xref: /openbmc/linux/mm/rmap.c (revision e9adcfec)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           mapping->i_mmap_rwsem
29  *             anon_vma->rwsem
30  *               mm->page_table_lock or pte_lock
31  *                 swap_lock (in swap_duplicate, swap_info_get)
32  *                   mmlist_lock (in mmput, drain_mmlist and others)
33  *                   mapping->private_lock (in block_dirty_folio)
34  *                     folio_lock_memcg move_lock (in block_dirty_folio)
35  *                       i_pages lock (widely used)
36  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                     i_pages lock (widely used, in set_page_dirty,
41  *                               in arch-dependent flush_dcache_mmap_lock,
42  *                               within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         page->flags PG_locked (lock_page)
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 
78 #include <asm/tlbflush.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83 
84 #include "internal.h"
85 
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88 
89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 	struct anon_vma *anon_vma;
92 
93 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 	if (anon_vma) {
95 		atomic_set(&anon_vma->refcount, 1);
96 		anon_vma->num_children = 0;
97 		anon_vma->num_active_vmas = 0;
98 		anon_vma->parent = anon_vma;
99 		/*
100 		 * Initialise the anon_vma root to point to itself. If called
101 		 * from fork, the root will be reset to the parents anon_vma.
102 		 */
103 		anon_vma->root = anon_vma;
104 	}
105 
106 	return anon_vma;
107 }
108 
109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
112 
113 	/*
114 	 * Synchronize against folio_lock_anon_vma_read() such that
115 	 * we can safely hold the lock without the anon_vma getting
116 	 * freed.
117 	 *
118 	 * Relies on the full mb implied by the atomic_dec_and_test() from
119 	 * put_anon_vma() against the acquire barrier implied by
120 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 	 *
122 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
123 	 *   down_read_trylock()		  atomic_dec_and_test()
124 	 *   LOCK				  MB
125 	 *   atomic_read()			  rwsem_is_locked()
126 	 *
127 	 * LOCK should suffice since the actual taking of the lock must
128 	 * happen _before_ what follows.
129 	 */
130 	might_sleep();
131 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 		anon_vma_lock_write(anon_vma);
133 		anon_vma_unlock_write(anon_vma);
134 	}
135 
136 	kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138 
139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143 
144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148 
149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 				struct anon_vma_chain *avc,
151 				struct anon_vma *anon_vma)
152 {
153 	avc->vma = vma;
154 	avc->anon_vma = anon_vma;
155 	list_add(&avc->same_vma, &vma->anon_vma_chain);
156 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158 
159 /**
160  * __anon_vma_prepare - attach an anon_vma to a memory region
161  * @vma: the memory region in question
162  *
163  * This makes sure the memory mapping described by 'vma' has
164  * an 'anon_vma' attached to it, so that we can associate the
165  * anonymous pages mapped into it with that anon_vma.
166  *
167  * The common case will be that we already have one, which
168  * is handled inline by anon_vma_prepare(). But if
169  * not we either need to find an adjacent mapping that we
170  * can re-use the anon_vma from (very common when the only
171  * reason for splitting a vma has been mprotect()), or we
172  * allocate a new one.
173  *
174  * Anon-vma allocations are very subtle, because we may have
175  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176  * and that may actually touch the rwsem even in the newly
177  * allocated vma (it depends on RCU to make sure that the
178  * anon_vma isn't actually destroyed).
179  *
180  * As a result, we need to do proper anon_vma locking even
181  * for the new allocation. At the same time, we do not want
182  * to do any locking for the common case of already having
183  * an anon_vma.
184  *
185  * This must be called with the mmap_lock held for reading.
186  */
187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 	struct mm_struct *mm = vma->vm_mm;
190 	struct anon_vma *anon_vma, *allocated;
191 	struct anon_vma_chain *avc;
192 
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
266  * anon_vma_fork(). The first three want an exact copy of src, while the last
267  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270  *
271  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273  * This prevents degradation of anon_vma hierarchy to endless linear chain in
274  * case of constantly forking task. On the other hand, an anon_vma with more
275  * than one child isn't reused even if there was no alive vma, thus rmap
276  * walker has a good chance of avoiding scanning the whole hierarchy when it
277  * searches where page is mapped.
278  */
279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 	struct anon_vma_chain *avc, *pavc;
282 	struct anon_vma *root = NULL;
283 
284 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 		struct anon_vma *anon_vma;
286 
287 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288 		if (unlikely(!avc)) {
289 			unlock_anon_vma_root(root);
290 			root = NULL;
291 			avc = anon_vma_chain_alloc(GFP_KERNEL);
292 			if (!avc)
293 				goto enomem_failure;
294 		}
295 		anon_vma = pavc->anon_vma;
296 		root = lock_anon_vma_root(root, anon_vma);
297 		anon_vma_chain_link(dst, avc, anon_vma);
298 
299 		/*
300 		 * Reuse existing anon_vma if it has no vma and only one
301 		 * anon_vma child.
302 		 *
303 		 * Root anon_vma is never reused:
304 		 * it has self-parent reference and at least one child.
305 		 */
306 		if (!dst->anon_vma && src->anon_vma &&
307 		    anon_vma->num_children < 2 &&
308 		    anon_vma->num_active_vmas == 0)
309 			dst->anon_vma = anon_vma;
310 	}
311 	if (dst->anon_vma)
312 		dst->anon_vma->num_active_vmas++;
313 	unlock_anon_vma_root(root);
314 	return 0;
315 
316  enomem_failure:
317 	/*
318 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
319 	 * be incorrectly decremented in unlink_anon_vmas().
320 	 * We can safely do this because callers of anon_vma_clone() don't care
321 	 * about dst->anon_vma if anon_vma_clone() failed.
322 	 */
323 	dst->anon_vma = NULL;
324 	unlink_anon_vmas(dst);
325 	return -ENOMEM;
326 }
327 
328 /*
329  * Attach vma to its own anon_vma, as well as to the anon_vmas that
330  * the corresponding VMA in the parent process is attached to.
331  * Returns 0 on success, non-zero on failure.
332  */
333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 	struct anon_vma_chain *avc;
336 	struct anon_vma *anon_vma;
337 	int error;
338 
339 	/* Don't bother if the parent process has no anon_vma here. */
340 	if (!pvma->anon_vma)
341 		return 0;
342 
343 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 	vma->anon_vma = NULL;
345 
346 	/*
347 	 * First, attach the new VMA to the parent VMA's anon_vmas,
348 	 * so rmap can find non-COWed pages in child processes.
349 	 */
350 	error = anon_vma_clone(vma, pvma);
351 	if (error)
352 		return error;
353 
354 	/* An existing anon_vma has been reused, all done then. */
355 	if (vma->anon_vma)
356 		return 0;
357 
358 	/* Then add our own anon_vma. */
359 	anon_vma = anon_vma_alloc();
360 	if (!anon_vma)
361 		goto out_error;
362 	anon_vma->num_active_vmas++;
363 	avc = anon_vma_chain_alloc(GFP_KERNEL);
364 	if (!avc)
365 		goto out_error_free_anon_vma;
366 
367 	/*
368 	 * The root anon_vma's rwsem is the lock actually used when we
369 	 * lock any of the anon_vmas in this anon_vma tree.
370 	 */
371 	anon_vma->root = pvma->anon_vma->root;
372 	anon_vma->parent = pvma->anon_vma;
373 	/*
374 	 * With refcounts, an anon_vma can stay around longer than the
375 	 * process it belongs to. The root anon_vma needs to be pinned until
376 	 * this anon_vma is freed, because the lock lives in the root.
377 	 */
378 	get_anon_vma(anon_vma->root);
379 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
380 	vma->anon_vma = anon_vma;
381 	anon_vma_lock_write(anon_vma);
382 	anon_vma_chain_link(vma, avc, anon_vma);
383 	anon_vma->parent->num_children++;
384 	anon_vma_unlock_write(anon_vma);
385 
386 	return 0;
387 
388  out_error_free_anon_vma:
389 	put_anon_vma(anon_vma);
390  out_error:
391 	unlink_anon_vmas(vma);
392 	return -ENOMEM;
393 }
394 
395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 	struct anon_vma_chain *avc, *next;
398 	struct anon_vma *root = NULL;
399 
400 	/*
401 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
402 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 	 */
404 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 		struct anon_vma *anon_vma = avc->anon_vma;
406 
407 		root = lock_anon_vma_root(root, anon_vma);
408 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409 
410 		/*
411 		 * Leave empty anon_vmas on the list - we'll need
412 		 * to free them outside the lock.
413 		 */
414 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 			anon_vma->parent->num_children--;
416 			continue;
417 		}
418 
419 		list_del(&avc->same_vma);
420 		anon_vma_chain_free(avc);
421 	}
422 	if (vma->anon_vma) {
423 		vma->anon_vma->num_active_vmas--;
424 
425 		/*
426 		 * vma would still be needed after unlink, and anon_vma will be prepared
427 		 * when handle fault.
428 		 */
429 		vma->anon_vma = NULL;
430 	}
431 	unlock_anon_vma_root(root);
432 
433 	/*
434 	 * Iterate the list once more, it now only contains empty and unlinked
435 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 	 * needing to write-acquire the anon_vma->root->rwsem.
437 	 */
438 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 		struct anon_vma *anon_vma = avc->anon_vma;
440 
441 		VM_WARN_ON(anon_vma->num_children);
442 		VM_WARN_ON(anon_vma->num_active_vmas);
443 		put_anon_vma(anon_vma);
444 
445 		list_del(&avc->same_vma);
446 		anon_vma_chain_free(avc);
447 	}
448 }
449 
450 static void anon_vma_ctor(void *data)
451 {
452 	struct anon_vma *anon_vma = data;
453 
454 	init_rwsem(&anon_vma->rwsem);
455 	atomic_set(&anon_vma->refcount, 0);
456 	anon_vma->rb_root = RB_ROOT_CACHED;
457 }
458 
459 void __init anon_vma_init(void)
460 {
461 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463 			anon_vma_ctor);
464 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 			SLAB_PANIC|SLAB_ACCOUNT);
466 }
467 
468 /*
469  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470  *
471  * Since there is no serialization what so ever against page_remove_rmap()
472  * the best this function can do is return a refcount increased anon_vma
473  * that might have been relevant to this page.
474  *
475  * The page might have been remapped to a different anon_vma or the anon_vma
476  * returned may already be freed (and even reused).
477  *
478  * In case it was remapped to a different anon_vma, the new anon_vma will be a
479  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480  * ensure that any anon_vma obtained from the page will still be valid for as
481  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482  *
483  * All users of this function must be very careful when walking the anon_vma
484  * chain and verify that the page in question is indeed mapped in it
485  * [ something equivalent to page_mapped_in_vma() ].
486  *
487  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
489  * if there is a mapcount, we can dereference the anon_vma after observing
490  * those.
491  */
492 struct anon_vma *folio_get_anon_vma(struct folio *folio)
493 {
494 	struct anon_vma *anon_vma = NULL;
495 	unsigned long anon_mapping;
496 
497 	rcu_read_lock();
498 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
499 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
500 		goto out;
501 	if (!folio_mapped(folio))
502 		goto out;
503 
504 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
505 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
506 		anon_vma = NULL;
507 		goto out;
508 	}
509 
510 	/*
511 	 * If this folio is still mapped, then its anon_vma cannot have been
512 	 * freed.  But if it has been unmapped, we have no security against the
513 	 * anon_vma structure being freed and reused (for another anon_vma:
514 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
515 	 * above cannot corrupt).
516 	 */
517 	if (!folio_mapped(folio)) {
518 		rcu_read_unlock();
519 		put_anon_vma(anon_vma);
520 		return NULL;
521 	}
522 out:
523 	rcu_read_unlock();
524 
525 	return anon_vma;
526 }
527 
528 /*
529  * Similar to folio_get_anon_vma() except it locks the anon_vma.
530  *
531  * Its a little more complex as it tries to keep the fast path to a single
532  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
533  * reference like with folio_get_anon_vma() and then block on the mutex
534  * on !rwc->try_lock case.
535  */
536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
537 					  struct rmap_walk_control *rwc)
538 {
539 	struct anon_vma *anon_vma = NULL;
540 	struct anon_vma *root_anon_vma;
541 	unsigned long anon_mapping;
542 
543 	rcu_read_lock();
544 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
545 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
546 		goto out;
547 	if (!folio_mapped(folio))
548 		goto out;
549 
550 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
551 	root_anon_vma = READ_ONCE(anon_vma->root);
552 	if (down_read_trylock(&root_anon_vma->rwsem)) {
553 		/*
554 		 * If the folio is still mapped, then this anon_vma is still
555 		 * its anon_vma, and holding the mutex ensures that it will
556 		 * not go away, see anon_vma_free().
557 		 */
558 		if (!folio_mapped(folio)) {
559 			up_read(&root_anon_vma->rwsem);
560 			anon_vma = NULL;
561 		}
562 		goto out;
563 	}
564 
565 	if (rwc && rwc->try_lock) {
566 		anon_vma = NULL;
567 		rwc->contended = true;
568 		goto out;
569 	}
570 
571 	/* trylock failed, we got to sleep */
572 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
573 		anon_vma = NULL;
574 		goto out;
575 	}
576 
577 	if (!folio_mapped(folio)) {
578 		rcu_read_unlock();
579 		put_anon_vma(anon_vma);
580 		return NULL;
581 	}
582 
583 	/* we pinned the anon_vma, its safe to sleep */
584 	rcu_read_unlock();
585 	anon_vma_lock_read(anon_vma);
586 
587 	if (atomic_dec_and_test(&anon_vma->refcount)) {
588 		/*
589 		 * Oops, we held the last refcount, release the lock
590 		 * and bail -- can't simply use put_anon_vma() because
591 		 * we'll deadlock on the anon_vma_lock_write() recursion.
592 		 */
593 		anon_vma_unlock_read(anon_vma);
594 		__put_anon_vma(anon_vma);
595 		anon_vma = NULL;
596 	}
597 
598 	return anon_vma;
599 
600 out:
601 	rcu_read_unlock();
602 	return anon_vma;
603 }
604 
605 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
606 /*
607  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
608  * important if a PTE was dirty when it was unmapped that it's flushed
609  * before any IO is initiated on the page to prevent lost writes. Similarly,
610  * it must be flushed before freeing to prevent data leakage.
611  */
612 void try_to_unmap_flush(void)
613 {
614 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615 
616 	if (!tlb_ubc->flush_required)
617 		return;
618 
619 	arch_tlbbatch_flush(&tlb_ubc->arch);
620 	tlb_ubc->flush_required = false;
621 	tlb_ubc->writable = false;
622 }
623 
624 /* Flush iff there are potentially writable TLB entries that can race with IO */
625 void try_to_unmap_flush_dirty(void)
626 {
627 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
628 
629 	if (tlb_ubc->writable)
630 		try_to_unmap_flush();
631 }
632 
633 /*
634  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
635  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
636  */
637 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
638 #define TLB_FLUSH_BATCH_PENDING_MASK			\
639 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
640 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
641 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
642 
643 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 	int batch, nbatch;
647 
648 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
649 	tlb_ubc->flush_required = true;
650 
651 	/*
652 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
653 	 * before the PTE is cleared.
654 	 */
655 	barrier();
656 	batch = atomic_read(&mm->tlb_flush_batched);
657 retry:
658 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
659 		/*
660 		 * Prevent `pending' from catching up with `flushed' because of
661 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
662 		 * `pending' becomes large.
663 		 */
664 		nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
665 		if (nbatch != batch) {
666 			batch = nbatch;
667 			goto retry;
668 		}
669 	} else {
670 		atomic_inc(&mm->tlb_flush_batched);
671 	}
672 
673 	/*
674 	 * If the PTE was dirty then it's best to assume it's writable. The
675 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
676 	 * before the page is queued for IO.
677 	 */
678 	if (writable)
679 		tlb_ubc->writable = true;
680 }
681 
682 /*
683  * Returns true if the TLB flush should be deferred to the end of a batch of
684  * unmap operations to reduce IPIs.
685  */
686 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
687 {
688 	bool should_defer = false;
689 
690 	if (!(flags & TTU_BATCH_FLUSH))
691 		return false;
692 
693 	/* If remote CPUs need to be flushed then defer batch the flush */
694 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
695 		should_defer = true;
696 	put_cpu();
697 
698 	return should_defer;
699 }
700 
701 /*
702  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
703  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
704  * operation such as mprotect or munmap to race between reclaim unmapping
705  * the page and flushing the page. If this race occurs, it potentially allows
706  * access to data via a stale TLB entry. Tracking all mm's that have TLB
707  * batching in flight would be expensive during reclaim so instead track
708  * whether TLB batching occurred in the past and if so then do a flush here
709  * if required. This will cost one additional flush per reclaim cycle paid
710  * by the first operation at risk such as mprotect and mumap.
711  *
712  * This must be called under the PTL so that an access to tlb_flush_batched
713  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
714  * via the PTL.
715  */
716 void flush_tlb_batched_pending(struct mm_struct *mm)
717 {
718 	int batch = atomic_read(&mm->tlb_flush_batched);
719 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
720 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
721 
722 	if (pending != flushed) {
723 		flush_tlb_mm(mm);
724 		/*
725 		 * If the new TLB flushing is pending during flushing, leave
726 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
727 		 */
728 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
729 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
730 	}
731 }
732 #else
733 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
734 {
735 }
736 
737 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
738 {
739 	return false;
740 }
741 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
742 
743 /*
744  * At what user virtual address is page expected in vma?
745  * Caller should check the page is actually part of the vma.
746  */
747 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
748 {
749 	struct folio *folio = page_folio(page);
750 	if (folio_test_anon(folio)) {
751 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
752 		/*
753 		 * Note: swapoff's unuse_vma() is more efficient with this
754 		 * check, and needs it to match anon_vma when KSM is active.
755 		 */
756 		if (!vma->anon_vma || !page__anon_vma ||
757 		    vma->anon_vma->root != page__anon_vma->root)
758 			return -EFAULT;
759 	} else if (!vma->vm_file) {
760 		return -EFAULT;
761 	} else if (vma->vm_file->f_mapping != folio->mapping) {
762 		return -EFAULT;
763 	}
764 
765 	return vma_address(page, vma);
766 }
767 
768 /*
769  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
770  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
771  * represents.
772  */
773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
774 {
775 	pgd_t *pgd;
776 	p4d_t *p4d;
777 	pud_t *pud;
778 	pmd_t *pmd = NULL;
779 
780 	pgd = pgd_offset(mm, address);
781 	if (!pgd_present(*pgd))
782 		goto out;
783 
784 	p4d = p4d_offset(pgd, address);
785 	if (!p4d_present(*p4d))
786 		goto out;
787 
788 	pud = pud_offset(p4d, address);
789 	if (!pud_present(*pud))
790 		goto out;
791 
792 	pmd = pmd_offset(pud, address);
793 out:
794 	return pmd;
795 }
796 
797 struct folio_referenced_arg {
798 	int mapcount;
799 	int referenced;
800 	unsigned long vm_flags;
801 	struct mem_cgroup *memcg;
802 };
803 /*
804  * arg: folio_referenced_arg will be passed
805  */
806 static bool folio_referenced_one(struct folio *folio,
807 		struct vm_area_struct *vma, unsigned long address, void *arg)
808 {
809 	struct folio_referenced_arg *pra = arg;
810 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
811 	int referenced = 0;
812 
813 	while (page_vma_mapped_walk(&pvmw)) {
814 		address = pvmw.address;
815 
816 		if ((vma->vm_flags & VM_LOCKED) &&
817 		    (!folio_test_large(folio) || !pvmw.pte)) {
818 			/* Restore the mlock which got missed */
819 			mlock_vma_folio(folio, vma, !pvmw.pte);
820 			page_vma_mapped_walk_done(&pvmw);
821 			pra->vm_flags |= VM_LOCKED;
822 			return false; /* To break the loop */
823 		}
824 
825 		if (pvmw.pte) {
826 			if (lru_gen_enabled() && pte_young(*pvmw.pte) &&
827 			    !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) {
828 				lru_gen_look_around(&pvmw);
829 				referenced++;
830 			}
831 
832 			if (ptep_clear_flush_young_notify(vma, address,
833 						pvmw.pte)) {
834 				/*
835 				 * Don't treat a reference through
836 				 * a sequentially read mapping as such.
837 				 * If the folio has been used in another mapping,
838 				 * we will catch it; if this other mapping is
839 				 * already gone, the unmap path will have set
840 				 * the referenced flag or activated the folio.
841 				 */
842 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
843 					referenced++;
844 			}
845 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
846 			if (pmdp_clear_flush_young_notify(vma, address,
847 						pvmw.pmd))
848 				referenced++;
849 		} else {
850 			/* unexpected pmd-mapped folio? */
851 			WARN_ON_ONCE(1);
852 		}
853 
854 		pra->mapcount--;
855 	}
856 
857 	if (referenced)
858 		folio_clear_idle(folio);
859 	if (folio_test_clear_young(folio))
860 		referenced++;
861 
862 	if (referenced) {
863 		pra->referenced++;
864 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
865 	}
866 
867 	if (!pra->mapcount)
868 		return false; /* To break the loop */
869 
870 	return true;
871 }
872 
873 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
874 {
875 	struct folio_referenced_arg *pra = arg;
876 	struct mem_cgroup *memcg = pra->memcg;
877 
878 	if (!mm_match_cgroup(vma->vm_mm, memcg))
879 		return true;
880 
881 	return false;
882 }
883 
884 /**
885  * folio_referenced() - Test if the folio was referenced.
886  * @folio: The folio to test.
887  * @is_locked: Caller holds lock on the folio.
888  * @memcg: target memory cgroup
889  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
890  *
891  * Quick test_and_clear_referenced for all mappings of a folio,
892  *
893  * Return: The number of mappings which referenced the folio. Return -1 if
894  * the function bailed out due to rmap lock contention.
895  */
896 int folio_referenced(struct folio *folio, int is_locked,
897 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
898 {
899 	int we_locked = 0;
900 	struct folio_referenced_arg pra = {
901 		.mapcount = folio_mapcount(folio),
902 		.memcg = memcg,
903 	};
904 	struct rmap_walk_control rwc = {
905 		.rmap_one = folio_referenced_one,
906 		.arg = (void *)&pra,
907 		.anon_lock = folio_lock_anon_vma_read,
908 		.try_lock = true,
909 	};
910 
911 	*vm_flags = 0;
912 	if (!pra.mapcount)
913 		return 0;
914 
915 	if (!folio_raw_mapping(folio))
916 		return 0;
917 
918 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
919 		we_locked = folio_trylock(folio);
920 		if (!we_locked)
921 			return 1;
922 	}
923 
924 	/*
925 	 * If we are reclaiming on behalf of a cgroup, skip
926 	 * counting on behalf of references from different
927 	 * cgroups
928 	 */
929 	if (memcg) {
930 		rwc.invalid_vma = invalid_folio_referenced_vma;
931 	}
932 
933 	rmap_walk(folio, &rwc);
934 	*vm_flags = pra.vm_flags;
935 
936 	if (we_locked)
937 		folio_unlock(folio);
938 
939 	return rwc.contended ? -1 : pra.referenced;
940 }
941 
942 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
943 {
944 	int cleaned = 0;
945 	struct vm_area_struct *vma = pvmw->vma;
946 	struct mmu_notifier_range range;
947 	unsigned long address = pvmw->address;
948 
949 	/*
950 	 * We have to assume the worse case ie pmd for invalidation. Note that
951 	 * the folio can not be freed from this function.
952 	 */
953 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
954 				0, vma, vma->vm_mm, address,
955 				vma_address_end(pvmw));
956 	mmu_notifier_invalidate_range_start(&range);
957 
958 	while (page_vma_mapped_walk(pvmw)) {
959 		int ret = 0;
960 
961 		address = pvmw->address;
962 		if (pvmw->pte) {
963 			pte_t entry;
964 			pte_t *pte = pvmw->pte;
965 
966 			if (!pte_dirty(*pte) && !pte_write(*pte))
967 				continue;
968 
969 			flush_cache_page(vma, address, pte_pfn(*pte));
970 			entry = ptep_clear_flush(vma, address, pte);
971 			entry = pte_wrprotect(entry);
972 			entry = pte_mkclean(entry);
973 			set_pte_at(vma->vm_mm, address, pte, entry);
974 			ret = 1;
975 		} else {
976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
977 			pmd_t *pmd = pvmw->pmd;
978 			pmd_t entry;
979 
980 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
981 				continue;
982 
983 			flush_cache_range(vma, address,
984 					  address + HPAGE_PMD_SIZE);
985 			entry = pmdp_invalidate(vma, address, pmd);
986 			entry = pmd_wrprotect(entry);
987 			entry = pmd_mkclean(entry);
988 			set_pmd_at(vma->vm_mm, address, pmd, entry);
989 			ret = 1;
990 #else
991 			/* unexpected pmd-mapped folio? */
992 			WARN_ON_ONCE(1);
993 #endif
994 		}
995 
996 		/*
997 		 * No need to call mmu_notifier_invalidate_range() as we are
998 		 * downgrading page table protection not changing it to point
999 		 * to a new page.
1000 		 *
1001 		 * See Documentation/mm/mmu_notifier.rst
1002 		 */
1003 		if (ret)
1004 			cleaned++;
1005 	}
1006 
1007 	mmu_notifier_invalidate_range_end(&range);
1008 
1009 	return cleaned;
1010 }
1011 
1012 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1013 			     unsigned long address, void *arg)
1014 {
1015 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1016 	int *cleaned = arg;
1017 
1018 	*cleaned += page_vma_mkclean_one(&pvmw);
1019 
1020 	return true;
1021 }
1022 
1023 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1024 {
1025 	if (vma->vm_flags & VM_SHARED)
1026 		return false;
1027 
1028 	return true;
1029 }
1030 
1031 int folio_mkclean(struct folio *folio)
1032 {
1033 	int cleaned = 0;
1034 	struct address_space *mapping;
1035 	struct rmap_walk_control rwc = {
1036 		.arg = (void *)&cleaned,
1037 		.rmap_one = page_mkclean_one,
1038 		.invalid_vma = invalid_mkclean_vma,
1039 	};
1040 
1041 	BUG_ON(!folio_test_locked(folio));
1042 
1043 	if (!folio_mapped(folio))
1044 		return 0;
1045 
1046 	mapping = folio_mapping(folio);
1047 	if (!mapping)
1048 		return 0;
1049 
1050 	rmap_walk(folio, &rwc);
1051 
1052 	return cleaned;
1053 }
1054 EXPORT_SYMBOL_GPL(folio_mkclean);
1055 
1056 /**
1057  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1058  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1059  *                     within the @vma of shared mappings. And since clean PTEs
1060  *                     should also be readonly, write protects them too.
1061  * @pfn: start pfn.
1062  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1063  * @pgoff: page offset that the @pfn mapped with.
1064  * @vma: vma that @pfn mapped within.
1065  *
1066  * Returns the number of cleaned PTEs (including PMDs).
1067  */
1068 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1069 		      struct vm_area_struct *vma)
1070 {
1071 	struct page_vma_mapped_walk pvmw = {
1072 		.pfn		= pfn,
1073 		.nr_pages	= nr_pages,
1074 		.pgoff		= pgoff,
1075 		.vma		= vma,
1076 		.flags		= PVMW_SYNC,
1077 	};
1078 
1079 	if (invalid_mkclean_vma(vma, NULL))
1080 		return 0;
1081 
1082 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1083 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1084 
1085 	return page_vma_mkclean_one(&pvmw);
1086 }
1087 
1088 int total_compound_mapcount(struct page *head)
1089 {
1090 	int mapcount = head_compound_mapcount(head);
1091 	int nr_subpages;
1092 	int i;
1093 
1094 	/* In the common case, avoid the loop when no subpages mapped by PTE */
1095 	if (head_subpages_mapcount(head) == 0)
1096 		return mapcount;
1097 	/*
1098 	 * Add all the PTE mappings of those subpages mapped by PTE.
1099 	 * Limit the loop, knowing that only subpages_mapcount are mapped?
1100 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
1101 	 */
1102 	nr_subpages = thp_nr_pages(head);
1103 	for (i = 0; i < nr_subpages; i++)
1104 		mapcount += atomic_read(&head[i]._mapcount);
1105 
1106 	/* But each of those _mapcounts was based on -1 */
1107 	mapcount += nr_subpages;
1108 	return mapcount;
1109 }
1110 
1111 /**
1112  * page_move_anon_rmap - move a page to our anon_vma
1113  * @page:	the page to move to our anon_vma
1114  * @vma:	the vma the page belongs to
1115  *
1116  * When a page belongs exclusively to one process after a COW event,
1117  * that page can be moved into the anon_vma that belongs to just that
1118  * process, so the rmap code will not search the parent or sibling
1119  * processes.
1120  */
1121 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1122 {
1123 	void *anon_vma = vma->anon_vma;
1124 	struct folio *folio = page_folio(page);
1125 
1126 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1127 	VM_BUG_ON_VMA(!anon_vma, vma);
1128 
1129 	anon_vma += PAGE_MAPPING_ANON;
1130 	/*
1131 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1132 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1133 	 * folio_test_anon()) will not see one without the other.
1134 	 */
1135 	WRITE_ONCE(folio->mapping, anon_vma);
1136 	SetPageAnonExclusive(page);
1137 }
1138 
1139 /**
1140  * __page_set_anon_rmap - set up new anonymous rmap
1141  * @page:	Page or Hugepage to add to rmap
1142  * @vma:	VM area to add page to.
1143  * @address:	User virtual address of the mapping
1144  * @exclusive:	the page is exclusively owned by the current process
1145  */
1146 static void __page_set_anon_rmap(struct page *page,
1147 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1148 {
1149 	struct anon_vma *anon_vma = vma->anon_vma;
1150 
1151 	BUG_ON(!anon_vma);
1152 
1153 	if (PageAnon(page))
1154 		goto out;
1155 
1156 	/*
1157 	 * If the page isn't exclusively mapped into this vma,
1158 	 * we must use the _oldest_ possible anon_vma for the
1159 	 * page mapping!
1160 	 */
1161 	if (!exclusive)
1162 		anon_vma = anon_vma->root;
1163 
1164 	/*
1165 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1166 	 * Make sure the compiler doesn't split the stores of anon_vma and
1167 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1168 	 * could mistake the mapping for a struct address_space and crash.
1169 	 */
1170 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1171 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1172 	page->index = linear_page_index(vma, address);
1173 out:
1174 	if (exclusive)
1175 		SetPageAnonExclusive(page);
1176 }
1177 
1178 /**
1179  * __page_check_anon_rmap - sanity check anonymous rmap addition
1180  * @page:	the page to add the mapping to
1181  * @vma:	the vm area in which the mapping is added
1182  * @address:	the user virtual address mapped
1183  */
1184 static void __page_check_anon_rmap(struct page *page,
1185 	struct vm_area_struct *vma, unsigned long address)
1186 {
1187 	struct folio *folio = page_folio(page);
1188 	/*
1189 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1190 	 * be set up correctly at this point.
1191 	 *
1192 	 * We have exclusion against page_add_anon_rmap because the caller
1193 	 * always holds the page locked.
1194 	 *
1195 	 * We have exclusion against page_add_new_anon_rmap because those pages
1196 	 * are initially only visible via the pagetables, and the pte is locked
1197 	 * over the call to page_add_new_anon_rmap.
1198 	 */
1199 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1200 			folio);
1201 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1202 		       page);
1203 }
1204 
1205 /**
1206  * page_add_anon_rmap - add pte mapping to an anonymous page
1207  * @page:	the page to add the mapping to
1208  * @vma:	the vm area in which the mapping is added
1209  * @address:	the user virtual address mapped
1210  * @flags:	the rmap flags
1211  *
1212  * The caller needs to hold the pte lock, and the page must be locked in
1213  * the anon_vma case: to serialize mapping,index checking after setting,
1214  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1215  * (but PageKsm is never downgraded to PageAnon).
1216  */
1217 void page_add_anon_rmap(struct page *page,
1218 	struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1219 {
1220 	atomic_t *mapped;
1221 	int nr = 0, nr_pmdmapped = 0;
1222 	bool compound = flags & RMAP_COMPOUND;
1223 	bool first = true;
1224 
1225 	/* Is page being mapped by PTE? Is this its first map to be added? */
1226 	if (likely(!compound)) {
1227 		first = atomic_inc_and_test(&page->_mapcount);
1228 		nr = first;
1229 		if (first && PageCompound(page)) {
1230 			mapped = subpages_mapcount_ptr(compound_head(page));
1231 			nr = atomic_inc_return_relaxed(mapped);
1232 			nr = (nr < COMPOUND_MAPPED);
1233 		}
1234 	} else if (PageTransHuge(page)) {
1235 		/* That test is redundant: it's for safety or to optimize out */
1236 
1237 		first = atomic_inc_and_test(compound_mapcount_ptr(page));
1238 		if (first) {
1239 			mapped = subpages_mapcount_ptr(page);
1240 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1241 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1242 				nr_pmdmapped = thp_nr_pages(page);
1243 				nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED);
1244 				/* Raced ahead of a remove and another add? */
1245 				if (unlikely(nr < 0))
1246 					nr = 0;
1247 			} else {
1248 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1249 				nr = 0;
1250 			}
1251 		}
1252 	}
1253 
1254 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1255 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1256 
1257 	if (nr_pmdmapped)
1258 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr_pmdmapped);
1259 	if (nr)
1260 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1261 
1262 	if (likely(!PageKsm(page))) {
1263 		/* address might be in next vma when migration races vma_adjust */
1264 		if (first)
1265 			__page_set_anon_rmap(page, vma, address,
1266 					     !!(flags & RMAP_EXCLUSIVE));
1267 		else
1268 			__page_check_anon_rmap(page, vma, address);
1269 	}
1270 
1271 	mlock_vma_page(page, vma, compound);
1272 }
1273 
1274 /**
1275  * page_add_new_anon_rmap - add mapping to a new anonymous page
1276  * @page:	the page to add the mapping to
1277  * @vma:	the vm area in which the mapping is added
1278  * @address:	the user virtual address mapped
1279  *
1280  * If it's a compound page, it is accounted as a compound page. As the page
1281  * is new, it's assume to get mapped exclusively by a single process.
1282  *
1283  * Same as page_add_anon_rmap but must only be called on *new* pages.
1284  * This means the inc-and-test can be bypassed.
1285  * Page does not have to be locked.
1286  */
1287 void page_add_new_anon_rmap(struct page *page,
1288 	struct vm_area_struct *vma, unsigned long address)
1289 {
1290 	int nr;
1291 
1292 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1293 	__SetPageSwapBacked(page);
1294 
1295 	if (likely(!PageCompound(page))) {
1296 		/* increment count (starts at -1) */
1297 		atomic_set(&page->_mapcount, 0);
1298 		nr = 1;
1299 	} else {
1300 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1301 		/* increment count (starts at -1) */
1302 		atomic_set(compound_mapcount_ptr(page), 0);
1303 		atomic_set(subpages_mapcount_ptr(page), COMPOUND_MAPPED);
1304 		nr = thp_nr_pages(page);
1305 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1306 	}
1307 
1308 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1309 	__page_set_anon_rmap(page, vma, address, 1);
1310 }
1311 
1312 /**
1313  * page_add_file_rmap - add pte mapping to a file page
1314  * @page:	the page to add the mapping to
1315  * @vma:	the vm area in which the mapping is added
1316  * @compound:	charge the page as compound or small page
1317  *
1318  * The caller needs to hold the pte lock.
1319  */
1320 void page_add_file_rmap(struct page *page,
1321 	struct vm_area_struct *vma, bool compound)
1322 {
1323 	atomic_t *mapped;
1324 	int nr = 0, nr_pmdmapped = 0;
1325 	bool first;
1326 
1327 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1328 
1329 	/* Is page being mapped by PTE? Is this its first map to be added? */
1330 	if (likely(!compound)) {
1331 		first = atomic_inc_and_test(&page->_mapcount);
1332 		nr = first;
1333 		if (first && PageCompound(page)) {
1334 			mapped = subpages_mapcount_ptr(compound_head(page));
1335 			nr = atomic_inc_return_relaxed(mapped);
1336 			nr = (nr < COMPOUND_MAPPED);
1337 		}
1338 	} else if (PageTransHuge(page)) {
1339 		/* That test is redundant: it's for safety or to optimize out */
1340 
1341 		first = atomic_inc_and_test(compound_mapcount_ptr(page));
1342 		if (first) {
1343 			mapped = subpages_mapcount_ptr(page);
1344 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1345 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1346 				nr_pmdmapped = thp_nr_pages(page);
1347 				nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED);
1348 				/* Raced ahead of a remove and another add? */
1349 				if (unlikely(nr < 0))
1350 					nr = 0;
1351 			} else {
1352 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1353 				nr = 0;
1354 			}
1355 		}
1356 	}
1357 
1358 	if (nr_pmdmapped)
1359 		__mod_lruvec_page_state(page, PageSwapBacked(page) ?
1360 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1361 	if (nr)
1362 		__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1363 
1364 	mlock_vma_page(page, vma, compound);
1365 }
1366 
1367 /**
1368  * page_remove_rmap - take down pte mapping from a page
1369  * @page:	page to remove mapping from
1370  * @vma:	the vm area from which the mapping is removed
1371  * @compound:	uncharge the page as compound or small page
1372  *
1373  * The caller needs to hold the pte lock.
1374  */
1375 void page_remove_rmap(struct page *page,
1376 	struct vm_area_struct *vma, bool compound)
1377 {
1378 	atomic_t *mapped;
1379 	int nr = 0, nr_pmdmapped = 0;
1380 	bool last;
1381 
1382 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1383 
1384 	/* Hugetlb pages are not counted in NR_*MAPPED */
1385 	if (unlikely(PageHuge(page))) {
1386 		/* hugetlb pages are always mapped with pmds */
1387 		atomic_dec(compound_mapcount_ptr(page));
1388 		return;
1389 	}
1390 
1391 	/* Is page being unmapped by PTE? Is this its last map to be removed? */
1392 	if (likely(!compound)) {
1393 		last = atomic_add_negative(-1, &page->_mapcount);
1394 		nr = last;
1395 		if (last && PageCompound(page)) {
1396 			mapped = subpages_mapcount_ptr(compound_head(page));
1397 			nr = atomic_dec_return_relaxed(mapped);
1398 			nr = (nr < COMPOUND_MAPPED);
1399 		}
1400 	} else if (PageTransHuge(page)) {
1401 		/* That test is redundant: it's for safety or to optimize out */
1402 
1403 		last = atomic_add_negative(-1, compound_mapcount_ptr(page));
1404 		if (last) {
1405 			mapped = subpages_mapcount_ptr(page);
1406 			nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1407 			if (likely(nr < COMPOUND_MAPPED)) {
1408 				nr_pmdmapped = thp_nr_pages(page);
1409 				nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED);
1410 				/* Raced ahead of another remove and an add? */
1411 				if (unlikely(nr < 0))
1412 					nr = 0;
1413 			} else {
1414 				/* An add of COMPOUND_MAPPED raced ahead */
1415 				nr = 0;
1416 			}
1417 		}
1418 	}
1419 
1420 	if (nr_pmdmapped) {
1421 		__mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_THPS :
1422 				(PageSwapBacked(page) ? NR_SHMEM_PMDMAPPED :
1423 				NR_FILE_PMDMAPPED), -nr_pmdmapped);
1424 	}
1425 	if (nr) {
1426 		__mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_MAPPED :
1427 				NR_FILE_MAPPED, -nr);
1428 		/*
1429 		 * Queue anon THP for deferred split if at least one small
1430 		 * page of the compound page is unmapped, but at least one
1431 		 * small page is still mapped.
1432 		 */
1433 		if (PageTransCompound(page) && PageAnon(page))
1434 			if (!compound || nr < nr_pmdmapped)
1435 				deferred_split_huge_page(compound_head(page));
1436 	}
1437 
1438 	/*
1439 	 * It would be tidy to reset PageAnon mapping when fully unmapped,
1440 	 * but that might overwrite a racing page_add_anon_rmap
1441 	 * which increments mapcount after us but sets mapping
1442 	 * before us: so leave the reset to free_pages_prepare,
1443 	 * and remember that it's only reliable while mapped.
1444 	 */
1445 
1446 	munlock_vma_page(page, vma, compound);
1447 }
1448 
1449 /*
1450  * @arg: enum ttu_flags will be passed to this argument
1451  */
1452 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1453 		     unsigned long address, void *arg)
1454 {
1455 	struct mm_struct *mm = vma->vm_mm;
1456 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1457 	pte_t pteval;
1458 	struct page *subpage;
1459 	bool anon_exclusive, ret = true;
1460 	struct mmu_notifier_range range;
1461 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1462 
1463 	/*
1464 	 * When racing against e.g. zap_pte_range() on another cpu,
1465 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1466 	 * try_to_unmap() may return before page_mapped() has become false,
1467 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1468 	 */
1469 	if (flags & TTU_SYNC)
1470 		pvmw.flags = PVMW_SYNC;
1471 
1472 	if (flags & TTU_SPLIT_HUGE_PMD)
1473 		split_huge_pmd_address(vma, address, false, folio);
1474 
1475 	/*
1476 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1477 	 * For hugetlb, it could be much worse if we need to do pud
1478 	 * invalidation in the case of pmd sharing.
1479 	 *
1480 	 * Note that the folio can not be freed in this function as call of
1481 	 * try_to_unmap() must hold a reference on the folio.
1482 	 */
1483 	range.end = vma_address_end(&pvmw);
1484 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1485 				address, range.end);
1486 	if (folio_test_hugetlb(folio)) {
1487 		/*
1488 		 * If sharing is possible, start and end will be adjusted
1489 		 * accordingly.
1490 		 */
1491 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1492 						     &range.end);
1493 	}
1494 	mmu_notifier_invalidate_range_start(&range);
1495 
1496 	while (page_vma_mapped_walk(&pvmw)) {
1497 		/* Unexpected PMD-mapped THP? */
1498 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1499 
1500 		/*
1501 		 * If the folio is in an mlock()d vma, we must not swap it out.
1502 		 */
1503 		if (!(flags & TTU_IGNORE_MLOCK) &&
1504 		    (vma->vm_flags & VM_LOCKED)) {
1505 			/* Restore the mlock which got missed */
1506 			mlock_vma_folio(folio, vma, false);
1507 			page_vma_mapped_walk_done(&pvmw);
1508 			ret = false;
1509 			break;
1510 		}
1511 
1512 		subpage = folio_page(folio,
1513 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1514 		address = pvmw.address;
1515 		anon_exclusive = folio_test_anon(folio) &&
1516 				 PageAnonExclusive(subpage);
1517 
1518 		if (folio_test_hugetlb(folio)) {
1519 			bool anon = folio_test_anon(folio);
1520 
1521 			/*
1522 			 * The try_to_unmap() is only passed a hugetlb page
1523 			 * in the case where the hugetlb page is poisoned.
1524 			 */
1525 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1526 			/*
1527 			 * huge_pmd_unshare may unmap an entire PMD page.
1528 			 * There is no way of knowing exactly which PMDs may
1529 			 * be cached for this mm, so we must flush them all.
1530 			 * start/end were already adjusted above to cover this
1531 			 * range.
1532 			 */
1533 			flush_cache_range(vma, range.start, range.end);
1534 
1535 			/*
1536 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1537 			 * held in write mode.  Caller needs to explicitly
1538 			 * do this outside rmap routines.
1539 			 *
1540 			 * We also must hold hugetlb vma_lock in write mode.
1541 			 * Lock order dictates acquiring vma_lock BEFORE
1542 			 * i_mmap_rwsem.  We can only try lock here and fail
1543 			 * if unsuccessful.
1544 			 */
1545 			if (!anon) {
1546 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1547 				if (!hugetlb_vma_trylock_write(vma)) {
1548 					page_vma_mapped_walk_done(&pvmw);
1549 					ret = false;
1550 					break;
1551 				}
1552 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1553 					hugetlb_vma_unlock_write(vma);
1554 					flush_tlb_range(vma,
1555 						range.start, range.end);
1556 					mmu_notifier_invalidate_range(mm,
1557 						range.start, range.end);
1558 					/*
1559 					 * The ref count of the PMD page was
1560 					 * dropped which is part of the way map
1561 					 * counting is done for shared PMDs.
1562 					 * Return 'true' here.  When there is
1563 					 * no other sharing, huge_pmd_unshare
1564 					 * returns false and we will unmap the
1565 					 * actual page and drop map count
1566 					 * to zero.
1567 					 */
1568 					page_vma_mapped_walk_done(&pvmw);
1569 					break;
1570 				}
1571 				hugetlb_vma_unlock_write(vma);
1572 			}
1573 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1574 		} else {
1575 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1576 			/* Nuke the page table entry. */
1577 			if (should_defer_flush(mm, flags)) {
1578 				/*
1579 				 * We clear the PTE but do not flush so potentially
1580 				 * a remote CPU could still be writing to the folio.
1581 				 * If the entry was previously clean then the
1582 				 * architecture must guarantee that a clear->dirty
1583 				 * transition on a cached TLB entry is written through
1584 				 * and traps if the PTE is unmapped.
1585 				 */
1586 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1587 
1588 				set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1589 			} else {
1590 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1591 			}
1592 		}
1593 
1594 		/*
1595 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1596 		 * we may want to replace a none pte with a marker pte if
1597 		 * it's file-backed, so we don't lose the tracking info.
1598 		 */
1599 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1600 
1601 		/* Set the dirty flag on the folio now the pte is gone. */
1602 		if (pte_dirty(pteval))
1603 			folio_mark_dirty(folio);
1604 
1605 		/* Update high watermark before we lower rss */
1606 		update_hiwater_rss(mm);
1607 
1608 		if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1609 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1610 			if (folio_test_hugetlb(folio)) {
1611 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1612 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
1613 			} else {
1614 				dec_mm_counter(mm, mm_counter(&folio->page));
1615 				set_pte_at(mm, address, pvmw.pte, pteval);
1616 			}
1617 
1618 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1619 			/*
1620 			 * The guest indicated that the page content is of no
1621 			 * interest anymore. Simply discard the pte, vmscan
1622 			 * will take care of the rest.
1623 			 * A future reference will then fault in a new zero
1624 			 * page. When userfaultfd is active, we must not drop
1625 			 * this page though, as its main user (postcopy
1626 			 * migration) will not expect userfaults on already
1627 			 * copied pages.
1628 			 */
1629 			dec_mm_counter(mm, mm_counter(&folio->page));
1630 			/* We have to invalidate as we cleared the pte */
1631 			mmu_notifier_invalidate_range(mm, address,
1632 						      address + PAGE_SIZE);
1633 		} else if (folio_test_anon(folio)) {
1634 			swp_entry_t entry = { .val = page_private(subpage) };
1635 			pte_t swp_pte;
1636 			/*
1637 			 * Store the swap location in the pte.
1638 			 * See handle_pte_fault() ...
1639 			 */
1640 			if (unlikely(folio_test_swapbacked(folio) !=
1641 					folio_test_swapcache(folio))) {
1642 				WARN_ON_ONCE(1);
1643 				ret = false;
1644 				/* We have to invalidate as we cleared the pte */
1645 				mmu_notifier_invalidate_range(mm, address,
1646 							address + PAGE_SIZE);
1647 				page_vma_mapped_walk_done(&pvmw);
1648 				break;
1649 			}
1650 
1651 			/* MADV_FREE page check */
1652 			if (!folio_test_swapbacked(folio)) {
1653 				int ref_count, map_count;
1654 
1655 				/*
1656 				 * Synchronize with gup_pte_range():
1657 				 * - clear PTE; barrier; read refcount
1658 				 * - inc refcount; barrier; read PTE
1659 				 */
1660 				smp_mb();
1661 
1662 				ref_count = folio_ref_count(folio);
1663 				map_count = folio_mapcount(folio);
1664 
1665 				/*
1666 				 * Order reads for page refcount and dirty flag
1667 				 * (see comments in __remove_mapping()).
1668 				 */
1669 				smp_rmb();
1670 
1671 				/*
1672 				 * The only page refs must be one from isolation
1673 				 * plus the rmap(s) (dropped by discard:).
1674 				 */
1675 				if (ref_count == 1 + map_count &&
1676 				    !folio_test_dirty(folio)) {
1677 					/* Invalidate as we cleared the pte */
1678 					mmu_notifier_invalidate_range(mm,
1679 						address, address + PAGE_SIZE);
1680 					dec_mm_counter(mm, MM_ANONPAGES);
1681 					goto discard;
1682 				}
1683 
1684 				/*
1685 				 * If the folio was redirtied, it cannot be
1686 				 * discarded. Remap the page to page table.
1687 				 */
1688 				set_pte_at(mm, address, pvmw.pte, pteval);
1689 				folio_set_swapbacked(folio);
1690 				ret = false;
1691 				page_vma_mapped_walk_done(&pvmw);
1692 				break;
1693 			}
1694 
1695 			if (swap_duplicate(entry) < 0) {
1696 				set_pte_at(mm, address, pvmw.pte, pteval);
1697 				ret = false;
1698 				page_vma_mapped_walk_done(&pvmw);
1699 				break;
1700 			}
1701 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1702 				swap_free(entry);
1703 				set_pte_at(mm, address, pvmw.pte, pteval);
1704 				ret = false;
1705 				page_vma_mapped_walk_done(&pvmw);
1706 				break;
1707 			}
1708 
1709 			/* See page_try_share_anon_rmap(): clear PTE first. */
1710 			if (anon_exclusive &&
1711 			    page_try_share_anon_rmap(subpage)) {
1712 				swap_free(entry);
1713 				set_pte_at(mm, address, pvmw.pte, pteval);
1714 				ret = false;
1715 				page_vma_mapped_walk_done(&pvmw);
1716 				break;
1717 			}
1718 			/*
1719 			 * Note: We *don't* remember if the page was mapped
1720 			 * exclusively in the swap pte if the architecture
1721 			 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1722 			 * that case, swapin code has to re-determine that
1723 			 * manually and might detect the page as possibly
1724 			 * shared, for example, if there are other references on
1725 			 * the page or if the page is under writeback. We made
1726 			 * sure that there are no GUP pins on the page that
1727 			 * would rely on it, so for GUP pins this is fine.
1728 			 */
1729 			if (list_empty(&mm->mmlist)) {
1730 				spin_lock(&mmlist_lock);
1731 				if (list_empty(&mm->mmlist))
1732 					list_add(&mm->mmlist, &init_mm.mmlist);
1733 				spin_unlock(&mmlist_lock);
1734 			}
1735 			dec_mm_counter(mm, MM_ANONPAGES);
1736 			inc_mm_counter(mm, MM_SWAPENTS);
1737 			swp_pte = swp_entry_to_pte(entry);
1738 			if (anon_exclusive)
1739 				swp_pte = pte_swp_mkexclusive(swp_pte);
1740 			if (pte_soft_dirty(pteval))
1741 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1742 			if (pte_uffd_wp(pteval))
1743 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1744 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1745 			/* Invalidate as we cleared the pte */
1746 			mmu_notifier_invalidate_range(mm, address,
1747 						      address + PAGE_SIZE);
1748 		} else {
1749 			/*
1750 			 * This is a locked file-backed folio,
1751 			 * so it cannot be removed from the page
1752 			 * cache and replaced by a new folio before
1753 			 * mmu_notifier_invalidate_range_end, so no
1754 			 * concurrent thread might update its page table
1755 			 * to point at a new folio while a device is
1756 			 * still using this folio.
1757 			 *
1758 			 * See Documentation/mm/mmu_notifier.rst
1759 			 */
1760 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1761 		}
1762 discard:
1763 		/*
1764 		 * No need to call mmu_notifier_invalidate_range() it has be
1765 		 * done above for all cases requiring it to happen under page
1766 		 * table lock before mmu_notifier_invalidate_range_end()
1767 		 *
1768 		 * See Documentation/mm/mmu_notifier.rst
1769 		 */
1770 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1771 		if (vma->vm_flags & VM_LOCKED)
1772 			mlock_page_drain_local();
1773 		folio_put(folio);
1774 	}
1775 
1776 	mmu_notifier_invalidate_range_end(&range);
1777 
1778 	return ret;
1779 }
1780 
1781 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1782 {
1783 	return vma_is_temporary_stack(vma);
1784 }
1785 
1786 static int folio_not_mapped(struct folio *folio)
1787 {
1788 	return !folio_mapped(folio);
1789 }
1790 
1791 /**
1792  * try_to_unmap - Try to remove all page table mappings to a folio.
1793  * @folio: The folio to unmap.
1794  * @flags: action and flags
1795  *
1796  * Tries to remove all the page table entries which are mapping this
1797  * folio.  It is the caller's responsibility to check if the folio is
1798  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1799  *
1800  * Context: Caller must hold the folio lock.
1801  */
1802 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1803 {
1804 	struct rmap_walk_control rwc = {
1805 		.rmap_one = try_to_unmap_one,
1806 		.arg = (void *)flags,
1807 		.done = folio_not_mapped,
1808 		.anon_lock = folio_lock_anon_vma_read,
1809 	};
1810 
1811 	if (flags & TTU_RMAP_LOCKED)
1812 		rmap_walk_locked(folio, &rwc);
1813 	else
1814 		rmap_walk(folio, &rwc);
1815 }
1816 
1817 /*
1818  * @arg: enum ttu_flags will be passed to this argument.
1819  *
1820  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1821  * containing migration entries.
1822  */
1823 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1824 		     unsigned long address, void *arg)
1825 {
1826 	struct mm_struct *mm = vma->vm_mm;
1827 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1828 	pte_t pteval;
1829 	struct page *subpage;
1830 	bool anon_exclusive, ret = true;
1831 	struct mmu_notifier_range range;
1832 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1833 
1834 	/*
1835 	 * When racing against e.g. zap_pte_range() on another cpu,
1836 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1837 	 * try_to_migrate() may return before page_mapped() has become false,
1838 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1839 	 */
1840 	if (flags & TTU_SYNC)
1841 		pvmw.flags = PVMW_SYNC;
1842 
1843 	/*
1844 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1845 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1846 	 */
1847 	if (flags & TTU_SPLIT_HUGE_PMD)
1848 		split_huge_pmd_address(vma, address, true, folio);
1849 
1850 	/*
1851 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1852 	 * For hugetlb, it could be much worse if we need to do pud
1853 	 * invalidation in the case of pmd sharing.
1854 	 *
1855 	 * Note that the page can not be free in this function as call of
1856 	 * try_to_unmap() must hold a reference on the page.
1857 	 */
1858 	range.end = vma_address_end(&pvmw);
1859 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1860 				address, range.end);
1861 	if (folio_test_hugetlb(folio)) {
1862 		/*
1863 		 * If sharing is possible, start and end will be adjusted
1864 		 * accordingly.
1865 		 */
1866 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1867 						     &range.end);
1868 	}
1869 	mmu_notifier_invalidate_range_start(&range);
1870 
1871 	while (page_vma_mapped_walk(&pvmw)) {
1872 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1873 		/* PMD-mapped THP migration entry */
1874 		if (!pvmw.pte) {
1875 			subpage = folio_page(folio,
1876 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1877 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1878 					!folio_test_pmd_mappable(folio), folio);
1879 
1880 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1881 				ret = false;
1882 				page_vma_mapped_walk_done(&pvmw);
1883 				break;
1884 			}
1885 			continue;
1886 		}
1887 #endif
1888 
1889 		/* Unexpected PMD-mapped THP? */
1890 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1891 
1892 		if (folio_is_zone_device(folio)) {
1893 			/*
1894 			 * Our PTE is a non-present device exclusive entry and
1895 			 * calculating the subpage as for the common case would
1896 			 * result in an invalid pointer.
1897 			 *
1898 			 * Since only PAGE_SIZE pages can currently be
1899 			 * migrated, just set it to page. This will need to be
1900 			 * changed when hugepage migrations to device private
1901 			 * memory are supported.
1902 			 */
1903 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1904 			subpage = &folio->page;
1905 		} else {
1906 			subpage = folio_page(folio,
1907 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1908 		}
1909 		address = pvmw.address;
1910 		anon_exclusive = folio_test_anon(folio) &&
1911 				 PageAnonExclusive(subpage);
1912 
1913 		if (folio_test_hugetlb(folio)) {
1914 			bool anon = folio_test_anon(folio);
1915 
1916 			/*
1917 			 * huge_pmd_unshare may unmap an entire PMD page.
1918 			 * There is no way of knowing exactly which PMDs may
1919 			 * be cached for this mm, so we must flush them all.
1920 			 * start/end were already adjusted above to cover this
1921 			 * range.
1922 			 */
1923 			flush_cache_range(vma, range.start, range.end);
1924 
1925 			/*
1926 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1927 			 * held in write mode.  Caller needs to explicitly
1928 			 * do this outside rmap routines.
1929 			 *
1930 			 * We also must hold hugetlb vma_lock in write mode.
1931 			 * Lock order dictates acquiring vma_lock BEFORE
1932 			 * i_mmap_rwsem.  We can only try lock here and
1933 			 * fail if unsuccessful.
1934 			 */
1935 			if (!anon) {
1936 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1937 				if (!hugetlb_vma_trylock_write(vma)) {
1938 					page_vma_mapped_walk_done(&pvmw);
1939 					ret = false;
1940 					break;
1941 				}
1942 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1943 					hugetlb_vma_unlock_write(vma);
1944 					flush_tlb_range(vma,
1945 						range.start, range.end);
1946 					mmu_notifier_invalidate_range(mm,
1947 						range.start, range.end);
1948 
1949 					/*
1950 					 * The ref count of the PMD page was
1951 					 * dropped which is part of the way map
1952 					 * counting is done for shared PMDs.
1953 					 * Return 'true' here.  When there is
1954 					 * no other sharing, huge_pmd_unshare
1955 					 * returns false and we will unmap the
1956 					 * actual page and drop map count
1957 					 * to zero.
1958 					 */
1959 					page_vma_mapped_walk_done(&pvmw);
1960 					break;
1961 				}
1962 				hugetlb_vma_unlock_write(vma);
1963 			}
1964 			/* Nuke the hugetlb page table entry */
1965 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1966 		} else {
1967 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1968 			/* Nuke the page table entry. */
1969 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1970 		}
1971 
1972 		/* Set the dirty flag on the folio now the pte is gone. */
1973 		if (pte_dirty(pteval))
1974 			folio_mark_dirty(folio);
1975 
1976 		/* Update high watermark before we lower rss */
1977 		update_hiwater_rss(mm);
1978 
1979 		if (folio_is_device_private(folio)) {
1980 			unsigned long pfn = folio_pfn(folio);
1981 			swp_entry_t entry;
1982 			pte_t swp_pte;
1983 
1984 			if (anon_exclusive)
1985 				BUG_ON(page_try_share_anon_rmap(subpage));
1986 
1987 			/*
1988 			 * Store the pfn of the page in a special migration
1989 			 * pte. do_swap_page() will wait until the migration
1990 			 * pte is removed and then restart fault handling.
1991 			 */
1992 			entry = pte_to_swp_entry(pteval);
1993 			if (is_writable_device_private_entry(entry))
1994 				entry = make_writable_migration_entry(pfn);
1995 			else if (anon_exclusive)
1996 				entry = make_readable_exclusive_migration_entry(pfn);
1997 			else
1998 				entry = make_readable_migration_entry(pfn);
1999 			swp_pte = swp_entry_to_pte(entry);
2000 
2001 			/*
2002 			 * pteval maps a zone device page and is therefore
2003 			 * a swap pte.
2004 			 */
2005 			if (pte_swp_soft_dirty(pteval))
2006 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2007 			if (pte_swp_uffd_wp(pteval))
2008 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2009 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2010 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2011 						compound_order(&folio->page));
2012 			/*
2013 			 * No need to invalidate here it will synchronize on
2014 			 * against the special swap migration pte.
2015 			 */
2016 		} else if (PageHWPoison(subpage)) {
2017 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2018 			if (folio_test_hugetlb(folio)) {
2019 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2020 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
2021 			} else {
2022 				dec_mm_counter(mm, mm_counter(&folio->page));
2023 				set_pte_at(mm, address, pvmw.pte, pteval);
2024 			}
2025 
2026 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2027 			/*
2028 			 * The guest indicated that the page content is of no
2029 			 * interest anymore. Simply discard the pte, vmscan
2030 			 * will take care of the rest.
2031 			 * A future reference will then fault in a new zero
2032 			 * page. When userfaultfd is active, we must not drop
2033 			 * this page though, as its main user (postcopy
2034 			 * migration) will not expect userfaults on already
2035 			 * copied pages.
2036 			 */
2037 			dec_mm_counter(mm, mm_counter(&folio->page));
2038 			/* We have to invalidate as we cleared the pte */
2039 			mmu_notifier_invalidate_range(mm, address,
2040 						      address + PAGE_SIZE);
2041 		} else {
2042 			swp_entry_t entry;
2043 			pte_t swp_pte;
2044 
2045 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2046 				if (folio_test_hugetlb(folio))
2047 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2048 				else
2049 					set_pte_at(mm, address, pvmw.pte, pteval);
2050 				ret = false;
2051 				page_vma_mapped_walk_done(&pvmw);
2052 				break;
2053 			}
2054 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2055 				       !anon_exclusive, subpage);
2056 
2057 			/* See page_try_share_anon_rmap(): clear PTE first. */
2058 			if (anon_exclusive &&
2059 			    page_try_share_anon_rmap(subpage)) {
2060 				if (folio_test_hugetlb(folio))
2061 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2062 				else
2063 					set_pte_at(mm, address, pvmw.pte, pteval);
2064 				ret = false;
2065 				page_vma_mapped_walk_done(&pvmw);
2066 				break;
2067 			}
2068 
2069 			/*
2070 			 * Store the pfn of the page in a special migration
2071 			 * pte. do_swap_page() will wait until the migration
2072 			 * pte is removed and then restart fault handling.
2073 			 */
2074 			if (pte_write(pteval))
2075 				entry = make_writable_migration_entry(
2076 							page_to_pfn(subpage));
2077 			else if (anon_exclusive)
2078 				entry = make_readable_exclusive_migration_entry(
2079 							page_to_pfn(subpage));
2080 			else
2081 				entry = make_readable_migration_entry(
2082 							page_to_pfn(subpage));
2083 			if (pte_young(pteval))
2084 				entry = make_migration_entry_young(entry);
2085 			if (pte_dirty(pteval))
2086 				entry = make_migration_entry_dirty(entry);
2087 			swp_pte = swp_entry_to_pte(entry);
2088 			if (pte_soft_dirty(pteval))
2089 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2090 			if (pte_uffd_wp(pteval))
2091 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2092 			if (folio_test_hugetlb(folio))
2093 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2094 			else
2095 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2096 			trace_set_migration_pte(address, pte_val(swp_pte),
2097 						compound_order(&folio->page));
2098 			/*
2099 			 * No need to invalidate here it will synchronize on
2100 			 * against the special swap migration pte.
2101 			 */
2102 		}
2103 
2104 		/*
2105 		 * No need to call mmu_notifier_invalidate_range() it has be
2106 		 * done above for all cases requiring it to happen under page
2107 		 * table lock before mmu_notifier_invalidate_range_end()
2108 		 *
2109 		 * See Documentation/mm/mmu_notifier.rst
2110 		 */
2111 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2112 		if (vma->vm_flags & VM_LOCKED)
2113 			mlock_page_drain_local();
2114 		folio_put(folio);
2115 	}
2116 
2117 	mmu_notifier_invalidate_range_end(&range);
2118 
2119 	return ret;
2120 }
2121 
2122 /**
2123  * try_to_migrate - try to replace all page table mappings with swap entries
2124  * @folio: the folio to replace page table entries for
2125  * @flags: action and flags
2126  *
2127  * Tries to remove all the page table entries which are mapping this folio and
2128  * replace them with special swap entries. Caller must hold the folio lock.
2129  */
2130 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2131 {
2132 	struct rmap_walk_control rwc = {
2133 		.rmap_one = try_to_migrate_one,
2134 		.arg = (void *)flags,
2135 		.done = folio_not_mapped,
2136 		.anon_lock = folio_lock_anon_vma_read,
2137 	};
2138 
2139 	/*
2140 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2141 	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2142 	 */
2143 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2144 					TTU_SYNC)))
2145 		return;
2146 
2147 	if (folio_is_zone_device(folio) &&
2148 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2149 		return;
2150 
2151 	/*
2152 	 * During exec, a temporary VMA is setup and later moved.
2153 	 * The VMA is moved under the anon_vma lock but not the
2154 	 * page tables leading to a race where migration cannot
2155 	 * find the migration ptes. Rather than increasing the
2156 	 * locking requirements of exec(), migration skips
2157 	 * temporary VMAs until after exec() completes.
2158 	 */
2159 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2160 		rwc.invalid_vma = invalid_migration_vma;
2161 
2162 	if (flags & TTU_RMAP_LOCKED)
2163 		rmap_walk_locked(folio, &rwc);
2164 	else
2165 		rmap_walk(folio, &rwc);
2166 }
2167 
2168 #ifdef CONFIG_DEVICE_PRIVATE
2169 struct make_exclusive_args {
2170 	struct mm_struct *mm;
2171 	unsigned long address;
2172 	void *owner;
2173 	bool valid;
2174 };
2175 
2176 static bool page_make_device_exclusive_one(struct folio *folio,
2177 		struct vm_area_struct *vma, unsigned long address, void *priv)
2178 {
2179 	struct mm_struct *mm = vma->vm_mm;
2180 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2181 	struct make_exclusive_args *args = priv;
2182 	pte_t pteval;
2183 	struct page *subpage;
2184 	bool ret = true;
2185 	struct mmu_notifier_range range;
2186 	swp_entry_t entry;
2187 	pte_t swp_pte;
2188 
2189 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2190 				      vma->vm_mm, address, min(vma->vm_end,
2191 				      address + folio_size(folio)),
2192 				      args->owner);
2193 	mmu_notifier_invalidate_range_start(&range);
2194 
2195 	while (page_vma_mapped_walk(&pvmw)) {
2196 		/* Unexpected PMD-mapped THP? */
2197 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2198 
2199 		if (!pte_present(*pvmw.pte)) {
2200 			ret = false;
2201 			page_vma_mapped_walk_done(&pvmw);
2202 			break;
2203 		}
2204 
2205 		subpage = folio_page(folio,
2206 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
2207 		address = pvmw.address;
2208 
2209 		/* Nuke the page table entry. */
2210 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2211 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2212 
2213 		/* Set the dirty flag on the folio now the pte is gone. */
2214 		if (pte_dirty(pteval))
2215 			folio_mark_dirty(folio);
2216 
2217 		/*
2218 		 * Check that our target page is still mapped at the expected
2219 		 * address.
2220 		 */
2221 		if (args->mm == mm && args->address == address &&
2222 		    pte_write(pteval))
2223 			args->valid = true;
2224 
2225 		/*
2226 		 * Store the pfn of the page in a special migration
2227 		 * pte. do_swap_page() will wait until the migration
2228 		 * pte is removed and then restart fault handling.
2229 		 */
2230 		if (pte_write(pteval))
2231 			entry = make_writable_device_exclusive_entry(
2232 							page_to_pfn(subpage));
2233 		else
2234 			entry = make_readable_device_exclusive_entry(
2235 							page_to_pfn(subpage));
2236 		swp_pte = swp_entry_to_pte(entry);
2237 		if (pte_soft_dirty(pteval))
2238 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2239 		if (pte_uffd_wp(pteval))
2240 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2241 
2242 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2243 
2244 		/*
2245 		 * There is a reference on the page for the swap entry which has
2246 		 * been removed, so shouldn't take another.
2247 		 */
2248 		page_remove_rmap(subpage, vma, false);
2249 	}
2250 
2251 	mmu_notifier_invalidate_range_end(&range);
2252 
2253 	return ret;
2254 }
2255 
2256 /**
2257  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2258  * @folio: The folio to replace page table entries for.
2259  * @mm: The mm_struct where the folio is expected to be mapped.
2260  * @address: Address where the folio is expected to be mapped.
2261  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2262  *
2263  * Tries to remove all the page table entries which are mapping this
2264  * folio and replace them with special device exclusive swap entries to
2265  * grant a device exclusive access to the folio.
2266  *
2267  * Context: Caller must hold the folio lock.
2268  * Return: false if the page is still mapped, or if it could not be unmapped
2269  * from the expected address. Otherwise returns true (success).
2270  */
2271 static bool folio_make_device_exclusive(struct folio *folio,
2272 		struct mm_struct *mm, unsigned long address, void *owner)
2273 {
2274 	struct make_exclusive_args args = {
2275 		.mm = mm,
2276 		.address = address,
2277 		.owner = owner,
2278 		.valid = false,
2279 	};
2280 	struct rmap_walk_control rwc = {
2281 		.rmap_one = page_make_device_exclusive_one,
2282 		.done = folio_not_mapped,
2283 		.anon_lock = folio_lock_anon_vma_read,
2284 		.arg = &args,
2285 	};
2286 
2287 	/*
2288 	 * Restrict to anonymous folios for now to avoid potential writeback
2289 	 * issues.
2290 	 */
2291 	if (!folio_test_anon(folio))
2292 		return false;
2293 
2294 	rmap_walk(folio, &rwc);
2295 
2296 	return args.valid && !folio_mapcount(folio);
2297 }
2298 
2299 /**
2300  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2301  * @mm: mm_struct of associated target process
2302  * @start: start of the region to mark for exclusive device access
2303  * @end: end address of region
2304  * @pages: returns the pages which were successfully marked for exclusive access
2305  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2306  *
2307  * Returns: number of pages found in the range by GUP. A page is marked for
2308  * exclusive access only if the page pointer is non-NULL.
2309  *
2310  * This function finds ptes mapping page(s) to the given address range, locks
2311  * them and replaces mappings with special swap entries preventing userspace CPU
2312  * access. On fault these entries are replaced with the original mapping after
2313  * calling MMU notifiers.
2314  *
2315  * A driver using this to program access from a device must use a mmu notifier
2316  * critical section to hold a device specific lock during programming. Once
2317  * programming is complete it should drop the page lock and reference after
2318  * which point CPU access to the page will revoke the exclusive access.
2319  */
2320 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2321 				unsigned long end, struct page **pages,
2322 				void *owner)
2323 {
2324 	long npages = (end - start) >> PAGE_SHIFT;
2325 	long i;
2326 
2327 	npages = get_user_pages_remote(mm, start, npages,
2328 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2329 				       pages, NULL, NULL);
2330 	if (npages < 0)
2331 		return npages;
2332 
2333 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2334 		struct folio *folio = page_folio(pages[i]);
2335 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2336 			folio_put(folio);
2337 			pages[i] = NULL;
2338 			continue;
2339 		}
2340 
2341 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2342 			folio_unlock(folio);
2343 			folio_put(folio);
2344 			pages[i] = NULL;
2345 		}
2346 	}
2347 
2348 	return npages;
2349 }
2350 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2351 #endif
2352 
2353 void __put_anon_vma(struct anon_vma *anon_vma)
2354 {
2355 	struct anon_vma *root = anon_vma->root;
2356 
2357 	anon_vma_free(anon_vma);
2358 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2359 		anon_vma_free(root);
2360 }
2361 
2362 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2363 					    struct rmap_walk_control *rwc)
2364 {
2365 	struct anon_vma *anon_vma;
2366 
2367 	if (rwc->anon_lock)
2368 		return rwc->anon_lock(folio, rwc);
2369 
2370 	/*
2371 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2372 	 * because that depends on page_mapped(); but not all its usages
2373 	 * are holding mmap_lock. Users without mmap_lock are required to
2374 	 * take a reference count to prevent the anon_vma disappearing
2375 	 */
2376 	anon_vma = folio_anon_vma(folio);
2377 	if (!anon_vma)
2378 		return NULL;
2379 
2380 	if (anon_vma_trylock_read(anon_vma))
2381 		goto out;
2382 
2383 	if (rwc->try_lock) {
2384 		anon_vma = NULL;
2385 		rwc->contended = true;
2386 		goto out;
2387 	}
2388 
2389 	anon_vma_lock_read(anon_vma);
2390 out:
2391 	return anon_vma;
2392 }
2393 
2394 /*
2395  * rmap_walk_anon - do something to anonymous page using the object-based
2396  * rmap method
2397  * @page: the page to be handled
2398  * @rwc: control variable according to each walk type
2399  *
2400  * Find all the mappings of a page using the mapping pointer and the vma chains
2401  * contained in the anon_vma struct it points to.
2402  */
2403 static void rmap_walk_anon(struct folio *folio,
2404 		struct rmap_walk_control *rwc, bool locked)
2405 {
2406 	struct anon_vma *anon_vma;
2407 	pgoff_t pgoff_start, pgoff_end;
2408 	struct anon_vma_chain *avc;
2409 
2410 	if (locked) {
2411 		anon_vma = folio_anon_vma(folio);
2412 		/* anon_vma disappear under us? */
2413 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2414 	} else {
2415 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2416 	}
2417 	if (!anon_vma)
2418 		return;
2419 
2420 	pgoff_start = folio_pgoff(folio);
2421 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2422 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2423 			pgoff_start, pgoff_end) {
2424 		struct vm_area_struct *vma = avc->vma;
2425 		unsigned long address = vma_address(&folio->page, vma);
2426 
2427 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2428 		cond_resched();
2429 
2430 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2431 			continue;
2432 
2433 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2434 			break;
2435 		if (rwc->done && rwc->done(folio))
2436 			break;
2437 	}
2438 
2439 	if (!locked)
2440 		anon_vma_unlock_read(anon_vma);
2441 }
2442 
2443 /*
2444  * rmap_walk_file - do something to file page using the object-based rmap method
2445  * @page: the page to be handled
2446  * @rwc: control variable according to each walk type
2447  *
2448  * Find all the mappings of a page using the mapping pointer and the vma chains
2449  * contained in the address_space struct it points to.
2450  */
2451 static void rmap_walk_file(struct folio *folio,
2452 		struct rmap_walk_control *rwc, bool locked)
2453 {
2454 	struct address_space *mapping = folio_mapping(folio);
2455 	pgoff_t pgoff_start, pgoff_end;
2456 	struct vm_area_struct *vma;
2457 
2458 	/*
2459 	 * The page lock not only makes sure that page->mapping cannot
2460 	 * suddenly be NULLified by truncation, it makes sure that the
2461 	 * structure at mapping cannot be freed and reused yet,
2462 	 * so we can safely take mapping->i_mmap_rwsem.
2463 	 */
2464 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2465 
2466 	if (!mapping)
2467 		return;
2468 
2469 	pgoff_start = folio_pgoff(folio);
2470 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2471 	if (!locked) {
2472 		if (i_mmap_trylock_read(mapping))
2473 			goto lookup;
2474 
2475 		if (rwc->try_lock) {
2476 			rwc->contended = true;
2477 			return;
2478 		}
2479 
2480 		i_mmap_lock_read(mapping);
2481 	}
2482 lookup:
2483 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2484 			pgoff_start, pgoff_end) {
2485 		unsigned long address = vma_address(&folio->page, vma);
2486 
2487 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2488 		cond_resched();
2489 
2490 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2491 			continue;
2492 
2493 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2494 			goto done;
2495 		if (rwc->done && rwc->done(folio))
2496 			goto done;
2497 	}
2498 
2499 done:
2500 	if (!locked)
2501 		i_mmap_unlock_read(mapping);
2502 }
2503 
2504 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2505 {
2506 	if (unlikely(folio_test_ksm(folio)))
2507 		rmap_walk_ksm(folio, rwc);
2508 	else if (folio_test_anon(folio))
2509 		rmap_walk_anon(folio, rwc, false);
2510 	else
2511 		rmap_walk_file(folio, rwc, false);
2512 }
2513 
2514 /* Like rmap_walk, but caller holds relevant rmap lock */
2515 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2516 {
2517 	/* no ksm support for now */
2518 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2519 	if (folio_test_anon(folio))
2520 		rmap_walk_anon(folio, rwc, true);
2521 	else
2522 		rmap_walk_file(folio, rwc, true);
2523 }
2524 
2525 #ifdef CONFIG_HUGETLB_PAGE
2526 /*
2527  * The following two functions are for anonymous (private mapped) hugepages.
2528  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2529  * and no lru code, because we handle hugepages differently from common pages.
2530  *
2531  * RMAP_COMPOUND is ignored.
2532  */
2533 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2534 			    unsigned long address, rmap_t flags)
2535 {
2536 	struct anon_vma *anon_vma = vma->anon_vma;
2537 	int first;
2538 
2539 	BUG_ON(!PageLocked(page));
2540 	BUG_ON(!anon_vma);
2541 	/* address might be in next vma when migration races vma_adjust */
2542 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2543 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2544 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2545 	if (first)
2546 		__page_set_anon_rmap(page, vma, address,
2547 				     !!(flags & RMAP_EXCLUSIVE));
2548 }
2549 
2550 void hugepage_add_new_anon_rmap(struct page *page,
2551 			struct vm_area_struct *vma, unsigned long address)
2552 {
2553 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2554 	/* increment count (starts at -1) */
2555 	atomic_set(compound_mapcount_ptr(page), 0);
2556 	ClearHPageRestoreReserve(page);
2557 	__page_set_anon_rmap(page, vma, address, 1);
2558 }
2559 #endif /* CONFIG_HUGETLB_PAGE */
2560