xref: /openbmc/linux/mm/shmem.c (revision 93893eac)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95 
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98 
99 /*
100  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101  * inode->i_private (with i_rwsem making sure that it has only one user at
102  * a time): we would prefer not to enlarge the shmem inode just for that.
103  */
104 struct shmem_falloc {
105 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 	pgoff_t start;		/* start of range currently being fallocated */
107 	pgoff_t next;		/* the next page offset to be fallocated */
108 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
109 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
110 };
111 
112 struct shmem_options {
113 	unsigned long long blocks;
114 	unsigned long long inodes;
115 	struct mempolicy *mpol;
116 	kuid_t uid;
117 	kgid_t gid;
118 	umode_t mode;
119 	bool full_inums;
120 	int huge;
121 	int seen;
122 	bool noswap;
123 	unsigned short quota_types;
124 	struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132 
133 #ifdef CONFIG_TMPFS
134 static unsigned long shmem_default_max_blocks(void)
135 {
136 	return totalram_pages() / 2;
137 }
138 
139 static unsigned long shmem_default_max_inodes(void)
140 {
141 	unsigned long nr_pages = totalram_pages();
142 
143 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 			ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147 
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 			     struct folio **foliop, enum sgp_type sgp,
150 			     gfp_t gfp, struct vm_area_struct *vma,
151 			     vm_fault_t *fault_type);
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	int err = -ENOSPC;
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return err;
218 
219 	might_sleep();	/* when quotas */
220 	if (sbinfo->max_blocks) {
221 		if (percpu_counter_compare(&sbinfo->used_blocks,
222 					   sbinfo->max_blocks - pages) > 0)
223 			goto unacct;
224 
225 		err = dquot_alloc_block_nodirty(inode, pages);
226 		if (err)
227 			goto unacct;
228 
229 		percpu_counter_add(&sbinfo->used_blocks, pages);
230 	} else {
231 		err = dquot_alloc_block_nodirty(inode, pages);
232 		if (err)
233 			goto unacct;
234 	}
235 
236 	return 0;
237 
238 unacct:
239 	shmem_unacct_blocks(info->flags, pages);
240 	return err;
241 }
242 
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 
248 	might_sleep();	/* when quotas */
249 	dquot_free_block_nodirty(inode, pages);
250 
251 	if (sbinfo->max_blocks)
252 		percpu_counter_sub(&sbinfo->used_blocks, pages);
253 	shmem_unacct_blocks(info->flags, pages);
254 }
255 
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265 
266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 	return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270 
271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275 
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278 
279 #ifdef CONFIG_TMPFS_QUOTA
280 
281 static int shmem_enable_quotas(struct super_block *sb,
282 			       unsigned short quota_types)
283 {
284 	int type, err = 0;
285 
286 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 		if (!(quota_types & (1 << type)))
289 			continue;
290 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 					  DQUOT_USAGE_ENABLED |
292 					  DQUOT_LIMITS_ENABLED);
293 		if (err)
294 			goto out_err;
295 	}
296 	return 0;
297 
298 out_err:
299 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 		type, err);
301 	for (type--; type >= 0; type--)
302 		dquot_quota_off(sb, type);
303 	return err;
304 }
305 
306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 	int type;
309 
310 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 		dquot_quota_off(sb, type);
312 }
313 
314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
315 {
316 	return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319 
320 /*
321  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322  * produces a novel ino for the newly allocated inode.
323  *
324  * It may also be called when making a hard link to permit the space needed by
325  * each dentry. However, in that case, no new inode number is needed since that
326  * internally draws from another pool of inode numbers (currently global
327  * get_next_ino()). This case is indicated by passing NULL as inop.
328  */
329 #define SHMEM_INO_BATCH 1024
330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 	ino_t ino;
334 
335 	if (!(sb->s_flags & SB_KERNMOUNT)) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		if (sbinfo->max_inodes) {
338 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 				raw_spin_unlock(&sbinfo->stat_lock);
340 				return -ENOSPC;
341 			}
342 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 		}
344 		if (inop) {
345 			ino = sbinfo->next_ino++;
346 			if (unlikely(is_zero_ino(ino)))
347 				ino = sbinfo->next_ino++;
348 			if (unlikely(!sbinfo->full_inums &&
349 				     ino > UINT_MAX)) {
350 				/*
351 				 * Emulate get_next_ino uint wraparound for
352 				 * compatibility
353 				 */
354 				if (IS_ENABLED(CONFIG_64BIT))
355 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 						__func__, MINOR(sb->s_dev));
357 				sbinfo->next_ino = 1;
358 				ino = sbinfo->next_ino++;
359 			}
360 			*inop = ino;
361 		}
362 		raw_spin_unlock(&sbinfo->stat_lock);
363 	} else if (inop) {
364 		/*
365 		 * __shmem_file_setup, one of our callers, is lock-free: it
366 		 * doesn't hold stat_lock in shmem_reserve_inode since
367 		 * max_inodes is always 0, and is called from potentially
368 		 * unknown contexts. As such, use a per-cpu batched allocator
369 		 * which doesn't require the per-sb stat_lock unless we are at
370 		 * the batch boundary.
371 		 *
372 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 		 * shmem mounts are not exposed to userspace, so we don't need
374 		 * to worry about things like glibc compatibility.
375 		 */
376 		ino_t *next_ino;
377 
378 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 		ino = *next_ino;
380 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 			raw_spin_lock(&sbinfo->stat_lock);
382 			ino = sbinfo->next_ino;
383 			sbinfo->next_ino += SHMEM_INO_BATCH;
384 			raw_spin_unlock(&sbinfo->stat_lock);
385 			if (unlikely(is_zero_ino(ino)))
386 				ino++;
387 		}
388 		*inop = ino;
389 		*next_ino = ++ino;
390 		put_cpu();
391 	}
392 
393 	return 0;
394 }
395 
396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 	if (sbinfo->max_inodes) {
400 		raw_spin_lock(&sbinfo->stat_lock);
401 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 		raw_spin_unlock(&sbinfo->stat_lock);
403 	}
404 }
405 
406 /**
407  * shmem_recalc_inode - recalculate the block usage of an inode
408  * @inode: inode to recalc
409  * @alloced: the change in number of pages allocated to inode
410  * @swapped: the change in number of pages swapped from inode
411  *
412  * We have to calculate the free blocks since the mm can drop
413  * undirtied hole pages behind our back.
414  *
415  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
416  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417  */
418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 	struct shmem_inode_info *info = SHMEM_I(inode);
421 	long freed;
422 
423 	spin_lock(&info->lock);
424 	info->alloced += alloced;
425 	info->swapped += swapped;
426 	freed = info->alloced - info->swapped -
427 		READ_ONCE(inode->i_mapping->nrpages);
428 	/*
429 	 * Special case: whereas normally shmem_recalc_inode() is called
430 	 * after i_mapping->nrpages has already been adjusted (up or down),
431 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 	 * been freed.  Compensate here, to avoid the need for a followup call.
434 	 */
435 	if (swapped > 0)
436 		freed += swapped;
437 	if (freed > 0)
438 		info->alloced -= freed;
439 	spin_unlock(&info->lock);
440 
441 	/* The quota case may block */
442 	if (freed > 0)
443 		shmem_inode_unacct_blocks(inode, freed);
444 }
445 
446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 
450 	if (shmem_inode_acct_block(inode, pages))
451 		return false;
452 
453 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 	xa_lock_irq(&mapping->i_pages);
455 	mapping->nrpages += pages;
456 	xa_unlock_irq(&mapping->i_pages);
457 
458 	shmem_recalc_inode(inode, pages, 0);
459 	return true;
460 }
461 
462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 	/* pages argument is currently unused: keep it to help debugging */
465 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
466 
467 	shmem_recalc_inode(inode, 0, 0);
468 }
469 
470 /*
471  * Replace item expected in xarray by a new item, while holding xa_lock.
472  */
473 static int shmem_replace_entry(struct address_space *mapping,
474 			pgoff_t index, void *expected, void *replacement)
475 {
476 	XA_STATE(xas, &mapping->i_pages, index);
477 	void *item;
478 
479 	VM_BUG_ON(!expected);
480 	VM_BUG_ON(!replacement);
481 	item = xas_load(&xas);
482 	if (item != expected)
483 		return -ENOENT;
484 	xas_store(&xas, replacement);
485 	return 0;
486 }
487 
488 /*
489  * Sometimes, before we decide whether to proceed or to fail, we must check
490  * that an entry was not already brought back from swap by a racing thread.
491  *
492  * Checking page is not enough: by the time a SwapCache page is locked, it
493  * might be reused, and again be SwapCache, using the same swap as before.
494  */
495 static bool shmem_confirm_swap(struct address_space *mapping,
496 			       pgoff_t index, swp_entry_t swap)
497 {
498 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500 
501 /*
502  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503  *
504  * SHMEM_HUGE_NEVER:
505  *	disables huge pages for the mount;
506  * SHMEM_HUGE_ALWAYS:
507  *	enables huge pages for the mount;
508  * SHMEM_HUGE_WITHIN_SIZE:
509  *	only allocate huge pages if the page will be fully within i_size,
510  *	also respect fadvise()/madvise() hints;
511  * SHMEM_HUGE_ADVISE:
512  *	only allocate huge pages if requested with fadvise()/madvise();
513  */
514 
515 #define SHMEM_HUGE_NEVER	0
516 #define SHMEM_HUGE_ALWAYS	1
517 #define SHMEM_HUGE_WITHIN_SIZE	2
518 #define SHMEM_HUGE_ADVISE	3
519 
520 /*
521  * Special values.
522  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523  *
524  * SHMEM_HUGE_DENY:
525  *	disables huge on shm_mnt and all mounts, for emergency use;
526  * SHMEM_HUGE_FORCE:
527  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528  *
529  */
530 #define SHMEM_HUGE_DENY		(-1)
531 #define SHMEM_HUGE_FORCE	(-2)
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535 
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537 
538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index,
539 			    bool shmem_huge_force, struct mm_struct *mm,
540 			    unsigned long vm_flags)
541 {
542 	loff_t i_size;
543 
544 	if (!S_ISREG(inode->i_mode))
545 		return false;
546 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
547 		return false;
548 	if (shmem_huge == SHMEM_HUGE_DENY)
549 		return false;
550 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
551 		return true;
552 
553 	switch (SHMEM_SB(inode->i_sb)->huge) {
554 	case SHMEM_HUGE_ALWAYS:
555 		return true;
556 	case SHMEM_HUGE_WITHIN_SIZE:
557 		index = round_up(index + 1, HPAGE_PMD_NR);
558 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
559 		if (i_size >> PAGE_SHIFT >= index)
560 			return true;
561 		fallthrough;
562 	case SHMEM_HUGE_ADVISE:
563 		if (mm && (vm_flags & VM_HUGEPAGE))
564 			return true;
565 		fallthrough;
566 	default:
567 		return false;
568 	}
569 }
570 
571 bool shmem_is_huge(struct inode *inode, pgoff_t index,
572 		   bool shmem_huge_force, struct mm_struct *mm,
573 		   unsigned long vm_flags)
574 {
575 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
576 		return false;
577 
578 	return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags);
579 }
580 
581 #if defined(CONFIG_SYSFS)
582 static int shmem_parse_huge(const char *str)
583 {
584 	if (!strcmp(str, "never"))
585 		return SHMEM_HUGE_NEVER;
586 	if (!strcmp(str, "always"))
587 		return SHMEM_HUGE_ALWAYS;
588 	if (!strcmp(str, "within_size"))
589 		return SHMEM_HUGE_WITHIN_SIZE;
590 	if (!strcmp(str, "advise"))
591 		return SHMEM_HUGE_ADVISE;
592 	if (!strcmp(str, "deny"))
593 		return SHMEM_HUGE_DENY;
594 	if (!strcmp(str, "force"))
595 		return SHMEM_HUGE_FORCE;
596 	return -EINVAL;
597 }
598 #endif
599 
600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
601 static const char *shmem_format_huge(int huge)
602 {
603 	switch (huge) {
604 	case SHMEM_HUGE_NEVER:
605 		return "never";
606 	case SHMEM_HUGE_ALWAYS:
607 		return "always";
608 	case SHMEM_HUGE_WITHIN_SIZE:
609 		return "within_size";
610 	case SHMEM_HUGE_ADVISE:
611 		return "advise";
612 	case SHMEM_HUGE_DENY:
613 		return "deny";
614 	case SHMEM_HUGE_FORCE:
615 		return "force";
616 	default:
617 		VM_BUG_ON(1);
618 		return "bad_val";
619 	}
620 }
621 #endif
622 
623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
624 		struct shrink_control *sc, unsigned long nr_to_split)
625 {
626 	LIST_HEAD(list), *pos, *next;
627 	LIST_HEAD(to_remove);
628 	struct inode *inode;
629 	struct shmem_inode_info *info;
630 	struct folio *folio;
631 	unsigned long batch = sc ? sc->nr_to_scan : 128;
632 	int split = 0;
633 
634 	if (list_empty(&sbinfo->shrinklist))
635 		return SHRINK_STOP;
636 
637 	spin_lock(&sbinfo->shrinklist_lock);
638 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
639 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
640 
641 		/* pin the inode */
642 		inode = igrab(&info->vfs_inode);
643 
644 		/* inode is about to be evicted */
645 		if (!inode) {
646 			list_del_init(&info->shrinklist);
647 			goto next;
648 		}
649 
650 		/* Check if there's anything to gain */
651 		if (round_up(inode->i_size, PAGE_SIZE) ==
652 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
653 			list_move(&info->shrinklist, &to_remove);
654 			goto next;
655 		}
656 
657 		list_move(&info->shrinklist, &list);
658 next:
659 		sbinfo->shrinklist_len--;
660 		if (!--batch)
661 			break;
662 	}
663 	spin_unlock(&sbinfo->shrinklist_lock);
664 
665 	list_for_each_safe(pos, next, &to_remove) {
666 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
667 		inode = &info->vfs_inode;
668 		list_del_init(&info->shrinklist);
669 		iput(inode);
670 	}
671 
672 	list_for_each_safe(pos, next, &list) {
673 		int ret;
674 		pgoff_t index;
675 
676 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
677 		inode = &info->vfs_inode;
678 
679 		if (nr_to_split && split >= nr_to_split)
680 			goto move_back;
681 
682 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
683 		folio = filemap_get_folio(inode->i_mapping, index);
684 		if (IS_ERR(folio))
685 			goto drop;
686 
687 		/* No huge page at the end of the file: nothing to split */
688 		if (!folio_test_large(folio)) {
689 			folio_put(folio);
690 			goto drop;
691 		}
692 
693 		/*
694 		 * Move the inode on the list back to shrinklist if we failed
695 		 * to lock the page at this time.
696 		 *
697 		 * Waiting for the lock may lead to deadlock in the
698 		 * reclaim path.
699 		 */
700 		if (!folio_trylock(folio)) {
701 			folio_put(folio);
702 			goto move_back;
703 		}
704 
705 		ret = split_folio(folio);
706 		folio_unlock(folio);
707 		folio_put(folio);
708 
709 		/* If split failed move the inode on the list back to shrinklist */
710 		if (ret)
711 			goto move_back;
712 
713 		split++;
714 drop:
715 		list_del_init(&info->shrinklist);
716 		goto put;
717 move_back:
718 		/*
719 		 * Make sure the inode is either on the global list or deleted
720 		 * from any local list before iput() since it could be deleted
721 		 * in another thread once we put the inode (then the local list
722 		 * is corrupted).
723 		 */
724 		spin_lock(&sbinfo->shrinklist_lock);
725 		list_move(&info->shrinklist, &sbinfo->shrinklist);
726 		sbinfo->shrinklist_len++;
727 		spin_unlock(&sbinfo->shrinklist_lock);
728 put:
729 		iput(inode);
730 	}
731 
732 	return split;
733 }
734 
735 static long shmem_unused_huge_scan(struct super_block *sb,
736 		struct shrink_control *sc)
737 {
738 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739 
740 	if (!READ_ONCE(sbinfo->shrinklist_len))
741 		return SHRINK_STOP;
742 
743 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
744 }
745 
746 static long shmem_unused_huge_count(struct super_block *sb,
747 		struct shrink_control *sc)
748 {
749 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
750 	return READ_ONCE(sbinfo->shrinklist_len);
751 }
752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
753 
754 #define shmem_huge SHMEM_HUGE_DENY
755 
756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
757 		struct shrink_control *sc, unsigned long nr_to_split)
758 {
759 	return 0;
760 }
761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
762 
763 /*
764  * Like filemap_add_folio, but error if expected item has gone.
765  */
766 static int shmem_add_to_page_cache(struct folio *folio,
767 				   struct address_space *mapping,
768 				   pgoff_t index, void *expected, gfp_t gfp,
769 				   struct mm_struct *charge_mm)
770 {
771 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
772 	long nr = folio_nr_pages(folio);
773 	int error;
774 
775 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
776 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
777 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
778 	VM_BUG_ON(expected && folio_test_large(folio));
779 
780 	folio_ref_add(folio, nr);
781 	folio->mapping = mapping;
782 	folio->index = index;
783 
784 	if (!folio_test_swapcache(folio)) {
785 		error = mem_cgroup_charge(folio, charge_mm, gfp);
786 		if (error) {
787 			if (folio_test_pmd_mappable(folio)) {
788 				count_vm_event(THP_FILE_FALLBACK);
789 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
790 			}
791 			goto error;
792 		}
793 	}
794 	folio_throttle_swaprate(folio, gfp);
795 
796 	do {
797 		xas_lock_irq(&xas);
798 		if (expected != xas_find_conflict(&xas)) {
799 			xas_set_err(&xas, -EEXIST);
800 			goto unlock;
801 		}
802 		if (expected && xas_find_conflict(&xas)) {
803 			xas_set_err(&xas, -EEXIST);
804 			goto unlock;
805 		}
806 		xas_store(&xas, folio);
807 		if (xas_error(&xas))
808 			goto unlock;
809 		if (folio_test_pmd_mappable(folio)) {
810 			count_vm_event(THP_FILE_ALLOC);
811 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
812 		}
813 		mapping->nrpages += nr;
814 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
815 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
816 unlock:
817 		xas_unlock_irq(&xas);
818 	} while (xas_nomem(&xas, gfp));
819 
820 	if (xas_error(&xas)) {
821 		error = xas_error(&xas);
822 		goto error;
823 	}
824 
825 	return 0;
826 error:
827 	folio->mapping = NULL;
828 	folio_ref_sub(folio, nr);
829 	return error;
830 }
831 
832 /*
833  * Like delete_from_page_cache, but substitutes swap for @folio.
834  */
835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
836 {
837 	struct address_space *mapping = folio->mapping;
838 	long nr = folio_nr_pages(folio);
839 	int error;
840 
841 	xa_lock_irq(&mapping->i_pages);
842 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
843 	folio->mapping = NULL;
844 	mapping->nrpages -= nr;
845 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
846 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
847 	xa_unlock_irq(&mapping->i_pages);
848 	folio_put(folio);
849 	BUG_ON(error);
850 }
851 
852 /*
853  * Remove swap entry from page cache, free the swap and its page cache.
854  */
855 static int shmem_free_swap(struct address_space *mapping,
856 			   pgoff_t index, void *radswap)
857 {
858 	void *old;
859 
860 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
861 	if (old != radswap)
862 		return -ENOENT;
863 	free_swap_and_cache(radix_to_swp_entry(radswap));
864 	return 0;
865 }
866 
867 /*
868  * Determine (in bytes) how many of the shmem object's pages mapped by the
869  * given offsets are swapped out.
870  *
871  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
872  * as long as the inode doesn't go away and racy results are not a problem.
873  */
874 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
875 						pgoff_t start, pgoff_t end)
876 {
877 	XA_STATE(xas, &mapping->i_pages, start);
878 	struct page *page;
879 	unsigned long swapped = 0;
880 	unsigned long max = end - 1;
881 
882 	rcu_read_lock();
883 	xas_for_each(&xas, page, max) {
884 		if (xas_retry(&xas, page))
885 			continue;
886 		if (xa_is_value(page))
887 			swapped++;
888 		if (xas.xa_index == max)
889 			break;
890 		if (need_resched()) {
891 			xas_pause(&xas);
892 			cond_resched_rcu();
893 		}
894 	}
895 
896 	rcu_read_unlock();
897 
898 	return swapped << PAGE_SHIFT;
899 }
900 
901 /*
902  * Determine (in bytes) how many of the shmem object's pages mapped by the
903  * given vma is swapped out.
904  *
905  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
906  * as long as the inode doesn't go away and racy results are not a problem.
907  */
908 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
909 {
910 	struct inode *inode = file_inode(vma->vm_file);
911 	struct shmem_inode_info *info = SHMEM_I(inode);
912 	struct address_space *mapping = inode->i_mapping;
913 	unsigned long swapped;
914 
915 	/* Be careful as we don't hold info->lock */
916 	swapped = READ_ONCE(info->swapped);
917 
918 	/*
919 	 * The easier cases are when the shmem object has nothing in swap, or
920 	 * the vma maps it whole. Then we can simply use the stats that we
921 	 * already track.
922 	 */
923 	if (!swapped)
924 		return 0;
925 
926 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
927 		return swapped << PAGE_SHIFT;
928 
929 	/* Here comes the more involved part */
930 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
931 					vma->vm_pgoff + vma_pages(vma));
932 }
933 
934 /*
935  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
936  */
937 void shmem_unlock_mapping(struct address_space *mapping)
938 {
939 	struct folio_batch fbatch;
940 	pgoff_t index = 0;
941 
942 	folio_batch_init(&fbatch);
943 	/*
944 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
945 	 */
946 	while (!mapping_unevictable(mapping) &&
947 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
948 		check_move_unevictable_folios(&fbatch);
949 		folio_batch_release(&fbatch);
950 		cond_resched();
951 	}
952 }
953 
954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
955 {
956 	struct folio *folio;
957 
958 	/*
959 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
960 	 * beyond i_size, and reports fallocated folios as holes.
961 	 */
962 	folio = filemap_get_entry(inode->i_mapping, index);
963 	if (!folio)
964 		return folio;
965 	if (!xa_is_value(folio)) {
966 		folio_lock(folio);
967 		if (folio->mapping == inode->i_mapping)
968 			return folio;
969 		/* The folio has been swapped out */
970 		folio_unlock(folio);
971 		folio_put(folio);
972 	}
973 	/*
974 	 * But read a folio back from swap if any of it is within i_size
975 	 * (although in some cases this is just a waste of time).
976 	 */
977 	folio = NULL;
978 	shmem_get_folio(inode, index, &folio, SGP_READ);
979 	return folio;
980 }
981 
982 /*
983  * Remove range of pages and swap entries from page cache, and free them.
984  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
985  */
986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
987 								 bool unfalloc)
988 {
989 	struct address_space *mapping = inode->i_mapping;
990 	struct shmem_inode_info *info = SHMEM_I(inode);
991 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
992 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
993 	struct folio_batch fbatch;
994 	pgoff_t indices[PAGEVEC_SIZE];
995 	struct folio *folio;
996 	bool same_folio;
997 	long nr_swaps_freed = 0;
998 	pgoff_t index;
999 	int i;
1000 
1001 	if (lend == -1)
1002 		end = -1;	/* unsigned, so actually very big */
1003 
1004 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1005 		info->fallocend = start;
1006 
1007 	folio_batch_init(&fbatch);
1008 	index = start;
1009 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1010 			&fbatch, indices)) {
1011 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1012 			folio = fbatch.folios[i];
1013 
1014 			if (xa_is_value(folio)) {
1015 				if (unfalloc)
1016 					continue;
1017 				nr_swaps_freed += !shmem_free_swap(mapping,
1018 							indices[i], folio);
1019 				continue;
1020 			}
1021 
1022 			if (!unfalloc || !folio_test_uptodate(folio))
1023 				truncate_inode_folio(mapping, folio);
1024 			folio_unlock(folio);
1025 		}
1026 		folio_batch_remove_exceptionals(&fbatch);
1027 		folio_batch_release(&fbatch);
1028 		cond_resched();
1029 	}
1030 
1031 	/*
1032 	 * When undoing a failed fallocate, we want none of the partial folio
1033 	 * zeroing and splitting below, but shall want to truncate the whole
1034 	 * folio when !uptodate indicates that it was added by this fallocate,
1035 	 * even when [lstart, lend] covers only a part of the folio.
1036 	 */
1037 	if (unfalloc)
1038 		goto whole_folios;
1039 
1040 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1041 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1042 	if (folio) {
1043 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1044 		folio_mark_dirty(folio);
1045 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1046 			start = folio_next_index(folio);
1047 			if (same_folio)
1048 				end = folio->index;
1049 		}
1050 		folio_unlock(folio);
1051 		folio_put(folio);
1052 		folio = NULL;
1053 	}
1054 
1055 	if (!same_folio)
1056 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1057 	if (folio) {
1058 		folio_mark_dirty(folio);
1059 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1060 			end = folio->index;
1061 		folio_unlock(folio);
1062 		folio_put(folio);
1063 	}
1064 
1065 whole_folios:
1066 
1067 	index = start;
1068 	while (index < end) {
1069 		cond_resched();
1070 
1071 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1072 				indices)) {
1073 			/* If all gone or hole-punch or unfalloc, we're done */
1074 			if (index == start || end != -1)
1075 				break;
1076 			/* But if truncating, restart to make sure all gone */
1077 			index = start;
1078 			continue;
1079 		}
1080 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1081 			folio = fbatch.folios[i];
1082 
1083 			if (xa_is_value(folio)) {
1084 				if (unfalloc)
1085 					continue;
1086 				if (shmem_free_swap(mapping, indices[i], folio)) {
1087 					/* Swap was replaced by page: retry */
1088 					index = indices[i];
1089 					break;
1090 				}
1091 				nr_swaps_freed++;
1092 				continue;
1093 			}
1094 
1095 			folio_lock(folio);
1096 
1097 			if (!unfalloc || !folio_test_uptodate(folio)) {
1098 				if (folio_mapping(folio) != mapping) {
1099 					/* Page was replaced by swap: retry */
1100 					folio_unlock(folio);
1101 					index = indices[i];
1102 					break;
1103 				}
1104 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1105 						folio);
1106 
1107 				if (!folio_test_large(folio)) {
1108 					truncate_inode_folio(mapping, folio);
1109 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1110 					/*
1111 					 * If we split a page, reset the loop so
1112 					 * that we pick up the new sub pages.
1113 					 * Otherwise the THP was entirely
1114 					 * dropped or the target range was
1115 					 * zeroed, so just continue the loop as
1116 					 * is.
1117 					 */
1118 					if (!folio_test_large(folio)) {
1119 						folio_unlock(folio);
1120 						index = start;
1121 						break;
1122 					}
1123 				}
1124 			}
1125 			folio_unlock(folio);
1126 		}
1127 		folio_batch_remove_exceptionals(&fbatch);
1128 		folio_batch_release(&fbatch);
1129 	}
1130 
1131 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1132 }
1133 
1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1135 {
1136 	shmem_undo_range(inode, lstart, lend, false);
1137 	inode->i_mtime = inode_set_ctime_current(inode);
1138 	inode_inc_iversion(inode);
1139 }
1140 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1141 
1142 static int shmem_getattr(struct mnt_idmap *idmap,
1143 			 const struct path *path, struct kstat *stat,
1144 			 u32 request_mask, unsigned int query_flags)
1145 {
1146 	struct inode *inode = path->dentry->d_inode;
1147 	struct shmem_inode_info *info = SHMEM_I(inode);
1148 
1149 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1150 		shmem_recalc_inode(inode, 0, 0);
1151 
1152 	if (info->fsflags & FS_APPEND_FL)
1153 		stat->attributes |= STATX_ATTR_APPEND;
1154 	if (info->fsflags & FS_IMMUTABLE_FL)
1155 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1156 	if (info->fsflags & FS_NODUMP_FL)
1157 		stat->attributes |= STATX_ATTR_NODUMP;
1158 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1159 			STATX_ATTR_IMMUTABLE |
1160 			STATX_ATTR_NODUMP);
1161 	generic_fillattr(idmap, request_mask, inode, stat);
1162 
1163 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1164 		stat->blksize = HPAGE_PMD_SIZE;
1165 
1166 	if (request_mask & STATX_BTIME) {
1167 		stat->result_mask |= STATX_BTIME;
1168 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1169 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static int shmem_setattr(struct mnt_idmap *idmap,
1176 			 struct dentry *dentry, struct iattr *attr)
1177 {
1178 	struct inode *inode = d_inode(dentry);
1179 	struct shmem_inode_info *info = SHMEM_I(inode);
1180 	int error;
1181 	bool update_mtime = false;
1182 	bool update_ctime = true;
1183 
1184 	error = setattr_prepare(idmap, dentry, attr);
1185 	if (error)
1186 		return error;
1187 
1188 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1189 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1190 			return -EPERM;
1191 		}
1192 	}
1193 
1194 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1195 		loff_t oldsize = inode->i_size;
1196 		loff_t newsize = attr->ia_size;
1197 
1198 		/* protected by i_rwsem */
1199 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1200 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1201 			return -EPERM;
1202 
1203 		if (newsize != oldsize) {
1204 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1205 					oldsize, newsize);
1206 			if (error)
1207 				return error;
1208 			i_size_write(inode, newsize);
1209 			update_mtime = true;
1210 		} else {
1211 			update_ctime = false;
1212 		}
1213 		if (newsize <= oldsize) {
1214 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1215 			if (oldsize > holebegin)
1216 				unmap_mapping_range(inode->i_mapping,
1217 							holebegin, 0, 1);
1218 			if (info->alloced)
1219 				shmem_truncate_range(inode,
1220 							newsize, (loff_t)-1);
1221 			/* unmap again to remove racily COWed private pages */
1222 			if (oldsize > holebegin)
1223 				unmap_mapping_range(inode->i_mapping,
1224 							holebegin, 0, 1);
1225 		}
1226 	}
1227 
1228 	if (is_quota_modification(idmap, inode, attr)) {
1229 		error = dquot_initialize(inode);
1230 		if (error)
1231 			return error;
1232 	}
1233 
1234 	/* Transfer quota accounting */
1235 	if (i_uid_needs_update(idmap, attr, inode) ||
1236 	    i_gid_needs_update(idmap, attr, inode)) {
1237 		error = dquot_transfer(idmap, inode, attr);
1238 
1239 		if (error)
1240 			return error;
1241 	}
1242 
1243 	setattr_copy(idmap, inode, attr);
1244 	if (attr->ia_valid & ATTR_MODE)
1245 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1246 	if (!error && update_ctime) {
1247 		inode_set_ctime_current(inode);
1248 		if (update_mtime)
1249 			inode->i_mtime = inode_get_ctime(inode);
1250 		inode_inc_iversion(inode);
1251 	}
1252 	return error;
1253 }
1254 
1255 static void shmem_evict_inode(struct inode *inode)
1256 {
1257 	struct shmem_inode_info *info = SHMEM_I(inode);
1258 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1259 	size_t freed = 0;
1260 
1261 	if (shmem_mapping(inode->i_mapping)) {
1262 		shmem_unacct_size(info->flags, inode->i_size);
1263 		inode->i_size = 0;
1264 		mapping_set_exiting(inode->i_mapping);
1265 		shmem_truncate_range(inode, 0, (loff_t)-1);
1266 		if (!list_empty(&info->shrinklist)) {
1267 			spin_lock(&sbinfo->shrinklist_lock);
1268 			if (!list_empty(&info->shrinklist)) {
1269 				list_del_init(&info->shrinklist);
1270 				sbinfo->shrinklist_len--;
1271 			}
1272 			spin_unlock(&sbinfo->shrinklist_lock);
1273 		}
1274 		while (!list_empty(&info->swaplist)) {
1275 			/* Wait while shmem_unuse() is scanning this inode... */
1276 			wait_var_event(&info->stop_eviction,
1277 				       !atomic_read(&info->stop_eviction));
1278 			mutex_lock(&shmem_swaplist_mutex);
1279 			/* ...but beware of the race if we peeked too early */
1280 			if (!atomic_read(&info->stop_eviction))
1281 				list_del_init(&info->swaplist);
1282 			mutex_unlock(&shmem_swaplist_mutex);
1283 		}
1284 	}
1285 
1286 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1287 	shmem_free_inode(inode->i_sb, freed);
1288 	WARN_ON(inode->i_blocks);
1289 	clear_inode(inode);
1290 #ifdef CONFIG_TMPFS_QUOTA
1291 	dquot_free_inode(inode);
1292 	dquot_drop(inode);
1293 #endif
1294 }
1295 
1296 static int shmem_find_swap_entries(struct address_space *mapping,
1297 				   pgoff_t start, struct folio_batch *fbatch,
1298 				   pgoff_t *indices, unsigned int type)
1299 {
1300 	XA_STATE(xas, &mapping->i_pages, start);
1301 	struct folio *folio;
1302 	swp_entry_t entry;
1303 
1304 	rcu_read_lock();
1305 	xas_for_each(&xas, folio, ULONG_MAX) {
1306 		if (xas_retry(&xas, folio))
1307 			continue;
1308 
1309 		if (!xa_is_value(folio))
1310 			continue;
1311 
1312 		entry = radix_to_swp_entry(folio);
1313 		/*
1314 		 * swapin error entries can be found in the mapping. But they're
1315 		 * deliberately ignored here as we've done everything we can do.
1316 		 */
1317 		if (swp_type(entry) != type)
1318 			continue;
1319 
1320 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1321 		if (!folio_batch_add(fbatch, folio))
1322 			break;
1323 
1324 		if (need_resched()) {
1325 			xas_pause(&xas);
1326 			cond_resched_rcu();
1327 		}
1328 	}
1329 	rcu_read_unlock();
1330 
1331 	return xas.xa_index;
1332 }
1333 
1334 /*
1335  * Move the swapped pages for an inode to page cache. Returns the count
1336  * of pages swapped in, or the error in case of failure.
1337  */
1338 static int shmem_unuse_swap_entries(struct inode *inode,
1339 		struct folio_batch *fbatch, pgoff_t *indices)
1340 {
1341 	int i = 0;
1342 	int ret = 0;
1343 	int error = 0;
1344 	struct address_space *mapping = inode->i_mapping;
1345 
1346 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1347 		struct folio *folio = fbatch->folios[i];
1348 
1349 		if (!xa_is_value(folio))
1350 			continue;
1351 		error = shmem_swapin_folio(inode, indices[i],
1352 					  &folio, SGP_CACHE,
1353 					  mapping_gfp_mask(mapping),
1354 					  NULL, NULL);
1355 		if (error == 0) {
1356 			folio_unlock(folio);
1357 			folio_put(folio);
1358 			ret++;
1359 		}
1360 		if (error == -ENOMEM)
1361 			break;
1362 		error = 0;
1363 	}
1364 	return error ? error : ret;
1365 }
1366 
1367 /*
1368  * If swap found in inode, free it and move page from swapcache to filecache.
1369  */
1370 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1371 {
1372 	struct address_space *mapping = inode->i_mapping;
1373 	pgoff_t start = 0;
1374 	struct folio_batch fbatch;
1375 	pgoff_t indices[PAGEVEC_SIZE];
1376 	int ret = 0;
1377 
1378 	do {
1379 		folio_batch_init(&fbatch);
1380 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1381 		if (folio_batch_count(&fbatch) == 0) {
1382 			ret = 0;
1383 			break;
1384 		}
1385 
1386 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1387 		if (ret < 0)
1388 			break;
1389 
1390 		start = indices[folio_batch_count(&fbatch) - 1];
1391 	} while (true);
1392 
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Read all the shared memory data that resides in the swap
1398  * device 'type' back into memory, so the swap device can be
1399  * unused.
1400  */
1401 int shmem_unuse(unsigned int type)
1402 {
1403 	struct shmem_inode_info *info, *next;
1404 	int error = 0;
1405 
1406 	if (list_empty(&shmem_swaplist))
1407 		return 0;
1408 
1409 	mutex_lock(&shmem_swaplist_mutex);
1410 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1411 		if (!info->swapped) {
1412 			list_del_init(&info->swaplist);
1413 			continue;
1414 		}
1415 		/*
1416 		 * Drop the swaplist mutex while searching the inode for swap;
1417 		 * but before doing so, make sure shmem_evict_inode() will not
1418 		 * remove placeholder inode from swaplist, nor let it be freed
1419 		 * (igrab() would protect from unlink, but not from unmount).
1420 		 */
1421 		atomic_inc(&info->stop_eviction);
1422 		mutex_unlock(&shmem_swaplist_mutex);
1423 
1424 		error = shmem_unuse_inode(&info->vfs_inode, type);
1425 		cond_resched();
1426 
1427 		mutex_lock(&shmem_swaplist_mutex);
1428 		next = list_next_entry(info, swaplist);
1429 		if (!info->swapped)
1430 			list_del_init(&info->swaplist);
1431 		if (atomic_dec_and_test(&info->stop_eviction))
1432 			wake_up_var(&info->stop_eviction);
1433 		if (error)
1434 			break;
1435 	}
1436 	mutex_unlock(&shmem_swaplist_mutex);
1437 
1438 	return error;
1439 }
1440 
1441 /*
1442  * Move the page from the page cache to the swap cache.
1443  */
1444 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1445 {
1446 	struct folio *folio = page_folio(page);
1447 	struct address_space *mapping = folio->mapping;
1448 	struct inode *inode = mapping->host;
1449 	struct shmem_inode_info *info = SHMEM_I(inode);
1450 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1451 	swp_entry_t swap;
1452 	pgoff_t index;
1453 
1454 	/*
1455 	 * Our capabilities prevent regular writeback or sync from ever calling
1456 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1457 	 * its underlying filesystem, in which case tmpfs should write out to
1458 	 * swap only in response to memory pressure, and not for the writeback
1459 	 * threads or sync.
1460 	 */
1461 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1462 		goto redirty;
1463 
1464 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1465 		goto redirty;
1466 
1467 	if (!total_swap_pages)
1468 		goto redirty;
1469 
1470 	/*
1471 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1472 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1473 	 * and its shmem_writeback() needs them to be split when swapping.
1474 	 */
1475 	if (folio_test_large(folio)) {
1476 		/* Ensure the subpages are still dirty */
1477 		folio_test_set_dirty(folio);
1478 		if (split_huge_page(page) < 0)
1479 			goto redirty;
1480 		folio = page_folio(page);
1481 		folio_clear_dirty(folio);
1482 	}
1483 
1484 	index = folio->index;
1485 
1486 	/*
1487 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1488 	 * value into swapfile.c, the only way we can correctly account for a
1489 	 * fallocated folio arriving here is now to initialize it and write it.
1490 	 *
1491 	 * That's okay for a folio already fallocated earlier, but if we have
1492 	 * not yet completed the fallocation, then (a) we want to keep track
1493 	 * of this folio in case we have to undo it, and (b) it may not be a
1494 	 * good idea to continue anyway, once we're pushing into swap.  So
1495 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1496 	 */
1497 	if (!folio_test_uptodate(folio)) {
1498 		if (inode->i_private) {
1499 			struct shmem_falloc *shmem_falloc;
1500 			spin_lock(&inode->i_lock);
1501 			shmem_falloc = inode->i_private;
1502 			if (shmem_falloc &&
1503 			    !shmem_falloc->waitq &&
1504 			    index >= shmem_falloc->start &&
1505 			    index < shmem_falloc->next)
1506 				shmem_falloc->nr_unswapped++;
1507 			else
1508 				shmem_falloc = NULL;
1509 			spin_unlock(&inode->i_lock);
1510 			if (shmem_falloc)
1511 				goto redirty;
1512 		}
1513 		folio_zero_range(folio, 0, folio_size(folio));
1514 		flush_dcache_folio(folio);
1515 		folio_mark_uptodate(folio);
1516 	}
1517 
1518 	swap = folio_alloc_swap(folio);
1519 	if (!swap.val)
1520 		goto redirty;
1521 
1522 	/*
1523 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1524 	 * if it's not already there.  Do it now before the folio is
1525 	 * moved to swap cache, when its pagelock no longer protects
1526 	 * the inode from eviction.  But don't unlock the mutex until
1527 	 * we've incremented swapped, because shmem_unuse_inode() will
1528 	 * prune a !swapped inode from the swaplist under this mutex.
1529 	 */
1530 	mutex_lock(&shmem_swaplist_mutex);
1531 	if (list_empty(&info->swaplist))
1532 		list_add(&info->swaplist, &shmem_swaplist);
1533 
1534 	if (add_to_swap_cache(folio, swap,
1535 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1536 			NULL) == 0) {
1537 		shmem_recalc_inode(inode, 0, 1);
1538 		swap_shmem_alloc(swap);
1539 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1540 
1541 		mutex_unlock(&shmem_swaplist_mutex);
1542 		BUG_ON(folio_mapped(folio));
1543 		swap_writepage(&folio->page, wbc);
1544 		return 0;
1545 	}
1546 
1547 	mutex_unlock(&shmem_swaplist_mutex);
1548 	put_swap_folio(folio, swap);
1549 redirty:
1550 	folio_mark_dirty(folio);
1551 	if (wbc->for_reclaim)
1552 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1553 	folio_unlock(folio);
1554 	return 0;
1555 }
1556 
1557 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1558 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1559 {
1560 	char buffer[64];
1561 
1562 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1563 		return;		/* show nothing */
1564 
1565 	mpol_to_str(buffer, sizeof(buffer), mpol);
1566 
1567 	seq_printf(seq, ",mpol=%s", buffer);
1568 }
1569 
1570 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1571 {
1572 	struct mempolicy *mpol = NULL;
1573 	if (sbinfo->mpol) {
1574 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1575 		mpol = sbinfo->mpol;
1576 		mpol_get(mpol);
1577 		raw_spin_unlock(&sbinfo->stat_lock);
1578 	}
1579 	return mpol;
1580 }
1581 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1582 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1583 {
1584 }
1585 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1586 {
1587 	return NULL;
1588 }
1589 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1590 #ifndef CONFIG_NUMA
1591 #define vm_policy vm_private_data
1592 #endif
1593 
1594 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1595 		struct shmem_inode_info *info, pgoff_t index)
1596 {
1597 	/* Create a pseudo vma that just contains the policy */
1598 	vma_init(vma, NULL);
1599 	/* Bias interleave by inode number to distribute better across nodes */
1600 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1601 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1602 }
1603 
1604 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1605 {
1606 	/* Drop reference taken by mpol_shared_policy_lookup() */
1607 	mpol_cond_put(vma->vm_policy);
1608 }
1609 
1610 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1611 			struct shmem_inode_info *info, pgoff_t index)
1612 {
1613 	struct vm_area_struct pvma;
1614 	struct page *page;
1615 	struct vm_fault vmf = {
1616 		.vma = &pvma,
1617 	};
1618 
1619 	shmem_pseudo_vma_init(&pvma, info, index);
1620 	page = swap_cluster_readahead(swap, gfp, &vmf);
1621 	shmem_pseudo_vma_destroy(&pvma);
1622 
1623 	if (!page)
1624 		return NULL;
1625 	return page_folio(page);
1626 }
1627 
1628 /*
1629  * Make sure huge_gfp is always more limited than limit_gfp.
1630  * Some of the flags set permissions, while others set limitations.
1631  */
1632 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1633 {
1634 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1635 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1636 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1637 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1638 
1639 	/* Allow allocations only from the originally specified zones. */
1640 	result |= zoneflags;
1641 
1642 	/*
1643 	 * Minimize the result gfp by taking the union with the deny flags,
1644 	 * and the intersection of the allow flags.
1645 	 */
1646 	result |= (limit_gfp & denyflags);
1647 	result |= (huge_gfp & limit_gfp) & allowflags;
1648 
1649 	return result;
1650 }
1651 
1652 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1653 		struct shmem_inode_info *info, pgoff_t index)
1654 {
1655 	struct vm_area_struct pvma;
1656 	struct address_space *mapping = info->vfs_inode.i_mapping;
1657 	pgoff_t hindex;
1658 	struct folio *folio;
1659 
1660 	hindex = round_down(index, HPAGE_PMD_NR);
1661 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1662 								XA_PRESENT))
1663 		return NULL;
1664 
1665 	shmem_pseudo_vma_init(&pvma, info, hindex);
1666 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1667 	shmem_pseudo_vma_destroy(&pvma);
1668 	if (!folio)
1669 		count_vm_event(THP_FILE_FALLBACK);
1670 	return folio;
1671 }
1672 
1673 static struct folio *shmem_alloc_folio(gfp_t gfp,
1674 			struct shmem_inode_info *info, pgoff_t index)
1675 {
1676 	struct vm_area_struct pvma;
1677 	struct folio *folio;
1678 
1679 	shmem_pseudo_vma_init(&pvma, info, index);
1680 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1681 	shmem_pseudo_vma_destroy(&pvma);
1682 
1683 	return folio;
1684 }
1685 
1686 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1687 		pgoff_t index, bool huge)
1688 {
1689 	struct shmem_inode_info *info = SHMEM_I(inode);
1690 	struct folio *folio;
1691 	int nr;
1692 	int err;
1693 
1694 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1695 		huge = false;
1696 	nr = huge ? HPAGE_PMD_NR : 1;
1697 
1698 	err = shmem_inode_acct_block(inode, nr);
1699 	if (err)
1700 		goto failed;
1701 
1702 	if (huge)
1703 		folio = shmem_alloc_hugefolio(gfp, info, index);
1704 	else
1705 		folio = shmem_alloc_folio(gfp, info, index);
1706 	if (folio) {
1707 		__folio_set_locked(folio);
1708 		__folio_set_swapbacked(folio);
1709 		return folio;
1710 	}
1711 
1712 	err = -ENOMEM;
1713 	shmem_inode_unacct_blocks(inode, nr);
1714 failed:
1715 	return ERR_PTR(err);
1716 }
1717 
1718 /*
1719  * When a page is moved from swapcache to shmem filecache (either by the
1720  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1721  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1722  * ignorance of the mapping it belongs to.  If that mapping has special
1723  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1724  * we may need to copy to a suitable page before moving to filecache.
1725  *
1726  * In a future release, this may well be extended to respect cpuset and
1727  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1728  * but for now it is a simple matter of zone.
1729  */
1730 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1731 {
1732 	return folio_zonenum(folio) > gfp_zone(gfp);
1733 }
1734 
1735 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1736 				struct shmem_inode_info *info, pgoff_t index)
1737 {
1738 	struct folio *old, *new;
1739 	struct address_space *swap_mapping;
1740 	swp_entry_t entry;
1741 	pgoff_t swap_index;
1742 	int error;
1743 
1744 	old = *foliop;
1745 	entry = old->swap;
1746 	swap_index = swp_offset(entry);
1747 	swap_mapping = swap_address_space(entry);
1748 
1749 	/*
1750 	 * We have arrived here because our zones are constrained, so don't
1751 	 * limit chance of success by further cpuset and node constraints.
1752 	 */
1753 	gfp &= ~GFP_CONSTRAINT_MASK;
1754 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1755 	new = shmem_alloc_folio(gfp, info, index);
1756 	if (!new)
1757 		return -ENOMEM;
1758 
1759 	folio_get(new);
1760 	folio_copy(new, old);
1761 	flush_dcache_folio(new);
1762 
1763 	__folio_set_locked(new);
1764 	__folio_set_swapbacked(new);
1765 	folio_mark_uptodate(new);
1766 	new->swap = entry;
1767 	folio_set_swapcache(new);
1768 
1769 	/*
1770 	 * Our caller will very soon move newpage out of swapcache, but it's
1771 	 * a nice clean interface for us to replace oldpage by newpage there.
1772 	 */
1773 	xa_lock_irq(&swap_mapping->i_pages);
1774 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1775 	if (!error) {
1776 		mem_cgroup_migrate(old, new);
1777 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1778 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1779 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1780 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1781 	}
1782 	xa_unlock_irq(&swap_mapping->i_pages);
1783 
1784 	if (unlikely(error)) {
1785 		/*
1786 		 * Is this possible?  I think not, now that our callers check
1787 		 * both PageSwapCache and page_private after getting page lock;
1788 		 * but be defensive.  Reverse old to newpage for clear and free.
1789 		 */
1790 		old = new;
1791 	} else {
1792 		folio_add_lru(new);
1793 		*foliop = new;
1794 	}
1795 
1796 	folio_clear_swapcache(old);
1797 	old->private = NULL;
1798 
1799 	folio_unlock(old);
1800 	folio_put_refs(old, 2);
1801 	return error;
1802 }
1803 
1804 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1805 					 struct folio *folio, swp_entry_t swap)
1806 {
1807 	struct address_space *mapping = inode->i_mapping;
1808 	swp_entry_t swapin_error;
1809 	void *old;
1810 
1811 	swapin_error = make_poisoned_swp_entry();
1812 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1813 			     swp_to_radix_entry(swap),
1814 			     swp_to_radix_entry(swapin_error), 0);
1815 	if (old != swp_to_radix_entry(swap))
1816 		return;
1817 
1818 	folio_wait_writeback(folio);
1819 	delete_from_swap_cache(folio);
1820 	/*
1821 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1822 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1823 	 * in shmem_evict_inode().
1824 	 */
1825 	shmem_recalc_inode(inode, -1, -1);
1826 	swap_free(swap);
1827 }
1828 
1829 /*
1830  * Swap in the folio pointed to by *foliop.
1831  * Caller has to make sure that *foliop contains a valid swapped folio.
1832  * Returns 0 and the folio in foliop if success. On failure, returns the
1833  * error code and NULL in *foliop.
1834  */
1835 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1836 			     struct folio **foliop, enum sgp_type sgp,
1837 			     gfp_t gfp, struct vm_area_struct *vma,
1838 			     vm_fault_t *fault_type)
1839 {
1840 	struct address_space *mapping = inode->i_mapping;
1841 	struct shmem_inode_info *info = SHMEM_I(inode);
1842 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1843 	struct swap_info_struct *si;
1844 	struct folio *folio = NULL;
1845 	swp_entry_t swap;
1846 	int error;
1847 
1848 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1849 	swap = radix_to_swp_entry(*foliop);
1850 	*foliop = NULL;
1851 
1852 	if (is_poisoned_swp_entry(swap))
1853 		return -EIO;
1854 
1855 	si = get_swap_device(swap);
1856 	if (!si) {
1857 		if (!shmem_confirm_swap(mapping, index, swap))
1858 			return -EEXIST;
1859 		else
1860 			return -EINVAL;
1861 	}
1862 
1863 	/* Look it up and read it in.. */
1864 	folio = swap_cache_get_folio(swap, NULL, 0);
1865 	if (!folio) {
1866 		/* Or update major stats only when swapin succeeds?? */
1867 		if (fault_type) {
1868 			*fault_type |= VM_FAULT_MAJOR;
1869 			count_vm_event(PGMAJFAULT);
1870 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1871 		}
1872 		/* Here we actually start the io */
1873 		folio = shmem_swapin(swap, gfp, info, index);
1874 		if (!folio) {
1875 			error = -ENOMEM;
1876 			goto failed;
1877 		}
1878 	}
1879 
1880 	/* We have to do this with folio locked to prevent races */
1881 	folio_lock(folio);
1882 	if (!folio_test_swapcache(folio) ||
1883 	    folio->swap.val != swap.val ||
1884 	    !shmem_confirm_swap(mapping, index, swap)) {
1885 		error = -EEXIST;
1886 		goto unlock;
1887 	}
1888 	if (!folio_test_uptodate(folio)) {
1889 		error = -EIO;
1890 		goto failed;
1891 	}
1892 	folio_wait_writeback(folio);
1893 
1894 	/*
1895 	 * Some architectures may have to restore extra metadata to the
1896 	 * folio after reading from swap.
1897 	 */
1898 	arch_swap_restore(swap, folio);
1899 
1900 	if (shmem_should_replace_folio(folio, gfp)) {
1901 		error = shmem_replace_folio(&folio, gfp, info, index);
1902 		if (error)
1903 			goto failed;
1904 	}
1905 
1906 	error = shmem_add_to_page_cache(folio, mapping, index,
1907 					swp_to_radix_entry(swap), gfp,
1908 					charge_mm);
1909 	if (error)
1910 		goto failed;
1911 
1912 	shmem_recalc_inode(inode, 0, -1);
1913 
1914 	if (sgp == SGP_WRITE)
1915 		folio_mark_accessed(folio);
1916 
1917 	delete_from_swap_cache(folio);
1918 	folio_mark_dirty(folio);
1919 	swap_free(swap);
1920 	put_swap_device(si);
1921 
1922 	*foliop = folio;
1923 	return 0;
1924 failed:
1925 	if (!shmem_confirm_swap(mapping, index, swap))
1926 		error = -EEXIST;
1927 	if (error == -EIO)
1928 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1929 unlock:
1930 	if (folio) {
1931 		folio_unlock(folio);
1932 		folio_put(folio);
1933 	}
1934 	put_swap_device(si);
1935 
1936 	return error;
1937 }
1938 
1939 /*
1940  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1941  *
1942  * If we allocate a new one we do not mark it dirty. That's up to the
1943  * vm. If we swap it in we mark it dirty since we also free the swap
1944  * entry since a page cannot live in both the swap and page cache.
1945  *
1946  * vma, vmf, and fault_type are only supplied by shmem_fault:
1947  * otherwise they are NULL.
1948  */
1949 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1950 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1951 		struct vm_area_struct *vma, struct vm_fault *vmf,
1952 		vm_fault_t *fault_type)
1953 {
1954 	struct address_space *mapping = inode->i_mapping;
1955 	struct shmem_inode_info *info = SHMEM_I(inode);
1956 	struct shmem_sb_info *sbinfo;
1957 	struct mm_struct *charge_mm;
1958 	struct folio *folio;
1959 	pgoff_t hindex;
1960 	gfp_t huge_gfp;
1961 	int error;
1962 	int once = 0;
1963 	int alloced = 0;
1964 
1965 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1966 		return -EFBIG;
1967 repeat:
1968 	if (sgp <= SGP_CACHE &&
1969 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1970 		return -EINVAL;
1971 	}
1972 
1973 	sbinfo = SHMEM_SB(inode->i_sb);
1974 	charge_mm = vma ? vma->vm_mm : NULL;
1975 
1976 	folio = filemap_get_entry(mapping, index);
1977 	if (folio && vma && userfaultfd_minor(vma)) {
1978 		if (!xa_is_value(folio))
1979 			folio_put(folio);
1980 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1981 		return 0;
1982 	}
1983 
1984 	if (xa_is_value(folio)) {
1985 		error = shmem_swapin_folio(inode, index, &folio,
1986 					  sgp, gfp, vma, fault_type);
1987 		if (error == -EEXIST)
1988 			goto repeat;
1989 
1990 		*foliop = folio;
1991 		return error;
1992 	}
1993 
1994 	if (folio) {
1995 		folio_lock(folio);
1996 
1997 		/* Has the folio been truncated or swapped out? */
1998 		if (unlikely(folio->mapping != mapping)) {
1999 			folio_unlock(folio);
2000 			folio_put(folio);
2001 			goto repeat;
2002 		}
2003 		if (sgp == SGP_WRITE)
2004 			folio_mark_accessed(folio);
2005 		if (folio_test_uptodate(folio))
2006 			goto out;
2007 		/* fallocated folio */
2008 		if (sgp != SGP_READ)
2009 			goto clear;
2010 		folio_unlock(folio);
2011 		folio_put(folio);
2012 	}
2013 
2014 	/*
2015 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2016 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2017 	 */
2018 	*foliop = NULL;
2019 	if (sgp == SGP_READ)
2020 		return 0;
2021 	if (sgp == SGP_NOALLOC)
2022 		return -ENOENT;
2023 
2024 	/*
2025 	 * Fast cache lookup and swap lookup did not find it: allocate.
2026 	 */
2027 
2028 	if (vma && userfaultfd_missing(vma)) {
2029 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2030 		return 0;
2031 	}
2032 
2033 	if (!shmem_is_huge(inode, index, false,
2034 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2035 		goto alloc_nohuge;
2036 
2037 	huge_gfp = vma_thp_gfp_mask(vma);
2038 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2039 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2040 	if (IS_ERR(folio)) {
2041 alloc_nohuge:
2042 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2043 	}
2044 	if (IS_ERR(folio)) {
2045 		int retry = 5;
2046 
2047 		error = PTR_ERR(folio);
2048 		folio = NULL;
2049 		if (error != -ENOSPC)
2050 			goto unlock;
2051 		/*
2052 		 * Try to reclaim some space by splitting a large folio
2053 		 * beyond i_size on the filesystem.
2054 		 */
2055 		while (retry--) {
2056 			int ret;
2057 
2058 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2059 			if (ret == SHRINK_STOP)
2060 				break;
2061 			if (ret)
2062 				goto alloc_nohuge;
2063 		}
2064 		goto unlock;
2065 	}
2066 
2067 	hindex = round_down(index, folio_nr_pages(folio));
2068 
2069 	if (sgp == SGP_WRITE)
2070 		__folio_set_referenced(folio);
2071 
2072 	error = shmem_add_to_page_cache(folio, mapping, hindex,
2073 					NULL, gfp & GFP_RECLAIM_MASK,
2074 					charge_mm);
2075 	if (error)
2076 		goto unacct;
2077 
2078 	folio_add_lru(folio);
2079 	shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2080 	alloced = true;
2081 
2082 	if (folio_test_pmd_mappable(folio) &&
2083 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2084 					folio_next_index(folio) - 1) {
2085 		/*
2086 		 * Part of the large folio is beyond i_size: subject
2087 		 * to shrink under memory pressure.
2088 		 */
2089 		spin_lock(&sbinfo->shrinklist_lock);
2090 		/*
2091 		 * _careful to defend against unlocked access to
2092 		 * ->shrink_list in shmem_unused_huge_shrink()
2093 		 */
2094 		if (list_empty_careful(&info->shrinklist)) {
2095 			list_add_tail(&info->shrinklist,
2096 				      &sbinfo->shrinklist);
2097 			sbinfo->shrinklist_len++;
2098 		}
2099 		spin_unlock(&sbinfo->shrinklist_lock);
2100 	}
2101 
2102 	/*
2103 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2104 	 */
2105 	if (sgp == SGP_FALLOC)
2106 		sgp = SGP_WRITE;
2107 clear:
2108 	/*
2109 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2110 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2111 	 * it now, lest undo on failure cancel our earlier guarantee.
2112 	 */
2113 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2114 		long i, n = folio_nr_pages(folio);
2115 
2116 		for (i = 0; i < n; i++)
2117 			clear_highpage(folio_page(folio, i));
2118 		flush_dcache_folio(folio);
2119 		folio_mark_uptodate(folio);
2120 	}
2121 
2122 	/* Perhaps the file has been truncated since we checked */
2123 	if (sgp <= SGP_CACHE &&
2124 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2125 		if (alloced) {
2126 			folio_clear_dirty(folio);
2127 			filemap_remove_folio(folio);
2128 			shmem_recalc_inode(inode, 0, 0);
2129 		}
2130 		error = -EINVAL;
2131 		goto unlock;
2132 	}
2133 out:
2134 	*foliop = folio;
2135 	return 0;
2136 
2137 	/*
2138 	 * Error recovery.
2139 	 */
2140 unacct:
2141 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2142 
2143 	if (folio_test_large(folio)) {
2144 		folio_unlock(folio);
2145 		folio_put(folio);
2146 		goto alloc_nohuge;
2147 	}
2148 unlock:
2149 	if (folio) {
2150 		folio_unlock(folio);
2151 		folio_put(folio);
2152 	}
2153 	if (error == -ENOSPC && !once++) {
2154 		shmem_recalc_inode(inode, 0, 0);
2155 		goto repeat;
2156 	}
2157 	if (error == -EEXIST)
2158 		goto repeat;
2159 	return error;
2160 }
2161 
2162 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2163 		enum sgp_type sgp)
2164 {
2165 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2166 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2167 }
2168 
2169 /*
2170  * This is like autoremove_wake_function, but it removes the wait queue
2171  * entry unconditionally - even if something else had already woken the
2172  * target.
2173  */
2174 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2175 {
2176 	int ret = default_wake_function(wait, mode, sync, key);
2177 	list_del_init(&wait->entry);
2178 	return ret;
2179 }
2180 
2181 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2182 {
2183 	struct vm_area_struct *vma = vmf->vma;
2184 	struct inode *inode = file_inode(vma->vm_file);
2185 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2186 	struct folio *folio = NULL;
2187 	int err;
2188 	vm_fault_t ret = VM_FAULT_LOCKED;
2189 
2190 	/*
2191 	 * Trinity finds that probing a hole which tmpfs is punching can
2192 	 * prevent the hole-punch from ever completing: which in turn
2193 	 * locks writers out with its hold on i_rwsem.  So refrain from
2194 	 * faulting pages into the hole while it's being punched.  Although
2195 	 * shmem_undo_range() does remove the additions, it may be unable to
2196 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2197 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2198 	 *
2199 	 * It does not matter if we sometimes reach this check just before the
2200 	 * hole-punch begins, so that one fault then races with the punch:
2201 	 * we just need to make racing faults a rare case.
2202 	 *
2203 	 * The implementation below would be much simpler if we just used a
2204 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2205 	 * and bloating every shmem inode for this unlikely case would be sad.
2206 	 */
2207 	if (unlikely(inode->i_private)) {
2208 		struct shmem_falloc *shmem_falloc;
2209 
2210 		spin_lock(&inode->i_lock);
2211 		shmem_falloc = inode->i_private;
2212 		if (shmem_falloc &&
2213 		    shmem_falloc->waitq &&
2214 		    vmf->pgoff >= shmem_falloc->start &&
2215 		    vmf->pgoff < shmem_falloc->next) {
2216 			struct file *fpin;
2217 			wait_queue_head_t *shmem_falloc_waitq;
2218 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2219 
2220 			ret = VM_FAULT_NOPAGE;
2221 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2222 			if (fpin)
2223 				ret = VM_FAULT_RETRY;
2224 
2225 			shmem_falloc_waitq = shmem_falloc->waitq;
2226 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2227 					TASK_UNINTERRUPTIBLE);
2228 			spin_unlock(&inode->i_lock);
2229 			schedule();
2230 
2231 			/*
2232 			 * shmem_falloc_waitq points into the shmem_fallocate()
2233 			 * stack of the hole-punching task: shmem_falloc_waitq
2234 			 * is usually invalid by the time we reach here, but
2235 			 * finish_wait() does not dereference it in that case;
2236 			 * though i_lock needed lest racing with wake_up_all().
2237 			 */
2238 			spin_lock(&inode->i_lock);
2239 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2240 			spin_unlock(&inode->i_lock);
2241 
2242 			if (fpin)
2243 				fput(fpin);
2244 			return ret;
2245 		}
2246 		spin_unlock(&inode->i_lock);
2247 	}
2248 
2249 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2250 				  gfp, vma, vmf, &ret);
2251 	if (err)
2252 		return vmf_error(err);
2253 	if (folio)
2254 		vmf->page = folio_file_page(folio, vmf->pgoff);
2255 	return ret;
2256 }
2257 
2258 unsigned long shmem_get_unmapped_area(struct file *file,
2259 				      unsigned long uaddr, unsigned long len,
2260 				      unsigned long pgoff, unsigned long flags)
2261 {
2262 	unsigned long (*get_area)(struct file *,
2263 		unsigned long, unsigned long, unsigned long, unsigned long);
2264 	unsigned long addr;
2265 	unsigned long offset;
2266 	unsigned long inflated_len;
2267 	unsigned long inflated_addr;
2268 	unsigned long inflated_offset;
2269 
2270 	if (len > TASK_SIZE)
2271 		return -ENOMEM;
2272 
2273 	get_area = current->mm->get_unmapped_area;
2274 	addr = get_area(file, uaddr, len, pgoff, flags);
2275 
2276 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2277 		return addr;
2278 	if (IS_ERR_VALUE(addr))
2279 		return addr;
2280 	if (addr & ~PAGE_MASK)
2281 		return addr;
2282 	if (addr > TASK_SIZE - len)
2283 		return addr;
2284 
2285 	if (shmem_huge == SHMEM_HUGE_DENY)
2286 		return addr;
2287 	if (len < HPAGE_PMD_SIZE)
2288 		return addr;
2289 	if (flags & MAP_FIXED)
2290 		return addr;
2291 	/*
2292 	 * Our priority is to support MAP_SHARED mapped hugely;
2293 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2294 	 * But if caller specified an address hint and we allocated area there
2295 	 * successfully, respect that as before.
2296 	 */
2297 	if (uaddr == addr)
2298 		return addr;
2299 
2300 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2301 		struct super_block *sb;
2302 
2303 		if (file) {
2304 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2305 			sb = file_inode(file)->i_sb;
2306 		} else {
2307 			/*
2308 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2309 			 * for "/dev/zero", to create a shared anonymous object.
2310 			 */
2311 			if (IS_ERR(shm_mnt))
2312 				return addr;
2313 			sb = shm_mnt->mnt_sb;
2314 		}
2315 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2316 			return addr;
2317 	}
2318 
2319 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2320 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2321 		return addr;
2322 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2323 		return addr;
2324 
2325 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2326 	if (inflated_len > TASK_SIZE)
2327 		return addr;
2328 	if (inflated_len < len)
2329 		return addr;
2330 
2331 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2332 	if (IS_ERR_VALUE(inflated_addr))
2333 		return addr;
2334 	if (inflated_addr & ~PAGE_MASK)
2335 		return addr;
2336 
2337 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2338 	inflated_addr += offset - inflated_offset;
2339 	if (inflated_offset > offset)
2340 		inflated_addr += HPAGE_PMD_SIZE;
2341 
2342 	if (inflated_addr > TASK_SIZE - len)
2343 		return addr;
2344 	return inflated_addr;
2345 }
2346 
2347 #ifdef CONFIG_NUMA
2348 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2349 {
2350 	struct inode *inode = file_inode(vma->vm_file);
2351 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2352 }
2353 
2354 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2355 					  unsigned long addr)
2356 {
2357 	struct inode *inode = file_inode(vma->vm_file);
2358 	pgoff_t index;
2359 
2360 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2361 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2362 }
2363 #endif
2364 
2365 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2366 {
2367 	struct inode *inode = file_inode(file);
2368 	struct shmem_inode_info *info = SHMEM_I(inode);
2369 	int retval = -ENOMEM;
2370 
2371 	/*
2372 	 * What serializes the accesses to info->flags?
2373 	 * ipc_lock_object() when called from shmctl_do_lock(),
2374 	 * no serialization needed when called from shm_destroy().
2375 	 */
2376 	if (lock && !(info->flags & VM_LOCKED)) {
2377 		if (!user_shm_lock(inode->i_size, ucounts))
2378 			goto out_nomem;
2379 		info->flags |= VM_LOCKED;
2380 		mapping_set_unevictable(file->f_mapping);
2381 	}
2382 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2383 		user_shm_unlock(inode->i_size, ucounts);
2384 		info->flags &= ~VM_LOCKED;
2385 		mapping_clear_unevictable(file->f_mapping);
2386 	}
2387 	retval = 0;
2388 
2389 out_nomem:
2390 	return retval;
2391 }
2392 
2393 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2394 {
2395 	struct inode *inode = file_inode(file);
2396 	struct shmem_inode_info *info = SHMEM_I(inode);
2397 	int ret;
2398 
2399 	ret = seal_check_future_write(info->seals, vma);
2400 	if (ret)
2401 		return ret;
2402 
2403 	/* arm64 - allow memory tagging on RAM-based files */
2404 	vm_flags_set(vma, VM_MTE_ALLOWED);
2405 
2406 	file_accessed(file);
2407 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2408 	if (inode->i_nlink)
2409 		vma->vm_ops = &shmem_vm_ops;
2410 	else
2411 		vma->vm_ops = &shmem_anon_vm_ops;
2412 	return 0;
2413 }
2414 
2415 static int shmem_file_open(struct inode *inode, struct file *file)
2416 {
2417 	file->f_mode |= FMODE_CAN_ODIRECT;
2418 	return generic_file_open(inode, file);
2419 }
2420 
2421 #ifdef CONFIG_TMPFS_XATTR
2422 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2423 
2424 /*
2425  * chattr's fsflags are unrelated to extended attributes,
2426  * but tmpfs has chosen to enable them under the same config option.
2427  */
2428 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2429 {
2430 	unsigned int i_flags = 0;
2431 
2432 	if (fsflags & FS_NOATIME_FL)
2433 		i_flags |= S_NOATIME;
2434 	if (fsflags & FS_APPEND_FL)
2435 		i_flags |= S_APPEND;
2436 	if (fsflags & FS_IMMUTABLE_FL)
2437 		i_flags |= S_IMMUTABLE;
2438 	/*
2439 	 * But FS_NODUMP_FL does not require any action in i_flags.
2440 	 */
2441 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2442 }
2443 #else
2444 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2445 {
2446 }
2447 #define shmem_initxattrs NULL
2448 #endif
2449 
2450 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2451 {
2452 	return &SHMEM_I(inode)->dir_offsets;
2453 }
2454 
2455 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2456 					     struct super_block *sb,
2457 					     struct inode *dir, umode_t mode,
2458 					     dev_t dev, unsigned long flags)
2459 {
2460 	struct inode *inode;
2461 	struct shmem_inode_info *info;
2462 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2463 	ino_t ino;
2464 	int err;
2465 
2466 	err = shmem_reserve_inode(sb, &ino);
2467 	if (err)
2468 		return ERR_PTR(err);
2469 
2470 
2471 	inode = new_inode(sb);
2472 	if (!inode) {
2473 		shmem_free_inode(sb, 0);
2474 		return ERR_PTR(-ENOSPC);
2475 	}
2476 
2477 	inode->i_ino = ino;
2478 	inode_init_owner(idmap, inode, dir, mode);
2479 	inode->i_blocks = 0;
2480 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2481 	inode->i_generation = get_random_u32();
2482 	info = SHMEM_I(inode);
2483 	memset(info, 0, (char *)inode - (char *)info);
2484 	spin_lock_init(&info->lock);
2485 	atomic_set(&info->stop_eviction, 0);
2486 	info->seals = F_SEAL_SEAL;
2487 	info->flags = flags & VM_NORESERVE;
2488 	info->i_crtime = inode->i_mtime;
2489 	info->fsflags = (dir == NULL) ? 0 :
2490 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2491 	if (info->fsflags)
2492 		shmem_set_inode_flags(inode, info->fsflags);
2493 	INIT_LIST_HEAD(&info->shrinklist);
2494 	INIT_LIST_HEAD(&info->swaplist);
2495 	INIT_LIST_HEAD(&info->swaplist);
2496 	if (sbinfo->noswap)
2497 		mapping_set_unevictable(inode->i_mapping);
2498 	simple_xattrs_init(&info->xattrs);
2499 	cache_no_acl(inode);
2500 	mapping_set_large_folios(inode->i_mapping);
2501 
2502 	switch (mode & S_IFMT) {
2503 	default:
2504 		inode->i_op = &shmem_special_inode_operations;
2505 		init_special_inode(inode, mode, dev);
2506 		break;
2507 	case S_IFREG:
2508 		inode->i_mapping->a_ops = &shmem_aops;
2509 		inode->i_op = &shmem_inode_operations;
2510 		inode->i_fop = &shmem_file_operations;
2511 		mpol_shared_policy_init(&info->policy,
2512 					 shmem_get_sbmpol(sbinfo));
2513 		break;
2514 	case S_IFDIR:
2515 		inc_nlink(inode);
2516 		/* Some things misbehave if size == 0 on a directory */
2517 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2518 		inode->i_op = &shmem_dir_inode_operations;
2519 		inode->i_fop = &simple_offset_dir_operations;
2520 		simple_offset_init(shmem_get_offset_ctx(inode));
2521 		break;
2522 	case S_IFLNK:
2523 		/*
2524 		 * Must not load anything in the rbtree,
2525 		 * mpol_free_shared_policy will not be called.
2526 		 */
2527 		mpol_shared_policy_init(&info->policy, NULL);
2528 		break;
2529 	}
2530 
2531 	lockdep_annotate_inode_mutex_key(inode);
2532 	return inode;
2533 }
2534 
2535 #ifdef CONFIG_TMPFS_QUOTA
2536 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2537 				     struct super_block *sb, struct inode *dir,
2538 				     umode_t mode, dev_t dev, unsigned long flags)
2539 {
2540 	int err;
2541 	struct inode *inode;
2542 
2543 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2544 	if (IS_ERR(inode))
2545 		return inode;
2546 
2547 	err = dquot_initialize(inode);
2548 	if (err)
2549 		goto errout;
2550 
2551 	err = dquot_alloc_inode(inode);
2552 	if (err) {
2553 		dquot_drop(inode);
2554 		goto errout;
2555 	}
2556 	return inode;
2557 
2558 errout:
2559 	inode->i_flags |= S_NOQUOTA;
2560 	iput(inode);
2561 	return ERR_PTR(err);
2562 }
2563 #else
2564 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2565 				     struct super_block *sb, struct inode *dir,
2566 				     umode_t mode, dev_t dev, unsigned long flags)
2567 {
2568 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2569 }
2570 #endif /* CONFIG_TMPFS_QUOTA */
2571 
2572 #ifdef CONFIG_USERFAULTFD
2573 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2574 			   struct vm_area_struct *dst_vma,
2575 			   unsigned long dst_addr,
2576 			   unsigned long src_addr,
2577 			   uffd_flags_t flags,
2578 			   struct folio **foliop)
2579 {
2580 	struct inode *inode = file_inode(dst_vma->vm_file);
2581 	struct shmem_inode_info *info = SHMEM_I(inode);
2582 	struct address_space *mapping = inode->i_mapping;
2583 	gfp_t gfp = mapping_gfp_mask(mapping);
2584 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2585 	void *page_kaddr;
2586 	struct folio *folio;
2587 	int ret;
2588 	pgoff_t max_off;
2589 
2590 	if (shmem_inode_acct_block(inode, 1)) {
2591 		/*
2592 		 * We may have got a page, returned -ENOENT triggering a retry,
2593 		 * and now we find ourselves with -ENOMEM. Release the page, to
2594 		 * avoid a BUG_ON in our caller.
2595 		 */
2596 		if (unlikely(*foliop)) {
2597 			folio_put(*foliop);
2598 			*foliop = NULL;
2599 		}
2600 		return -ENOMEM;
2601 	}
2602 
2603 	if (!*foliop) {
2604 		ret = -ENOMEM;
2605 		folio = shmem_alloc_folio(gfp, info, pgoff);
2606 		if (!folio)
2607 			goto out_unacct_blocks;
2608 
2609 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2610 			page_kaddr = kmap_local_folio(folio, 0);
2611 			/*
2612 			 * The read mmap_lock is held here.  Despite the
2613 			 * mmap_lock being read recursive a deadlock is still
2614 			 * possible if a writer has taken a lock.  For example:
2615 			 *
2616 			 * process A thread 1 takes read lock on own mmap_lock
2617 			 * process A thread 2 calls mmap, blocks taking write lock
2618 			 * process B thread 1 takes page fault, read lock on own mmap lock
2619 			 * process B thread 2 calls mmap, blocks taking write lock
2620 			 * process A thread 1 blocks taking read lock on process B
2621 			 * process B thread 1 blocks taking read lock on process A
2622 			 *
2623 			 * Disable page faults to prevent potential deadlock
2624 			 * and retry the copy outside the mmap_lock.
2625 			 */
2626 			pagefault_disable();
2627 			ret = copy_from_user(page_kaddr,
2628 					     (const void __user *)src_addr,
2629 					     PAGE_SIZE);
2630 			pagefault_enable();
2631 			kunmap_local(page_kaddr);
2632 
2633 			/* fallback to copy_from_user outside mmap_lock */
2634 			if (unlikely(ret)) {
2635 				*foliop = folio;
2636 				ret = -ENOENT;
2637 				/* don't free the page */
2638 				goto out_unacct_blocks;
2639 			}
2640 
2641 			flush_dcache_folio(folio);
2642 		} else {		/* ZEROPAGE */
2643 			clear_user_highpage(&folio->page, dst_addr);
2644 		}
2645 	} else {
2646 		folio = *foliop;
2647 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2648 		*foliop = NULL;
2649 	}
2650 
2651 	VM_BUG_ON(folio_test_locked(folio));
2652 	VM_BUG_ON(folio_test_swapbacked(folio));
2653 	__folio_set_locked(folio);
2654 	__folio_set_swapbacked(folio);
2655 	__folio_mark_uptodate(folio);
2656 
2657 	ret = -EFAULT;
2658 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2659 	if (unlikely(pgoff >= max_off))
2660 		goto out_release;
2661 
2662 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2663 				      gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2664 	if (ret)
2665 		goto out_release;
2666 
2667 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2668 				       &folio->page, true, flags);
2669 	if (ret)
2670 		goto out_delete_from_cache;
2671 
2672 	shmem_recalc_inode(inode, 1, 0);
2673 	folio_unlock(folio);
2674 	return 0;
2675 out_delete_from_cache:
2676 	filemap_remove_folio(folio);
2677 out_release:
2678 	folio_unlock(folio);
2679 	folio_put(folio);
2680 out_unacct_blocks:
2681 	shmem_inode_unacct_blocks(inode, 1);
2682 	return ret;
2683 }
2684 #endif /* CONFIG_USERFAULTFD */
2685 
2686 #ifdef CONFIG_TMPFS
2687 static const struct inode_operations shmem_symlink_inode_operations;
2688 static const struct inode_operations shmem_short_symlink_operations;
2689 
2690 static int
2691 shmem_write_begin(struct file *file, struct address_space *mapping,
2692 			loff_t pos, unsigned len,
2693 			struct page **pagep, void **fsdata)
2694 {
2695 	struct inode *inode = mapping->host;
2696 	struct shmem_inode_info *info = SHMEM_I(inode);
2697 	pgoff_t index = pos >> PAGE_SHIFT;
2698 	struct folio *folio;
2699 	int ret = 0;
2700 
2701 	/* i_rwsem is held by caller */
2702 	if (unlikely(info->seals & (F_SEAL_GROW |
2703 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2704 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2705 			return -EPERM;
2706 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2707 			return -EPERM;
2708 	}
2709 
2710 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2711 
2712 	if (ret)
2713 		return ret;
2714 
2715 	*pagep = folio_file_page(folio, index);
2716 	if (PageHWPoison(*pagep)) {
2717 		folio_unlock(folio);
2718 		folio_put(folio);
2719 		*pagep = NULL;
2720 		return -EIO;
2721 	}
2722 
2723 	return 0;
2724 }
2725 
2726 static int
2727 shmem_write_end(struct file *file, struct address_space *mapping,
2728 			loff_t pos, unsigned len, unsigned copied,
2729 			struct page *page, void *fsdata)
2730 {
2731 	struct folio *folio = page_folio(page);
2732 	struct inode *inode = mapping->host;
2733 
2734 	if (pos + copied > inode->i_size)
2735 		i_size_write(inode, pos + copied);
2736 
2737 	if (!folio_test_uptodate(folio)) {
2738 		if (copied < folio_size(folio)) {
2739 			size_t from = offset_in_folio(folio, pos);
2740 			folio_zero_segments(folio, 0, from,
2741 					from + copied, folio_size(folio));
2742 		}
2743 		folio_mark_uptodate(folio);
2744 	}
2745 	folio_mark_dirty(folio);
2746 	folio_unlock(folio);
2747 	folio_put(folio);
2748 
2749 	return copied;
2750 }
2751 
2752 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2753 {
2754 	struct file *file = iocb->ki_filp;
2755 	struct inode *inode = file_inode(file);
2756 	struct address_space *mapping = inode->i_mapping;
2757 	pgoff_t index;
2758 	unsigned long offset;
2759 	int error = 0;
2760 	ssize_t retval = 0;
2761 	loff_t *ppos = &iocb->ki_pos;
2762 
2763 	index = *ppos >> PAGE_SHIFT;
2764 	offset = *ppos & ~PAGE_MASK;
2765 
2766 	for (;;) {
2767 		struct folio *folio = NULL;
2768 		struct page *page = NULL;
2769 		pgoff_t end_index;
2770 		unsigned long nr, ret;
2771 		loff_t i_size = i_size_read(inode);
2772 
2773 		end_index = i_size >> PAGE_SHIFT;
2774 		if (index > end_index)
2775 			break;
2776 		if (index == end_index) {
2777 			nr = i_size & ~PAGE_MASK;
2778 			if (nr <= offset)
2779 				break;
2780 		}
2781 
2782 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2783 		if (error) {
2784 			if (error == -EINVAL)
2785 				error = 0;
2786 			break;
2787 		}
2788 		if (folio) {
2789 			folio_unlock(folio);
2790 
2791 			page = folio_file_page(folio, index);
2792 			if (PageHWPoison(page)) {
2793 				folio_put(folio);
2794 				error = -EIO;
2795 				break;
2796 			}
2797 		}
2798 
2799 		/*
2800 		 * We must evaluate after, since reads (unlike writes)
2801 		 * are called without i_rwsem protection against truncate
2802 		 */
2803 		nr = PAGE_SIZE;
2804 		i_size = i_size_read(inode);
2805 		end_index = i_size >> PAGE_SHIFT;
2806 		if (index == end_index) {
2807 			nr = i_size & ~PAGE_MASK;
2808 			if (nr <= offset) {
2809 				if (folio)
2810 					folio_put(folio);
2811 				break;
2812 			}
2813 		}
2814 		nr -= offset;
2815 
2816 		if (folio) {
2817 			/*
2818 			 * If users can be writing to this page using arbitrary
2819 			 * virtual addresses, take care about potential aliasing
2820 			 * before reading the page on the kernel side.
2821 			 */
2822 			if (mapping_writably_mapped(mapping))
2823 				flush_dcache_page(page);
2824 			/*
2825 			 * Mark the page accessed if we read the beginning.
2826 			 */
2827 			if (!offset)
2828 				folio_mark_accessed(folio);
2829 			/*
2830 			 * Ok, we have the page, and it's up-to-date, so
2831 			 * now we can copy it to user space...
2832 			 */
2833 			ret = copy_page_to_iter(page, offset, nr, to);
2834 			folio_put(folio);
2835 
2836 		} else if (user_backed_iter(to)) {
2837 			/*
2838 			 * Copy to user tends to be so well optimized, but
2839 			 * clear_user() not so much, that it is noticeably
2840 			 * faster to copy the zero page instead of clearing.
2841 			 */
2842 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2843 		} else {
2844 			/*
2845 			 * But submitting the same page twice in a row to
2846 			 * splice() - or others? - can result in confusion:
2847 			 * so don't attempt that optimization on pipes etc.
2848 			 */
2849 			ret = iov_iter_zero(nr, to);
2850 		}
2851 
2852 		retval += ret;
2853 		offset += ret;
2854 		index += offset >> PAGE_SHIFT;
2855 		offset &= ~PAGE_MASK;
2856 
2857 		if (!iov_iter_count(to))
2858 			break;
2859 		if (ret < nr) {
2860 			error = -EFAULT;
2861 			break;
2862 		}
2863 		cond_resched();
2864 	}
2865 
2866 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2867 	file_accessed(file);
2868 	return retval ? retval : error;
2869 }
2870 
2871 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2872 {
2873 	struct file *file = iocb->ki_filp;
2874 	struct inode *inode = file->f_mapping->host;
2875 	ssize_t ret;
2876 
2877 	inode_lock(inode);
2878 	ret = generic_write_checks(iocb, from);
2879 	if (ret <= 0)
2880 		goto unlock;
2881 	ret = file_remove_privs(file);
2882 	if (ret)
2883 		goto unlock;
2884 	ret = file_update_time(file);
2885 	if (ret)
2886 		goto unlock;
2887 	ret = generic_perform_write(iocb, from);
2888 unlock:
2889 	inode_unlock(inode);
2890 	return ret;
2891 }
2892 
2893 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2894 			      struct pipe_buffer *buf)
2895 {
2896 	return true;
2897 }
2898 
2899 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2900 				  struct pipe_buffer *buf)
2901 {
2902 }
2903 
2904 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2905 				    struct pipe_buffer *buf)
2906 {
2907 	return false;
2908 }
2909 
2910 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2911 	.release	= zero_pipe_buf_release,
2912 	.try_steal	= zero_pipe_buf_try_steal,
2913 	.get		= zero_pipe_buf_get,
2914 };
2915 
2916 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2917 					loff_t fpos, size_t size)
2918 {
2919 	size_t offset = fpos & ~PAGE_MASK;
2920 
2921 	size = min_t(size_t, size, PAGE_SIZE - offset);
2922 
2923 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2924 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2925 
2926 		*buf = (struct pipe_buffer) {
2927 			.ops	= &zero_pipe_buf_ops,
2928 			.page	= ZERO_PAGE(0),
2929 			.offset	= offset,
2930 			.len	= size,
2931 		};
2932 		pipe->head++;
2933 	}
2934 
2935 	return size;
2936 }
2937 
2938 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2939 				      struct pipe_inode_info *pipe,
2940 				      size_t len, unsigned int flags)
2941 {
2942 	struct inode *inode = file_inode(in);
2943 	struct address_space *mapping = inode->i_mapping;
2944 	struct folio *folio = NULL;
2945 	size_t total_spliced = 0, used, npages, n, part;
2946 	loff_t isize;
2947 	int error = 0;
2948 
2949 	/* Work out how much data we can actually add into the pipe */
2950 	used = pipe_occupancy(pipe->head, pipe->tail);
2951 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2952 	len = min_t(size_t, len, npages * PAGE_SIZE);
2953 
2954 	do {
2955 		if (*ppos >= i_size_read(inode))
2956 			break;
2957 
2958 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2959 					SGP_READ);
2960 		if (error) {
2961 			if (error == -EINVAL)
2962 				error = 0;
2963 			break;
2964 		}
2965 		if (folio) {
2966 			folio_unlock(folio);
2967 
2968 			if (folio_test_hwpoison(folio) ||
2969 			    (folio_test_large(folio) &&
2970 			     folio_test_has_hwpoisoned(folio))) {
2971 				error = -EIO;
2972 				break;
2973 			}
2974 		}
2975 
2976 		/*
2977 		 * i_size must be checked after we know the pages are Uptodate.
2978 		 *
2979 		 * Checking i_size after the check allows us to calculate
2980 		 * the correct value for "nr", which means the zero-filled
2981 		 * part of the page is not copied back to userspace (unless
2982 		 * another truncate extends the file - this is desired though).
2983 		 */
2984 		isize = i_size_read(inode);
2985 		if (unlikely(*ppos >= isize))
2986 			break;
2987 		part = min_t(loff_t, isize - *ppos, len);
2988 
2989 		if (folio) {
2990 			/*
2991 			 * If users can be writing to this page using arbitrary
2992 			 * virtual addresses, take care about potential aliasing
2993 			 * before reading the page on the kernel side.
2994 			 */
2995 			if (mapping_writably_mapped(mapping))
2996 				flush_dcache_folio(folio);
2997 			folio_mark_accessed(folio);
2998 			/*
2999 			 * Ok, we have the page, and it's up-to-date, so we can
3000 			 * now splice it into the pipe.
3001 			 */
3002 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3003 			folio_put(folio);
3004 			folio = NULL;
3005 		} else {
3006 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3007 		}
3008 
3009 		if (!n)
3010 			break;
3011 		len -= n;
3012 		total_spliced += n;
3013 		*ppos += n;
3014 		in->f_ra.prev_pos = *ppos;
3015 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3016 			break;
3017 
3018 		cond_resched();
3019 	} while (len);
3020 
3021 	if (folio)
3022 		folio_put(folio);
3023 
3024 	file_accessed(in);
3025 	return total_spliced ? total_spliced : error;
3026 }
3027 
3028 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3029 {
3030 	struct address_space *mapping = file->f_mapping;
3031 	struct inode *inode = mapping->host;
3032 
3033 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3034 		return generic_file_llseek_size(file, offset, whence,
3035 					MAX_LFS_FILESIZE, i_size_read(inode));
3036 	if (offset < 0)
3037 		return -ENXIO;
3038 
3039 	inode_lock(inode);
3040 	/* We're holding i_rwsem so we can access i_size directly */
3041 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3042 	if (offset >= 0)
3043 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3044 	inode_unlock(inode);
3045 	return offset;
3046 }
3047 
3048 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3049 							 loff_t len)
3050 {
3051 	struct inode *inode = file_inode(file);
3052 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3053 	struct shmem_inode_info *info = SHMEM_I(inode);
3054 	struct shmem_falloc shmem_falloc;
3055 	pgoff_t start, index, end, undo_fallocend;
3056 	int error;
3057 
3058 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3059 		return -EOPNOTSUPP;
3060 
3061 	inode_lock(inode);
3062 
3063 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3064 		struct address_space *mapping = file->f_mapping;
3065 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3066 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3067 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3068 
3069 		/* protected by i_rwsem */
3070 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3071 			error = -EPERM;
3072 			goto out;
3073 		}
3074 
3075 		shmem_falloc.waitq = &shmem_falloc_waitq;
3076 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3077 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3078 		spin_lock(&inode->i_lock);
3079 		inode->i_private = &shmem_falloc;
3080 		spin_unlock(&inode->i_lock);
3081 
3082 		if ((u64)unmap_end > (u64)unmap_start)
3083 			unmap_mapping_range(mapping, unmap_start,
3084 					    1 + unmap_end - unmap_start, 0);
3085 		shmem_truncate_range(inode, offset, offset + len - 1);
3086 		/* No need to unmap again: hole-punching leaves COWed pages */
3087 
3088 		spin_lock(&inode->i_lock);
3089 		inode->i_private = NULL;
3090 		wake_up_all(&shmem_falloc_waitq);
3091 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3092 		spin_unlock(&inode->i_lock);
3093 		error = 0;
3094 		goto out;
3095 	}
3096 
3097 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3098 	error = inode_newsize_ok(inode, offset + len);
3099 	if (error)
3100 		goto out;
3101 
3102 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3103 		error = -EPERM;
3104 		goto out;
3105 	}
3106 
3107 	start = offset >> PAGE_SHIFT;
3108 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3109 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3110 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3111 		error = -ENOSPC;
3112 		goto out;
3113 	}
3114 
3115 	shmem_falloc.waitq = NULL;
3116 	shmem_falloc.start = start;
3117 	shmem_falloc.next  = start;
3118 	shmem_falloc.nr_falloced = 0;
3119 	shmem_falloc.nr_unswapped = 0;
3120 	spin_lock(&inode->i_lock);
3121 	inode->i_private = &shmem_falloc;
3122 	spin_unlock(&inode->i_lock);
3123 
3124 	/*
3125 	 * info->fallocend is only relevant when huge pages might be
3126 	 * involved: to prevent split_huge_page() freeing fallocated
3127 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3128 	 */
3129 	undo_fallocend = info->fallocend;
3130 	if (info->fallocend < end)
3131 		info->fallocend = end;
3132 
3133 	for (index = start; index < end; ) {
3134 		struct folio *folio;
3135 
3136 		/*
3137 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3138 		 * been interrupted because we are using up too much memory.
3139 		 */
3140 		if (signal_pending(current))
3141 			error = -EINTR;
3142 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3143 			error = -ENOMEM;
3144 		else
3145 			error = shmem_get_folio(inode, index, &folio,
3146 						SGP_FALLOC);
3147 		if (error) {
3148 			info->fallocend = undo_fallocend;
3149 			/* Remove the !uptodate folios we added */
3150 			if (index > start) {
3151 				shmem_undo_range(inode,
3152 				    (loff_t)start << PAGE_SHIFT,
3153 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3154 			}
3155 			goto undone;
3156 		}
3157 
3158 		/*
3159 		 * Here is a more important optimization than it appears:
3160 		 * a second SGP_FALLOC on the same large folio will clear it,
3161 		 * making it uptodate and un-undoable if we fail later.
3162 		 */
3163 		index = folio_next_index(folio);
3164 		/* Beware 32-bit wraparound */
3165 		if (!index)
3166 			index--;
3167 
3168 		/*
3169 		 * Inform shmem_writepage() how far we have reached.
3170 		 * No need for lock or barrier: we have the page lock.
3171 		 */
3172 		if (!folio_test_uptodate(folio))
3173 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3174 		shmem_falloc.next = index;
3175 
3176 		/*
3177 		 * If !uptodate, leave it that way so that freeable folios
3178 		 * can be recognized if we need to rollback on error later.
3179 		 * But mark it dirty so that memory pressure will swap rather
3180 		 * than free the folios we are allocating (and SGP_CACHE folios
3181 		 * might still be clean: we now need to mark those dirty too).
3182 		 */
3183 		folio_mark_dirty(folio);
3184 		folio_unlock(folio);
3185 		folio_put(folio);
3186 		cond_resched();
3187 	}
3188 
3189 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3190 		i_size_write(inode, offset + len);
3191 undone:
3192 	spin_lock(&inode->i_lock);
3193 	inode->i_private = NULL;
3194 	spin_unlock(&inode->i_lock);
3195 out:
3196 	if (!error)
3197 		file_modified(file);
3198 	inode_unlock(inode);
3199 	return error;
3200 }
3201 
3202 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3203 {
3204 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3205 
3206 	buf->f_type = TMPFS_MAGIC;
3207 	buf->f_bsize = PAGE_SIZE;
3208 	buf->f_namelen = NAME_MAX;
3209 	if (sbinfo->max_blocks) {
3210 		buf->f_blocks = sbinfo->max_blocks;
3211 		buf->f_bavail =
3212 		buf->f_bfree  = sbinfo->max_blocks -
3213 				percpu_counter_sum(&sbinfo->used_blocks);
3214 	}
3215 	if (sbinfo->max_inodes) {
3216 		buf->f_files = sbinfo->max_inodes;
3217 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3218 	}
3219 	/* else leave those fields 0 like simple_statfs */
3220 
3221 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3222 
3223 	return 0;
3224 }
3225 
3226 /*
3227  * File creation. Allocate an inode, and we're done..
3228  */
3229 static int
3230 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3231 	    struct dentry *dentry, umode_t mode, dev_t dev)
3232 {
3233 	struct inode *inode;
3234 	int error;
3235 
3236 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3237 	if (IS_ERR(inode))
3238 		return PTR_ERR(inode);
3239 
3240 	error = simple_acl_create(dir, inode);
3241 	if (error)
3242 		goto out_iput;
3243 	error = security_inode_init_security(inode, dir,
3244 					     &dentry->d_name,
3245 					     shmem_initxattrs, NULL);
3246 	if (error && error != -EOPNOTSUPP)
3247 		goto out_iput;
3248 
3249 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3250 	if (error)
3251 		goto out_iput;
3252 
3253 	dir->i_size += BOGO_DIRENT_SIZE;
3254 	dir->i_mtime = inode_set_ctime_current(dir);
3255 	inode_inc_iversion(dir);
3256 	d_instantiate(dentry, inode);
3257 	dget(dentry); /* Extra count - pin the dentry in core */
3258 	return error;
3259 
3260 out_iput:
3261 	iput(inode);
3262 	return error;
3263 }
3264 
3265 static int
3266 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3267 	      struct file *file, umode_t mode)
3268 {
3269 	struct inode *inode;
3270 	int error;
3271 
3272 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3273 
3274 	if (IS_ERR(inode)) {
3275 		error = PTR_ERR(inode);
3276 		goto err_out;
3277 	}
3278 
3279 	error = security_inode_init_security(inode, dir,
3280 					     NULL,
3281 					     shmem_initxattrs, NULL);
3282 	if (error && error != -EOPNOTSUPP)
3283 		goto out_iput;
3284 	error = simple_acl_create(dir, inode);
3285 	if (error)
3286 		goto out_iput;
3287 	d_tmpfile(file, inode);
3288 
3289 err_out:
3290 	return finish_open_simple(file, error);
3291 out_iput:
3292 	iput(inode);
3293 	return error;
3294 }
3295 
3296 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3297 		       struct dentry *dentry, umode_t mode)
3298 {
3299 	int error;
3300 
3301 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3302 	if (error)
3303 		return error;
3304 	inc_nlink(dir);
3305 	return 0;
3306 }
3307 
3308 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3309 			struct dentry *dentry, umode_t mode, bool excl)
3310 {
3311 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3312 }
3313 
3314 /*
3315  * Link a file..
3316  */
3317 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3318 {
3319 	struct inode *inode = d_inode(old_dentry);
3320 	int ret = 0;
3321 
3322 	/*
3323 	 * No ordinary (disk based) filesystem counts links as inodes;
3324 	 * but each new link needs a new dentry, pinning lowmem, and
3325 	 * tmpfs dentries cannot be pruned until they are unlinked.
3326 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3327 	 * first link must skip that, to get the accounting right.
3328 	 */
3329 	if (inode->i_nlink) {
3330 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3331 		if (ret)
3332 			goto out;
3333 	}
3334 
3335 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3336 	if (ret) {
3337 		if (inode->i_nlink)
3338 			shmem_free_inode(inode->i_sb, 0);
3339 		goto out;
3340 	}
3341 
3342 	dir->i_size += BOGO_DIRENT_SIZE;
3343 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3344 					     inode_set_ctime_current(inode));
3345 	inode_inc_iversion(dir);
3346 	inc_nlink(inode);
3347 	ihold(inode);	/* New dentry reference */
3348 	dget(dentry);		/* Extra pinning count for the created dentry */
3349 	d_instantiate(dentry, inode);
3350 out:
3351 	return ret;
3352 }
3353 
3354 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3355 {
3356 	struct inode *inode = d_inode(dentry);
3357 
3358 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3359 		shmem_free_inode(inode->i_sb, 0);
3360 
3361 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3362 
3363 	dir->i_size -= BOGO_DIRENT_SIZE;
3364 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3365 					     inode_set_ctime_current(inode));
3366 	inode_inc_iversion(dir);
3367 	drop_nlink(inode);
3368 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3369 	return 0;
3370 }
3371 
3372 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3373 {
3374 	if (!simple_empty(dentry))
3375 		return -ENOTEMPTY;
3376 
3377 	drop_nlink(d_inode(dentry));
3378 	drop_nlink(dir);
3379 	return shmem_unlink(dir, dentry);
3380 }
3381 
3382 static int shmem_whiteout(struct mnt_idmap *idmap,
3383 			  struct inode *old_dir, struct dentry *old_dentry)
3384 {
3385 	struct dentry *whiteout;
3386 	int error;
3387 
3388 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3389 	if (!whiteout)
3390 		return -ENOMEM;
3391 
3392 	error = shmem_mknod(idmap, old_dir, whiteout,
3393 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3394 	dput(whiteout);
3395 	if (error)
3396 		return error;
3397 
3398 	/*
3399 	 * Cheat and hash the whiteout while the old dentry is still in
3400 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3401 	 *
3402 	 * d_lookup() will consistently find one of them at this point,
3403 	 * not sure which one, but that isn't even important.
3404 	 */
3405 	d_rehash(whiteout);
3406 	return 0;
3407 }
3408 
3409 /*
3410  * The VFS layer already does all the dentry stuff for rename,
3411  * we just have to decrement the usage count for the target if
3412  * it exists so that the VFS layer correctly free's it when it
3413  * gets overwritten.
3414  */
3415 static int shmem_rename2(struct mnt_idmap *idmap,
3416 			 struct inode *old_dir, struct dentry *old_dentry,
3417 			 struct inode *new_dir, struct dentry *new_dentry,
3418 			 unsigned int flags)
3419 {
3420 	struct inode *inode = d_inode(old_dentry);
3421 	int they_are_dirs = S_ISDIR(inode->i_mode);
3422 	int error;
3423 
3424 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3425 		return -EINVAL;
3426 
3427 	if (flags & RENAME_EXCHANGE)
3428 		return simple_offset_rename_exchange(old_dir, old_dentry,
3429 						     new_dir, new_dentry);
3430 
3431 	if (!simple_empty(new_dentry))
3432 		return -ENOTEMPTY;
3433 
3434 	if (flags & RENAME_WHITEOUT) {
3435 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3436 		if (error)
3437 			return error;
3438 	}
3439 
3440 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3441 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3442 	if (error)
3443 		return error;
3444 
3445 	if (d_really_is_positive(new_dentry)) {
3446 		(void) shmem_unlink(new_dir, new_dentry);
3447 		if (they_are_dirs) {
3448 			drop_nlink(d_inode(new_dentry));
3449 			drop_nlink(old_dir);
3450 		}
3451 	} else if (they_are_dirs) {
3452 		drop_nlink(old_dir);
3453 		inc_nlink(new_dir);
3454 	}
3455 
3456 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3457 	new_dir->i_size += BOGO_DIRENT_SIZE;
3458 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3459 	inode_inc_iversion(old_dir);
3460 	inode_inc_iversion(new_dir);
3461 	return 0;
3462 }
3463 
3464 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3465 			 struct dentry *dentry, const char *symname)
3466 {
3467 	int error;
3468 	int len;
3469 	struct inode *inode;
3470 	struct folio *folio;
3471 
3472 	len = strlen(symname) + 1;
3473 	if (len > PAGE_SIZE)
3474 		return -ENAMETOOLONG;
3475 
3476 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3477 				VM_NORESERVE);
3478 
3479 	if (IS_ERR(inode))
3480 		return PTR_ERR(inode);
3481 
3482 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3483 					     shmem_initxattrs, NULL);
3484 	if (error && error != -EOPNOTSUPP)
3485 		goto out_iput;
3486 
3487 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3488 	if (error)
3489 		goto out_iput;
3490 
3491 	inode->i_size = len-1;
3492 	if (len <= SHORT_SYMLINK_LEN) {
3493 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3494 		if (!inode->i_link) {
3495 			error = -ENOMEM;
3496 			goto out_remove_offset;
3497 		}
3498 		inode->i_op = &shmem_short_symlink_operations;
3499 	} else {
3500 		inode_nohighmem(inode);
3501 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3502 		if (error)
3503 			goto out_remove_offset;
3504 		inode->i_mapping->a_ops = &shmem_aops;
3505 		inode->i_op = &shmem_symlink_inode_operations;
3506 		memcpy(folio_address(folio), symname, len);
3507 		folio_mark_uptodate(folio);
3508 		folio_mark_dirty(folio);
3509 		folio_unlock(folio);
3510 		folio_put(folio);
3511 	}
3512 	dir->i_size += BOGO_DIRENT_SIZE;
3513 	dir->i_mtime = inode_set_ctime_current(dir);
3514 	inode_inc_iversion(dir);
3515 	d_instantiate(dentry, inode);
3516 	dget(dentry);
3517 	return 0;
3518 
3519 out_remove_offset:
3520 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3521 out_iput:
3522 	iput(inode);
3523 	return error;
3524 }
3525 
3526 static void shmem_put_link(void *arg)
3527 {
3528 	folio_mark_accessed(arg);
3529 	folio_put(arg);
3530 }
3531 
3532 static const char *shmem_get_link(struct dentry *dentry,
3533 				  struct inode *inode,
3534 				  struct delayed_call *done)
3535 {
3536 	struct folio *folio = NULL;
3537 	int error;
3538 
3539 	if (!dentry) {
3540 		folio = filemap_get_folio(inode->i_mapping, 0);
3541 		if (IS_ERR(folio))
3542 			return ERR_PTR(-ECHILD);
3543 		if (PageHWPoison(folio_page(folio, 0)) ||
3544 		    !folio_test_uptodate(folio)) {
3545 			folio_put(folio);
3546 			return ERR_PTR(-ECHILD);
3547 		}
3548 	} else {
3549 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3550 		if (error)
3551 			return ERR_PTR(error);
3552 		if (!folio)
3553 			return ERR_PTR(-ECHILD);
3554 		if (PageHWPoison(folio_page(folio, 0))) {
3555 			folio_unlock(folio);
3556 			folio_put(folio);
3557 			return ERR_PTR(-ECHILD);
3558 		}
3559 		folio_unlock(folio);
3560 	}
3561 	set_delayed_call(done, shmem_put_link, folio);
3562 	return folio_address(folio);
3563 }
3564 
3565 #ifdef CONFIG_TMPFS_XATTR
3566 
3567 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3568 {
3569 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3570 
3571 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3572 
3573 	return 0;
3574 }
3575 
3576 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3577 			      struct dentry *dentry, struct fileattr *fa)
3578 {
3579 	struct inode *inode = d_inode(dentry);
3580 	struct shmem_inode_info *info = SHMEM_I(inode);
3581 
3582 	if (fileattr_has_fsx(fa))
3583 		return -EOPNOTSUPP;
3584 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3585 		return -EOPNOTSUPP;
3586 
3587 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3588 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3589 
3590 	shmem_set_inode_flags(inode, info->fsflags);
3591 	inode_set_ctime_current(inode);
3592 	inode_inc_iversion(inode);
3593 	return 0;
3594 }
3595 
3596 /*
3597  * Superblocks without xattr inode operations may get some security.* xattr
3598  * support from the LSM "for free". As soon as we have any other xattrs
3599  * like ACLs, we also need to implement the security.* handlers at
3600  * filesystem level, though.
3601  */
3602 
3603 /*
3604  * Callback for security_inode_init_security() for acquiring xattrs.
3605  */
3606 static int shmem_initxattrs(struct inode *inode,
3607 			    const struct xattr *xattr_array,
3608 			    void *fs_info)
3609 {
3610 	struct shmem_inode_info *info = SHMEM_I(inode);
3611 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3612 	const struct xattr *xattr;
3613 	struct simple_xattr *new_xattr;
3614 	size_t ispace = 0;
3615 	size_t len;
3616 
3617 	if (sbinfo->max_inodes) {
3618 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3619 			ispace += simple_xattr_space(xattr->name,
3620 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3621 		}
3622 		if (ispace) {
3623 			raw_spin_lock(&sbinfo->stat_lock);
3624 			if (sbinfo->free_ispace < ispace)
3625 				ispace = 0;
3626 			else
3627 				sbinfo->free_ispace -= ispace;
3628 			raw_spin_unlock(&sbinfo->stat_lock);
3629 			if (!ispace)
3630 				return -ENOSPC;
3631 		}
3632 	}
3633 
3634 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3635 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3636 		if (!new_xattr)
3637 			break;
3638 
3639 		len = strlen(xattr->name) + 1;
3640 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3641 					  GFP_KERNEL_ACCOUNT);
3642 		if (!new_xattr->name) {
3643 			kvfree(new_xattr);
3644 			break;
3645 		}
3646 
3647 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3648 		       XATTR_SECURITY_PREFIX_LEN);
3649 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3650 		       xattr->name, len);
3651 
3652 		simple_xattr_add(&info->xattrs, new_xattr);
3653 	}
3654 
3655 	if (xattr->name != NULL) {
3656 		if (ispace) {
3657 			raw_spin_lock(&sbinfo->stat_lock);
3658 			sbinfo->free_ispace += ispace;
3659 			raw_spin_unlock(&sbinfo->stat_lock);
3660 		}
3661 		simple_xattrs_free(&info->xattrs, NULL);
3662 		return -ENOMEM;
3663 	}
3664 
3665 	return 0;
3666 }
3667 
3668 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3669 				   struct dentry *unused, struct inode *inode,
3670 				   const char *name, void *buffer, size_t size)
3671 {
3672 	struct shmem_inode_info *info = SHMEM_I(inode);
3673 
3674 	name = xattr_full_name(handler, name);
3675 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3676 }
3677 
3678 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3679 				   struct mnt_idmap *idmap,
3680 				   struct dentry *unused, struct inode *inode,
3681 				   const char *name, const void *value,
3682 				   size_t size, int flags)
3683 {
3684 	struct shmem_inode_info *info = SHMEM_I(inode);
3685 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3686 	struct simple_xattr *old_xattr;
3687 	size_t ispace = 0;
3688 
3689 	name = xattr_full_name(handler, name);
3690 	if (value && sbinfo->max_inodes) {
3691 		ispace = simple_xattr_space(name, size);
3692 		raw_spin_lock(&sbinfo->stat_lock);
3693 		if (sbinfo->free_ispace < ispace)
3694 			ispace = 0;
3695 		else
3696 			sbinfo->free_ispace -= ispace;
3697 		raw_spin_unlock(&sbinfo->stat_lock);
3698 		if (!ispace)
3699 			return -ENOSPC;
3700 	}
3701 
3702 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3703 	if (!IS_ERR(old_xattr)) {
3704 		ispace = 0;
3705 		if (old_xattr && sbinfo->max_inodes)
3706 			ispace = simple_xattr_space(old_xattr->name,
3707 						    old_xattr->size);
3708 		simple_xattr_free(old_xattr);
3709 		old_xattr = NULL;
3710 		inode_set_ctime_current(inode);
3711 		inode_inc_iversion(inode);
3712 	}
3713 	if (ispace) {
3714 		raw_spin_lock(&sbinfo->stat_lock);
3715 		sbinfo->free_ispace += ispace;
3716 		raw_spin_unlock(&sbinfo->stat_lock);
3717 	}
3718 	return PTR_ERR(old_xattr);
3719 }
3720 
3721 static const struct xattr_handler shmem_security_xattr_handler = {
3722 	.prefix = XATTR_SECURITY_PREFIX,
3723 	.get = shmem_xattr_handler_get,
3724 	.set = shmem_xattr_handler_set,
3725 };
3726 
3727 static const struct xattr_handler shmem_trusted_xattr_handler = {
3728 	.prefix = XATTR_TRUSTED_PREFIX,
3729 	.get = shmem_xattr_handler_get,
3730 	.set = shmem_xattr_handler_set,
3731 };
3732 
3733 static const struct xattr_handler shmem_user_xattr_handler = {
3734 	.prefix = XATTR_USER_PREFIX,
3735 	.get = shmem_xattr_handler_get,
3736 	.set = shmem_xattr_handler_set,
3737 };
3738 
3739 static const struct xattr_handler *shmem_xattr_handlers[] = {
3740 	&shmem_security_xattr_handler,
3741 	&shmem_trusted_xattr_handler,
3742 	&shmem_user_xattr_handler,
3743 	NULL
3744 };
3745 
3746 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3747 {
3748 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3749 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3750 }
3751 #endif /* CONFIG_TMPFS_XATTR */
3752 
3753 static const struct inode_operations shmem_short_symlink_operations = {
3754 	.getattr	= shmem_getattr,
3755 	.setattr	= shmem_setattr,
3756 	.get_link	= simple_get_link,
3757 #ifdef CONFIG_TMPFS_XATTR
3758 	.listxattr	= shmem_listxattr,
3759 #endif
3760 };
3761 
3762 static const struct inode_operations shmem_symlink_inode_operations = {
3763 	.getattr	= shmem_getattr,
3764 	.setattr	= shmem_setattr,
3765 	.get_link	= shmem_get_link,
3766 #ifdef CONFIG_TMPFS_XATTR
3767 	.listxattr	= shmem_listxattr,
3768 #endif
3769 };
3770 
3771 static struct dentry *shmem_get_parent(struct dentry *child)
3772 {
3773 	return ERR_PTR(-ESTALE);
3774 }
3775 
3776 static int shmem_match(struct inode *ino, void *vfh)
3777 {
3778 	__u32 *fh = vfh;
3779 	__u64 inum = fh[2];
3780 	inum = (inum << 32) | fh[1];
3781 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3782 }
3783 
3784 /* Find any alias of inode, but prefer a hashed alias */
3785 static struct dentry *shmem_find_alias(struct inode *inode)
3786 {
3787 	struct dentry *alias = d_find_alias(inode);
3788 
3789 	return alias ?: d_find_any_alias(inode);
3790 }
3791 
3792 
3793 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3794 		struct fid *fid, int fh_len, int fh_type)
3795 {
3796 	struct inode *inode;
3797 	struct dentry *dentry = NULL;
3798 	u64 inum;
3799 
3800 	if (fh_len < 3)
3801 		return NULL;
3802 
3803 	inum = fid->raw[2];
3804 	inum = (inum << 32) | fid->raw[1];
3805 
3806 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3807 			shmem_match, fid->raw);
3808 	if (inode) {
3809 		dentry = shmem_find_alias(inode);
3810 		iput(inode);
3811 	}
3812 
3813 	return dentry;
3814 }
3815 
3816 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3817 				struct inode *parent)
3818 {
3819 	if (*len < 3) {
3820 		*len = 3;
3821 		return FILEID_INVALID;
3822 	}
3823 
3824 	if (inode_unhashed(inode)) {
3825 		/* Unfortunately insert_inode_hash is not idempotent,
3826 		 * so as we hash inodes here rather than at creation
3827 		 * time, we need a lock to ensure we only try
3828 		 * to do it once
3829 		 */
3830 		static DEFINE_SPINLOCK(lock);
3831 		spin_lock(&lock);
3832 		if (inode_unhashed(inode))
3833 			__insert_inode_hash(inode,
3834 					    inode->i_ino + inode->i_generation);
3835 		spin_unlock(&lock);
3836 	}
3837 
3838 	fh[0] = inode->i_generation;
3839 	fh[1] = inode->i_ino;
3840 	fh[2] = ((__u64)inode->i_ino) >> 32;
3841 
3842 	*len = 3;
3843 	return 1;
3844 }
3845 
3846 static const struct export_operations shmem_export_ops = {
3847 	.get_parent     = shmem_get_parent,
3848 	.encode_fh      = shmem_encode_fh,
3849 	.fh_to_dentry	= shmem_fh_to_dentry,
3850 };
3851 
3852 enum shmem_param {
3853 	Opt_gid,
3854 	Opt_huge,
3855 	Opt_mode,
3856 	Opt_mpol,
3857 	Opt_nr_blocks,
3858 	Opt_nr_inodes,
3859 	Opt_size,
3860 	Opt_uid,
3861 	Opt_inode32,
3862 	Opt_inode64,
3863 	Opt_noswap,
3864 	Opt_quota,
3865 	Opt_usrquota,
3866 	Opt_grpquota,
3867 	Opt_usrquota_block_hardlimit,
3868 	Opt_usrquota_inode_hardlimit,
3869 	Opt_grpquota_block_hardlimit,
3870 	Opt_grpquota_inode_hardlimit,
3871 };
3872 
3873 static const struct constant_table shmem_param_enums_huge[] = {
3874 	{"never",	SHMEM_HUGE_NEVER },
3875 	{"always",	SHMEM_HUGE_ALWAYS },
3876 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3877 	{"advise",	SHMEM_HUGE_ADVISE },
3878 	{}
3879 };
3880 
3881 const struct fs_parameter_spec shmem_fs_parameters[] = {
3882 	fsparam_u32   ("gid",		Opt_gid),
3883 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3884 	fsparam_u32oct("mode",		Opt_mode),
3885 	fsparam_string("mpol",		Opt_mpol),
3886 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3887 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3888 	fsparam_string("size",		Opt_size),
3889 	fsparam_u32   ("uid",		Opt_uid),
3890 	fsparam_flag  ("inode32",	Opt_inode32),
3891 	fsparam_flag  ("inode64",	Opt_inode64),
3892 	fsparam_flag  ("noswap",	Opt_noswap),
3893 #ifdef CONFIG_TMPFS_QUOTA
3894 	fsparam_flag  ("quota",		Opt_quota),
3895 	fsparam_flag  ("usrquota",	Opt_usrquota),
3896 	fsparam_flag  ("grpquota",	Opt_grpquota),
3897 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3898 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3899 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3900 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3901 #endif
3902 	{}
3903 };
3904 
3905 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3906 {
3907 	struct shmem_options *ctx = fc->fs_private;
3908 	struct fs_parse_result result;
3909 	unsigned long long size;
3910 	char *rest;
3911 	int opt;
3912 	kuid_t kuid;
3913 	kgid_t kgid;
3914 
3915 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3916 	if (opt < 0)
3917 		return opt;
3918 
3919 	switch (opt) {
3920 	case Opt_size:
3921 		size = memparse(param->string, &rest);
3922 		if (*rest == '%') {
3923 			size <<= PAGE_SHIFT;
3924 			size *= totalram_pages();
3925 			do_div(size, 100);
3926 			rest++;
3927 		}
3928 		if (*rest)
3929 			goto bad_value;
3930 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3931 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3932 		break;
3933 	case Opt_nr_blocks:
3934 		ctx->blocks = memparse(param->string, &rest);
3935 		if (*rest || ctx->blocks > LONG_MAX)
3936 			goto bad_value;
3937 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3938 		break;
3939 	case Opt_nr_inodes:
3940 		ctx->inodes = memparse(param->string, &rest);
3941 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3942 			goto bad_value;
3943 		ctx->seen |= SHMEM_SEEN_INODES;
3944 		break;
3945 	case Opt_mode:
3946 		ctx->mode = result.uint_32 & 07777;
3947 		break;
3948 	case Opt_uid:
3949 		kuid = make_kuid(current_user_ns(), result.uint_32);
3950 		if (!uid_valid(kuid))
3951 			goto bad_value;
3952 
3953 		/*
3954 		 * The requested uid must be representable in the
3955 		 * filesystem's idmapping.
3956 		 */
3957 		if (!kuid_has_mapping(fc->user_ns, kuid))
3958 			goto bad_value;
3959 
3960 		ctx->uid = kuid;
3961 		break;
3962 	case Opt_gid:
3963 		kgid = make_kgid(current_user_ns(), result.uint_32);
3964 		if (!gid_valid(kgid))
3965 			goto bad_value;
3966 
3967 		/*
3968 		 * The requested gid must be representable in the
3969 		 * filesystem's idmapping.
3970 		 */
3971 		if (!kgid_has_mapping(fc->user_ns, kgid))
3972 			goto bad_value;
3973 
3974 		ctx->gid = kgid;
3975 		break;
3976 	case Opt_huge:
3977 		ctx->huge = result.uint_32;
3978 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3979 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3980 		      has_transparent_hugepage()))
3981 			goto unsupported_parameter;
3982 		ctx->seen |= SHMEM_SEEN_HUGE;
3983 		break;
3984 	case Opt_mpol:
3985 		if (IS_ENABLED(CONFIG_NUMA)) {
3986 			mpol_put(ctx->mpol);
3987 			ctx->mpol = NULL;
3988 			if (mpol_parse_str(param->string, &ctx->mpol))
3989 				goto bad_value;
3990 			break;
3991 		}
3992 		goto unsupported_parameter;
3993 	case Opt_inode32:
3994 		ctx->full_inums = false;
3995 		ctx->seen |= SHMEM_SEEN_INUMS;
3996 		break;
3997 	case Opt_inode64:
3998 		if (sizeof(ino_t) < 8) {
3999 			return invalfc(fc,
4000 				       "Cannot use inode64 with <64bit inums in kernel\n");
4001 		}
4002 		ctx->full_inums = true;
4003 		ctx->seen |= SHMEM_SEEN_INUMS;
4004 		break;
4005 	case Opt_noswap:
4006 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4007 			return invalfc(fc,
4008 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4009 		}
4010 		ctx->noswap = true;
4011 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4012 		break;
4013 	case Opt_quota:
4014 		if (fc->user_ns != &init_user_ns)
4015 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4016 		ctx->seen |= SHMEM_SEEN_QUOTA;
4017 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4018 		break;
4019 	case Opt_usrquota:
4020 		if (fc->user_ns != &init_user_ns)
4021 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4022 		ctx->seen |= SHMEM_SEEN_QUOTA;
4023 		ctx->quota_types |= QTYPE_MASK_USR;
4024 		break;
4025 	case Opt_grpquota:
4026 		if (fc->user_ns != &init_user_ns)
4027 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4028 		ctx->seen |= SHMEM_SEEN_QUOTA;
4029 		ctx->quota_types |= QTYPE_MASK_GRP;
4030 		break;
4031 	case Opt_usrquota_block_hardlimit:
4032 		size = memparse(param->string, &rest);
4033 		if (*rest || !size)
4034 			goto bad_value;
4035 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4036 			return invalfc(fc,
4037 				       "User quota block hardlimit too large.");
4038 		ctx->qlimits.usrquota_bhardlimit = size;
4039 		break;
4040 	case Opt_grpquota_block_hardlimit:
4041 		size = memparse(param->string, &rest);
4042 		if (*rest || !size)
4043 			goto bad_value;
4044 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4045 			return invalfc(fc,
4046 				       "Group quota block hardlimit too large.");
4047 		ctx->qlimits.grpquota_bhardlimit = size;
4048 		break;
4049 	case Opt_usrquota_inode_hardlimit:
4050 		size = memparse(param->string, &rest);
4051 		if (*rest || !size)
4052 			goto bad_value;
4053 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4054 			return invalfc(fc,
4055 				       "User quota inode hardlimit too large.");
4056 		ctx->qlimits.usrquota_ihardlimit = size;
4057 		break;
4058 	case Opt_grpquota_inode_hardlimit:
4059 		size = memparse(param->string, &rest);
4060 		if (*rest || !size)
4061 			goto bad_value;
4062 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4063 			return invalfc(fc,
4064 				       "Group quota inode hardlimit too large.");
4065 		ctx->qlimits.grpquota_ihardlimit = size;
4066 		break;
4067 	}
4068 	return 0;
4069 
4070 unsupported_parameter:
4071 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4072 bad_value:
4073 	return invalfc(fc, "Bad value for '%s'", param->key);
4074 }
4075 
4076 static int shmem_parse_options(struct fs_context *fc, void *data)
4077 {
4078 	char *options = data;
4079 
4080 	if (options) {
4081 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4082 		if (err)
4083 			return err;
4084 	}
4085 
4086 	while (options != NULL) {
4087 		char *this_char = options;
4088 		for (;;) {
4089 			/*
4090 			 * NUL-terminate this option: unfortunately,
4091 			 * mount options form a comma-separated list,
4092 			 * but mpol's nodelist may also contain commas.
4093 			 */
4094 			options = strchr(options, ',');
4095 			if (options == NULL)
4096 				break;
4097 			options++;
4098 			if (!isdigit(*options)) {
4099 				options[-1] = '\0';
4100 				break;
4101 			}
4102 		}
4103 		if (*this_char) {
4104 			char *value = strchr(this_char, '=');
4105 			size_t len = 0;
4106 			int err;
4107 
4108 			if (value) {
4109 				*value++ = '\0';
4110 				len = strlen(value);
4111 			}
4112 			err = vfs_parse_fs_string(fc, this_char, value, len);
4113 			if (err < 0)
4114 				return err;
4115 		}
4116 	}
4117 	return 0;
4118 }
4119 
4120 /*
4121  * Reconfigure a shmem filesystem.
4122  */
4123 static int shmem_reconfigure(struct fs_context *fc)
4124 {
4125 	struct shmem_options *ctx = fc->fs_private;
4126 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4127 	unsigned long used_isp;
4128 	struct mempolicy *mpol = NULL;
4129 	const char *err;
4130 
4131 	raw_spin_lock(&sbinfo->stat_lock);
4132 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4133 
4134 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4135 		if (!sbinfo->max_blocks) {
4136 			err = "Cannot retroactively limit size";
4137 			goto out;
4138 		}
4139 		if (percpu_counter_compare(&sbinfo->used_blocks,
4140 					   ctx->blocks) > 0) {
4141 			err = "Too small a size for current use";
4142 			goto out;
4143 		}
4144 	}
4145 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4146 		if (!sbinfo->max_inodes) {
4147 			err = "Cannot retroactively limit inodes";
4148 			goto out;
4149 		}
4150 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4151 			err = "Too few inodes for current use";
4152 			goto out;
4153 		}
4154 	}
4155 
4156 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4157 	    sbinfo->next_ino > UINT_MAX) {
4158 		err = "Current inum too high to switch to 32-bit inums";
4159 		goto out;
4160 	}
4161 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4162 		err = "Cannot disable swap on remount";
4163 		goto out;
4164 	}
4165 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4166 		err = "Cannot enable swap on remount if it was disabled on first mount";
4167 		goto out;
4168 	}
4169 
4170 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4171 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4172 		err = "Cannot enable quota on remount";
4173 		goto out;
4174 	}
4175 
4176 #ifdef CONFIG_TMPFS_QUOTA
4177 #define CHANGED_LIMIT(name)						\
4178 	(ctx->qlimits.name## hardlimit &&				\
4179 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4180 
4181 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4182 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4183 		err = "Cannot change global quota limit on remount";
4184 		goto out;
4185 	}
4186 #endif /* CONFIG_TMPFS_QUOTA */
4187 
4188 	if (ctx->seen & SHMEM_SEEN_HUGE)
4189 		sbinfo->huge = ctx->huge;
4190 	if (ctx->seen & SHMEM_SEEN_INUMS)
4191 		sbinfo->full_inums = ctx->full_inums;
4192 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4193 		sbinfo->max_blocks  = ctx->blocks;
4194 	if (ctx->seen & SHMEM_SEEN_INODES) {
4195 		sbinfo->max_inodes  = ctx->inodes;
4196 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4197 	}
4198 
4199 	/*
4200 	 * Preserve previous mempolicy unless mpol remount option was specified.
4201 	 */
4202 	if (ctx->mpol) {
4203 		mpol = sbinfo->mpol;
4204 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4205 		ctx->mpol = NULL;
4206 	}
4207 
4208 	if (ctx->noswap)
4209 		sbinfo->noswap = true;
4210 
4211 	raw_spin_unlock(&sbinfo->stat_lock);
4212 	mpol_put(mpol);
4213 	return 0;
4214 out:
4215 	raw_spin_unlock(&sbinfo->stat_lock);
4216 	return invalfc(fc, "%s", err);
4217 }
4218 
4219 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4220 {
4221 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4222 	struct mempolicy *mpol;
4223 
4224 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4225 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4226 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4227 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4228 	if (sbinfo->mode != (0777 | S_ISVTX))
4229 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4230 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4231 		seq_printf(seq, ",uid=%u",
4232 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4233 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4234 		seq_printf(seq, ",gid=%u",
4235 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4236 
4237 	/*
4238 	 * Showing inode{64,32} might be useful even if it's the system default,
4239 	 * since then people don't have to resort to checking both here and
4240 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4241 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4242 	 *
4243 	 * We hide it when inode64 isn't the default and we are using 32-bit
4244 	 * inodes, since that probably just means the feature isn't even under
4245 	 * consideration.
4246 	 *
4247 	 * As such:
4248 	 *
4249 	 *                     +-----------------+-----------------+
4250 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4251 	 *  +------------------+-----------------+-----------------+
4252 	 *  | full_inums=true  | show            | show            |
4253 	 *  | full_inums=false | show            | hide            |
4254 	 *  +------------------+-----------------+-----------------+
4255 	 *
4256 	 */
4257 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4258 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4260 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4261 	if (sbinfo->huge)
4262 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4263 #endif
4264 	mpol = shmem_get_sbmpol(sbinfo);
4265 	shmem_show_mpol(seq, mpol);
4266 	mpol_put(mpol);
4267 	if (sbinfo->noswap)
4268 		seq_printf(seq, ",noswap");
4269 	return 0;
4270 }
4271 
4272 #endif /* CONFIG_TMPFS */
4273 
4274 static void shmem_put_super(struct super_block *sb)
4275 {
4276 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4277 
4278 #ifdef CONFIG_TMPFS_QUOTA
4279 	shmem_disable_quotas(sb);
4280 #endif
4281 	free_percpu(sbinfo->ino_batch);
4282 	percpu_counter_destroy(&sbinfo->used_blocks);
4283 	mpol_put(sbinfo->mpol);
4284 	kfree(sbinfo);
4285 	sb->s_fs_info = NULL;
4286 }
4287 
4288 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4289 {
4290 	struct shmem_options *ctx = fc->fs_private;
4291 	struct inode *inode;
4292 	struct shmem_sb_info *sbinfo;
4293 	int error = -ENOMEM;
4294 
4295 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4296 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4297 				L1_CACHE_BYTES), GFP_KERNEL);
4298 	if (!sbinfo)
4299 		return error;
4300 
4301 	sb->s_fs_info = sbinfo;
4302 
4303 #ifdef CONFIG_TMPFS
4304 	/*
4305 	 * Per default we only allow half of the physical ram per
4306 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4307 	 * but the internal instance is left unlimited.
4308 	 */
4309 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4310 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4311 			ctx->blocks = shmem_default_max_blocks();
4312 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4313 			ctx->inodes = shmem_default_max_inodes();
4314 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4315 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4316 		sbinfo->noswap = ctx->noswap;
4317 	} else {
4318 		sb->s_flags |= SB_NOUSER;
4319 	}
4320 	sb->s_export_op = &shmem_export_ops;
4321 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4322 #else
4323 	sb->s_flags |= SB_NOUSER;
4324 #endif
4325 	sbinfo->max_blocks = ctx->blocks;
4326 	sbinfo->max_inodes = ctx->inodes;
4327 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4328 	if (sb->s_flags & SB_KERNMOUNT) {
4329 		sbinfo->ino_batch = alloc_percpu(ino_t);
4330 		if (!sbinfo->ino_batch)
4331 			goto failed;
4332 	}
4333 	sbinfo->uid = ctx->uid;
4334 	sbinfo->gid = ctx->gid;
4335 	sbinfo->full_inums = ctx->full_inums;
4336 	sbinfo->mode = ctx->mode;
4337 	sbinfo->huge = ctx->huge;
4338 	sbinfo->mpol = ctx->mpol;
4339 	ctx->mpol = NULL;
4340 
4341 	raw_spin_lock_init(&sbinfo->stat_lock);
4342 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4343 		goto failed;
4344 	spin_lock_init(&sbinfo->shrinklist_lock);
4345 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4346 
4347 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4348 	sb->s_blocksize = PAGE_SIZE;
4349 	sb->s_blocksize_bits = PAGE_SHIFT;
4350 	sb->s_magic = TMPFS_MAGIC;
4351 	sb->s_op = &shmem_ops;
4352 	sb->s_time_gran = 1;
4353 #ifdef CONFIG_TMPFS_XATTR
4354 	sb->s_xattr = shmem_xattr_handlers;
4355 #endif
4356 #ifdef CONFIG_TMPFS_POSIX_ACL
4357 	sb->s_flags |= SB_POSIXACL;
4358 #endif
4359 	uuid_gen(&sb->s_uuid);
4360 
4361 #ifdef CONFIG_TMPFS_QUOTA
4362 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4363 		sb->dq_op = &shmem_quota_operations;
4364 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4365 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4366 
4367 		/* Copy the default limits from ctx into sbinfo */
4368 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4369 		       sizeof(struct shmem_quota_limits));
4370 
4371 		if (shmem_enable_quotas(sb, ctx->quota_types))
4372 			goto failed;
4373 	}
4374 #endif /* CONFIG_TMPFS_QUOTA */
4375 
4376 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4377 				VM_NORESERVE);
4378 	if (IS_ERR(inode)) {
4379 		error = PTR_ERR(inode);
4380 		goto failed;
4381 	}
4382 	inode->i_uid = sbinfo->uid;
4383 	inode->i_gid = sbinfo->gid;
4384 	sb->s_root = d_make_root(inode);
4385 	if (!sb->s_root)
4386 		goto failed;
4387 	return 0;
4388 
4389 failed:
4390 	shmem_put_super(sb);
4391 	return error;
4392 }
4393 
4394 static int shmem_get_tree(struct fs_context *fc)
4395 {
4396 	return get_tree_nodev(fc, shmem_fill_super);
4397 }
4398 
4399 static void shmem_free_fc(struct fs_context *fc)
4400 {
4401 	struct shmem_options *ctx = fc->fs_private;
4402 
4403 	if (ctx) {
4404 		mpol_put(ctx->mpol);
4405 		kfree(ctx);
4406 	}
4407 }
4408 
4409 static const struct fs_context_operations shmem_fs_context_ops = {
4410 	.free			= shmem_free_fc,
4411 	.get_tree		= shmem_get_tree,
4412 #ifdef CONFIG_TMPFS
4413 	.parse_monolithic	= shmem_parse_options,
4414 	.parse_param		= shmem_parse_one,
4415 	.reconfigure		= shmem_reconfigure,
4416 #endif
4417 };
4418 
4419 static struct kmem_cache *shmem_inode_cachep;
4420 
4421 static struct inode *shmem_alloc_inode(struct super_block *sb)
4422 {
4423 	struct shmem_inode_info *info;
4424 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4425 	if (!info)
4426 		return NULL;
4427 	return &info->vfs_inode;
4428 }
4429 
4430 static void shmem_free_in_core_inode(struct inode *inode)
4431 {
4432 	if (S_ISLNK(inode->i_mode))
4433 		kfree(inode->i_link);
4434 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4435 }
4436 
4437 static void shmem_destroy_inode(struct inode *inode)
4438 {
4439 	if (S_ISREG(inode->i_mode))
4440 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4441 	if (S_ISDIR(inode->i_mode))
4442 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4443 }
4444 
4445 static void shmem_init_inode(void *foo)
4446 {
4447 	struct shmem_inode_info *info = foo;
4448 	inode_init_once(&info->vfs_inode);
4449 }
4450 
4451 static void shmem_init_inodecache(void)
4452 {
4453 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4454 				sizeof(struct shmem_inode_info),
4455 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4456 }
4457 
4458 static void shmem_destroy_inodecache(void)
4459 {
4460 	kmem_cache_destroy(shmem_inode_cachep);
4461 }
4462 
4463 /* Keep the page in page cache instead of truncating it */
4464 static int shmem_error_remove_page(struct address_space *mapping,
4465 				   struct page *page)
4466 {
4467 	return 0;
4468 }
4469 
4470 const struct address_space_operations shmem_aops = {
4471 	.writepage	= shmem_writepage,
4472 	.dirty_folio	= noop_dirty_folio,
4473 #ifdef CONFIG_TMPFS
4474 	.write_begin	= shmem_write_begin,
4475 	.write_end	= shmem_write_end,
4476 #endif
4477 #ifdef CONFIG_MIGRATION
4478 	.migrate_folio	= migrate_folio,
4479 #endif
4480 	.error_remove_page = shmem_error_remove_page,
4481 };
4482 EXPORT_SYMBOL(shmem_aops);
4483 
4484 static const struct file_operations shmem_file_operations = {
4485 	.mmap		= shmem_mmap,
4486 	.open		= shmem_file_open,
4487 	.get_unmapped_area = shmem_get_unmapped_area,
4488 #ifdef CONFIG_TMPFS
4489 	.llseek		= shmem_file_llseek,
4490 	.read_iter	= shmem_file_read_iter,
4491 	.write_iter	= shmem_file_write_iter,
4492 	.fsync		= noop_fsync,
4493 	.splice_read	= shmem_file_splice_read,
4494 	.splice_write	= iter_file_splice_write,
4495 	.fallocate	= shmem_fallocate,
4496 #endif
4497 };
4498 
4499 static const struct inode_operations shmem_inode_operations = {
4500 	.getattr	= shmem_getattr,
4501 	.setattr	= shmem_setattr,
4502 #ifdef CONFIG_TMPFS_XATTR
4503 	.listxattr	= shmem_listxattr,
4504 	.set_acl	= simple_set_acl,
4505 	.fileattr_get	= shmem_fileattr_get,
4506 	.fileattr_set	= shmem_fileattr_set,
4507 #endif
4508 };
4509 
4510 static const struct inode_operations shmem_dir_inode_operations = {
4511 #ifdef CONFIG_TMPFS
4512 	.getattr	= shmem_getattr,
4513 	.create		= shmem_create,
4514 	.lookup		= simple_lookup,
4515 	.link		= shmem_link,
4516 	.unlink		= shmem_unlink,
4517 	.symlink	= shmem_symlink,
4518 	.mkdir		= shmem_mkdir,
4519 	.rmdir		= shmem_rmdir,
4520 	.mknod		= shmem_mknod,
4521 	.rename		= shmem_rename2,
4522 	.tmpfile	= shmem_tmpfile,
4523 	.get_offset_ctx	= shmem_get_offset_ctx,
4524 #endif
4525 #ifdef CONFIG_TMPFS_XATTR
4526 	.listxattr	= shmem_listxattr,
4527 	.fileattr_get	= shmem_fileattr_get,
4528 	.fileattr_set	= shmem_fileattr_set,
4529 #endif
4530 #ifdef CONFIG_TMPFS_POSIX_ACL
4531 	.setattr	= shmem_setattr,
4532 	.set_acl	= simple_set_acl,
4533 #endif
4534 };
4535 
4536 static const struct inode_operations shmem_special_inode_operations = {
4537 	.getattr	= shmem_getattr,
4538 #ifdef CONFIG_TMPFS_XATTR
4539 	.listxattr	= shmem_listxattr,
4540 #endif
4541 #ifdef CONFIG_TMPFS_POSIX_ACL
4542 	.setattr	= shmem_setattr,
4543 	.set_acl	= simple_set_acl,
4544 #endif
4545 };
4546 
4547 static const struct super_operations shmem_ops = {
4548 	.alloc_inode	= shmem_alloc_inode,
4549 	.free_inode	= shmem_free_in_core_inode,
4550 	.destroy_inode	= shmem_destroy_inode,
4551 #ifdef CONFIG_TMPFS
4552 	.statfs		= shmem_statfs,
4553 	.show_options	= shmem_show_options,
4554 #endif
4555 #ifdef CONFIG_TMPFS_QUOTA
4556 	.get_dquots	= shmem_get_dquots,
4557 #endif
4558 	.evict_inode	= shmem_evict_inode,
4559 	.drop_inode	= generic_delete_inode,
4560 	.put_super	= shmem_put_super,
4561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4562 	.nr_cached_objects	= shmem_unused_huge_count,
4563 	.free_cached_objects	= shmem_unused_huge_scan,
4564 #endif
4565 };
4566 
4567 static const struct vm_operations_struct shmem_vm_ops = {
4568 	.fault		= shmem_fault,
4569 	.map_pages	= filemap_map_pages,
4570 #ifdef CONFIG_NUMA
4571 	.set_policy     = shmem_set_policy,
4572 	.get_policy     = shmem_get_policy,
4573 #endif
4574 };
4575 
4576 static const struct vm_operations_struct shmem_anon_vm_ops = {
4577 	.fault		= shmem_fault,
4578 	.map_pages	= filemap_map_pages,
4579 #ifdef CONFIG_NUMA
4580 	.set_policy     = shmem_set_policy,
4581 	.get_policy     = shmem_get_policy,
4582 #endif
4583 };
4584 
4585 int shmem_init_fs_context(struct fs_context *fc)
4586 {
4587 	struct shmem_options *ctx;
4588 
4589 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4590 	if (!ctx)
4591 		return -ENOMEM;
4592 
4593 	ctx->mode = 0777 | S_ISVTX;
4594 	ctx->uid = current_fsuid();
4595 	ctx->gid = current_fsgid();
4596 
4597 	fc->fs_private = ctx;
4598 	fc->ops = &shmem_fs_context_ops;
4599 	return 0;
4600 }
4601 
4602 static struct file_system_type shmem_fs_type = {
4603 	.owner		= THIS_MODULE,
4604 	.name		= "tmpfs",
4605 	.init_fs_context = shmem_init_fs_context,
4606 #ifdef CONFIG_TMPFS
4607 	.parameters	= shmem_fs_parameters,
4608 #endif
4609 	.kill_sb	= kill_litter_super,
4610 #ifdef CONFIG_SHMEM
4611 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4612 #else
4613 	.fs_flags	= FS_USERNS_MOUNT,
4614 #endif
4615 };
4616 
4617 void __init shmem_init(void)
4618 {
4619 	int error;
4620 
4621 	shmem_init_inodecache();
4622 
4623 #ifdef CONFIG_TMPFS_QUOTA
4624 	error = register_quota_format(&shmem_quota_format);
4625 	if (error < 0) {
4626 		pr_err("Could not register quota format\n");
4627 		goto out3;
4628 	}
4629 #endif
4630 
4631 	error = register_filesystem(&shmem_fs_type);
4632 	if (error) {
4633 		pr_err("Could not register tmpfs\n");
4634 		goto out2;
4635 	}
4636 
4637 	shm_mnt = kern_mount(&shmem_fs_type);
4638 	if (IS_ERR(shm_mnt)) {
4639 		error = PTR_ERR(shm_mnt);
4640 		pr_err("Could not kern_mount tmpfs\n");
4641 		goto out1;
4642 	}
4643 
4644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4645 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4646 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4647 	else
4648 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4649 #endif
4650 	return;
4651 
4652 out1:
4653 	unregister_filesystem(&shmem_fs_type);
4654 out2:
4655 #ifdef CONFIG_TMPFS_QUOTA
4656 	unregister_quota_format(&shmem_quota_format);
4657 out3:
4658 #endif
4659 	shmem_destroy_inodecache();
4660 	shm_mnt = ERR_PTR(error);
4661 }
4662 
4663 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4664 static ssize_t shmem_enabled_show(struct kobject *kobj,
4665 				  struct kobj_attribute *attr, char *buf)
4666 {
4667 	static const int values[] = {
4668 		SHMEM_HUGE_ALWAYS,
4669 		SHMEM_HUGE_WITHIN_SIZE,
4670 		SHMEM_HUGE_ADVISE,
4671 		SHMEM_HUGE_NEVER,
4672 		SHMEM_HUGE_DENY,
4673 		SHMEM_HUGE_FORCE,
4674 	};
4675 	int len = 0;
4676 	int i;
4677 
4678 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4679 		len += sysfs_emit_at(buf, len,
4680 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4681 				     i ? " " : "",
4682 				     shmem_format_huge(values[i]));
4683 	}
4684 
4685 	len += sysfs_emit_at(buf, len, "\n");
4686 
4687 	return len;
4688 }
4689 
4690 static ssize_t shmem_enabled_store(struct kobject *kobj,
4691 		struct kobj_attribute *attr, const char *buf, size_t count)
4692 {
4693 	char tmp[16];
4694 	int huge;
4695 
4696 	if (count + 1 > sizeof(tmp))
4697 		return -EINVAL;
4698 	memcpy(tmp, buf, count);
4699 	tmp[count] = '\0';
4700 	if (count && tmp[count - 1] == '\n')
4701 		tmp[count - 1] = '\0';
4702 
4703 	huge = shmem_parse_huge(tmp);
4704 	if (huge == -EINVAL)
4705 		return -EINVAL;
4706 	if (!has_transparent_hugepage() &&
4707 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4708 		return -EINVAL;
4709 
4710 	shmem_huge = huge;
4711 	if (shmem_huge > SHMEM_HUGE_DENY)
4712 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4713 	return count;
4714 }
4715 
4716 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4717 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4718 
4719 #else /* !CONFIG_SHMEM */
4720 
4721 /*
4722  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4723  *
4724  * This is intended for small system where the benefits of the full
4725  * shmem code (swap-backed and resource-limited) are outweighed by
4726  * their complexity. On systems without swap this code should be
4727  * effectively equivalent, but much lighter weight.
4728  */
4729 
4730 static struct file_system_type shmem_fs_type = {
4731 	.name		= "tmpfs",
4732 	.init_fs_context = ramfs_init_fs_context,
4733 	.parameters	= ramfs_fs_parameters,
4734 	.kill_sb	= ramfs_kill_sb,
4735 	.fs_flags	= FS_USERNS_MOUNT,
4736 };
4737 
4738 void __init shmem_init(void)
4739 {
4740 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4741 
4742 	shm_mnt = kern_mount(&shmem_fs_type);
4743 	BUG_ON(IS_ERR(shm_mnt));
4744 }
4745 
4746 int shmem_unuse(unsigned int type)
4747 {
4748 	return 0;
4749 }
4750 
4751 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4752 {
4753 	return 0;
4754 }
4755 
4756 void shmem_unlock_mapping(struct address_space *mapping)
4757 {
4758 }
4759 
4760 #ifdef CONFIG_MMU
4761 unsigned long shmem_get_unmapped_area(struct file *file,
4762 				      unsigned long addr, unsigned long len,
4763 				      unsigned long pgoff, unsigned long flags)
4764 {
4765 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4766 }
4767 #endif
4768 
4769 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4770 {
4771 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4772 }
4773 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4774 
4775 #define shmem_vm_ops				generic_file_vm_ops
4776 #define shmem_anon_vm_ops			generic_file_vm_ops
4777 #define shmem_file_operations			ramfs_file_operations
4778 #define shmem_acct_size(flags, size)		0
4779 #define shmem_unacct_size(flags, size)		do {} while (0)
4780 
4781 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4782 					    umode_t mode, dev_t dev, unsigned long flags)
4783 {
4784 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4785 	return inode ? inode : ERR_PTR(-ENOSPC);
4786 }
4787 
4788 #endif /* CONFIG_SHMEM */
4789 
4790 /* common code */
4791 
4792 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4793 				       unsigned long flags, unsigned int i_flags)
4794 {
4795 	struct inode *inode;
4796 	struct file *res;
4797 
4798 	if (IS_ERR(mnt))
4799 		return ERR_CAST(mnt);
4800 
4801 	if (size < 0 || size > MAX_LFS_FILESIZE)
4802 		return ERR_PTR(-EINVAL);
4803 
4804 	if (shmem_acct_size(flags, size))
4805 		return ERR_PTR(-ENOMEM);
4806 
4807 	if (is_idmapped_mnt(mnt))
4808 		return ERR_PTR(-EINVAL);
4809 
4810 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4811 				S_IFREG | S_IRWXUGO, 0, flags);
4812 
4813 	if (IS_ERR(inode)) {
4814 		shmem_unacct_size(flags, size);
4815 		return ERR_CAST(inode);
4816 	}
4817 	inode->i_flags |= i_flags;
4818 	inode->i_size = size;
4819 	clear_nlink(inode);	/* It is unlinked */
4820 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4821 	if (!IS_ERR(res))
4822 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4823 				&shmem_file_operations);
4824 	if (IS_ERR(res))
4825 		iput(inode);
4826 	return res;
4827 }
4828 
4829 /**
4830  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4831  * 	kernel internal.  There will be NO LSM permission checks against the
4832  * 	underlying inode.  So users of this interface must do LSM checks at a
4833  *	higher layer.  The users are the big_key and shm implementations.  LSM
4834  *	checks are provided at the key or shm level rather than the inode.
4835  * @name: name for dentry (to be seen in /proc/<pid>/maps
4836  * @size: size to be set for the file
4837  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4838  */
4839 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4840 {
4841 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4842 }
4843 
4844 /**
4845  * shmem_file_setup - get an unlinked file living in tmpfs
4846  * @name: name for dentry (to be seen in /proc/<pid>/maps
4847  * @size: size to be set for the file
4848  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4849  */
4850 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4851 {
4852 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4853 }
4854 EXPORT_SYMBOL_GPL(shmem_file_setup);
4855 
4856 /**
4857  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4858  * @mnt: the tmpfs mount where the file will be created
4859  * @name: name for dentry (to be seen in /proc/<pid>/maps
4860  * @size: size to be set for the file
4861  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4862  */
4863 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4864 				       loff_t size, unsigned long flags)
4865 {
4866 	return __shmem_file_setup(mnt, name, size, flags, 0);
4867 }
4868 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4869 
4870 /**
4871  * shmem_zero_setup - setup a shared anonymous mapping
4872  * @vma: the vma to be mmapped is prepared by do_mmap
4873  */
4874 int shmem_zero_setup(struct vm_area_struct *vma)
4875 {
4876 	struct file *file;
4877 	loff_t size = vma->vm_end - vma->vm_start;
4878 
4879 	/*
4880 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4881 	 * between XFS directory reading and selinux: since this file is only
4882 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4883 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4884 	 */
4885 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4886 	if (IS_ERR(file))
4887 		return PTR_ERR(file);
4888 
4889 	if (vma->vm_file)
4890 		fput(vma->vm_file);
4891 	vma->vm_file = file;
4892 	vma->vm_ops = &shmem_anon_vm_ops;
4893 
4894 	return 0;
4895 }
4896 
4897 /**
4898  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4899  * @mapping:	the folio's address_space
4900  * @index:	the folio index
4901  * @gfp:	the page allocator flags to use if allocating
4902  *
4903  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4904  * with any new page allocations done using the specified allocation flags.
4905  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4906  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4907  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4908  *
4909  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4910  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4911  */
4912 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4913 		pgoff_t index, gfp_t gfp)
4914 {
4915 #ifdef CONFIG_SHMEM
4916 	struct inode *inode = mapping->host;
4917 	struct folio *folio;
4918 	int error;
4919 
4920 	BUG_ON(!shmem_mapping(mapping));
4921 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4922 				  gfp, NULL, NULL, NULL);
4923 	if (error)
4924 		return ERR_PTR(error);
4925 
4926 	folio_unlock(folio);
4927 	return folio;
4928 #else
4929 	/*
4930 	 * The tiny !SHMEM case uses ramfs without swap
4931 	 */
4932 	return mapping_read_folio_gfp(mapping, index, gfp);
4933 #endif
4934 }
4935 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4936 
4937 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4938 					 pgoff_t index, gfp_t gfp)
4939 {
4940 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4941 	struct page *page;
4942 
4943 	if (IS_ERR(folio))
4944 		return &folio->page;
4945 
4946 	page = folio_file_page(folio, index);
4947 	if (PageHWPoison(page)) {
4948 		folio_put(folio);
4949 		return ERR_PTR(-EIO);
4950 	}
4951 
4952 	return page;
4953 }
4954 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4955