xref: /openbmc/linux/mm/shmem.c (revision edd1f905)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95 
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98 
99 /*
100  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101  * inode->i_private (with i_rwsem making sure that it has only one user at
102  * a time): we would prefer not to enlarge the shmem inode just for that.
103  */
104 struct shmem_falloc {
105 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 	pgoff_t start;		/* start of range currently being fallocated */
107 	pgoff_t next;		/* the next page offset to be fallocated */
108 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
109 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
110 };
111 
112 struct shmem_options {
113 	unsigned long long blocks;
114 	unsigned long long inodes;
115 	struct mempolicy *mpol;
116 	kuid_t uid;
117 	kgid_t gid;
118 	umode_t mode;
119 	bool full_inums;
120 	int huge;
121 	int seen;
122 	bool noswap;
123 	unsigned short quota_types;
124 	struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132 
133 #ifdef CONFIG_TMPFS
134 static unsigned long shmem_default_max_blocks(void)
135 {
136 	return totalram_pages() / 2;
137 }
138 
139 static unsigned long shmem_default_max_inodes(void)
140 {
141 	unsigned long nr_pages = totalram_pages();
142 
143 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 			ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147 
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 			     struct folio **foliop, enum sgp_type sgp,
150 			     gfp_t gfp, struct vm_area_struct *vma,
151 			     vm_fault_t *fault_type);
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	int err = -ENOSPC;
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return err;
218 
219 	might_sleep();	/* when quotas */
220 	if (sbinfo->max_blocks) {
221 		if (percpu_counter_compare(&sbinfo->used_blocks,
222 					   sbinfo->max_blocks - pages) > 0)
223 			goto unacct;
224 
225 		err = dquot_alloc_block_nodirty(inode, pages);
226 		if (err)
227 			goto unacct;
228 
229 		percpu_counter_add(&sbinfo->used_blocks, pages);
230 	} else {
231 		err = dquot_alloc_block_nodirty(inode, pages);
232 		if (err)
233 			goto unacct;
234 	}
235 
236 	return 0;
237 
238 unacct:
239 	shmem_unacct_blocks(info->flags, pages);
240 	return err;
241 }
242 
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 
248 	might_sleep();	/* when quotas */
249 	dquot_free_block_nodirty(inode, pages);
250 
251 	if (sbinfo->max_blocks)
252 		percpu_counter_sub(&sbinfo->used_blocks, pages);
253 	shmem_unacct_blocks(info->flags, pages);
254 }
255 
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265 
266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 	return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270 
271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275 
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278 
279 #ifdef CONFIG_TMPFS_QUOTA
280 
281 static int shmem_enable_quotas(struct super_block *sb,
282 			       unsigned short quota_types)
283 {
284 	int type, err = 0;
285 
286 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 		if (!(quota_types & (1 << type)))
289 			continue;
290 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 					  DQUOT_USAGE_ENABLED |
292 					  DQUOT_LIMITS_ENABLED);
293 		if (err)
294 			goto out_err;
295 	}
296 	return 0;
297 
298 out_err:
299 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 		type, err);
301 	for (type--; type >= 0; type--)
302 		dquot_quota_off(sb, type);
303 	return err;
304 }
305 
306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 	int type;
309 
310 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 		dquot_quota_off(sb, type);
312 }
313 
314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
315 {
316 	return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319 
320 /*
321  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322  * produces a novel ino for the newly allocated inode.
323  *
324  * It may also be called when making a hard link to permit the space needed by
325  * each dentry. However, in that case, no new inode number is needed since that
326  * internally draws from another pool of inode numbers (currently global
327  * get_next_ino()). This case is indicated by passing NULL as inop.
328  */
329 #define SHMEM_INO_BATCH 1024
330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 	ino_t ino;
334 
335 	if (!(sb->s_flags & SB_KERNMOUNT)) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		if (sbinfo->max_inodes) {
338 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 				raw_spin_unlock(&sbinfo->stat_lock);
340 				return -ENOSPC;
341 			}
342 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 		}
344 		if (inop) {
345 			ino = sbinfo->next_ino++;
346 			if (unlikely(is_zero_ino(ino)))
347 				ino = sbinfo->next_ino++;
348 			if (unlikely(!sbinfo->full_inums &&
349 				     ino > UINT_MAX)) {
350 				/*
351 				 * Emulate get_next_ino uint wraparound for
352 				 * compatibility
353 				 */
354 				if (IS_ENABLED(CONFIG_64BIT))
355 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 						__func__, MINOR(sb->s_dev));
357 				sbinfo->next_ino = 1;
358 				ino = sbinfo->next_ino++;
359 			}
360 			*inop = ino;
361 		}
362 		raw_spin_unlock(&sbinfo->stat_lock);
363 	} else if (inop) {
364 		/*
365 		 * __shmem_file_setup, one of our callers, is lock-free: it
366 		 * doesn't hold stat_lock in shmem_reserve_inode since
367 		 * max_inodes is always 0, and is called from potentially
368 		 * unknown contexts. As such, use a per-cpu batched allocator
369 		 * which doesn't require the per-sb stat_lock unless we are at
370 		 * the batch boundary.
371 		 *
372 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 		 * shmem mounts are not exposed to userspace, so we don't need
374 		 * to worry about things like glibc compatibility.
375 		 */
376 		ino_t *next_ino;
377 
378 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 		ino = *next_ino;
380 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 			raw_spin_lock(&sbinfo->stat_lock);
382 			ino = sbinfo->next_ino;
383 			sbinfo->next_ino += SHMEM_INO_BATCH;
384 			raw_spin_unlock(&sbinfo->stat_lock);
385 			if (unlikely(is_zero_ino(ino)))
386 				ino++;
387 		}
388 		*inop = ino;
389 		*next_ino = ++ino;
390 		put_cpu();
391 	}
392 
393 	return 0;
394 }
395 
396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 	if (sbinfo->max_inodes) {
400 		raw_spin_lock(&sbinfo->stat_lock);
401 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 		raw_spin_unlock(&sbinfo->stat_lock);
403 	}
404 }
405 
406 /**
407  * shmem_recalc_inode - recalculate the block usage of an inode
408  * @inode: inode to recalc
409  * @alloced: the change in number of pages allocated to inode
410  * @swapped: the change in number of pages swapped from inode
411  *
412  * We have to calculate the free blocks since the mm can drop
413  * undirtied hole pages behind our back.
414  *
415  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
416  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417  */
418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 	struct shmem_inode_info *info = SHMEM_I(inode);
421 	long freed;
422 
423 	spin_lock(&info->lock);
424 	info->alloced += alloced;
425 	info->swapped += swapped;
426 	freed = info->alloced - info->swapped -
427 		READ_ONCE(inode->i_mapping->nrpages);
428 	/*
429 	 * Special case: whereas normally shmem_recalc_inode() is called
430 	 * after i_mapping->nrpages has already been adjusted (up or down),
431 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 	 * been freed.  Compensate here, to avoid the need for a followup call.
434 	 */
435 	if (swapped > 0)
436 		freed += swapped;
437 	if (freed > 0)
438 		info->alloced -= freed;
439 	spin_unlock(&info->lock);
440 
441 	/* The quota case may block */
442 	if (freed > 0)
443 		shmem_inode_unacct_blocks(inode, freed);
444 }
445 
446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 
450 	if (shmem_inode_acct_block(inode, pages))
451 		return false;
452 
453 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 	xa_lock_irq(&mapping->i_pages);
455 	mapping->nrpages += pages;
456 	xa_unlock_irq(&mapping->i_pages);
457 
458 	shmem_recalc_inode(inode, pages, 0);
459 	return true;
460 }
461 
462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 	/* pages argument is currently unused: keep it to help debugging */
465 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
466 
467 	shmem_recalc_inode(inode, 0, 0);
468 }
469 
470 /*
471  * Replace item expected in xarray by a new item, while holding xa_lock.
472  */
473 static int shmem_replace_entry(struct address_space *mapping,
474 			pgoff_t index, void *expected, void *replacement)
475 {
476 	XA_STATE(xas, &mapping->i_pages, index);
477 	void *item;
478 
479 	VM_BUG_ON(!expected);
480 	VM_BUG_ON(!replacement);
481 	item = xas_load(&xas);
482 	if (item != expected)
483 		return -ENOENT;
484 	xas_store(&xas, replacement);
485 	return 0;
486 }
487 
488 /*
489  * Sometimes, before we decide whether to proceed or to fail, we must check
490  * that an entry was not already brought back from swap by a racing thread.
491  *
492  * Checking page is not enough: by the time a SwapCache page is locked, it
493  * might be reused, and again be SwapCache, using the same swap as before.
494  */
495 static bool shmem_confirm_swap(struct address_space *mapping,
496 			       pgoff_t index, swp_entry_t swap)
497 {
498 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500 
501 /*
502  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503  *
504  * SHMEM_HUGE_NEVER:
505  *	disables huge pages for the mount;
506  * SHMEM_HUGE_ALWAYS:
507  *	enables huge pages for the mount;
508  * SHMEM_HUGE_WITHIN_SIZE:
509  *	only allocate huge pages if the page will be fully within i_size,
510  *	also respect fadvise()/madvise() hints;
511  * SHMEM_HUGE_ADVISE:
512  *	only allocate huge pages if requested with fadvise()/madvise();
513  */
514 
515 #define SHMEM_HUGE_NEVER	0
516 #define SHMEM_HUGE_ALWAYS	1
517 #define SHMEM_HUGE_WITHIN_SIZE	2
518 #define SHMEM_HUGE_ADVISE	3
519 
520 /*
521  * Special values.
522  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523  *
524  * SHMEM_HUGE_DENY:
525  *	disables huge on shm_mnt and all mounts, for emergency use;
526  * SHMEM_HUGE_FORCE:
527  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528  *
529  */
530 #define SHMEM_HUGE_DENY		(-1)
531 #define SHMEM_HUGE_FORCE	(-2)
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535 
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537 
538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index,
539 			    bool shmem_huge_force, struct mm_struct *mm,
540 			    unsigned long vm_flags)
541 {
542 	loff_t i_size;
543 
544 	if (!S_ISREG(inode->i_mode))
545 		return false;
546 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
547 		return false;
548 	if (shmem_huge == SHMEM_HUGE_DENY)
549 		return false;
550 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
551 		return true;
552 
553 	switch (SHMEM_SB(inode->i_sb)->huge) {
554 	case SHMEM_HUGE_ALWAYS:
555 		return true;
556 	case SHMEM_HUGE_WITHIN_SIZE:
557 		index = round_up(index + 1, HPAGE_PMD_NR);
558 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
559 		if (i_size >> PAGE_SHIFT >= index)
560 			return true;
561 		fallthrough;
562 	case SHMEM_HUGE_ADVISE:
563 		if (mm && (vm_flags & VM_HUGEPAGE))
564 			return true;
565 		fallthrough;
566 	default:
567 		return false;
568 	}
569 }
570 
571 bool shmem_is_huge(struct inode *inode, pgoff_t index,
572 		   bool shmem_huge_force, struct mm_struct *mm,
573 		   unsigned long vm_flags)
574 {
575 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
576 		return false;
577 
578 	return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags);
579 }
580 
581 #if defined(CONFIG_SYSFS)
582 static int shmem_parse_huge(const char *str)
583 {
584 	if (!strcmp(str, "never"))
585 		return SHMEM_HUGE_NEVER;
586 	if (!strcmp(str, "always"))
587 		return SHMEM_HUGE_ALWAYS;
588 	if (!strcmp(str, "within_size"))
589 		return SHMEM_HUGE_WITHIN_SIZE;
590 	if (!strcmp(str, "advise"))
591 		return SHMEM_HUGE_ADVISE;
592 	if (!strcmp(str, "deny"))
593 		return SHMEM_HUGE_DENY;
594 	if (!strcmp(str, "force"))
595 		return SHMEM_HUGE_FORCE;
596 	return -EINVAL;
597 }
598 #endif
599 
600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
601 static const char *shmem_format_huge(int huge)
602 {
603 	switch (huge) {
604 	case SHMEM_HUGE_NEVER:
605 		return "never";
606 	case SHMEM_HUGE_ALWAYS:
607 		return "always";
608 	case SHMEM_HUGE_WITHIN_SIZE:
609 		return "within_size";
610 	case SHMEM_HUGE_ADVISE:
611 		return "advise";
612 	case SHMEM_HUGE_DENY:
613 		return "deny";
614 	case SHMEM_HUGE_FORCE:
615 		return "force";
616 	default:
617 		VM_BUG_ON(1);
618 		return "bad_val";
619 	}
620 }
621 #endif
622 
623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
624 		struct shrink_control *sc, unsigned long nr_to_split)
625 {
626 	LIST_HEAD(list), *pos, *next;
627 	LIST_HEAD(to_remove);
628 	struct inode *inode;
629 	struct shmem_inode_info *info;
630 	struct folio *folio;
631 	unsigned long batch = sc ? sc->nr_to_scan : 128;
632 	int split = 0;
633 
634 	if (list_empty(&sbinfo->shrinklist))
635 		return SHRINK_STOP;
636 
637 	spin_lock(&sbinfo->shrinklist_lock);
638 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
639 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
640 
641 		/* pin the inode */
642 		inode = igrab(&info->vfs_inode);
643 
644 		/* inode is about to be evicted */
645 		if (!inode) {
646 			list_del_init(&info->shrinklist);
647 			goto next;
648 		}
649 
650 		/* Check if there's anything to gain */
651 		if (round_up(inode->i_size, PAGE_SIZE) ==
652 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
653 			list_move(&info->shrinklist, &to_remove);
654 			goto next;
655 		}
656 
657 		list_move(&info->shrinklist, &list);
658 next:
659 		sbinfo->shrinklist_len--;
660 		if (!--batch)
661 			break;
662 	}
663 	spin_unlock(&sbinfo->shrinklist_lock);
664 
665 	list_for_each_safe(pos, next, &to_remove) {
666 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
667 		inode = &info->vfs_inode;
668 		list_del_init(&info->shrinklist);
669 		iput(inode);
670 	}
671 
672 	list_for_each_safe(pos, next, &list) {
673 		int ret;
674 		pgoff_t index;
675 
676 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
677 		inode = &info->vfs_inode;
678 
679 		if (nr_to_split && split >= nr_to_split)
680 			goto move_back;
681 
682 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
683 		folio = filemap_get_folio(inode->i_mapping, index);
684 		if (IS_ERR(folio))
685 			goto drop;
686 
687 		/* No huge page at the end of the file: nothing to split */
688 		if (!folio_test_large(folio)) {
689 			folio_put(folio);
690 			goto drop;
691 		}
692 
693 		/*
694 		 * Move the inode on the list back to shrinklist if we failed
695 		 * to lock the page at this time.
696 		 *
697 		 * Waiting for the lock may lead to deadlock in the
698 		 * reclaim path.
699 		 */
700 		if (!folio_trylock(folio)) {
701 			folio_put(folio);
702 			goto move_back;
703 		}
704 
705 		ret = split_folio(folio);
706 		folio_unlock(folio);
707 		folio_put(folio);
708 
709 		/* If split failed move the inode on the list back to shrinklist */
710 		if (ret)
711 			goto move_back;
712 
713 		split++;
714 drop:
715 		list_del_init(&info->shrinklist);
716 		goto put;
717 move_back:
718 		/*
719 		 * Make sure the inode is either on the global list or deleted
720 		 * from any local list before iput() since it could be deleted
721 		 * in another thread once we put the inode (then the local list
722 		 * is corrupted).
723 		 */
724 		spin_lock(&sbinfo->shrinklist_lock);
725 		list_move(&info->shrinklist, &sbinfo->shrinklist);
726 		sbinfo->shrinklist_len++;
727 		spin_unlock(&sbinfo->shrinklist_lock);
728 put:
729 		iput(inode);
730 	}
731 
732 	return split;
733 }
734 
735 static long shmem_unused_huge_scan(struct super_block *sb,
736 		struct shrink_control *sc)
737 {
738 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739 
740 	if (!READ_ONCE(sbinfo->shrinklist_len))
741 		return SHRINK_STOP;
742 
743 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
744 }
745 
746 static long shmem_unused_huge_count(struct super_block *sb,
747 		struct shrink_control *sc)
748 {
749 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
750 	return READ_ONCE(sbinfo->shrinklist_len);
751 }
752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
753 
754 #define shmem_huge SHMEM_HUGE_DENY
755 
756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
757 		struct shrink_control *sc, unsigned long nr_to_split)
758 {
759 	return 0;
760 }
761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
762 
763 /*
764  * Like filemap_add_folio, but error if expected item has gone.
765  */
766 static int shmem_add_to_page_cache(struct folio *folio,
767 				   struct address_space *mapping,
768 				   pgoff_t index, void *expected, gfp_t gfp,
769 				   struct mm_struct *charge_mm)
770 {
771 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
772 	long nr = folio_nr_pages(folio);
773 	int error;
774 
775 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
776 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
777 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
778 	VM_BUG_ON(expected && folio_test_large(folio));
779 
780 	folio_ref_add(folio, nr);
781 	folio->mapping = mapping;
782 	folio->index = index;
783 
784 	if (!folio_test_swapcache(folio)) {
785 		error = mem_cgroup_charge(folio, charge_mm, gfp);
786 		if (error) {
787 			if (folio_test_pmd_mappable(folio)) {
788 				count_vm_event(THP_FILE_FALLBACK);
789 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
790 			}
791 			goto error;
792 		}
793 	}
794 	folio_throttle_swaprate(folio, gfp);
795 
796 	do {
797 		xas_lock_irq(&xas);
798 		if (expected != xas_find_conflict(&xas)) {
799 			xas_set_err(&xas, -EEXIST);
800 			goto unlock;
801 		}
802 		if (expected && xas_find_conflict(&xas)) {
803 			xas_set_err(&xas, -EEXIST);
804 			goto unlock;
805 		}
806 		xas_store(&xas, folio);
807 		if (xas_error(&xas))
808 			goto unlock;
809 		if (folio_test_pmd_mappable(folio)) {
810 			count_vm_event(THP_FILE_ALLOC);
811 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
812 		}
813 		mapping->nrpages += nr;
814 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
815 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
816 unlock:
817 		xas_unlock_irq(&xas);
818 	} while (xas_nomem(&xas, gfp));
819 
820 	if (xas_error(&xas)) {
821 		error = xas_error(&xas);
822 		goto error;
823 	}
824 
825 	return 0;
826 error:
827 	folio->mapping = NULL;
828 	folio_ref_sub(folio, nr);
829 	return error;
830 }
831 
832 /*
833  * Like delete_from_page_cache, but substitutes swap for @folio.
834  */
835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
836 {
837 	struct address_space *mapping = folio->mapping;
838 	long nr = folio_nr_pages(folio);
839 	int error;
840 
841 	xa_lock_irq(&mapping->i_pages);
842 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
843 	folio->mapping = NULL;
844 	mapping->nrpages -= nr;
845 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
846 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
847 	xa_unlock_irq(&mapping->i_pages);
848 	folio_put(folio);
849 	BUG_ON(error);
850 }
851 
852 /*
853  * Remove swap entry from page cache, free the swap and its page cache.
854  */
855 static int shmem_free_swap(struct address_space *mapping,
856 			   pgoff_t index, void *radswap)
857 {
858 	void *old;
859 
860 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
861 	if (old != radswap)
862 		return -ENOENT;
863 	free_swap_and_cache(radix_to_swp_entry(radswap));
864 	return 0;
865 }
866 
867 /*
868  * Determine (in bytes) how many of the shmem object's pages mapped by the
869  * given offsets are swapped out.
870  *
871  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
872  * as long as the inode doesn't go away and racy results are not a problem.
873  */
874 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
875 						pgoff_t start, pgoff_t end)
876 {
877 	XA_STATE(xas, &mapping->i_pages, start);
878 	struct page *page;
879 	unsigned long swapped = 0;
880 	unsigned long max = end - 1;
881 
882 	rcu_read_lock();
883 	xas_for_each(&xas, page, max) {
884 		if (xas_retry(&xas, page))
885 			continue;
886 		if (xa_is_value(page))
887 			swapped++;
888 		if (xas.xa_index == max)
889 			break;
890 		if (need_resched()) {
891 			xas_pause(&xas);
892 			cond_resched_rcu();
893 		}
894 	}
895 
896 	rcu_read_unlock();
897 
898 	return swapped << PAGE_SHIFT;
899 }
900 
901 /*
902  * Determine (in bytes) how many of the shmem object's pages mapped by the
903  * given vma is swapped out.
904  *
905  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
906  * as long as the inode doesn't go away and racy results are not a problem.
907  */
908 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
909 {
910 	struct inode *inode = file_inode(vma->vm_file);
911 	struct shmem_inode_info *info = SHMEM_I(inode);
912 	struct address_space *mapping = inode->i_mapping;
913 	unsigned long swapped;
914 
915 	/* Be careful as we don't hold info->lock */
916 	swapped = READ_ONCE(info->swapped);
917 
918 	/*
919 	 * The easier cases are when the shmem object has nothing in swap, or
920 	 * the vma maps it whole. Then we can simply use the stats that we
921 	 * already track.
922 	 */
923 	if (!swapped)
924 		return 0;
925 
926 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
927 		return swapped << PAGE_SHIFT;
928 
929 	/* Here comes the more involved part */
930 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
931 					vma->vm_pgoff + vma_pages(vma));
932 }
933 
934 /*
935  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
936  */
937 void shmem_unlock_mapping(struct address_space *mapping)
938 {
939 	struct folio_batch fbatch;
940 	pgoff_t index = 0;
941 
942 	folio_batch_init(&fbatch);
943 	/*
944 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
945 	 */
946 	while (!mapping_unevictable(mapping) &&
947 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
948 		check_move_unevictable_folios(&fbatch);
949 		folio_batch_release(&fbatch);
950 		cond_resched();
951 	}
952 }
953 
954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
955 {
956 	struct folio *folio;
957 
958 	/*
959 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
960 	 * beyond i_size, and reports fallocated folios as holes.
961 	 */
962 	folio = filemap_get_entry(inode->i_mapping, index);
963 	if (!folio)
964 		return folio;
965 	if (!xa_is_value(folio)) {
966 		folio_lock(folio);
967 		if (folio->mapping == inode->i_mapping)
968 			return folio;
969 		/* The folio has been swapped out */
970 		folio_unlock(folio);
971 		folio_put(folio);
972 	}
973 	/*
974 	 * But read a folio back from swap if any of it is within i_size
975 	 * (although in some cases this is just a waste of time).
976 	 */
977 	folio = NULL;
978 	shmem_get_folio(inode, index, &folio, SGP_READ);
979 	return folio;
980 }
981 
982 /*
983  * Remove range of pages and swap entries from page cache, and free them.
984  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
985  */
986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
987 								 bool unfalloc)
988 {
989 	struct address_space *mapping = inode->i_mapping;
990 	struct shmem_inode_info *info = SHMEM_I(inode);
991 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
992 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
993 	struct folio_batch fbatch;
994 	pgoff_t indices[PAGEVEC_SIZE];
995 	struct folio *folio;
996 	bool same_folio;
997 	long nr_swaps_freed = 0;
998 	pgoff_t index;
999 	int i;
1000 
1001 	if (lend == -1)
1002 		end = -1;	/* unsigned, so actually very big */
1003 
1004 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1005 		info->fallocend = start;
1006 
1007 	folio_batch_init(&fbatch);
1008 	index = start;
1009 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1010 			&fbatch, indices)) {
1011 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1012 			folio = fbatch.folios[i];
1013 
1014 			if (xa_is_value(folio)) {
1015 				if (unfalloc)
1016 					continue;
1017 				nr_swaps_freed += !shmem_free_swap(mapping,
1018 							indices[i], folio);
1019 				continue;
1020 			}
1021 
1022 			if (!unfalloc || !folio_test_uptodate(folio))
1023 				truncate_inode_folio(mapping, folio);
1024 			folio_unlock(folio);
1025 		}
1026 		folio_batch_remove_exceptionals(&fbatch);
1027 		folio_batch_release(&fbatch);
1028 		cond_resched();
1029 	}
1030 
1031 	/*
1032 	 * When undoing a failed fallocate, we want none of the partial folio
1033 	 * zeroing and splitting below, but shall want to truncate the whole
1034 	 * folio when !uptodate indicates that it was added by this fallocate,
1035 	 * even when [lstart, lend] covers only a part of the folio.
1036 	 */
1037 	if (unfalloc)
1038 		goto whole_folios;
1039 
1040 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1041 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1042 	if (folio) {
1043 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1044 		folio_mark_dirty(folio);
1045 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1046 			start = folio_next_index(folio);
1047 			if (same_folio)
1048 				end = folio->index;
1049 		}
1050 		folio_unlock(folio);
1051 		folio_put(folio);
1052 		folio = NULL;
1053 	}
1054 
1055 	if (!same_folio)
1056 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1057 	if (folio) {
1058 		folio_mark_dirty(folio);
1059 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1060 			end = folio->index;
1061 		folio_unlock(folio);
1062 		folio_put(folio);
1063 	}
1064 
1065 whole_folios:
1066 
1067 	index = start;
1068 	while (index < end) {
1069 		cond_resched();
1070 
1071 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1072 				indices)) {
1073 			/* If all gone or hole-punch or unfalloc, we're done */
1074 			if (index == start || end != -1)
1075 				break;
1076 			/* But if truncating, restart to make sure all gone */
1077 			index = start;
1078 			continue;
1079 		}
1080 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1081 			folio = fbatch.folios[i];
1082 
1083 			if (xa_is_value(folio)) {
1084 				if (unfalloc)
1085 					continue;
1086 				if (shmem_free_swap(mapping, indices[i], folio)) {
1087 					/* Swap was replaced by page: retry */
1088 					index = indices[i];
1089 					break;
1090 				}
1091 				nr_swaps_freed++;
1092 				continue;
1093 			}
1094 
1095 			folio_lock(folio);
1096 
1097 			if (!unfalloc || !folio_test_uptodate(folio)) {
1098 				if (folio_mapping(folio) != mapping) {
1099 					/* Page was replaced by swap: retry */
1100 					folio_unlock(folio);
1101 					index = indices[i];
1102 					break;
1103 				}
1104 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1105 						folio);
1106 
1107 				if (!folio_test_large(folio)) {
1108 					truncate_inode_folio(mapping, folio);
1109 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1110 					/*
1111 					 * If we split a page, reset the loop so
1112 					 * that we pick up the new sub pages.
1113 					 * Otherwise the THP was entirely
1114 					 * dropped or the target range was
1115 					 * zeroed, so just continue the loop as
1116 					 * is.
1117 					 */
1118 					if (!folio_test_large(folio)) {
1119 						folio_unlock(folio);
1120 						index = start;
1121 						break;
1122 					}
1123 				}
1124 			}
1125 			folio_unlock(folio);
1126 		}
1127 		folio_batch_remove_exceptionals(&fbatch);
1128 		folio_batch_release(&fbatch);
1129 	}
1130 
1131 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1132 }
1133 
1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1135 {
1136 	shmem_undo_range(inode, lstart, lend, false);
1137 	inode->i_mtime = inode_set_ctime_current(inode);
1138 	inode_inc_iversion(inode);
1139 }
1140 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1141 
1142 static int shmem_getattr(struct mnt_idmap *idmap,
1143 			 const struct path *path, struct kstat *stat,
1144 			 u32 request_mask, unsigned int query_flags)
1145 {
1146 	struct inode *inode = path->dentry->d_inode;
1147 	struct shmem_inode_info *info = SHMEM_I(inode);
1148 
1149 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1150 		shmem_recalc_inode(inode, 0, 0);
1151 
1152 	if (info->fsflags & FS_APPEND_FL)
1153 		stat->attributes |= STATX_ATTR_APPEND;
1154 	if (info->fsflags & FS_IMMUTABLE_FL)
1155 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1156 	if (info->fsflags & FS_NODUMP_FL)
1157 		stat->attributes |= STATX_ATTR_NODUMP;
1158 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1159 			STATX_ATTR_IMMUTABLE |
1160 			STATX_ATTR_NODUMP);
1161 	inode_lock_shared(inode);
1162 	generic_fillattr(idmap, request_mask, inode, stat);
1163 	inode_unlock_shared(inode);
1164 
1165 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1166 		stat->blksize = HPAGE_PMD_SIZE;
1167 
1168 	if (request_mask & STATX_BTIME) {
1169 		stat->result_mask |= STATX_BTIME;
1170 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1171 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 static int shmem_setattr(struct mnt_idmap *idmap,
1178 			 struct dentry *dentry, struct iattr *attr)
1179 {
1180 	struct inode *inode = d_inode(dentry);
1181 	struct shmem_inode_info *info = SHMEM_I(inode);
1182 	int error;
1183 	bool update_mtime = false;
1184 	bool update_ctime = true;
1185 
1186 	error = setattr_prepare(idmap, dentry, attr);
1187 	if (error)
1188 		return error;
1189 
1190 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1191 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1192 			return -EPERM;
1193 		}
1194 	}
1195 
1196 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1197 		loff_t oldsize = inode->i_size;
1198 		loff_t newsize = attr->ia_size;
1199 
1200 		/* protected by i_rwsem */
1201 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1202 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1203 			return -EPERM;
1204 
1205 		if (newsize != oldsize) {
1206 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1207 					oldsize, newsize);
1208 			if (error)
1209 				return error;
1210 			i_size_write(inode, newsize);
1211 			update_mtime = true;
1212 		} else {
1213 			update_ctime = false;
1214 		}
1215 		if (newsize <= oldsize) {
1216 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1217 			if (oldsize > holebegin)
1218 				unmap_mapping_range(inode->i_mapping,
1219 							holebegin, 0, 1);
1220 			if (info->alloced)
1221 				shmem_truncate_range(inode,
1222 							newsize, (loff_t)-1);
1223 			/* unmap again to remove racily COWed private pages */
1224 			if (oldsize > holebegin)
1225 				unmap_mapping_range(inode->i_mapping,
1226 							holebegin, 0, 1);
1227 		}
1228 	}
1229 
1230 	if (is_quota_modification(idmap, inode, attr)) {
1231 		error = dquot_initialize(inode);
1232 		if (error)
1233 			return error;
1234 	}
1235 
1236 	/* Transfer quota accounting */
1237 	if (i_uid_needs_update(idmap, attr, inode) ||
1238 	    i_gid_needs_update(idmap, attr, inode)) {
1239 		error = dquot_transfer(idmap, inode, attr);
1240 
1241 		if (error)
1242 			return error;
1243 	}
1244 
1245 	setattr_copy(idmap, inode, attr);
1246 	if (attr->ia_valid & ATTR_MODE)
1247 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1248 	if (!error && update_ctime) {
1249 		inode_set_ctime_current(inode);
1250 		if (update_mtime)
1251 			inode->i_mtime = inode_get_ctime(inode);
1252 		inode_inc_iversion(inode);
1253 	}
1254 	return error;
1255 }
1256 
1257 static void shmem_evict_inode(struct inode *inode)
1258 {
1259 	struct shmem_inode_info *info = SHMEM_I(inode);
1260 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1261 	size_t freed = 0;
1262 
1263 	if (shmem_mapping(inode->i_mapping)) {
1264 		shmem_unacct_size(info->flags, inode->i_size);
1265 		inode->i_size = 0;
1266 		mapping_set_exiting(inode->i_mapping);
1267 		shmem_truncate_range(inode, 0, (loff_t)-1);
1268 		if (!list_empty(&info->shrinklist)) {
1269 			spin_lock(&sbinfo->shrinklist_lock);
1270 			if (!list_empty(&info->shrinklist)) {
1271 				list_del_init(&info->shrinklist);
1272 				sbinfo->shrinklist_len--;
1273 			}
1274 			spin_unlock(&sbinfo->shrinklist_lock);
1275 		}
1276 		while (!list_empty(&info->swaplist)) {
1277 			/* Wait while shmem_unuse() is scanning this inode... */
1278 			wait_var_event(&info->stop_eviction,
1279 				       !atomic_read(&info->stop_eviction));
1280 			mutex_lock(&shmem_swaplist_mutex);
1281 			/* ...but beware of the race if we peeked too early */
1282 			if (!atomic_read(&info->stop_eviction))
1283 				list_del_init(&info->swaplist);
1284 			mutex_unlock(&shmem_swaplist_mutex);
1285 		}
1286 	}
1287 
1288 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1289 	shmem_free_inode(inode->i_sb, freed);
1290 	WARN_ON(inode->i_blocks);
1291 	clear_inode(inode);
1292 #ifdef CONFIG_TMPFS_QUOTA
1293 	dquot_free_inode(inode);
1294 	dquot_drop(inode);
1295 #endif
1296 }
1297 
1298 static int shmem_find_swap_entries(struct address_space *mapping,
1299 				   pgoff_t start, struct folio_batch *fbatch,
1300 				   pgoff_t *indices, unsigned int type)
1301 {
1302 	XA_STATE(xas, &mapping->i_pages, start);
1303 	struct folio *folio;
1304 	swp_entry_t entry;
1305 
1306 	rcu_read_lock();
1307 	xas_for_each(&xas, folio, ULONG_MAX) {
1308 		if (xas_retry(&xas, folio))
1309 			continue;
1310 
1311 		if (!xa_is_value(folio))
1312 			continue;
1313 
1314 		entry = radix_to_swp_entry(folio);
1315 		/*
1316 		 * swapin error entries can be found in the mapping. But they're
1317 		 * deliberately ignored here as we've done everything we can do.
1318 		 */
1319 		if (swp_type(entry) != type)
1320 			continue;
1321 
1322 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1323 		if (!folio_batch_add(fbatch, folio))
1324 			break;
1325 
1326 		if (need_resched()) {
1327 			xas_pause(&xas);
1328 			cond_resched_rcu();
1329 		}
1330 	}
1331 	rcu_read_unlock();
1332 
1333 	return xas.xa_index;
1334 }
1335 
1336 /*
1337  * Move the swapped pages for an inode to page cache. Returns the count
1338  * of pages swapped in, or the error in case of failure.
1339  */
1340 static int shmem_unuse_swap_entries(struct inode *inode,
1341 		struct folio_batch *fbatch, pgoff_t *indices)
1342 {
1343 	int i = 0;
1344 	int ret = 0;
1345 	int error = 0;
1346 	struct address_space *mapping = inode->i_mapping;
1347 
1348 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1349 		struct folio *folio = fbatch->folios[i];
1350 
1351 		if (!xa_is_value(folio))
1352 			continue;
1353 		error = shmem_swapin_folio(inode, indices[i],
1354 					  &folio, SGP_CACHE,
1355 					  mapping_gfp_mask(mapping),
1356 					  NULL, NULL);
1357 		if (error == 0) {
1358 			folio_unlock(folio);
1359 			folio_put(folio);
1360 			ret++;
1361 		}
1362 		if (error == -ENOMEM)
1363 			break;
1364 		error = 0;
1365 	}
1366 	return error ? error : ret;
1367 }
1368 
1369 /*
1370  * If swap found in inode, free it and move page from swapcache to filecache.
1371  */
1372 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1373 {
1374 	struct address_space *mapping = inode->i_mapping;
1375 	pgoff_t start = 0;
1376 	struct folio_batch fbatch;
1377 	pgoff_t indices[PAGEVEC_SIZE];
1378 	int ret = 0;
1379 
1380 	do {
1381 		folio_batch_init(&fbatch);
1382 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1383 		if (folio_batch_count(&fbatch) == 0) {
1384 			ret = 0;
1385 			break;
1386 		}
1387 
1388 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1389 		if (ret < 0)
1390 			break;
1391 
1392 		start = indices[folio_batch_count(&fbatch) - 1];
1393 	} while (true);
1394 
1395 	return ret;
1396 }
1397 
1398 /*
1399  * Read all the shared memory data that resides in the swap
1400  * device 'type' back into memory, so the swap device can be
1401  * unused.
1402  */
1403 int shmem_unuse(unsigned int type)
1404 {
1405 	struct shmem_inode_info *info, *next;
1406 	int error = 0;
1407 
1408 	if (list_empty(&shmem_swaplist))
1409 		return 0;
1410 
1411 	mutex_lock(&shmem_swaplist_mutex);
1412 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1413 		if (!info->swapped) {
1414 			list_del_init(&info->swaplist);
1415 			continue;
1416 		}
1417 		/*
1418 		 * Drop the swaplist mutex while searching the inode for swap;
1419 		 * but before doing so, make sure shmem_evict_inode() will not
1420 		 * remove placeholder inode from swaplist, nor let it be freed
1421 		 * (igrab() would protect from unlink, but not from unmount).
1422 		 */
1423 		atomic_inc(&info->stop_eviction);
1424 		mutex_unlock(&shmem_swaplist_mutex);
1425 
1426 		error = shmem_unuse_inode(&info->vfs_inode, type);
1427 		cond_resched();
1428 
1429 		mutex_lock(&shmem_swaplist_mutex);
1430 		next = list_next_entry(info, swaplist);
1431 		if (!info->swapped)
1432 			list_del_init(&info->swaplist);
1433 		if (atomic_dec_and_test(&info->stop_eviction))
1434 			wake_up_var(&info->stop_eviction);
1435 		if (error)
1436 			break;
1437 	}
1438 	mutex_unlock(&shmem_swaplist_mutex);
1439 
1440 	return error;
1441 }
1442 
1443 /*
1444  * Move the page from the page cache to the swap cache.
1445  */
1446 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1447 {
1448 	struct folio *folio = page_folio(page);
1449 	struct address_space *mapping = folio->mapping;
1450 	struct inode *inode = mapping->host;
1451 	struct shmem_inode_info *info = SHMEM_I(inode);
1452 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1453 	swp_entry_t swap;
1454 	pgoff_t index;
1455 
1456 	/*
1457 	 * Our capabilities prevent regular writeback or sync from ever calling
1458 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1459 	 * its underlying filesystem, in which case tmpfs should write out to
1460 	 * swap only in response to memory pressure, and not for the writeback
1461 	 * threads or sync.
1462 	 */
1463 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1464 		goto redirty;
1465 
1466 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1467 		goto redirty;
1468 
1469 	if (!total_swap_pages)
1470 		goto redirty;
1471 
1472 	/*
1473 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1474 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1475 	 * and its shmem_writeback() needs them to be split when swapping.
1476 	 */
1477 	if (folio_test_large(folio)) {
1478 		/* Ensure the subpages are still dirty */
1479 		folio_test_set_dirty(folio);
1480 		if (split_huge_page(page) < 0)
1481 			goto redirty;
1482 		folio = page_folio(page);
1483 		folio_clear_dirty(folio);
1484 	}
1485 
1486 	index = folio->index;
1487 
1488 	/*
1489 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1490 	 * value into swapfile.c, the only way we can correctly account for a
1491 	 * fallocated folio arriving here is now to initialize it and write it.
1492 	 *
1493 	 * That's okay for a folio already fallocated earlier, but if we have
1494 	 * not yet completed the fallocation, then (a) we want to keep track
1495 	 * of this folio in case we have to undo it, and (b) it may not be a
1496 	 * good idea to continue anyway, once we're pushing into swap.  So
1497 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1498 	 */
1499 	if (!folio_test_uptodate(folio)) {
1500 		if (inode->i_private) {
1501 			struct shmem_falloc *shmem_falloc;
1502 			spin_lock(&inode->i_lock);
1503 			shmem_falloc = inode->i_private;
1504 			if (shmem_falloc &&
1505 			    !shmem_falloc->waitq &&
1506 			    index >= shmem_falloc->start &&
1507 			    index < shmem_falloc->next)
1508 				shmem_falloc->nr_unswapped++;
1509 			else
1510 				shmem_falloc = NULL;
1511 			spin_unlock(&inode->i_lock);
1512 			if (shmem_falloc)
1513 				goto redirty;
1514 		}
1515 		folio_zero_range(folio, 0, folio_size(folio));
1516 		flush_dcache_folio(folio);
1517 		folio_mark_uptodate(folio);
1518 	}
1519 
1520 	swap = folio_alloc_swap(folio);
1521 	if (!swap.val)
1522 		goto redirty;
1523 
1524 	/*
1525 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1526 	 * if it's not already there.  Do it now before the folio is
1527 	 * moved to swap cache, when its pagelock no longer protects
1528 	 * the inode from eviction.  But don't unlock the mutex until
1529 	 * we've incremented swapped, because shmem_unuse_inode() will
1530 	 * prune a !swapped inode from the swaplist under this mutex.
1531 	 */
1532 	mutex_lock(&shmem_swaplist_mutex);
1533 	if (list_empty(&info->swaplist))
1534 		list_add(&info->swaplist, &shmem_swaplist);
1535 
1536 	if (add_to_swap_cache(folio, swap,
1537 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1538 			NULL) == 0) {
1539 		shmem_recalc_inode(inode, 0, 1);
1540 		swap_shmem_alloc(swap);
1541 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1542 
1543 		mutex_unlock(&shmem_swaplist_mutex);
1544 		BUG_ON(folio_mapped(folio));
1545 		swap_writepage(&folio->page, wbc);
1546 		return 0;
1547 	}
1548 
1549 	mutex_unlock(&shmem_swaplist_mutex);
1550 	put_swap_folio(folio, swap);
1551 redirty:
1552 	folio_mark_dirty(folio);
1553 	if (wbc->for_reclaim)
1554 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1555 	folio_unlock(folio);
1556 	return 0;
1557 }
1558 
1559 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1560 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1561 {
1562 	char buffer[64];
1563 
1564 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1565 		return;		/* show nothing */
1566 
1567 	mpol_to_str(buffer, sizeof(buffer), mpol);
1568 
1569 	seq_printf(seq, ",mpol=%s", buffer);
1570 }
1571 
1572 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1573 {
1574 	struct mempolicy *mpol = NULL;
1575 	if (sbinfo->mpol) {
1576 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1577 		mpol = sbinfo->mpol;
1578 		mpol_get(mpol);
1579 		raw_spin_unlock(&sbinfo->stat_lock);
1580 	}
1581 	return mpol;
1582 }
1583 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1584 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1585 {
1586 }
1587 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1588 {
1589 	return NULL;
1590 }
1591 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1592 #ifndef CONFIG_NUMA
1593 #define vm_policy vm_private_data
1594 #endif
1595 
1596 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1597 		struct shmem_inode_info *info, pgoff_t index)
1598 {
1599 	/* Create a pseudo vma that just contains the policy */
1600 	vma_init(vma, NULL);
1601 	/* Bias interleave by inode number to distribute better across nodes */
1602 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1603 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1604 }
1605 
1606 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1607 {
1608 	/* Drop reference taken by mpol_shared_policy_lookup() */
1609 	mpol_cond_put(vma->vm_policy);
1610 }
1611 
1612 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1613 			struct shmem_inode_info *info, pgoff_t index)
1614 {
1615 	struct vm_area_struct pvma;
1616 	struct page *page;
1617 	struct vm_fault vmf = {
1618 		.vma = &pvma,
1619 	};
1620 
1621 	shmem_pseudo_vma_init(&pvma, info, index);
1622 	page = swap_cluster_readahead(swap, gfp, &vmf);
1623 	shmem_pseudo_vma_destroy(&pvma);
1624 
1625 	if (!page)
1626 		return NULL;
1627 	return page_folio(page);
1628 }
1629 
1630 /*
1631  * Make sure huge_gfp is always more limited than limit_gfp.
1632  * Some of the flags set permissions, while others set limitations.
1633  */
1634 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1635 {
1636 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1637 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1638 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1639 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1640 
1641 	/* Allow allocations only from the originally specified zones. */
1642 	result |= zoneflags;
1643 
1644 	/*
1645 	 * Minimize the result gfp by taking the union with the deny flags,
1646 	 * and the intersection of the allow flags.
1647 	 */
1648 	result |= (limit_gfp & denyflags);
1649 	result |= (huge_gfp & limit_gfp) & allowflags;
1650 
1651 	return result;
1652 }
1653 
1654 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1655 		struct shmem_inode_info *info, pgoff_t index)
1656 {
1657 	struct vm_area_struct pvma;
1658 	struct address_space *mapping = info->vfs_inode.i_mapping;
1659 	pgoff_t hindex;
1660 	struct folio *folio;
1661 
1662 	hindex = round_down(index, HPAGE_PMD_NR);
1663 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1664 								XA_PRESENT))
1665 		return NULL;
1666 
1667 	shmem_pseudo_vma_init(&pvma, info, hindex);
1668 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1669 	shmem_pseudo_vma_destroy(&pvma);
1670 	if (!folio)
1671 		count_vm_event(THP_FILE_FALLBACK);
1672 	return folio;
1673 }
1674 
1675 static struct folio *shmem_alloc_folio(gfp_t gfp,
1676 			struct shmem_inode_info *info, pgoff_t index)
1677 {
1678 	struct vm_area_struct pvma;
1679 	struct folio *folio;
1680 
1681 	shmem_pseudo_vma_init(&pvma, info, index);
1682 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1683 	shmem_pseudo_vma_destroy(&pvma);
1684 
1685 	return folio;
1686 }
1687 
1688 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1689 		pgoff_t index, bool huge)
1690 {
1691 	struct shmem_inode_info *info = SHMEM_I(inode);
1692 	struct folio *folio;
1693 	int nr;
1694 	int err;
1695 
1696 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1697 		huge = false;
1698 	nr = huge ? HPAGE_PMD_NR : 1;
1699 
1700 	err = shmem_inode_acct_block(inode, nr);
1701 	if (err)
1702 		goto failed;
1703 
1704 	if (huge)
1705 		folio = shmem_alloc_hugefolio(gfp, info, index);
1706 	else
1707 		folio = shmem_alloc_folio(gfp, info, index);
1708 	if (folio) {
1709 		__folio_set_locked(folio);
1710 		__folio_set_swapbacked(folio);
1711 		return folio;
1712 	}
1713 
1714 	err = -ENOMEM;
1715 	shmem_inode_unacct_blocks(inode, nr);
1716 failed:
1717 	return ERR_PTR(err);
1718 }
1719 
1720 /*
1721  * When a page is moved from swapcache to shmem filecache (either by the
1722  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1723  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1724  * ignorance of the mapping it belongs to.  If that mapping has special
1725  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1726  * we may need to copy to a suitable page before moving to filecache.
1727  *
1728  * In a future release, this may well be extended to respect cpuset and
1729  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1730  * but for now it is a simple matter of zone.
1731  */
1732 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1733 {
1734 	return folio_zonenum(folio) > gfp_zone(gfp);
1735 }
1736 
1737 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1738 				struct shmem_inode_info *info, pgoff_t index)
1739 {
1740 	struct folio *old, *new;
1741 	struct address_space *swap_mapping;
1742 	swp_entry_t entry;
1743 	pgoff_t swap_index;
1744 	int error;
1745 
1746 	old = *foliop;
1747 	entry = old->swap;
1748 	swap_index = swp_offset(entry);
1749 	swap_mapping = swap_address_space(entry);
1750 
1751 	/*
1752 	 * We have arrived here because our zones are constrained, so don't
1753 	 * limit chance of success by further cpuset and node constraints.
1754 	 */
1755 	gfp &= ~GFP_CONSTRAINT_MASK;
1756 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1757 	new = shmem_alloc_folio(gfp, info, index);
1758 	if (!new)
1759 		return -ENOMEM;
1760 
1761 	folio_get(new);
1762 	folio_copy(new, old);
1763 	flush_dcache_folio(new);
1764 
1765 	__folio_set_locked(new);
1766 	__folio_set_swapbacked(new);
1767 	folio_mark_uptodate(new);
1768 	new->swap = entry;
1769 	folio_set_swapcache(new);
1770 
1771 	/*
1772 	 * Our caller will very soon move newpage out of swapcache, but it's
1773 	 * a nice clean interface for us to replace oldpage by newpage there.
1774 	 */
1775 	xa_lock_irq(&swap_mapping->i_pages);
1776 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1777 	if (!error) {
1778 		mem_cgroup_migrate(old, new);
1779 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1780 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1781 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1782 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1783 	}
1784 	xa_unlock_irq(&swap_mapping->i_pages);
1785 
1786 	if (unlikely(error)) {
1787 		/*
1788 		 * Is this possible?  I think not, now that our callers check
1789 		 * both PageSwapCache and page_private after getting page lock;
1790 		 * but be defensive.  Reverse old to newpage for clear and free.
1791 		 */
1792 		old = new;
1793 	} else {
1794 		folio_add_lru(new);
1795 		*foliop = new;
1796 	}
1797 
1798 	folio_clear_swapcache(old);
1799 	old->private = NULL;
1800 
1801 	folio_unlock(old);
1802 	folio_put_refs(old, 2);
1803 	return error;
1804 }
1805 
1806 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1807 					 struct folio *folio, swp_entry_t swap)
1808 {
1809 	struct address_space *mapping = inode->i_mapping;
1810 	swp_entry_t swapin_error;
1811 	void *old;
1812 
1813 	swapin_error = make_poisoned_swp_entry();
1814 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1815 			     swp_to_radix_entry(swap),
1816 			     swp_to_radix_entry(swapin_error), 0);
1817 	if (old != swp_to_radix_entry(swap))
1818 		return;
1819 
1820 	folio_wait_writeback(folio);
1821 	delete_from_swap_cache(folio);
1822 	/*
1823 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1824 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1825 	 * in shmem_evict_inode().
1826 	 */
1827 	shmem_recalc_inode(inode, -1, -1);
1828 	swap_free(swap);
1829 }
1830 
1831 /*
1832  * Swap in the folio pointed to by *foliop.
1833  * Caller has to make sure that *foliop contains a valid swapped folio.
1834  * Returns 0 and the folio in foliop if success. On failure, returns the
1835  * error code and NULL in *foliop.
1836  */
1837 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1838 			     struct folio **foliop, enum sgp_type sgp,
1839 			     gfp_t gfp, struct vm_area_struct *vma,
1840 			     vm_fault_t *fault_type)
1841 {
1842 	struct address_space *mapping = inode->i_mapping;
1843 	struct shmem_inode_info *info = SHMEM_I(inode);
1844 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1845 	struct swap_info_struct *si;
1846 	struct folio *folio = NULL;
1847 	swp_entry_t swap;
1848 	int error;
1849 
1850 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1851 	swap = radix_to_swp_entry(*foliop);
1852 	*foliop = NULL;
1853 
1854 	if (is_poisoned_swp_entry(swap))
1855 		return -EIO;
1856 
1857 	si = get_swap_device(swap);
1858 	if (!si) {
1859 		if (!shmem_confirm_swap(mapping, index, swap))
1860 			return -EEXIST;
1861 		else
1862 			return -EINVAL;
1863 	}
1864 
1865 	/* Look it up and read it in.. */
1866 	folio = swap_cache_get_folio(swap, NULL, 0);
1867 	if (!folio) {
1868 		/* Or update major stats only when swapin succeeds?? */
1869 		if (fault_type) {
1870 			*fault_type |= VM_FAULT_MAJOR;
1871 			count_vm_event(PGMAJFAULT);
1872 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1873 		}
1874 		/* Here we actually start the io */
1875 		folio = shmem_swapin(swap, gfp, info, index);
1876 		if (!folio) {
1877 			error = -ENOMEM;
1878 			goto failed;
1879 		}
1880 	}
1881 
1882 	/* We have to do this with folio locked to prevent races */
1883 	folio_lock(folio);
1884 	if (!folio_test_swapcache(folio) ||
1885 	    folio->swap.val != swap.val ||
1886 	    !shmem_confirm_swap(mapping, index, swap)) {
1887 		error = -EEXIST;
1888 		goto unlock;
1889 	}
1890 	if (!folio_test_uptodate(folio)) {
1891 		error = -EIO;
1892 		goto failed;
1893 	}
1894 	folio_wait_writeback(folio);
1895 
1896 	/*
1897 	 * Some architectures may have to restore extra metadata to the
1898 	 * folio after reading from swap.
1899 	 */
1900 	arch_swap_restore(swap, folio);
1901 
1902 	if (shmem_should_replace_folio(folio, gfp)) {
1903 		error = shmem_replace_folio(&folio, gfp, info, index);
1904 		if (error)
1905 			goto failed;
1906 	}
1907 
1908 	error = shmem_add_to_page_cache(folio, mapping, index,
1909 					swp_to_radix_entry(swap), gfp,
1910 					charge_mm);
1911 	if (error)
1912 		goto failed;
1913 
1914 	shmem_recalc_inode(inode, 0, -1);
1915 
1916 	if (sgp == SGP_WRITE)
1917 		folio_mark_accessed(folio);
1918 
1919 	delete_from_swap_cache(folio);
1920 	folio_mark_dirty(folio);
1921 	swap_free(swap);
1922 	put_swap_device(si);
1923 
1924 	*foliop = folio;
1925 	return 0;
1926 failed:
1927 	if (!shmem_confirm_swap(mapping, index, swap))
1928 		error = -EEXIST;
1929 	if (error == -EIO)
1930 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1931 unlock:
1932 	if (folio) {
1933 		folio_unlock(folio);
1934 		folio_put(folio);
1935 	}
1936 	put_swap_device(si);
1937 
1938 	return error;
1939 }
1940 
1941 /*
1942  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1943  *
1944  * If we allocate a new one we do not mark it dirty. That's up to the
1945  * vm. If we swap it in we mark it dirty since we also free the swap
1946  * entry since a page cannot live in both the swap and page cache.
1947  *
1948  * vma, vmf, and fault_type are only supplied by shmem_fault:
1949  * otherwise they are NULL.
1950  */
1951 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1952 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1953 		struct vm_area_struct *vma, struct vm_fault *vmf,
1954 		vm_fault_t *fault_type)
1955 {
1956 	struct address_space *mapping = inode->i_mapping;
1957 	struct shmem_inode_info *info = SHMEM_I(inode);
1958 	struct shmem_sb_info *sbinfo;
1959 	struct mm_struct *charge_mm;
1960 	struct folio *folio;
1961 	pgoff_t hindex;
1962 	gfp_t huge_gfp;
1963 	int error;
1964 	int once = 0;
1965 	int alloced = 0;
1966 
1967 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1968 		return -EFBIG;
1969 repeat:
1970 	if (sgp <= SGP_CACHE &&
1971 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1972 		return -EINVAL;
1973 	}
1974 
1975 	sbinfo = SHMEM_SB(inode->i_sb);
1976 	charge_mm = vma ? vma->vm_mm : NULL;
1977 
1978 	folio = filemap_get_entry(mapping, index);
1979 	if (folio && vma && userfaultfd_minor(vma)) {
1980 		if (!xa_is_value(folio))
1981 			folio_put(folio);
1982 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1983 		return 0;
1984 	}
1985 
1986 	if (xa_is_value(folio)) {
1987 		error = shmem_swapin_folio(inode, index, &folio,
1988 					  sgp, gfp, vma, fault_type);
1989 		if (error == -EEXIST)
1990 			goto repeat;
1991 
1992 		*foliop = folio;
1993 		return error;
1994 	}
1995 
1996 	if (folio) {
1997 		folio_lock(folio);
1998 
1999 		/* Has the folio been truncated or swapped out? */
2000 		if (unlikely(folio->mapping != mapping)) {
2001 			folio_unlock(folio);
2002 			folio_put(folio);
2003 			goto repeat;
2004 		}
2005 		if (sgp == SGP_WRITE)
2006 			folio_mark_accessed(folio);
2007 		if (folio_test_uptodate(folio))
2008 			goto out;
2009 		/* fallocated folio */
2010 		if (sgp != SGP_READ)
2011 			goto clear;
2012 		folio_unlock(folio);
2013 		folio_put(folio);
2014 	}
2015 
2016 	/*
2017 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2018 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2019 	 */
2020 	*foliop = NULL;
2021 	if (sgp == SGP_READ)
2022 		return 0;
2023 	if (sgp == SGP_NOALLOC)
2024 		return -ENOENT;
2025 
2026 	/*
2027 	 * Fast cache lookup and swap lookup did not find it: allocate.
2028 	 */
2029 
2030 	if (vma && userfaultfd_missing(vma)) {
2031 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2032 		return 0;
2033 	}
2034 
2035 	if (!shmem_is_huge(inode, index, false,
2036 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2037 		goto alloc_nohuge;
2038 
2039 	huge_gfp = vma_thp_gfp_mask(vma);
2040 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2041 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2042 	if (IS_ERR(folio)) {
2043 alloc_nohuge:
2044 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2045 	}
2046 	if (IS_ERR(folio)) {
2047 		int retry = 5;
2048 
2049 		error = PTR_ERR(folio);
2050 		folio = NULL;
2051 		if (error != -ENOSPC)
2052 			goto unlock;
2053 		/*
2054 		 * Try to reclaim some space by splitting a large folio
2055 		 * beyond i_size on the filesystem.
2056 		 */
2057 		while (retry--) {
2058 			int ret;
2059 
2060 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2061 			if (ret == SHRINK_STOP)
2062 				break;
2063 			if (ret)
2064 				goto alloc_nohuge;
2065 		}
2066 		goto unlock;
2067 	}
2068 
2069 	hindex = round_down(index, folio_nr_pages(folio));
2070 
2071 	if (sgp == SGP_WRITE)
2072 		__folio_set_referenced(folio);
2073 
2074 	error = shmem_add_to_page_cache(folio, mapping, hindex,
2075 					NULL, gfp & GFP_RECLAIM_MASK,
2076 					charge_mm);
2077 	if (error)
2078 		goto unacct;
2079 
2080 	folio_add_lru(folio);
2081 	shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2082 	alloced = true;
2083 
2084 	if (folio_test_pmd_mappable(folio) &&
2085 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2086 					folio_next_index(folio) - 1) {
2087 		/*
2088 		 * Part of the large folio is beyond i_size: subject
2089 		 * to shrink under memory pressure.
2090 		 */
2091 		spin_lock(&sbinfo->shrinklist_lock);
2092 		/*
2093 		 * _careful to defend against unlocked access to
2094 		 * ->shrink_list in shmem_unused_huge_shrink()
2095 		 */
2096 		if (list_empty_careful(&info->shrinklist)) {
2097 			list_add_tail(&info->shrinklist,
2098 				      &sbinfo->shrinklist);
2099 			sbinfo->shrinklist_len++;
2100 		}
2101 		spin_unlock(&sbinfo->shrinklist_lock);
2102 	}
2103 
2104 	/*
2105 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2106 	 */
2107 	if (sgp == SGP_FALLOC)
2108 		sgp = SGP_WRITE;
2109 clear:
2110 	/*
2111 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2112 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2113 	 * it now, lest undo on failure cancel our earlier guarantee.
2114 	 */
2115 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2116 		long i, n = folio_nr_pages(folio);
2117 
2118 		for (i = 0; i < n; i++)
2119 			clear_highpage(folio_page(folio, i));
2120 		flush_dcache_folio(folio);
2121 		folio_mark_uptodate(folio);
2122 	}
2123 
2124 	/* Perhaps the file has been truncated since we checked */
2125 	if (sgp <= SGP_CACHE &&
2126 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2127 		if (alloced) {
2128 			folio_clear_dirty(folio);
2129 			filemap_remove_folio(folio);
2130 			shmem_recalc_inode(inode, 0, 0);
2131 		}
2132 		error = -EINVAL;
2133 		goto unlock;
2134 	}
2135 out:
2136 	*foliop = folio;
2137 	return 0;
2138 
2139 	/*
2140 	 * Error recovery.
2141 	 */
2142 unacct:
2143 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2144 
2145 	if (folio_test_large(folio)) {
2146 		folio_unlock(folio);
2147 		folio_put(folio);
2148 		goto alloc_nohuge;
2149 	}
2150 unlock:
2151 	if (folio) {
2152 		folio_unlock(folio);
2153 		folio_put(folio);
2154 	}
2155 	if (error == -ENOSPC && !once++) {
2156 		shmem_recalc_inode(inode, 0, 0);
2157 		goto repeat;
2158 	}
2159 	if (error == -EEXIST)
2160 		goto repeat;
2161 	return error;
2162 }
2163 
2164 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2165 		enum sgp_type sgp)
2166 {
2167 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2168 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2169 }
2170 
2171 /*
2172  * This is like autoremove_wake_function, but it removes the wait queue
2173  * entry unconditionally - even if something else had already woken the
2174  * target.
2175  */
2176 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2177 {
2178 	int ret = default_wake_function(wait, mode, sync, key);
2179 	list_del_init(&wait->entry);
2180 	return ret;
2181 }
2182 
2183 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2184 {
2185 	struct vm_area_struct *vma = vmf->vma;
2186 	struct inode *inode = file_inode(vma->vm_file);
2187 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2188 	struct folio *folio = NULL;
2189 	int err;
2190 	vm_fault_t ret = VM_FAULT_LOCKED;
2191 
2192 	/*
2193 	 * Trinity finds that probing a hole which tmpfs is punching can
2194 	 * prevent the hole-punch from ever completing: which in turn
2195 	 * locks writers out with its hold on i_rwsem.  So refrain from
2196 	 * faulting pages into the hole while it's being punched.  Although
2197 	 * shmem_undo_range() does remove the additions, it may be unable to
2198 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2199 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2200 	 *
2201 	 * It does not matter if we sometimes reach this check just before the
2202 	 * hole-punch begins, so that one fault then races with the punch:
2203 	 * we just need to make racing faults a rare case.
2204 	 *
2205 	 * The implementation below would be much simpler if we just used a
2206 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2207 	 * and bloating every shmem inode for this unlikely case would be sad.
2208 	 */
2209 	if (unlikely(inode->i_private)) {
2210 		struct shmem_falloc *shmem_falloc;
2211 
2212 		spin_lock(&inode->i_lock);
2213 		shmem_falloc = inode->i_private;
2214 		if (shmem_falloc &&
2215 		    shmem_falloc->waitq &&
2216 		    vmf->pgoff >= shmem_falloc->start &&
2217 		    vmf->pgoff < shmem_falloc->next) {
2218 			struct file *fpin;
2219 			wait_queue_head_t *shmem_falloc_waitq;
2220 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2221 
2222 			ret = VM_FAULT_NOPAGE;
2223 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2224 			if (fpin)
2225 				ret = VM_FAULT_RETRY;
2226 
2227 			shmem_falloc_waitq = shmem_falloc->waitq;
2228 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2229 					TASK_UNINTERRUPTIBLE);
2230 			spin_unlock(&inode->i_lock);
2231 			schedule();
2232 
2233 			/*
2234 			 * shmem_falloc_waitq points into the shmem_fallocate()
2235 			 * stack of the hole-punching task: shmem_falloc_waitq
2236 			 * is usually invalid by the time we reach here, but
2237 			 * finish_wait() does not dereference it in that case;
2238 			 * though i_lock needed lest racing with wake_up_all().
2239 			 */
2240 			spin_lock(&inode->i_lock);
2241 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2242 			spin_unlock(&inode->i_lock);
2243 
2244 			if (fpin)
2245 				fput(fpin);
2246 			return ret;
2247 		}
2248 		spin_unlock(&inode->i_lock);
2249 	}
2250 
2251 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2252 				  gfp, vma, vmf, &ret);
2253 	if (err)
2254 		return vmf_error(err);
2255 	if (folio)
2256 		vmf->page = folio_file_page(folio, vmf->pgoff);
2257 	return ret;
2258 }
2259 
2260 unsigned long shmem_get_unmapped_area(struct file *file,
2261 				      unsigned long uaddr, unsigned long len,
2262 				      unsigned long pgoff, unsigned long flags)
2263 {
2264 	unsigned long (*get_area)(struct file *,
2265 		unsigned long, unsigned long, unsigned long, unsigned long);
2266 	unsigned long addr;
2267 	unsigned long offset;
2268 	unsigned long inflated_len;
2269 	unsigned long inflated_addr;
2270 	unsigned long inflated_offset;
2271 
2272 	if (len > TASK_SIZE)
2273 		return -ENOMEM;
2274 
2275 	get_area = current->mm->get_unmapped_area;
2276 	addr = get_area(file, uaddr, len, pgoff, flags);
2277 
2278 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2279 		return addr;
2280 	if (IS_ERR_VALUE(addr))
2281 		return addr;
2282 	if (addr & ~PAGE_MASK)
2283 		return addr;
2284 	if (addr > TASK_SIZE - len)
2285 		return addr;
2286 
2287 	if (shmem_huge == SHMEM_HUGE_DENY)
2288 		return addr;
2289 	if (len < HPAGE_PMD_SIZE)
2290 		return addr;
2291 	if (flags & MAP_FIXED)
2292 		return addr;
2293 	/*
2294 	 * Our priority is to support MAP_SHARED mapped hugely;
2295 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2296 	 * But if caller specified an address hint and we allocated area there
2297 	 * successfully, respect that as before.
2298 	 */
2299 	if (uaddr == addr)
2300 		return addr;
2301 
2302 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2303 		struct super_block *sb;
2304 
2305 		if (file) {
2306 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2307 			sb = file_inode(file)->i_sb;
2308 		} else {
2309 			/*
2310 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2311 			 * for "/dev/zero", to create a shared anonymous object.
2312 			 */
2313 			if (IS_ERR(shm_mnt))
2314 				return addr;
2315 			sb = shm_mnt->mnt_sb;
2316 		}
2317 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2318 			return addr;
2319 	}
2320 
2321 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2322 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2323 		return addr;
2324 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2325 		return addr;
2326 
2327 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2328 	if (inflated_len > TASK_SIZE)
2329 		return addr;
2330 	if (inflated_len < len)
2331 		return addr;
2332 
2333 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2334 	if (IS_ERR_VALUE(inflated_addr))
2335 		return addr;
2336 	if (inflated_addr & ~PAGE_MASK)
2337 		return addr;
2338 
2339 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2340 	inflated_addr += offset - inflated_offset;
2341 	if (inflated_offset > offset)
2342 		inflated_addr += HPAGE_PMD_SIZE;
2343 
2344 	if (inflated_addr > TASK_SIZE - len)
2345 		return addr;
2346 	return inflated_addr;
2347 }
2348 
2349 #ifdef CONFIG_NUMA
2350 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2351 {
2352 	struct inode *inode = file_inode(vma->vm_file);
2353 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2354 }
2355 
2356 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2357 					  unsigned long addr)
2358 {
2359 	struct inode *inode = file_inode(vma->vm_file);
2360 	pgoff_t index;
2361 
2362 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2363 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2364 }
2365 #endif
2366 
2367 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2368 {
2369 	struct inode *inode = file_inode(file);
2370 	struct shmem_inode_info *info = SHMEM_I(inode);
2371 	int retval = -ENOMEM;
2372 
2373 	/*
2374 	 * What serializes the accesses to info->flags?
2375 	 * ipc_lock_object() when called from shmctl_do_lock(),
2376 	 * no serialization needed when called from shm_destroy().
2377 	 */
2378 	if (lock && !(info->flags & VM_LOCKED)) {
2379 		if (!user_shm_lock(inode->i_size, ucounts))
2380 			goto out_nomem;
2381 		info->flags |= VM_LOCKED;
2382 		mapping_set_unevictable(file->f_mapping);
2383 	}
2384 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2385 		user_shm_unlock(inode->i_size, ucounts);
2386 		info->flags &= ~VM_LOCKED;
2387 		mapping_clear_unevictable(file->f_mapping);
2388 	}
2389 	retval = 0;
2390 
2391 out_nomem:
2392 	return retval;
2393 }
2394 
2395 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2396 {
2397 	struct inode *inode = file_inode(file);
2398 	struct shmem_inode_info *info = SHMEM_I(inode);
2399 	int ret;
2400 
2401 	ret = seal_check_future_write(info->seals, vma);
2402 	if (ret)
2403 		return ret;
2404 
2405 	/* arm64 - allow memory tagging on RAM-based files */
2406 	vm_flags_set(vma, VM_MTE_ALLOWED);
2407 
2408 	file_accessed(file);
2409 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2410 	if (inode->i_nlink)
2411 		vma->vm_ops = &shmem_vm_ops;
2412 	else
2413 		vma->vm_ops = &shmem_anon_vm_ops;
2414 	return 0;
2415 }
2416 
2417 static int shmem_file_open(struct inode *inode, struct file *file)
2418 {
2419 	file->f_mode |= FMODE_CAN_ODIRECT;
2420 	return generic_file_open(inode, file);
2421 }
2422 
2423 #ifdef CONFIG_TMPFS_XATTR
2424 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2425 
2426 /*
2427  * chattr's fsflags are unrelated to extended attributes,
2428  * but tmpfs has chosen to enable them under the same config option.
2429  */
2430 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2431 {
2432 	unsigned int i_flags = 0;
2433 
2434 	if (fsflags & FS_NOATIME_FL)
2435 		i_flags |= S_NOATIME;
2436 	if (fsflags & FS_APPEND_FL)
2437 		i_flags |= S_APPEND;
2438 	if (fsflags & FS_IMMUTABLE_FL)
2439 		i_flags |= S_IMMUTABLE;
2440 	/*
2441 	 * But FS_NODUMP_FL does not require any action in i_flags.
2442 	 */
2443 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2444 }
2445 #else
2446 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2447 {
2448 }
2449 #define shmem_initxattrs NULL
2450 #endif
2451 
2452 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2453 {
2454 	return &SHMEM_I(inode)->dir_offsets;
2455 }
2456 
2457 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2458 					     struct super_block *sb,
2459 					     struct inode *dir, umode_t mode,
2460 					     dev_t dev, unsigned long flags)
2461 {
2462 	struct inode *inode;
2463 	struct shmem_inode_info *info;
2464 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2465 	ino_t ino;
2466 	int err;
2467 
2468 	err = shmem_reserve_inode(sb, &ino);
2469 	if (err)
2470 		return ERR_PTR(err);
2471 
2472 
2473 	inode = new_inode(sb);
2474 	if (!inode) {
2475 		shmem_free_inode(sb, 0);
2476 		return ERR_PTR(-ENOSPC);
2477 	}
2478 
2479 	inode->i_ino = ino;
2480 	inode_init_owner(idmap, inode, dir, mode);
2481 	inode->i_blocks = 0;
2482 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2483 	inode->i_generation = get_random_u32();
2484 	info = SHMEM_I(inode);
2485 	memset(info, 0, (char *)inode - (char *)info);
2486 	spin_lock_init(&info->lock);
2487 	atomic_set(&info->stop_eviction, 0);
2488 	info->seals = F_SEAL_SEAL;
2489 	info->flags = flags & VM_NORESERVE;
2490 	info->i_crtime = inode->i_mtime;
2491 	info->fsflags = (dir == NULL) ? 0 :
2492 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2493 	if (info->fsflags)
2494 		shmem_set_inode_flags(inode, info->fsflags);
2495 	INIT_LIST_HEAD(&info->shrinklist);
2496 	INIT_LIST_HEAD(&info->swaplist);
2497 	INIT_LIST_HEAD(&info->swaplist);
2498 	if (sbinfo->noswap)
2499 		mapping_set_unevictable(inode->i_mapping);
2500 	simple_xattrs_init(&info->xattrs);
2501 	cache_no_acl(inode);
2502 	mapping_set_large_folios(inode->i_mapping);
2503 
2504 	switch (mode & S_IFMT) {
2505 	default:
2506 		inode->i_op = &shmem_special_inode_operations;
2507 		init_special_inode(inode, mode, dev);
2508 		break;
2509 	case S_IFREG:
2510 		inode->i_mapping->a_ops = &shmem_aops;
2511 		inode->i_op = &shmem_inode_operations;
2512 		inode->i_fop = &shmem_file_operations;
2513 		mpol_shared_policy_init(&info->policy,
2514 					 shmem_get_sbmpol(sbinfo));
2515 		break;
2516 	case S_IFDIR:
2517 		inc_nlink(inode);
2518 		/* Some things misbehave if size == 0 on a directory */
2519 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2520 		inode->i_op = &shmem_dir_inode_operations;
2521 		inode->i_fop = &simple_offset_dir_operations;
2522 		simple_offset_init(shmem_get_offset_ctx(inode));
2523 		break;
2524 	case S_IFLNK:
2525 		/*
2526 		 * Must not load anything in the rbtree,
2527 		 * mpol_free_shared_policy will not be called.
2528 		 */
2529 		mpol_shared_policy_init(&info->policy, NULL);
2530 		break;
2531 	}
2532 
2533 	lockdep_annotate_inode_mutex_key(inode);
2534 	return inode;
2535 }
2536 
2537 #ifdef CONFIG_TMPFS_QUOTA
2538 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2539 				     struct super_block *sb, struct inode *dir,
2540 				     umode_t mode, dev_t dev, unsigned long flags)
2541 {
2542 	int err;
2543 	struct inode *inode;
2544 
2545 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2546 	if (IS_ERR(inode))
2547 		return inode;
2548 
2549 	err = dquot_initialize(inode);
2550 	if (err)
2551 		goto errout;
2552 
2553 	err = dquot_alloc_inode(inode);
2554 	if (err) {
2555 		dquot_drop(inode);
2556 		goto errout;
2557 	}
2558 	return inode;
2559 
2560 errout:
2561 	inode->i_flags |= S_NOQUOTA;
2562 	iput(inode);
2563 	return ERR_PTR(err);
2564 }
2565 #else
2566 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2567 				     struct super_block *sb, struct inode *dir,
2568 				     umode_t mode, dev_t dev, unsigned long flags)
2569 {
2570 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2571 }
2572 #endif /* CONFIG_TMPFS_QUOTA */
2573 
2574 #ifdef CONFIG_USERFAULTFD
2575 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2576 			   struct vm_area_struct *dst_vma,
2577 			   unsigned long dst_addr,
2578 			   unsigned long src_addr,
2579 			   uffd_flags_t flags,
2580 			   struct folio **foliop)
2581 {
2582 	struct inode *inode = file_inode(dst_vma->vm_file);
2583 	struct shmem_inode_info *info = SHMEM_I(inode);
2584 	struct address_space *mapping = inode->i_mapping;
2585 	gfp_t gfp = mapping_gfp_mask(mapping);
2586 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2587 	void *page_kaddr;
2588 	struct folio *folio;
2589 	int ret;
2590 	pgoff_t max_off;
2591 
2592 	if (shmem_inode_acct_block(inode, 1)) {
2593 		/*
2594 		 * We may have got a page, returned -ENOENT triggering a retry,
2595 		 * and now we find ourselves with -ENOMEM. Release the page, to
2596 		 * avoid a BUG_ON in our caller.
2597 		 */
2598 		if (unlikely(*foliop)) {
2599 			folio_put(*foliop);
2600 			*foliop = NULL;
2601 		}
2602 		return -ENOMEM;
2603 	}
2604 
2605 	if (!*foliop) {
2606 		ret = -ENOMEM;
2607 		folio = shmem_alloc_folio(gfp, info, pgoff);
2608 		if (!folio)
2609 			goto out_unacct_blocks;
2610 
2611 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2612 			page_kaddr = kmap_local_folio(folio, 0);
2613 			/*
2614 			 * The read mmap_lock is held here.  Despite the
2615 			 * mmap_lock being read recursive a deadlock is still
2616 			 * possible if a writer has taken a lock.  For example:
2617 			 *
2618 			 * process A thread 1 takes read lock on own mmap_lock
2619 			 * process A thread 2 calls mmap, blocks taking write lock
2620 			 * process B thread 1 takes page fault, read lock on own mmap lock
2621 			 * process B thread 2 calls mmap, blocks taking write lock
2622 			 * process A thread 1 blocks taking read lock on process B
2623 			 * process B thread 1 blocks taking read lock on process A
2624 			 *
2625 			 * Disable page faults to prevent potential deadlock
2626 			 * and retry the copy outside the mmap_lock.
2627 			 */
2628 			pagefault_disable();
2629 			ret = copy_from_user(page_kaddr,
2630 					     (const void __user *)src_addr,
2631 					     PAGE_SIZE);
2632 			pagefault_enable();
2633 			kunmap_local(page_kaddr);
2634 
2635 			/* fallback to copy_from_user outside mmap_lock */
2636 			if (unlikely(ret)) {
2637 				*foliop = folio;
2638 				ret = -ENOENT;
2639 				/* don't free the page */
2640 				goto out_unacct_blocks;
2641 			}
2642 
2643 			flush_dcache_folio(folio);
2644 		} else {		/* ZEROPAGE */
2645 			clear_user_highpage(&folio->page, dst_addr);
2646 		}
2647 	} else {
2648 		folio = *foliop;
2649 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2650 		*foliop = NULL;
2651 	}
2652 
2653 	VM_BUG_ON(folio_test_locked(folio));
2654 	VM_BUG_ON(folio_test_swapbacked(folio));
2655 	__folio_set_locked(folio);
2656 	__folio_set_swapbacked(folio);
2657 	__folio_mark_uptodate(folio);
2658 
2659 	ret = -EFAULT;
2660 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2661 	if (unlikely(pgoff >= max_off))
2662 		goto out_release;
2663 
2664 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2665 				      gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2666 	if (ret)
2667 		goto out_release;
2668 
2669 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2670 				       &folio->page, true, flags);
2671 	if (ret)
2672 		goto out_delete_from_cache;
2673 
2674 	shmem_recalc_inode(inode, 1, 0);
2675 	folio_unlock(folio);
2676 	return 0;
2677 out_delete_from_cache:
2678 	filemap_remove_folio(folio);
2679 out_release:
2680 	folio_unlock(folio);
2681 	folio_put(folio);
2682 out_unacct_blocks:
2683 	shmem_inode_unacct_blocks(inode, 1);
2684 	return ret;
2685 }
2686 #endif /* CONFIG_USERFAULTFD */
2687 
2688 #ifdef CONFIG_TMPFS
2689 static const struct inode_operations shmem_symlink_inode_operations;
2690 static const struct inode_operations shmem_short_symlink_operations;
2691 
2692 static int
2693 shmem_write_begin(struct file *file, struct address_space *mapping,
2694 			loff_t pos, unsigned len,
2695 			struct page **pagep, void **fsdata)
2696 {
2697 	struct inode *inode = mapping->host;
2698 	struct shmem_inode_info *info = SHMEM_I(inode);
2699 	pgoff_t index = pos >> PAGE_SHIFT;
2700 	struct folio *folio;
2701 	int ret = 0;
2702 
2703 	/* i_rwsem is held by caller */
2704 	if (unlikely(info->seals & (F_SEAL_GROW |
2705 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2706 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2707 			return -EPERM;
2708 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2709 			return -EPERM;
2710 	}
2711 
2712 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2713 
2714 	if (ret)
2715 		return ret;
2716 
2717 	*pagep = folio_file_page(folio, index);
2718 	if (PageHWPoison(*pagep)) {
2719 		folio_unlock(folio);
2720 		folio_put(folio);
2721 		*pagep = NULL;
2722 		return -EIO;
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static int
2729 shmem_write_end(struct file *file, struct address_space *mapping,
2730 			loff_t pos, unsigned len, unsigned copied,
2731 			struct page *page, void *fsdata)
2732 {
2733 	struct folio *folio = page_folio(page);
2734 	struct inode *inode = mapping->host;
2735 
2736 	if (pos + copied > inode->i_size)
2737 		i_size_write(inode, pos + copied);
2738 
2739 	if (!folio_test_uptodate(folio)) {
2740 		if (copied < folio_size(folio)) {
2741 			size_t from = offset_in_folio(folio, pos);
2742 			folio_zero_segments(folio, 0, from,
2743 					from + copied, folio_size(folio));
2744 		}
2745 		folio_mark_uptodate(folio);
2746 	}
2747 	folio_mark_dirty(folio);
2748 	folio_unlock(folio);
2749 	folio_put(folio);
2750 
2751 	return copied;
2752 }
2753 
2754 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2755 {
2756 	struct file *file = iocb->ki_filp;
2757 	struct inode *inode = file_inode(file);
2758 	struct address_space *mapping = inode->i_mapping;
2759 	pgoff_t index;
2760 	unsigned long offset;
2761 	int error = 0;
2762 	ssize_t retval = 0;
2763 	loff_t *ppos = &iocb->ki_pos;
2764 
2765 	index = *ppos >> PAGE_SHIFT;
2766 	offset = *ppos & ~PAGE_MASK;
2767 
2768 	for (;;) {
2769 		struct folio *folio = NULL;
2770 		struct page *page = NULL;
2771 		pgoff_t end_index;
2772 		unsigned long nr, ret;
2773 		loff_t i_size = i_size_read(inode);
2774 
2775 		end_index = i_size >> PAGE_SHIFT;
2776 		if (index > end_index)
2777 			break;
2778 		if (index == end_index) {
2779 			nr = i_size & ~PAGE_MASK;
2780 			if (nr <= offset)
2781 				break;
2782 		}
2783 
2784 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2785 		if (error) {
2786 			if (error == -EINVAL)
2787 				error = 0;
2788 			break;
2789 		}
2790 		if (folio) {
2791 			folio_unlock(folio);
2792 
2793 			page = folio_file_page(folio, index);
2794 			if (PageHWPoison(page)) {
2795 				folio_put(folio);
2796 				error = -EIO;
2797 				break;
2798 			}
2799 		}
2800 
2801 		/*
2802 		 * We must evaluate after, since reads (unlike writes)
2803 		 * are called without i_rwsem protection against truncate
2804 		 */
2805 		nr = PAGE_SIZE;
2806 		i_size = i_size_read(inode);
2807 		end_index = i_size >> PAGE_SHIFT;
2808 		if (index == end_index) {
2809 			nr = i_size & ~PAGE_MASK;
2810 			if (nr <= offset) {
2811 				if (folio)
2812 					folio_put(folio);
2813 				break;
2814 			}
2815 		}
2816 		nr -= offset;
2817 
2818 		if (folio) {
2819 			/*
2820 			 * If users can be writing to this page using arbitrary
2821 			 * virtual addresses, take care about potential aliasing
2822 			 * before reading the page on the kernel side.
2823 			 */
2824 			if (mapping_writably_mapped(mapping))
2825 				flush_dcache_page(page);
2826 			/*
2827 			 * Mark the page accessed if we read the beginning.
2828 			 */
2829 			if (!offset)
2830 				folio_mark_accessed(folio);
2831 			/*
2832 			 * Ok, we have the page, and it's up-to-date, so
2833 			 * now we can copy it to user space...
2834 			 */
2835 			ret = copy_page_to_iter(page, offset, nr, to);
2836 			folio_put(folio);
2837 
2838 		} else if (user_backed_iter(to)) {
2839 			/*
2840 			 * Copy to user tends to be so well optimized, but
2841 			 * clear_user() not so much, that it is noticeably
2842 			 * faster to copy the zero page instead of clearing.
2843 			 */
2844 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2845 		} else {
2846 			/*
2847 			 * But submitting the same page twice in a row to
2848 			 * splice() - or others? - can result in confusion:
2849 			 * so don't attempt that optimization on pipes etc.
2850 			 */
2851 			ret = iov_iter_zero(nr, to);
2852 		}
2853 
2854 		retval += ret;
2855 		offset += ret;
2856 		index += offset >> PAGE_SHIFT;
2857 		offset &= ~PAGE_MASK;
2858 
2859 		if (!iov_iter_count(to))
2860 			break;
2861 		if (ret < nr) {
2862 			error = -EFAULT;
2863 			break;
2864 		}
2865 		cond_resched();
2866 	}
2867 
2868 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2869 	file_accessed(file);
2870 	return retval ? retval : error;
2871 }
2872 
2873 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2874 {
2875 	struct file *file = iocb->ki_filp;
2876 	struct inode *inode = file->f_mapping->host;
2877 	ssize_t ret;
2878 
2879 	inode_lock(inode);
2880 	ret = generic_write_checks(iocb, from);
2881 	if (ret <= 0)
2882 		goto unlock;
2883 	ret = file_remove_privs(file);
2884 	if (ret)
2885 		goto unlock;
2886 	ret = file_update_time(file);
2887 	if (ret)
2888 		goto unlock;
2889 	ret = generic_perform_write(iocb, from);
2890 unlock:
2891 	inode_unlock(inode);
2892 	return ret;
2893 }
2894 
2895 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2896 			      struct pipe_buffer *buf)
2897 {
2898 	return true;
2899 }
2900 
2901 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2902 				  struct pipe_buffer *buf)
2903 {
2904 }
2905 
2906 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2907 				    struct pipe_buffer *buf)
2908 {
2909 	return false;
2910 }
2911 
2912 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2913 	.release	= zero_pipe_buf_release,
2914 	.try_steal	= zero_pipe_buf_try_steal,
2915 	.get		= zero_pipe_buf_get,
2916 };
2917 
2918 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2919 					loff_t fpos, size_t size)
2920 {
2921 	size_t offset = fpos & ~PAGE_MASK;
2922 
2923 	size = min_t(size_t, size, PAGE_SIZE - offset);
2924 
2925 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2926 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2927 
2928 		*buf = (struct pipe_buffer) {
2929 			.ops	= &zero_pipe_buf_ops,
2930 			.page	= ZERO_PAGE(0),
2931 			.offset	= offset,
2932 			.len	= size,
2933 		};
2934 		pipe->head++;
2935 	}
2936 
2937 	return size;
2938 }
2939 
2940 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2941 				      struct pipe_inode_info *pipe,
2942 				      size_t len, unsigned int flags)
2943 {
2944 	struct inode *inode = file_inode(in);
2945 	struct address_space *mapping = inode->i_mapping;
2946 	struct folio *folio = NULL;
2947 	size_t total_spliced = 0, used, npages, n, part;
2948 	loff_t isize;
2949 	int error = 0;
2950 
2951 	/* Work out how much data we can actually add into the pipe */
2952 	used = pipe_occupancy(pipe->head, pipe->tail);
2953 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2954 	len = min_t(size_t, len, npages * PAGE_SIZE);
2955 
2956 	do {
2957 		if (*ppos >= i_size_read(inode))
2958 			break;
2959 
2960 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2961 					SGP_READ);
2962 		if (error) {
2963 			if (error == -EINVAL)
2964 				error = 0;
2965 			break;
2966 		}
2967 		if (folio) {
2968 			folio_unlock(folio);
2969 
2970 			if (folio_test_hwpoison(folio) ||
2971 			    (folio_test_large(folio) &&
2972 			     folio_test_has_hwpoisoned(folio))) {
2973 				error = -EIO;
2974 				break;
2975 			}
2976 		}
2977 
2978 		/*
2979 		 * i_size must be checked after we know the pages are Uptodate.
2980 		 *
2981 		 * Checking i_size after the check allows us to calculate
2982 		 * the correct value for "nr", which means the zero-filled
2983 		 * part of the page is not copied back to userspace (unless
2984 		 * another truncate extends the file - this is desired though).
2985 		 */
2986 		isize = i_size_read(inode);
2987 		if (unlikely(*ppos >= isize))
2988 			break;
2989 		part = min_t(loff_t, isize - *ppos, len);
2990 
2991 		if (folio) {
2992 			/*
2993 			 * If users can be writing to this page using arbitrary
2994 			 * virtual addresses, take care about potential aliasing
2995 			 * before reading the page on the kernel side.
2996 			 */
2997 			if (mapping_writably_mapped(mapping))
2998 				flush_dcache_folio(folio);
2999 			folio_mark_accessed(folio);
3000 			/*
3001 			 * Ok, we have the page, and it's up-to-date, so we can
3002 			 * now splice it into the pipe.
3003 			 */
3004 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3005 			folio_put(folio);
3006 			folio = NULL;
3007 		} else {
3008 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3009 		}
3010 
3011 		if (!n)
3012 			break;
3013 		len -= n;
3014 		total_spliced += n;
3015 		*ppos += n;
3016 		in->f_ra.prev_pos = *ppos;
3017 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3018 			break;
3019 
3020 		cond_resched();
3021 	} while (len);
3022 
3023 	if (folio)
3024 		folio_put(folio);
3025 
3026 	file_accessed(in);
3027 	return total_spliced ? total_spliced : error;
3028 }
3029 
3030 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3031 {
3032 	struct address_space *mapping = file->f_mapping;
3033 	struct inode *inode = mapping->host;
3034 
3035 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3036 		return generic_file_llseek_size(file, offset, whence,
3037 					MAX_LFS_FILESIZE, i_size_read(inode));
3038 	if (offset < 0)
3039 		return -ENXIO;
3040 
3041 	inode_lock(inode);
3042 	/* We're holding i_rwsem so we can access i_size directly */
3043 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3044 	if (offset >= 0)
3045 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3046 	inode_unlock(inode);
3047 	return offset;
3048 }
3049 
3050 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3051 							 loff_t len)
3052 {
3053 	struct inode *inode = file_inode(file);
3054 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3055 	struct shmem_inode_info *info = SHMEM_I(inode);
3056 	struct shmem_falloc shmem_falloc;
3057 	pgoff_t start, index, end, undo_fallocend;
3058 	int error;
3059 
3060 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3061 		return -EOPNOTSUPP;
3062 
3063 	inode_lock(inode);
3064 
3065 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3066 		struct address_space *mapping = file->f_mapping;
3067 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3068 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3069 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3070 
3071 		/* protected by i_rwsem */
3072 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3073 			error = -EPERM;
3074 			goto out;
3075 		}
3076 
3077 		shmem_falloc.waitq = &shmem_falloc_waitq;
3078 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3079 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3080 		spin_lock(&inode->i_lock);
3081 		inode->i_private = &shmem_falloc;
3082 		spin_unlock(&inode->i_lock);
3083 
3084 		if ((u64)unmap_end > (u64)unmap_start)
3085 			unmap_mapping_range(mapping, unmap_start,
3086 					    1 + unmap_end - unmap_start, 0);
3087 		shmem_truncate_range(inode, offset, offset + len - 1);
3088 		/* No need to unmap again: hole-punching leaves COWed pages */
3089 
3090 		spin_lock(&inode->i_lock);
3091 		inode->i_private = NULL;
3092 		wake_up_all(&shmem_falloc_waitq);
3093 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3094 		spin_unlock(&inode->i_lock);
3095 		error = 0;
3096 		goto out;
3097 	}
3098 
3099 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3100 	error = inode_newsize_ok(inode, offset + len);
3101 	if (error)
3102 		goto out;
3103 
3104 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3105 		error = -EPERM;
3106 		goto out;
3107 	}
3108 
3109 	start = offset >> PAGE_SHIFT;
3110 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3111 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3112 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3113 		error = -ENOSPC;
3114 		goto out;
3115 	}
3116 
3117 	shmem_falloc.waitq = NULL;
3118 	shmem_falloc.start = start;
3119 	shmem_falloc.next  = start;
3120 	shmem_falloc.nr_falloced = 0;
3121 	shmem_falloc.nr_unswapped = 0;
3122 	spin_lock(&inode->i_lock);
3123 	inode->i_private = &shmem_falloc;
3124 	spin_unlock(&inode->i_lock);
3125 
3126 	/*
3127 	 * info->fallocend is only relevant when huge pages might be
3128 	 * involved: to prevent split_huge_page() freeing fallocated
3129 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3130 	 */
3131 	undo_fallocend = info->fallocend;
3132 	if (info->fallocend < end)
3133 		info->fallocend = end;
3134 
3135 	for (index = start; index < end; ) {
3136 		struct folio *folio;
3137 
3138 		/*
3139 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3140 		 * been interrupted because we are using up too much memory.
3141 		 */
3142 		if (signal_pending(current))
3143 			error = -EINTR;
3144 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3145 			error = -ENOMEM;
3146 		else
3147 			error = shmem_get_folio(inode, index, &folio,
3148 						SGP_FALLOC);
3149 		if (error) {
3150 			info->fallocend = undo_fallocend;
3151 			/* Remove the !uptodate folios we added */
3152 			if (index > start) {
3153 				shmem_undo_range(inode,
3154 				    (loff_t)start << PAGE_SHIFT,
3155 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3156 			}
3157 			goto undone;
3158 		}
3159 
3160 		/*
3161 		 * Here is a more important optimization than it appears:
3162 		 * a second SGP_FALLOC on the same large folio will clear it,
3163 		 * making it uptodate and un-undoable if we fail later.
3164 		 */
3165 		index = folio_next_index(folio);
3166 		/* Beware 32-bit wraparound */
3167 		if (!index)
3168 			index--;
3169 
3170 		/*
3171 		 * Inform shmem_writepage() how far we have reached.
3172 		 * No need for lock or barrier: we have the page lock.
3173 		 */
3174 		if (!folio_test_uptodate(folio))
3175 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3176 		shmem_falloc.next = index;
3177 
3178 		/*
3179 		 * If !uptodate, leave it that way so that freeable folios
3180 		 * can be recognized if we need to rollback on error later.
3181 		 * But mark it dirty so that memory pressure will swap rather
3182 		 * than free the folios we are allocating (and SGP_CACHE folios
3183 		 * might still be clean: we now need to mark those dirty too).
3184 		 */
3185 		folio_mark_dirty(folio);
3186 		folio_unlock(folio);
3187 		folio_put(folio);
3188 		cond_resched();
3189 	}
3190 
3191 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3192 		i_size_write(inode, offset + len);
3193 undone:
3194 	spin_lock(&inode->i_lock);
3195 	inode->i_private = NULL;
3196 	spin_unlock(&inode->i_lock);
3197 out:
3198 	if (!error)
3199 		file_modified(file);
3200 	inode_unlock(inode);
3201 	return error;
3202 }
3203 
3204 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3205 {
3206 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3207 
3208 	buf->f_type = TMPFS_MAGIC;
3209 	buf->f_bsize = PAGE_SIZE;
3210 	buf->f_namelen = NAME_MAX;
3211 	if (sbinfo->max_blocks) {
3212 		buf->f_blocks = sbinfo->max_blocks;
3213 		buf->f_bavail =
3214 		buf->f_bfree  = sbinfo->max_blocks -
3215 				percpu_counter_sum(&sbinfo->used_blocks);
3216 	}
3217 	if (sbinfo->max_inodes) {
3218 		buf->f_files = sbinfo->max_inodes;
3219 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3220 	}
3221 	/* else leave those fields 0 like simple_statfs */
3222 
3223 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3224 
3225 	return 0;
3226 }
3227 
3228 /*
3229  * File creation. Allocate an inode, and we're done..
3230  */
3231 static int
3232 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3233 	    struct dentry *dentry, umode_t mode, dev_t dev)
3234 {
3235 	struct inode *inode;
3236 	int error;
3237 
3238 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3239 	if (IS_ERR(inode))
3240 		return PTR_ERR(inode);
3241 
3242 	error = simple_acl_create(dir, inode);
3243 	if (error)
3244 		goto out_iput;
3245 	error = security_inode_init_security(inode, dir,
3246 					     &dentry->d_name,
3247 					     shmem_initxattrs, NULL);
3248 	if (error && error != -EOPNOTSUPP)
3249 		goto out_iput;
3250 
3251 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3252 	if (error)
3253 		goto out_iput;
3254 
3255 	dir->i_size += BOGO_DIRENT_SIZE;
3256 	dir->i_mtime = inode_set_ctime_current(dir);
3257 	inode_inc_iversion(dir);
3258 	d_instantiate(dentry, inode);
3259 	dget(dentry); /* Extra count - pin the dentry in core */
3260 	return error;
3261 
3262 out_iput:
3263 	iput(inode);
3264 	return error;
3265 }
3266 
3267 static int
3268 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3269 	      struct file *file, umode_t mode)
3270 {
3271 	struct inode *inode;
3272 	int error;
3273 
3274 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3275 
3276 	if (IS_ERR(inode)) {
3277 		error = PTR_ERR(inode);
3278 		goto err_out;
3279 	}
3280 
3281 	error = security_inode_init_security(inode, dir,
3282 					     NULL,
3283 					     shmem_initxattrs, NULL);
3284 	if (error && error != -EOPNOTSUPP)
3285 		goto out_iput;
3286 	error = simple_acl_create(dir, inode);
3287 	if (error)
3288 		goto out_iput;
3289 	d_tmpfile(file, inode);
3290 
3291 err_out:
3292 	return finish_open_simple(file, error);
3293 out_iput:
3294 	iput(inode);
3295 	return error;
3296 }
3297 
3298 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3299 		       struct dentry *dentry, umode_t mode)
3300 {
3301 	int error;
3302 
3303 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3304 	if (error)
3305 		return error;
3306 	inc_nlink(dir);
3307 	return 0;
3308 }
3309 
3310 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3311 			struct dentry *dentry, umode_t mode, bool excl)
3312 {
3313 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3314 }
3315 
3316 /*
3317  * Link a file..
3318  */
3319 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3320 {
3321 	struct inode *inode = d_inode(old_dentry);
3322 	int ret = 0;
3323 
3324 	/*
3325 	 * No ordinary (disk based) filesystem counts links as inodes;
3326 	 * but each new link needs a new dentry, pinning lowmem, and
3327 	 * tmpfs dentries cannot be pruned until they are unlinked.
3328 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3329 	 * first link must skip that, to get the accounting right.
3330 	 */
3331 	if (inode->i_nlink) {
3332 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3333 		if (ret)
3334 			goto out;
3335 	}
3336 
3337 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3338 	if (ret) {
3339 		if (inode->i_nlink)
3340 			shmem_free_inode(inode->i_sb, 0);
3341 		goto out;
3342 	}
3343 
3344 	dir->i_size += BOGO_DIRENT_SIZE;
3345 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3346 					     inode_set_ctime_current(inode));
3347 	inode_inc_iversion(dir);
3348 	inc_nlink(inode);
3349 	ihold(inode);	/* New dentry reference */
3350 	dget(dentry);		/* Extra pinning count for the created dentry */
3351 	d_instantiate(dentry, inode);
3352 out:
3353 	return ret;
3354 }
3355 
3356 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3357 {
3358 	struct inode *inode = d_inode(dentry);
3359 
3360 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3361 		shmem_free_inode(inode->i_sb, 0);
3362 
3363 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3364 
3365 	dir->i_size -= BOGO_DIRENT_SIZE;
3366 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3367 					     inode_set_ctime_current(inode));
3368 	inode_inc_iversion(dir);
3369 	drop_nlink(inode);
3370 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3371 	return 0;
3372 }
3373 
3374 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3375 {
3376 	if (!simple_empty(dentry))
3377 		return -ENOTEMPTY;
3378 
3379 	drop_nlink(d_inode(dentry));
3380 	drop_nlink(dir);
3381 	return shmem_unlink(dir, dentry);
3382 }
3383 
3384 static int shmem_whiteout(struct mnt_idmap *idmap,
3385 			  struct inode *old_dir, struct dentry *old_dentry)
3386 {
3387 	struct dentry *whiteout;
3388 	int error;
3389 
3390 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3391 	if (!whiteout)
3392 		return -ENOMEM;
3393 
3394 	error = shmem_mknod(idmap, old_dir, whiteout,
3395 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3396 	dput(whiteout);
3397 	if (error)
3398 		return error;
3399 
3400 	/*
3401 	 * Cheat and hash the whiteout while the old dentry is still in
3402 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3403 	 *
3404 	 * d_lookup() will consistently find one of them at this point,
3405 	 * not sure which one, but that isn't even important.
3406 	 */
3407 	d_rehash(whiteout);
3408 	return 0;
3409 }
3410 
3411 /*
3412  * The VFS layer already does all the dentry stuff for rename,
3413  * we just have to decrement the usage count for the target if
3414  * it exists so that the VFS layer correctly free's it when it
3415  * gets overwritten.
3416  */
3417 static int shmem_rename2(struct mnt_idmap *idmap,
3418 			 struct inode *old_dir, struct dentry *old_dentry,
3419 			 struct inode *new_dir, struct dentry *new_dentry,
3420 			 unsigned int flags)
3421 {
3422 	struct inode *inode = d_inode(old_dentry);
3423 	int they_are_dirs = S_ISDIR(inode->i_mode);
3424 	int error;
3425 
3426 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3427 		return -EINVAL;
3428 
3429 	if (flags & RENAME_EXCHANGE)
3430 		return simple_offset_rename_exchange(old_dir, old_dentry,
3431 						     new_dir, new_dentry);
3432 
3433 	if (!simple_empty(new_dentry))
3434 		return -ENOTEMPTY;
3435 
3436 	if (flags & RENAME_WHITEOUT) {
3437 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3438 		if (error)
3439 			return error;
3440 	}
3441 
3442 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3443 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3444 	if (error)
3445 		return error;
3446 
3447 	if (d_really_is_positive(new_dentry)) {
3448 		(void) shmem_unlink(new_dir, new_dentry);
3449 		if (they_are_dirs) {
3450 			drop_nlink(d_inode(new_dentry));
3451 			drop_nlink(old_dir);
3452 		}
3453 	} else if (they_are_dirs) {
3454 		drop_nlink(old_dir);
3455 		inc_nlink(new_dir);
3456 	}
3457 
3458 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3459 	new_dir->i_size += BOGO_DIRENT_SIZE;
3460 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3461 	inode_inc_iversion(old_dir);
3462 	inode_inc_iversion(new_dir);
3463 	return 0;
3464 }
3465 
3466 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3467 			 struct dentry *dentry, const char *symname)
3468 {
3469 	int error;
3470 	int len;
3471 	struct inode *inode;
3472 	struct folio *folio;
3473 
3474 	len = strlen(symname) + 1;
3475 	if (len > PAGE_SIZE)
3476 		return -ENAMETOOLONG;
3477 
3478 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3479 				VM_NORESERVE);
3480 
3481 	if (IS_ERR(inode))
3482 		return PTR_ERR(inode);
3483 
3484 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3485 					     shmem_initxattrs, NULL);
3486 	if (error && error != -EOPNOTSUPP)
3487 		goto out_iput;
3488 
3489 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3490 	if (error)
3491 		goto out_iput;
3492 
3493 	inode->i_size = len-1;
3494 	if (len <= SHORT_SYMLINK_LEN) {
3495 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3496 		if (!inode->i_link) {
3497 			error = -ENOMEM;
3498 			goto out_remove_offset;
3499 		}
3500 		inode->i_op = &shmem_short_symlink_operations;
3501 	} else {
3502 		inode_nohighmem(inode);
3503 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3504 		if (error)
3505 			goto out_remove_offset;
3506 		inode->i_mapping->a_ops = &shmem_aops;
3507 		inode->i_op = &shmem_symlink_inode_operations;
3508 		memcpy(folio_address(folio), symname, len);
3509 		folio_mark_uptodate(folio);
3510 		folio_mark_dirty(folio);
3511 		folio_unlock(folio);
3512 		folio_put(folio);
3513 	}
3514 	dir->i_size += BOGO_DIRENT_SIZE;
3515 	dir->i_mtime = inode_set_ctime_current(dir);
3516 	inode_inc_iversion(dir);
3517 	d_instantiate(dentry, inode);
3518 	dget(dentry);
3519 	return 0;
3520 
3521 out_remove_offset:
3522 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3523 out_iput:
3524 	iput(inode);
3525 	return error;
3526 }
3527 
3528 static void shmem_put_link(void *arg)
3529 {
3530 	folio_mark_accessed(arg);
3531 	folio_put(arg);
3532 }
3533 
3534 static const char *shmem_get_link(struct dentry *dentry,
3535 				  struct inode *inode,
3536 				  struct delayed_call *done)
3537 {
3538 	struct folio *folio = NULL;
3539 	int error;
3540 
3541 	if (!dentry) {
3542 		folio = filemap_get_folio(inode->i_mapping, 0);
3543 		if (IS_ERR(folio))
3544 			return ERR_PTR(-ECHILD);
3545 		if (PageHWPoison(folio_page(folio, 0)) ||
3546 		    !folio_test_uptodate(folio)) {
3547 			folio_put(folio);
3548 			return ERR_PTR(-ECHILD);
3549 		}
3550 	} else {
3551 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3552 		if (error)
3553 			return ERR_PTR(error);
3554 		if (!folio)
3555 			return ERR_PTR(-ECHILD);
3556 		if (PageHWPoison(folio_page(folio, 0))) {
3557 			folio_unlock(folio);
3558 			folio_put(folio);
3559 			return ERR_PTR(-ECHILD);
3560 		}
3561 		folio_unlock(folio);
3562 	}
3563 	set_delayed_call(done, shmem_put_link, folio);
3564 	return folio_address(folio);
3565 }
3566 
3567 #ifdef CONFIG_TMPFS_XATTR
3568 
3569 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3570 {
3571 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3572 
3573 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3574 
3575 	return 0;
3576 }
3577 
3578 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3579 			      struct dentry *dentry, struct fileattr *fa)
3580 {
3581 	struct inode *inode = d_inode(dentry);
3582 	struct shmem_inode_info *info = SHMEM_I(inode);
3583 
3584 	if (fileattr_has_fsx(fa))
3585 		return -EOPNOTSUPP;
3586 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3587 		return -EOPNOTSUPP;
3588 
3589 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3590 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3591 
3592 	shmem_set_inode_flags(inode, info->fsflags);
3593 	inode_set_ctime_current(inode);
3594 	inode_inc_iversion(inode);
3595 	return 0;
3596 }
3597 
3598 /*
3599  * Superblocks without xattr inode operations may get some security.* xattr
3600  * support from the LSM "for free". As soon as we have any other xattrs
3601  * like ACLs, we also need to implement the security.* handlers at
3602  * filesystem level, though.
3603  */
3604 
3605 /*
3606  * Callback for security_inode_init_security() for acquiring xattrs.
3607  */
3608 static int shmem_initxattrs(struct inode *inode,
3609 			    const struct xattr *xattr_array,
3610 			    void *fs_info)
3611 {
3612 	struct shmem_inode_info *info = SHMEM_I(inode);
3613 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3614 	const struct xattr *xattr;
3615 	struct simple_xattr *new_xattr;
3616 	size_t ispace = 0;
3617 	size_t len;
3618 
3619 	if (sbinfo->max_inodes) {
3620 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3621 			ispace += simple_xattr_space(xattr->name,
3622 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3623 		}
3624 		if (ispace) {
3625 			raw_spin_lock(&sbinfo->stat_lock);
3626 			if (sbinfo->free_ispace < ispace)
3627 				ispace = 0;
3628 			else
3629 				sbinfo->free_ispace -= ispace;
3630 			raw_spin_unlock(&sbinfo->stat_lock);
3631 			if (!ispace)
3632 				return -ENOSPC;
3633 		}
3634 	}
3635 
3636 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3637 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3638 		if (!new_xattr)
3639 			break;
3640 
3641 		len = strlen(xattr->name) + 1;
3642 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3643 					  GFP_KERNEL_ACCOUNT);
3644 		if (!new_xattr->name) {
3645 			kvfree(new_xattr);
3646 			break;
3647 		}
3648 
3649 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3650 		       XATTR_SECURITY_PREFIX_LEN);
3651 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3652 		       xattr->name, len);
3653 
3654 		simple_xattr_add(&info->xattrs, new_xattr);
3655 	}
3656 
3657 	if (xattr->name != NULL) {
3658 		if (ispace) {
3659 			raw_spin_lock(&sbinfo->stat_lock);
3660 			sbinfo->free_ispace += ispace;
3661 			raw_spin_unlock(&sbinfo->stat_lock);
3662 		}
3663 		simple_xattrs_free(&info->xattrs, NULL);
3664 		return -ENOMEM;
3665 	}
3666 
3667 	return 0;
3668 }
3669 
3670 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3671 				   struct dentry *unused, struct inode *inode,
3672 				   const char *name, void *buffer, size_t size)
3673 {
3674 	struct shmem_inode_info *info = SHMEM_I(inode);
3675 
3676 	name = xattr_full_name(handler, name);
3677 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3678 }
3679 
3680 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3681 				   struct mnt_idmap *idmap,
3682 				   struct dentry *unused, struct inode *inode,
3683 				   const char *name, const void *value,
3684 				   size_t size, int flags)
3685 {
3686 	struct shmem_inode_info *info = SHMEM_I(inode);
3687 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3688 	struct simple_xattr *old_xattr;
3689 	size_t ispace = 0;
3690 
3691 	name = xattr_full_name(handler, name);
3692 	if (value && sbinfo->max_inodes) {
3693 		ispace = simple_xattr_space(name, size);
3694 		raw_spin_lock(&sbinfo->stat_lock);
3695 		if (sbinfo->free_ispace < ispace)
3696 			ispace = 0;
3697 		else
3698 			sbinfo->free_ispace -= ispace;
3699 		raw_spin_unlock(&sbinfo->stat_lock);
3700 		if (!ispace)
3701 			return -ENOSPC;
3702 	}
3703 
3704 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3705 	if (!IS_ERR(old_xattr)) {
3706 		ispace = 0;
3707 		if (old_xattr && sbinfo->max_inodes)
3708 			ispace = simple_xattr_space(old_xattr->name,
3709 						    old_xattr->size);
3710 		simple_xattr_free(old_xattr);
3711 		old_xattr = NULL;
3712 		inode_set_ctime_current(inode);
3713 		inode_inc_iversion(inode);
3714 	}
3715 	if (ispace) {
3716 		raw_spin_lock(&sbinfo->stat_lock);
3717 		sbinfo->free_ispace += ispace;
3718 		raw_spin_unlock(&sbinfo->stat_lock);
3719 	}
3720 	return PTR_ERR(old_xattr);
3721 }
3722 
3723 static const struct xattr_handler shmem_security_xattr_handler = {
3724 	.prefix = XATTR_SECURITY_PREFIX,
3725 	.get = shmem_xattr_handler_get,
3726 	.set = shmem_xattr_handler_set,
3727 };
3728 
3729 static const struct xattr_handler shmem_trusted_xattr_handler = {
3730 	.prefix = XATTR_TRUSTED_PREFIX,
3731 	.get = shmem_xattr_handler_get,
3732 	.set = shmem_xattr_handler_set,
3733 };
3734 
3735 static const struct xattr_handler shmem_user_xattr_handler = {
3736 	.prefix = XATTR_USER_PREFIX,
3737 	.get = shmem_xattr_handler_get,
3738 	.set = shmem_xattr_handler_set,
3739 };
3740 
3741 static const struct xattr_handler *shmem_xattr_handlers[] = {
3742 	&shmem_security_xattr_handler,
3743 	&shmem_trusted_xattr_handler,
3744 	&shmem_user_xattr_handler,
3745 	NULL
3746 };
3747 
3748 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3749 {
3750 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3751 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3752 }
3753 #endif /* CONFIG_TMPFS_XATTR */
3754 
3755 static const struct inode_operations shmem_short_symlink_operations = {
3756 	.getattr	= shmem_getattr,
3757 	.setattr	= shmem_setattr,
3758 	.get_link	= simple_get_link,
3759 #ifdef CONFIG_TMPFS_XATTR
3760 	.listxattr	= shmem_listxattr,
3761 #endif
3762 };
3763 
3764 static const struct inode_operations shmem_symlink_inode_operations = {
3765 	.getattr	= shmem_getattr,
3766 	.setattr	= shmem_setattr,
3767 	.get_link	= shmem_get_link,
3768 #ifdef CONFIG_TMPFS_XATTR
3769 	.listxattr	= shmem_listxattr,
3770 #endif
3771 };
3772 
3773 static struct dentry *shmem_get_parent(struct dentry *child)
3774 {
3775 	return ERR_PTR(-ESTALE);
3776 }
3777 
3778 static int shmem_match(struct inode *ino, void *vfh)
3779 {
3780 	__u32 *fh = vfh;
3781 	__u64 inum = fh[2];
3782 	inum = (inum << 32) | fh[1];
3783 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3784 }
3785 
3786 /* Find any alias of inode, but prefer a hashed alias */
3787 static struct dentry *shmem_find_alias(struct inode *inode)
3788 {
3789 	struct dentry *alias = d_find_alias(inode);
3790 
3791 	return alias ?: d_find_any_alias(inode);
3792 }
3793 
3794 
3795 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3796 		struct fid *fid, int fh_len, int fh_type)
3797 {
3798 	struct inode *inode;
3799 	struct dentry *dentry = NULL;
3800 	u64 inum;
3801 
3802 	if (fh_len < 3)
3803 		return NULL;
3804 
3805 	inum = fid->raw[2];
3806 	inum = (inum << 32) | fid->raw[1];
3807 
3808 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3809 			shmem_match, fid->raw);
3810 	if (inode) {
3811 		dentry = shmem_find_alias(inode);
3812 		iput(inode);
3813 	}
3814 
3815 	return dentry;
3816 }
3817 
3818 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3819 				struct inode *parent)
3820 {
3821 	if (*len < 3) {
3822 		*len = 3;
3823 		return FILEID_INVALID;
3824 	}
3825 
3826 	if (inode_unhashed(inode)) {
3827 		/* Unfortunately insert_inode_hash is not idempotent,
3828 		 * so as we hash inodes here rather than at creation
3829 		 * time, we need a lock to ensure we only try
3830 		 * to do it once
3831 		 */
3832 		static DEFINE_SPINLOCK(lock);
3833 		spin_lock(&lock);
3834 		if (inode_unhashed(inode))
3835 			__insert_inode_hash(inode,
3836 					    inode->i_ino + inode->i_generation);
3837 		spin_unlock(&lock);
3838 	}
3839 
3840 	fh[0] = inode->i_generation;
3841 	fh[1] = inode->i_ino;
3842 	fh[2] = ((__u64)inode->i_ino) >> 32;
3843 
3844 	*len = 3;
3845 	return 1;
3846 }
3847 
3848 static const struct export_operations shmem_export_ops = {
3849 	.get_parent     = shmem_get_parent,
3850 	.encode_fh      = shmem_encode_fh,
3851 	.fh_to_dentry	= shmem_fh_to_dentry,
3852 };
3853 
3854 enum shmem_param {
3855 	Opt_gid,
3856 	Opt_huge,
3857 	Opt_mode,
3858 	Opt_mpol,
3859 	Opt_nr_blocks,
3860 	Opt_nr_inodes,
3861 	Opt_size,
3862 	Opt_uid,
3863 	Opt_inode32,
3864 	Opt_inode64,
3865 	Opt_noswap,
3866 	Opt_quota,
3867 	Opt_usrquota,
3868 	Opt_grpquota,
3869 	Opt_usrquota_block_hardlimit,
3870 	Opt_usrquota_inode_hardlimit,
3871 	Opt_grpquota_block_hardlimit,
3872 	Opt_grpquota_inode_hardlimit,
3873 };
3874 
3875 static const struct constant_table shmem_param_enums_huge[] = {
3876 	{"never",	SHMEM_HUGE_NEVER },
3877 	{"always",	SHMEM_HUGE_ALWAYS },
3878 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3879 	{"advise",	SHMEM_HUGE_ADVISE },
3880 	{}
3881 };
3882 
3883 const struct fs_parameter_spec shmem_fs_parameters[] = {
3884 	fsparam_u32   ("gid",		Opt_gid),
3885 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3886 	fsparam_u32oct("mode",		Opt_mode),
3887 	fsparam_string("mpol",		Opt_mpol),
3888 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3889 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3890 	fsparam_string("size",		Opt_size),
3891 	fsparam_u32   ("uid",		Opt_uid),
3892 	fsparam_flag  ("inode32",	Opt_inode32),
3893 	fsparam_flag  ("inode64",	Opt_inode64),
3894 	fsparam_flag  ("noswap",	Opt_noswap),
3895 #ifdef CONFIG_TMPFS_QUOTA
3896 	fsparam_flag  ("quota",		Opt_quota),
3897 	fsparam_flag  ("usrquota",	Opt_usrquota),
3898 	fsparam_flag  ("grpquota",	Opt_grpquota),
3899 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3900 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3901 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3902 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3903 #endif
3904 	{}
3905 };
3906 
3907 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3908 {
3909 	struct shmem_options *ctx = fc->fs_private;
3910 	struct fs_parse_result result;
3911 	unsigned long long size;
3912 	char *rest;
3913 	int opt;
3914 	kuid_t kuid;
3915 	kgid_t kgid;
3916 
3917 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3918 	if (opt < 0)
3919 		return opt;
3920 
3921 	switch (opt) {
3922 	case Opt_size:
3923 		size = memparse(param->string, &rest);
3924 		if (*rest == '%') {
3925 			size <<= PAGE_SHIFT;
3926 			size *= totalram_pages();
3927 			do_div(size, 100);
3928 			rest++;
3929 		}
3930 		if (*rest)
3931 			goto bad_value;
3932 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3933 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3934 		break;
3935 	case Opt_nr_blocks:
3936 		ctx->blocks = memparse(param->string, &rest);
3937 		if (*rest || ctx->blocks > LONG_MAX)
3938 			goto bad_value;
3939 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3940 		break;
3941 	case Opt_nr_inodes:
3942 		ctx->inodes = memparse(param->string, &rest);
3943 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3944 			goto bad_value;
3945 		ctx->seen |= SHMEM_SEEN_INODES;
3946 		break;
3947 	case Opt_mode:
3948 		ctx->mode = result.uint_32 & 07777;
3949 		break;
3950 	case Opt_uid:
3951 		kuid = make_kuid(current_user_ns(), result.uint_32);
3952 		if (!uid_valid(kuid))
3953 			goto bad_value;
3954 
3955 		/*
3956 		 * The requested uid must be representable in the
3957 		 * filesystem's idmapping.
3958 		 */
3959 		if (!kuid_has_mapping(fc->user_ns, kuid))
3960 			goto bad_value;
3961 
3962 		ctx->uid = kuid;
3963 		break;
3964 	case Opt_gid:
3965 		kgid = make_kgid(current_user_ns(), result.uint_32);
3966 		if (!gid_valid(kgid))
3967 			goto bad_value;
3968 
3969 		/*
3970 		 * The requested gid must be representable in the
3971 		 * filesystem's idmapping.
3972 		 */
3973 		if (!kgid_has_mapping(fc->user_ns, kgid))
3974 			goto bad_value;
3975 
3976 		ctx->gid = kgid;
3977 		break;
3978 	case Opt_huge:
3979 		ctx->huge = result.uint_32;
3980 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3981 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3982 		      has_transparent_hugepage()))
3983 			goto unsupported_parameter;
3984 		ctx->seen |= SHMEM_SEEN_HUGE;
3985 		break;
3986 	case Opt_mpol:
3987 		if (IS_ENABLED(CONFIG_NUMA)) {
3988 			mpol_put(ctx->mpol);
3989 			ctx->mpol = NULL;
3990 			if (mpol_parse_str(param->string, &ctx->mpol))
3991 				goto bad_value;
3992 			break;
3993 		}
3994 		goto unsupported_parameter;
3995 	case Opt_inode32:
3996 		ctx->full_inums = false;
3997 		ctx->seen |= SHMEM_SEEN_INUMS;
3998 		break;
3999 	case Opt_inode64:
4000 		if (sizeof(ino_t) < 8) {
4001 			return invalfc(fc,
4002 				       "Cannot use inode64 with <64bit inums in kernel\n");
4003 		}
4004 		ctx->full_inums = true;
4005 		ctx->seen |= SHMEM_SEEN_INUMS;
4006 		break;
4007 	case Opt_noswap:
4008 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4009 			return invalfc(fc,
4010 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4011 		}
4012 		ctx->noswap = true;
4013 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4014 		break;
4015 	case Opt_quota:
4016 		if (fc->user_ns != &init_user_ns)
4017 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4018 		ctx->seen |= SHMEM_SEEN_QUOTA;
4019 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4020 		break;
4021 	case Opt_usrquota:
4022 		if (fc->user_ns != &init_user_ns)
4023 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4024 		ctx->seen |= SHMEM_SEEN_QUOTA;
4025 		ctx->quota_types |= QTYPE_MASK_USR;
4026 		break;
4027 	case Opt_grpquota:
4028 		if (fc->user_ns != &init_user_ns)
4029 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4030 		ctx->seen |= SHMEM_SEEN_QUOTA;
4031 		ctx->quota_types |= QTYPE_MASK_GRP;
4032 		break;
4033 	case Opt_usrquota_block_hardlimit:
4034 		size = memparse(param->string, &rest);
4035 		if (*rest || !size)
4036 			goto bad_value;
4037 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4038 			return invalfc(fc,
4039 				       "User quota block hardlimit too large.");
4040 		ctx->qlimits.usrquota_bhardlimit = size;
4041 		break;
4042 	case Opt_grpquota_block_hardlimit:
4043 		size = memparse(param->string, &rest);
4044 		if (*rest || !size)
4045 			goto bad_value;
4046 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4047 			return invalfc(fc,
4048 				       "Group quota block hardlimit too large.");
4049 		ctx->qlimits.grpquota_bhardlimit = size;
4050 		break;
4051 	case Opt_usrquota_inode_hardlimit:
4052 		size = memparse(param->string, &rest);
4053 		if (*rest || !size)
4054 			goto bad_value;
4055 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4056 			return invalfc(fc,
4057 				       "User quota inode hardlimit too large.");
4058 		ctx->qlimits.usrquota_ihardlimit = size;
4059 		break;
4060 	case Opt_grpquota_inode_hardlimit:
4061 		size = memparse(param->string, &rest);
4062 		if (*rest || !size)
4063 			goto bad_value;
4064 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4065 			return invalfc(fc,
4066 				       "Group quota inode hardlimit too large.");
4067 		ctx->qlimits.grpquota_ihardlimit = size;
4068 		break;
4069 	}
4070 	return 0;
4071 
4072 unsupported_parameter:
4073 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4074 bad_value:
4075 	return invalfc(fc, "Bad value for '%s'", param->key);
4076 }
4077 
4078 static int shmem_parse_options(struct fs_context *fc, void *data)
4079 {
4080 	char *options = data;
4081 
4082 	if (options) {
4083 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4084 		if (err)
4085 			return err;
4086 	}
4087 
4088 	while (options != NULL) {
4089 		char *this_char = options;
4090 		for (;;) {
4091 			/*
4092 			 * NUL-terminate this option: unfortunately,
4093 			 * mount options form a comma-separated list,
4094 			 * but mpol's nodelist may also contain commas.
4095 			 */
4096 			options = strchr(options, ',');
4097 			if (options == NULL)
4098 				break;
4099 			options++;
4100 			if (!isdigit(*options)) {
4101 				options[-1] = '\0';
4102 				break;
4103 			}
4104 		}
4105 		if (*this_char) {
4106 			char *value = strchr(this_char, '=');
4107 			size_t len = 0;
4108 			int err;
4109 
4110 			if (value) {
4111 				*value++ = '\0';
4112 				len = strlen(value);
4113 			}
4114 			err = vfs_parse_fs_string(fc, this_char, value, len);
4115 			if (err < 0)
4116 				return err;
4117 		}
4118 	}
4119 	return 0;
4120 }
4121 
4122 /*
4123  * Reconfigure a shmem filesystem.
4124  */
4125 static int shmem_reconfigure(struct fs_context *fc)
4126 {
4127 	struct shmem_options *ctx = fc->fs_private;
4128 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4129 	unsigned long used_isp;
4130 	struct mempolicy *mpol = NULL;
4131 	const char *err;
4132 
4133 	raw_spin_lock(&sbinfo->stat_lock);
4134 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4135 
4136 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4137 		if (!sbinfo->max_blocks) {
4138 			err = "Cannot retroactively limit size";
4139 			goto out;
4140 		}
4141 		if (percpu_counter_compare(&sbinfo->used_blocks,
4142 					   ctx->blocks) > 0) {
4143 			err = "Too small a size for current use";
4144 			goto out;
4145 		}
4146 	}
4147 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4148 		if (!sbinfo->max_inodes) {
4149 			err = "Cannot retroactively limit inodes";
4150 			goto out;
4151 		}
4152 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4153 			err = "Too few inodes for current use";
4154 			goto out;
4155 		}
4156 	}
4157 
4158 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4159 	    sbinfo->next_ino > UINT_MAX) {
4160 		err = "Current inum too high to switch to 32-bit inums";
4161 		goto out;
4162 	}
4163 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4164 		err = "Cannot disable swap on remount";
4165 		goto out;
4166 	}
4167 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4168 		err = "Cannot enable swap on remount if it was disabled on first mount";
4169 		goto out;
4170 	}
4171 
4172 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4173 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4174 		err = "Cannot enable quota on remount";
4175 		goto out;
4176 	}
4177 
4178 #ifdef CONFIG_TMPFS_QUOTA
4179 #define CHANGED_LIMIT(name)						\
4180 	(ctx->qlimits.name## hardlimit &&				\
4181 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4182 
4183 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4184 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4185 		err = "Cannot change global quota limit on remount";
4186 		goto out;
4187 	}
4188 #endif /* CONFIG_TMPFS_QUOTA */
4189 
4190 	if (ctx->seen & SHMEM_SEEN_HUGE)
4191 		sbinfo->huge = ctx->huge;
4192 	if (ctx->seen & SHMEM_SEEN_INUMS)
4193 		sbinfo->full_inums = ctx->full_inums;
4194 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4195 		sbinfo->max_blocks  = ctx->blocks;
4196 	if (ctx->seen & SHMEM_SEEN_INODES) {
4197 		sbinfo->max_inodes  = ctx->inodes;
4198 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4199 	}
4200 
4201 	/*
4202 	 * Preserve previous mempolicy unless mpol remount option was specified.
4203 	 */
4204 	if (ctx->mpol) {
4205 		mpol = sbinfo->mpol;
4206 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4207 		ctx->mpol = NULL;
4208 	}
4209 
4210 	if (ctx->noswap)
4211 		sbinfo->noswap = true;
4212 
4213 	raw_spin_unlock(&sbinfo->stat_lock);
4214 	mpol_put(mpol);
4215 	return 0;
4216 out:
4217 	raw_spin_unlock(&sbinfo->stat_lock);
4218 	return invalfc(fc, "%s", err);
4219 }
4220 
4221 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4222 {
4223 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4224 	struct mempolicy *mpol;
4225 
4226 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4227 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4228 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4229 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4230 	if (sbinfo->mode != (0777 | S_ISVTX))
4231 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4232 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4233 		seq_printf(seq, ",uid=%u",
4234 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4235 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4236 		seq_printf(seq, ",gid=%u",
4237 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4238 
4239 	/*
4240 	 * Showing inode{64,32} might be useful even if it's the system default,
4241 	 * since then people don't have to resort to checking both here and
4242 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4243 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4244 	 *
4245 	 * We hide it when inode64 isn't the default and we are using 32-bit
4246 	 * inodes, since that probably just means the feature isn't even under
4247 	 * consideration.
4248 	 *
4249 	 * As such:
4250 	 *
4251 	 *                     +-----------------+-----------------+
4252 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4253 	 *  +------------------+-----------------+-----------------+
4254 	 *  | full_inums=true  | show            | show            |
4255 	 *  | full_inums=false | show            | hide            |
4256 	 *  +------------------+-----------------+-----------------+
4257 	 *
4258 	 */
4259 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4260 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4261 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4263 	if (sbinfo->huge)
4264 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4265 #endif
4266 	mpol = shmem_get_sbmpol(sbinfo);
4267 	shmem_show_mpol(seq, mpol);
4268 	mpol_put(mpol);
4269 	if (sbinfo->noswap)
4270 		seq_printf(seq, ",noswap");
4271 	return 0;
4272 }
4273 
4274 #endif /* CONFIG_TMPFS */
4275 
4276 static void shmem_put_super(struct super_block *sb)
4277 {
4278 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4279 
4280 #ifdef CONFIG_TMPFS_QUOTA
4281 	shmem_disable_quotas(sb);
4282 #endif
4283 	free_percpu(sbinfo->ino_batch);
4284 	percpu_counter_destroy(&sbinfo->used_blocks);
4285 	mpol_put(sbinfo->mpol);
4286 	kfree(sbinfo);
4287 	sb->s_fs_info = NULL;
4288 }
4289 
4290 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4291 {
4292 	struct shmem_options *ctx = fc->fs_private;
4293 	struct inode *inode;
4294 	struct shmem_sb_info *sbinfo;
4295 	int error = -ENOMEM;
4296 
4297 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4298 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4299 				L1_CACHE_BYTES), GFP_KERNEL);
4300 	if (!sbinfo)
4301 		return error;
4302 
4303 	sb->s_fs_info = sbinfo;
4304 
4305 #ifdef CONFIG_TMPFS
4306 	/*
4307 	 * Per default we only allow half of the physical ram per
4308 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4309 	 * but the internal instance is left unlimited.
4310 	 */
4311 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4312 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4313 			ctx->blocks = shmem_default_max_blocks();
4314 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4315 			ctx->inodes = shmem_default_max_inodes();
4316 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4317 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4318 		sbinfo->noswap = ctx->noswap;
4319 	} else {
4320 		sb->s_flags |= SB_NOUSER;
4321 	}
4322 	sb->s_export_op = &shmem_export_ops;
4323 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4324 #else
4325 	sb->s_flags |= SB_NOUSER;
4326 #endif
4327 	sbinfo->max_blocks = ctx->blocks;
4328 	sbinfo->max_inodes = ctx->inodes;
4329 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4330 	if (sb->s_flags & SB_KERNMOUNT) {
4331 		sbinfo->ino_batch = alloc_percpu(ino_t);
4332 		if (!sbinfo->ino_batch)
4333 			goto failed;
4334 	}
4335 	sbinfo->uid = ctx->uid;
4336 	sbinfo->gid = ctx->gid;
4337 	sbinfo->full_inums = ctx->full_inums;
4338 	sbinfo->mode = ctx->mode;
4339 	sbinfo->huge = ctx->huge;
4340 	sbinfo->mpol = ctx->mpol;
4341 	ctx->mpol = NULL;
4342 
4343 	raw_spin_lock_init(&sbinfo->stat_lock);
4344 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4345 		goto failed;
4346 	spin_lock_init(&sbinfo->shrinklist_lock);
4347 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4348 
4349 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4350 	sb->s_blocksize = PAGE_SIZE;
4351 	sb->s_blocksize_bits = PAGE_SHIFT;
4352 	sb->s_magic = TMPFS_MAGIC;
4353 	sb->s_op = &shmem_ops;
4354 	sb->s_time_gran = 1;
4355 #ifdef CONFIG_TMPFS_XATTR
4356 	sb->s_xattr = shmem_xattr_handlers;
4357 #endif
4358 #ifdef CONFIG_TMPFS_POSIX_ACL
4359 	sb->s_flags |= SB_POSIXACL;
4360 #endif
4361 	uuid_gen(&sb->s_uuid);
4362 
4363 #ifdef CONFIG_TMPFS_QUOTA
4364 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4365 		sb->dq_op = &shmem_quota_operations;
4366 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4367 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4368 
4369 		/* Copy the default limits from ctx into sbinfo */
4370 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4371 		       sizeof(struct shmem_quota_limits));
4372 
4373 		if (shmem_enable_quotas(sb, ctx->quota_types))
4374 			goto failed;
4375 	}
4376 #endif /* CONFIG_TMPFS_QUOTA */
4377 
4378 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4379 				VM_NORESERVE);
4380 	if (IS_ERR(inode)) {
4381 		error = PTR_ERR(inode);
4382 		goto failed;
4383 	}
4384 	inode->i_uid = sbinfo->uid;
4385 	inode->i_gid = sbinfo->gid;
4386 	sb->s_root = d_make_root(inode);
4387 	if (!sb->s_root)
4388 		goto failed;
4389 	return 0;
4390 
4391 failed:
4392 	shmem_put_super(sb);
4393 	return error;
4394 }
4395 
4396 static int shmem_get_tree(struct fs_context *fc)
4397 {
4398 	return get_tree_nodev(fc, shmem_fill_super);
4399 }
4400 
4401 static void shmem_free_fc(struct fs_context *fc)
4402 {
4403 	struct shmem_options *ctx = fc->fs_private;
4404 
4405 	if (ctx) {
4406 		mpol_put(ctx->mpol);
4407 		kfree(ctx);
4408 	}
4409 }
4410 
4411 static const struct fs_context_operations shmem_fs_context_ops = {
4412 	.free			= shmem_free_fc,
4413 	.get_tree		= shmem_get_tree,
4414 #ifdef CONFIG_TMPFS
4415 	.parse_monolithic	= shmem_parse_options,
4416 	.parse_param		= shmem_parse_one,
4417 	.reconfigure		= shmem_reconfigure,
4418 #endif
4419 };
4420 
4421 static struct kmem_cache *shmem_inode_cachep;
4422 
4423 static struct inode *shmem_alloc_inode(struct super_block *sb)
4424 {
4425 	struct shmem_inode_info *info;
4426 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4427 	if (!info)
4428 		return NULL;
4429 	return &info->vfs_inode;
4430 }
4431 
4432 static void shmem_free_in_core_inode(struct inode *inode)
4433 {
4434 	if (S_ISLNK(inode->i_mode))
4435 		kfree(inode->i_link);
4436 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4437 }
4438 
4439 static void shmem_destroy_inode(struct inode *inode)
4440 {
4441 	if (S_ISREG(inode->i_mode))
4442 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4443 	if (S_ISDIR(inode->i_mode))
4444 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4445 }
4446 
4447 static void shmem_init_inode(void *foo)
4448 {
4449 	struct shmem_inode_info *info = foo;
4450 	inode_init_once(&info->vfs_inode);
4451 }
4452 
4453 static void shmem_init_inodecache(void)
4454 {
4455 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4456 				sizeof(struct shmem_inode_info),
4457 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4458 }
4459 
4460 static void shmem_destroy_inodecache(void)
4461 {
4462 	kmem_cache_destroy(shmem_inode_cachep);
4463 }
4464 
4465 /* Keep the page in page cache instead of truncating it */
4466 static int shmem_error_remove_page(struct address_space *mapping,
4467 				   struct page *page)
4468 {
4469 	return 0;
4470 }
4471 
4472 const struct address_space_operations shmem_aops = {
4473 	.writepage	= shmem_writepage,
4474 	.dirty_folio	= noop_dirty_folio,
4475 #ifdef CONFIG_TMPFS
4476 	.write_begin	= shmem_write_begin,
4477 	.write_end	= shmem_write_end,
4478 #endif
4479 #ifdef CONFIG_MIGRATION
4480 	.migrate_folio	= migrate_folio,
4481 #endif
4482 	.error_remove_page = shmem_error_remove_page,
4483 };
4484 EXPORT_SYMBOL(shmem_aops);
4485 
4486 static const struct file_operations shmem_file_operations = {
4487 	.mmap		= shmem_mmap,
4488 	.open		= shmem_file_open,
4489 	.get_unmapped_area = shmem_get_unmapped_area,
4490 #ifdef CONFIG_TMPFS
4491 	.llseek		= shmem_file_llseek,
4492 	.read_iter	= shmem_file_read_iter,
4493 	.write_iter	= shmem_file_write_iter,
4494 	.fsync		= noop_fsync,
4495 	.splice_read	= shmem_file_splice_read,
4496 	.splice_write	= iter_file_splice_write,
4497 	.fallocate	= shmem_fallocate,
4498 #endif
4499 };
4500 
4501 static const struct inode_operations shmem_inode_operations = {
4502 	.getattr	= shmem_getattr,
4503 	.setattr	= shmem_setattr,
4504 #ifdef CONFIG_TMPFS_XATTR
4505 	.listxattr	= shmem_listxattr,
4506 	.set_acl	= simple_set_acl,
4507 	.fileattr_get	= shmem_fileattr_get,
4508 	.fileattr_set	= shmem_fileattr_set,
4509 #endif
4510 };
4511 
4512 static const struct inode_operations shmem_dir_inode_operations = {
4513 #ifdef CONFIG_TMPFS
4514 	.getattr	= shmem_getattr,
4515 	.create		= shmem_create,
4516 	.lookup		= simple_lookup,
4517 	.link		= shmem_link,
4518 	.unlink		= shmem_unlink,
4519 	.symlink	= shmem_symlink,
4520 	.mkdir		= shmem_mkdir,
4521 	.rmdir		= shmem_rmdir,
4522 	.mknod		= shmem_mknod,
4523 	.rename		= shmem_rename2,
4524 	.tmpfile	= shmem_tmpfile,
4525 	.get_offset_ctx	= shmem_get_offset_ctx,
4526 #endif
4527 #ifdef CONFIG_TMPFS_XATTR
4528 	.listxattr	= shmem_listxattr,
4529 	.fileattr_get	= shmem_fileattr_get,
4530 	.fileattr_set	= shmem_fileattr_set,
4531 #endif
4532 #ifdef CONFIG_TMPFS_POSIX_ACL
4533 	.setattr	= shmem_setattr,
4534 	.set_acl	= simple_set_acl,
4535 #endif
4536 };
4537 
4538 static const struct inode_operations shmem_special_inode_operations = {
4539 	.getattr	= shmem_getattr,
4540 #ifdef CONFIG_TMPFS_XATTR
4541 	.listxattr	= shmem_listxattr,
4542 #endif
4543 #ifdef CONFIG_TMPFS_POSIX_ACL
4544 	.setattr	= shmem_setattr,
4545 	.set_acl	= simple_set_acl,
4546 #endif
4547 };
4548 
4549 static const struct super_operations shmem_ops = {
4550 	.alloc_inode	= shmem_alloc_inode,
4551 	.free_inode	= shmem_free_in_core_inode,
4552 	.destroy_inode	= shmem_destroy_inode,
4553 #ifdef CONFIG_TMPFS
4554 	.statfs		= shmem_statfs,
4555 	.show_options	= shmem_show_options,
4556 #endif
4557 #ifdef CONFIG_TMPFS_QUOTA
4558 	.get_dquots	= shmem_get_dquots,
4559 #endif
4560 	.evict_inode	= shmem_evict_inode,
4561 	.drop_inode	= generic_delete_inode,
4562 	.put_super	= shmem_put_super,
4563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4564 	.nr_cached_objects	= shmem_unused_huge_count,
4565 	.free_cached_objects	= shmem_unused_huge_scan,
4566 #endif
4567 };
4568 
4569 static const struct vm_operations_struct shmem_vm_ops = {
4570 	.fault		= shmem_fault,
4571 	.map_pages	= filemap_map_pages,
4572 #ifdef CONFIG_NUMA
4573 	.set_policy     = shmem_set_policy,
4574 	.get_policy     = shmem_get_policy,
4575 #endif
4576 };
4577 
4578 static const struct vm_operations_struct shmem_anon_vm_ops = {
4579 	.fault		= shmem_fault,
4580 	.map_pages	= filemap_map_pages,
4581 #ifdef CONFIG_NUMA
4582 	.set_policy     = shmem_set_policy,
4583 	.get_policy     = shmem_get_policy,
4584 #endif
4585 };
4586 
4587 int shmem_init_fs_context(struct fs_context *fc)
4588 {
4589 	struct shmem_options *ctx;
4590 
4591 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4592 	if (!ctx)
4593 		return -ENOMEM;
4594 
4595 	ctx->mode = 0777 | S_ISVTX;
4596 	ctx->uid = current_fsuid();
4597 	ctx->gid = current_fsgid();
4598 
4599 	fc->fs_private = ctx;
4600 	fc->ops = &shmem_fs_context_ops;
4601 	return 0;
4602 }
4603 
4604 static struct file_system_type shmem_fs_type = {
4605 	.owner		= THIS_MODULE,
4606 	.name		= "tmpfs",
4607 	.init_fs_context = shmem_init_fs_context,
4608 #ifdef CONFIG_TMPFS
4609 	.parameters	= shmem_fs_parameters,
4610 #endif
4611 	.kill_sb	= kill_litter_super,
4612 #ifdef CONFIG_SHMEM
4613 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4614 #else
4615 	.fs_flags	= FS_USERNS_MOUNT,
4616 #endif
4617 };
4618 
4619 void __init shmem_init(void)
4620 {
4621 	int error;
4622 
4623 	shmem_init_inodecache();
4624 
4625 #ifdef CONFIG_TMPFS_QUOTA
4626 	error = register_quota_format(&shmem_quota_format);
4627 	if (error < 0) {
4628 		pr_err("Could not register quota format\n");
4629 		goto out3;
4630 	}
4631 #endif
4632 
4633 	error = register_filesystem(&shmem_fs_type);
4634 	if (error) {
4635 		pr_err("Could not register tmpfs\n");
4636 		goto out2;
4637 	}
4638 
4639 	shm_mnt = kern_mount(&shmem_fs_type);
4640 	if (IS_ERR(shm_mnt)) {
4641 		error = PTR_ERR(shm_mnt);
4642 		pr_err("Could not kern_mount tmpfs\n");
4643 		goto out1;
4644 	}
4645 
4646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4647 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4648 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4649 	else
4650 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4651 #endif
4652 	return;
4653 
4654 out1:
4655 	unregister_filesystem(&shmem_fs_type);
4656 out2:
4657 #ifdef CONFIG_TMPFS_QUOTA
4658 	unregister_quota_format(&shmem_quota_format);
4659 out3:
4660 #endif
4661 	shmem_destroy_inodecache();
4662 	shm_mnt = ERR_PTR(error);
4663 }
4664 
4665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4666 static ssize_t shmem_enabled_show(struct kobject *kobj,
4667 				  struct kobj_attribute *attr, char *buf)
4668 {
4669 	static const int values[] = {
4670 		SHMEM_HUGE_ALWAYS,
4671 		SHMEM_HUGE_WITHIN_SIZE,
4672 		SHMEM_HUGE_ADVISE,
4673 		SHMEM_HUGE_NEVER,
4674 		SHMEM_HUGE_DENY,
4675 		SHMEM_HUGE_FORCE,
4676 	};
4677 	int len = 0;
4678 	int i;
4679 
4680 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4681 		len += sysfs_emit_at(buf, len,
4682 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4683 				     i ? " " : "",
4684 				     shmem_format_huge(values[i]));
4685 	}
4686 
4687 	len += sysfs_emit_at(buf, len, "\n");
4688 
4689 	return len;
4690 }
4691 
4692 static ssize_t shmem_enabled_store(struct kobject *kobj,
4693 		struct kobj_attribute *attr, const char *buf, size_t count)
4694 {
4695 	char tmp[16];
4696 	int huge;
4697 
4698 	if (count + 1 > sizeof(tmp))
4699 		return -EINVAL;
4700 	memcpy(tmp, buf, count);
4701 	tmp[count] = '\0';
4702 	if (count && tmp[count - 1] == '\n')
4703 		tmp[count - 1] = '\0';
4704 
4705 	huge = shmem_parse_huge(tmp);
4706 	if (huge == -EINVAL)
4707 		return -EINVAL;
4708 	if (!has_transparent_hugepage() &&
4709 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4710 		return -EINVAL;
4711 
4712 	shmem_huge = huge;
4713 	if (shmem_huge > SHMEM_HUGE_DENY)
4714 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4715 	return count;
4716 }
4717 
4718 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4719 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4720 
4721 #else /* !CONFIG_SHMEM */
4722 
4723 /*
4724  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4725  *
4726  * This is intended for small system where the benefits of the full
4727  * shmem code (swap-backed and resource-limited) are outweighed by
4728  * their complexity. On systems without swap this code should be
4729  * effectively equivalent, but much lighter weight.
4730  */
4731 
4732 static struct file_system_type shmem_fs_type = {
4733 	.name		= "tmpfs",
4734 	.init_fs_context = ramfs_init_fs_context,
4735 	.parameters	= ramfs_fs_parameters,
4736 	.kill_sb	= ramfs_kill_sb,
4737 	.fs_flags	= FS_USERNS_MOUNT,
4738 };
4739 
4740 void __init shmem_init(void)
4741 {
4742 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4743 
4744 	shm_mnt = kern_mount(&shmem_fs_type);
4745 	BUG_ON(IS_ERR(shm_mnt));
4746 }
4747 
4748 int shmem_unuse(unsigned int type)
4749 {
4750 	return 0;
4751 }
4752 
4753 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4754 {
4755 	return 0;
4756 }
4757 
4758 void shmem_unlock_mapping(struct address_space *mapping)
4759 {
4760 }
4761 
4762 #ifdef CONFIG_MMU
4763 unsigned long shmem_get_unmapped_area(struct file *file,
4764 				      unsigned long addr, unsigned long len,
4765 				      unsigned long pgoff, unsigned long flags)
4766 {
4767 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4768 }
4769 #endif
4770 
4771 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4772 {
4773 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4774 }
4775 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4776 
4777 #define shmem_vm_ops				generic_file_vm_ops
4778 #define shmem_anon_vm_ops			generic_file_vm_ops
4779 #define shmem_file_operations			ramfs_file_operations
4780 #define shmem_acct_size(flags, size)		0
4781 #define shmem_unacct_size(flags, size)		do {} while (0)
4782 
4783 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4784 					    umode_t mode, dev_t dev, unsigned long flags)
4785 {
4786 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4787 	return inode ? inode : ERR_PTR(-ENOSPC);
4788 }
4789 
4790 #endif /* CONFIG_SHMEM */
4791 
4792 /* common code */
4793 
4794 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4795 				       unsigned long flags, unsigned int i_flags)
4796 {
4797 	struct inode *inode;
4798 	struct file *res;
4799 
4800 	if (IS_ERR(mnt))
4801 		return ERR_CAST(mnt);
4802 
4803 	if (size < 0 || size > MAX_LFS_FILESIZE)
4804 		return ERR_PTR(-EINVAL);
4805 
4806 	if (shmem_acct_size(flags, size))
4807 		return ERR_PTR(-ENOMEM);
4808 
4809 	if (is_idmapped_mnt(mnt))
4810 		return ERR_PTR(-EINVAL);
4811 
4812 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4813 				S_IFREG | S_IRWXUGO, 0, flags);
4814 
4815 	if (IS_ERR(inode)) {
4816 		shmem_unacct_size(flags, size);
4817 		return ERR_CAST(inode);
4818 	}
4819 	inode->i_flags |= i_flags;
4820 	inode->i_size = size;
4821 	clear_nlink(inode);	/* It is unlinked */
4822 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4823 	if (!IS_ERR(res))
4824 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4825 				&shmem_file_operations);
4826 	if (IS_ERR(res))
4827 		iput(inode);
4828 	return res;
4829 }
4830 
4831 /**
4832  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4833  * 	kernel internal.  There will be NO LSM permission checks against the
4834  * 	underlying inode.  So users of this interface must do LSM checks at a
4835  *	higher layer.  The users are the big_key and shm implementations.  LSM
4836  *	checks are provided at the key or shm level rather than the inode.
4837  * @name: name for dentry (to be seen in /proc/<pid>/maps
4838  * @size: size to be set for the file
4839  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4840  */
4841 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4842 {
4843 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4844 }
4845 
4846 /**
4847  * shmem_file_setup - get an unlinked file living in tmpfs
4848  * @name: name for dentry (to be seen in /proc/<pid>/maps
4849  * @size: size to be set for the file
4850  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4851  */
4852 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4853 {
4854 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4855 }
4856 EXPORT_SYMBOL_GPL(shmem_file_setup);
4857 
4858 /**
4859  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4860  * @mnt: the tmpfs mount where the file will be created
4861  * @name: name for dentry (to be seen in /proc/<pid>/maps
4862  * @size: size to be set for the file
4863  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4864  */
4865 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4866 				       loff_t size, unsigned long flags)
4867 {
4868 	return __shmem_file_setup(mnt, name, size, flags, 0);
4869 }
4870 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4871 
4872 /**
4873  * shmem_zero_setup - setup a shared anonymous mapping
4874  * @vma: the vma to be mmapped is prepared by do_mmap
4875  */
4876 int shmem_zero_setup(struct vm_area_struct *vma)
4877 {
4878 	struct file *file;
4879 	loff_t size = vma->vm_end - vma->vm_start;
4880 
4881 	/*
4882 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4883 	 * between XFS directory reading and selinux: since this file is only
4884 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4885 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4886 	 */
4887 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4888 	if (IS_ERR(file))
4889 		return PTR_ERR(file);
4890 
4891 	if (vma->vm_file)
4892 		fput(vma->vm_file);
4893 	vma->vm_file = file;
4894 	vma->vm_ops = &shmem_anon_vm_ops;
4895 
4896 	return 0;
4897 }
4898 
4899 /**
4900  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4901  * @mapping:	the folio's address_space
4902  * @index:	the folio index
4903  * @gfp:	the page allocator flags to use if allocating
4904  *
4905  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4906  * with any new page allocations done using the specified allocation flags.
4907  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4908  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4909  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4910  *
4911  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4912  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4913  */
4914 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4915 		pgoff_t index, gfp_t gfp)
4916 {
4917 #ifdef CONFIG_SHMEM
4918 	struct inode *inode = mapping->host;
4919 	struct folio *folio;
4920 	int error;
4921 
4922 	BUG_ON(!shmem_mapping(mapping));
4923 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4924 				  gfp, NULL, NULL, NULL);
4925 	if (error)
4926 		return ERR_PTR(error);
4927 
4928 	folio_unlock(folio);
4929 	return folio;
4930 #else
4931 	/*
4932 	 * The tiny !SHMEM case uses ramfs without swap
4933 	 */
4934 	return mapping_read_folio_gfp(mapping, index, gfp);
4935 #endif
4936 }
4937 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4938 
4939 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4940 					 pgoff_t index, gfp_t gfp)
4941 {
4942 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4943 	struct page *page;
4944 
4945 	if (IS_ERR(folio))
4946 		return &folio->page;
4947 
4948 	page = folio_file_page(folio, index);
4949 	if (PageHWPoison(page)) {
4950 		folio_put(folio);
4951 		return ERR_PTR(-EIO);
4952 	}
4953 
4954 	return page;
4955 }
4956 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4957