall want to truncate the whole 1034 * folio when !uptodate indicates that it was added by this fallocate, 1035 * even when [lstart, lend] covers only a part of the folio. 1036 */ 1037 if (unfalloc) 1038 goto whole_folios; 1039 1040 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1041 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1042 if (folio) { 1043 same_folio = lend < folio_pos(folio) + folio_size(folio); 1044 folio_mark_dirty(folio); 1045 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1046 start = folio_next_index(folio); 1047 if (same_folio) 1048 end = folio->index; 1049 } 1050 folio_unlock(folio); 1051 folio_put(folio); 1052 folio = NULL; 1053 } 1054 1055 if (!same_folio) 1056 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1057 if (folio) { 1058 folio_mark_dirty(folio); 1059 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1060 end = folio->index; 1061 folio_unlock(folio); 1062 folio_put(folio); 1063 } 1064 1065 whole_folios: 1066 1067 index = start; 1068 while (index < end) { 1069 cond_resched(); 1070 1071 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1072 indices)) { 1073 /* If all gone or hole-punch or unfalloc, we're done */ 1074 if (index == start || end != -1) 1075 break; 1076 /* But if truncating, restart to make sure all gone */ 1077 index = start; 1078 continue; 1079 } 1080 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1081 folio = fbatch.folios[i]; 1082 1083 if (xa_is_value(folio)) { 1084 if (unfalloc) 1085 continue; 1086 if (shmem_free_swap(mapping, indices[i], folio)) { 1087 /* Swap was replaced by page: retry */ 1088 index = indices[i]; 1089 break; 1090 } 1091 nr_swaps_freed++; 1092 continue; 1093 } 1094 1095 folio_lock(folio); 1096 1097 if (!unfalloc || !folio_test_uptodate(folio)) { 1098 if (folio_mapping(folio) != mapping) { 1099 /* Page was replaced by swap: retry */ 1100 folio_unlock(folio); 1101 index = indices[i]; 1102 break; 1103 } 1104 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1105 folio); 1106 1107 if (!folio_test_large(folio)) { 1108 truncate_inode_folio(mapping, folio); 1109 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1110 /* 1111 * If we split a page, reset the loop so 1112 * that we pick up the new sub pages. 1113 * Otherwise the THP was entirely 1114 * dropped or the target range was 1115 * zeroed, so just continue the loop as 1116 * is. 1117 */ 1118 if (!folio_test_large(folio)) { 1119 folio_unlock(folio); 1120 index = start; 1121 break; 1122 } 1123 } 1124 } 1125 folio_unlock(folio); 1126 } 1127 folio_batch_remove_exceptionals(&fbatch); 1128 folio_batch_release(&fbatch); 1129 } 1130 1131 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1132 } 1133 1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1135 { 1136 shmem_undo_range(inode, lstart, lend, false); 1137 inode->i_mtime = inode_set_ctime_current(inode); 1138 inode_inc_iversion(inode); 1139 } 1140 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1141 1142 static int shmem_getattr(struct mnt_idmap *idmap, 1143 const struct path *path, struct kstat *stat, 1144 u32 request_mask, unsigned int query_flags) 1145 { 1146 struct inode *inode = path->dentry->d_inode; 1147 struct shmem_inode_info *info = SHMEM_I(inode); 1148 1149 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1150 shmem_recalc_inode(inode, 0, 0); 1151 1152 if (info->fsflags & FS_APPEND_FL) 1153 stat->attributes |= STATX_ATTR_APPEND; 1154 if (info->fsflags & FS_IMMUTABLE_FL) 1155 stat->attributes |= STATX_ATTR_IMMUTABLE; 1156 if (info->fsflags & FS_NODUMP_FL) 1157 stat->attributes |= STATX_ATTR_NODUMP; 1158 stat->attributes_mask |= (STATX_ATTR_APPEND | 1159 STATX_ATTR_IMMUTABLE | 1160 STATX_ATTR_NODUMP); 1161 inode_lock_shared(inode); 1162 generic_fillattr(idmap, request_mask, inode, stat); 1163 inode_unlock_shared(inode); 1164 1165 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1166 stat->blksize = HPAGE_PMD_SIZE; 1167 1168 if (request_mask & STATX_BTIME) { 1169 stat->result_mask |= STATX_BTIME; 1170 stat->btime.tv_sec = info->i_crtime.tv_sec; 1171 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1172 } 1173 1174 return 0; 1175 } 1176 1177 static int shmem_setattr(struct mnt_idmap *idmap, 1178 struct dentry *dentry, struct iattr *attr) 1179 { 1180 struct inode *inode = d_inode(dentry); 1181 struct shmem_inode_info *info = SHMEM_I(inode); 1182 int error; 1183 bool update_mtime = false; 1184 bool update_ctime = true; 1185 1186 error = setattr_prepare(idmap, dentry, attr); 1187 if (error) 1188 return error; 1189 1190 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1191 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1192 return -EPERM; 1193 } 1194 } 1195 1196 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1197 loff_t oldsize = inode->i_size; 1198 loff_t newsize = attr->ia_size; 1199 1200 /* protected by i_rwsem */ 1201 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1202 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1203 return -EPERM; 1204 1205 if (newsize != oldsize) { 1206 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1207 oldsize, newsize); 1208 if (error) 1209 return error; 1210 i_size_write(inode, newsize); 1211 update_mtime = true; 1212 } else { 1213 update_ctime = false; 1214 } 1215 if (newsize <= oldsize) { 1216 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1217 if (oldsize > holebegin) 1218 unmap_mapping_range(inode->i_mapping, 1219 holebegin, 0, 1); 1220 if (info->alloced) 1221 shmem_truncate_range(inode, 1222 newsize, (loff_t)-1); 1223 /* unmap again to remove racily COWed private pages */ 1224 if (oldsize > holebegin) 1225 unmap_mapping_range(inode->i_mapping, 1226 holebegin, 0, 1); 1227 } 1228 } 1229 1230 if (is_quota_modification(idmap, inode, attr)) { 1231 error = dquot_initialize(inode); 1232 if (error) 1233 return error; 1234 } 1235 1236 /* Transfer quota accounting */ 1237 if (i_uid_needs_update(idmap, attr, inode) || 1238 i_gid_needs_update(idmap, attr, inode)) { 1239 error = dquot_transfer(idmap, inode, attr); 1240 1241 if (error) 1242 return error; 1243 } 1244 1245 setattr_copy(idmap, inode, attr); 1246 if (attr->ia_valid & ATTR_MODE) 1247 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1248 if (!error && update_ctime) { 1249 inode_set_ctime_current(inode); 1250 if (update_mtime) 1251 inode->i_mtime = inode_get_ctime(inode); 1252 inode_inc_iversion(inode); 1253 } 1254 return error; 1255 } 1256 1257 static void shmem_evict_inode(struct inode *inode) 1258 { 1259 struct shmem_inode_info *info = SHMEM_I(inode); 1260 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1261 size_t freed = 0; 1262 1263 if (shmem_mapping(inode->i_mapping)) { 1264 shmem_unacct_size(info->flags, inode->i_size); 1265 inode->i_size = 0; 1266 mapping_set_exiting(inode->i_mapping); 1267 shmem_truncate_range(inode, 0, (loff_t)-1); 1268 if (!list_empty(&info->shrinklist)) { 1269 spin_lock(&sbinfo->shrinklist_lock); 1270 if (!list_empty(&info->shrinklist)) { 1271 list_del_init(&info->shrinklist); 1272 sbinfo->shrinklist_len--; 1273 } 1274 spin_unlock(&sbinfo->shrinklist_lock); 1275 } 1276 while (!list_empty(&info->swaplist)) { 1277 /* Wait while shmem_unuse() is scanning this inode... */ 1278 wait_var_event(&info->stop_eviction, 1279 !atomic_read(&info->stop_eviction)); 1280 mutex_lock(&shmem_swaplist_mutex); 1281 /* ...but beware of the race if we peeked too early */ 1282 if (!atomic_read(&info->stop_eviction)) 1283 list_del_init(&info->swaplist); 1284 mutex_unlock(&shmem_swaplist_mutex); 1285 } 1286 } 1287 1288 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1289 shmem_free_inode(inode->i_sb, freed); 1290 WARN_ON(inode->i_blocks); 1291 clear_inode(inode); 1292 #ifdef CONFIG_TMPFS_QUOTA 1293 dquot_free_inode(inode); 1294 dquot_drop(inode); 1295 #endif 1296 } 1297 1298 static int shmem_find_swap_entries(struct address_space *mapping, 1299 pgoff_t start, struct folio_batch *fbatch, 1300 pgoff_t *indices, unsigned int type) 1301 { 1302 XA_STATE(xas, &mapping->i_pages, start); 1303 struct folio *folio; 1304 swp_entry_t entry; 1305 1306 rcu_read_lock(); 1307 xas_for_each(&xas, folio, ULONG_MAX) { 1308 if (xas_retry(&xas, folio)) 1309 continue; 1310 1311 if (!xa_is_value(folio)) 1312 continue; 1313 1314 entry = radix_to_swp_entry(folio); 1315 /* 1316 * swapin error entries can be found in the mapping. But they're 1317 * deliberately ignored here as we've done everything we can do. 1318 */ 1319 if (swp_type(entry) != type) 1320 continue; 1321 1322 indices[folio_batch_count(fbatch)] = xas.xa_index; 1323 if (!folio_batch_add(fbatch, folio)) 1324 break; 1325 1326 if (need_resched()) { 1327 xas_pause(&xas); 1328 cond_resched_rcu(); 1329 } 1330 } 1331 rcu_read_unlock(); 1332 1333 return xas.xa_index; 1334 } 1335 1336 /* 1337 * Move the swapped pages for an inode to page cache. Returns the count 1338 * of pages swapped in, or the error in case of failure. 1339 */ 1340 static int shmem_unuse_swap_entries(struct inode *inode, 1341 struct folio_batch *fbatch, pgoff_t *indices) 1342 { 1343 int i = 0; 1344 int ret = 0; 1345 int error = 0; 1346 struct address_space *mapping = inode->i_mapping; 1347 1348 for (i = 0; i < folio_batch_count(fbatch); i++) { 1349 struct folio *folio = fbatch->folios[i]; 1350 1351 if (!xa_is_value(folio)) 1352 continue; 1353 error = shmem_swapin_folio(inode, indices[i], 1354 &folio, SGP_CACHE, 1355 mapping_gfp_mask(mapping), 1356 NULL, NULL); 1357 if (error == 0) { 1358 folio_unlock(folio); 1359 folio_put(folio); 1360 ret++; 1361 } 1362 if (error == -ENOMEM) 1363 break; 1364 error = 0; 1365 } 1366 return error ? error : ret; 1367 } 1368 1369 /* 1370 * If swap found in inode, free it and move page from swapcache to filecache. 1371 */ 1372 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1373 { 1374 struct address_space *mapping = inode->i_mapping; 1375 pgoff_t start = 0; 1376 struct folio_batch fbatch; 1377 pgoff_t indices[PAGEVEC_SIZE]; 1378 int ret = 0; 1379 1380 do { 1381 folio_batch_init(&fbatch); 1382 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1383 if (folio_batch_count(&fbatch) == 0) { 1384 ret = 0; 1385 break; 1386 } 1387 1388 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1389 if (ret < 0) 1390 break; 1391 1392 start = indices[folio_batch_count(&fbatch) - 1]; 1393 } while (true); 1394 1395 return ret; 1396 } 1397 1398 /* 1399 * Read all the shared memory data that resides in the swap 1400 * device 'type' back into memory, so the swap device can be 1401 * unused. 1402 */ 1403 int shmem_unuse(unsigned int type) 1404 { 1405 struct shmem_inode_info *info, *next; 1406 int error = 0; 1407 1408 if (list_empty(&shmem_swaplist)) 1409 return 0; 1410 1411 mutex_lock(&shmem_swaplist_mutex); 1412 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1413 if (!info->swapped) { 1414 list_del_init(&info->swaplist); 1415 continue; 1416 } 1417 /* 1418 * Drop the swaplist mutex while searching the inode for swap; 1419 * but before doing so, make sure shmem_evict_inode() will not 1420 * remove placeholder inode from swaplist, nor let it be freed 1421 * (igrab() would protect from unlink, but not from unmount). 1422 */ 1423 atomic_inc(&info->stop_eviction); 1424 mutex_unlock(&shmem_swaplist_mutex); 1425 1426 error = shmem_unuse_inode(&info->vfs_inode, type); 1427 cond_resched(); 1428 1429 mutex_lock(&shmem_swaplist_mutex); 1430 next = list_next_entry(info, swaplist); 1431 if (!info->swapped) 1432 list_del_init(&info->swaplist); 1433 if (atomic_dec_and_test(&info->stop_eviction)) 1434 wake_up_var(&info->stop_eviction); 1435 if (error) 1436 break; 1437 } 1438 mutex_unlock(&shmem_swaplist_mutex); 1439 1440 return error; 1441 } 1442 1443 /* 1444 * Move the page from the page cache to the swap cache. 1445 */ 1446 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1447 { 1448 struct folio *folio = page_folio(page); 1449 struct address_space *mapping = folio->mapping; 1450 struct inode *inode = mapping->host; 1451 struct shmem_inode_info *info = SHMEM_I(inode); 1452 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1453 swp_entry_t swap; 1454 pgoff_t index; 1455 1456 /* 1457 * Our capabilities prevent regular writeback or sync from ever calling 1458 * shmem_writepage; but a stacking filesystem might use ->writepage of 1459 * its underlying filesystem, in which case tmpfs should write out to 1460 * swap only in response to memory pressure, and not for the writeback 1461 * threads or sync. 1462 */ 1463 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1464 goto redirty; 1465 1466 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1467 goto redirty; 1468 1469 if (!total_swap_pages) 1470 goto redirty; 1471 1472 /* 1473 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1474 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1475 * and its shmem_writeback() needs them to be split when swapping. 1476 */ 1477 if (folio_test_large(folio)) { 1478 /* Ensure the subpages are still dirty */ 1479 folio_test_set_dirty(folio); 1480 if (split_huge_page(page) < 0) 1481 goto redirty; 1482 folio = page_folio(page); 1483 folio_clear_dirty(folio); 1484 } 1485 1486 index = folio->index; 1487 1488 /* 1489 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1490 * value into swapfile.c, the only way we can correctly account for a 1491 * fallocated folio arriving here is now to initialize it and write it. 1492 * 1493 * That's okay for a folio already fallocated earlier, but if we have 1494 * not yet completed the fallocation, then (a) we want to keep track 1495 * of this folio in case we have to undo it, and (b) it may not be a 1496 * good idea to continue anyway, once we're pushing into swap. So 1497 * reactivate the folio, and let shmem_fallocate() quit when too many. 1498 */ 1499 if (!folio_test_uptodate(folio)) { 1500 if (inode->i_private) { 1501 struct shmem_falloc *shmem_falloc; 1502 spin_lock(&inode->i_lock); 1503 shmem_falloc = inode->i_private; 1504 if (shmem_falloc && 1505 !shmem_falloc->waitq && 1506 index >= shmem_falloc->start && 1507 index < shmem_falloc->next) 1508 shmem_falloc->nr_unswapped++; 1509 else 1510 shmem_falloc = NULL; 1511 spin_unlock(&inode->i_lock); 1512 if (shmem_falloc) 1513 goto redirty; 1514 } 1515 folio_zero_range(folio, 0, folio_size(folio)); 1516 flush_dcache_folio(folio); 1517 folio_mark_uptodate(folio); 1518 } 1519 1520 swap = folio_alloc_swap(folio); 1521 if (!swap.val) 1522 goto redirty; 1523 1524 /* 1525 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1526 * if it's not already there. Do it now before the folio is 1527 * moved to swap cache, when its pagelock no longer protects 1528 * the inode from eviction. But don't unlock the mutex until 1529 * we've incremented swapped, because shmem_unuse_inode() will 1530 * prune a !swapped inode from the swaplist under this mutex. 1531 */ 1532 mutex_lock(&shmem_swaplist_mutex); 1533 if (list_empty(&info->swaplist)) 1534 list_add(&info->swaplist, &shmem_swaplist); 1535 1536 if (add_to_swap_cache(folio, swap, 1537 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1538 NULL) == 0) { 1539 shmem_recalc_inode(inode, 0, 1); 1540 swap_shmem_alloc(swap); 1541 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1542 1543 mutex_unlock(&shmem_swaplist_mutex); 1544 BUG_ON(folio_mapped(folio)); 1545 swap_writepage(&folio->page, wbc); 1546 return 0; 1547 } 1548 1549 mutex_unlock(&shmem_swaplist_mutex); 1550 put_swap_folio(folio, swap); 1551 redirty: 1552 folio_mark_dirty(folio); 1553 if (wbc->for_reclaim) 1554 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1555 folio_unlock(folio); 1556 return 0; 1557 } 1558 1559 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1560 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1561 { 1562 char buffer[64]; 1563 1564 if (!mpol || mpol->mode == MPOL_DEFAULT) 1565 return; /* show nothing */ 1566 1567 mpol_to_str(buffer, sizeof(buffer), mpol); 1568 1569 seq_printf(seq, ",mpol=%s", buffer); 1570 } 1571 1572 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1573 { 1574 struct mempolicy *mpol = NULL; 1575 if (sbinfo->mpol) { 1576 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1577 mpol = sbinfo->mpol; 1578 mpol_get(mpol); 1579 raw_spin_unlock(&sbinfo->stat_lock); 1580 } 1581 return mpol; 1582 } 1583 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1584 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1585 { 1586 } 1587 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1588 { 1589 return NULL; 1590 } 1591 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1592 #ifndef CONFIG_NUMA 1593 #define vm_policy vm_private_data 1594 #endif 1595 1596 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1597 struct shmem_inode_info *info, pgoff_t index) 1598 { 1599 /* Create a pseudo vma that just contains the policy */ 1600 vma_init(vma, NULL); 1601 /* Bias interleave by inode number to distribute better across nodes */ 1602 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1603 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1604 } 1605 1606 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1607 { 1608 /* Drop reference taken by mpol_shared_policy_lookup() */ 1609 mpol_cond_put(vma->vm_policy); 1610 } 1611 1612 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1613 struct shmem_inode_info *info, pgoff_t index) 1614 { 1615 struct vm_area_struct pvma; 1616 struct page *page; 1617 struct vm_fault vmf = { 1618 .vma = &pvma, 1619 }; 1620 1621 shmem_pseudo_vma_init(&pvma, info, index); 1622 page = swap_cluster_readahead(swap, gfp, &vmf); 1623 shmem_pseudo_vma_destroy(&pvma); 1624 1625 if (!page) 1626 return NULL; 1627 return page_folio(page); 1628 } 1629 1630 /* 1631 * Make sure huge_gfp is always more limited than limit_gfp. 1632 * Some of the flags set permissions, while others set limitations. 1633 */ 1634 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1635 { 1636 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1637 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1638 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1639 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1640 1641 /* Allow allocations only from the originally specified zones. */ 1642 result |= zoneflags; 1643 1644 /* 1645 * Minimize the result gfp by taking the union with the deny flags, 1646 * and the intersection of the allow flags. 1647 */ 1648 result |= (limit_gfp & denyflags); 1649 result |= (huge_gfp & limit_gfp) & allowflags; 1650 1651 return result; 1652 } 1653 1654 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1655 struct shmem_inode_info *info, pgoff_t index) 1656 { 1657 struct vm_area_struct pvma; 1658 struct address_space *mapping = info->vfs_inode.i_mapping; 1659 pgoff_t hindex; 1660 struct folio *folio; 1661 1662 hindex = round_down(index, HPAGE_PMD_NR); 1663 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1664 XA_PRESENT)) 1665 return NULL; 1666 1667 shmem_pseudo_vma_init(&pvma, info, hindex); 1668 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1669 shmem_pseudo_vma_destroy(&pvma); 1670 if (!folio) 1671 count_vm_event(THP_FILE_FALLBACK); 1672 return folio; 1673 } 1674 1675 static struct folio *shmem_alloc_folio(gfp_t gfp, 1676 struct shmem_inode_info *info, pgoff_t index) 1677 { 1678 struct vm_area_struct pvma; 1679 struct folio *folio; 1680 1681 shmem_pseudo_vma_init(&pvma, info, index); 1682 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1683 shmem_pseudo_vma_destroy(&pvma); 1684 1685 return folio; 1686 } 1687 1688 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1689 pgoff_t index, bool huge) 1690 { 1691 struct shmem_inode_info *info = SHMEM_I(inode); 1692 struct folio *folio; 1693 int nr; 1694 int err; 1695 1696 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1697 huge = false; 1698 nr = huge ? HPAGE_PMD_NR : 1; 1699 1700 err = shmem_inode_acct_block(inode, nr); 1701 if (err) 1702 goto failed; 1703 1704 if (huge) 1705 folio = shmem_alloc_hugefolio(gfp, info, index); 1706 else 1707 folio = shmem_alloc_folio(gfp, info, index); 1708 if (folio) { 1709 __folio_set_locked(folio); 1710 __folio_set_swapbacked(folio); 1711 return folio; 1712 } 1713 1714 err = -ENOMEM; 1715 shmem_inode_unacct_blocks(inode, nr); 1716 failed: 1717 return ERR_PTR(err); 1718 } 1719 1720 /* 1721 * When a page is moved from swapcache to shmem filecache (either by the 1722 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1723 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1724 * ignorance of the mapping it belongs to. If that mapping has special 1725 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1726 * we may need to copy to a suitable page before moving to filecache. 1727 * 1728 * In a future release, this may well be extended to respect cpuset and 1729 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1730 * but for now it is a simple matter of zone. 1731 */ 1732 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1733 { 1734 return folio_zonenum(folio) > gfp_zone(gfp); 1735 } 1736 1737 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1738 struct shmem_inode_info *info, pgoff_t index) 1739 { 1740 struct folio *old, *new; 1741 struct address_space *swap_mapping; 1742 swp_entry_t entry; 1743 pgoff_t swap_index; 1744 int error; 1745 1746 old = *foliop; 1747 entry = old->swap; 1748 swap_index = swp_offset(entry); 1749 swap_mapping = swap_address_space(entry); 1750 1751 /* 1752 * We have arrived here because our zones are constrained, so don't 1753 * limit chance of success by further cpuset and node constraints. 1754 */ 1755 gfp &= ~GFP_CONSTRAINT_MASK; 1756 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1757 new = shmem_alloc_folio(gfp, info, index); 1758 if (!new) 1759 return -ENOMEM; 1760 1761 folio_get(new); 1762 folio_copy(new, old); 1763 flush_dcache_folio(new); 1764 1765 __folio_set_locked(new); 1766 __folio_set_swapbacked(new); 1767 folio_mark_uptodate(new); 1768 new->swap = entry; 1769 folio_set_swapcache(new); 1770 1771 /* 1772 * Our caller will very soon move newpage out of swapcache, but it's 1773 * a nice clean interface for us to replace oldpage by newpage there. 1774 */ 1775 xa_lock_irq(&swap_mapping->i_pages); 1776 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1777 if (!error) { 1778 mem_cgroup_migrate(old, new); 1779 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1780 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1781 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1782 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1783 } 1784 xa_unlock_irq(&swap_mapping->i_pages); 1785 1786 if (unlikely(error)) { 1787 /* 1788 * Is this possible? I think not, now that our callers check 1789 * both PageSwapCache and page_private after getting page lock; 1790 * but be defensive. Reverse old to newpage for clear and free. 1791 */ 1792 old = new; 1793 } else { 1794 folio_add_lru(new); 1795 *foliop = new; 1796 } 1797 1798 folio_clear_swapcache(old); 1799 old->private = NULL; 1800 1801 folio_unlock(old); 1802 folio_put_refs(old, 2); 1803 return error; 1804 } 1805 1806 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1807 struct folio *folio, swp_entry_t swap) 1808 { 1809 struct address_space *mapping = inode->i_mapping; 1810 swp_entry_t swapin_error; 1811 void *old; 1812 1813 swapin_error = make_poisoned_swp_entry(); 1814 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1815 swp_to_radix_entry(swap), 1816 swp_to_radix_entry(swapin_error), 0); 1817 if (old != swp_to_radix_entry(swap)) 1818 return; 1819 1820 folio_wait_writeback(folio); 1821 delete_from_swap_cache(folio); 1822 /* 1823 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1824 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1825 * in shmem_evict_inode(). 1826 */ 1827 shmem_recalc_inode(inode, -1, -1); 1828 swap_free(swap); 1829 } 1830 1831 /* 1832 * Swap in the folio pointed to by *foliop. 1833 * Caller has to make sure that *foliop contains a valid swapped folio. 1834 * Returns 0 and the folio in foliop if success. On failure, returns the 1835 * error code and NULL in *foliop. 1836 */ 1837 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1838 struct folio **foliop, enum sgp_type sgp, 1839 gfp_t gfp, struct vm_area_struct *vma, 1840 vm_fault_t *fault_type) 1841 { 1842 struct address_space *mapping = inode->i_mapping; 1843 struct shmem_inode_info *info = SHMEM_I(inode); 1844 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1845 struct swap_info_struct *si; 1846 struct folio *folio = NULL; 1847 swp_entry_t swap; 1848 int error; 1849 1850 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1851 swap = radix_to_swp_entry(*foliop); 1852 *foliop = NULL; 1853 1854 if (is_poisoned_swp_entry(swap)) 1855 return -EIO; 1856 1857 si = get_swap_device(swap); 1858 if (!si) { 1859 if (!shmem_confirm_swap(mapping, index, swap)) 1860 return -EEXIST; 1861 else 1862 return -EINVAL; 1863 } 1864 1865 /* Look it up and read it in.. */ 1866 folio = swap_cache_get_folio(swap, NULL, 0); 1867 if (!folio) { 1868 /* Or update major stats only when swapin succeeds?? */ 1869 if (fault_type) { 1870 *fault_type |= VM_FAULT_MAJOR; 1871 count_vm_event(PGMAJFAULT); 1872 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1873 } 1874 /* Here we actually start the io */ 1875 folio = shmem_swapin(swap, gfp, info, index); 1876 if (!folio) { 1877 error = -ENOMEM; 1878 goto failed; 1879 } 1880 } 1881 1882 /* We have to do this with folio locked to prevent races */ 1883 folio_lock(folio); 1884 if (!folio_test_swapcache(folio) || 1885 folio->swap.val != swap.val || 1886 !shmem_confirm_swap(mapping, index, swap)) { 1887 error = -EEXIST; 1888 goto unlock; 1889 } 1890 if (!folio_test_uptodate(folio)) { 1891 error = -EIO; 1892 goto failed; 1893 } 1894 folio_wait_writeback(folio); 1895 1896 /* 1897 * Some architectures may have to restore extra metadata to the 1898 * folio after reading from swap. 1899 */ 1900 arch_swap_restore(swap, folio); 1901 1902 if (shmem_should_replace_folio(folio, gfp)) { 1903 error = shmem_replace_folio(&folio, gfp, info, index); 1904 if (error) 1905 goto failed; 1906 } 1907 1908 error = shmem_add_to_page_cache(folio, mapping, index, 1909 swp_to_radix_entry(swap), gfp, 1910 charge_mm); 1911 if (error) 1912 goto failed; 1913 1914 shmem_recalc_inode(inode, 0, -1); 1915 1916 if (sgp == SGP_WRITE) 1917 folio_mark_accessed(folio); 1918 1919 delete_from_swap_cache(folio); 1920 folio_mark_dirty(folio); 1921 swap_free(swap); 1922 put_swap_device(si); 1923 1924 *foliop = folio; 1925 return 0; 1926 failed: 1927 if (!shmem_confirm_swap(mapping, index, swap)) 1928 error = -EEXIST; 1929 if (error == -EIO) 1930 shmem_set_folio_swapin_error(inode, index, folio, swap); 1931 unlock: 1932 if (folio) { 1933 folio_unlock(folio); 1934 folio_put(folio); 1935 } 1936 put_swap_device(si); 1937 1938 return error; 1939 } 1940 1941 /* 1942 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1943 * 1944 * If we allocate a new one we do not mark it dirty. That's up to the 1945 * vm. If we swap it in we mark it dirty since we also free the swap 1946 * entry since a page cannot live in both the swap and page cache. 1947 * 1948 * vma, vmf, and fault_type are only supplied by shmem_fault: 1949 * otherwise they are NULL. 1950 */ 1951 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1952 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1953 struct vm_area_struct *vma, struct vm_fault *vmf, 1954 vm_fault_t *fault_type) 1955 { 1956 struct address_space *mapping = inode->i_mapping; 1957 struct shmem_inode_info *info = SHMEM_I(inode); 1958 struct shmem_sb_info *sbinfo; 1959 struct mm_struct *charge_mm; 1960 struct folio *folio; 1961 pgoff_t hindex; 1962 gfp_t huge_gfp; 1963 int error; 1964 int once = 0; 1965 int alloced = 0; 1966 1967 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1968 return -EFBIG; 1969 repeat: 1970 if (sgp <= SGP_CACHE && 1971 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1972 return -EINVAL; 1973 } 1974 1975 sbinfo = SHMEM_SB(inode->i_sb); 1976 charge_mm = vma ? vma->vm_mm : NULL; 1977 1978 folio = filemap_get_entry(mapping, index); 1979 if (folio && vma && userfaultfd_minor(vma)) { 1980 if (!xa_is_value(folio)) 1981 folio_put(folio); 1982 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1983 return 0; 1984 } 1985 1986 if (xa_is_value(folio)) { 1987 error = shmem_swapin_folio(inode, index, &folio, 1988 sgp, gfp, vma, fault_type); 1989 if (error == -EEXIST) 1990 goto repeat; 1991 1992 *foliop = folio; 1993 return error; 1994 } 1995 1996 if (folio) { 1997 folio_lock(folio); 1998 1999 /* Has the folio been truncated or swapped out? */ 2000 if (unlikely(folio->mapping != mapping)) { 2001 folio_unlock(folio); 2002 folio_put(folio); 2003 goto repeat; 2004 } 2005 if (sgp == SGP_WRITE) 2006 folio_mark_accessed(folio); 2007 if (folio_test_uptodate(folio)) 2008 goto out; 2009 /* fallocated folio */ 2010 if (sgp != SGP_READ) 2011 goto clear; 2012 folio_unlock(folio); 2013 folio_put(folio); 2014 } 2015 2016 /* 2017 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2018 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2019 */ 2020 *foliop = NULL; 2021 if (sgp == SGP_READ) 2022 return 0; 2023 if (sgp == SGP_NOALLOC) 2024 return -ENOENT; 2025 2026 /* 2027 * Fast cache lookup and swap lookup did not find it: allocate. 2028 */ 2029 2030 if (vma && userfaultfd_missing(vma)) { 2031 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2032 return 0; 2033 } 2034 2035 if (!shmem_is_huge(inode, index, false, 2036 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 2037 goto alloc_nohuge; 2038 2039 huge_gfp = vma_thp_gfp_mask(vma); 2040 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2041 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 2042 if (IS_ERR(folio)) { 2043 alloc_nohuge: 2044 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 2045 } 2046 if (IS_ERR(folio)) { 2047 int retry = 5; 2048 2049 error = PTR_ERR(folio); 2050 folio = NULL; 2051 if (error != -ENOSPC) 2052 goto unlock; 2053 /* 2054 * Try to reclaim some space by splitting a large folio 2055 * beyond i_size on the filesystem. 2056 */ 2057 while (retry--) { 2058 int ret; 2059 2060 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 2061 if (ret == SHRINK_STOP) 2062 break; 2063 if (ret) 2064 goto alloc_nohuge; 2065 } 2066 goto unlock; 2067 } 2068 2069 hindex = round_down(index, folio_nr_pages(folio)); 2070 2071 if (sgp == SGP_WRITE) 2072 __folio_set_referenced(folio); 2073 2074 error = shmem_add_to_page_cache(folio, mapping, hindex, 2075 NULL, gfp & GFP_RECLAIM_MASK, 2076 charge_mm); 2077 if (error) 2078 goto unacct; 2079 2080 folio_add_lru(folio); 2081 shmem_recalc_inode(inode, folio_nr_pages(folio), 0); 2082 alloced = true; 2083 2084 if (folio_test_pmd_mappable(folio) && 2085 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2086 folio_next_index(folio) - 1) { 2087 /* 2088 * Part of the large folio is beyond i_size: subject 2089 * to shrink under memory pressure. 2090 */ 2091 spin_lock(&sbinfo->shrinklist_lock); 2092 /* 2093 * _careful to defend against unlocked access to 2094 * ->shrink_list in shmem_unused_huge_shrink() 2095 */ 2096 if (list_empty_careful(&info->shrinklist)) { 2097 list_add_tail(&info->shrinklist, 2098 &sbinfo->shrinklist); 2099 sbinfo->shrinklist_len++; 2100 } 2101 spin_unlock(&sbinfo->shrinklist_lock); 2102 } 2103 2104 /* 2105 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2106 */ 2107 if (sgp == SGP_FALLOC) 2108 sgp = SGP_WRITE; 2109 clear: 2110 /* 2111 * Let SGP_WRITE caller clear ends if write does not fill folio; 2112 * but SGP_FALLOC on a folio fallocated earlier must initialize 2113 * it now, lest undo on failure cancel our earlier guarantee. 2114 */ 2115 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2116 long i, n = folio_nr_pages(folio); 2117 2118 for (i = 0; i < n; i++) 2119 clear_highpage(folio_page(folio, i)); 2120 flush_dcache_folio(folio); 2121 folio_mark_uptodate(folio); 2122 } 2123 2124 /* Perhaps the file has been truncated since we checked */ 2125 if (sgp <= SGP_CACHE && 2126 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2127 if (alloced) { 2128 folio_clear_dirty(folio); 2129 filemap_remove_folio(folio); 2130 shmem_recalc_inode(inode, 0, 0); 2131 } 2132 error = -EINVAL; 2133 goto unlock; 2134 } 2135 out: 2136 *foliop = folio; 2137 return 0; 2138 2139 /* 2140 * Error recovery. 2141 */ 2142 unacct: 2143 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2144 2145 if (folio_test_large(folio)) { 2146 folio_unlock(folio); 2147 folio_put(folio); 2148 goto alloc_nohuge; 2149 } 2150 unlock: 2151 if (folio) { 2152 folio_unlock(folio); 2153 folio_put(folio); 2154 } 2155 if (error == -ENOSPC && !once++) { 2156 shmem_recalc_inode(inode, 0, 0); 2157 goto repeat; 2158 } 2159 if (error == -EEXIST) 2160 goto repeat; 2161 return error; 2162 } 2163 2164 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2165 enum sgp_type sgp) 2166 { 2167 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2168 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2169 } 2170 2171 /* 2172 * This is like autoremove_wake_function, but it removes the wait queue 2173 * entry unconditionally - even if something else had already woken the 2174 * target. 2175 */ 2176 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2177 { 2178 int ret = default_wake_function(wait, mode, sync, key); 2179 list_del_init(&wait->entry); 2180 return ret; 2181 } 2182 2183 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2184 { 2185 struct vm_area_struct *vma = vmf->vma; 2186 struct inode *inode = file_inode(vma->vm_file); 2187 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2188 struct folio *folio = NULL; 2189 int err; 2190 vm_fault_t ret = VM_FAULT_LOCKED; 2191 2192 /* 2193 * Trinity finds that probing a hole which tmpfs is punching can 2194 * prevent the hole-punch from ever completing: which in turn 2195 * locks writers out with its hold on i_rwsem. So refrain from 2196 * faulting pages into the hole while it's being punched. Although 2197 * shmem_undo_range() does remove the additions, it may be unable to 2198 * keep up, as each new page needs its own unmap_mapping_range() call, 2199 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2200 * 2201 * It does not matter if we sometimes reach this check just before the 2202 * hole-punch begins, so that one fault then races with the punch: 2203 * we just need to make racing faults a rare case. 2204 * 2205 * The implementation below would be much simpler if we just used a 2206 * standard mutex or completion: but we cannot take i_rwsem in fault, 2207 * and bloating every shmem inode for this unlikely case would be sad. 2208 */ 2209 if (unlikely(inode->i_private)) { 2210 struct shmem_falloc *shmem_falloc; 2211 2212 spin_lock(&inode->i_lock); 2213 shmem_falloc = inode->i_private; 2214 if (shmem_falloc && 2215 shmem_falloc->waitq && 2216 vmf->pgoff >= shmem_falloc->start && 2217 vmf->pgoff < shmem_falloc->next) { 2218 struct file *fpin; 2219 wait_queue_head_t *shmem_falloc_waitq; 2220 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2221 2222 ret = VM_FAULT_NOPAGE; 2223 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2224 if (fpin) 2225 ret = VM_FAULT_RETRY; 2226 2227 shmem_falloc_waitq = shmem_falloc->waitq; 2228 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2229 TASK_UNINTERRUPTIBLE); 2230 spin_unlock(&inode->i_lock); 2231 schedule(); 2232 2233 /* 2234 * shmem_falloc_waitq points into the shmem_fallocate() 2235 * stack of the hole-punching task: shmem_falloc_waitq 2236 * is usually invalid by the time we reach here, but 2237 * finish_wait() does not dereference it in that case; 2238 * though i_lock needed lest racing with wake_up_all(). 2239 */ 2240 spin_lock(&inode->i_lock); 2241 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2242 spin_unlock(&inode->i_lock); 2243 2244 if (fpin) 2245 fput(fpin); 2246 return ret; 2247 } 2248 spin_unlock(&inode->i_lock); 2249 } 2250 2251 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2252 gfp, vma, vmf, &ret); 2253 if (err) 2254 return vmf_error(err); 2255 if (folio) 2256 vmf->page = folio_file_page(folio, vmf->pgoff); 2257 return ret; 2258 } 2259 2260 unsigned long shmem_get_unmapped_area(struct file *file, 2261 unsigned long uaddr, unsigned long len, 2262 unsigned long pgoff, unsigned long flags) 2263 { 2264 unsigned long (*get_area)(struct file *, 2265 unsigned long, unsigned long, unsigned long, unsigned long); 2266 unsigned long addr; 2267 unsigned long offset; 2268 unsigned long inflated_len; 2269 unsigned long inflated_addr; 2270 unsigned long inflated_offset; 2271 2272 if (len > TASK_SIZE) 2273 return -ENOMEM; 2274 2275 get_area = current->mm->get_unmapped_area; 2276 addr = get_area(file, uaddr, len, pgoff, flags); 2277 2278 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2279 return addr; 2280 if (IS_ERR_VALUE(addr)) 2281 return addr; 2282 if (addr & ~PAGE_MASK) 2283 return addr; 2284 if (addr > TASK_SIZE - len) 2285 return addr; 2286 2287 if (shmem_huge == SHMEM_HUGE_DENY) 2288 return addr; 2289 if (len < HPAGE_PMD_SIZE) 2290 return addr; 2291 if (flags & MAP_FIXED) 2292 return addr; 2293 /* 2294 * Our priority is to support MAP_SHARED mapped hugely; 2295 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2296 * But if caller specified an address hint and we allocated area there 2297 * successfully, respect that as before. 2298 */ 2299 if (uaddr == addr) 2300 return addr; 2301 2302 if (shmem_huge != SHMEM_HUGE_FORCE) { 2303 struct super_block *sb; 2304 2305 if (file) { 2306 VM_BUG_ON(file->f_op != &shmem_file_operations); 2307 sb = file_inode(file)->i_sb; 2308 } else { 2309 /* 2310 * Called directly from mm/mmap.c, or drivers/char/mem.c 2311 * for "/dev/zero", to create a shared anonymous object. 2312 */ 2313 if (IS_ERR(shm_mnt)) 2314 return addr; 2315 sb = shm_mnt->mnt_sb; 2316 } 2317 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2318 return addr; 2319 } 2320 2321 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2322 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2323 return addr; 2324 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2325 return addr; 2326 2327 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2328 if (inflated_len > TASK_SIZE) 2329 return addr; 2330 if (inflated_len < len) 2331 return addr; 2332 2333 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2334 if (IS_ERR_VALUE(inflated_addr)) 2335 return addr; 2336 if (inflated_addr & ~PAGE_MASK) 2337 return addr; 2338 2339 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2340 inflated_addr += offset - inflated_offset; 2341 if (inflated_offset > offset) 2342 inflated_addr += HPAGE_PMD_SIZE; 2343 2344 if (inflated_addr > TASK_SIZE - len) 2345 return addr; 2346 return inflated_addr; 2347 } 2348 2349 #ifdef CONFIG_NUMA 2350 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2351 { 2352 struct inode *inode = file_inode(vma->vm_file); 2353 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2354 } 2355 2356 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2357 unsigned long addr) 2358 { 2359 struct inode *inode = file_inode(vma->vm_file); 2360 pgoff_t index; 2361 2362 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2363 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2364 } 2365 #endif 2366 2367 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2368 { 2369 struct inode *inode = file_inode(file); 2370 struct shmem_inode_info *info = SHMEM_I(inode); 2371 int retval = -ENOMEM; 2372 2373 /* 2374 * What serializes the accesses to info->flags? 2375 * ipc_lock_object() when called from shmctl_do_lock(), 2376 * no serialization needed when called from shm_destroy(). 2377 */ 2378 if (lock && !(info->flags & VM_LOCKED)) { 2379 if (!user_shm_lock(inode->i_size, ucounts)) 2380 goto out_nomem; 2381 info->flags |= VM_LOCKED; 2382 mapping_set_unevictable(file->f_mapping); 2383 } 2384 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2385 user_shm_unlock(inode->i_size, ucounts); 2386 info->flags &= ~VM_LOCKED; 2387 mapping_clear_unevictable(file->f_mapping); 2388 } 2389 retval = 0; 2390 2391 out_nomem: 2392 return retval; 2393 } 2394 2395 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2396 { 2397 struct inode *inode = file_inode(file); 2398 struct shmem_inode_info *info = SHMEM_I(inode); 2399 int ret; 2400 2401 ret = seal_check_future_write(info->seals, vma); 2402 if (ret) 2403 return ret; 2404 2405 /* arm64 - allow memory tagging on RAM-based files */ 2406 vm_flags_set(vma, VM_MTE_ALLOWED); 2407 2408 file_accessed(file); 2409 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2410 if (inode->i_nlink) 2411 vma->vm_ops = &shmem_vm_ops; 2412 else 2413 vma->vm_ops = &shmem_anon_vm_ops; 2414 return 0; 2415 } 2416 2417 static int shmem_file_open(struct inode *inode, struct file *file) 2418 { 2419 file->f_mode |= FMODE_CAN_ODIRECT; 2420 return generic_file_open(inode, file); 2421 } 2422 2423 #ifdef CONFIG_TMPFS_XATTR 2424 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2425 2426 /* 2427 * chattr's fsflags are unrelated to extended attributes, 2428 * but tmpfs has chosen to enable them under the same config option. 2429 */ 2430 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2431 { 2432 unsigned int i_flags = 0; 2433 2434 if (fsflags & FS_NOATIME_FL) 2435 i_flags |= S_NOATIME; 2436 if (fsflags & FS_APPEND_FL) 2437 i_flags |= S_APPEND; 2438 if (fsflags & FS_IMMUTABLE_FL) 2439 i_flags |= S_IMMUTABLE; 2440 /* 2441 * But FS_NODUMP_FL does not require any action in i_flags. 2442 */ 2443 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2444 } 2445 #else 2446 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2447 { 2448 } 2449 #define shmem_initxattrs NULL 2450 #endif 2451 2452 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2453 { 2454 return &SHMEM_I(inode)->dir_offsets; 2455 } 2456 2457 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2458 struct super_block *sb, 2459 struct inode *dir, umode_t mode, 2460 dev_t dev, unsigned long flags) 2461 { 2462 struct inode *inode; 2463 struct shmem_inode_info *info; 2464 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2465 ino_t ino; 2466 int err; 2467 2468 err = shmem_reserve_inode(sb, &ino); 2469 if (err) 2470 return ERR_PTR(err); 2471 2472 2473 inode = new_inode(sb); 2474 if (!inode) { 2475 shmem_free_inode(sb, 0); 2476 return ERR_PTR(-ENOSPC); 2477 } 2478 2479 inode->i_ino = ino; 2480 inode_init_owner(idmap, inode, dir, mode); 2481 inode->i_blocks = 0; 2482 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 2483 inode->i_generation = get_random_u32(); 2484 info = SHMEM_I(inode); 2485 memset(info, 0, (char *)inode - (char *)info); 2486 spin_lock_init(&info->lock); 2487 atomic_set(&info->stop_eviction, 0); 2488 info->seals = F_SEAL_SEAL; 2489 info->flags = flags & VM_NORESERVE; 2490 info->i_crtime = inode->i_mtime; 2491 info->fsflags = (dir == NULL) ? 0 : 2492 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2493 if (info->fsflags) 2494 shmem_set_inode_flags(inode, info->fsflags); 2495 INIT_LIST_HEAD(&info->shrinklist); 2496 INIT_LIST_HEAD(&info->swaplist); 2497 INIT_LIST_HEAD(&info->swaplist); 2498 if (sbinfo->noswap) 2499 mapping_set_unevictable(inode->i_mapping); 2500 simple_xattrs_init(&info->xattrs); 2501 cache_no_acl(inode); 2502 mapping_set_large_folios(inode->i_mapping); 2503 2504 switch (mode & S_IFMT) { 2505 default: 2506 inode->i_op = &shmem_special_inode_operations; 2507 init_special_inode(inode, mode, dev); 2508 break; 2509 case S_IFREG: 2510 inode->i_mapping->a_ops = &shmem_aops; 2511 inode->i_op = &shmem_inode_operations; 2512 inode->i_fop = &shmem_file_operations; 2513 mpol_shared_policy_init(&info->policy, 2514 shmem_get_sbmpol(sbinfo)); 2515 break; 2516 case S_IFDIR: 2517 inc_nlink(inode); 2518 /* Some things misbehave if size == 0 on a directory */ 2519 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2520 inode->i_op = &shmem_dir_inode_operations; 2521 inode->i_fop = &simple_offset_dir_operations; 2522 simple_offset_init(shmem_get_offset_ctx(inode)); 2523 break; 2524 case S_IFLNK: 2525 /* 2526 * Must not load anything in the rbtree, 2527 * mpol_free_shared_policy will not be called. 2528 */ 2529 mpol_shared_policy_init(&info->policy, NULL); 2530 break; 2531 } 2532 2533 lockdep_annotate_inode_mutex_key(inode); 2534 return inode; 2535 } 2536 2537 #ifdef CONFIG_TMPFS_QUOTA 2538 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2539 struct super_block *sb, struct inode *dir, 2540 umode_t mode, dev_t dev, unsigned long flags) 2541 { 2542 int err; 2543 struct inode *inode; 2544 2545 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2546 if (IS_ERR(inode)) 2547 return inode; 2548 2549 err = dquot_initialize(inode); 2550 if (err) 2551 goto errout; 2552 2553 err = dquot_alloc_inode(inode); 2554 if (err) { 2555 dquot_drop(inode); 2556 goto errout; 2557 } 2558 return inode; 2559 2560 errout: 2561 inode->i_flags |= S_NOQUOTA; 2562 iput(inode); 2563 return ERR_PTR(err); 2564 } 2565 #else 2566 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2567 struct super_block *sb, struct inode *dir, 2568 umode_t mode, dev_t dev, unsigned long flags) 2569 { 2570 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2571 } 2572 #endif /* CONFIG_TMPFS_QUOTA */ 2573 2574 #ifdef CONFIG_USERFAULTFD 2575 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2576 struct vm_area_struct *dst_vma, 2577 unsigned long dst_addr, 2578 unsigned long src_addr, 2579 uffd_flags_t flags, 2580 struct folio **foliop) 2581 { 2582 struct inode *inode = file_inode(dst_vma->vm_file); 2583 struct shmem_inode_info *info = SHMEM_I(inode); 2584 struct address_space *mapping = inode->i_mapping; 2585 gfp_t gfp = mapping_gfp_mask(mapping); 2586 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2587 void *page_kaddr; 2588 struct folio *folio; 2589 int ret; 2590 pgoff_t max_off; 2591 2592 if (shmem_inode_acct_block(inode, 1)) { 2593 /* 2594 * We may have got a page, returned -ENOENT triggering a retry, 2595 * and now we find ourselves with -ENOMEM. Release the page, to 2596 * avoid a BUG_ON in our caller. 2597 */ 2598 if (unlikely(*foliop)) { 2599 folio_put(*foliop); 2600 *foliop = NULL; 2601 } 2602 return -ENOMEM; 2603 } 2604 2605 if (!*foliop) { 2606 ret = -ENOMEM; 2607 folio = shmem_alloc_folio(gfp, info, pgoff); 2608 if (!folio) 2609 goto out_unacct_blocks; 2610 2611 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2612 page_kaddr = kmap_local_folio(folio, 0); 2613 /* 2614 * The read mmap_lock is held here. Despite the 2615 * mmap_lock being read recursive a deadlock is still 2616 * possible if a writer has taken a lock. For example: 2617 * 2618 * process A thread 1 takes read lock on own mmap_lock 2619 * process A thread 2 calls mmap, blocks taking write lock 2620 * process B thread 1 takes page fault, read lock on own mmap lock 2621 * process B thread 2 calls mmap, blocks taking write lock 2622 * process A thread 1 blocks taking read lock on process B 2623 * process B thread 1 blocks taking read lock on process A 2624 * 2625 * Disable page faults to prevent potential deadlock 2626 * and retry the copy outside the mmap_lock. 2627 */ 2628 pagefault_disable(); 2629 ret = copy_from_user(page_kaddr, 2630 (const void __user *)src_addr, 2631 PAGE_SIZE); 2632 pagefault_enable(); 2633 kunmap_local(page_kaddr); 2634 2635 /* fallback to copy_from_user outside mmap_lock */ 2636 if (unlikely(ret)) { 2637 *foliop = folio; 2638 ret = -ENOENT; 2639 /* don't free the page */ 2640 goto out_unacct_blocks; 2641 } 2642 2643 flush_dcache_folio(folio); 2644 } else { /* ZEROPAGE */ 2645 clear_user_highpage(&folio->page, dst_addr); 2646 } 2647 } else { 2648 folio = *foliop; 2649 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2650 *foliop = NULL; 2651 } 2652 2653 VM_BUG_ON(folio_test_locked(folio)); 2654 VM_BUG_ON(folio_test_swapbacked(folio)); 2655 __folio_set_locked(folio); 2656 __folio_set_swapbacked(folio); 2657 __folio_mark_uptodate(folio); 2658 2659 ret = -EFAULT; 2660 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2661 if (unlikely(pgoff >= max_off)) 2662 goto out_release; 2663 2664 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2665 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2666 if (ret) 2667 goto out_release; 2668 2669 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2670 &folio->page, true, flags); 2671 if (ret) 2672 goto out_delete_from_cache; 2673 2674 shmem_recalc_inode(inode, 1, 0); 2675 folio_unlock(folio); 2676 return 0; 2677 out_delete_from_cache: 2678 filemap_remove_folio(folio); 2679 out_release: 2680 folio_unlock(folio); 2681 folio_put(folio); 2682 out_unacct_blocks: 2683 shmem_inode_unacct_blocks(inode, 1); 2684 return ret; 2685 } 2686 #endif /* CONFIG_USERFAULTFD */ 2687 2688 #ifdef CONFIG_TMPFS 2689 static const struct inode_operations shmem_symlink_inode_operations; 2690 static const struct inode_operations shmem_short_symlink_operations; 2691 2692 static int 2693 shmem_write_begin(struct file *file, struct address_space *mapping, 2694 loff_t pos, unsigned len, 2695 struct page **pagep, void **fsdata) 2696 { 2697 struct inode *inode = mapping->host; 2698 struct shmem_inode_info *info = SHMEM_I(inode); 2699 pgoff_t index = pos >> PAGE_SHIFT; 2700 struct folio *folio; 2701 int ret = 0; 2702 2703 /* i_rwsem is held by caller */ 2704 if (unlikely(info->seals & (F_SEAL_GROW | 2705 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2706 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2707 return -EPERM; 2708 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2709 return -EPERM; 2710 } 2711 2712 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2713 2714 if (ret) 2715 return ret; 2716 2717 *pagep = folio_file_page(folio, index); 2718 if (PageHWPoison(*pagep)) { 2719 folio_unlock(folio); 2720 folio_put(folio); 2721 *pagep = NULL; 2722 return -EIO; 2723 } 2724 2725 return 0; 2726 } 2727 2728 static int 2729 shmem_write_end(struct file *file, struct address_space *mapping, 2730 loff_t pos, unsigned len, unsigned copied, 2731 struct page *page, void *fsdata) 2732 { 2733 struct folio *folio = page_folio(page); 2734 struct inode *inode = mapping->host; 2735 2736 if (pos + copied > inode->i_size) 2737 i_size_write(inode, pos + copied); 2738 2739 if (!folio_test_uptodate(folio)) { 2740 if (copied < folio_size(folio)) { 2741 size_t from = offset_in_folio(folio, pos); 2742 folio_zero_segments(folio, 0, from, 2743 from + copied, folio_size(folio)); 2744 } 2745 folio_mark_uptodate(folio); 2746 } 2747 folio_mark_dirty(folio); 2748 folio_unlock(folio); 2749 folio_put(folio); 2750 2751 return copied; 2752 } 2753 2754 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2755 { 2756 struct file *file = iocb->ki_filp; 2757 struct inode *inode = file_inode(file); 2758 struct address_space *mapping = inode->i_mapping; 2759 pgoff_t index; 2760 unsigned long offset; 2761 int error = 0; 2762 ssize_t retval = 0; 2763 loff_t *ppos = &iocb->ki_pos; 2764 2765 index = *ppos >> PAGE_SHIFT; 2766 offset = *ppos & ~PAGE_MASK; 2767 2768 for (;;) { 2769 struct folio *folio = NULL; 2770 struct page *page = NULL; 2771 pgoff_t end_index; 2772 unsigned long nr, ret; 2773 loff_t i_size = i_size_read(inode); 2774 2775 end_index = i_size >> PAGE_SHIFT; 2776 if (index > end_index) 2777 break; 2778 if (index == end_index) { 2779 nr = i_size & ~PAGE_MASK; 2780 if (nr <= offset) 2781 break; 2782 } 2783 2784 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2785 if (error) { 2786 if (error == -EINVAL) 2787 error = 0; 2788 break; 2789 } 2790 if (folio) { 2791 folio_unlock(folio); 2792 2793 page = folio_file_page(folio, index); 2794 if (PageHWPoison(page)) { 2795 folio_put(folio); 2796 error = -EIO; 2797 break; 2798 } 2799 } 2800 2801 /* 2802 * We must evaluate after, since reads (unlike writes) 2803 * are called without i_rwsem protection against truncate 2804 */ 2805 nr = PAGE_SIZE; 2806 i_size = i_size_read(inode); 2807 end_index = i_size >> PAGE_SHIFT; 2808 if (index == end_index) { 2809 nr = i_size & ~PAGE_MASK; 2810 if (nr <= offset) { 2811 if (folio) 2812 folio_put(folio); 2813 break; 2814 } 2815 } 2816 nr -= offset; 2817 2818 if (folio) { 2819 /* 2820 * If users can be writing to this page using arbitrary 2821 * virtual addresses, take care about potential aliasing 2822 * before reading the page on the kernel side. 2823 */ 2824 if (mapping_writably_mapped(mapping)) 2825 flush_dcache_page(page); 2826 /* 2827 * Mark the page accessed if we read the beginning. 2828 */ 2829 if (!offset) 2830 folio_mark_accessed(folio); 2831 /* 2832 * Ok, we have the page, and it's up-to-date, so 2833 * now we can copy it to user space... 2834 */ 2835 ret = copy_page_to_iter(page, offset, nr, to); 2836 folio_put(folio); 2837 2838 } else if (user_backed_iter(to)) { 2839 /* 2840 * Copy to user tends to be so well optimized, but 2841 * clear_user() not so much, that it is noticeably 2842 * faster to copy the zero page instead of clearing. 2843 */ 2844 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2845 } else { 2846 /* 2847 * But submitting the same page twice in a row to 2848 * splice() - or others? - can result in confusion: 2849 * so don't attempt that optimization on pipes etc. 2850 */ 2851 ret = iov_iter_zero(nr, to); 2852 } 2853 2854 retval += ret; 2855 offset += ret; 2856 index += offset >> PAGE_SHIFT; 2857 offset &= ~PAGE_MASK; 2858 2859 if (!iov_iter_count(to)) 2860 break; 2861 if (ret < nr) { 2862 error = -EFAULT; 2863 break; 2864 } 2865 cond_resched(); 2866 } 2867 2868 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2869 file_accessed(file); 2870 return retval ? retval : error; 2871 } 2872 2873 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2874 { 2875 struct file *file = iocb->ki_filp; 2876 struct inode *inode = file->f_mapping->host; 2877 ssize_t ret; 2878 2879 inode_lock(inode); 2880 ret = generic_write_checks(iocb, from); 2881 if (ret <= 0) 2882 goto unlock; 2883 ret = file_remove_privs(file); 2884 if (ret) 2885 goto unlock; 2886 ret = file_update_time(file); 2887 if (ret) 2888 goto unlock; 2889 ret = generic_perform_write(iocb, from); 2890 unlock: 2891 inode_unlock(inode); 2892 return ret; 2893 } 2894 2895 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2896 struct pipe_buffer *buf) 2897 { 2898 return true; 2899 } 2900 2901 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2902 struct pipe_buffer *buf) 2903 { 2904 } 2905 2906 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2907 struct pipe_buffer *buf) 2908 { 2909 return false; 2910 } 2911 2912 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2913 .release = zero_pipe_buf_release, 2914 .try_steal = zero_pipe_buf_try_steal, 2915 .get = zero_pipe_buf_get, 2916 }; 2917 2918 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2919 loff_t fpos, size_t size) 2920 { 2921 size_t offset = fpos & ~PAGE_MASK; 2922 2923 size = min_t(size_t, size, PAGE_SIZE - offset); 2924 2925 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2926 struct pipe_buffer *buf = pipe_head_buf(pipe); 2927 2928 *buf = (struct pipe_buffer) { 2929 .ops = &zero_pipe_buf_ops, 2930 .page = ZERO_PAGE(0), 2931 .offset = offset, 2932 .len = size, 2933 }; 2934 pipe->head++; 2935 } 2936 2937 return size; 2938 } 2939 2940 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2941 struct pipe_inode_info *pipe, 2942 size_t len, unsigned int flags) 2943 { 2944 struct inode *inode = file_inode(in); 2945 struct address_space *mapping = inode->i_mapping; 2946 struct folio *folio = NULL; 2947 size_t total_spliced = 0, used, npages, n, part; 2948 loff_t isize; 2949 int error = 0; 2950 2951 /* Work out how much data we can actually add into the pipe */ 2952 used = pipe_occupancy(pipe->head, pipe->tail); 2953 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2954 len = min_t(size_t, len, npages * PAGE_SIZE); 2955 2956 do { 2957 if (*ppos >= i_size_read(inode)) 2958 break; 2959 2960 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2961 SGP_READ); 2962 if (error) { 2963 if (error == -EINVAL) 2964 error = 0; 2965 break; 2966 } 2967 if (folio) { 2968 folio_unlock(folio); 2969 2970 if (folio_test_hwpoison(folio) || 2971 (folio_test_large(folio) && 2972 folio_test_has_hwpoisoned(folio))) { 2973 error = -EIO; 2974 break; 2975 } 2976 } 2977 2978 /* 2979 * i_size must be checked after we know the pages are Uptodate. 2980 * 2981 * Checking i_size after the check allows us to calculate 2982 * the correct value for "nr", which means the zero-filled 2983 * part of the page is not copied back to userspace (unless 2984 * another truncate extends the file - this is desired though). 2985 */ 2986 isize = i_size_read(inode); 2987 if (unlikely(*ppos >= isize)) 2988 break; 2989 part = min_t(loff_t, isize - *ppos, len); 2990 2991 if (folio) { 2992 /* 2993 * If users can be writing to this page using arbitrary 2994 * virtual addresses, take care about potential aliasing 2995 * before reading the page on the kernel side. 2996 */ 2997 if (mapping_writably_mapped(mapping)) 2998 flush_dcache_folio(folio); 2999 folio_mark_accessed(folio); 3000 /* 3001 * Ok, we have the page, and it's up-to-date, so we can 3002 * now splice it into the pipe. 3003 */ 3004 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3005 folio_put(folio); 3006 folio = NULL; 3007 } else { 3008 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3009 } 3010 3011 if (!n) 3012 break; 3013 len -= n; 3014 total_spliced += n; 3015 *ppos += n; 3016 in->f_ra.prev_pos = *ppos; 3017 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3018 break; 3019 3020 cond_resched(); 3021 } while (len); 3022 3023 if (folio) 3024 folio_put(folio); 3025 3026 file_accessed(in); 3027 return total_spliced ? total_spliced : error; 3028 } 3029 3030 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3031 { 3032 struct address_space *mapping = file->f_mapping; 3033 struct inode *inode = mapping->host; 3034 3035 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3036 return generic_file_llseek_size(file, offset, whence, 3037 MAX_LFS_FILESIZE, i_size_read(inode)); 3038 if (offset < 0) 3039 return -ENXIO; 3040 3041 inode_lock(inode); 3042 /* We're holding i_rwsem so we can access i_size directly */ 3043 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3044 if (offset >= 0) 3045 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3046 inode_unlock(inode); 3047 return offset; 3048 } 3049 3050 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3051 loff_t len) 3052 { 3053 struct inode *inode = file_inode(file); 3054 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3055 struct shmem_inode_info *info = SHMEM_I(inode); 3056 struct shmem_falloc shmem_falloc; 3057 pgoff_t start, index, end, undo_fallocend; 3058 int error; 3059 3060 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3061 return -EOPNOTSUPP; 3062 3063 inode_lock(inode); 3064 3065 if (mode & FALLOC_FL_PUNCH_HOLE) { 3066 struct address_space *mapping = file->f_mapping; 3067 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3068 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3069 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3070 3071 /* protected by i_rwsem */ 3072 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3073 error = -EPERM; 3074 goto out; 3075 } 3076 3077 shmem_falloc.waitq = &shmem_falloc_waitq; 3078 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3079 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3080 spin_lock(&inode->i_lock); 3081 inode->i_private = &shmem_falloc; 3082 spin_unlock(&inode->i_lock); 3083 3084 if ((u64)unmap_end > (u64)unmap_start) 3085 unmap_mapping_range(mapping, unmap_start, 3086 1 + unmap_end - unmap_start, 0); 3087 shmem_truncate_range(inode, offset, offset + len - 1); 3088 /* No need to unmap again: hole-punching leaves COWed pages */ 3089 3090 spin_lock(&inode->i_lock); 3091 inode->i_private = NULL; 3092 wake_up_all(&shmem_falloc_waitq); 3093 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3094 spin_unlock(&inode->i_lock); 3095 error = 0; 3096 goto out; 3097 } 3098 3099 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3100 error = inode_newsize_ok(inode, offset + len); 3101 if (error) 3102 goto out; 3103 3104 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3105 error = -EPERM; 3106 goto out; 3107 } 3108 3109 start = offset >> PAGE_SHIFT; 3110 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3111 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3112 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3113 error = -ENOSPC; 3114 goto out; 3115 } 3116 3117 shmem_falloc.waitq = NULL; 3118 shmem_falloc.start = start; 3119 shmem_falloc.next = start; 3120 shmem_falloc.nr_falloced = 0; 3121 shmem_falloc.nr_unswapped = 0; 3122 spin_lock(&inode->i_lock); 3123 inode->i_private = &shmem_falloc; 3124 spin_unlock(&inode->i_lock); 3125 3126 /* 3127 * info->fallocend is only relevant when huge pages might be 3128 * involved: to prevent split_huge_page() freeing fallocated 3129 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3130 */ 3131 undo_fallocend = info->fallocend; 3132 if (info->fallocend < end) 3133 info->fallocend = end; 3134 3135 for (index = start; index < end; ) { 3136 struct folio *folio; 3137 3138 /* 3139 * Good, the fallocate(2) manpage permits EINTR: we may have 3140 * been interrupted because we are using up too much memory. 3141 */ 3142 if (signal_pending(current)) 3143 error = -EINTR; 3144 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3145 error = -ENOMEM; 3146 else 3147 error = shmem_get_folio(inode, index, &folio, 3148 SGP_FALLOC); 3149 if (error) { 3150 info->fallocend = undo_fallocend; 3151 /* Remove the !uptodate folios we added */ 3152 if (index > start) { 3153 shmem_undo_range(inode, 3154 (loff_t)start << PAGE_SHIFT, 3155 ((loff_t)index << PAGE_SHIFT) - 1, true); 3156 } 3157 goto undone; 3158 } 3159 3160 /* 3161 * Here is a more important optimization than it appears: 3162 * a second SGP_FALLOC on the same large folio will clear it, 3163 * making it uptodate and un-undoable if we fail later. 3164 */ 3165 index = folio_next_index(folio); 3166 /* Beware 32-bit wraparound */ 3167 if (!index) 3168 index--; 3169 3170 /* 3171 * Inform shmem_writepage() how far we have reached. 3172 * No need for lock or barrier: we have the page lock. 3173 */ 3174 if (!folio_test_uptodate(folio)) 3175 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3176 shmem_falloc.next = index; 3177 3178 /* 3179 * If !uptodate, leave it that way so that freeable folios 3180 * can be recognized if we need to rollback on error later. 3181 * But mark it dirty so that memory pressure will swap rather 3182 * than free the folios we are allocating (and SGP_CACHE folios 3183 * might still be clean: we now need to mark those dirty too). 3184 */ 3185 folio_mark_dirty(folio); 3186 folio_unlock(folio); 3187 folio_put(folio); 3188 cond_resched(); 3189 } 3190 3191 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3192 i_size_write(inode, offset + len); 3193 undone: 3194 spin_lock(&inode->i_lock); 3195 inode->i_private = NULL; 3196 spin_unlock(&inode->i_lock); 3197 out: 3198 if (!error) 3199 file_modified(file); 3200 inode_unlock(inode); 3201 return error; 3202 } 3203 3204 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3205 { 3206 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3207 3208 buf->f_type = TMPFS_MAGIC; 3209 buf->f_bsize = PAGE_SIZE; 3210 buf->f_namelen = NAME_MAX; 3211 if (sbinfo->max_blocks) { 3212 buf->f_blocks = sbinfo->max_blocks; 3213 buf->f_bavail = 3214 buf->f_bfree = sbinfo->max_blocks - 3215 percpu_counter_sum(&sbinfo->used_blocks); 3216 } 3217 if (sbinfo->max_inodes) { 3218 buf->f_files = sbinfo->max_inodes; 3219 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3220 } 3221 /* else leave those fields 0 like simple_statfs */ 3222 3223 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3224 3225 return 0; 3226 } 3227 3228 /* 3229 * File creation. Allocate an inode, and we're done.. 3230 */ 3231 static int 3232 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3233 struct dentry *dentry, umode_t mode, dev_t dev) 3234 { 3235 struct inode *inode; 3236 int error; 3237 3238 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3239 if (IS_ERR(inode)) 3240 return PTR_ERR(inode); 3241 3242 error = simple_acl_create(dir, inode); 3243 if (error) 3244 goto out_iput; 3245 error = security_inode_init_security(inode, dir, 3246 &dentry->d_name, 3247 shmem_initxattrs, NULL); 3248 if (error && error != -EOPNOTSUPP) 3249 goto out_iput; 3250 3251 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3252 if (error) 3253 goto out_iput; 3254 3255 dir->i_size += BOGO_DIRENT_SIZE; 3256 dir->i_mtime = inode_set_ctime_current(dir); 3257 inode_inc_iversion(dir); 3258 d_instantiate(dentry, inode); 3259 dget(dentry); /* Extra count - pin the dentry in core */ 3260 return error; 3261 3262 out_iput: 3263 iput(inode); 3264 return error; 3265 } 3266 3267 static int 3268 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3269 struct file *file, umode_t mode) 3270 { 3271 struct inode *inode; 3272 int error; 3273 3274 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3275 3276 if (IS_ERR(inode)) { 3277 error = PTR_ERR(inode); 3278 goto err_out; 3279 } 3280 3281 error = security_inode_init_security(inode, dir, 3282 NULL, 3283 shmem_initxattrs, NULL); 3284 if (error && error != -EOPNOTSUPP) 3285 goto out_iput; 3286 error = simple_acl_create(dir, inode); 3287 if (error) 3288 goto out_iput; 3289 d_tmpfile(file, inode); 3290 3291 err_out: 3292 return finish_open_simple(file, error); 3293 out_iput: 3294 iput(inode); 3295 return error; 3296 } 3297 3298 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3299 struct dentry *dentry, umode_t mode) 3300 { 3301 int error; 3302 3303 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3304 if (error) 3305 return error; 3306 inc_nlink(dir); 3307 return 0; 3308 } 3309 3310 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3311 struct dentry *dentry, umode_t mode, bool excl) 3312 { 3313 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3314 } 3315 3316 /* 3317 * Link a file.. 3318 */ 3319 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3320 { 3321 struct inode *inode = d_inode(old_dentry); 3322 int ret = 0; 3323 3324 /* 3325 * No ordinary (disk based) filesystem counts links as inodes; 3326 * but each new link needs a new dentry, pinning lowmem, and 3327 * tmpfs dentries cannot be pruned until they are unlinked. 3328 * But if an O_TMPFILE file is linked into the tmpfs, the 3329 * first link must skip that, to get the accounting right. 3330 */ 3331 if (inode->i_nlink) { 3332 ret = shmem_reserve_inode(inode->i_sb, NULL); 3333 if (ret) 3334 goto out; 3335 } 3336 3337 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3338 if (ret) { 3339 if (inode->i_nlink) 3340 shmem_free_inode(inode->i_sb, 0); 3341 goto out; 3342 } 3343 3344 dir->i_size += BOGO_DIRENT_SIZE; 3345 dir->i_mtime = inode_set_ctime_to_ts(dir, 3346 inode_set_ctime_current(inode)); 3347 inode_inc_iversion(dir); 3348 inc_nlink(inode); 3349 ihold(inode); /* New dentry reference */ 3350 dget(dentry); /* Extra pinning count for the created dentry */ 3351 d_instantiate(dentry, inode); 3352 out: 3353 return ret; 3354 } 3355 3356 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3357 { 3358 struct inode *inode = d_inode(dentry); 3359 3360 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3361 shmem_free_inode(inode->i_sb, 0); 3362 3363 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3364 3365 dir->i_size -= BOGO_DIRENT_SIZE; 3366 dir->i_mtime = inode_set_ctime_to_ts(dir, 3367 inode_set_ctime_current(inode)); 3368 inode_inc_iversion(dir); 3369 drop_nlink(inode); 3370 dput(dentry); /* Undo the count from "create" - this does all the work */ 3371 return 0; 3372 } 3373 3374 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3375 { 3376 if (!simple_empty(dentry)) 3377 return -ENOTEMPTY; 3378 3379 drop_nlink(d_inode(dentry)); 3380 drop_nlink(dir); 3381 return shmem_unlink(dir, dentry); 3382 } 3383 3384 static int shmem_whiteout(struct mnt_idmap *idmap, 3385 struct inode *old_dir, struct dentry *old_dentry) 3386 { 3387 struct dentry *whiteout; 3388 int error; 3389 3390 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3391 if (!whiteout) 3392 return -ENOMEM; 3393 3394 error = shmem_mknod(idmap, old_dir, whiteout, 3395 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3396 dput(whiteout); 3397 if (error) 3398 return error; 3399 3400 /* 3401 * Cheat and hash the whiteout while the old dentry is still in 3402 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3403 * 3404 * d_lookup() will consistently find one of them at this point, 3405 * not sure which one, but that isn't even important. 3406 */ 3407 d_rehash(whiteout); 3408 return 0; 3409 } 3410 3411 /* 3412 * The VFS layer already does all the dentry stuff for rename, 3413 * we just have to decrement the usage count for the target if 3414 * it exists so that the VFS layer correctly free's it when it 3415 * gets overwritten. 3416 */ 3417 static int shmem_rename2(struct mnt_idmap *idmap, 3418 struct inode *old_dir, struct dentry *old_dentry, 3419 struct inode *new_dir, struct dentry *new_dentry, 3420 unsigned int flags) 3421 { 3422 struct inode *inode = d_inode(old_dentry); 3423 int they_are_dirs = S_ISDIR(inode->i_mode); 3424 int error; 3425 3426 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3427 return -EINVAL; 3428 3429 if (flags & RENAME_EXCHANGE) 3430 return simple_offset_rename_exchange(old_dir, old_dentry, 3431 new_dir, new_dentry); 3432 3433 if (!simple_empty(new_dentry)) 3434 return -ENOTEMPTY; 3435 3436 if (flags & RENAME_WHITEOUT) { 3437 error = shmem_whiteout(idmap, old_dir, old_dentry); 3438 if (error) 3439 return error; 3440 } 3441 3442 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3443 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3444 if (error) 3445 return error; 3446 3447 if (d_really_is_positive(new_dentry)) { 3448 (void) shmem_unlink(new_dir, new_dentry); 3449 if (they_are_dirs) { 3450 drop_nlink(d_inode(new_dentry)); 3451 drop_nlink(old_dir); 3452 } 3453 } else if (they_are_dirs) { 3454 drop_nlink(old_dir); 3455 inc_nlink(new_dir); 3456 } 3457 3458 old_dir->i_size -= BOGO_DIRENT_SIZE; 3459 new_dir->i_size += BOGO_DIRENT_SIZE; 3460 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3461 inode_inc_iversion(old_dir); 3462 inode_inc_iversion(new_dir); 3463 return 0; 3464 } 3465 3466 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3467 struct dentry *dentry, const char *symname) 3468 { 3469 int error; 3470 int len; 3471 struct inode *inode; 3472 struct folio *folio; 3473 3474 len = strlen(symname) + 1; 3475 if (len > PAGE_SIZE) 3476 return -ENAMETOOLONG; 3477 3478 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3479 VM_NORESERVE); 3480 3481 if (IS_ERR(inode)) 3482 return PTR_ERR(inode); 3483 3484 error = security_inode_init_security(inode, dir, &dentry->d_name, 3485 shmem_initxattrs, NULL); 3486 if (error && error != -EOPNOTSUPP) 3487 goto out_iput; 3488 3489 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3490 if (error) 3491 goto out_iput; 3492 3493 inode->i_size = len-1; 3494 if (len <= SHORT_SYMLINK_LEN) { 3495 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3496 if (!inode->i_link) { 3497 error = -ENOMEM; 3498 goto out_remove_offset; 3499 } 3500 inode->i_op = &shmem_short_symlink_operations; 3501 } else { 3502 inode_nohighmem(inode); 3503 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3504 if (error) 3505 goto out_remove_offset; 3506 inode->i_mapping->a_ops = &shmem_aops; 3507 inode->i_op = &shmem_symlink_inode_operations; 3508 memcpy(folio_address(folio), symname, len); 3509 folio_mark_uptodate(folio); 3510 folio_mark_dirty(folio); 3511 folio_unlock(folio); 3512 folio_put(folio); 3513 } 3514 dir->i_size += BOGO_DIRENT_SIZE; 3515 dir->i_mtime = inode_set_ctime_current(dir); 3516 inode_inc_iversion(dir); 3517 d_instantiate(dentry, inode); 3518 dget(dentry); 3519 return 0; 3520 3521 out_remove_offset: 3522 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3523 out_iput: 3524 iput(inode); 3525 return error; 3526 } 3527 3528 static void shmem_put_link(void *arg) 3529 { 3530 folio_mark_accessed(arg); 3531 folio_put(arg); 3532 } 3533 3534 static const char *shmem_get_link(struct dentry *dentry, 3535 struct inode *inode, 3536 struct delayed_call *done) 3537 { 3538 struct folio *folio = NULL; 3539 int error; 3540 3541 if (!dentry) { 3542 folio = filemap_get_folio(inode->i_mapping, 0); 3543 if (IS_ERR(folio)) 3544 return ERR_PTR(-ECHILD); 3545 if (PageHWPoison(folio_page(folio, 0)) || 3546 !folio_test_uptodate(folio)) { 3547 folio_put(folio); 3548 return ERR_PTR(-ECHILD); 3549 } 3550 } else { 3551 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3552 if (error) 3553 return ERR_PTR(error); 3554 if (!folio) 3555 return ERR_PTR(-ECHILD); 3556 if (PageHWPoison(folio_page(folio, 0))) { 3557 folio_unlock(folio); 3558 folio_put(folio); 3559 return ERR_PTR(-ECHILD); 3560 } 3561 folio_unlock(folio); 3562 } 3563 set_delayed_call(done, shmem_put_link, folio); 3564 return folio_address(folio); 3565 } 3566 3567 #ifdef CONFIG_TMPFS_XATTR 3568 3569 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3570 { 3571 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3572 3573 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3574 3575 return 0; 3576 } 3577 3578 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3579 struct dentry *dentry, struct fileattr *fa) 3580 { 3581 struct inode *inode = d_inode(dentry); 3582 struct shmem_inode_info *info = SHMEM_I(inode); 3583 3584 if (fileattr_has_fsx(fa)) 3585 return -EOPNOTSUPP; 3586 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3587 return -EOPNOTSUPP; 3588 3589 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3590 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3591 3592 shmem_set_inode_flags(inode, info->fsflags); 3593 inode_set_ctime_current(inode); 3594 inode_inc_iversion(inode); 3595 return 0; 3596 } 3597 3598 /* 3599 * Superblocks without xattr inode operations may get some security.* xattr 3600 * support from the LSM "for free". As soon as we have any other xattrs 3601 * like ACLs, we also need to implement the security.* handlers at 3602 * filesystem level, though. 3603 */ 3604 3605 /* 3606 * Callback for security_inode_init_security() for acquiring xattrs. 3607 */ 3608 static int shmem_initxattrs(struct inode *inode, 3609 const struct xattr *xattr_array, 3610 void *fs_info) 3611 { 3612 struct shmem_inode_info *info = SHMEM_I(inode); 3613 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3614 const struct xattr *xattr; 3615 struct simple_xattr *new_xattr; 3616 size_t ispace = 0; 3617 size_t len; 3618 3619 if (sbinfo->max_inodes) { 3620 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3621 ispace += simple_xattr_space(xattr->name, 3622 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3623 } 3624 if (ispace) { 3625 raw_spin_lock(&sbinfo->stat_lock); 3626 if (sbinfo->free_ispace < ispace) 3627 ispace = 0; 3628 else 3629 sbinfo->free_ispace -= ispace; 3630 raw_spin_unlock(&sbinfo->stat_lock); 3631 if (!ispace) 3632 return -ENOSPC; 3633 } 3634 } 3635 3636 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3637 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3638 if (!new_xattr) 3639 break; 3640 3641 len = strlen(xattr->name) + 1; 3642 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3643 GFP_KERNEL_ACCOUNT); 3644 if (!new_xattr->name) { 3645 kvfree(new_xattr); 3646 break; 3647 } 3648 3649 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3650 XATTR_SECURITY_PREFIX_LEN); 3651 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3652 xattr->name, len); 3653 3654 simple_xattr_add(&info->xattrs, new_xattr); 3655 } 3656 3657 if (xattr->name != NULL) { 3658 if (ispace) { 3659 raw_spin_lock(&sbinfo->stat_lock); 3660 sbinfo->free_ispace += ispace; 3661 raw_spin_unlock(&sbinfo->stat_lock); 3662 } 3663 simple_xattrs_free(&info->xattrs, NULL); 3664 return -ENOMEM; 3665 } 3666 3667 return 0; 3668 } 3669 3670 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3671 struct dentry *unused, struct inode *inode, 3672 const char *name, void *buffer, size_t size) 3673 { 3674 struct shmem_inode_info *info = SHMEM_I(inode); 3675 3676 name = xattr_full_name(handler, name); 3677 return simple_xattr_get(&info->xattrs, name, buffer, size); 3678 } 3679 3680 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3681 struct mnt_idmap *idmap, 3682 struct dentry *unused, struct inode *inode, 3683 const char *name, const void *value, 3684 size_t size, int flags) 3685 { 3686 struct shmem_inode_info *info = SHMEM_I(inode); 3687 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3688 struct simple_xattr *old_xattr; 3689 size_t ispace = 0; 3690 3691 name = xattr_full_name(handler, name); 3692 if (value && sbinfo->max_inodes) { 3693 ispace = simple_xattr_space(name, size); 3694 raw_spin_lock(&sbinfo->stat_lock); 3695 if (sbinfo->free_ispace < ispace) 3696 ispace = 0; 3697 else 3698 sbinfo->free_ispace -= ispace; 3699 raw_spin_unlock(&sbinfo->stat_lock); 3700 if (!ispace) 3701 return -ENOSPC; 3702 } 3703 3704 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3705 if (!IS_ERR(old_xattr)) { 3706 ispace = 0; 3707 if (old_xattr && sbinfo->max_inodes) 3708 ispace = simple_xattr_space(old_xattr->name, 3709 old_xattr->size); 3710 simple_xattr_free(old_xattr); 3711 old_xattr = NULL; 3712 inode_set_ctime_current(inode); 3713 inode_inc_iversion(inode); 3714 } 3715 if (ispace) { 3716 raw_spin_lock(&sbinfo->stat_lock); 3717 sbinfo->free_ispace += ispace; 3718 raw_spin_unlock(&sbinfo->stat_lock); 3719 } 3720 return PTR_ERR(old_xattr); 3721 } 3722 3723 static const struct xattr_handler shmem_security_xattr_handler = { 3724 .prefix = XATTR_SECURITY_PREFIX, 3725 .get = shmem_xattr_handler_get, 3726 .set = shmem_xattr_handler_set, 3727 }; 3728 3729 static const struct xattr_handler shmem_trusted_xattr_handler = { 3730 .prefix = XATTR_TRUSTED_PREFIX, 3731 .get = shmem_xattr_handler_get, 3732 .set = shmem_xattr_handler_set, 3733 }; 3734 3735 static const struct xattr_handler shmem_user_xattr_handler = { 3736 .prefix = XATTR_USER_PREFIX, 3737 .get = shmem_xattr_handler_get, 3738 .set = shmem_xattr_handler_set, 3739 }; 3740 3741 static const struct xattr_handler *shmem_xattr_handlers[] = { 3742 &shmem_security_xattr_handler, 3743 &shmem_trusted_xattr_handler, 3744 &shmem_user_xattr_handler, 3745 NULL 3746 }; 3747 3748 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3749 { 3750 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3751 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3752 } 3753 #endif /* CONFIG_TMPFS_XATTR */ 3754 3755 static const struct inode_operations shmem_short_symlink_operations = { 3756 .getattr = shmem_getattr, 3757 .setattr = shmem_setattr, 3758 .get_link = simple_get_link, 3759 #ifdef CONFIG_TMPFS_XATTR 3760 .listxattr = shmem_listxattr, 3761 #endif 3762 }; 3763 3764 static const struct inode_operations shmem_symlink_inode_operations = { 3765 .getattr = shmem_getattr, 3766 .setattr = shmem_setattr, 3767 .get_link = shmem_get_link, 3768 #ifdef CONFIG_TMPFS_XATTR 3769 .listxattr = shmem_listxattr, 3770 #endif 3771 }; 3772 3773 static struct dentry *shmem_get_parent(struct dentry *child) 3774 { 3775 return ERR_PTR(-ESTALE); 3776 } 3777 3778 static int shmem_match(struct inode *ino, void *vfh) 3779 { 3780 __u32 *fh = vfh; 3781 __u64 inum = fh[2]; 3782 inum = (inum << 32) | fh[1]; 3783 return ino->i_ino == inum && fh[0] == ino->i_generation; 3784 } 3785 3786 /* Find any alias of inode, but prefer a hashed alias */ 3787 static struct dentry *shmem_find_alias(struct inode *inode) 3788 { 3789 struct dentry *alias = d_find_alias(inode); 3790 3791 return alias ?: d_find_any_alias(inode); 3792 } 3793 3794 3795 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3796 struct fid *fid, int fh_len, int fh_type) 3797 { 3798 struct inode *inode; 3799 struct dentry *dentry = NULL; 3800 u64 inum; 3801 3802 if (fh_len < 3) 3803 return NULL; 3804 3805 inum = fid->raw[2]; 3806 inum = (inum << 32) | fid->raw[1]; 3807 3808 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3809 shmem_match, fid->raw); 3810 if (inode) { 3811 dentry = shmem_find_alias(inode); 3812 iput(inode); 3813 } 3814 3815 return dentry; 3816 } 3817 3818 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3819 struct inode *parent) 3820 { 3821 if (*len < 3) { 3822 *len = 3; 3823 return FILEID_INVALID; 3824 } 3825 3826 if (inode_unhashed(inode)) { 3827 /* Unfortunately insert_inode_hash is not idempotent, 3828 * so as we hash inodes here rather than at creation 3829 * time, we need a lock to ensure we only try 3830 * to do it once 3831 */ 3832 static DEFINE_SPINLOCK(lock); 3833 spin_lock(&lock); 3834 if (inode_unhashed(inode)) 3835 __insert_inode_hash(inode, 3836 inode->i_ino + inode->i_generation); 3837 spin_unlock(&lock); 3838 } 3839 3840 fh[0] = inode->i_generation; 3841 fh[1] = inode->i_ino; 3842 fh[2] = ((__u64)inode->i_ino) >> 32; 3843 3844 *len = 3; 3845 return 1; 3846 } 3847 3848 static const struct export_operations shmem_export_ops = { 3849 .get_parent = shmem_get_parent, 3850 .encode_fh = shmem_encode_fh, 3851 .fh_to_dentry = shmem_fh_to_dentry, 3852 }; 3853 3854 enum shmem_param { 3855 Opt_gid, 3856 Opt_huge, 3857 Opt_mode, 3858 Opt_mpol, 3859 Opt_nr_blocks, 3860 Opt_nr_inodes, 3861 Opt_size, 3862 Opt_uid, 3863 Opt_inode32, 3864 Opt_inode64, 3865 Opt_noswap, 3866 Opt_quota, 3867 Opt_usrquota, 3868 Opt_grpquota, 3869 Opt_usrquota_block_hardlimit, 3870 Opt_usrquota_inode_hardlimit, 3871 Opt_grpquota_block_hardlimit, 3872 Opt_grpquota_inode_hardlimit, 3873 }; 3874 3875 static const struct constant_table shmem_param_enums_huge[] = { 3876 {"never", SHMEM_HUGE_NEVER }, 3877 {"always", SHMEM_HUGE_ALWAYS }, 3878 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3879 {"advise", SHMEM_HUGE_ADVISE }, 3880 {} 3881 }; 3882 3883 const struct fs_parameter_spec shmem_fs_parameters[] = { 3884 fsparam_u32 ("gid", Opt_gid), 3885 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3886 fsparam_u32oct("mode", Opt_mode), 3887 fsparam_string("mpol", Opt_mpol), 3888 fsparam_string("nr_blocks", Opt_nr_blocks), 3889 fsparam_string("nr_inodes", Opt_nr_inodes), 3890 fsparam_string("size", Opt_size), 3891 fsparam_u32 ("uid", Opt_uid), 3892 fsparam_flag ("inode32", Opt_inode32), 3893 fsparam_flag ("inode64", Opt_inode64), 3894 fsparam_flag ("noswap", Opt_noswap), 3895 #ifdef CONFIG_TMPFS_QUOTA 3896 fsparam_flag ("quota", Opt_quota), 3897 fsparam_flag ("usrquota", Opt_usrquota), 3898 fsparam_flag ("grpquota", Opt_grpquota), 3899 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3900 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3901 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3902 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3903 #endif 3904 {} 3905 }; 3906 3907 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3908 { 3909 struct shmem_options *ctx = fc->fs_private; 3910 struct fs_parse_result result; 3911 unsigned long long size; 3912 char *rest; 3913 int opt; 3914 kuid_t kuid; 3915 kgid_t kgid; 3916 3917 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3918 if (opt < 0) 3919 return opt; 3920 3921 switch (opt) { 3922 case Opt_size: 3923 size = memparse(param->string, &rest); 3924 if (*rest == '%') { 3925 size <<= PAGE_SHIFT; 3926 size *= totalram_pages(); 3927 do_div(size, 100); 3928 rest++; 3929 } 3930 if (*rest) 3931 goto bad_value; 3932 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3933 ctx->seen |= SHMEM_SEEN_BLOCKS; 3934 break; 3935 case Opt_nr_blocks: 3936 ctx->blocks = memparse(param->string, &rest); 3937 if (*rest || ctx->blocks > LONG_MAX) 3938 goto bad_value; 3939 ctx->seen |= SHMEM_SEEN_BLOCKS; 3940 break; 3941 case Opt_nr_inodes: 3942 ctx->inodes = memparse(param->string, &rest); 3943 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3944 goto bad_value; 3945 ctx->seen |= SHMEM_SEEN_INODES; 3946 break; 3947 case Opt_mode: 3948 ctx->mode = result.uint_32 & 07777; 3949 break; 3950 case Opt_uid: 3951 kuid = make_kuid(current_user_ns(), result.uint_32); 3952 if (!uid_valid(kuid)) 3953 goto bad_value; 3954 3955 /* 3956 * The requested uid must be representable in the 3957 * filesystem's idmapping. 3958 */ 3959 if (!kuid_has_mapping(fc->user_ns, kuid)) 3960 goto bad_value; 3961 3962 ctx->uid = kuid; 3963 break; 3964 case Opt_gid: 3965 kgid = make_kgid(current_user_ns(), result.uint_32); 3966 if (!gid_valid(kgid)) 3967 goto bad_value; 3968 3969 /* 3970 * The requested gid must be representable in the 3971 * filesystem's idmapping. 3972 */ 3973 if (!kgid_has_mapping(fc->user_ns, kgid)) 3974 goto bad_value; 3975 3976 ctx->gid = kgid; 3977 break; 3978 case Opt_huge: 3979 ctx->huge = result.uint_32; 3980 if (ctx->huge != SHMEM_HUGE_NEVER && 3981 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3982 has_transparent_hugepage())) 3983 goto unsupported_parameter; 3984 ctx->seen |= SHMEM_SEEN_HUGE; 3985 break; 3986 case Opt_mpol: 3987 if (IS_ENABLED(CONFIG_NUMA)) { 3988 mpol_put(ctx->mpol); 3989 ctx->mpol = NULL; 3990 if (mpol_parse_str(param->string, &ctx->mpol)) 3991 goto bad_value; 3992 break; 3993 } 3994 goto unsupported_parameter; 3995 case Opt_inode32: 3996 ctx->full_inums = false; 3997 ctx->seen |= SHMEM_SEEN_INUMS; 3998 break; 3999 case Opt_inode64: 4000 if (sizeof(ino_t) < 8) { 4001 return invalfc(fc, 4002 "Cannot use inode64 with <64bit inums in kernel\n"); 4003 } 4004 ctx->full_inums = true; 4005 ctx->seen |= SHMEM_SEEN_INUMS; 4006 break; 4007 case Opt_noswap: 4008 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4009 return invalfc(fc, 4010 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4011 } 4012 ctx->noswap = true; 4013 ctx->seen |= SHMEM_SEEN_NOSWAP; 4014 break; 4015 case Opt_quota: 4016 if (fc->user_ns != &init_user_ns) 4017 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4018 ctx->seen |= SHMEM_SEEN_QUOTA; 4019 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4020 break; 4021 case Opt_usrquota: 4022 if (fc->user_ns != &init_user_ns) 4023 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4024 ctx->seen |= SHMEM_SEEN_QUOTA; 4025 ctx->quota_types |= QTYPE_MASK_USR; 4026 break; 4027 case Opt_grpquota: 4028 if (fc->user_ns != &init_user_ns) 4029 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4030 ctx->seen |= SHMEM_SEEN_QUOTA; 4031 ctx->quota_types |= QTYPE_MASK_GRP; 4032 break; 4033 case Opt_usrquota_block_hardlimit: 4034 size = memparse(param->string, &rest); 4035 if (*rest || !size) 4036 goto bad_value; 4037 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4038 return invalfc(fc, 4039 "User quota block hardlimit too large."); 4040 ctx->qlimits.usrquota_bhardlimit = size; 4041 break; 4042 case Opt_grpquota_block_hardlimit: 4043 size = memparse(param->string, &rest); 4044 if (*rest || !size) 4045 goto bad_value; 4046 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4047 return invalfc(fc, 4048 "Group quota block hardlimit too large."); 4049 ctx->qlimits.grpquota_bhardlimit = size; 4050 break; 4051 case Opt_usrquota_inode_hardlimit: 4052 size = memparse(param->string, &rest); 4053 if (*rest || !size) 4054 goto bad_value; 4055 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4056 return invalfc(fc, 4057 "User quota inode hardlimit too large."); 4058 ctx->qlimits.usrquota_ihardlimit = size; 4059 break; 4060 case Opt_grpquota_inode_hardlimit: 4061 size = memparse(param->string, &rest); 4062 if (*rest || !size) 4063 goto bad_value; 4064 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4065 return invalfc(fc, 4066 "Group quota inode hardlimit too large."); 4067 ctx->qlimits.grpquota_ihardlimit = size; 4068 break; 4069 } 4070 return 0; 4071 4072 unsupported_parameter: 4073 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4074 bad_value: 4075 return invalfc(fc, "Bad value for '%s'", param->key); 4076 } 4077 4078 static int shmem_parse_options(struct fs_context *fc, void *data) 4079 { 4080 char *options = data; 4081 4082 if (options) { 4083 int err = security_sb_eat_lsm_opts(options, &fc->security); 4084 if (err) 4085 return err; 4086 } 4087 4088 while (options != NULL) { 4089 char *this_char = options; 4090 for (;;) { 4091 /* 4092 * NUL-terminate this option: unfortunately, 4093 * mount options form a comma-separated list, 4094 * but mpol's nodelist may also contain commas. 4095 */ 4096 options = strchr(options, ','); 4097 if (options == NULL) 4098 break; 4099 options++; 4100 if (!isdigit(*options)) { 4101 options[-1] = '\0'; 4102 break; 4103 } 4104 } 4105 if (*this_char) { 4106 char *value = strchr(this_char, '='); 4107 size_t len = 0; 4108 int err; 4109 4110 if (value) { 4111 *value++ = '\0'; 4112 len = strlen(value); 4113 } 4114 err = vfs_parse_fs_string(fc, this_char, value, len); 4115 if (err < 0) 4116 return err; 4117 } 4118 } 4119 return 0; 4120 } 4121 4122 /* 4123 * Reconfigure a shmem filesystem. 4124 */ 4125 static int shmem_reconfigure(struct fs_context *fc) 4126 { 4127 struct shmem_options *ctx = fc->fs_private; 4128 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4129 unsigned long used_isp; 4130 struct mempolicy *mpol = NULL; 4131 const char *err; 4132 4133 raw_spin_lock(&sbinfo->stat_lock); 4134 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4135 4136 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4137 if (!sbinfo->max_blocks) { 4138 err = "Cannot retroactively limit size"; 4139 goto out; 4140 } 4141 if (percpu_counter_compare(&sbinfo->used_blocks, 4142 ctx->blocks) > 0) { 4143 err = "Too small a size for current use"; 4144 goto out; 4145 } 4146 } 4147 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4148 if (!sbinfo->max_inodes) { 4149 err = "Cannot retroactively limit inodes"; 4150 goto out; 4151 } 4152 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4153 err = "Too few inodes for current use"; 4154 goto out; 4155 } 4156 } 4157 4158 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4159 sbinfo->next_ino > UINT_MAX) { 4160 err = "Current inum too high to switch to 32-bit inums"; 4161 goto out; 4162 } 4163 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4164 err = "Cannot disable swap on remount"; 4165 goto out; 4166 } 4167 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4168 err = "Cannot enable swap on remount if it was disabled on first mount"; 4169 goto out; 4170 } 4171 4172 if (ctx->seen & SHMEM_SEEN_QUOTA && 4173 !sb_any_quota_loaded(fc->root->d_sb)) { 4174 err = "Cannot enable quota on remount"; 4175 goto out; 4176 } 4177 4178 #ifdef CONFIG_TMPFS_QUOTA 4179 #define CHANGED_LIMIT(name) \ 4180 (ctx->qlimits.name## hardlimit && \ 4181 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4182 4183 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4184 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4185 err = "Cannot change global quota limit on remount"; 4186 goto out; 4187 } 4188 #endif /* CONFIG_TMPFS_QUOTA */ 4189 4190 if (ctx->seen & SHMEM_SEEN_HUGE) 4191 sbinfo->huge = ctx->huge; 4192 if (ctx->seen & SHMEM_SEEN_INUMS) 4193 sbinfo->full_inums = ctx->full_inums; 4194 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4195 sbinfo->max_blocks = ctx->blocks; 4196 if (ctx->seen & SHMEM_SEEN_INODES) { 4197 sbinfo->max_inodes = ctx->inodes; 4198 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4199 } 4200 4201 /* 4202 * Preserve previous mempolicy unless mpol remount option was specified. 4203 */ 4204 if (ctx->mpol) { 4205 mpol = sbinfo->mpol; 4206 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4207 ctx->mpol = NULL; 4208 } 4209 4210 if (ctx->noswap) 4211 sbinfo->noswap = true; 4212 4213 raw_spin_unlock(&sbinfo->stat_lock); 4214 mpol_put(mpol); 4215 return 0; 4216 out: 4217 raw_spin_unlock(&sbinfo->stat_lock); 4218 return invalfc(fc, "%s", err); 4219 } 4220 4221 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4222 { 4223 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4224 struct mempolicy *mpol; 4225 4226 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4227 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4228 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4229 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4230 if (sbinfo->mode != (0777 | S_ISVTX)) 4231 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4232 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4233 seq_printf(seq, ",uid=%u", 4234 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4235 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4236 seq_printf(seq, ",gid=%u", 4237 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4238 4239 /* 4240 * Showing inode{64,32} might be useful even if it's the system default, 4241 * since then people don't have to resort to checking both here and 4242 * /proc/config.gz to confirm 64-bit inums were successfully applied 4243 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4244 * 4245 * We hide it when inode64 isn't the default and we are using 32-bit 4246 * inodes, since that probably just means the feature isn't even under 4247 * consideration. 4248 * 4249 * As such: 4250 * 4251 * +-----------------+-----------------+ 4252 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4253 * +------------------+-----------------+-----------------+ 4254 * | full_inums=true | show | show | 4255 * | full_inums=false | show | hide | 4256 * +------------------+-----------------+-----------------+ 4257 * 4258 */ 4259 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4260 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4261 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4262 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4263 if (sbinfo->huge) 4264 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4265 #endif 4266 mpol = shmem_get_sbmpol(sbinfo); 4267 shmem_show_mpol(seq, mpol); 4268 mpol_put(mpol); 4269 if (sbinfo->noswap) 4270 seq_printf(seq, ",noswap"); 4271 return 0; 4272 } 4273 4274 #endif /* CONFIG_TMPFS */ 4275 4276 static void shmem_put_super(struct super_block *sb) 4277 { 4278 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4279 4280 #ifdef CONFIG_TMPFS_QUOTA 4281 shmem_disable_quotas(sb); 4282 #endif 4283 free_percpu(sbinfo->ino_batch); 4284 percpu_counter_destroy(&sbinfo->used_blocks); 4285 mpol_put(sbinfo->mpol); 4286 kfree(sbinfo); 4287 sb->s_fs_info = NULL; 4288 } 4289 4290 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4291 { 4292 struct shmem_options *ctx = fc->fs_private; 4293 struct inode *inode; 4294 struct shmem_sb_info *sbinfo; 4295 int error = -ENOMEM; 4296 4297 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4298 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4299 L1_CACHE_BYTES), GFP_KERNEL); 4300 if (!sbinfo) 4301 return error; 4302 4303 sb->s_fs_info = sbinfo; 4304 4305 #ifdef CONFIG_TMPFS 4306 /* 4307 * Per default we only allow half of the physical ram per 4308 * tmpfs instance, limiting inodes to one per page of lowmem; 4309 * but the internal instance is left unlimited. 4310 */ 4311 if (!(sb->s_flags & SB_KERNMOUNT)) { 4312 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4313 ctx->blocks = shmem_default_max_blocks(); 4314 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4315 ctx->inodes = shmem_default_max_inodes(); 4316 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4317 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4318 sbinfo->noswap = ctx->noswap; 4319 } else { 4320 sb->s_flags |= SB_NOUSER; 4321 } 4322 sb->s_export_op = &shmem_export_ops; 4323 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4324 #else 4325 sb->s_flags |= SB_NOUSER; 4326 #endif 4327 sbinfo->max_blocks = ctx->blocks; 4328 sbinfo->max_inodes = ctx->inodes; 4329 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4330 if (sb->s_flags & SB_KERNMOUNT) { 4331 sbinfo->ino_batch = alloc_percpu(ino_t); 4332 if (!sbinfo->ino_batch) 4333 goto failed; 4334 } 4335 sbinfo->uid = ctx->uid; 4336 sbinfo->gid = ctx->gid; 4337 sbinfo->full_inums = ctx->full_inums; 4338 sbinfo->mode = ctx->mode; 4339 sbinfo->huge = ctx->huge; 4340 sbinfo->mpol = ctx->mpol; 4341 ctx->mpol = NULL; 4342 4343 raw_spin_lock_init(&sbinfo->stat_lock); 4344 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4345 goto failed; 4346 spin_lock_init(&sbinfo->shrinklist_lock); 4347 INIT_LIST_HEAD(&sbinfo->shrinklist); 4348 4349 sb->s_maxbytes = MAX_LFS_FILESIZE; 4350 sb->s_blocksize = PAGE_SIZE; 4351 sb->s_blocksize_bits = PAGE_SHIFT; 4352 sb->s_magic = TMPFS_MAGIC; 4353 sb->s_op = &shmem_ops; 4354 sb->s_time_gran = 1; 4355 #ifdef CONFIG_TMPFS_XATTR 4356 sb->s_xattr = shmem_xattr_handlers; 4357 #endif 4358 #ifdef CONFIG_TMPFS_POSIX_ACL 4359 sb->s_flags |= SB_POSIXACL; 4360 #endif 4361 uuid_gen(&sb->s_uuid); 4362 4363 #ifdef CONFIG_TMPFS_QUOTA 4364 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4365 sb->dq_op = &shmem_quota_operations; 4366 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4367 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4368 4369 /* Copy the default limits from ctx into sbinfo */ 4370 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4371 sizeof(struct shmem_quota_limits)); 4372 4373 if (shmem_enable_quotas(sb, ctx->quota_types)) 4374 goto failed; 4375 } 4376 #endif /* CONFIG_TMPFS_QUOTA */ 4377 4378 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4379 VM_NORESERVE); 4380 if (IS_ERR(inode)) { 4381 error = PTR_ERR(inode); 4382 goto failed; 4383 } 4384 inode->i_uid = sbinfo->uid; 4385 inode->i_gid = sbinfo->gid; 4386 sb->s_root = d_make_root(inode); 4387 if (!sb->s_root) 4388 goto failed; 4389 return 0; 4390 4391 failed: 4392 shmem_put_super(sb); 4393 return error; 4394 } 4395 4396 static int shmem_get_tree(struct fs_context *fc) 4397 { 4398 return get_tree_nodev(fc, shmem_fill_super); 4399 } 4400 4401 static void shmem_free_fc(struct fs_context *fc) 4402 { 4403 struct shmem_options *ctx = fc->fs_private; 4404 4405 if (ctx) { 4406 mpol_put(ctx->mpol); 4407 kfree(ctx); 4408 } 4409 } 4410 4411 static const struct fs_context_operations shmem_fs_context_ops = { 4412 .free = shmem_free_fc, 4413 .get_tree = shmem_get_tree, 4414 #ifdef CONFIG_TMPFS 4415 .parse_monolithic = shmem_parse_options, 4416 .parse_param = shmem_parse_one, 4417 .reconfigure = shmem_reconfigure, 4418 #endif 4419 }; 4420 4421 static struct kmem_cache *shmem_inode_cachep; 4422 4423 static struct inode *shmem_alloc_inode(struct super_block *sb) 4424 { 4425 struct shmem_inode_info *info; 4426 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4427 if (!info) 4428 return NULL; 4429 return &info->vfs_inode; 4430 } 4431 4432 static void shmem_free_in_core_inode(struct inode *inode) 4433 { 4434 if (S_ISLNK(inode->i_mode)) 4435 kfree(inode->i_link); 4436 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4437 } 4438 4439 static void shmem_destroy_inode(struct inode *inode) 4440 { 4441 if (S_ISREG(inode->i_mode)) 4442 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4443 if (S_ISDIR(inode->i_mode)) 4444 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4445 } 4446 4447 static void shmem_init_inode(void *foo) 4448 { 4449 struct shmem_inode_info *info = foo; 4450 inode_init_once(&info->vfs_inode); 4451 } 4452 4453 static void shmem_init_inodecache(void) 4454 { 4455 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4456 sizeof(struct shmem_inode_info), 4457 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4458 } 4459 4460 static void shmem_destroy_inodecache(void) 4461 { 4462 kmem_cache_destroy(shmem_inode_cachep); 4463 } 4464 4465 /* Keep the page in page cache instead of truncating it */ 4466 static int shmem_error_remove_page(struct address_space *mapping, 4467 struct page *page) 4468 { 4469 return 0; 4470 } 4471 4472 const struct address_space_operations shmem_aops = { 4473 .writepage = shmem_writepage, 4474 .dirty_folio = noop_dirty_folio, 4475 #ifdef CONFIG_TMPFS 4476 .write_begin = shmem_write_begin, 4477 .write_end = shmem_write_end, 4478 #endif 4479 #ifdef CONFIG_MIGRATION 4480 .migrate_folio = migrate_folio, 4481 #endif 4482 .error_remove_page = shmem_error_remove_page, 4483 }; 4484 EXPORT_SYMBOL(shmem_aops); 4485 4486 static const struct file_operations shmem_file_operations = { 4487 .mmap = shmem_mmap, 4488 .open = shmem_file_open, 4489 .get_unmapped_area = shmem_get_unmapped_area, 4490 #ifdef CONFIG_TMPFS 4491 .llseek = shmem_file_llseek, 4492 .read_iter = shmem_file_read_iter, 4493 .write_iter = shmem_file_write_iter, 4494 .fsync = noop_fsync, 4495 .splice_read = shmem_file_splice_read, 4496 .splice_write = iter_file_splice_write, 4497 .fallocate = shmem_fallocate, 4498 #endif 4499 }; 4500 4501 static const struct inode_operations shmem_inode_operations = { 4502 .getattr = shmem_getattr, 4503 .setattr = shmem_setattr, 4504 #ifdef CONFIG_TMPFS_XATTR 4505 .listxattr = shmem_listxattr, 4506 .set_acl = simple_set_acl, 4507 .fileattr_get = shmem_fileattr_get, 4508 .fileattr_set = shmem_fileattr_set, 4509 #endif 4510 }; 4511 4512 static const struct inode_operations shmem_dir_inode_operations = { 4513 #ifdef CONFIG_TMPFS 4514 .getattr = shmem_getattr, 4515 .create = shmem_create, 4516 .lookup = simple_lookup, 4517 .link = shmem_link, 4518 .unlink = shmem_unlink, 4519 .symlink = shmem_symlink, 4520 .mkdir = shmem_mkdir, 4521 .rmdir = shmem_rmdir, 4522 .mknod = shmem_mknod, 4523 .rename = shmem_rename2, 4524 .tmpfile = shmem_tmpfile, 4525 .get_offset_ctx = shmem_get_offset_ctx, 4526 #endif 4527 #ifdef CONFIG_TMPFS_XATTR 4528 .listxattr = shmem_listxattr, 4529 .fileattr_get = shmem_fileattr_get, 4530 .fileattr_set = shmem_fileattr_set, 4531 #endif 4532 #ifdef CONFIG_TMPFS_POSIX_ACL 4533 .setattr = shmem_setattr, 4534 .set_acl = simple_set_acl, 4535 #endif 4536 }; 4537 4538 static const struct inode_operations shmem_special_inode_operations = { 4539 .getattr = shmem_getattr, 4540 #ifdef CONFIG_TMPFS_XATTR 4541 .listxattr = shmem_listxattr, 4542 #endif 4543 #ifdef CONFIG_TMPFS_POSIX_ACL 4544 .setattr = shmem_setattr, 4545 .set_acl = simple_set_acl, 4546 #endif 4547 }; 4548 4549 static const struct super_operations shmem_ops = { 4550 .alloc_inode = shmem_alloc_inode, 4551 .free_inode = shmem_free_in_core_inode, 4552 .destroy_inode = shmem_destroy_inode, 4553 #ifdef CONFIG_TMPFS 4554 .statfs = shmem_statfs, 4555 .show_options = shmem_show_options, 4556 #endif 4557 #ifdef CONFIG_TMPFS_QUOTA 4558 .get_dquots = shmem_get_dquots, 4559 #endif 4560 .evict_inode = shmem_evict_inode, 4561 .drop_inode = generic_delete_inode, 4562 .put_super = shmem_put_super, 4563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4564 .nr_cached_objects = shmem_unused_huge_count, 4565 .free_cached_objects = shmem_unused_huge_scan, 4566 #endif 4567 }; 4568 4569 static const struct vm_operations_struct shmem_vm_ops = { 4570 .fault = shmem_fault, 4571 .map_pages = filemap_map_pages, 4572 #ifdef CONFIG_NUMA 4573 .set_policy = shmem_set_policy, 4574 .get_policy = shmem_get_policy, 4575 #endif 4576 }; 4577 4578 static const struct vm_operations_struct shmem_anon_vm_ops = { 4579 .fault = shmem_fault, 4580 .map_pages = filemap_map_pages, 4581 #ifdef CONFIG_NUMA 4582 .set_policy = shmem_set_policy, 4583 .get_policy = shmem_get_policy, 4584 #endif 4585 }; 4586 4587 int shmem_init_fs_context(struct fs_context *fc) 4588 { 4589 struct shmem_options *ctx; 4590 4591 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4592 if (!ctx) 4593 return -ENOMEM; 4594 4595 ctx->mode = 0777 | S_ISVTX; 4596 ctx->uid = current_fsuid(); 4597 ctx->gid = current_fsgid(); 4598 4599 fc->fs_private = ctx; 4600 fc->ops = &shmem_fs_context_ops; 4601 return 0; 4602 } 4603 4604 static struct file_system_type shmem_fs_type = { 4605 .owner = THIS_MODULE, 4606 .name = "tmpfs", 4607 .init_fs_context = shmem_init_fs_context, 4608 #ifdef CONFIG_TMPFS 4609 .parameters = shmem_fs_parameters, 4610 #endif 4611 .kill_sb = kill_litter_super, 4612 #ifdef CONFIG_SHMEM 4613 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4614 #else 4615 .fs_flags = FS_USERNS_MOUNT, 4616 #endif 4617 }; 4618 4619 void __init shmem_init(void) 4620 { 4621 int error; 4622 4623 shmem_init_inodecache(); 4624 4625 #ifdef CONFIG_TMPFS_QUOTA 4626 error = register_quota_format(&shmem_quota_format); 4627 if (error < 0) { 4628 pr_err("Could not register quota format\n"); 4629 goto out3; 4630 } 4631 #endif 4632 4633 error = register_filesystem(&shmem_fs_type); 4634 if (error) { 4635 pr_err("Could not register tmpfs\n"); 4636 goto out2; 4637 } 4638 4639 shm_mnt = kern_mount(&shmem_fs_type); 4640 if (IS_ERR(shm_mnt)) { 4641 error = PTR_ERR(shm_mnt); 4642 pr_err("Could not kern_mount tmpfs\n"); 4643 goto out1; 4644 } 4645 4646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4647 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4648 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4649 else 4650 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4651 #endif 4652 return; 4653 4654 out1: 4655 unregister_filesystem(&shmem_fs_type); 4656 out2: 4657 #ifdef CONFIG_TMPFS_QUOTA 4658 unregister_quota_format(&shmem_quota_format); 4659 out3: 4660 #endif 4661 shmem_destroy_inodecache(); 4662 shm_mnt = ERR_PTR(error); 4663 } 4664 4665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4666 static ssize_t shmem_enabled_show(struct kobject *kobj, 4667 struct kobj_attribute *attr, char *buf) 4668 { 4669 static const int values[] = { 4670 SHMEM_HUGE_ALWAYS, 4671 SHMEM_HUGE_WITHIN_SIZE, 4672 SHMEM_HUGE_ADVISE, 4673 SHMEM_HUGE_NEVER, 4674 SHMEM_HUGE_DENY, 4675 SHMEM_HUGE_FORCE, 4676 }; 4677 int len = 0; 4678 int i; 4679 4680 for (i = 0; i < ARRAY_SIZE(values); i++) { 4681 len += sysfs_emit_at(buf, len, 4682 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4683 i ? " " : "", 4684 shmem_format_huge(values[i])); 4685 } 4686 4687 len += sysfs_emit_at(buf, len, "\n"); 4688 4689 return len; 4690 } 4691 4692 static ssize_t shmem_enabled_store(struct kobject *kobj, 4693 struct kobj_attribute *attr, const char *buf, size_t count) 4694 { 4695 char tmp[16]; 4696 int huge; 4697 4698 if (count + 1 > sizeof(tmp)) 4699 return -EINVAL; 4700 memcpy(tmp, buf, count); 4701 tmp[count] = '\0'; 4702 if (count && tmp[count - 1] == '\n') 4703 tmp[count - 1] = '\0'; 4704 4705 huge = shmem_parse_huge(tmp); 4706 if (huge == -EINVAL) 4707 return -EINVAL; 4708 if (!has_transparent_hugepage() && 4709 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4710 return -EINVAL; 4711 4712 shmem_huge = huge; 4713 if (shmem_huge > SHMEM_HUGE_DENY) 4714 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4715 return count; 4716 } 4717 4718 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4719 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4720 4721 #else /* !CONFIG_SHMEM */ 4722 4723 /* 4724 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4725 * 4726 * This is intended for small system where the benefits of the full 4727 * shmem code (swap-backed and resource-limited) are outweighed by 4728 * their complexity. On systems without swap this code should be 4729 * effectively equivalent, but much lighter weight. 4730 */ 4731 4732 static struct file_system_type shmem_fs_type = { 4733 .name = "tmpfs", 4734 .init_fs_context = ramfs_init_fs_context, 4735 .parameters = ramfs_fs_parameters, 4736 .kill_sb = ramfs_kill_sb, 4737 .fs_flags = FS_USERNS_MOUNT, 4738 }; 4739 4740 void __init shmem_init(void) 4741 { 4742 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4743 4744 shm_mnt = kern_mount(&shmem_fs_type); 4745 BUG_ON(IS_ERR(shm_mnt)); 4746 } 4747 4748 int shmem_unuse(unsigned int type) 4749 { 4750 return 0; 4751 } 4752 4753 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4754 { 4755 return 0; 4756 } 4757 4758 void shmem_unlock_mapping(struct address_space *mapping) 4759 { 4760 } 4761 4762 #ifdef CONFIG_MMU 4763 unsigned long shmem_get_unmapped_area(struct file *file, 4764 unsigned long addr, unsigned long len, 4765 unsigned long pgoff, unsigned long flags) 4766 { 4767 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4768 } 4769 #endif 4770 4771 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4772 { 4773 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4774 } 4775 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4776 4777 #define shmem_vm_ops generic_file_vm_ops 4778 #define shmem_anon_vm_ops generic_file_vm_ops 4779 #define shmem_file_operations ramfs_file_operations 4780 #define shmem_acct_size(flags, size) 0 4781 #define shmem_unacct_size(flags, size) do {} while (0) 4782 4783 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir, 4784 umode_t mode, dev_t dev, unsigned long flags) 4785 { 4786 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4787 return inode ? inode : ERR_PTR(-ENOSPC); 4788 } 4789 4790 #endif /* CONFIG_SHMEM */ 4791 4792 /* common code */ 4793 4794 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4795 unsigned long flags, unsigned int i_flags) 4796 { 4797 struct inode *inode; 4798 struct file *res; 4799 4800 if (IS_ERR(mnt)) 4801 return ERR_CAST(mnt); 4802 4803 if (size < 0 || size > MAX_LFS_FILESIZE) 4804 return ERR_PTR(-EINVAL); 4805 4806 if (shmem_acct_size(flags, size)) 4807 return ERR_PTR(-ENOMEM); 4808 4809 if (is_idmapped_mnt(mnt)) 4810 return ERR_PTR(-EINVAL); 4811 4812 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4813 S_IFREG | S_IRWXUGO, 0, flags); 4814 4815 if (IS_ERR(inode)) { 4816 shmem_unacct_size(flags, size); 4817 return ERR_CAST(inode); 4818 } 4819 inode->i_flags |= i_flags; 4820 inode->i_size = size; 4821 clear_nlink(inode); /* It is unlinked */ 4822 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4823 if (!IS_ERR(res)) 4824 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4825 &shmem_file_operations); 4826 if (IS_ERR(res)) 4827 iput(inode); 4828 return res; 4829 } 4830 4831 /** 4832 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4833 * kernel internal. There will be NO LSM permission checks against the 4834 * underlying inode. So users of this interface must do LSM checks at a 4835 * higher layer. The users are the big_key and shm implementations. LSM 4836 * checks are provided at the key or shm level rather than the inode. 4837 * @name: name for dentry (to be seen in /proc/<pid>/maps 4838 * @size: size to be set for the file 4839 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4840 */ 4841 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4842 { 4843 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4844 } 4845 4846 /** 4847 * shmem_file_setup - get an unlinked file living in tmpfs 4848 * @name: name for dentry (to be seen in /proc/<pid>/maps 4849 * @size: size to be set for the file 4850 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4851 */ 4852 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4853 { 4854 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4855 } 4856 EXPORT_SYMBOL_GPL(shmem_file_setup); 4857 4858 /** 4859 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4860 * @mnt: the tmpfs mount where the file will be created 4861 * @name: name for dentry (to be seen in /proc/<pid>/maps 4862 * @size: size to be set for the file 4863 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4864 */ 4865 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4866 loff_t size, unsigned long flags) 4867 { 4868 return __shmem_file_setup(mnt, name, size, flags, 0); 4869 } 4870 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4871 4872 /** 4873 * shmem_zero_setup - setup a shared anonymous mapping 4874 * @vma: the vma to be mmapped is prepared by do_mmap 4875 */ 4876 int shmem_zero_setup(struct vm_area_struct *vma) 4877 { 4878 struct file *file; 4879 loff_t size = vma->vm_end - vma->vm_start; 4880 4881 /* 4882 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4883 * between XFS directory reading and selinux: since this file is only 4884 * accessible to the user through its mapping, use S_PRIVATE flag to 4885 * bypass file security, in the same way as shmem_kernel_file_setup(). 4886 */ 4887 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4888 if (IS_ERR(file)) 4889 return PTR_ERR(file); 4890 4891 if (vma->vm_file) 4892 fput(vma->vm_file); 4893 vma->vm_file = file; 4894 vma->vm_ops = &shmem_anon_vm_ops; 4895 4896 return 0; 4897 } 4898 4899 /** 4900 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4901 * @mapping: the folio's address_space 4902 * @index: the folio index 4903 * @gfp: the page allocator flags to use if allocating 4904 * 4905 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4906 * with any new page allocations done using the specified allocation flags. 4907 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4908 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4909 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4910 * 4911 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4912 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4913 */ 4914 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4915 pgoff_t index, gfp_t gfp) 4916 { 4917 #ifdef CONFIG_SHMEM 4918 struct inode *inode = mapping->host; 4919 struct folio *folio; 4920 int error; 4921 4922 BUG_ON(!shmem_mapping(mapping)); 4923 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4924 gfp, NULL, NULL, NULL); 4925 if (error) 4926 return ERR_PTR(error); 4927 4928 folio_unlock(folio); 4929 return folio; 4930 #else 4931 /* 4932 * The tiny !SHMEM case uses ramfs without swap 4933 */ 4934 return mapping_read_folio_gfp(mapping, index, gfp); 4935 #endif 4936 } 4937 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4938 4939 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4940 pgoff_t index, gfp_t gfp) 4941 { 4942 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4943 struct page *page; 4944 4945 if (IS_ERR(folio)) 4946 return &folio->page; 4947 4948 page = folio_file_page(folio, index); 4949 if (PageHWPoison(page)) { 4950 folio_put(folio); 4951 return ERR_PTR(-EIO); 4952 } 4953 4954 return page; 4955 } 4956 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4957