1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44
45 static struct vfsmount *shm_mnt;
46
47 #ifdef CONFIG_SHMEM
48 /*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98
99 /*
100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101 * inode->i_private (with i_rwsem making sure that it has only one user at
102 * a time): we would prefer not to enlarge the shmem inode just for that.
103 */
104 struct shmem_falloc {
105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 pgoff_t start; /* start of range currently being fallocated */
107 pgoff_t next; /* the next page offset to be fallocated */
108 pgoff_t nr_falloced; /* how many new pages have been fallocated */
109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
110 };
111
112 struct shmem_options {
113 unsigned long long blocks;
114 unsigned long long inodes;
115 struct mempolicy *mpol;
116 kuid_t uid;
117 kgid_t gid;
118 umode_t mode;
119 bool full_inums;
120 int huge;
121 int seen;
122 bool noswap;
123 unsigned short quota_types;
124 struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132
133 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)134 static unsigned long shmem_default_max_blocks(void)
135 {
136 return totalram_pages() / 2;
137 }
138
shmem_default_max_inodes(void)139 static unsigned long shmem_default_max_inodes(void)
140 {
141 unsigned long nr_pages = totalram_pages();
142
143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 struct folio **foliop, enum sgp_type sgp,
150 gfp_t gfp, struct vm_area_struct *vma,
151 vm_fault_t *fault_type);
152
SHMEM_SB(struct super_block * sb)153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
shmem_acct_size(unsigned long flags,loff_t size)164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
shmem_unacct_size(unsigned long flags,loff_t size)170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178 {
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187 }
188
189 /*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
shmem_acct_block(unsigned long flags,long pages)195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
202 }
203
shmem_unacct_blocks(unsigned long flags,long pages)204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
shmem_inode_acct_block(struct inode * inode,long pages)210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 int err = -ENOSPC;
215
216 if (shmem_acct_block(info->flags, pages))
217 return err;
218
219 might_sleep(); /* when quotas */
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224
225 err = dquot_alloc_block_nodirty(inode, pages);
226 if (err)
227 goto unacct;
228
229 percpu_counter_add(&sbinfo->used_blocks, pages);
230 } else {
231 err = dquot_alloc_block_nodirty(inode, pages);
232 if (err)
233 goto unacct;
234 }
235
236 return 0;
237
238 unacct:
239 shmem_unacct_blocks(info->flags, pages);
240 return err;
241 }
242
shmem_inode_unacct_blocks(struct inode * inode,long pages)243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 struct shmem_inode_info *info = SHMEM_I(inode);
246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247
248 might_sleep(); /* when quotas */
249 dquot_free_block_nodirty(inode, pages);
250
251 if (sbinfo->max_blocks)
252 percpu_counter_sub(&sbinfo->used_blocks, pages);
253 shmem_unacct_blocks(info->flags, pages);
254 }
255
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265
vma_is_anon_shmem(struct vm_area_struct * vma)266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270
vma_is_shmem(struct vm_area_struct * vma)271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278
279 #ifdef CONFIG_TMPFS_QUOTA
280
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)281 static int shmem_enable_quotas(struct super_block *sb,
282 unsigned short quota_types)
283 {
284 int type, err = 0;
285
286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 if (!(quota_types & (1 << type)))
289 continue;
290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 DQUOT_USAGE_ENABLED |
292 DQUOT_LIMITS_ENABLED);
293 if (err)
294 goto out_err;
295 }
296 return 0;
297
298 out_err:
299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 type, err);
301 for (type--; type >= 0; type--)
302 dquot_quota_off(sb, type);
303 return err;
304 }
305
shmem_disable_quotas(struct super_block * sb)306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 int type;
309
310 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 dquot_quota_off(sb, type);
312 }
313
shmem_get_dquots(struct inode * inode)314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
315 {
316 return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319
320 /*
321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322 * produces a novel ino for the newly allocated inode.
323 *
324 * It may also be called when making a hard link to permit the space needed by
325 * each dentry. However, in that case, no new inode number is needed since that
326 * internally draws from another pool of inode numbers (currently global
327 * get_next_ino()). This case is indicated by passing NULL as inop.
328 */
329 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 ino_t ino;
334
335 if (!(sb->s_flags & SB_KERNMOUNT)) {
336 raw_spin_lock(&sbinfo->stat_lock);
337 if (sbinfo->max_inodes) {
338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 raw_spin_unlock(&sbinfo->stat_lock);
340 return -ENOSPC;
341 }
342 sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 }
344 if (inop) {
345 ino = sbinfo->next_ino++;
346 if (unlikely(is_zero_ino(ino)))
347 ino = sbinfo->next_ino++;
348 if (unlikely(!sbinfo->full_inums &&
349 ino > UINT_MAX)) {
350 /*
351 * Emulate get_next_ino uint wraparound for
352 * compatibility
353 */
354 if (IS_ENABLED(CONFIG_64BIT))
355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 __func__, MINOR(sb->s_dev));
357 sbinfo->next_ino = 1;
358 ino = sbinfo->next_ino++;
359 }
360 *inop = ino;
361 }
362 raw_spin_unlock(&sbinfo->stat_lock);
363 } else if (inop) {
364 /*
365 * __shmem_file_setup, one of our callers, is lock-free: it
366 * doesn't hold stat_lock in shmem_reserve_inode since
367 * max_inodes is always 0, and is called from potentially
368 * unknown contexts. As such, use a per-cpu batched allocator
369 * which doesn't require the per-sb stat_lock unless we are at
370 * the batch boundary.
371 *
372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 * shmem mounts are not exposed to userspace, so we don't need
374 * to worry about things like glibc compatibility.
375 */
376 ino_t *next_ino;
377
378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 ino = *next_ino;
380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 raw_spin_lock(&sbinfo->stat_lock);
382 ino = sbinfo->next_ino;
383 sbinfo->next_ino += SHMEM_INO_BATCH;
384 raw_spin_unlock(&sbinfo->stat_lock);
385 if (unlikely(is_zero_ino(ino)))
386 ino++;
387 }
388 *inop = ino;
389 *next_ino = ++ino;
390 put_cpu();
391 }
392
393 return 0;
394 }
395
shmem_free_inode(struct super_block * sb,size_t freed_ispace)396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 if (sbinfo->max_inodes) {
400 raw_spin_lock(&sbinfo->stat_lock);
401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 raw_spin_unlock(&sbinfo->stat_lock);
403 }
404 }
405
406 /**
407 * shmem_recalc_inode - recalculate the block usage of an inode
408 * @inode: inode to recalc
409 * @alloced: the change in number of pages allocated to inode
410 * @swapped: the change in number of pages swapped from inode
411 *
412 * We have to calculate the free blocks since the mm can drop
413 * undirtied hole pages behind our back.
414 *
415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 struct shmem_inode_info *info = SHMEM_I(inode);
421 long freed;
422
423 spin_lock(&info->lock);
424 info->alloced += alloced;
425 info->swapped += swapped;
426 freed = info->alloced - info->swapped -
427 READ_ONCE(inode->i_mapping->nrpages);
428 /*
429 * Special case: whereas normally shmem_recalc_inode() is called
430 * after i_mapping->nrpages has already been adjusted (up or down),
431 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 * been freed. Compensate here, to avoid the need for a followup call.
434 */
435 if (swapped > 0)
436 freed += swapped;
437 if (freed > 0)
438 info->alloced -= freed;
439 spin_unlock(&info->lock);
440
441 /* The quota case may block */
442 if (freed > 0)
443 shmem_inode_unacct_blocks(inode, freed);
444 }
445
shmem_charge(struct inode * inode,long pages)446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 struct address_space *mapping = inode->i_mapping;
449
450 if (shmem_inode_acct_block(inode, pages))
451 return false;
452
453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 xa_lock_irq(&mapping->i_pages);
455 mapping->nrpages += pages;
456 xa_unlock_irq(&mapping->i_pages);
457
458 shmem_recalc_inode(inode, pages, 0);
459 return true;
460 }
461
shmem_uncharge(struct inode * inode,long pages)462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 /* pages argument is currently unused: keep it to help debugging */
465 /* nrpages adjustment done by __filemap_remove_folio() or caller */
466
467 shmem_recalc_inode(inode, 0, 0);
468 }
469
470 /*
471 * Replace item expected in xarray by a new item, while holding xa_lock.
472 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)473 static int shmem_replace_entry(struct address_space *mapping,
474 pgoff_t index, void *expected, void *replacement)
475 {
476 XA_STATE(xas, &mapping->i_pages, index);
477 void *item;
478
479 VM_BUG_ON(!expected);
480 VM_BUG_ON(!replacement);
481 item = xas_load(&xas);
482 if (item != expected)
483 return -ENOENT;
484 xas_store(&xas, replacement);
485 return 0;
486 }
487
488 /*
489 * Sometimes, before we decide whether to proceed or to fail, we must check
490 * that an entry was not already brought back from swap by a racing thread.
491 *
492 * Checking page is not enough: by the time a SwapCache page is locked, it
493 * might be reused, and again be SwapCache, using the same swap as before.
494 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)495 static bool shmem_confirm_swap(struct address_space *mapping,
496 pgoff_t index, swp_entry_t swap)
497 {
498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500
501 /*
502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503 *
504 * SHMEM_HUGE_NEVER:
505 * disables huge pages for the mount;
506 * SHMEM_HUGE_ALWAYS:
507 * enables huge pages for the mount;
508 * SHMEM_HUGE_WITHIN_SIZE:
509 * only allocate huge pages if the page will be fully within i_size,
510 * also respect fadvise()/madvise() hints;
511 * SHMEM_HUGE_ADVISE:
512 * only allocate huge pages if requested with fadvise()/madvise();
513 */
514
515 #define SHMEM_HUGE_NEVER 0
516 #define SHMEM_HUGE_ALWAYS 1
517 #define SHMEM_HUGE_WITHIN_SIZE 2
518 #define SHMEM_HUGE_ADVISE 3
519
520 /*
521 * Special values.
522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523 *
524 * SHMEM_HUGE_DENY:
525 * disables huge on shm_mnt and all mounts, for emergency use;
526 * SHMEM_HUGE_FORCE:
527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528 *
529 */
530 #define SHMEM_HUGE_DENY (-1)
531 #define SHMEM_HUGE_FORCE (-2)
532
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537
__shmem_is_huge(struct inode * inode,pgoff_t index,bool shmem_huge_force,struct mm_struct * mm,unsigned long vm_flags)538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index,
539 bool shmem_huge_force, struct mm_struct *mm,
540 unsigned long vm_flags)
541 {
542 loff_t i_size;
543
544 if (!S_ISREG(inode->i_mode))
545 return false;
546 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
547 return false;
548 if (shmem_huge == SHMEM_HUGE_DENY)
549 return false;
550 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
551 return true;
552
553 switch (SHMEM_SB(inode->i_sb)->huge) {
554 case SHMEM_HUGE_ALWAYS:
555 return true;
556 case SHMEM_HUGE_WITHIN_SIZE:
557 index = round_up(index + 1, HPAGE_PMD_NR);
558 i_size = round_up(i_size_read(inode), PAGE_SIZE);
559 if (i_size >> PAGE_SHIFT >= index)
560 return true;
561 fallthrough;
562 case SHMEM_HUGE_ADVISE:
563 if (mm && (vm_flags & VM_HUGEPAGE))
564 return true;
565 fallthrough;
566 default:
567 return false;
568 }
569 }
570
shmem_is_huge(struct inode * inode,pgoff_t index,bool shmem_huge_force,struct mm_struct * mm,unsigned long vm_flags)571 bool shmem_is_huge(struct inode *inode, pgoff_t index,
572 bool shmem_huge_force, struct mm_struct *mm,
573 unsigned long vm_flags)
574 {
575 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
576 return false;
577
578 return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags);
579 }
580
581 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)582 static int shmem_parse_huge(const char *str)
583 {
584 if (!strcmp(str, "never"))
585 return SHMEM_HUGE_NEVER;
586 if (!strcmp(str, "always"))
587 return SHMEM_HUGE_ALWAYS;
588 if (!strcmp(str, "within_size"))
589 return SHMEM_HUGE_WITHIN_SIZE;
590 if (!strcmp(str, "advise"))
591 return SHMEM_HUGE_ADVISE;
592 if (!strcmp(str, "deny"))
593 return SHMEM_HUGE_DENY;
594 if (!strcmp(str, "force"))
595 return SHMEM_HUGE_FORCE;
596 return -EINVAL;
597 }
598 #endif
599
600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)601 static const char *shmem_format_huge(int huge)
602 {
603 switch (huge) {
604 case SHMEM_HUGE_NEVER:
605 return "never";
606 case SHMEM_HUGE_ALWAYS:
607 return "always";
608 case SHMEM_HUGE_WITHIN_SIZE:
609 return "within_size";
610 case SHMEM_HUGE_ADVISE:
611 return "advise";
612 case SHMEM_HUGE_DENY:
613 return "deny";
614 case SHMEM_HUGE_FORCE:
615 return "force";
616 default:
617 VM_BUG_ON(1);
618 return "bad_val";
619 }
620 }
621 #endif
622
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
624 struct shrink_control *sc, unsigned long nr_to_split)
625 {
626 LIST_HEAD(list), *pos, *next;
627 LIST_HEAD(to_remove);
628 struct inode *inode;
629 struct shmem_inode_info *info;
630 struct folio *folio;
631 unsigned long batch = sc ? sc->nr_to_scan : 128;
632 int split = 0;
633
634 if (list_empty(&sbinfo->shrinklist))
635 return SHRINK_STOP;
636
637 spin_lock(&sbinfo->shrinklist_lock);
638 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
639 info = list_entry(pos, struct shmem_inode_info, shrinklist);
640
641 /* pin the inode */
642 inode = igrab(&info->vfs_inode);
643
644 /* inode is about to be evicted */
645 if (!inode) {
646 list_del_init(&info->shrinklist);
647 goto next;
648 }
649
650 /* Check if there's anything to gain */
651 if (round_up(inode->i_size, PAGE_SIZE) ==
652 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
653 list_move(&info->shrinklist, &to_remove);
654 goto next;
655 }
656
657 list_move(&info->shrinklist, &list);
658 next:
659 sbinfo->shrinklist_len--;
660 if (!--batch)
661 break;
662 }
663 spin_unlock(&sbinfo->shrinklist_lock);
664
665 list_for_each_safe(pos, next, &to_remove) {
666 info = list_entry(pos, struct shmem_inode_info, shrinklist);
667 inode = &info->vfs_inode;
668 list_del_init(&info->shrinklist);
669 iput(inode);
670 }
671
672 list_for_each_safe(pos, next, &list) {
673 int ret;
674 pgoff_t index;
675
676 info = list_entry(pos, struct shmem_inode_info, shrinklist);
677 inode = &info->vfs_inode;
678
679 if (nr_to_split && split >= nr_to_split)
680 goto move_back;
681
682 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
683 folio = filemap_get_folio(inode->i_mapping, index);
684 if (IS_ERR(folio))
685 goto drop;
686
687 /* No huge page at the end of the file: nothing to split */
688 if (!folio_test_large(folio)) {
689 folio_put(folio);
690 goto drop;
691 }
692
693 /*
694 * Move the inode on the list back to shrinklist if we failed
695 * to lock the page at this time.
696 *
697 * Waiting for the lock may lead to deadlock in the
698 * reclaim path.
699 */
700 if (!folio_trylock(folio)) {
701 folio_put(folio);
702 goto move_back;
703 }
704
705 ret = split_folio(folio);
706 folio_unlock(folio);
707 folio_put(folio);
708
709 /* If split failed move the inode on the list back to shrinklist */
710 if (ret)
711 goto move_back;
712
713 split++;
714 drop:
715 list_del_init(&info->shrinklist);
716 goto put;
717 move_back:
718 /*
719 * Make sure the inode is either on the global list or deleted
720 * from any local list before iput() since it could be deleted
721 * in another thread once we put the inode (then the local list
722 * is corrupted).
723 */
724 spin_lock(&sbinfo->shrinklist_lock);
725 list_move(&info->shrinklist, &sbinfo->shrinklist);
726 sbinfo->shrinklist_len++;
727 spin_unlock(&sbinfo->shrinklist_lock);
728 put:
729 iput(inode);
730 }
731
732 return split;
733 }
734
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)735 static long shmem_unused_huge_scan(struct super_block *sb,
736 struct shrink_control *sc)
737 {
738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739
740 if (!READ_ONCE(sbinfo->shrinklist_len))
741 return SHRINK_STOP;
742
743 return shmem_unused_huge_shrink(sbinfo, sc, 0);
744 }
745
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)746 static long shmem_unused_huge_count(struct super_block *sb,
747 struct shrink_control *sc)
748 {
749 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
750 return READ_ONCE(sbinfo->shrinklist_len);
751 }
752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
753
754 #define shmem_huge SHMEM_HUGE_DENY
755
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
757 struct shrink_control *sc, unsigned long nr_to_split)
758 {
759 return 0;
760 }
761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
762
763 /*
764 * Like filemap_add_folio, but error if expected item has gone.
765 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)766 static int shmem_add_to_page_cache(struct folio *folio,
767 struct address_space *mapping,
768 pgoff_t index, void *expected, gfp_t gfp,
769 struct mm_struct *charge_mm)
770 {
771 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
772 long nr = folio_nr_pages(folio);
773 int error;
774
775 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
776 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
777 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
778 VM_BUG_ON(expected && folio_test_large(folio));
779
780 folio_ref_add(folio, nr);
781 folio->mapping = mapping;
782 folio->index = index;
783
784 if (!folio_test_swapcache(folio)) {
785 error = mem_cgroup_charge(folio, charge_mm, gfp);
786 if (error) {
787 if (folio_test_pmd_mappable(folio)) {
788 count_vm_event(THP_FILE_FALLBACK);
789 count_vm_event(THP_FILE_FALLBACK_CHARGE);
790 }
791 goto error;
792 }
793 }
794 folio_throttle_swaprate(folio, gfp);
795
796 do {
797 xas_lock_irq(&xas);
798 if (expected != xas_find_conflict(&xas)) {
799 xas_set_err(&xas, -EEXIST);
800 goto unlock;
801 }
802 if (expected && xas_find_conflict(&xas)) {
803 xas_set_err(&xas, -EEXIST);
804 goto unlock;
805 }
806 xas_store(&xas, folio);
807 if (xas_error(&xas))
808 goto unlock;
809 if (folio_test_pmd_mappable(folio)) {
810 count_vm_event(THP_FILE_ALLOC);
811 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
812 }
813 mapping->nrpages += nr;
814 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
815 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
816 unlock:
817 xas_unlock_irq(&xas);
818 } while (xas_nomem(&xas, gfp));
819
820 if (xas_error(&xas)) {
821 error = xas_error(&xas);
822 goto error;
823 }
824
825 return 0;
826 error:
827 folio->mapping = NULL;
828 folio_ref_sub(folio, nr);
829 return error;
830 }
831
832 /*
833 * Like delete_from_page_cache, but substitutes swap for @folio.
834 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
836 {
837 struct address_space *mapping = folio->mapping;
838 long nr = folio_nr_pages(folio);
839 int error;
840
841 xa_lock_irq(&mapping->i_pages);
842 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
843 folio->mapping = NULL;
844 mapping->nrpages -= nr;
845 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
846 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
847 xa_unlock_irq(&mapping->i_pages);
848 folio_put(folio);
849 BUG_ON(error);
850 }
851
852 /*
853 * Remove swap entry from page cache, free the swap and its page cache.
854 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)855 static int shmem_free_swap(struct address_space *mapping,
856 pgoff_t index, void *radswap)
857 {
858 void *old;
859
860 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
861 if (old != radswap)
862 return -ENOENT;
863 free_swap_and_cache(radix_to_swp_entry(radswap));
864 return 0;
865 }
866
867 /*
868 * Determine (in bytes) how many of the shmem object's pages mapped by the
869 * given offsets are swapped out.
870 *
871 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
872 * as long as the inode doesn't go away and racy results are not a problem.
873 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)874 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
875 pgoff_t start, pgoff_t end)
876 {
877 XA_STATE(xas, &mapping->i_pages, start);
878 struct page *page;
879 unsigned long swapped = 0;
880 unsigned long max = end - 1;
881
882 rcu_read_lock();
883 xas_for_each(&xas, page, max) {
884 if (xas_retry(&xas, page))
885 continue;
886 if (xa_is_value(page))
887 swapped++;
888 if (xas.xa_index == max)
889 break;
890 if (need_resched()) {
891 xas_pause(&xas);
892 cond_resched_rcu();
893 }
894 }
895
896 rcu_read_unlock();
897
898 return swapped << PAGE_SHIFT;
899 }
900
901 /*
902 * Determine (in bytes) how many of the shmem object's pages mapped by the
903 * given vma is swapped out.
904 *
905 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
906 * as long as the inode doesn't go away and racy results are not a problem.
907 */
shmem_swap_usage(struct vm_area_struct * vma)908 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
909 {
910 struct inode *inode = file_inode(vma->vm_file);
911 struct shmem_inode_info *info = SHMEM_I(inode);
912 struct address_space *mapping = inode->i_mapping;
913 unsigned long swapped;
914
915 /* Be careful as we don't hold info->lock */
916 swapped = READ_ONCE(info->swapped);
917
918 /*
919 * The easier cases are when the shmem object has nothing in swap, or
920 * the vma maps it whole. Then we can simply use the stats that we
921 * already track.
922 */
923 if (!swapped)
924 return 0;
925
926 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
927 return swapped << PAGE_SHIFT;
928
929 /* Here comes the more involved part */
930 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
931 vma->vm_pgoff + vma_pages(vma));
932 }
933
934 /*
935 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
936 */
shmem_unlock_mapping(struct address_space * mapping)937 void shmem_unlock_mapping(struct address_space *mapping)
938 {
939 struct folio_batch fbatch;
940 pgoff_t index = 0;
941
942 folio_batch_init(&fbatch);
943 /*
944 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
945 */
946 while (!mapping_unevictable(mapping) &&
947 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
948 check_move_unevictable_folios(&fbatch);
949 folio_batch_release(&fbatch);
950 cond_resched();
951 }
952 }
953
shmem_get_partial_folio(struct inode * inode,pgoff_t index)954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
955 {
956 struct folio *folio;
957
958 /*
959 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
960 * beyond i_size, and reports fallocated folios as holes.
961 */
962 folio = filemap_get_entry(inode->i_mapping, index);
963 if (!folio)
964 return folio;
965 if (!xa_is_value(folio)) {
966 folio_lock(folio);
967 if (folio->mapping == inode->i_mapping)
968 return folio;
969 /* The folio has been swapped out */
970 folio_unlock(folio);
971 folio_put(folio);
972 }
973 /*
974 * But read a folio back from swap if any of it is within i_size
975 * (although in some cases this is just a waste of time).
976 */
977 folio = NULL;
978 shmem_get_folio(inode, index, &folio, SGP_READ);
979 return folio;
980 }
981
982 /*
983 * Remove range of pages and swap entries from page cache, and free them.
984 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
985 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
987 bool unfalloc)
988 {
989 struct address_space *mapping = inode->i_mapping;
990 struct shmem_inode_info *info = SHMEM_I(inode);
991 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
992 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
993 struct folio_batch fbatch;
994 pgoff_t indices[PAGEVEC_SIZE];
995 struct folio *folio;
996 bool same_folio;
997 long nr_swaps_freed = 0;
998 pgoff_t index;
999 int i;
1000
1001 if (lend == -1)
1002 end = -1; /* unsigned, so actually very big */
1003
1004 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1005 info->fallocend = start;
1006
1007 folio_batch_init(&fbatch);
1008 index = start;
1009 while (index < end && find_lock_entries(mapping, &index, end - 1,
1010 &fbatch, indices)) {
1011 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1012 folio = fbatch.folios[i];
1013
1014 if (xa_is_value(folio)) {
1015 if (unfalloc)
1016 continue;
1017 nr_swaps_freed += !shmem_free_swap(mapping,
1018 indices[i], folio);
1019 continue;
1020 }
1021
1022 if (!unfalloc || !folio_test_uptodate(folio))
1023 truncate_inode_folio(mapping, folio);
1024 folio_unlock(folio);
1025 }
1026 folio_batch_remove_exceptionals(&fbatch);
1027 folio_batch_release(&fbatch);
1028 cond_resched();
1029 }
1030
1031 /*
1032 * When undoing a failed fallocate, we want none of the partial folio
1033 * zeroing and splitting below, but shall want to truncate the whole
1034 * folio when !uptodate indicates that it was added by this fallocate,
1035 * even when [lstart, lend] covers only a part of the folio.
1036 */
1037 if (unfalloc)
1038 goto whole_folios;
1039
1040 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1041 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1042 if (folio) {
1043 same_folio = lend < folio_pos(folio) + folio_size(folio);
1044 folio_mark_dirty(folio);
1045 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1046 start = folio_next_index(folio);
1047 if (same_folio)
1048 end = folio->index;
1049 }
1050 folio_unlock(folio);
1051 folio_put(folio);
1052 folio = NULL;
1053 }
1054
1055 if (!same_folio)
1056 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1057 if (folio) {
1058 folio_mark_dirty(folio);
1059 if (!truncate_inode_partial_folio(folio, lstart, lend))
1060 end = folio->index;
1061 folio_unlock(folio);
1062 folio_put(folio);
1063 }
1064
1065 whole_folios:
1066
1067 index = start;
1068 while (index < end) {
1069 cond_resched();
1070
1071 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1072 indices)) {
1073 /* If all gone or hole-punch or unfalloc, we're done */
1074 if (index == start || end != -1)
1075 break;
1076 /* But if truncating, restart to make sure all gone */
1077 index = start;
1078 continue;
1079 }
1080 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1081 folio = fbatch.folios[i];
1082
1083 if (xa_is_value(folio)) {
1084 if (unfalloc)
1085 continue;
1086 if (shmem_free_swap(mapping, indices[i], folio)) {
1087 /* Swap was replaced by page: retry */
1088 index = indices[i];
1089 break;
1090 }
1091 nr_swaps_freed++;
1092 continue;
1093 }
1094
1095 folio_lock(folio);
1096
1097 if (!unfalloc || !folio_test_uptodate(folio)) {
1098 if (folio_mapping(folio) != mapping) {
1099 /* Page was replaced by swap: retry */
1100 folio_unlock(folio);
1101 index = indices[i];
1102 break;
1103 }
1104 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1105 folio);
1106
1107 if (!folio_test_large(folio)) {
1108 truncate_inode_folio(mapping, folio);
1109 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1110 /*
1111 * If we split a page, reset the loop so
1112 * that we pick up the new sub pages.
1113 * Otherwise the THP was entirely
1114 * dropped or the target range was
1115 * zeroed, so just continue the loop as
1116 * is.
1117 */
1118 if (!folio_test_large(folio)) {
1119 folio_unlock(folio);
1120 index = start;
1121 break;
1122 }
1123 }
1124 }
1125 folio_unlock(folio);
1126 }
1127 folio_batch_remove_exceptionals(&fbatch);
1128 folio_batch_release(&fbatch);
1129 }
1130
1131 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1132 }
1133
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1135 {
1136 shmem_undo_range(inode, lstart, lend, false);
1137 inode->i_mtime = inode_set_ctime_current(inode);
1138 inode_inc_iversion(inode);
1139 }
1140 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1141
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1142 static int shmem_getattr(struct mnt_idmap *idmap,
1143 const struct path *path, struct kstat *stat,
1144 u32 request_mask, unsigned int query_flags)
1145 {
1146 struct inode *inode = path->dentry->d_inode;
1147 struct shmem_inode_info *info = SHMEM_I(inode);
1148
1149 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1150 shmem_recalc_inode(inode, 0, 0);
1151
1152 if (info->fsflags & FS_APPEND_FL)
1153 stat->attributes |= STATX_ATTR_APPEND;
1154 if (info->fsflags & FS_IMMUTABLE_FL)
1155 stat->attributes |= STATX_ATTR_IMMUTABLE;
1156 if (info->fsflags & FS_NODUMP_FL)
1157 stat->attributes |= STATX_ATTR_NODUMP;
1158 stat->attributes_mask |= (STATX_ATTR_APPEND |
1159 STATX_ATTR_IMMUTABLE |
1160 STATX_ATTR_NODUMP);
1161 generic_fillattr(idmap, request_mask, inode, stat);
1162
1163 if (shmem_is_huge(inode, 0, false, NULL, 0))
1164 stat->blksize = HPAGE_PMD_SIZE;
1165
1166 if (request_mask & STATX_BTIME) {
1167 stat->result_mask |= STATX_BTIME;
1168 stat->btime.tv_sec = info->i_crtime.tv_sec;
1169 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1170 }
1171
1172 return 0;
1173 }
1174
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1175 static int shmem_setattr(struct mnt_idmap *idmap,
1176 struct dentry *dentry, struct iattr *attr)
1177 {
1178 struct inode *inode = d_inode(dentry);
1179 struct shmem_inode_info *info = SHMEM_I(inode);
1180 int error;
1181 bool update_mtime = false;
1182 bool update_ctime = true;
1183
1184 error = setattr_prepare(idmap, dentry, attr);
1185 if (error)
1186 return error;
1187
1188 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1189 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1190 return -EPERM;
1191 }
1192 }
1193
1194 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1195 loff_t oldsize = inode->i_size;
1196 loff_t newsize = attr->ia_size;
1197
1198 /* protected by i_rwsem */
1199 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1200 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1201 return -EPERM;
1202
1203 if (newsize != oldsize) {
1204 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1205 oldsize, newsize);
1206 if (error)
1207 return error;
1208 i_size_write(inode, newsize);
1209 update_mtime = true;
1210 } else {
1211 update_ctime = false;
1212 }
1213 if (newsize <= oldsize) {
1214 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1215 if (oldsize > holebegin)
1216 unmap_mapping_range(inode->i_mapping,
1217 holebegin, 0, 1);
1218 if (info->alloced)
1219 shmem_truncate_range(inode,
1220 newsize, (loff_t)-1);
1221 /* unmap again to remove racily COWed private pages */
1222 if (oldsize > holebegin)
1223 unmap_mapping_range(inode->i_mapping,
1224 holebegin, 0, 1);
1225 }
1226 }
1227
1228 if (is_quota_modification(idmap, inode, attr)) {
1229 error = dquot_initialize(inode);
1230 if (error)
1231 return error;
1232 }
1233
1234 /* Transfer quota accounting */
1235 if (i_uid_needs_update(idmap, attr, inode) ||
1236 i_gid_needs_update(idmap, attr, inode)) {
1237 error = dquot_transfer(idmap, inode, attr);
1238
1239 if (error)
1240 return error;
1241 }
1242
1243 setattr_copy(idmap, inode, attr);
1244 if (attr->ia_valid & ATTR_MODE)
1245 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1246 if (!error && update_ctime) {
1247 inode_set_ctime_current(inode);
1248 if (update_mtime)
1249 inode->i_mtime = inode_get_ctime(inode);
1250 inode_inc_iversion(inode);
1251 }
1252 return error;
1253 }
1254
shmem_evict_inode(struct inode * inode)1255 static void shmem_evict_inode(struct inode *inode)
1256 {
1257 struct shmem_inode_info *info = SHMEM_I(inode);
1258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1259 size_t freed = 0;
1260
1261 if (shmem_mapping(inode->i_mapping)) {
1262 shmem_unacct_size(info->flags, inode->i_size);
1263 inode->i_size = 0;
1264 mapping_set_exiting(inode->i_mapping);
1265 shmem_truncate_range(inode, 0, (loff_t)-1);
1266 if (!list_empty(&info->shrinklist)) {
1267 spin_lock(&sbinfo->shrinklist_lock);
1268 if (!list_empty(&info->shrinklist)) {
1269 list_del_init(&info->shrinklist);
1270 sbinfo->shrinklist_len--;
1271 }
1272 spin_unlock(&sbinfo->shrinklist_lock);
1273 }
1274 while (!list_empty(&info->swaplist)) {
1275 /* Wait while shmem_unuse() is scanning this inode... */
1276 wait_var_event(&info->stop_eviction,
1277 !atomic_read(&info->stop_eviction));
1278 mutex_lock(&shmem_swaplist_mutex);
1279 /* ...but beware of the race if we peeked too early */
1280 if (!atomic_read(&info->stop_eviction))
1281 list_del_init(&info->swaplist);
1282 mutex_unlock(&shmem_swaplist_mutex);
1283 }
1284 }
1285
1286 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1287 shmem_free_inode(inode->i_sb, freed);
1288 WARN_ON(inode->i_blocks);
1289 clear_inode(inode);
1290 #ifdef CONFIG_TMPFS_QUOTA
1291 dquot_free_inode(inode);
1292 dquot_drop(inode);
1293 #endif
1294 }
1295
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1296 static int shmem_find_swap_entries(struct address_space *mapping,
1297 pgoff_t start, struct folio_batch *fbatch,
1298 pgoff_t *indices, unsigned int type)
1299 {
1300 XA_STATE(xas, &mapping->i_pages, start);
1301 struct folio *folio;
1302 swp_entry_t entry;
1303
1304 rcu_read_lock();
1305 xas_for_each(&xas, folio, ULONG_MAX) {
1306 if (xas_retry(&xas, folio))
1307 continue;
1308
1309 if (!xa_is_value(folio))
1310 continue;
1311
1312 entry = radix_to_swp_entry(folio);
1313 /*
1314 * swapin error entries can be found in the mapping. But they're
1315 * deliberately ignored here as we've done everything we can do.
1316 */
1317 if (swp_type(entry) != type)
1318 continue;
1319
1320 indices[folio_batch_count(fbatch)] = xas.xa_index;
1321 if (!folio_batch_add(fbatch, folio))
1322 break;
1323
1324 if (need_resched()) {
1325 xas_pause(&xas);
1326 cond_resched_rcu();
1327 }
1328 }
1329 rcu_read_unlock();
1330
1331 return xas.xa_index;
1332 }
1333
1334 /*
1335 * Move the swapped pages for an inode to page cache. Returns the count
1336 * of pages swapped in, or the error in case of failure.
1337 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1338 static int shmem_unuse_swap_entries(struct inode *inode,
1339 struct folio_batch *fbatch, pgoff_t *indices)
1340 {
1341 int i = 0;
1342 int ret = 0;
1343 int error = 0;
1344 struct address_space *mapping = inode->i_mapping;
1345
1346 for (i = 0; i < folio_batch_count(fbatch); i++) {
1347 struct folio *folio = fbatch->folios[i];
1348
1349 if (!xa_is_value(folio))
1350 continue;
1351 error = shmem_swapin_folio(inode, indices[i],
1352 &folio, SGP_CACHE,
1353 mapping_gfp_mask(mapping),
1354 NULL, NULL);
1355 if (error == 0) {
1356 folio_unlock(folio);
1357 folio_put(folio);
1358 ret++;
1359 }
1360 if (error == -ENOMEM)
1361 break;
1362 error = 0;
1363 }
1364 return error ? error : ret;
1365 }
1366
1367 /*
1368 * If swap found in inode, free it and move page from swapcache to filecache.
1369 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1370 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1371 {
1372 struct address_space *mapping = inode->i_mapping;
1373 pgoff_t start = 0;
1374 struct folio_batch fbatch;
1375 pgoff_t indices[PAGEVEC_SIZE];
1376 int ret = 0;
1377
1378 do {
1379 folio_batch_init(&fbatch);
1380 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1381 if (folio_batch_count(&fbatch) == 0) {
1382 ret = 0;
1383 break;
1384 }
1385
1386 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1387 if (ret < 0)
1388 break;
1389
1390 start = indices[folio_batch_count(&fbatch) - 1];
1391 } while (true);
1392
1393 return ret;
1394 }
1395
1396 /*
1397 * Read all the shared memory data that resides in the swap
1398 * device 'type' back into memory, so the swap device can be
1399 * unused.
1400 */
shmem_unuse(unsigned int type)1401 int shmem_unuse(unsigned int type)
1402 {
1403 struct shmem_inode_info *info, *next;
1404 int error = 0;
1405
1406 if (list_empty(&shmem_swaplist))
1407 return 0;
1408
1409 mutex_lock(&shmem_swaplist_mutex);
1410 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1411 if (!info->swapped) {
1412 list_del_init(&info->swaplist);
1413 continue;
1414 }
1415 /*
1416 * Drop the swaplist mutex while searching the inode for swap;
1417 * but before doing so, make sure shmem_evict_inode() will not
1418 * remove placeholder inode from swaplist, nor let it be freed
1419 * (igrab() would protect from unlink, but not from unmount).
1420 */
1421 atomic_inc(&info->stop_eviction);
1422 mutex_unlock(&shmem_swaplist_mutex);
1423
1424 error = shmem_unuse_inode(&info->vfs_inode, type);
1425 cond_resched();
1426
1427 mutex_lock(&shmem_swaplist_mutex);
1428 next = list_next_entry(info, swaplist);
1429 if (!info->swapped)
1430 list_del_init(&info->swaplist);
1431 if (atomic_dec_and_test(&info->stop_eviction))
1432 wake_up_var(&info->stop_eviction);
1433 if (error)
1434 break;
1435 }
1436 mutex_unlock(&shmem_swaplist_mutex);
1437
1438 return error;
1439 }
1440
1441 /*
1442 * Move the page from the page cache to the swap cache.
1443 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1444 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1445 {
1446 struct folio *folio = page_folio(page);
1447 struct address_space *mapping = folio->mapping;
1448 struct inode *inode = mapping->host;
1449 struct shmem_inode_info *info = SHMEM_I(inode);
1450 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1451 swp_entry_t swap;
1452 pgoff_t index;
1453
1454 /*
1455 * Our capabilities prevent regular writeback or sync from ever calling
1456 * shmem_writepage; but a stacking filesystem might use ->writepage of
1457 * its underlying filesystem, in which case tmpfs should write out to
1458 * swap only in response to memory pressure, and not for the writeback
1459 * threads or sync.
1460 */
1461 if (WARN_ON_ONCE(!wbc->for_reclaim))
1462 goto redirty;
1463
1464 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1465 goto redirty;
1466
1467 if (!total_swap_pages)
1468 goto redirty;
1469
1470 /*
1471 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1472 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1473 * and its shmem_writeback() needs them to be split when swapping.
1474 */
1475 if (folio_test_large(folio)) {
1476 /* Ensure the subpages are still dirty */
1477 folio_test_set_dirty(folio);
1478 if (split_huge_page(page) < 0)
1479 goto redirty;
1480 folio = page_folio(page);
1481 folio_clear_dirty(folio);
1482 }
1483
1484 index = folio->index;
1485
1486 /*
1487 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1488 * value into swapfile.c, the only way we can correctly account for a
1489 * fallocated folio arriving here is now to initialize it and write it.
1490 *
1491 * That's okay for a folio already fallocated earlier, but if we have
1492 * not yet completed the fallocation, then (a) we want to keep track
1493 * of this folio in case we have to undo it, and (b) it may not be a
1494 * good idea to continue anyway, once we're pushing into swap. So
1495 * reactivate the folio, and let shmem_fallocate() quit when too many.
1496 */
1497 if (!folio_test_uptodate(folio)) {
1498 if (inode->i_private) {
1499 struct shmem_falloc *shmem_falloc;
1500 spin_lock(&inode->i_lock);
1501 shmem_falloc = inode->i_private;
1502 if (shmem_falloc &&
1503 !shmem_falloc->waitq &&
1504 index >= shmem_falloc->start &&
1505 index < shmem_falloc->next)
1506 shmem_falloc->nr_unswapped++;
1507 else
1508 shmem_falloc = NULL;
1509 spin_unlock(&inode->i_lock);
1510 if (shmem_falloc)
1511 goto redirty;
1512 }
1513 folio_zero_range(folio, 0, folio_size(folio));
1514 flush_dcache_folio(folio);
1515 folio_mark_uptodate(folio);
1516 }
1517
1518 swap = folio_alloc_swap(folio);
1519 if (!swap.val)
1520 goto redirty;
1521
1522 /*
1523 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1524 * if it's not already there. Do it now before the folio is
1525 * moved to swap cache, when its pagelock no longer protects
1526 * the inode from eviction. But don't unlock the mutex until
1527 * we've incremented swapped, because shmem_unuse_inode() will
1528 * prune a !swapped inode from the swaplist under this mutex.
1529 */
1530 mutex_lock(&shmem_swaplist_mutex);
1531 if (list_empty(&info->swaplist))
1532 list_add(&info->swaplist, &shmem_swaplist);
1533
1534 if (add_to_swap_cache(folio, swap,
1535 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1536 NULL) == 0) {
1537 shmem_recalc_inode(inode, 0, 1);
1538 swap_shmem_alloc(swap);
1539 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1540
1541 mutex_unlock(&shmem_swaplist_mutex);
1542 BUG_ON(folio_mapped(folio));
1543 swap_writepage(&folio->page, wbc);
1544 return 0;
1545 }
1546
1547 mutex_unlock(&shmem_swaplist_mutex);
1548 put_swap_folio(folio, swap);
1549 redirty:
1550 folio_mark_dirty(folio);
1551 if (wbc->for_reclaim)
1552 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1553 folio_unlock(folio);
1554 return 0;
1555 }
1556
1557 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1558 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1559 {
1560 char buffer[64];
1561
1562 if (!mpol || mpol->mode == MPOL_DEFAULT)
1563 return; /* show nothing */
1564
1565 mpol_to_str(buffer, sizeof(buffer), mpol);
1566
1567 seq_printf(seq, ",mpol=%s", buffer);
1568 }
1569
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1570 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1571 {
1572 struct mempolicy *mpol = NULL;
1573 if (sbinfo->mpol) {
1574 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1575 mpol = sbinfo->mpol;
1576 mpol_get(mpol);
1577 raw_spin_unlock(&sbinfo->stat_lock);
1578 }
1579 return mpol;
1580 }
1581 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1582 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1583 {
1584 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1585 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1586 {
1587 return NULL;
1588 }
1589 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1590 #ifndef CONFIG_NUMA
1591 #define vm_policy vm_private_data
1592 #endif
1593
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1594 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1595 struct shmem_inode_info *info, pgoff_t index)
1596 {
1597 /* Create a pseudo vma that just contains the policy */
1598 vma_init(vma, NULL);
1599 /* Bias interleave by inode number to distribute better across nodes */
1600 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1601 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1602 }
1603
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1604 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1605 {
1606 /* Drop reference taken by mpol_shared_policy_lookup() */
1607 mpol_cond_put(vma->vm_policy);
1608 }
1609
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1610 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1611 struct shmem_inode_info *info, pgoff_t index)
1612 {
1613 struct vm_area_struct pvma;
1614 struct page *page;
1615 struct vm_fault vmf = {
1616 .vma = &pvma,
1617 };
1618
1619 shmem_pseudo_vma_init(&pvma, info, index);
1620 page = swap_cluster_readahead(swap, gfp, &vmf);
1621 shmem_pseudo_vma_destroy(&pvma);
1622
1623 if (!page)
1624 return NULL;
1625 return page_folio(page);
1626 }
1627
1628 /*
1629 * Make sure huge_gfp is always more limited than limit_gfp.
1630 * Some of the flags set permissions, while others set limitations.
1631 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1632 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1633 {
1634 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1635 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1636 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1637 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1638
1639 /* Allow allocations only from the originally specified zones. */
1640 result |= zoneflags;
1641
1642 /*
1643 * Minimize the result gfp by taking the union with the deny flags,
1644 * and the intersection of the allow flags.
1645 */
1646 result |= (limit_gfp & denyflags);
1647 result |= (huge_gfp & limit_gfp) & allowflags;
1648
1649 return result;
1650 }
1651
shmem_alloc_hugefolio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1652 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1653 struct shmem_inode_info *info, pgoff_t index)
1654 {
1655 struct vm_area_struct pvma;
1656 struct address_space *mapping = info->vfs_inode.i_mapping;
1657 pgoff_t hindex;
1658 struct folio *folio;
1659
1660 hindex = round_down(index, HPAGE_PMD_NR);
1661 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1662 XA_PRESENT))
1663 return NULL;
1664
1665 shmem_pseudo_vma_init(&pvma, info, hindex);
1666 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1667 shmem_pseudo_vma_destroy(&pvma);
1668 if (!folio)
1669 count_vm_event(THP_FILE_FALLBACK);
1670 return folio;
1671 }
1672
shmem_alloc_folio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1673 static struct folio *shmem_alloc_folio(gfp_t gfp,
1674 struct shmem_inode_info *info, pgoff_t index)
1675 {
1676 struct vm_area_struct pvma;
1677 struct folio *folio;
1678
1679 shmem_pseudo_vma_init(&pvma, info, index);
1680 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1681 shmem_pseudo_vma_destroy(&pvma);
1682
1683 return folio;
1684 }
1685
shmem_alloc_and_acct_folio(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1686 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1687 pgoff_t index, bool huge)
1688 {
1689 struct shmem_inode_info *info = SHMEM_I(inode);
1690 struct folio *folio;
1691 int nr;
1692 int err;
1693
1694 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1695 huge = false;
1696 nr = huge ? HPAGE_PMD_NR : 1;
1697
1698 err = shmem_inode_acct_block(inode, nr);
1699 if (err)
1700 goto failed;
1701
1702 if (huge)
1703 folio = shmem_alloc_hugefolio(gfp, info, index);
1704 else
1705 folio = shmem_alloc_folio(gfp, info, index);
1706 if (folio) {
1707 __folio_set_locked(folio);
1708 __folio_set_swapbacked(folio);
1709 return folio;
1710 }
1711
1712 err = -ENOMEM;
1713 shmem_inode_unacct_blocks(inode, nr);
1714 failed:
1715 return ERR_PTR(err);
1716 }
1717
1718 /*
1719 * When a page is moved from swapcache to shmem filecache (either by the
1720 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1721 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1722 * ignorance of the mapping it belongs to. If that mapping has special
1723 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1724 * we may need to copy to a suitable page before moving to filecache.
1725 *
1726 * In a future release, this may well be extended to respect cpuset and
1727 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1728 * but for now it is a simple matter of zone.
1729 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1730 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1731 {
1732 return folio_zonenum(folio) > gfp_zone(gfp);
1733 }
1734
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1735 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1736 struct shmem_inode_info *info, pgoff_t index)
1737 {
1738 struct folio *old, *new;
1739 struct address_space *swap_mapping;
1740 swp_entry_t entry;
1741 pgoff_t swap_index;
1742 int error;
1743
1744 old = *foliop;
1745 entry = old->swap;
1746 swap_index = swp_offset(entry);
1747 swap_mapping = swap_address_space(entry);
1748
1749 /*
1750 * We have arrived here because our zones are constrained, so don't
1751 * limit chance of success by further cpuset and node constraints.
1752 */
1753 gfp &= ~GFP_CONSTRAINT_MASK;
1754 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1755 new = shmem_alloc_folio(gfp, info, index);
1756 if (!new)
1757 return -ENOMEM;
1758
1759 folio_get(new);
1760 folio_copy(new, old);
1761 flush_dcache_folio(new);
1762
1763 __folio_set_locked(new);
1764 __folio_set_swapbacked(new);
1765 folio_mark_uptodate(new);
1766 new->swap = entry;
1767 folio_set_swapcache(new);
1768
1769 /*
1770 * Our caller will very soon move newpage out of swapcache, but it's
1771 * a nice clean interface for us to replace oldpage by newpage there.
1772 */
1773 xa_lock_irq(&swap_mapping->i_pages);
1774 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1775 if (!error) {
1776 mem_cgroup_migrate(old, new);
1777 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1778 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1779 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1780 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1781 }
1782 xa_unlock_irq(&swap_mapping->i_pages);
1783
1784 if (unlikely(error)) {
1785 /*
1786 * Is this possible? I think not, now that our callers check
1787 * both PageSwapCache and page_private after getting page lock;
1788 * but be defensive. Reverse old to newpage for clear and free.
1789 */
1790 old = new;
1791 } else {
1792 folio_add_lru(new);
1793 *foliop = new;
1794 }
1795
1796 folio_clear_swapcache(old);
1797 old->private = NULL;
1798
1799 folio_unlock(old);
1800 folio_put_refs(old, 2);
1801 return error;
1802 }
1803
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1804 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1805 struct folio *folio, swp_entry_t swap)
1806 {
1807 struct address_space *mapping = inode->i_mapping;
1808 swp_entry_t swapin_error;
1809 void *old;
1810
1811 swapin_error = make_poisoned_swp_entry();
1812 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1813 swp_to_radix_entry(swap),
1814 swp_to_radix_entry(swapin_error), 0);
1815 if (old != swp_to_radix_entry(swap))
1816 return;
1817
1818 folio_wait_writeback(folio);
1819 delete_from_swap_cache(folio);
1820 /*
1821 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1822 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1823 * in shmem_evict_inode().
1824 */
1825 shmem_recalc_inode(inode, -1, -1);
1826 swap_free(swap);
1827 }
1828
1829 /*
1830 * Swap in the folio pointed to by *foliop.
1831 * Caller has to make sure that *foliop contains a valid swapped folio.
1832 * Returns 0 and the folio in foliop if success. On failure, returns the
1833 * error code and NULL in *foliop.
1834 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1835 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1836 struct folio **foliop, enum sgp_type sgp,
1837 gfp_t gfp, struct vm_area_struct *vma,
1838 vm_fault_t *fault_type)
1839 {
1840 struct address_space *mapping = inode->i_mapping;
1841 struct shmem_inode_info *info = SHMEM_I(inode);
1842 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1843 struct swap_info_struct *si;
1844 struct folio *folio = NULL;
1845 swp_entry_t swap;
1846 int error;
1847
1848 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1849 swap = radix_to_swp_entry(*foliop);
1850 *foliop = NULL;
1851
1852 if (is_poisoned_swp_entry(swap))
1853 return -EIO;
1854
1855 si = get_swap_device(swap);
1856 if (!si) {
1857 if (!shmem_confirm_swap(mapping, index, swap))
1858 return -EEXIST;
1859 else
1860 return -EINVAL;
1861 }
1862
1863 /* Look it up and read it in.. */
1864 folio = swap_cache_get_folio(swap, NULL, 0);
1865 if (!folio) {
1866 /* Or update major stats only when swapin succeeds?? */
1867 if (fault_type) {
1868 *fault_type |= VM_FAULT_MAJOR;
1869 count_vm_event(PGMAJFAULT);
1870 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1871 }
1872 /* Here we actually start the io */
1873 folio = shmem_swapin(swap, gfp, info, index);
1874 if (!folio) {
1875 error = -ENOMEM;
1876 goto failed;
1877 }
1878 }
1879
1880 /* We have to do this with folio locked to prevent races */
1881 folio_lock(folio);
1882 if (!folio_test_swapcache(folio) ||
1883 folio->swap.val != swap.val ||
1884 !shmem_confirm_swap(mapping, index, swap)) {
1885 error = -EEXIST;
1886 goto unlock;
1887 }
1888 if (!folio_test_uptodate(folio)) {
1889 error = -EIO;
1890 goto failed;
1891 }
1892 folio_wait_writeback(folio);
1893
1894 /*
1895 * Some architectures may have to restore extra metadata to the
1896 * folio after reading from swap.
1897 */
1898 arch_swap_restore(swap, folio);
1899
1900 if (shmem_should_replace_folio(folio, gfp)) {
1901 error = shmem_replace_folio(&folio, gfp, info, index);
1902 if (error)
1903 goto failed;
1904 }
1905
1906 error = shmem_add_to_page_cache(folio, mapping, index,
1907 swp_to_radix_entry(swap), gfp,
1908 charge_mm);
1909 if (error)
1910 goto failed;
1911
1912 shmem_recalc_inode(inode, 0, -1);
1913
1914 if (sgp == SGP_WRITE)
1915 folio_mark_accessed(folio);
1916
1917 delete_from_swap_cache(folio);
1918 folio_mark_dirty(folio);
1919 swap_free(swap);
1920 put_swap_device(si);
1921
1922 *foliop = folio;
1923 return 0;
1924 failed:
1925 if (!shmem_confirm_swap(mapping, index, swap))
1926 error = -EEXIST;
1927 if (error == -EIO)
1928 shmem_set_folio_swapin_error(inode, index, folio, swap);
1929 unlock:
1930 if (folio) {
1931 folio_unlock(folio);
1932 folio_put(folio);
1933 }
1934 put_swap_device(si);
1935
1936 return error;
1937 }
1938
1939 /*
1940 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1941 *
1942 * If we allocate a new one we do not mark it dirty. That's up to the
1943 * vm. If we swap it in we mark it dirty since we also free the swap
1944 * entry since a page cannot live in both the swap and page cache.
1945 *
1946 * vma, vmf, and fault_type are only supplied by shmem_fault:
1947 * otherwise they are NULL.
1948 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1949 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1950 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1951 struct vm_area_struct *vma, struct vm_fault *vmf,
1952 vm_fault_t *fault_type)
1953 {
1954 struct address_space *mapping = inode->i_mapping;
1955 struct shmem_inode_info *info = SHMEM_I(inode);
1956 struct shmem_sb_info *sbinfo;
1957 struct mm_struct *charge_mm;
1958 struct folio *folio;
1959 pgoff_t hindex;
1960 gfp_t huge_gfp;
1961 int error;
1962 int once = 0;
1963 int alloced = 0;
1964
1965 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1966 return -EFBIG;
1967 repeat:
1968 if (sgp <= SGP_CACHE &&
1969 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1970 return -EINVAL;
1971 }
1972
1973 sbinfo = SHMEM_SB(inode->i_sb);
1974 charge_mm = vma ? vma->vm_mm : NULL;
1975
1976 folio = filemap_get_entry(mapping, index);
1977 if (folio && vma && userfaultfd_minor(vma)) {
1978 if (!xa_is_value(folio))
1979 folio_put(folio);
1980 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1981 return 0;
1982 }
1983
1984 if (xa_is_value(folio)) {
1985 error = shmem_swapin_folio(inode, index, &folio,
1986 sgp, gfp, vma, fault_type);
1987 if (error == -EEXIST)
1988 goto repeat;
1989
1990 *foliop = folio;
1991 return error;
1992 }
1993
1994 if (folio) {
1995 folio_lock(folio);
1996
1997 /* Has the folio been truncated or swapped out? */
1998 if (unlikely(folio->mapping != mapping)) {
1999 folio_unlock(folio);
2000 folio_put(folio);
2001 goto repeat;
2002 }
2003 if (sgp == SGP_WRITE)
2004 folio_mark_accessed(folio);
2005 if (folio_test_uptodate(folio))
2006 goto out;
2007 /* fallocated folio */
2008 if (sgp != SGP_READ)
2009 goto clear;
2010 folio_unlock(folio);
2011 folio_put(folio);
2012 }
2013
2014 /*
2015 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2016 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2017 */
2018 *foliop = NULL;
2019 if (sgp == SGP_READ)
2020 return 0;
2021 if (sgp == SGP_NOALLOC)
2022 return -ENOENT;
2023
2024 /*
2025 * Fast cache lookup and swap lookup did not find it: allocate.
2026 */
2027
2028 if (vma && userfaultfd_missing(vma)) {
2029 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2030 return 0;
2031 }
2032
2033 if (!shmem_is_huge(inode, index, false,
2034 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2035 goto alloc_nohuge;
2036
2037 huge_gfp = vma_thp_gfp_mask(vma);
2038 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2039 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2040 if (IS_ERR(folio)) {
2041 alloc_nohuge:
2042 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2043 }
2044 if (IS_ERR(folio)) {
2045 int retry = 5;
2046
2047 error = PTR_ERR(folio);
2048 folio = NULL;
2049 if (error != -ENOSPC)
2050 goto unlock;
2051 /*
2052 * Try to reclaim some space by splitting a large folio
2053 * beyond i_size on the filesystem.
2054 */
2055 while (retry--) {
2056 int ret;
2057
2058 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2059 if (ret == SHRINK_STOP)
2060 break;
2061 if (ret)
2062 goto alloc_nohuge;
2063 }
2064 goto unlock;
2065 }
2066
2067 hindex = round_down(index, folio_nr_pages(folio));
2068
2069 if (sgp == SGP_WRITE)
2070 __folio_set_referenced(folio);
2071
2072 error = shmem_add_to_page_cache(folio, mapping, hindex,
2073 NULL, gfp & GFP_RECLAIM_MASK,
2074 charge_mm);
2075 if (error)
2076 goto unacct;
2077
2078 folio_add_lru(folio);
2079 shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2080 alloced = true;
2081
2082 if (folio_test_pmd_mappable(folio) &&
2083 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2084 folio_next_index(folio) - 1) {
2085 /*
2086 * Part of the large folio is beyond i_size: subject
2087 * to shrink under memory pressure.
2088 */
2089 spin_lock(&sbinfo->shrinklist_lock);
2090 /*
2091 * _careful to defend against unlocked access to
2092 * ->shrink_list in shmem_unused_huge_shrink()
2093 */
2094 if (list_empty_careful(&info->shrinklist)) {
2095 list_add_tail(&info->shrinklist,
2096 &sbinfo->shrinklist);
2097 sbinfo->shrinklist_len++;
2098 }
2099 spin_unlock(&sbinfo->shrinklist_lock);
2100 }
2101
2102 /*
2103 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2104 */
2105 if (sgp == SGP_FALLOC)
2106 sgp = SGP_WRITE;
2107 clear:
2108 /*
2109 * Let SGP_WRITE caller clear ends if write does not fill folio;
2110 * but SGP_FALLOC on a folio fallocated earlier must initialize
2111 * it now, lest undo on failure cancel our earlier guarantee.
2112 */
2113 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2114 long i, n = folio_nr_pages(folio);
2115
2116 for (i = 0; i < n; i++)
2117 clear_highpage(folio_page(folio, i));
2118 flush_dcache_folio(folio);
2119 folio_mark_uptodate(folio);
2120 }
2121
2122 /* Perhaps the file has been truncated since we checked */
2123 if (sgp <= SGP_CACHE &&
2124 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2125 if (alloced) {
2126 folio_clear_dirty(folio);
2127 filemap_remove_folio(folio);
2128 shmem_recalc_inode(inode, 0, 0);
2129 }
2130 error = -EINVAL;
2131 goto unlock;
2132 }
2133 out:
2134 *foliop = folio;
2135 return 0;
2136
2137 /*
2138 * Error recovery.
2139 */
2140 unacct:
2141 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2142
2143 if (folio_test_large(folio)) {
2144 folio_unlock(folio);
2145 folio_put(folio);
2146 goto alloc_nohuge;
2147 }
2148 unlock:
2149 if (folio) {
2150 folio_unlock(folio);
2151 folio_put(folio);
2152 }
2153 if (error == -ENOSPC && !once++) {
2154 shmem_recalc_inode(inode, 0, 0);
2155 goto repeat;
2156 }
2157 if (error == -EEXIST)
2158 goto repeat;
2159 return error;
2160 }
2161
shmem_get_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp)2162 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2163 enum sgp_type sgp)
2164 {
2165 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2166 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2167 }
2168
2169 /*
2170 * This is like autoremove_wake_function, but it removes the wait queue
2171 * entry unconditionally - even if something else had already woken the
2172 * target.
2173 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2174 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2175 {
2176 int ret = default_wake_function(wait, mode, sync, key);
2177 list_del_init(&wait->entry);
2178 return ret;
2179 }
2180
shmem_fault(struct vm_fault * vmf)2181 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2182 {
2183 struct vm_area_struct *vma = vmf->vma;
2184 struct inode *inode = file_inode(vma->vm_file);
2185 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2186 struct folio *folio = NULL;
2187 int err;
2188 vm_fault_t ret = VM_FAULT_LOCKED;
2189
2190 /*
2191 * Trinity finds that probing a hole which tmpfs is punching can
2192 * prevent the hole-punch from ever completing: which in turn
2193 * locks writers out with its hold on i_rwsem. So refrain from
2194 * faulting pages into the hole while it's being punched. Although
2195 * shmem_undo_range() does remove the additions, it may be unable to
2196 * keep up, as each new page needs its own unmap_mapping_range() call,
2197 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2198 *
2199 * It does not matter if we sometimes reach this check just before the
2200 * hole-punch begins, so that one fault then races with the punch:
2201 * we just need to make racing faults a rare case.
2202 *
2203 * The implementation below would be much simpler if we just used a
2204 * standard mutex or completion: but we cannot take i_rwsem in fault,
2205 * and bloating every shmem inode for this unlikely case would be sad.
2206 */
2207 if (unlikely(inode->i_private)) {
2208 struct shmem_falloc *shmem_falloc;
2209
2210 spin_lock(&inode->i_lock);
2211 shmem_falloc = inode->i_private;
2212 if (shmem_falloc &&
2213 shmem_falloc->waitq &&
2214 vmf->pgoff >= shmem_falloc->start &&
2215 vmf->pgoff < shmem_falloc->next) {
2216 struct file *fpin;
2217 wait_queue_head_t *shmem_falloc_waitq;
2218 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2219
2220 ret = VM_FAULT_NOPAGE;
2221 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2222 if (fpin)
2223 ret = VM_FAULT_RETRY;
2224
2225 shmem_falloc_waitq = shmem_falloc->waitq;
2226 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2227 TASK_UNINTERRUPTIBLE);
2228 spin_unlock(&inode->i_lock);
2229 schedule();
2230
2231 /*
2232 * shmem_falloc_waitq points into the shmem_fallocate()
2233 * stack of the hole-punching task: shmem_falloc_waitq
2234 * is usually invalid by the time we reach here, but
2235 * finish_wait() does not dereference it in that case;
2236 * though i_lock needed lest racing with wake_up_all().
2237 */
2238 spin_lock(&inode->i_lock);
2239 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2240 spin_unlock(&inode->i_lock);
2241
2242 if (fpin)
2243 fput(fpin);
2244 return ret;
2245 }
2246 spin_unlock(&inode->i_lock);
2247 }
2248
2249 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2250 gfp, vma, vmf, &ret);
2251 if (err)
2252 return vmf_error(err);
2253 if (folio)
2254 vmf->page = folio_file_page(folio, vmf->pgoff);
2255 return ret;
2256 }
2257
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2258 unsigned long shmem_get_unmapped_area(struct file *file,
2259 unsigned long uaddr, unsigned long len,
2260 unsigned long pgoff, unsigned long flags)
2261 {
2262 unsigned long (*get_area)(struct file *,
2263 unsigned long, unsigned long, unsigned long, unsigned long);
2264 unsigned long addr;
2265 unsigned long offset;
2266 unsigned long inflated_len;
2267 unsigned long inflated_addr;
2268 unsigned long inflated_offset;
2269
2270 if (len > TASK_SIZE)
2271 return -ENOMEM;
2272
2273 get_area = current->mm->get_unmapped_area;
2274 addr = get_area(file, uaddr, len, pgoff, flags);
2275
2276 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2277 return addr;
2278 if (IS_ERR_VALUE(addr))
2279 return addr;
2280 if (addr & ~PAGE_MASK)
2281 return addr;
2282 if (addr > TASK_SIZE - len)
2283 return addr;
2284
2285 if (shmem_huge == SHMEM_HUGE_DENY)
2286 return addr;
2287 if (len < HPAGE_PMD_SIZE)
2288 return addr;
2289 if (flags & MAP_FIXED)
2290 return addr;
2291 /*
2292 * Our priority is to support MAP_SHARED mapped hugely;
2293 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2294 * But if caller specified an address hint and we allocated area there
2295 * successfully, respect that as before.
2296 */
2297 if (uaddr == addr)
2298 return addr;
2299
2300 if (shmem_huge != SHMEM_HUGE_FORCE) {
2301 struct super_block *sb;
2302
2303 if (file) {
2304 VM_BUG_ON(file->f_op != &shmem_file_operations);
2305 sb = file_inode(file)->i_sb;
2306 } else {
2307 /*
2308 * Called directly from mm/mmap.c, or drivers/char/mem.c
2309 * for "/dev/zero", to create a shared anonymous object.
2310 */
2311 if (IS_ERR(shm_mnt))
2312 return addr;
2313 sb = shm_mnt->mnt_sb;
2314 }
2315 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2316 return addr;
2317 }
2318
2319 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2320 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2321 return addr;
2322 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2323 return addr;
2324
2325 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2326 if (inflated_len > TASK_SIZE)
2327 return addr;
2328 if (inflated_len < len)
2329 return addr;
2330
2331 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2332 if (IS_ERR_VALUE(inflated_addr))
2333 return addr;
2334 if (inflated_addr & ~PAGE_MASK)
2335 return addr;
2336
2337 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2338 inflated_addr += offset - inflated_offset;
2339 if (inflated_offset > offset)
2340 inflated_addr += HPAGE_PMD_SIZE;
2341
2342 if (inflated_addr > TASK_SIZE - len)
2343 return addr;
2344 return inflated_addr;
2345 }
2346
2347 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2348 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2349 {
2350 struct inode *inode = file_inode(vma->vm_file);
2351 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2352 }
2353
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2354 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2355 unsigned long addr)
2356 {
2357 struct inode *inode = file_inode(vma->vm_file);
2358 pgoff_t index;
2359
2360 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2361 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2362 }
2363 #endif
2364
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2365 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2366 {
2367 struct inode *inode = file_inode(file);
2368 struct shmem_inode_info *info = SHMEM_I(inode);
2369 int retval = -ENOMEM;
2370
2371 /*
2372 * What serializes the accesses to info->flags?
2373 * ipc_lock_object() when called from shmctl_do_lock(),
2374 * no serialization needed when called from shm_destroy().
2375 */
2376 if (lock && !(info->flags & VM_LOCKED)) {
2377 if (!user_shm_lock(inode->i_size, ucounts))
2378 goto out_nomem;
2379 info->flags |= VM_LOCKED;
2380 mapping_set_unevictable(file->f_mapping);
2381 }
2382 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2383 user_shm_unlock(inode->i_size, ucounts);
2384 info->flags &= ~VM_LOCKED;
2385 mapping_clear_unevictable(file->f_mapping);
2386 }
2387 retval = 0;
2388
2389 out_nomem:
2390 return retval;
2391 }
2392
shmem_mmap(struct file * file,struct vm_area_struct * vma)2393 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2394 {
2395 struct inode *inode = file_inode(file);
2396 struct shmem_inode_info *info = SHMEM_I(inode);
2397 int ret;
2398
2399 ret = seal_check_future_write(info->seals, vma);
2400 if (ret)
2401 return ret;
2402
2403 /* arm64 - allow memory tagging on RAM-based files */
2404 vm_flags_set(vma, VM_MTE_ALLOWED);
2405
2406 file_accessed(file);
2407 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2408 if (inode->i_nlink)
2409 vma->vm_ops = &shmem_vm_ops;
2410 else
2411 vma->vm_ops = &shmem_anon_vm_ops;
2412 return 0;
2413 }
2414
shmem_file_open(struct inode * inode,struct file * file)2415 static int shmem_file_open(struct inode *inode, struct file *file)
2416 {
2417 file->f_mode |= FMODE_CAN_ODIRECT;
2418 return generic_file_open(inode, file);
2419 }
2420
2421 #ifdef CONFIG_TMPFS_XATTR
2422 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2423
2424 /*
2425 * chattr's fsflags are unrelated to extended attributes,
2426 * but tmpfs has chosen to enable them under the same config option.
2427 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2428 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2429 {
2430 unsigned int i_flags = 0;
2431
2432 if (fsflags & FS_NOATIME_FL)
2433 i_flags |= S_NOATIME;
2434 if (fsflags & FS_APPEND_FL)
2435 i_flags |= S_APPEND;
2436 if (fsflags & FS_IMMUTABLE_FL)
2437 i_flags |= S_IMMUTABLE;
2438 /*
2439 * But FS_NODUMP_FL does not require any action in i_flags.
2440 */
2441 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2442 }
2443 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2444 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2445 {
2446 }
2447 #define shmem_initxattrs NULL
2448 #endif
2449
shmem_get_offset_ctx(struct inode * inode)2450 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2451 {
2452 return &SHMEM_I(inode)->dir_offsets;
2453 }
2454
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2455 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2456 struct super_block *sb,
2457 struct inode *dir, umode_t mode,
2458 dev_t dev, unsigned long flags)
2459 {
2460 struct inode *inode;
2461 struct shmem_inode_info *info;
2462 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2463 ino_t ino;
2464 int err;
2465
2466 err = shmem_reserve_inode(sb, &ino);
2467 if (err)
2468 return ERR_PTR(err);
2469
2470
2471 inode = new_inode(sb);
2472 if (!inode) {
2473 shmem_free_inode(sb, 0);
2474 return ERR_PTR(-ENOSPC);
2475 }
2476
2477 inode->i_ino = ino;
2478 inode_init_owner(idmap, inode, dir, mode);
2479 inode->i_blocks = 0;
2480 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2481 inode->i_generation = get_random_u32();
2482 info = SHMEM_I(inode);
2483 memset(info, 0, (char *)inode - (char *)info);
2484 spin_lock_init(&info->lock);
2485 atomic_set(&info->stop_eviction, 0);
2486 info->seals = F_SEAL_SEAL;
2487 info->flags = flags & VM_NORESERVE;
2488 info->i_crtime = inode->i_mtime;
2489 info->fsflags = (dir == NULL) ? 0 :
2490 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2491 if (info->fsflags)
2492 shmem_set_inode_flags(inode, info->fsflags);
2493 INIT_LIST_HEAD(&info->shrinklist);
2494 INIT_LIST_HEAD(&info->swaplist);
2495 INIT_LIST_HEAD(&info->swaplist);
2496 if (sbinfo->noswap)
2497 mapping_set_unevictable(inode->i_mapping);
2498 simple_xattrs_init(&info->xattrs);
2499 cache_no_acl(inode);
2500 mapping_set_large_folios(inode->i_mapping);
2501
2502 switch (mode & S_IFMT) {
2503 default:
2504 inode->i_op = &shmem_special_inode_operations;
2505 init_special_inode(inode, mode, dev);
2506 break;
2507 case S_IFREG:
2508 inode->i_mapping->a_ops = &shmem_aops;
2509 inode->i_op = &shmem_inode_operations;
2510 inode->i_fop = &shmem_file_operations;
2511 mpol_shared_policy_init(&info->policy,
2512 shmem_get_sbmpol(sbinfo));
2513 break;
2514 case S_IFDIR:
2515 inc_nlink(inode);
2516 /* Some things misbehave if size == 0 on a directory */
2517 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2518 inode->i_op = &shmem_dir_inode_operations;
2519 inode->i_fop = &simple_offset_dir_operations;
2520 simple_offset_init(shmem_get_offset_ctx(inode));
2521 break;
2522 case S_IFLNK:
2523 /*
2524 * Must not load anything in the rbtree,
2525 * mpol_free_shared_policy will not be called.
2526 */
2527 mpol_shared_policy_init(&info->policy, NULL);
2528 break;
2529 }
2530
2531 lockdep_annotate_inode_mutex_key(inode);
2532 return inode;
2533 }
2534
2535 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2536 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2537 struct super_block *sb, struct inode *dir,
2538 umode_t mode, dev_t dev, unsigned long flags)
2539 {
2540 int err;
2541 struct inode *inode;
2542
2543 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2544 if (IS_ERR(inode))
2545 return inode;
2546
2547 err = dquot_initialize(inode);
2548 if (err)
2549 goto errout;
2550
2551 err = dquot_alloc_inode(inode);
2552 if (err) {
2553 dquot_drop(inode);
2554 goto errout;
2555 }
2556 return inode;
2557
2558 errout:
2559 inode->i_flags |= S_NOQUOTA;
2560 iput(inode);
2561 return ERR_PTR(err);
2562 }
2563 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2564 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2565 struct super_block *sb, struct inode *dir,
2566 umode_t mode, dev_t dev, unsigned long flags)
2567 {
2568 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2569 }
2570 #endif /* CONFIG_TMPFS_QUOTA */
2571
2572 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2573 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2574 struct vm_area_struct *dst_vma,
2575 unsigned long dst_addr,
2576 unsigned long src_addr,
2577 uffd_flags_t flags,
2578 struct folio **foliop)
2579 {
2580 struct inode *inode = file_inode(dst_vma->vm_file);
2581 struct shmem_inode_info *info = SHMEM_I(inode);
2582 struct address_space *mapping = inode->i_mapping;
2583 gfp_t gfp = mapping_gfp_mask(mapping);
2584 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2585 void *page_kaddr;
2586 struct folio *folio;
2587 int ret;
2588 pgoff_t max_off;
2589
2590 if (shmem_inode_acct_block(inode, 1)) {
2591 /*
2592 * We may have got a page, returned -ENOENT triggering a retry,
2593 * and now we find ourselves with -ENOMEM. Release the page, to
2594 * avoid a BUG_ON in our caller.
2595 */
2596 if (unlikely(*foliop)) {
2597 folio_put(*foliop);
2598 *foliop = NULL;
2599 }
2600 return -ENOMEM;
2601 }
2602
2603 if (!*foliop) {
2604 ret = -ENOMEM;
2605 folio = shmem_alloc_folio(gfp, info, pgoff);
2606 if (!folio)
2607 goto out_unacct_blocks;
2608
2609 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2610 page_kaddr = kmap_local_folio(folio, 0);
2611 /*
2612 * The read mmap_lock is held here. Despite the
2613 * mmap_lock being read recursive a deadlock is still
2614 * possible if a writer has taken a lock. For example:
2615 *
2616 * process A thread 1 takes read lock on own mmap_lock
2617 * process A thread 2 calls mmap, blocks taking write lock
2618 * process B thread 1 takes page fault, read lock on own mmap lock
2619 * process B thread 2 calls mmap, blocks taking write lock
2620 * process A thread 1 blocks taking read lock on process B
2621 * process B thread 1 blocks taking read lock on process A
2622 *
2623 * Disable page faults to prevent potential deadlock
2624 * and retry the copy outside the mmap_lock.
2625 */
2626 pagefault_disable();
2627 ret = copy_from_user(page_kaddr,
2628 (const void __user *)src_addr,
2629 PAGE_SIZE);
2630 pagefault_enable();
2631 kunmap_local(page_kaddr);
2632
2633 /* fallback to copy_from_user outside mmap_lock */
2634 if (unlikely(ret)) {
2635 *foliop = folio;
2636 ret = -ENOENT;
2637 /* don't free the page */
2638 goto out_unacct_blocks;
2639 }
2640
2641 flush_dcache_folio(folio);
2642 } else { /* ZEROPAGE */
2643 clear_user_highpage(&folio->page, dst_addr);
2644 }
2645 } else {
2646 folio = *foliop;
2647 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2648 *foliop = NULL;
2649 }
2650
2651 VM_BUG_ON(folio_test_locked(folio));
2652 VM_BUG_ON(folio_test_swapbacked(folio));
2653 __folio_set_locked(folio);
2654 __folio_set_swapbacked(folio);
2655 __folio_mark_uptodate(folio);
2656
2657 ret = -EFAULT;
2658 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2659 if (unlikely(pgoff >= max_off))
2660 goto out_release;
2661
2662 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2663 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2664 if (ret)
2665 goto out_release;
2666
2667 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2668 &folio->page, true, flags);
2669 if (ret)
2670 goto out_delete_from_cache;
2671
2672 shmem_recalc_inode(inode, 1, 0);
2673 folio_unlock(folio);
2674 return 0;
2675 out_delete_from_cache:
2676 filemap_remove_folio(folio);
2677 out_release:
2678 folio_unlock(folio);
2679 folio_put(folio);
2680 out_unacct_blocks:
2681 shmem_inode_unacct_blocks(inode, 1);
2682 return ret;
2683 }
2684 #endif /* CONFIG_USERFAULTFD */
2685
2686 #ifdef CONFIG_TMPFS
2687 static const struct inode_operations shmem_symlink_inode_operations;
2688 static const struct inode_operations shmem_short_symlink_operations;
2689
2690 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2691 shmem_write_begin(struct file *file, struct address_space *mapping,
2692 loff_t pos, unsigned len,
2693 struct page **pagep, void **fsdata)
2694 {
2695 struct inode *inode = mapping->host;
2696 struct shmem_inode_info *info = SHMEM_I(inode);
2697 pgoff_t index = pos >> PAGE_SHIFT;
2698 struct folio *folio;
2699 int ret = 0;
2700
2701 /* i_rwsem is held by caller */
2702 if (unlikely(info->seals & (F_SEAL_GROW |
2703 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2704 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2705 return -EPERM;
2706 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2707 return -EPERM;
2708 }
2709
2710 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2711
2712 if (ret)
2713 return ret;
2714
2715 *pagep = folio_file_page(folio, index);
2716 if (PageHWPoison(*pagep)) {
2717 folio_unlock(folio);
2718 folio_put(folio);
2719 *pagep = NULL;
2720 return -EIO;
2721 }
2722
2723 return 0;
2724 }
2725
2726 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2727 shmem_write_end(struct file *file, struct address_space *mapping,
2728 loff_t pos, unsigned len, unsigned copied,
2729 struct page *page, void *fsdata)
2730 {
2731 struct folio *folio = page_folio(page);
2732 struct inode *inode = mapping->host;
2733
2734 if (pos + copied > inode->i_size)
2735 i_size_write(inode, pos + copied);
2736
2737 if (!folio_test_uptodate(folio)) {
2738 if (copied < folio_size(folio)) {
2739 size_t from = offset_in_folio(folio, pos);
2740 folio_zero_segments(folio, 0, from,
2741 from + copied, folio_size(folio));
2742 }
2743 folio_mark_uptodate(folio);
2744 }
2745 folio_mark_dirty(folio);
2746 folio_unlock(folio);
2747 folio_put(folio);
2748
2749 return copied;
2750 }
2751
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2752 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2753 {
2754 struct file *file = iocb->ki_filp;
2755 struct inode *inode = file_inode(file);
2756 struct address_space *mapping = inode->i_mapping;
2757 pgoff_t index;
2758 unsigned long offset;
2759 int error = 0;
2760 ssize_t retval = 0;
2761 loff_t *ppos = &iocb->ki_pos;
2762
2763 index = *ppos >> PAGE_SHIFT;
2764 offset = *ppos & ~PAGE_MASK;
2765
2766 for (;;) {
2767 struct folio *folio = NULL;
2768 struct page *page = NULL;
2769 pgoff_t end_index;
2770 unsigned long nr, ret;
2771 loff_t i_size = i_size_read(inode);
2772
2773 end_index = i_size >> PAGE_SHIFT;
2774 if (index > end_index)
2775 break;
2776 if (index == end_index) {
2777 nr = i_size & ~PAGE_MASK;
2778 if (nr <= offset)
2779 break;
2780 }
2781
2782 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2783 if (error) {
2784 if (error == -EINVAL)
2785 error = 0;
2786 break;
2787 }
2788 if (folio) {
2789 folio_unlock(folio);
2790
2791 page = folio_file_page(folio, index);
2792 if (PageHWPoison(page)) {
2793 folio_put(folio);
2794 error = -EIO;
2795 break;
2796 }
2797 }
2798
2799 /*
2800 * We must evaluate after, since reads (unlike writes)
2801 * are called without i_rwsem protection against truncate
2802 */
2803 nr = PAGE_SIZE;
2804 i_size = i_size_read(inode);
2805 end_index = i_size >> PAGE_SHIFT;
2806 if (index == end_index) {
2807 nr = i_size & ~PAGE_MASK;
2808 if (nr <= offset) {
2809 if (folio)
2810 folio_put(folio);
2811 break;
2812 }
2813 }
2814 nr -= offset;
2815
2816 if (folio) {
2817 /*
2818 * If users can be writing to this page using arbitrary
2819 * virtual addresses, take care about potential aliasing
2820 * before reading the page on the kernel side.
2821 */
2822 if (mapping_writably_mapped(mapping))
2823 flush_dcache_page(page);
2824 /*
2825 * Mark the page accessed if we read the beginning.
2826 */
2827 if (!offset)
2828 folio_mark_accessed(folio);
2829 /*
2830 * Ok, we have the page, and it's up-to-date, so
2831 * now we can copy it to user space...
2832 */
2833 ret = copy_page_to_iter(page, offset, nr, to);
2834 folio_put(folio);
2835
2836 } else if (user_backed_iter(to)) {
2837 /*
2838 * Copy to user tends to be so well optimized, but
2839 * clear_user() not so much, that it is noticeably
2840 * faster to copy the zero page instead of clearing.
2841 */
2842 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2843 } else {
2844 /*
2845 * But submitting the same page twice in a row to
2846 * splice() - or others? - can result in confusion:
2847 * so don't attempt that optimization on pipes etc.
2848 */
2849 ret = iov_iter_zero(nr, to);
2850 }
2851
2852 retval += ret;
2853 offset += ret;
2854 index += offset >> PAGE_SHIFT;
2855 offset &= ~PAGE_MASK;
2856
2857 if (!iov_iter_count(to))
2858 break;
2859 if (ret < nr) {
2860 error = -EFAULT;
2861 break;
2862 }
2863 cond_resched();
2864 }
2865
2866 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2867 file_accessed(file);
2868 return retval ? retval : error;
2869 }
2870
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2871 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2872 {
2873 struct file *file = iocb->ki_filp;
2874 struct inode *inode = file->f_mapping->host;
2875 ssize_t ret;
2876
2877 inode_lock(inode);
2878 ret = generic_write_checks(iocb, from);
2879 if (ret <= 0)
2880 goto unlock;
2881 ret = file_remove_privs(file);
2882 if (ret)
2883 goto unlock;
2884 ret = file_update_time(file);
2885 if (ret)
2886 goto unlock;
2887 ret = generic_perform_write(iocb, from);
2888 unlock:
2889 inode_unlock(inode);
2890 return ret;
2891 }
2892
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2893 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2894 struct pipe_buffer *buf)
2895 {
2896 return true;
2897 }
2898
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2899 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2900 struct pipe_buffer *buf)
2901 {
2902 }
2903
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2904 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2905 struct pipe_buffer *buf)
2906 {
2907 return false;
2908 }
2909
2910 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2911 .release = zero_pipe_buf_release,
2912 .try_steal = zero_pipe_buf_try_steal,
2913 .get = zero_pipe_buf_get,
2914 };
2915
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)2916 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2917 loff_t fpos, size_t size)
2918 {
2919 size_t offset = fpos & ~PAGE_MASK;
2920
2921 size = min_t(size_t, size, PAGE_SIZE - offset);
2922
2923 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2924 struct pipe_buffer *buf = pipe_head_buf(pipe);
2925
2926 *buf = (struct pipe_buffer) {
2927 .ops = &zero_pipe_buf_ops,
2928 .page = ZERO_PAGE(0),
2929 .offset = offset,
2930 .len = size,
2931 };
2932 pipe->head++;
2933 }
2934
2935 return size;
2936 }
2937
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2938 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2939 struct pipe_inode_info *pipe,
2940 size_t len, unsigned int flags)
2941 {
2942 struct inode *inode = file_inode(in);
2943 struct address_space *mapping = inode->i_mapping;
2944 struct folio *folio = NULL;
2945 size_t total_spliced = 0, used, npages, n, part;
2946 loff_t isize;
2947 int error = 0;
2948
2949 /* Work out how much data we can actually add into the pipe */
2950 used = pipe_occupancy(pipe->head, pipe->tail);
2951 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2952 len = min_t(size_t, len, npages * PAGE_SIZE);
2953
2954 do {
2955 if (*ppos >= i_size_read(inode))
2956 break;
2957
2958 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2959 SGP_READ);
2960 if (error) {
2961 if (error == -EINVAL)
2962 error = 0;
2963 break;
2964 }
2965 if (folio) {
2966 folio_unlock(folio);
2967
2968 if (folio_test_hwpoison(folio) ||
2969 (folio_test_large(folio) &&
2970 folio_test_has_hwpoisoned(folio))) {
2971 error = -EIO;
2972 break;
2973 }
2974 }
2975
2976 /*
2977 * i_size must be checked after we know the pages are Uptodate.
2978 *
2979 * Checking i_size after the check allows us to calculate
2980 * the correct value for "nr", which means the zero-filled
2981 * part of the page is not copied back to userspace (unless
2982 * another truncate extends the file - this is desired though).
2983 */
2984 isize = i_size_read(inode);
2985 if (unlikely(*ppos >= isize))
2986 break;
2987 part = min_t(loff_t, isize - *ppos, len);
2988
2989 if (folio) {
2990 /*
2991 * If users can be writing to this page using arbitrary
2992 * virtual addresses, take care about potential aliasing
2993 * before reading the page on the kernel side.
2994 */
2995 if (mapping_writably_mapped(mapping))
2996 flush_dcache_folio(folio);
2997 folio_mark_accessed(folio);
2998 /*
2999 * Ok, we have the page, and it's up-to-date, so we can
3000 * now splice it into the pipe.
3001 */
3002 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3003 folio_put(folio);
3004 folio = NULL;
3005 } else {
3006 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3007 }
3008
3009 if (!n)
3010 break;
3011 len -= n;
3012 total_spliced += n;
3013 *ppos += n;
3014 in->f_ra.prev_pos = *ppos;
3015 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3016 break;
3017
3018 cond_resched();
3019 } while (len);
3020
3021 if (folio)
3022 folio_put(folio);
3023
3024 file_accessed(in);
3025 return total_spliced ? total_spliced : error;
3026 }
3027
shmem_file_llseek(struct file * file,loff_t offset,int whence)3028 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3029 {
3030 struct address_space *mapping = file->f_mapping;
3031 struct inode *inode = mapping->host;
3032
3033 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3034 return generic_file_llseek_size(file, offset, whence,
3035 MAX_LFS_FILESIZE, i_size_read(inode));
3036 if (offset < 0)
3037 return -ENXIO;
3038
3039 inode_lock(inode);
3040 /* We're holding i_rwsem so we can access i_size directly */
3041 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3042 if (offset >= 0)
3043 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3044 inode_unlock(inode);
3045 return offset;
3046 }
3047
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3048 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3049 loff_t len)
3050 {
3051 struct inode *inode = file_inode(file);
3052 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3053 struct shmem_inode_info *info = SHMEM_I(inode);
3054 struct shmem_falloc shmem_falloc;
3055 pgoff_t start, index, end, undo_fallocend;
3056 int error;
3057
3058 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3059 return -EOPNOTSUPP;
3060
3061 inode_lock(inode);
3062
3063 if (mode & FALLOC_FL_PUNCH_HOLE) {
3064 struct address_space *mapping = file->f_mapping;
3065 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3066 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3067 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3068
3069 /* protected by i_rwsem */
3070 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3071 error = -EPERM;
3072 goto out;
3073 }
3074
3075 shmem_falloc.waitq = &shmem_falloc_waitq;
3076 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3077 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3078 spin_lock(&inode->i_lock);
3079 inode->i_private = &shmem_falloc;
3080 spin_unlock(&inode->i_lock);
3081
3082 if ((u64)unmap_end > (u64)unmap_start)
3083 unmap_mapping_range(mapping, unmap_start,
3084 1 + unmap_end - unmap_start, 0);
3085 shmem_truncate_range(inode, offset, offset + len - 1);
3086 /* No need to unmap again: hole-punching leaves COWed pages */
3087
3088 spin_lock(&inode->i_lock);
3089 inode->i_private = NULL;
3090 wake_up_all(&shmem_falloc_waitq);
3091 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3092 spin_unlock(&inode->i_lock);
3093 error = 0;
3094 goto out;
3095 }
3096
3097 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3098 error = inode_newsize_ok(inode, offset + len);
3099 if (error)
3100 goto out;
3101
3102 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3103 error = -EPERM;
3104 goto out;
3105 }
3106
3107 start = offset >> PAGE_SHIFT;
3108 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3109 /* Try to avoid a swapstorm if len is impossible to satisfy */
3110 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3111 error = -ENOSPC;
3112 goto out;
3113 }
3114
3115 shmem_falloc.waitq = NULL;
3116 shmem_falloc.start = start;
3117 shmem_falloc.next = start;
3118 shmem_falloc.nr_falloced = 0;
3119 shmem_falloc.nr_unswapped = 0;
3120 spin_lock(&inode->i_lock);
3121 inode->i_private = &shmem_falloc;
3122 spin_unlock(&inode->i_lock);
3123
3124 /*
3125 * info->fallocend is only relevant when huge pages might be
3126 * involved: to prevent split_huge_page() freeing fallocated
3127 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3128 */
3129 undo_fallocend = info->fallocend;
3130 if (info->fallocend < end)
3131 info->fallocend = end;
3132
3133 for (index = start; index < end; ) {
3134 struct folio *folio;
3135
3136 /*
3137 * Good, the fallocate(2) manpage permits EINTR: we may have
3138 * been interrupted because we are using up too much memory.
3139 */
3140 if (signal_pending(current))
3141 error = -EINTR;
3142 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3143 error = -ENOMEM;
3144 else
3145 error = shmem_get_folio(inode, index, &folio,
3146 SGP_FALLOC);
3147 if (error) {
3148 info->fallocend = undo_fallocend;
3149 /* Remove the !uptodate folios we added */
3150 if (index > start) {
3151 shmem_undo_range(inode,
3152 (loff_t)start << PAGE_SHIFT,
3153 ((loff_t)index << PAGE_SHIFT) - 1, true);
3154 }
3155 goto undone;
3156 }
3157
3158 /*
3159 * Here is a more important optimization than it appears:
3160 * a second SGP_FALLOC on the same large folio will clear it,
3161 * making it uptodate and un-undoable if we fail later.
3162 */
3163 index = folio_next_index(folio);
3164 /* Beware 32-bit wraparound */
3165 if (!index)
3166 index--;
3167
3168 /*
3169 * Inform shmem_writepage() how far we have reached.
3170 * No need for lock or barrier: we have the page lock.
3171 */
3172 if (!folio_test_uptodate(folio))
3173 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3174 shmem_falloc.next = index;
3175
3176 /*
3177 * If !uptodate, leave it that way so that freeable folios
3178 * can be recognized if we need to rollback on error later.
3179 * But mark it dirty so that memory pressure will swap rather
3180 * than free the folios we are allocating (and SGP_CACHE folios
3181 * might still be clean: we now need to mark those dirty too).
3182 */
3183 folio_mark_dirty(folio);
3184 folio_unlock(folio);
3185 folio_put(folio);
3186 cond_resched();
3187 }
3188
3189 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3190 i_size_write(inode, offset + len);
3191 undone:
3192 spin_lock(&inode->i_lock);
3193 inode->i_private = NULL;
3194 spin_unlock(&inode->i_lock);
3195 out:
3196 if (!error)
3197 file_modified(file);
3198 inode_unlock(inode);
3199 return error;
3200 }
3201
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3202 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3203 {
3204 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3205
3206 buf->f_type = TMPFS_MAGIC;
3207 buf->f_bsize = PAGE_SIZE;
3208 buf->f_namelen = NAME_MAX;
3209 if (sbinfo->max_blocks) {
3210 buf->f_blocks = sbinfo->max_blocks;
3211 buf->f_bavail =
3212 buf->f_bfree = sbinfo->max_blocks -
3213 percpu_counter_sum(&sbinfo->used_blocks);
3214 }
3215 if (sbinfo->max_inodes) {
3216 buf->f_files = sbinfo->max_inodes;
3217 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3218 }
3219 /* else leave those fields 0 like simple_statfs */
3220
3221 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3222
3223 return 0;
3224 }
3225
3226 /*
3227 * File creation. Allocate an inode, and we're done..
3228 */
3229 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3230 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3231 struct dentry *dentry, umode_t mode, dev_t dev)
3232 {
3233 struct inode *inode;
3234 int error;
3235
3236 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3237 if (IS_ERR(inode))
3238 return PTR_ERR(inode);
3239
3240 error = simple_acl_create(dir, inode);
3241 if (error)
3242 goto out_iput;
3243 error = security_inode_init_security(inode, dir,
3244 &dentry->d_name,
3245 shmem_initxattrs, NULL);
3246 if (error && error != -EOPNOTSUPP)
3247 goto out_iput;
3248
3249 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3250 if (error)
3251 goto out_iput;
3252
3253 dir->i_size += BOGO_DIRENT_SIZE;
3254 dir->i_mtime = inode_set_ctime_current(dir);
3255 inode_inc_iversion(dir);
3256 d_instantiate(dentry, inode);
3257 dget(dentry); /* Extra count - pin the dentry in core */
3258 return error;
3259
3260 out_iput:
3261 iput(inode);
3262 return error;
3263 }
3264
3265 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3266 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3267 struct file *file, umode_t mode)
3268 {
3269 struct inode *inode;
3270 int error;
3271
3272 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3273
3274 if (IS_ERR(inode)) {
3275 error = PTR_ERR(inode);
3276 goto err_out;
3277 }
3278
3279 error = security_inode_init_security(inode, dir,
3280 NULL,
3281 shmem_initxattrs, NULL);
3282 if (error && error != -EOPNOTSUPP)
3283 goto out_iput;
3284 error = simple_acl_create(dir, inode);
3285 if (error)
3286 goto out_iput;
3287 d_tmpfile(file, inode);
3288
3289 err_out:
3290 return finish_open_simple(file, error);
3291 out_iput:
3292 iput(inode);
3293 return error;
3294 }
3295
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3296 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3297 struct dentry *dentry, umode_t mode)
3298 {
3299 int error;
3300
3301 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3302 if (error)
3303 return error;
3304 inc_nlink(dir);
3305 return 0;
3306 }
3307
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3308 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3309 struct dentry *dentry, umode_t mode, bool excl)
3310 {
3311 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3312 }
3313
3314 /*
3315 * Link a file..
3316 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3317 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3318 {
3319 struct inode *inode = d_inode(old_dentry);
3320 int ret = 0;
3321
3322 /*
3323 * No ordinary (disk based) filesystem counts links as inodes;
3324 * but each new link needs a new dentry, pinning lowmem, and
3325 * tmpfs dentries cannot be pruned until they are unlinked.
3326 * But if an O_TMPFILE file is linked into the tmpfs, the
3327 * first link must skip that, to get the accounting right.
3328 */
3329 if (inode->i_nlink) {
3330 ret = shmem_reserve_inode(inode->i_sb, NULL);
3331 if (ret)
3332 goto out;
3333 }
3334
3335 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3336 if (ret) {
3337 if (inode->i_nlink)
3338 shmem_free_inode(inode->i_sb, 0);
3339 goto out;
3340 }
3341
3342 dir->i_size += BOGO_DIRENT_SIZE;
3343 dir->i_mtime = inode_set_ctime_to_ts(dir,
3344 inode_set_ctime_current(inode));
3345 inode_inc_iversion(dir);
3346 inc_nlink(inode);
3347 ihold(inode); /* New dentry reference */
3348 dget(dentry); /* Extra pinning count for the created dentry */
3349 d_instantiate(dentry, inode);
3350 out:
3351 return ret;
3352 }
3353
shmem_unlink(struct inode * dir,struct dentry * dentry)3354 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3355 {
3356 struct inode *inode = d_inode(dentry);
3357
3358 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3359 shmem_free_inode(inode->i_sb, 0);
3360
3361 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3362
3363 dir->i_size -= BOGO_DIRENT_SIZE;
3364 dir->i_mtime = inode_set_ctime_to_ts(dir,
3365 inode_set_ctime_current(inode));
3366 inode_inc_iversion(dir);
3367 drop_nlink(inode);
3368 dput(dentry); /* Undo the count from "create" - this does all the work */
3369 return 0;
3370 }
3371
shmem_rmdir(struct inode * dir,struct dentry * dentry)3372 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3373 {
3374 if (!simple_empty(dentry))
3375 return -ENOTEMPTY;
3376
3377 drop_nlink(d_inode(dentry));
3378 drop_nlink(dir);
3379 return shmem_unlink(dir, dentry);
3380 }
3381
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3382 static int shmem_whiteout(struct mnt_idmap *idmap,
3383 struct inode *old_dir, struct dentry *old_dentry)
3384 {
3385 struct dentry *whiteout;
3386 int error;
3387
3388 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3389 if (!whiteout)
3390 return -ENOMEM;
3391
3392 error = shmem_mknod(idmap, old_dir, whiteout,
3393 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3394 dput(whiteout);
3395 if (error)
3396 return error;
3397
3398 /*
3399 * Cheat and hash the whiteout while the old dentry is still in
3400 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3401 *
3402 * d_lookup() will consistently find one of them at this point,
3403 * not sure which one, but that isn't even important.
3404 */
3405 d_rehash(whiteout);
3406 return 0;
3407 }
3408
3409 /*
3410 * The VFS layer already does all the dentry stuff for rename,
3411 * we just have to decrement the usage count for the target if
3412 * it exists so that the VFS layer correctly free's it when it
3413 * gets overwritten.
3414 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3415 static int shmem_rename2(struct mnt_idmap *idmap,
3416 struct inode *old_dir, struct dentry *old_dentry,
3417 struct inode *new_dir, struct dentry *new_dentry,
3418 unsigned int flags)
3419 {
3420 struct inode *inode = d_inode(old_dentry);
3421 int they_are_dirs = S_ISDIR(inode->i_mode);
3422 int error;
3423
3424 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3425 return -EINVAL;
3426
3427 if (flags & RENAME_EXCHANGE)
3428 return simple_offset_rename_exchange(old_dir, old_dentry,
3429 new_dir, new_dentry);
3430
3431 if (!simple_empty(new_dentry))
3432 return -ENOTEMPTY;
3433
3434 if (flags & RENAME_WHITEOUT) {
3435 error = shmem_whiteout(idmap, old_dir, old_dentry);
3436 if (error)
3437 return error;
3438 }
3439
3440 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3441 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3442 if (error)
3443 return error;
3444
3445 if (d_really_is_positive(new_dentry)) {
3446 (void) shmem_unlink(new_dir, new_dentry);
3447 if (they_are_dirs) {
3448 drop_nlink(d_inode(new_dentry));
3449 drop_nlink(old_dir);
3450 }
3451 } else if (they_are_dirs) {
3452 drop_nlink(old_dir);
3453 inc_nlink(new_dir);
3454 }
3455
3456 old_dir->i_size -= BOGO_DIRENT_SIZE;
3457 new_dir->i_size += BOGO_DIRENT_SIZE;
3458 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3459 inode_inc_iversion(old_dir);
3460 inode_inc_iversion(new_dir);
3461 return 0;
3462 }
3463
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3464 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3465 struct dentry *dentry, const char *symname)
3466 {
3467 int error;
3468 int len;
3469 struct inode *inode;
3470 struct folio *folio;
3471
3472 len = strlen(symname) + 1;
3473 if (len > PAGE_SIZE)
3474 return -ENAMETOOLONG;
3475
3476 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3477 VM_NORESERVE);
3478
3479 if (IS_ERR(inode))
3480 return PTR_ERR(inode);
3481
3482 error = security_inode_init_security(inode, dir, &dentry->d_name,
3483 shmem_initxattrs, NULL);
3484 if (error && error != -EOPNOTSUPP)
3485 goto out_iput;
3486
3487 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3488 if (error)
3489 goto out_iput;
3490
3491 inode->i_size = len-1;
3492 if (len <= SHORT_SYMLINK_LEN) {
3493 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3494 if (!inode->i_link) {
3495 error = -ENOMEM;
3496 goto out_remove_offset;
3497 }
3498 inode->i_op = &shmem_short_symlink_operations;
3499 } else {
3500 inode_nohighmem(inode);
3501 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3502 if (error)
3503 goto out_remove_offset;
3504 inode->i_mapping->a_ops = &shmem_aops;
3505 inode->i_op = &shmem_symlink_inode_operations;
3506 memcpy(folio_address(folio), symname, len);
3507 folio_mark_uptodate(folio);
3508 folio_mark_dirty(folio);
3509 folio_unlock(folio);
3510 folio_put(folio);
3511 }
3512 dir->i_size += BOGO_DIRENT_SIZE;
3513 dir->i_mtime = inode_set_ctime_current(dir);
3514 inode_inc_iversion(dir);
3515 d_instantiate(dentry, inode);
3516 dget(dentry);
3517 return 0;
3518
3519 out_remove_offset:
3520 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3521 out_iput:
3522 iput(inode);
3523 return error;
3524 }
3525
shmem_put_link(void * arg)3526 static void shmem_put_link(void *arg)
3527 {
3528 folio_mark_accessed(arg);
3529 folio_put(arg);
3530 }
3531
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3532 static const char *shmem_get_link(struct dentry *dentry,
3533 struct inode *inode,
3534 struct delayed_call *done)
3535 {
3536 struct folio *folio = NULL;
3537 int error;
3538
3539 if (!dentry) {
3540 folio = filemap_get_folio(inode->i_mapping, 0);
3541 if (IS_ERR(folio))
3542 return ERR_PTR(-ECHILD);
3543 if (PageHWPoison(folio_page(folio, 0)) ||
3544 !folio_test_uptodate(folio)) {
3545 folio_put(folio);
3546 return ERR_PTR(-ECHILD);
3547 }
3548 } else {
3549 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3550 if (error)
3551 return ERR_PTR(error);
3552 if (!folio)
3553 return ERR_PTR(-ECHILD);
3554 if (PageHWPoison(folio_page(folio, 0))) {
3555 folio_unlock(folio);
3556 folio_put(folio);
3557 return ERR_PTR(-ECHILD);
3558 }
3559 folio_unlock(folio);
3560 }
3561 set_delayed_call(done, shmem_put_link, folio);
3562 return folio_address(folio);
3563 }
3564
3565 #ifdef CONFIG_TMPFS_XATTR
3566
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)3567 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3568 {
3569 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3570
3571 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3572
3573 return 0;
3574 }
3575
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3576 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3577 struct dentry *dentry, struct fileattr *fa)
3578 {
3579 struct inode *inode = d_inode(dentry);
3580 struct shmem_inode_info *info = SHMEM_I(inode);
3581
3582 if (fileattr_has_fsx(fa))
3583 return -EOPNOTSUPP;
3584 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3585 return -EOPNOTSUPP;
3586
3587 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3588 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3589
3590 shmem_set_inode_flags(inode, info->fsflags);
3591 inode_set_ctime_current(inode);
3592 inode_inc_iversion(inode);
3593 return 0;
3594 }
3595
3596 /*
3597 * Superblocks without xattr inode operations may get some security.* xattr
3598 * support from the LSM "for free". As soon as we have any other xattrs
3599 * like ACLs, we also need to implement the security.* handlers at
3600 * filesystem level, though.
3601 */
3602
3603 /*
3604 * Callback for security_inode_init_security() for acquiring xattrs.
3605 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3606 static int shmem_initxattrs(struct inode *inode,
3607 const struct xattr *xattr_array,
3608 void *fs_info)
3609 {
3610 struct shmem_inode_info *info = SHMEM_I(inode);
3611 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3612 const struct xattr *xattr;
3613 struct simple_xattr *new_xattr;
3614 size_t ispace = 0;
3615 size_t len;
3616
3617 if (sbinfo->max_inodes) {
3618 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3619 ispace += simple_xattr_space(xattr->name,
3620 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3621 }
3622 if (ispace) {
3623 raw_spin_lock(&sbinfo->stat_lock);
3624 if (sbinfo->free_ispace < ispace)
3625 ispace = 0;
3626 else
3627 sbinfo->free_ispace -= ispace;
3628 raw_spin_unlock(&sbinfo->stat_lock);
3629 if (!ispace)
3630 return -ENOSPC;
3631 }
3632 }
3633
3634 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3635 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3636 if (!new_xattr)
3637 break;
3638
3639 len = strlen(xattr->name) + 1;
3640 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3641 GFP_KERNEL_ACCOUNT);
3642 if (!new_xattr->name) {
3643 kvfree(new_xattr);
3644 break;
3645 }
3646
3647 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3648 XATTR_SECURITY_PREFIX_LEN);
3649 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3650 xattr->name, len);
3651
3652 simple_xattr_add(&info->xattrs, new_xattr);
3653 }
3654
3655 if (xattr->name != NULL) {
3656 if (ispace) {
3657 raw_spin_lock(&sbinfo->stat_lock);
3658 sbinfo->free_ispace += ispace;
3659 raw_spin_unlock(&sbinfo->stat_lock);
3660 }
3661 simple_xattrs_free(&info->xattrs, NULL);
3662 return -ENOMEM;
3663 }
3664
3665 return 0;
3666 }
3667
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3668 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3669 struct dentry *unused, struct inode *inode,
3670 const char *name, void *buffer, size_t size)
3671 {
3672 struct shmem_inode_info *info = SHMEM_I(inode);
3673
3674 name = xattr_full_name(handler, name);
3675 return simple_xattr_get(&info->xattrs, name, buffer, size);
3676 }
3677
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3678 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3679 struct mnt_idmap *idmap,
3680 struct dentry *unused, struct inode *inode,
3681 const char *name, const void *value,
3682 size_t size, int flags)
3683 {
3684 struct shmem_inode_info *info = SHMEM_I(inode);
3685 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3686 struct simple_xattr *old_xattr;
3687 size_t ispace = 0;
3688
3689 name = xattr_full_name(handler, name);
3690 if (value && sbinfo->max_inodes) {
3691 ispace = simple_xattr_space(name, size);
3692 raw_spin_lock(&sbinfo->stat_lock);
3693 if (sbinfo->free_ispace < ispace)
3694 ispace = 0;
3695 else
3696 sbinfo->free_ispace -= ispace;
3697 raw_spin_unlock(&sbinfo->stat_lock);
3698 if (!ispace)
3699 return -ENOSPC;
3700 }
3701
3702 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3703 if (!IS_ERR(old_xattr)) {
3704 ispace = 0;
3705 if (old_xattr && sbinfo->max_inodes)
3706 ispace = simple_xattr_space(old_xattr->name,
3707 old_xattr->size);
3708 simple_xattr_free(old_xattr);
3709 old_xattr = NULL;
3710 inode_set_ctime_current(inode);
3711 inode_inc_iversion(inode);
3712 }
3713 if (ispace) {
3714 raw_spin_lock(&sbinfo->stat_lock);
3715 sbinfo->free_ispace += ispace;
3716 raw_spin_unlock(&sbinfo->stat_lock);
3717 }
3718 return PTR_ERR(old_xattr);
3719 }
3720
3721 static const struct xattr_handler shmem_security_xattr_handler = {
3722 .prefix = XATTR_SECURITY_PREFIX,
3723 .get = shmem_xattr_handler_get,
3724 .set = shmem_xattr_handler_set,
3725 };
3726
3727 static const struct xattr_handler shmem_trusted_xattr_handler = {
3728 .prefix = XATTR_TRUSTED_PREFIX,
3729 .get = shmem_xattr_handler_get,
3730 .set = shmem_xattr_handler_set,
3731 };
3732
3733 static const struct xattr_handler shmem_user_xattr_handler = {
3734 .prefix = XATTR_USER_PREFIX,
3735 .get = shmem_xattr_handler_get,
3736 .set = shmem_xattr_handler_set,
3737 };
3738
3739 static const struct xattr_handler *shmem_xattr_handlers[] = {
3740 &shmem_security_xattr_handler,
3741 &shmem_trusted_xattr_handler,
3742 &shmem_user_xattr_handler,
3743 NULL
3744 };
3745
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3746 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3747 {
3748 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3749 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3750 }
3751 #endif /* CONFIG_TMPFS_XATTR */
3752
3753 static const struct inode_operations shmem_short_symlink_operations = {
3754 .getattr = shmem_getattr,
3755 .setattr = shmem_setattr,
3756 .get_link = simple_get_link,
3757 #ifdef CONFIG_TMPFS_XATTR
3758 .listxattr = shmem_listxattr,
3759 #endif
3760 };
3761
3762 static const struct inode_operations shmem_symlink_inode_operations = {
3763 .getattr = shmem_getattr,
3764 .setattr = shmem_setattr,
3765 .get_link = shmem_get_link,
3766 #ifdef CONFIG_TMPFS_XATTR
3767 .listxattr = shmem_listxattr,
3768 #endif
3769 };
3770
shmem_get_parent(struct dentry * child)3771 static struct dentry *shmem_get_parent(struct dentry *child)
3772 {
3773 return ERR_PTR(-ESTALE);
3774 }
3775
shmem_match(struct inode * ino,void * vfh)3776 static int shmem_match(struct inode *ino, void *vfh)
3777 {
3778 __u32 *fh = vfh;
3779 __u64 inum = fh[2];
3780 inum = (inum << 32) | fh[1];
3781 return ino->i_ino == inum && fh[0] == ino->i_generation;
3782 }
3783
3784 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3785 static struct dentry *shmem_find_alias(struct inode *inode)
3786 {
3787 struct dentry *alias = d_find_alias(inode);
3788
3789 return alias ?: d_find_any_alias(inode);
3790 }
3791
3792
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3793 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3794 struct fid *fid, int fh_len, int fh_type)
3795 {
3796 struct inode *inode;
3797 struct dentry *dentry = NULL;
3798 u64 inum;
3799
3800 if (fh_len < 3)
3801 return NULL;
3802
3803 inum = fid->raw[2];
3804 inum = (inum << 32) | fid->raw[1];
3805
3806 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3807 shmem_match, fid->raw);
3808 if (inode) {
3809 dentry = shmem_find_alias(inode);
3810 iput(inode);
3811 }
3812
3813 return dentry;
3814 }
3815
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3816 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3817 struct inode *parent)
3818 {
3819 if (*len < 3) {
3820 *len = 3;
3821 return FILEID_INVALID;
3822 }
3823
3824 if (inode_unhashed(inode)) {
3825 /* Unfortunately insert_inode_hash is not idempotent,
3826 * so as we hash inodes here rather than at creation
3827 * time, we need a lock to ensure we only try
3828 * to do it once
3829 */
3830 static DEFINE_SPINLOCK(lock);
3831 spin_lock(&lock);
3832 if (inode_unhashed(inode))
3833 __insert_inode_hash(inode,
3834 inode->i_ino + inode->i_generation);
3835 spin_unlock(&lock);
3836 }
3837
3838 fh[0] = inode->i_generation;
3839 fh[1] = inode->i_ino;
3840 fh[2] = ((__u64)inode->i_ino) >> 32;
3841
3842 *len = 3;
3843 return 1;
3844 }
3845
3846 static const struct export_operations shmem_export_ops = {
3847 .get_parent = shmem_get_parent,
3848 .encode_fh = shmem_encode_fh,
3849 .fh_to_dentry = shmem_fh_to_dentry,
3850 };
3851
3852 enum shmem_param {
3853 Opt_gid,
3854 Opt_huge,
3855 Opt_mode,
3856 Opt_mpol,
3857 Opt_nr_blocks,
3858 Opt_nr_inodes,
3859 Opt_size,
3860 Opt_uid,
3861 Opt_inode32,
3862 Opt_inode64,
3863 Opt_noswap,
3864 Opt_quota,
3865 Opt_usrquota,
3866 Opt_grpquota,
3867 Opt_usrquota_block_hardlimit,
3868 Opt_usrquota_inode_hardlimit,
3869 Opt_grpquota_block_hardlimit,
3870 Opt_grpquota_inode_hardlimit,
3871 };
3872
3873 static const struct constant_table shmem_param_enums_huge[] = {
3874 {"never", SHMEM_HUGE_NEVER },
3875 {"always", SHMEM_HUGE_ALWAYS },
3876 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3877 {"advise", SHMEM_HUGE_ADVISE },
3878 {}
3879 };
3880
3881 const struct fs_parameter_spec shmem_fs_parameters[] = {
3882 fsparam_u32 ("gid", Opt_gid),
3883 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3884 fsparam_u32oct("mode", Opt_mode),
3885 fsparam_string("mpol", Opt_mpol),
3886 fsparam_string("nr_blocks", Opt_nr_blocks),
3887 fsparam_string("nr_inodes", Opt_nr_inodes),
3888 fsparam_string("size", Opt_size),
3889 fsparam_u32 ("uid", Opt_uid),
3890 fsparam_flag ("inode32", Opt_inode32),
3891 fsparam_flag ("inode64", Opt_inode64),
3892 fsparam_flag ("noswap", Opt_noswap),
3893 #ifdef CONFIG_TMPFS_QUOTA
3894 fsparam_flag ("quota", Opt_quota),
3895 fsparam_flag ("usrquota", Opt_usrquota),
3896 fsparam_flag ("grpquota", Opt_grpquota),
3897 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3898 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3899 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3900 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3901 #endif
3902 {}
3903 };
3904
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3905 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3906 {
3907 struct shmem_options *ctx = fc->fs_private;
3908 struct fs_parse_result result;
3909 unsigned long long size;
3910 char *rest;
3911 int opt;
3912 kuid_t kuid;
3913 kgid_t kgid;
3914
3915 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3916 if (opt < 0)
3917 return opt;
3918
3919 switch (opt) {
3920 case Opt_size:
3921 size = memparse(param->string, &rest);
3922 if (*rest == '%') {
3923 size <<= PAGE_SHIFT;
3924 size *= totalram_pages();
3925 do_div(size, 100);
3926 rest++;
3927 }
3928 if (*rest)
3929 goto bad_value;
3930 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3931 ctx->seen |= SHMEM_SEEN_BLOCKS;
3932 break;
3933 case Opt_nr_blocks:
3934 ctx->blocks = memparse(param->string, &rest);
3935 if (*rest || ctx->blocks > LONG_MAX)
3936 goto bad_value;
3937 ctx->seen |= SHMEM_SEEN_BLOCKS;
3938 break;
3939 case Opt_nr_inodes:
3940 ctx->inodes = memparse(param->string, &rest);
3941 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3942 goto bad_value;
3943 ctx->seen |= SHMEM_SEEN_INODES;
3944 break;
3945 case Opt_mode:
3946 ctx->mode = result.uint_32 & 07777;
3947 break;
3948 case Opt_uid:
3949 kuid = make_kuid(current_user_ns(), result.uint_32);
3950 if (!uid_valid(kuid))
3951 goto bad_value;
3952
3953 /*
3954 * The requested uid must be representable in the
3955 * filesystem's idmapping.
3956 */
3957 if (!kuid_has_mapping(fc->user_ns, kuid))
3958 goto bad_value;
3959
3960 ctx->uid = kuid;
3961 break;
3962 case Opt_gid:
3963 kgid = make_kgid(current_user_ns(), result.uint_32);
3964 if (!gid_valid(kgid))
3965 goto bad_value;
3966
3967 /*
3968 * The requested gid must be representable in the
3969 * filesystem's idmapping.
3970 */
3971 if (!kgid_has_mapping(fc->user_ns, kgid))
3972 goto bad_value;
3973
3974 ctx->gid = kgid;
3975 break;
3976 case Opt_huge:
3977 ctx->huge = result.uint_32;
3978 if (ctx->huge != SHMEM_HUGE_NEVER &&
3979 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3980 has_transparent_hugepage()))
3981 goto unsupported_parameter;
3982 ctx->seen |= SHMEM_SEEN_HUGE;
3983 break;
3984 case Opt_mpol:
3985 if (IS_ENABLED(CONFIG_NUMA)) {
3986 mpol_put(ctx->mpol);
3987 ctx->mpol = NULL;
3988 if (mpol_parse_str(param->string, &ctx->mpol))
3989 goto bad_value;
3990 break;
3991 }
3992 goto unsupported_parameter;
3993 case Opt_inode32:
3994 ctx->full_inums = false;
3995 ctx->seen |= SHMEM_SEEN_INUMS;
3996 break;
3997 case Opt_inode64:
3998 if (sizeof(ino_t) < 8) {
3999 return invalfc(fc,
4000 "Cannot use inode64 with <64bit inums in kernel\n");
4001 }
4002 ctx->full_inums = true;
4003 ctx->seen |= SHMEM_SEEN_INUMS;
4004 break;
4005 case Opt_noswap:
4006 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4007 return invalfc(fc,
4008 "Turning off swap in unprivileged tmpfs mounts unsupported");
4009 }
4010 ctx->noswap = true;
4011 ctx->seen |= SHMEM_SEEN_NOSWAP;
4012 break;
4013 case Opt_quota:
4014 if (fc->user_ns != &init_user_ns)
4015 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4016 ctx->seen |= SHMEM_SEEN_QUOTA;
4017 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4018 break;
4019 case Opt_usrquota:
4020 if (fc->user_ns != &init_user_ns)
4021 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4022 ctx->seen |= SHMEM_SEEN_QUOTA;
4023 ctx->quota_types |= QTYPE_MASK_USR;
4024 break;
4025 case Opt_grpquota:
4026 if (fc->user_ns != &init_user_ns)
4027 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4028 ctx->seen |= SHMEM_SEEN_QUOTA;
4029 ctx->quota_types |= QTYPE_MASK_GRP;
4030 break;
4031 case Opt_usrquota_block_hardlimit:
4032 size = memparse(param->string, &rest);
4033 if (*rest || !size)
4034 goto bad_value;
4035 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4036 return invalfc(fc,
4037 "User quota block hardlimit too large.");
4038 ctx->qlimits.usrquota_bhardlimit = size;
4039 break;
4040 case Opt_grpquota_block_hardlimit:
4041 size = memparse(param->string, &rest);
4042 if (*rest || !size)
4043 goto bad_value;
4044 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4045 return invalfc(fc,
4046 "Group quota block hardlimit too large.");
4047 ctx->qlimits.grpquota_bhardlimit = size;
4048 break;
4049 case Opt_usrquota_inode_hardlimit:
4050 size = memparse(param->string, &rest);
4051 if (*rest || !size)
4052 goto bad_value;
4053 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4054 return invalfc(fc,
4055 "User quota inode hardlimit too large.");
4056 ctx->qlimits.usrquota_ihardlimit = size;
4057 break;
4058 case Opt_grpquota_inode_hardlimit:
4059 size = memparse(param->string, &rest);
4060 if (*rest || !size)
4061 goto bad_value;
4062 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4063 return invalfc(fc,
4064 "Group quota inode hardlimit too large.");
4065 ctx->qlimits.grpquota_ihardlimit = size;
4066 break;
4067 }
4068 return 0;
4069
4070 unsupported_parameter:
4071 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4072 bad_value:
4073 return invalfc(fc, "Bad value for '%s'", param->key);
4074 }
4075
shmem_parse_options(struct fs_context * fc,void * data)4076 static int shmem_parse_options(struct fs_context *fc, void *data)
4077 {
4078 char *options = data;
4079
4080 if (options) {
4081 int err = security_sb_eat_lsm_opts(options, &fc->security);
4082 if (err)
4083 return err;
4084 }
4085
4086 while (options != NULL) {
4087 char *this_char = options;
4088 for (;;) {
4089 /*
4090 * NUL-terminate this option: unfortunately,
4091 * mount options form a comma-separated list,
4092 * but mpol's nodelist may also contain commas.
4093 */
4094 options = strchr(options, ',');
4095 if (options == NULL)
4096 break;
4097 options++;
4098 if (!isdigit(*options)) {
4099 options[-1] = '\0';
4100 break;
4101 }
4102 }
4103 if (*this_char) {
4104 char *value = strchr(this_char, '=');
4105 size_t len = 0;
4106 int err;
4107
4108 if (value) {
4109 *value++ = '\0';
4110 len = strlen(value);
4111 }
4112 err = vfs_parse_fs_string(fc, this_char, value, len);
4113 if (err < 0)
4114 return err;
4115 }
4116 }
4117 return 0;
4118 }
4119
4120 /*
4121 * Reconfigure a shmem filesystem.
4122 */
shmem_reconfigure(struct fs_context * fc)4123 static int shmem_reconfigure(struct fs_context *fc)
4124 {
4125 struct shmem_options *ctx = fc->fs_private;
4126 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4127 unsigned long used_isp;
4128 struct mempolicy *mpol = NULL;
4129 const char *err;
4130
4131 raw_spin_lock(&sbinfo->stat_lock);
4132 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4133
4134 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4135 if (!sbinfo->max_blocks) {
4136 err = "Cannot retroactively limit size";
4137 goto out;
4138 }
4139 if (percpu_counter_compare(&sbinfo->used_blocks,
4140 ctx->blocks) > 0) {
4141 err = "Too small a size for current use";
4142 goto out;
4143 }
4144 }
4145 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4146 if (!sbinfo->max_inodes) {
4147 err = "Cannot retroactively limit inodes";
4148 goto out;
4149 }
4150 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4151 err = "Too few inodes for current use";
4152 goto out;
4153 }
4154 }
4155
4156 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4157 sbinfo->next_ino > UINT_MAX) {
4158 err = "Current inum too high to switch to 32-bit inums";
4159 goto out;
4160 }
4161 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4162 err = "Cannot disable swap on remount";
4163 goto out;
4164 }
4165 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4166 err = "Cannot enable swap on remount if it was disabled on first mount";
4167 goto out;
4168 }
4169
4170 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4171 !sb_any_quota_loaded(fc->root->d_sb)) {
4172 err = "Cannot enable quota on remount";
4173 goto out;
4174 }
4175
4176 #ifdef CONFIG_TMPFS_QUOTA
4177 #define CHANGED_LIMIT(name) \
4178 (ctx->qlimits.name## hardlimit && \
4179 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4180
4181 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4182 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4183 err = "Cannot change global quota limit on remount";
4184 goto out;
4185 }
4186 #endif /* CONFIG_TMPFS_QUOTA */
4187
4188 if (ctx->seen & SHMEM_SEEN_HUGE)
4189 sbinfo->huge = ctx->huge;
4190 if (ctx->seen & SHMEM_SEEN_INUMS)
4191 sbinfo->full_inums = ctx->full_inums;
4192 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4193 sbinfo->max_blocks = ctx->blocks;
4194 if (ctx->seen & SHMEM_SEEN_INODES) {
4195 sbinfo->max_inodes = ctx->inodes;
4196 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4197 }
4198
4199 /*
4200 * Preserve previous mempolicy unless mpol remount option was specified.
4201 */
4202 if (ctx->mpol) {
4203 mpol = sbinfo->mpol;
4204 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4205 ctx->mpol = NULL;
4206 }
4207
4208 if (ctx->noswap)
4209 sbinfo->noswap = true;
4210
4211 raw_spin_unlock(&sbinfo->stat_lock);
4212 mpol_put(mpol);
4213 return 0;
4214 out:
4215 raw_spin_unlock(&sbinfo->stat_lock);
4216 return invalfc(fc, "%s", err);
4217 }
4218
shmem_show_options(struct seq_file * seq,struct dentry * root)4219 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4220 {
4221 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4222 struct mempolicy *mpol;
4223
4224 if (sbinfo->max_blocks != shmem_default_max_blocks())
4225 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4226 if (sbinfo->max_inodes != shmem_default_max_inodes())
4227 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4228 if (sbinfo->mode != (0777 | S_ISVTX))
4229 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4230 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4231 seq_printf(seq, ",uid=%u",
4232 from_kuid_munged(&init_user_ns, sbinfo->uid));
4233 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4234 seq_printf(seq, ",gid=%u",
4235 from_kgid_munged(&init_user_ns, sbinfo->gid));
4236
4237 /*
4238 * Showing inode{64,32} might be useful even if it's the system default,
4239 * since then people don't have to resort to checking both here and
4240 * /proc/config.gz to confirm 64-bit inums were successfully applied
4241 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4242 *
4243 * We hide it when inode64 isn't the default and we are using 32-bit
4244 * inodes, since that probably just means the feature isn't even under
4245 * consideration.
4246 *
4247 * As such:
4248 *
4249 * +-----------------+-----------------+
4250 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4251 * +------------------+-----------------+-----------------+
4252 * | full_inums=true | show | show |
4253 * | full_inums=false | show | hide |
4254 * +------------------+-----------------+-----------------+
4255 *
4256 */
4257 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4258 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4260 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4261 if (sbinfo->huge)
4262 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4263 #endif
4264 mpol = shmem_get_sbmpol(sbinfo);
4265 shmem_show_mpol(seq, mpol);
4266 mpol_put(mpol);
4267 if (sbinfo->noswap)
4268 seq_printf(seq, ",noswap");
4269 return 0;
4270 }
4271
4272 #endif /* CONFIG_TMPFS */
4273
shmem_put_super(struct super_block * sb)4274 static void shmem_put_super(struct super_block *sb)
4275 {
4276 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4277
4278 #ifdef CONFIG_TMPFS_QUOTA
4279 shmem_disable_quotas(sb);
4280 #endif
4281 free_percpu(sbinfo->ino_batch);
4282 percpu_counter_destroy(&sbinfo->used_blocks);
4283 mpol_put(sbinfo->mpol);
4284 kfree(sbinfo);
4285 sb->s_fs_info = NULL;
4286 }
4287
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4288 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4289 {
4290 struct shmem_options *ctx = fc->fs_private;
4291 struct inode *inode;
4292 struct shmem_sb_info *sbinfo;
4293 int error = -ENOMEM;
4294
4295 /* Round up to L1_CACHE_BYTES to resist false sharing */
4296 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4297 L1_CACHE_BYTES), GFP_KERNEL);
4298 if (!sbinfo)
4299 return error;
4300
4301 sb->s_fs_info = sbinfo;
4302
4303 #ifdef CONFIG_TMPFS
4304 /*
4305 * Per default we only allow half of the physical ram per
4306 * tmpfs instance, limiting inodes to one per page of lowmem;
4307 * but the internal instance is left unlimited.
4308 */
4309 if (!(sb->s_flags & SB_KERNMOUNT)) {
4310 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4311 ctx->blocks = shmem_default_max_blocks();
4312 if (!(ctx->seen & SHMEM_SEEN_INODES))
4313 ctx->inodes = shmem_default_max_inodes();
4314 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4315 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4316 sbinfo->noswap = ctx->noswap;
4317 } else {
4318 sb->s_flags |= SB_NOUSER;
4319 }
4320 sb->s_export_op = &shmem_export_ops;
4321 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4322 #else
4323 sb->s_flags |= SB_NOUSER;
4324 #endif
4325 sbinfo->max_blocks = ctx->blocks;
4326 sbinfo->max_inodes = ctx->inodes;
4327 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4328 if (sb->s_flags & SB_KERNMOUNT) {
4329 sbinfo->ino_batch = alloc_percpu(ino_t);
4330 if (!sbinfo->ino_batch)
4331 goto failed;
4332 }
4333 sbinfo->uid = ctx->uid;
4334 sbinfo->gid = ctx->gid;
4335 sbinfo->full_inums = ctx->full_inums;
4336 sbinfo->mode = ctx->mode;
4337 sbinfo->huge = ctx->huge;
4338 sbinfo->mpol = ctx->mpol;
4339 ctx->mpol = NULL;
4340
4341 raw_spin_lock_init(&sbinfo->stat_lock);
4342 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4343 goto failed;
4344 spin_lock_init(&sbinfo->shrinklist_lock);
4345 INIT_LIST_HEAD(&sbinfo->shrinklist);
4346
4347 sb->s_maxbytes = MAX_LFS_FILESIZE;
4348 sb->s_blocksize = PAGE_SIZE;
4349 sb->s_blocksize_bits = PAGE_SHIFT;
4350 sb->s_magic = TMPFS_MAGIC;
4351 sb->s_op = &shmem_ops;
4352 sb->s_time_gran = 1;
4353 #ifdef CONFIG_TMPFS_XATTR
4354 sb->s_xattr = shmem_xattr_handlers;
4355 #endif
4356 #ifdef CONFIG_TMPFS_POSIX_ACL
4357 sb->s_flags |= SB_POSIXACL;
4358 #endif
4359 uuid_gen(&sb->s_uuid);
4360
4361 #ifdef CONFIG_TMPFS_QUOTA
4362 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4363 sb->dq_op = &shmem_quota_operations;
4364 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4365 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4366
4367 /* Copy the default limits from ctx into sbinfo */
4368 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4369 sizeof(struct shmem_quota_limits));
4370
4371 if (shmem_enable_quotas(sb, ctx->quota_types))
4372 goto failed;
4373 }
4374 #endif /* CONFIG_TMPFS_QUOTA */
4375
4376 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4377 VM_NORESERVE);
4378 if (IS_ERR(inode)) {
4379 error = PTR_ERR(inode);
4380 goto failed;
4381 }
4382 inode->i_uid = sbinfo->uid;
4383 inode->i_gid = sbinfo->gid;
4384 sb->s_root = d_make_root(inode);
4385 if (!sb->s_root)
4386 goto failed;
4387 return 0;
4388
4389 failed:
4390 shmem_put_super(sb);
4391 return error;
4392 }
4393
shmem_get_tree(struct fs_context * fc)4394 static int shmem_get_tree(struct fs_context *fc)
4395 {
4396 return get_tree_nodev(fc, shmem_fill_super);
4397 }
4398
shmem_free_fc(struct fs_context * fc)4399 static void shmem_free_fc(struct fs_context *fc)
4400 {
4401 struct shmem_options *ctx = fc->fs_private;
4402
4403 if (ctx) {
4404 mpol_put(ctx->mpol);
4405 kfree(ctx);
4406 }
4407 }
4408
4409 static const struct fs_context_operations shmem_fs_context_ops = {
4410 .free = shmem_free_fc,
4411 .get_tree = shmem_get_tree,
4412 #ifdef CONFIG_TMPFS
4413 .parse_monolithic = shmem_parse_options,
4414 .parse_param = shmem_parse_one,
4415 .reconfigure = shmem_reconfigure,
4416 #endif
4417 };
4418
4419 static struct kmem_cache *shmem_inode_cachep;
4420
shmem_alloc_inode(struct super_block * sb)4421 static struct inode *shmem_alloc_inode(struct super_block *sb)
4422 {
4423 struct shmem_inode_info *info;
4424 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4425 if (!info)
4426 return NULL;
4427 return &info->vfs_inode;
4428 }
4429
shmem_free_in_core_inode(struct inode * inode)4430 static void shmem_free_in_core_inode(struct inode *inode)
4431 {
4432 if (S_ISLNK(inode->i_mode))
4433 kfree(inode->i_link);
4434 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4435 }
4436
shmem_destroy_inode(struct inode * inode)4437 static void shmem_destroy_inode(struct inode *inode)
4438 {
4439 if (S_ISREG(inode->i_mode))
4440 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4441 if (S_ISDIR(inode->i_mode))
4442 simple_offset_destroy(shmem_get_offset_ctx(inode));
4443 }
4444
shmem_init_inode(void * foo)4445 static void shmem_init_inode(void *foo)
4446 {
4447 struct shmem_inode_info *info = foo;
4448 inode_init_once(&info->vfs_inode);
4449 }
4450
shmem_init_inodecache(void)4451 static void shmem_init_inodecache(void)
4452 {
4453 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4454 sizeof(struct shmem_inode_info),
4455 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4456 }
4457
shmem_destroy_inodecache(void)4458 static void shmem_destroy_inodecache(void)
4459 {
4460 kmem_cache_destroy(shmem_inode_cachep);
4461 }
4462
4463 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_page(struct address_space * mapping,struct page * page)4464 static int shmem_error_remove_page(struct address_space *mapping,
4465 struct page *page)
4466 {
4467 return 0;
4468 }
4469
4470 const struct address_space_operations shmem_aops = {
4471 .writepage = shmem_writepage,
4472 .dirty_folio = noop_dirty_folio,
4473 #ifdef CONFIG_TMPFS
4474 .write_begin = shmem_write_begin,
4475 .write_end = shmem_write_end,
4476 #endif
4477 #ifdef CONFIG_MIGRATION
4478 .migrate_folio = migrate_folio,
4479 #endif
4480 .error_remove_page = shmem_error_remove_page,
4481 };
4482 EXPORT_SYMBOL(shmem_aops);
4483
4484 static const struct file_operations shmem_file_operations = {
4485 .mmap = shmem_mmap,
4486 .open = shmem_file_open,
4487 .get_unmapped_area = shmem_get_unmapped_area,
4488 #ifdef CONFIG_TMPFS
4489 .llseek = shmem_file_llseek,
4490 .read_iter = shmem_file_read_iter,
4491 .write_iter = shmem_file_write_iter,
4492 .fsync = noop_fsync,
4493 .splice_read = shmem_file_splice_read,
4494 .splice_write = iter_file_splice_write,
4495 .fallocate = shmem_fallocate,
4496 #endif
4497 };
4498
4499 static const struct inode_operations shmem_inode_operations = {
4500 .getattr = shmem_getattr,
4501 .setattr = shmem_setattr,
4502 #ifdef CONFIG_TMPFS_XATTR
4503 .listxattr = shmem_listxattr,
4504 .set_acl = simple_set_acl,
4505 .fileattr_get = shmem_fileattr_get,
4506 .fileattr_set = shmem_fileattr_set,
4507 #endif
4508 };
4509
4510 static const struct inode_operations shmem_dir_inode_operations = {
4511 #ifdef CONFIG_TMPFS
4512 .getattr = shmem_getattr,
4513 .create = shmem_create,
4514 .lookup = simple_lookup,
4515 .link = shmem_link,
4516 .unlink = shmem_unlink,
4517 .symlink = shmem_symlink,
4518 .mkdir = shmem_mkdir,
4519 .rmdir = shmem_rmdir,
4520 .mknod = shmem_mknod,
4521 .rename = shmem_rename2,
4522 .tmpfile = shmem_tmpfile,
4523 .get_offset_ctx = shmem_get_offset_ctx,
4524 #endif
4525 #ifdef CONFIG_TMPFS_XATTR
4526 .listxattr = shmem_listxattr,
4527 .fileattr_get = shmem_fileattr_get,
4528 .fileattr_set = shmem_fileattr_set,
4529 #endif
4530 #ifdef CONFIG_TMPFS_POSIX_ACL
4531 .setattr = shmem_setattr,
4532 .set_acl = simple_set_acl,
4533 #endif
4534 };
4535
4536 static const struct inode_operations shmem_special_inode_operations = {
4537 .getattr = shmem_getattr,
4538 #ifdef CONFIG_TMPFS_XATTR
4539 .listxattr = shmem_listxattr,
4540 #endif
4541 #ifdef CONFIG_TMPFS_POSIX_ACL
4542 .setattr = shmem_setattr,
4543 .set_acl = simple_set_acl,
4544 #endif
4545 };
4546
4547 static const struct super_operations shmem_ops = {
4548 .alloc_inode = shmem_alloc_inode,
4549 .free_inode = shmem_free_in_core_inode,
4550 .destroy_inode = shmem_destroy_inode,
4551 #ifdef CONFIG_TMPFS
4552 .statfs = shmem_statfs,
4553 .show_options = shmem_show_options,
4554 #endif
4555 #ifdef CONFIG_TMPFS_QUOTA
4556 .get_dquots = shmem_get_dquots,
4557 #endif
4558 .evict_inode = shmem_evict_inode,
4559 .drop_inode = generic_delete_inode,
4560 .put_super = shmem_put_super,
4561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4562 .nr_cached_objects = shmem_unused_huge_count,
4563 .free_cached_objects = shmem_unused_huge_scan,
4564 #endif
4565 };
4566
4567 static const struct vm_operations_struct shmem_vm_ops = {
4568 .fault = shmem_fault,
4569 .map_pages = filemap_map_pages,
4570 #ifdef CONFIG_NUMA
4571 .set_policy = shmem_set_policy,
4572 .get_policy = shmem_get_policy,
4573 #endif
4574 };
4575
4576 static const struct vm_operations_struct shmem_anon_vm_ops = {
4577 .fault = shmem_fault,
4578 .map_pages = filemap_map_pages,
4579 #ifdef CONFIG_NUMA
4580 .set_policy = shmem_set_policy,
4581 .get_policy = shmem_get_policy,
4582 #endif
4583 };
4584
shmem_init_fs_context(struct fs_context * fc)4585 int shmem_init_fs_context(struct fs_context *fc)
4586 {
4587 struct shmem_options *ctx;
4588
4589 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4590 if (!ctx)
4591 return -ENOMEM;
4592
4593 ctx->mode = 0777 | S_ISVTX;
4594 ctx->uid = current_fsuid();
4595 ctx->gid = current_fsgid();
4596
4597 fc->fs_private = ctx;
4598 fc->ops = &shmem_fs_context_ops;
4599 return 0;
4600 }
4601
4602 static struct file_system_type shmem_fs_type = {
4603 .owner = THIS_MODULE,
4604 .name = "tmpfs",
4605 .init_fs_context = shmem_init_fs_context,
4606 #ifdef CONFIG_TMPFS
4607 .parameters = shmem_fs_parameters,
4608 #endif
4609 .kill_sb = kill_litter_super,
4610 #ifdef CONFIG_SHMEM
4611 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4612 #else
4613 .fs_flags = FS_USERNS_MOUNT,
4614 #endif
4615 };
4616
shmem_init(void)4617 void __init shmem_init(void)
4618 {
4619 int error;
4620
4621 shmem_init_inodecache();
4622
4623 #ifdef CONFIG_TMPFS_QUOTA
4624 error = register_quota_format(&shmem_quota_format);
4625 if (error < 0) {
4626 pr_err("Could not register quota format\n");
4627 goto out3;
4628 }
4629 #endif
4630
4631 error = register_filesystem(&shmem_fs_type);
4632 if (error) {
4633 pr_err("Could not register tmpfs\n");
4634 goto out2;
4635 }
4636
4637 shm_mnt = kern_mount(&shmem_fs_type);
4638 if (IS_ERR(shm_mnt)) {
4639 error = PTR_ERR(shm_mnt);
4640 pr_err("Could not kern_mount tmpfs\n");
4641 goto out1;
4642 }
4643
4644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4645 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4646 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4647 else
4648 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4649 #endif
4650 return;
4651
4652 out1:
4653 unregister_filesystem(&shmem_fs_type);
4654 out2:
4655 #ifdef CONFIG_TMPFS_QUOTA
4656 unregister_quota_format(&shmem_quota_format);
4657 out3:
4658 #endif
4659 shmem_destroy_inodecache();
4660 shm_mnt = ERR_PTR(error);
4661 }
4662
4663 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4664 static ssize_t shmem_enabled_show(struct kobject *kobj,
4665 struct kobj_attribute *attr, char *buf)
4666 {
4667 static const int values[] = {
4668 SHMEM_HUGE_ALWAYS,
4669 SHMEM_HUGE_WITHIN_SIZE,
4670 SHMEM_HUGE_ADVISE,
4671 SHMEM_HUGE_NEVER,
4672 SHMEM_HUGE_DENY,
4673 SHMEM_HUGE_FORCE,
4674 };
4675 int len = 0;
4676 int i;
4677
4678 for (i = 0; i < ARRAY_SIZE(values); i++) {
4679 len += sysfs_emit_at(buf, len,
4680 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4681 i ? " " : "",
4682 shmem_format_huge(values[i]));
4683 }
4684
4685 len += sysfs_emit_at(buf, len, "\n");
4686
4687 return len;
4688 }
4689
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4690 static ssize_t shmem_enabled_store(struct kobject *kobj,
4691 struct kobj_attribute *attr, const char *buf, size_t count)
4692 {
4693 char tmp[16];
4694 int huge;
4695
4696 if (count + 1 > sizeof(tmp))
4697 return -EINVAL;
4698 memcpy(tmp, buf, count);
4699 tmp[count] = '\0';
4700 if (count && tmp[count - 1] == '\n')
4701 tmp[count - 1] = '\0';
4702
4703 huge = shmem_parse_huge(tmp);
4704 if (huge == -EINVAL)
4705 return -EINVAL;
4706 if (!has_transparent_hugepage() &&
4707 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4708 return -EINVAL;
4709
4710 shmem_huge = huge;
4711 if (shmem_huge > SHMEM_HUGE_DENY)
4712 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4713 return count;
4714 }
4715
4716 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4717 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4718
4719 #else /* !CONFIG_SHMEM */
4720
4721 /*
4722 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4723 *
4724 * This is intended for small system where the benefits of the full
4725 * shmem code (swap-backed and resource-limited) are outweighed by
4726 * their complexity. On systems without swap this code should be
4727 * effectively equivalent, but much lighter weight.
4728 */
4729
4730 static struct file_system_type shmem_fs_type = {
4731 .name = "tmpfs",
4732 .init_fs_context = ramfs_init_fs_context,
4733 .parameters = ramfs_fs_parameters,
4734 .kill_sb = ramfs_kill_sb,
4735 .fs_flags = FS_USERNS_MOUNT,
4736 };
4737
shmem_init(void)4738 void __init shmem_init(void)
4739 {
4740 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4741
4742 shm_mnt = kern_mount(&shmem_fs_type);
4743 BUG_ON(IS_ERR(shm_mnt));
4744 }
4745
shmem_unuse(unsigned int type)4746 int shmem_unuse(unsigned int type)
4747 {
4748 return 0;
4749 }
4750
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4751 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4752 {
4753 return 0;
4754 }
4755
shmem_unlock_mapping(struct address_space * mapping)4756 void shmem_unlock_mapping(struct address_space *mapping)
4757 {
4758 }
4759
4760 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4761 unsigned long shmem_get_unmapped_area(struct file *file,
4762 unsigned long addr, unsigned long len,
4763 unsigned long pgoff, unsigned long flags)
4764 {
4765 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4766 }
4767 #endif
4768
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4769 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4770 {
4771 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4772 }
4773 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4774
4775 #define shmem_vm_ops generic_file_vm_ops
4776 #define shmem_anon_vm_ops generic_file_vm_ops
4777 #define shmem_file_operations ramfs_file_operations
4778 #define shmem_acct_size(flags, size) 0
4779 #define shmem_unacct_size(flags, size) do {} while (0)
4780
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)4781 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4782 umode_t mode, dev_t dev, unsigned long flags)
4783 {
4784 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4785 return inode ? inode : ERR_PTR(-ENOSPC);
4786 }
4787
4788 #endif /* CONFIG_SHMEM */
4789
4790 /* common code */
4791
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4792 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4793 unsigned long flags, unsigned int i_flags)
4794 {
4795 struct inode *inode;
4796 struct file *res;
4797
4798 if (IS_ERR(mnt))
4799 return ERR_CAST(mnt);
4800
4801 if (size < 0 || size > MAX_LFS_FILESIZE)
4802 return ERR_PTR(-EINVAL);
4803
4804 if (shmem_acct_size(flags, size))
4805 return ERR_PTR(-ENOMEM);
4806
4807 if (is_idmapped_mnt(mnt))
4808 return ERR_PTR(-EINVAL);
4809
4810 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4811 S_IFREG | S_IRWXUGO, 0, flags);
4812
4813 if (IS_ERR(inode)) {
4814 shmem_unacct_size(flags, size);
4815 return ERR_CAST(inode);
4816 }
4817 inode->i_flags |= i_flags;
4818 inode->i_size = size;
4819 clear_nlink(inode); /* It is unlinked */
4820 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4821 if (!IS_ERR(res))
4822 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4823 &shmem_file_operations);
4824 if (IS_ERR(res))
4825 iput(inode);
4826 return res;
4827 }
4828
4829 /**
4830 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4831 * kernel internal. There will be NO LSM permission checks against the
4832 * underlying inode. So users of this interface must do LSM checks at a
4833 * higher layer. The users are the big_key and shm implementations. LSM
4834 * checks are provided at the key or shm level rather than the inode.
4835 * @name: name for dentry (to be seen in /proc/<pid>/maps
4836 * @size: size to be set for the file
4837 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4838 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4839 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4840 {
4841 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4842 }
4843
4844 /**
4845 * shmem_file_setup - get an unlinked file living in tmpfs
4846 * @name: name for dentry (to be seen in /proc/<pid>/maps
4847 * @size: size to be set for the file
4848 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4849 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4850 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4851 {
4852 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4853 }
4854 EXPORT_SYMBOL_GPL(shmem_file_setup);
4855
4856 /**
4857 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4858 * @mnt: the tmpfs mount where the file will be created
4859 * @name: name for dentry (to be seen in /proc/<pid>/maps
4860 * @size: size to be set for the file
4861 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4862 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4863 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4864 loff_t size, unsigned long flags)
4865 {
4866 return __shmem_file_setup(mnt, name, size, flags, 0);
4867 }
4868 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4869
4870 /**
4871 * shmem_zero_setup - setup a shared anonymous mapping
4872 * @vma: the vma to be mmapped is prepared by do_mmap
4873 */
shmem_zero_setup(struct vm_area_struct * vma)4874 int shmem_zero_setup(struct vm_area_struct *vma)
4875 {
4876 struct file *file;
4877 loff_t size = vma->vm_end - vma->vm_start;
4878
4879 /*
4880 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4881 * between XFS directory reading and selinux: since this file is only
4882 * accessible to the user through its mapping, use S_PRIVATE flag to
4883 * bypass file security, in the same way as shmem_kernel_file_setup().
4884 */
4885 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4886 if (IS_ERR(file))
4887 return PTR_ERR(file);
4888
4889 if (vma->vm_file)
4890 fput(vma->vm_file);
4891 vma->vm_file = file;
4892 vma->vm_ops = &shmem_anon_vm_ops;
4893
4894 return 0;
4895 }
4896
4897 /**
4898 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4899 * @mapping: the folio's address_space
4900 * @index: the folio index
4901 * @gfp: the page allocator flags to use if allocating
4902 *
4903 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4904 * with any new page allocations done using the specified allocation flags.
4905 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4906 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4907 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4908 *
4909 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4910 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4911 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4912 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4913 pgoff_t index, gfp_t gfp)
4914 {
4915 #ifdef CONFIG_SHMEM
4916 struct inode *inode = mapping->host;
4917 struct folio *folio;
4918 int error;
4919
4920 BUG_ON(!shmem_mapping(mapping));
4921 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4922 gfp, NULL, NULL, NULL);
4923 if (error)
4924 return ERR_PTR(error);
4925
4926 folio_unlock(folio);
4927 return folio;
4928 #else
4929 /*
4930 * The tiny !SHMEM case uses ramfs without swap
4931 */
4932 return mapping_read_folio_gfp(mapping, index, gfp);
4933 #endif
4934 }
4935 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4936
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4937 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4938 pgoff_t index, gfp_t gfp)
4939 {
4940 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4941 struct page *page;
4942
4943 if (IS_ERR(folio))
4944 return &folio->page;
4945
4946 page = folio_file_page(folio, index);
4947 if (PageHWPoison(page)) {
4948 folio_put(folio);
4949 return ERR_PTR(-EIO);
4950 }
4951
4952 return page;
4953 }
4954 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4955