xref: /openbmc/linux/mm/rmap.c (revision e90886291c7cd89577bf11729b205cc0ed42fbec)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28  *           mapping->i_mmap_rwsem
29  *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30  *             anon_vma->rwsem
31  *               mm->page_table_lock or pte_lock
32  *                 swap_lock (in swap_duplicate, swap_info_get)
33  *                   mmlist_lock (in mmput, drain_mmlist and others)
34  *                   mapping->private_lock (in block_dirty_folio)
35  *                     folio_lock_memcg move_lock (in block_dirty_folio)
36  *                       i_pages lock (widely used)
37  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                     i_pages lock (widely used, in set_page_dirty,
42  *                               in arch-dependent flush_dcache_mmap_lock,
43  *                               within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * * hugetlbfs PageHuge() pages take locks in this order:
50  *         mapping->i_mmap_rwsem
51  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52  *             page->flags PG_locked (lock_page)
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 
78 #include <asm/tlbflush.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83 
84 #include "internal.h"
85 
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88 
89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 	struct anon_vma *anon_vma;
92 
93 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 	if (anon_vma) {
95 		atomic_set(&anon_vma->refcount, 1);
96 		anon_vma->degree = 1;	/* Reference for first vma */
97 		anon_vma->parent = anon_vma;
98 		/*
99 		 * Initialise the anon_vma root to point to itself. If called
100 		 * from fork, the root will be reset to the parents anon_vma.
101 		 */
102 		anon_vma->root = anon_vma;
103 	}
104 
105 	return anon_vma;
106 }
107 
108 static inline void anon_vma_free(struct anon_vma *anon_vma)
109 {
110 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
111 
112 	/*
113 	 * Synchronize against folio_lock_anon_vma_read() such that
114 	 * we can safely hold the lock without the anon_vma getting
115 	 * freed.
116 	 *
117 	 * Relies on the full mb implied by the atomic_dec_and_test() from
118 	 * put_anon_vma() against the acquire barrier implied by
119 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
120 	 *
121 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
122 	 *   down_read_trylock()		  atomic_dec_and_test()
123 	 *   LOCK				  MB
124 	 *   atomic_read()			  rwsem_is_locked()
125 	 *
126 	 * LOCK should suffice since the actual taking of the lock must
127 	 * happen _before_ what follows.
128 	 */
129 	might_sleep();
130 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
131 		anon_vma_lock_write(anon_vma);
132 		anon_vma_unlock_write(anon_vma);
133 	}
134 
135 	kmem_cache_free(anon_vma_cachep, anon_vma);
136 }
137 
138 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
139 {
140 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
141 }
142 
143 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
144 {
145 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
146 }
147 
148 static void anon_vma_chain_link(struct vm_area_struct *vma,
149 				struct anon_vma_chain *avc,
150 				struct anon_vma *anon_vma)
151 {
152 	avc->vma = vma;
153 	avc->anon_vma = anon_vma;
154 	list_add(&avc->same_vma, &vma->anon_vma_chain);
155 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
156 }
157 
158 /**
159  * __anon_vma_prepare - attach an anon_vma to a memory region
160  * @vma: the memory region in question
161  *
162  * This makes sure the memory mapping described by 'vma' has
163  * an 'anon_vma' attached to it, so that we can associate the
164  * anonymous pages mapped into it with that anon_vma.
165  *
166  * The common case will be that we already have one, which
167  * is handled inline by anon_vma_prepare(). But if
168  * not we either need to find an adjacent mapping that we
169  * can re-use the anon_vma from (very common when the only
170  * reason for splitting a vma has been mprotect()), or we
171  * allocate a new one.
172  *
173  * Anon-vma allocations are very subtle, because we may have
174  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
175  * and that may actually touch the rwsem even in the newly
176  * allocated vma (it depends on RCU to make sure that the
177  * anon_vma isn't actually destroyed).
178  *
179  * As a result, we need to do proper anon_vma locking even
180  * for the new allocation. At the same time, we do not want
181  * to do any locking for the common case of already having
182  * an anon_vma.
183  *
184  * This must be called with the mmap_lock held for reading.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	might_sleep();
193 
194 	avc = anon_vma_chain_alloc(GFP_KERNEL);
195 	if (!avc)
196 		goto out_enomem;
197 
198 	anon_vma = find_mergeable_anon_vma(vma);
199 	allocated = NULL;
200 	if (!anon_vma) {
201 		anon_vma = anon_vma_alloc();
202 		if (unlikely(!anon_vma))
203 			goto out_enomem_free_avc;
204 		allocated = anon_vma;
205 	}
206 
207 	anon_vma_lock_write(anon_vma);
208 	/* page_table_lock to protect against threads */
209 	spin_lock(&mm->page_table_lock);
210 	if (likely(!vma->anon_vma)) {
211 		vma->anon_vma = anon_vma;
212 		anon_vma_chain_link(vma, avc, anon_vma);
213 		/* vma reference or self-parent link for new root */
214 		anon_vma->degree++;
215 		allocated = NULL;
216 		avc = NULL;
217 	}
218 	spin_unlock(&mm->page_table_lock);
219 	anon_vma_unlock_write(anon_vma);
220 
221 	if (unlikely(allocated))
222 		put_anon_vma(allocated);
223 	if (unlikely(avc))
224 		anon_vma_chain_free(avc);
225 
226 	return 0;
227 
228  out_enomem_free_avc:
229 	anon_vma_chain_free(avc);
230  out_enomem:
231 	return -ENOMEM;
232 }
233 
234 /*
235  * This is a useful helper function for locking the anon_vma root as
236  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
237  * have the same vma.
238  *
239  * Such anon_vma's should have the same root, so you'd expect to see
240  * just a single mutex_lock for the whole traversal.
241  */
242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243 {
244 	struct anon_vma *new_root = anon_vma->root;
245 	if (new_root != root) {
246 		if (WARN_ON_ONCE(root))
247 			up_write(&root->rwsem);
248 		root = new_root;
249 		down_write(&root->rwsem);
250 	}
251 	return root;
252 }
253 
254 static inline void unlock_anon_vma_root(struct anon_vma *root)
255 {
256 	if (root)
257 		up_write(&root->rwsem);
258 }
259 
260 /*
261  * Attach the anon_vmas from src to dst.
262  * Returns 0 on success, -ENOMEM on failure.
263  *
264  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
265  * anon_vma_fork(). The first three want an exact copy of src, while the last
266  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
267  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
268  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
269  *
270  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
271  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
272  * This prevents degradation of anon_vma hierarchy to endless linear chain in
273  * case of constantly forking task. On the other hand, an anon_vma with more
274  * than one child isn't reused even if there was no alive vma, thus rmap
275  * walker has a good chance of avoiding scanning the whole hierarchy when it
276  * searches where page is mapped.
277  */
278 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
279 {
280 	struct anon_vma_chain *avc, *pavc;
281 	struct anon_vma *root = NULL;
282 
283 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
284 		struct anon_vma *anon_vma;
285 
286 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
287 		if (unlikely(!avc)) {
288 			unlock_anon_vma_root(root);
289 			root = NULL;
290 			avc = anon_vma_chain_alloc(GFP_KERNEL);
291 			if (!avc)
292 				goto enomem_failure;
293 		}
294 		anon_vma = pavc->anon_vma;
295 		root = lock_anon_vma_root(root, anon_vma);
296 		anon_vma_chain_link(dst, avc, anon_vma);
297 
298 		/*
299 		 * Reuse existing anon_vma if its degree lower than two,
300 		 * that means it has no vma and only one anon_vma child.
301 		 *
302 		 * Do not choose parent anon_vma, otherwise first child
303 		 * will always reuse it. Root anon_vma is never reused:
304 		 * it has self-parent reference and at least one child.
305 		 */
306 		if (!dst->anon_vma && src->anon_vma &&
307 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
308 			dst->anon_vma = anon_vma;
309 	}
310 	if (dst->anon_vma)
311 		dst->anon_vma->degree++;
312 	unlock_anon_vma_root(root);
313 	return 0;
314 
315  enomem_failure:
316 	/*
317 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
318 	 * decremented in unlink_anon_vmas().
319 	 * We can safely do this because callers of anon_vma_clone() don't care
320 	 * about dst->anon_vma if anon_vma_clone() failed.
321 	 */
322 	dst->anon_vma = NULL;
323 	unlink_anon_vmas(dst);
324 	return -ENOMEM;
325 }
326 
327 /*
328  * Attach vma to its own anon_vma, as well as to the anon_vmas that
329  * the corresponding VMA in the parent process is attached to.
330  * Returns 0 on success, non-zero on failure.
331  */
332 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
333 {
334 	struct anon_vma_chain *avc;
335 	struct anon_vma *anon_vma;
336 	int error;
337 
338 	/* Don't bother if the parent process has no anon_vma here. */
339 	if (!pvma->anon_vma)
340 		return 0;
341 
342 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
343 	vma->anon_vma = NULL;
344 
345 	/*
346 	 * First, attach the new VMA to the parent VMA's anon_vmas,
347 	 * so rmap can find non-COWed pages in child processes.
348 	 */
349 	error = anon_vma_clone(vma, pvma);
350 	if (error)
351 		return error;
352 
353 	/* An existing anon_vma has been reused, all done then. */
354 	if (vma->anon_vma)
355 		return 0;
356 
357 	/* Then add our own anon_vma. */
358 	anon_vma = anon_vma_alloc();
359 	if (!anon_vma)
360 		goto out_error;
361 	avc = anon_vma_chain_alloc(GFP_KERNEL);
362 	if (!avc)
363 		goto out_error_free_anon_vma;
364 
365 	/*
366 	 * The root anon_vma's rwsem is the lock actually used when we
367 	 * lock any of the anon_vmas in this anon_vma tree.
368 	 */
369 	anon_vma->root = pvma->anon_vma->root;
370 	anon_vma->parent = pvma->anon_vma;
371 	/*
372 	 * With refcounts, an anon_vma can stay around longer than the
373 	 * process it belongs to. The root anon_vma needs to be pinned until
374 	 * this anon_vma is freed, because the lock lives in the root.
375 	 */
376 	get_anon_vma(anon_vma->root);
377 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
378 	vma->anon_vma = anon_vma;
379 	anon_vma_lock_write(anon_vma);
380 	anon_vma_chain_link(vma, avc, anon_vma);
381 	anon_vma->parent->degree++;
382 	anon_vma_unlock_write(anon_vma);
383 
384 	return 0;
385 
386  out_error_free_anon_vma:
387 	put_anon_vma(anon_vma);
388  out_error:
389 	unlink_anon_vmas(vma);
390 	return -ENOMEM;
391 }
392 
393 void unlink_anon_vmas(struct vm_area_struct *vma)
394 {
395 	struct anon_vma_chain *avc, *next;
396 	struct anon_vma *root = NULL;
397 
398 	/*
399 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
400 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
401 	 */
402 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
403 		struct anon_vma *anon_vma = avc->anon_vma;
404 
405 		root = lock_anon_vma_root(root, anon_vma);
406 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
407 
408 		/*
409 		 * Leave empty anon_vmas on the list - we'll need
410 		 * to free them outside the lock.
411 		 */
412 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
413 			anon_vma->parent->degree--;
414 			continue;
415 		}
416 
417 		list_del(&avc->same_vma);
418 		anon_vma_chain_free(avc);
419 	}
420 	if (vma->anon_vma) {
421 		vma->anon_vma->degree--;
422 
423 		/*
424 		 * vma would still be needed after unlink, and anon_vma will be prepared
425 		 * when handle fault.
426 		 */
427 		vma->anon_vma = NULL;
428 	}
429 	unlock_anon_vma_root(root);
430 
431 	/*
432 	 * Iterate the list once more, it now only contains empty and unlinked
433 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
434 	 * needing to write-acquire the anon_vma->root->rwsem.
435 	 */
436 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
437 		struct anon_vma *anon_vma = avc->anon_vma;
438 
439 		VM_WARN_ON(anon_vma->degree);
440 		put_anon_vma(anon_vma);
441 
442 		list_del(&avc->same_vma);
443 		anon_vma_chain_free(avc);
444 	}
445 }
446 
447 static void anon_vma_ctor(void *data)
448 {
449 	struct anon_vma *anon_vma = data;
450 
451 	init_rwsem(&anon_vma->rwsem);
452 	atomic_set(&anon_vma->refcount, 0);
453 	anon_vma->rb_root = RB_ROOT_CACHED;
454 }
455 
456 void __init anon_vma_init(void)
457 {
458 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
459 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
460 			anon_vma_ctor);
461 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
462 			SLAB_PANIC|SLAB_ACCOUNT);
463 }
464 
465 /*
466  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
467  *
468  * Since there is no serialization what so ever against page_remove_rmap()
469  * the best this function can do is return a refcount increased anon_vma
470  * that might have been relevant to this page.
471  *
472  * The page might have been remapped to a different anon_vma or the anon_vma
473  * returned may already be freed (and even reused).
474  *
475  * In case it was remapped to a different anon_vma, the new anon_vma will be a
476  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
477  * ensure that any anon_vma obtained from the page will still be valid for as
478  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
479  *
480  * All users of this function must be very careful when walking the anon_vma
481  * chain and verify that the page in question is indeed mapped in it
482  * [ something equivalent to page_mapped_in_vma() ].
483  *
484  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
485  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
486  * if there is a mapcount, we can dereference the anon_vma after observing
487  * those.
488  */
489 struct anon_vma *page_get_anon_vma(struct page *page)
490 {
491 	struct anon_vma *anon_vma = NULL;
492 	unsigned long anon_mapping;
493 
494 	rcu_read_lock();
495 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
496 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
497 		goto out;
498 	if (!page_mapped(page))
499 		goto out;
500 
501 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
502 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
503 		anon_vma = NULL;
504 		goto out;
505 	}
506 
507 	/*
508 	 * If this page is still mapped, then its anon_vma cannot have been
509 	 * freed.  But if it has been unmapped, we have no security against the
510 	 * anon_vma structure being freed and reused (for another anon_vma:
511 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
512 	 * above cannot corrupt).
513 	 */
514 	if (!page_mapped(page)) {
515 		rcu_read_unlock();
516 		put_anon_vma(anon_vma);
517 		return NULL;
518 	}
519 out:
520 	rcu_read_unlock();
521 
522 	return anon_vma;
523 }
524 
525 /*
526  * Similar to page_get_anon_vma() except it locks the anon_vma.
527  *
528  * Its a little more complex as it tries to keep the fast path to a single
529  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
530  * reference like with page_get_anon_vma() and then block on the mutex
531  * on !rwc->try_lock case.
532  */
533 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
534 					  struct rmap_walk_control *rwc)
535 {
536 	struct anon_vma *anon_vma = NULL;
537 	struct anon_vma *root_anon_vma;
538 	unsigned long anon_mapping;
539 
540 	rcu_read_lock();
541 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
542 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
543 		goto out;
544 	if (!folio_mapped(folio))
545 		goto out;
546 
547 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
548 	root_anon_vma = READ_ONCE(anon_vma->root);
549 	if (down_read_trylock(&root_anon_vma->rwsem)) {
550 		/*
551 		 * If the folio is still mapped, then this anon_vma is still
552 		 * its anon_vma, and holding the mutex ensures that it will
553 		 * not go away, see anon_vma_free().
554 		 */
555 		if (!folio_mapped(folio)) {
556 			up_read(&root_anon_vma->rwsem);
557 			anon_vma = NULL;
558 		}
559 		goto out;
560 	}
561 
562 	if (rwc && rwc->try_lock) {
563 		anon_vma = NULL;
564 		rwc->contended = true;
565 		goto out;
566 	}
567 
568 	/* trylock failed, we got to sleep */
569 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
570 		anon_vma = NULL;
571 		goto out;
572 	}
573 
574 	if (!folio_mapped(folio)) {
575 		rcu_read_unlock();
576 		put_anon_vma(anon_vma);
577 		return NULL;
578 	}
579 
580 	/* we pinned the anon_vma, its safe to sleep */
581 	rcu_read_unlock();
582 	anon_vma_lock_read(anon_vma);
583 
584 	if (atomic_dec_and_test(&anon_vma->refcount)) {
585 		/*
586 		 * Oops, we held the last refcount, release the lock
587 		 * and bail -- can't simply use put_anon_vma() because
588 		 * we'll deadlock on the anon_vma_lock_write() recursion.
589 		 */
590 		anon_vma_unlock_read(anon_vma);
591 		__put_anon_vma(anon_vma);
592 		anon_vma = NULL;
593 	}
594 
595 	return anon_vma;
596 
597 out:
598 	rcu_read_unlock();
599 	return anon_vma;
600 }
601 
602 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
603 {
604 	anon_vma_unlock_read(anon_vma);
605 }
606 
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 /*
609  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610  * important if a PTE was dirty when it was unmapped that it's flushed
611  * before any IO is initiated on the page to prevent lost writes. Similarly,
612  * it must be flushed before freeing to prevent data leakage.
613  */
614 void try_to_unmap_flush(void)
615 {
616 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
617 
618 	if (!tlb_ubc->flush_required)
619 		return;
620 
621 	arch_tlbbatch_flush(&tlb_ubc->arch);
622 	tlb_ubc->flush_required = false;
623 	tlb_ubc->writable = false;
624 }
625 
626 /* Flush iff there are potentially writable TLB entries that can race with IO */
627 void try_to_unmap_flush_dirty(void)
628 {
629 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630 
631 	if (tlb_ubc->writable)
632 		try_to_unmap_flush();
633 }
634 
635 /*
636  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638  */
639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
640 #define TLB_FLUSH_BATCH_PENDING_MASK			\
641 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
643 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
644 
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
646 {
647 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
648 	int batch, nbatch;
649 
650 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
651 	tlb_ubc->flush_required = true;
652 
653 	/*
654 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
655 	 * before the PTE is cleared.
656 	 */
657 	barrier();
658 	batch = atomic_read(&mm->tlb_flush_batched);
659 retry:
660 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
661 		/*
662 		 * Prevent `pending' from catching up with `flushed' because of
663 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
664 		 * `pending' becomes large.
665 		 */
666 		nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
667 		if (nbatch != batch) {
668 			batch = nbatch;
669 			goto retry;
670 		}
671 	} else {
672 		atomic_inc(&mm->tlb_flush_batched);
673 	}
674 
675 	/*
676 	 * If the PTE was dirty then it's best to assume it's writable. The
677 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
678 	 * before the page is queued for IO.
679 	 */
680 	if (writable)
681 		tlb_ubc->writable = true;
682 }
683 
684 /*
685  * Returns true if the TLB flush should be deferred to the end of a batch of
686  * unmap operations to reduce IPIs.
687  */
688 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
689 {
690 	bool should_defer = false;
691 
692 	if (!(flags & TTU_BATCH_FLUSH))
693 		return false;
694 
695 	/* If remote CPUs need to be flushed then defer batch the flush */
696 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
697 		should_defer = true;
698 	put_cpu();
699 
700 	return should_defer;
701 }
702 
703 /*
704  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
705  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
706  * operation such as mprotect or munmap to race between reclaim unmapping
707  * the page and flushing the page. If this race occurs, it potentially allows
708  * access to data via a stale TLB entry. Tracking all mm's that have TLB
709  * batching in flight would be expensive during reclaim so instead track
710  * whether TLB batching occurred in the past and if so then do a flush here
711  * if required. This will cost one additional flush per reclaim cycle paid
712  * by the first operation at risk such as mprotect and mumap.
713  *
714  * This must be called under the PTL so that an access to tlb_flush_batched
715  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
716  * via the PTL.
717  */
718 void flush_tlb_batched_pending(struct mm_struct *mm)
719 {
720 	int batch = atomic_read(&mm->tlb_flush_batched);
721 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
722 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
723 
724 	if (pending != flushed) {
725 		flush_tlb_mm(mm);
726 		/*
727 		 * If the new TLB flushing is pending during flushing, leave
728 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
729 		 */
730 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
731 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
732 	}
733 }
734 #else
735 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
736 {
737 }
738 
739 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
740 {
741 	return false;
742 }
743 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
744 
745 /*
746  * At what user virtual address is page expected in vma?
747  * Caller should check the page is actually part of the vma.
748  */
749 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
750 {
751 	struct folio *folio = page_folio(page);
752 	if (folio_test_anon(folio)) {
753 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
754 		/*
755 		 * Note: swapoff's unuse_vma() is more efficient with this
756 		 * check, and needs it to match anon_vma when KSM is active.
757 		 */
758 		if (!vma->anon_vma || !page__anon_vma ||
759 		    vma->anon_vma->root != page__anon_vma->root)
760 			return -EFAULT;
761 	} else if (!vma->vm_file) {
762 		return -EFAULT;
763 	} else if (vma->vm_file->f_mapping != folio->mapping) {
764 		return -EFAULT;
765 	}
766 
767 	return vma_address(page, vma);
768 }
769 
770 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
771 {
772 	pgd_t *pgd;
773 	p4d_t *p4d;
774 	pud_t *pud;
775 	pmd_t *pmd = NULL;
776 	pmd_t pmde;
777 
778 	pgd = pgd_offset(mm, address);
779 	if (!pgd_present(*pgd))
780 		goto out;
781 
782 	p4d = p4d_offset(pgd, address);
783 	if (!p4d_present(*p4d))
784 		goto out;
785 
786 	pud = pud_offset(p4d, address);
787 	if (!pud_present(*pud))
788 		goto out;
789 
790 	pmd = pmd_offset(pud, address);
791 	/*
792 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
793 	 * without holding anon_vma lock for write.  So when looking for a
794 	 * genuine pmde (in which to find pte), test present and !THP together.
795 	 */
796 	pmde = *pmd;
797 	barrier();
798 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
799 		pmd = NULL;
800 out:
801 	return pmd;
802 }
803 
804 struct folio_referenced_arg {
805 	int mapcount;
806 	int referenced;
807 	unsigned long vm_flags;
808 	struct mem_cgroup *memcg;
809 };
810 /*
811  * arg: folio_referenced_arg will be passed
812  */
813 static bool folio_referenced_one(struct folio *folio,
814 		struct vm_area_struct *vma, unsigned long address, void *arg)
815 {
816 	struct folio_referenced_arg *pra = arg;
817 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
818 	int referenced = 0;
819 
820 	while (page_vma_mapped_walk(&pvmw)) {
821 		address = pvmw.address;
822 
823 		if ((vma->vm_flags & VM_LOCKED) &&
824 		    (!folio_test_large(folio) || !pvmw.pte)) {
825 			/* Restore the mlock which got missed */
826 			mlock_vma_folio(folio, vma, !pvmw.pte);
827 			page_vma_mapped_walk_done(&pvmw);
828 			pra->vm_flags |= VM_LOCKED;
829 			return false; /* To break the loop */
830 		}
831 
832 		if (pvmw.pte) {
833 			if (ptep_clear_flush_young_notify(vma, address,
834 						pvmw.pte)) {
835 				/*
836 				 * Don't treat a reference through
837 				 * a sequentially read mapping as such.
838 				 * If the folio has been used in another mapping,
839 				 * we will catch it; if this other mapping is
840 				 * already gone, the unmap path will have set
841 				 * the referenced flag or activated the folio.
842 				 */
843 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
844 					referenced++;
845 			}
846 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
847 			if (pmdp_clear_flush_young_notify(vma, address,
848 						pvmw.pmd))
849 				referenced++;
850 		} else {
851 			/* unexpected pmd-mapped folio? */
852 			WARN_ON_ONCE(1);
853 		}
854 
855 		pra->mapcount--;
856 	}
857 
858 	if (referenced)
859 		folio_clear_idle(folio);
860 	if (folio_test_clear_young(folio))
861 		referenced++;
862 
863 	if (referenced) {
864 		pra->referenced++;
865 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
866 	}
867 
868 	if (!pra->mapcount)
869 		return false; /* To break the loop */
870 
871 	return true;
872 }
873 
874 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
875 {
876 	struct folio_referenced_arg *pra = arg;
877 	struct mem_cgroup *memcg = pra->memcg;
878 
879 	if (!mm_match_cgroup(vma->vm_mm, memcg))
880 		return true;
881 
882 	return false;
883 }
884 
885 /**
886  * folio_referenced() - Test if the folio was referenced.
887  * @folio: The folio to test.
888  * @is_locked: Caller holds lock on the folio.
889  * @memcg: target memory cgroup
890  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
891  *
892  * Quick test_and_clear_referenced for all mappings of a folio,
893  *
894  * Return: The number of mappings which referenced the folio. Return -1 if
895  * the function bailed out due to rmap lock contention.
896  */
897 int folio_referenced(struct folio *folio, int is_locked,
898 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
899 {
900 	int we_locked = 0;
901 	struct folio_referenced_arg pra = {
902 		.mapcount = folio_mapcount(folio),
903 		.memcg = memcg,
904 	};
905 	struct rmap_walk_control rwc = {
906 		.rmap_one = folio_referenced_one,
907 		.arg = (void *)&pra,
908 		.anon_lock = folio_lock_anon_vma_read,
909 		.try_lock = true,
910 	};
911 
912 	*vm_flags = 0;
913 	if (!pra.mapcount)
914 		return 0;
915 
916 	if (!folio_raw_mapping(folio))
917 		return 0;
918 
919 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
920 		we_locked = folio_trylock(folio);
921 		if (!we_locked)
922 			return 1;
923 	}
924 
925 	/*
926 	 * If we are reclaiming on behalf of a cgroup, skip
927 	 * counting on behalf of references from different
928 	 * cgroups
929 	 */
930 	if (memcg) {
931 		rwc.invalid_vma = invalid_folio_referenced_vma;
932 	}
933 
934 	rmap_walk(folio, &rwc);
935 	*vm_flags = pra.vm_flags;
936 
937 	if (we_locked)
938 		folio_unlock(folio);
939 
940 	return rwc.contended ? -1 : pra.referenced;
941 }
942 
943 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
944 {
945 	int cleaned = 0;
946 	struct vm_area_struct *vma = pvmw->vma;
947 	struct mmu_notifier_range range;
948 	unsigned long address = pvmw->address;
949 
950 	/*
951 	 * We have to assume the worse case ie pmd for invalidation. Note that
952 	 * the folio can not be freed from this function.
953 	 */
954 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
955 				0, vma, vma->vm_mm, address,
956 				vma_address_end(pvmw));
957 	mmu_notifier_invalidate_range_start(&range);
958 
959 	while (page_vma_mapped_walk(pvmw)) {
960 		int ret = 0;
961 
962 		address = pvmw->address;
963 		if (pvmw->pte) {
964 			pte_t entry;
965 			pte_t *pte = pvmw->pte;
966 
967 			if (!pte_dirty(*pte) && !pte_write(*pte))
968 				continue;
969 
970 			flush_cache_page(vma, address, pte_pfn(*pte));
971 			entry = ptep_clear_flush(vma, address, pte);
972 			entry = pte_wrprotect(entry);
973 			entry = pte_mkclean(entry);
974 			set_pte_at(vma->vm_mm, address, pte, entry);
975 			ret = 1;
976 		} else {
977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
978 			pmd_t *pmd = pvmw->pmd;
979 			pmd_t entry;
980 
981 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
982 				continue;
983 
984 			flush_cache_range(vma, address,
985 					  address + HPAGE_PMD_SIZE);
986 			entry = pmdp_invalidate(vma, address, pmd);
987 			entry = pmd_wrprotect(entry);
988 			entry = pmd_mkclean(entry);
989 			set_pmd_at(vma->vm_mm, address, pmd, entry);
990 			ret = 1;
991 #else
992 			/* unexpected pmd-mapped folio? */
993 			WARN_ON_ONCE(1);
994 #endif
995 		}
996 
997 		/*
998 		 * No need to call mmu_notifier_invalidate_range() as we are
999 		 * downgrading page table protection not changing it to point
1000 		 * to a new page.
1001 		 *
1002 		 * See Documentation/vm/mmu_notifier.rst
1003 		 */
1004 		if (ret)
1005 			cleaned++;
1006 	}
1007 
1008 	mmu_notifier_invalidate_range_end(&range);
1009 
1010 	return cleaned;
1011 }
1012 
1013 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1014 			     unsigned long address, void *arg)
1015 {
1016 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1017 	int *cleaned = arg;
1018 
1019 	*cleaned += page_vma_mkclean_one(&pvmw);
1020 
1021 	return true;
1022 }
1023 
1024 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1025 {
1026 	if (vma->vm_flags & VM_SHARED)
1027 		return false;
1028 
1029 	return true;
1030 }
1031 
1032 int folio_mkclean(struct folio *folio)
1033 {
1034 	int cleaned = 0;
1035 	struct address_space *mapping;
1036 	struct rmap_walk_control rwc = {
1037 		.arg = (void *)&cleaned,
1038 		.rmap_one = page_mkclean_one,
1039 		.invalid_vma = invalid_mkclean_vma,
1040 	};
1041 
1042 	BUG_ON(!folio_test_locked(folio));
1043 
1044 	if (!folio_mapped(folio))
1045 		return 0;
1046 
1047 	mapping = folio_mapping(folio);
1048 	if (!mapping)
1049 		return 0;
1050 
1051 	rmap_walk(folio, &rwc);
1052 
1053 	return cleaned;
1054 }
1055 EXPORT_SYMBOL_GPL(folio_mkclean);
1056 
1057 /**
1058  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1059  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1060  *                     within the @vma of shared mappings. And since clean PTEs
1061  *                     should also be readonly, write protects them too.
1062  * @pfn: start pfn.
1063  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1064  * @pgoff: page offset that the @pfn mapped with.
1065  * @vma: vma that @pfn mapped within.
1066  *
1067  * Returns the number of cleaned PTEs (including PMDs).
1068  */
1069 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1070 		      struct vm_area_struct *vma)
1071 {
1072 	struct page_vma_mapped_walk pvmw = {
1073 		.pfn		= pfn,
1074 		.nr_pages	= nr_pages,
1075 		.pgoff		= pgoff,
1076 		.vma		= vma,
1077 		.flags		= PVMW_SYNC,
1078 	};
1079 
1080 	if (invalid_mkclean_vma(vma, NULL))
1081 		return 0;
1082 
1083 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1084 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1085 
1086 	return page_vma_mkclean_one(&pvmw);
1087 }
1088 
1089 /**
1090  * page_move_anon_rmap - move a page to our anon_vma
1091  * @page:	the page to move to our anon_vma
1092  * @vma:	the vma the page belongs to
1093  *
1094  * When a page belongs exclusively to one process after a COW event,
1095  * that page can be moved into the anon_vma that belongs to just that
1096  * process, so the rmap code will not search the parent or sibling
1097  * processes.
1098  */
1099 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1100 {
1101 	struct anon_vma *anon_vma = vma->anon_vma;
1102 	struct page *subpage = page;
1103 
1104 	page = compound_head(page);
1105 
1106 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1107 	VM_BUG_ON_VMA(!anon_vma, vma);
1108 
1109 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1110 	/*
1111 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1112 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1113 	 * folio_test_anon()) will not see one without the other.
1114 	 */
1115 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1116 	SetPageAnonExclusive(subpage);
1117 }
1118 
1119 /**
1120  * __page_set_anon_rmap - set up new anonymous rmap
1121  * @page:	Page or Hugepage to add to rmap
1122  * @vma:	VM area to add page to.
1123  * @address:	User virtual address of the mapping
1124  * @exclusive:	the page is exclusively owned by the current process
1125  */
1126 static void __page_set_anon_rmap(struct page *page,
1127 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1128 {
1129 	struct anon_vma *anon_vma = vma->anon_vma;
1130 
1131 	BUG_ON(!anon_vma);
1132 
1133 	if (PageAnon(page))
1134 		goto out;
1135 
1136 	/*
1137 	 * If the page isn't exclusively mapped into this vma,
1138 	 * we must use the _oldest_ possible anon_vma for the
1139 	 * page mapping!
1140 	 */
1141 	if (!exclusive)
1142 		anon_vma = anon_vma->root;
1143 
1144 	/*
1145 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1146 	 * Make sure the compiler doesn't split the stores of anon_vma and
1147 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1148 	 * could mistake the mapping for a struct address_space and crash.
1149 	 */
1150 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1151 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1152 	page->index = linear_page_index(vma, address);
1153 out:
1154 	if (exclusive)
1155 		SetPageAnonExclusive(page);
1156 }
1157 
1158 /**
1159  * __page_check_anon_rmap - sanity check anonymous rmap addition
1160  * @page:	the page to add the mapping to
1161  * @vma:	the vm area in which the mapping is added
1162  * @address:	the user virtual address mapped
1163  */
1164 static void __page_check_anon_rmap(struct page *page,
1165 	struct vm_area_struct *vma, unsigned long address)
1166 {
1167 	struct folio *folio = page_folio(page);
1168 	/*
1169 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1170 	 * be set up correctly at this point.
1171 	 *
1172 	 * We have exclusion against page_add_anon_rmap because the caller
1173 	 * always holds the page locked.
1174 	 *
1175 	 * We have exclusion against page_add_new_anon_rmap because those pages
1176 	 * are initially only visible via the pagetables, and the pte is locked
1177 	 * over the call to page_add_new_anon_rmap.
1178 	 */
1179 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1180 			folio);
1181 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1182 		       page);
1183 }
1184 
1185 /**
1186  * page_add_anon_rmap - add pte mapping to an anonymous page
1187  * @page:	the page to add the mapping to
1188  * @vma:	the vm area in which the mapping is added
1189  * @address:	the user virtual address mapped
1190  * @flags:	the rmap flags
1191  *
1192  * The caller needs to hold the pte lock, and the page must be locked in
1193  * the anon_vma case: to serialize mapping,index checking after setting,
1194  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1195  * (but PageKsm is never downgraded to PageAnon).
1196  */
1197 void page_add_anon_rmap(struct page *page,
1198 	struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1199 {
1200 	bool compound = flags & RMAP_COMPOUND;
1201 	bool first;
1202 
1203 	if (unlikely(PageKsm(page)))
1204 		lock_page_memcg(page);
1205 	else
1206 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1207 
1208 	if (compound) {
1209 		atomic_t *mapcount;
1210 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1211 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1212 		mapcount = compound_mapcount_ptr(page);
1213 		first = atomic_inc_and_test(mapcount);
1214 	} else {
1215 		first = atomic_inc_and_test(&page->_mapcount);
1216 	}
1217 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1218 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1219 
1220 	if (first) {
1221 		int nr = compound ? thp_nr_pages(page) : 1;
1222 		/*
1223 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1224 		 * these counters are not modified in interrupt context, and
1225 		 * pte lock(a spinlock) is held, which implies preemption
1226 		 * disabled.
1227 		 */
1228 		if (compound)
1229 			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1230 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1231 	}
1232 
1233 	if (unlikely(PageKsm(page)))
1234 		unlock_page_memcg(page);
1235 
1236 	/* address might be in next vma when migration races vma_adjust */
1237 	else if (first)
1238 		__page_set_anon_rmap(page, vma, address,
1239 				     !!(flags & RMAP_EXCLUSIVE));
1240 	else
1241 		__page_check_anon_rmap(page, vma, address);
1242 
1243 	mlock_vma_page(page, vma, compound);
1244 }
1245 
1246 /**
1247  * page_add_new_anon_rmap - add mapping to a new anonymous page
1248  * @page:	the page to add the mapping to
1249  * @vma:	the vm area in which the mapping is added
1250  * @address:	the user virtual address mapped
1251  *
1252  * If it's a compound page, it is accounted as a compound page. As the page
1253  * is new, it's assume to get mapped exclusively by a single process.
1254  *
1255  * Same as page_add_anon_rmap but must only be called on *new* pages.
1256  * This means the inc-and-test can be bypassed.
1257  * Page does not have to be locked.
1258  */
1259 void page_add_new_anon_rmap(struct page *page,
1260 	struct vm_area_struct *vma, unsigned long address)
1261 {
1262 	const bool compound = PageCompound(page);
1263 	int nr = compound ? thp_nr_pages(page) : 1;
1264 
1265 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1266 	__SetPageSwapBacked(page);
1267 	if (compound) {
1268 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1269 		/* increment count (starts at -1) */
1270 		atomic_set(compound_mapcount_ptr(page), 0);
1271 		atomic_set(compound_pincount_ptr(page), 0);
1272 
1273 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1274 	} else {
1275 		/* increment count (starts at -1) */
1276 		atomic_set(&page->_mapcount, 0);
1277 	}
1278 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1279 	__page_set_anon_rmap(page, vma, address, 1);
1280 }
1281 
1282 /**
1283  * page_add_file_rmap - add pte mapping to a file page
1284  * @page:	the page to add the mapping to
1285  * @vma:	the vm area in which the mapping is added
1286  * @compound:	charge the page as compound or small page
1287  *
1288  * The caller needs to hold the pte lock.
1289  */
1290 void page_add_file_rmap(struct page *page,
1291 	struct vm_area_struct *vma, bool compound)
1292 {
1293 	int i, nr = 0;
1294 
1295 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1296 	lock_page_memcg(page);
1297 	if (compound && PageTransHuge(page)) {
1298 		int nr_pages = thp_nr_pages(page);
1299 
1300 		for (i = 0; i < nr_pages; i++) {
1301 			if (atomic_inc_and_test(&page[i]._mapcount))
1302 				nr++;
1303 		}
1304 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1305 			goto out;
1306 
1307 		/*
1308 		 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1309 		 * but page lock is held by all page_add_file_rmap() compound
1310 		 * callers, and SetPageDoubleMap below warns if !PageLocked:
1311 		 * so here is a place that DoubleMap can be safely cleared.
1312 		 */
1313 		VM_WARN_ON_ONCE(!PageLocked(page));
1314 		if (nr == nr_pages && PageDoubleMap(page))
1315 			ClearPageDoubleMap(page);
1316 
1317 		if (PageSwapBacked(page))
1318 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1319 						nr_pages);
1320 		else
1321 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1322 						nr_pages);
1323 	} else {
1324 		if (PageTransCompound(page) && page_mapping(page)) {
1325 			VM_WARN_ON_ONCE(!PageLocked(page));
1326 			SetPageDoubleMap(compound_head(page));
1327 		}
1328 		if (atomic_inc_and_test(&page->_mapcount))
1329 			nr++;
1330 	}
1331 out:
1332 	if (nr)
1333 		__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1334 	unlock_page_memcg(page);
1335 
1336 	mlock_vma_page(page, vma, compound);
1337 }
1338 
1339 static void page_remove_file_rmap(struct page *page, bool compound)
1340 {
1341 	int i, nr = 0;
1342 
1343 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1344 
1345 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1346 	if (unlikely(PageHuge(page))) {
1347 		/* hugetlb pages are always mapped with pmds */
1348 		atomic_dec(compound_mapcount_ptr(page));
1349 		return;
1350 	}
1351 
1352 	/* page still mapped by someone else? */
1353 	if (compound && PageTransHuge(page)) {
1354 		int nr_pages = thp_nr_pages(page);
1355 
1356 		for (i = 0; i < nr_pages; i++) {
1357 			if (atomic_add_negative(-1, &page[i]._mapcount))
1358 				nr++;
1359 		}
1360 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1361 			goto out;
1362 		if (PageSwapBacked(page))
1363 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1364 						-nr_pages);
1365 		else
1366 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1367 						-nr_pages);
1368 	} else {
1369 		if (atomic_add_negative(-1, &page->_mapcount))
1370 			nr++;
1371 	}
1372 out:
1373 	if (nr)
1374 		__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1375 }
1376 
1377 static void page_remove_anon_compound_rmap(struct page *page)
1378 {
1379 	int i, nr;
1380 
1381 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1382 		return;
1383 
1384 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1385 	if (unlikely(PageHuge(page)))
1386 		return;
1387 
1388 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1389 		return;
1390 
1391 	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1392 
1393 	if (TestClearPageDoubleMap(page)) {
1394 		/*
1395 		 * Subpages can be mapped with PTEs too. Check how many of
1396 		 * them are still mapped.
1397 		 */
1398 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1399 			if (atomic_add_negative(-1, &page[i]._mapcount))
1400 				nr++;
1401 		}
1402 
1403 		/*
1404 		 * Queue the page for deferred split if at least one small
1405 		 * page of the compound page is unmapped, but at least one
1406 		 * small page is still mapped.
1407 		 */
1408 		if (nr && nr < thp_nr_pages(page))
1409 			deferred_split_huge_page(page);
1410 	} else {
1411 		nr = thp_nr_pages(page);
1412 	}
1413 
1414 	if (nr)
1415 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1416 }
1417 
1418 /**
1419  * page_remove_rmap - take down pte mapping from a page
1420  * @page:	page to remove mapping from
1421  * @vma:	the vm area from which the mapping is removed
1422  * @compound:	uncharge the page as compound or small page
1423  *
1424  * The caller needs to hold the pte lock.
1425  */
1426 void page_remove_rmap(struct page *page,
1427 	struct vm_area_struct *vma, bool compound)
1428 {
1429 	lock_page_memcg(page);
1430 
1431 	if (!PageAnon(page)) {
1432 		page_remove_file_rmap(page, compound);
1433 		goto out;
1434 	}
1435 
1436 	if (compound) {
1437 		page_remove_anon_compound_rmap(page);
1438 		goto out;
1439 	}
1440 
1441 	/* page still mapped by someone else? */
1442 	if (!atomic_add_negative(-1, &page->_mapcount))
1443 		goto out;
1444 
1445 	/*
1446 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1447 	 * these counters are not modified in interrupt context, and
1448 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1449 	 */
1450 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1451 
1452 	if (PageTransCompound(page))
1453 		deferred_split_huge_page(compound_head(page));
1454 
1455 	/*
1456 	 * It would be tidy to reset the PageAnon mapping here,
1457 	 * but that might overwrite a racing page_add_anon_rmap
1458 	 * which increments mapcount after us but sets mapping
1459 	 * before us: so leave the reset to free_unref_page,
1460 	 * and remember that it's only reliable while mapped.
1461 	 * Leaving it set also helps swapoff to reinstate ptes
1462 	 * faster for those pages still in swapcache.
1463 	 */
1464 out:
1465 	unlock_page_memcg(page);
1466 
1467 	munlock_vma_page(page, vma, compound);
1468 }
1469 
1470 /*
1471  * @arg: enum ttu_flags will be passed to this argument
1472  */
1473 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1474 		     unsigned long address, void *arg)
1475 {
1476 	struct mm_struct *mm = vma->vm_mm;
1477 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1478 	pte_t pteval;
1479 	struct page *subpage;
1480 	bool anon_exclusive, ret = true;
1481 	struct mmu_notifier_range range;
1482 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1483 
1484 	/*
1485 	 * When racing against e.g. zap_pte_range() on another cpu,
1486 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1487 	 * try_to_unmap() may return before page_mapped() has become false,
1488 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1489 	 */
1490 	if (flags & TTU_SYNC)
1491 		pvmw.flags = PVMW_SYNC;
1492 
1493 	if (flags & TTU_SPLIT_HUGE_PMD)
1494 		split_huge_pmd_address(vma, address, false, folio);
1495 
1496 	/*
1497 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1498 	 * For hugetlb, it could be much worse if we need to do pud
1499 	 * invalidation in the case of pmd sharing.
1500 	 *
1501 	 * Note that the folio can not be freed in this function as call of
1502 	 * try_to_unmap() must hold a reference on the folio.
1503 	 */
1504 	range.end = vma_address_end(&pvmw);
1505 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1506 				address, range.end);
1507 	if (folio_test_hugetlb(folio)) {
1508 		/*
1509 		 * If sharing is possible, start and end will be adjusted
1510 		 * accordingly.
1511 		 */
1512 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1513 						     &range.end);
1514 	}
1515 	mmu_notifier_invalidate_range_start(&range);
1516 
1517 	while (page_vma_mapped_walk(&pvmw)) {
1518 		/* Unexpected PMD-mapped THP? */
1519 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1520 
1521 		/*
1522 		 * If the folio is in an mlock()d vma, we must not swap it out.
1523 		 */
1524 		if (!(flags & TTU_IGNORE_MLOCK) &&
1525 		    (vma->vm_flags & VM_LOCKED)) {
1526 			/* Restore the mlock which got missed */
1527 			mlock_vma_folio(folio, vma, false);
1528 			page_vma_mapped_walk_done(&pvmw);
1529 			ret = false;
1530 			break;
1531 		}
1532 
1533 		subpage = folio_page(folio,
1534 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1535 		address = pvmw.address;
1536 		anon_exclusive = folio_test_anon(folio) &&
1537 				 PageAnonExclusive(subpage);
1538 
1539 		if (folio_test_hugetlb(folio)) {
1540 			/*
1541 			 * The try_to_unmap() is only passed a hugetlb page
1542 			 * in the case where the hugetlb page is poisoned.
1543 			 */
1544 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1545 			/*
1546 			 * huge_pmd_unshare may unmap an entire PMD page.
1547 			 * There is no way of knowing exactly which PMDs may
1548 			 * be cached for this mm, so we must flush them all.
1549 			 * start/end were already adjusted above to cover this
1550 			 * range.
1551 			 */
1552 			flush_cache_range(vma, range.start, range.end);
1553 
1554 			if (!folio_test_anon(folio)) {
1555 				/*
1556 				 * To call huge_pmd_unshare, i_mmap_rwsem must be
1557 				 * held in write mode.  Caller needs to explicitly
1558 				 * do this outside rmap routines.
1559 				 */
1560 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1561 
1562 				if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1563 					flush_tlb_range(vma, range.start, range.end);
1564 					mmu_notifier_invalidate_range(mm, range.start,
1565 								      range.end);
1566 
1567 					/*
1568 					 * The ref count of the PMD page was dropped
1569 					 * which is part of the way map counting
1570 					 * is done for shared PMDs.  Return 'true'
1571 					 * here.  When there is no other sharing,
1572 					 * huge_pmd_unshare returns false and we will
1573 					 * unmap the actual page and drop map count
1574 					 * to zero.
1575 					 */
1576 					page_vma_mapped_walk_done(&pvmw);
1577 					break;
1578 				}
1579 			}
1580 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1581 		} else {
1582 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1583 			/*
1584 			 * Nuke the page table entry. When having to clear
1585 			 * PageAnonExclusive(), we always have to flush.
1586 			 */
1587 			if (should_defer_flush(mm, flags) && !anon_exclusive) {
1588 				/*
1589 				 * We clear the PTE but do not flush so potentially
1590 				 * a remote CPU could still be writing to the folio.
1591 				 * If the entry was previously clean then the
1592 				 * architecture must guarantee that a clear->dirty
1593 				 * transition on a cached TLB entry is written through
1594 				 * and traps if the PTE is unmapped.
1595 				 */
1596 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1597 
1598 				set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1599 			} else {
1600 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1601 			}
1602 		}
1603 
1604 		/*
1605 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1606 		 * we may want to replace a none pte with a marker pte if
1607 		 * it's file-backed, so we don't lose the tracking info.
1608 		 */
1609 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1610 
1611 		/* Set the dirty flag on the folio now the pte is gone. */
1612 		if (pte_dirty(pteval))
1613 			folio_mark_dirty(folio);
1614 
1615 		/* Update high watermark before we lower rss */
1616 		update_hiwater_rss(mm);
1617 
1618 		if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1619 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1620 			if (folio_test_hugetlb(folio)) {
1621 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1622 				set_huge_swap_pte_at(mm, address,
1623 						     pvmw.pte, pteval,
1624 						     vma_mmu_pagesize(vma));
1625 			} else {
1626 				dec_mm_counter(mm, mm_counter(&folio->page));
1627 				set_pte_at(mm, address, pvmw.pte, pteval);
1628 			}
1629 
1630 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1631 			/*
1632 			 * The guest indicated that the page content is of no
1633 			 * interest anymore. Simply discard the pte, vmscan
1634 			 * will take care of the rest.
1635 			 * A future reference will then fault in a new zero
1636 			 * page. When userfaultfd is active, we must not drop
1637 			 * this page though, as its main user (postcopy
1638 			 * migration) will not expect userfaults on already
1639 			 * copied pages.
1640 			 */
1641 			dec_mm_counter(mm, mm_counter(&folio->page));
1642 			/* We have to invalidate as we cleared the pte */
1643 			mmu_notifier_invalidate_range(mm, address,
1644 						      address + PAGE_SIZE);
1645 		} else if (folio_test_anon(folio)) {
1646 			swp_entry_t entry = { .val = page_private(subpage) };
1647 			pte_t swp_pte;
1648 			/*
1649 			 * Store the swap location in the pte.
1650 			 * See handle_pte_fault() ...
1651 			 */
1652 			if (unlikely(folio_test_swapbacked(folio) !=
1653 					folio_test_swapcache(folio))) {
1654 				WARN_ON_ONCE(1);
1655 				ret = false;
1656 				/* We have to invalidate as we cleared the pte */
1657 				mmu_notifier_invalidate_range(mm, address,
1658 							address + PAGE_SIZE);
1659 				page_vma_mapped_walk_done(&pvmw);
1660 				break;
1661 			}
1662 
1663 			/* MADV_FREE page check */
1664 			if (!folio_test_swapbacked(folio)) {
1665 				int ref_count, map_count;
1666 
1667 				/*
1668 				 * Synchronize with gup_pte_range():
1669 				 * - clear PTE; barrier; read refcount
1670 				 * - inc refcount; barrier; read PTE
1671 				 */
1672 				smp_mb();
1673 
1674 				ref_count = folio_ref_count(folio);
1675 				map_count = folio_mapcount(folio);
1676 
1677 				/*
1678 				 * Order reads for page refcount and dirty flag
1679 				 * (see comments in __remove_mapping()).
1680 				 */
1681 				smp_rmb();
1682 
1683 				/*
1684 				 * The only page refs must be one from isolation
1685 				 * plus the rmap(s) (dropped by discard:).
1686 				 */
1687 				if (ref_count == 1 + map_count &&
1688 				    !folio_test_dirty(folio)) {
1689 					/* Invalidate as we cleared the pte */
1690 					mmu_notifier_invalidate_range(mm,
1691 						address, address + PAGE_SIZE);
1692 					dec_mm_counter(mm, MM_ANONPAGES);
1693 					goto discard;
1694 				}
1695 
1696 				/*
1697 				 * If the folio was redirtied, it cannot be
1698 				 * discarded. Remap the page to page table.
1699 				 */
1700 				set_pte_at(mm, address, pvmw.pte, pteval);
1701 				folio_set_swapbacked(folio);
1702 				ret = false;
1703 				page_vma_mapped_walk_done(&pvmw);
1704 				break;
1705 			}
1706 
1707 			if (swap_duplicate(entry) < 0) {
1708 				set_pte_at(mm, address, pvmw.pte, pteval);
1709 				ret = false;
1710 				page_vma_mapped_walk_done(&pvmw);
1711 				break;
1712 			}
1713 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1714 				swap_free(entry);
1715 				set_pte_at(mm, address, pvmw.pte, pteval);
1716 				ret = false;
1717 				page_vma_mapped_walk_done(&pvmw);
1718 				break;
1719 			}
1720 			if (anon_exclusive &&
1721 			    page_try_share_anon_rmap(subpage)) {
1722 				swap_free(entry);
1723 				set_pte_at(mm, address, pvmw.pte, pteval);
1724 				ret = false;
1725 				page_vma_mapped_walk_done(&pvmw);
1726 				break;
1727 			}
1728 			/*
1729 			 * Note: We *don't* remember if the page was mapped
1730 			 * exclusively in the swap pte if the architecture
1731 			 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1732 			 * that case, swapin code has to re-determine that
1733 			 * manually and might detect the page as possibly
1734 			 * shared, for example, if there are other references on
1735 			 * the page or if the page is under writeback. We made
1736 			 * sure that there are no GUP pins on the page that
1737 			 * would rely on it, so for GUP pins this is fine.
1738 			 */
1739 			if (list_empty(&mm->mmlist)) {
1740 				spin_lock(&mmlist_lock);
1741 				if (list_empty(&mm->mmlist))
1742 					list_add(&mm->mmlist, &init_mm.mmlist);
1743 				spin_unlock(&mmlist_lock);
1744 			}
1745 			dec_mm_counter(mm, MM_ANONPAGES);
1746 			inc_mm_counter(mm, MM_SWAPENTS);
1747 			swp_pte = swp_entry_to_pte(entry);
1748 			if (anon_exclusive)
1749 				swp_pte = pte_swp_mkexclusive(swp_pte);
1750 			if (pte_soft_dirty(pteval))
1751 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1752 			if (pte_uffd_wp(pteval))
1753 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1754 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1755 			/* Invalidate as we cleared the pte */
1756 			mmu_notifier_invalidate_range(mm, address,
1757 						      address + PAGE_SIZE);
1758 		} else {
1759 			/*
1760 			 * This is a locked file-backed folio,
1761 			 * so it cannot be removed from the page
1762 			 * cache and replaced by a new folio before
1763 			 * mmu_notifier_invalidate_range_end, so no
1764 			 * concurrent thread might update its page table
1765 			 * to point at a new folio while a device is
1766 			 * still using this folio.
1767 			 *
1768 			 * See Documentation/vm/mmu_notifier.rst
1769 			 */
1770 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1771 		}
1772 discard:
1773 		/*
1774 		 * No need to call mmu_notifier_invalidate_range() it has be
1775 		 * done above for all cases requiring it to happen under page
1776 		 * table lock before mmu_notifier_invalidate_range_end()
1777 		 *
1778 		 * See Documentation/vm/mmu_notifier.rst
1779 		 */
1780 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1781 		if (vma->vm_flags & VM_LOCKED)
1782 			mlock_page_drain_local();
1783 		folio_put(folio);
1784 	}
1785 
1786 	mmu_notifier_invalidate_range_end(&range);
1787 
1788 	return ret;
1789 }
1790 
1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1792 {
1793 	return vma_is_temporary_stack(vma);
1794 }
1795 
1796 static int page_not_mapped(struct folio *folio)
1797 {
1798 	return !folio_mapped(folio);
1799 }
1800 
1801 /**
1802  * try_to_unmap - Try to remove all page table mappings to a folio.
1803  * @folio: The folio to unmap.
1804  * @flags: action and flags
1805  *
1806  * Tries to remove all the page table entries which are mapping this
1807  * folio.  It is the caller's responsibility to check if the folio is
1808  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1809  *
1810  * Context: Caller must hold the folio lock.
1811  */
1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1813 {
1814 	struct rmap_walk_control rwc = {
1815 		.rmap_one = try_to_unmap_one,
1816 		.arg = (void *)flags,
1817 		.done = page_not_mapped,
1818 		.anon_lock = folio_lock_anon_vma_read,
1819 	};
1820 
1821 	if (flags & TTU_RMAP_LOCKED)
1822 		rmap_walk_locked(folio, &rwc);
1823 	else
1824 		rmap_walk(folio, &rwc);
1825 }
1826 
1827 /*
1828  * @arg: enum ttu_flags will be passed to this argument.
1829  *
1830  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1831  * containing migration entries.
1832  */
1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1834 		     unsigned long address, void *arg)
1835 {
1836 	struct mm_struct *mm = vma->vm_mm;
1837 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1838 	pte_t pteval;
1839 	struct page *subpage;
1840 	bool anon_exclusive, ret = true;
1841 	struct mmu_notifier_range range;
1842 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1843 
1844 	/*
1845 	 * When racing against e.g. zap_pte_range() on another cpu,
1846 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1847 	 * try_to_migrate() may return before page_mapped() has become false,
1848 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1849 	 */
1850 	if (flags & TTU_SYNC)
1851 		pvmw.flags = PVMW_SYNC;
1852 
1853 	/*
1854 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1855 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1856 	 */
1857 	if (flags & TTU_SPLIT_HUGE_PMD)
1858 		split_huge_pmd_address(vma, address, true, folio);
1859 
1860 	/*
1861 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1862 	 * For hugetlb, it could be much worse if we need to do pud
1863 	 * invalidation in the case of pmd sharing.
1864 	 *
1865 	 * Note that the page can not be free in this function as call of
1866 	 * try_to_unmap() must hold a reference on the page.
1867 	 */
1868 	range.end = vma_address_end(&pvmw);
1869 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1870 				address, range.end);
1871 	if (folio_test_hugetlb(folio)) {
1872 		/*
1873 		 * If sharing is possible, start and end will be adjusted
1874 		 * accordingly.
1875 		 */
1876 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1877 						     &range.end);
1878 	}
1879 	mmu_notifier_invalidate_range_start(&range);
1880 
1881 	while (page_vma_mapped_walk(&pvmw)) {
1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1883 		/* PMD-mapped THP migration entry */
1884 		if (!pvmw.pte) {
1885 			subpage = folio_page(folio,
1886 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1887 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1888 					!folio_test_pmd_mappable(folio), folio);
1889 
1890 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1891 				ret = false;
1892 				page_vma_mapped_walk_done(&pvmw);
1893 				break;
1894 			}
1895 			continue;
1896 		}
1897 #endif
1898 
1899 		/* Unexpected PMD-mapped THP? */
1900 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1901 
1902 		if (folio_is_zone_device(folio)) {
1903 			/*
1904 			 * Our PTE is a non-present device exclusive entry and
1905 			 * calculating the subpage as for the common case would
1906 			 * result in an invalid pointer.
1907 			 *
1908 			 * Since only PAGE_SIZE pages can currently be
1909 			 * migrated, just set it to page. This will need to be
1910 			 * changed when hugepage migrations to device private
1911 			 * memory are supported.
1912 			 */
1913 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1914 			subpage = &folio->page;
1915 		} else {
1916 			subpage = folio_page(folio,
1917 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1918 		}
1919 		address = pvmw.address;
1920 		anon_exclusive = folio_test_anon(folio) &&
1921 				 PageAnonExclusive(subpage);
1922 
1923 		if (folio_test_hugetlb(folio)) {
1924 			/*
1925 			 * huge_pmd_unshare may unmap an entire PMD page.
1926 			 * There is no way of knowing exactly which PMDs may
1927 			 * be cached for this mm, so we must flush them all.
1928 			 * start/end were already adjusted above to cover this
1929 			 * range.
1930 			 */
1931 			flush_cache_range(vma, range.start, range.end);
1932 
1933 			if (!folio_test_anon(folio)) {
1934 				/*
1935 				 * To call huge_pmd_unshare, i_mmap_rwsem must be
1936 				 * held in write mode.  Caller needs to explicitly
1937 				 * do this outside rmap routines.
1938 				 */
1939 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1940 
1941 				if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1942 					flush_tlb_range(vma, range.start, range.end);
1943 					mmu_notifier_invalidate_range(mm, range.start,
1944 								      range.end);
1945 
1946 					/*
1947 					 * The ref count of the PMD page was dropped
1948 					 * which is part of the way map counting
1949 					 * is done for shared PMDs.  Return 'true'
1950 					 * here.  When there is no other sharing,
1951 					 * huge_pmd_unshare returns false and we will
1952 					 * unmap the actual page and drop map count
1953 					 * to zero.
1954 					 */
1955 					page_vma_mapped_walk_done(&pvmw);
1956 					break;
1957 				}
1958 			}
1959 
1960 			/* Nuke the hugetlb page table entry */
1961 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1962 		} else {
1963 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1964 			/* Nuke the page table entry. */
1965 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1966 		}
1967 
1968 		/* Set the dirty flag on the folio now the pte is gone. */
1969 		if (pte_dirty(pteval))
1970 			folio_mark_dirty(folio);
1971 
1972 		/* Update high watermark before we lower rss */
1973 		update_hiwater_rss(mm);
1974 
1975 		if (folio_is_zone_device(folio)) {
1976 			unsigned long pfn = folio_pfn(folio);
1977 			swp_entry_t entry;
1978 			pte_t swp_pte;
1979 
1980 			if (anon_exclusive)
1981 				BUG_ON(page_try_share_anon_rmap(subpage));
1982 
1983 			/*
1984 			 * Store the pfn of the page in a special migration
1985 			 * pte. do_swap_page() will wait until the migration
1986 			 * pte is removed and then restart fault handling.
1987 			 */
1988 			entry = pte_to_swp_entry(pteval);
1989 			if (is_writable_device_private_entry(entry))
1990 				entry = make_writable_migration_entry(pfn);
1991 			else if (anon_exclusive)
1992 				entry = make_readable_exclusive_migration_entry(pfn);
1993 			else
1994 				entry = make_readable_migration_entry(pfn);
1995 			swp_pte = swp_entry_to_pte(entry);
1996 
1997 			/*
1998 			 * pteval maps a zone device page and is therefore
1999 			 * a swap pte.
2000 			 */
2001 			if (pte_swp_soft_dirty(pteval))
2002 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2003 			if (pte_swp_uffd_wp(pteval))
2004 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2005 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2006 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2007 						compound_order(&folio->page));
2008 			/*
2009 			 * No need to invalidate here it will synchronize on
2010 			 * against the special swap migration pte.
2011 			 */
2012 		} else if (PageHWPoison(subpage)) {
2013 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2014 			if (folio_test_hugetlb(folio)) {
2015 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2016 				set_huge_swap_pte_at(mm, address,
2017 						     pvmw.pte, pteval,
2018 						     vma_mmu_pagesize(vma));
2019 			} else {
2020 				dec_mm_counter(mm, mm_counter(&folio->page));
2021 				set_pte_at(mm, address, pvmw.pte, pteval);
2022 			}
2023 
2024 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2025 			/*
2026 			 * The guest indicated that the page content is of no
2027 			 * interest anymore. Simply discard the pte, vmscan
2028 			 * will take care of the rest.
2029 			 * A future reference will then fault in a new zero
2030 			 * page. When userfaultfd is active, we must not drop
2031 			 * this page though, as its main user (postcopy
2032 			 * migration) will not expect userfaults on already
2033 			 * copied pages.
2034 			 */
2035 			dec_mm_counter(mm, mm_counter(&folio->page));
2036 			/* We have to invalidate as we cleared the pte */
2037 			mmu_notifier_invalidate_range(mm, address,
2038 						      address + PAGE_SIZE);
2039 		} else {
2040 			swp_entry_t entry;
2041 			pte_t swp_pte;
2042 
2043 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2044 				if (folio_test_hugetlb(folio))
2045 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2046 				else
2047 					set_pte_at(mm, address, pvmw.pte, pteval);
2048 				ret = false;
2049 				page_vma_mapped_walk_done(&pvmw);
2050 				break;
2051 			}
2052 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2053 				       !anon_exclusive, subpage);
2054 			if (anon_exclusive &&
2055 			    page_try_share_anon_rmap(subpage)) {
2056 				if (folio_test_hugetlb(folio))
2057 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2058 				else
2059 					set_pte_at(mm, address, pvmw.pte, pteval);
2060 				ret = false;
2061 				page_vma_mapped_walk_done(&pvmw);
2062 				break;
2063 			}
2064 
2065 			/*
2066 			 * Store the pfn of the page in a special migration
2067 			 * pte. do_swap_page() will wait until the migration
2068 			 * pte is removed and then restart fault handling.
2069 			 */
2070 			if (pte_write(pteval))
2071 				entry = make_writable_migration_entry(
2072 							page_to_pfn(subpage));
2073 			else if (anon_exclusive)
2074 				entry = make_readable_exclusive_migration_entry(
2075 							page_to_pfn(subpage));
2076 			else
2077 				entry = make_readable_migration_entry(
2078 							page_to_pfn(subpage));
2079 
2080 			swp_pte = swp_entry_to_pte(entry);
2081 			if (pte_soft_dirty(pteval))
2082 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2083 			if (pte_uffd_wp(pteval))
2084 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2085 			if (folio_test_hugetlb(folio))
2086 				set_huge_swap_pte_at(mm, address, pvmw.pte,
2087 						     swp_pte, vma_mmu_pagesize(vma));
2088 			else
2089 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2090 			trace_set_migration_pte(address, pte_val(swp_pte),
2091 						compound_order(&folio->page));
2092 			/*
2093 			 * No need to invalidate here it will synchronize on
2094 			 * against the special swap migration pte.
2095 			 */
2096 		}
2097 
2098 		/*
2099 		 * No need to call mmu_notifier_invalidate_range() it has be
2100 		 * done above for all cases requiring it to happen under page
2101 		 * table lock before mmu_notifier_invalidate_range_end()
2102 		 *
2103 		 * See Documentation/vm/mmu_notifier.rst
2104 		 */
2105 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2106 		if (vma->vm_flags & VM_LOCKED)
2107 			mlock_page_drain_local();
2108 		folio_put(folio);
2109 	}
2110 
2111 	mmu_notifier_invalidate_range_end(&range);
2112 
2113 	return ret;
2114 }
2115 
2116 /**
2117  * try_to_migrate - try to replace all page table mappings with swap entries
2118  * @folio: the folio to replace page table entries for
2119  * @flags: action and flags
2120  *
2121  * Tries to remove all the page table entries which are mapping this folio and
2122  * replace them with special swap entries. Caller must hold the folio lock.
2123  */
2124 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2125 {
2126 	struct rmap_walk_control rwc = {
2127 		.rmap_one = try_to_migrate_one,
2128 		.arg = (void *)flags,
2129 		.done = page_not_mapped,
2130 		.anon_lock = folio_lock_anon_vma_read,
2131 	};
2132 
2133 	/*
2134 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2135 	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2136 	 */
2137 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2138 					TTU_SYNC)))
2139 		return;
2140 
2141 	if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
2142 		return;
2143 
2144 	/*
2145 	 * During exec, a temporary VMA is setup and later moved.
2146 	 * The VMA is moved under the anon_vma lock but not the
2147 	 * page tables leading to a race where migration cannot
2148 	 * find the migration ptes. Rather than increasing the
2149 	 * locking requirements of exec(), migration skips
2150 	 * temporary VMAs until after exec() completes.
2151 	 */
2152 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2153 		rwc.invalid_vma = invalid_migration_vma;
2154 
2155 	if (flags & TTU_RMAP_LOCKED)
2156 		rmap_walk_locked(folio, &rwc);
2157 	else
2158 		rmap_walk(folio, &rwc);
2159 }
2160 
2161 #ifdef CONFIG_DEVICE_PRIVATE
2162 struct make_exclusive_args {
2163 	struct mm_struct *mm;
2164 	unsigned long address;
2165 	void *owner;
2166 	bool valid;
2167 };
2168 
2169 static bool page_make_device_exclusive_one(struct folio *folio,
2170 		struct vm_area_struct *vma, unsigned long address, void *priv)
2171 {
2172 	struct mm_struct *mm = vma->vm_mm;
2173 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2174 	struct make_exclusive_args *args = priv;
2175 	pte_t pteval;
2176 	struct page *subpage;
2177 	bool ret = true;
2178 	struct mmu_notifier_range range;
2179 	swp_entry_t entry;
2180 	pte_t swp_pte;
2181 
2182 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2183 				      vma->vm_mm, address, min(vma->vm_end,
2184 				      address + folio_size(folio)),
2185 				      args->owner);
2186 	mmu_notifier_invalidate_range_start(&range);
2187 
2188 	while (page_vma_mapped_walk(&pvmw)) {
2189 		/* Unexpected PMD-mapped THP? */
2190 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2191 
2192 		if (!pte_present(*pvmw.pte)) {
2193 			ret = false;
2194 			page_vma_mapped_walk_done(&pvmw);
2195 			break;
2196 		}
2197 
2198 		subpage = folio_page(folio,
2199 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
2200 		address = pvmw.address;
2201 
2202 		/* Nuke the page table entry. */
2203 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2204 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2205 
2206 		/* Set the dirty flag on the folio now the pte is gone. */
2207 		if (pte_dirty(pteval))
2208 			folio_mark_dirty(folio);
2209 
2210 		/*
2211 		 * Check that our target page is still mapped at the expected
2212 		 * address.
2213 		 */
2214 		if (args->mm == mm && args->address == address &&
2215 		    pte_write(pteval))
2216 			args->valid = true;
2217 
2218 		/*
2219 		 * Store the pfn of the page in a special migration
2220 		 * pte. do_swap_page() will wait until the migration
2221 		 * pte is removed and then restart fault handling.
2222 		 */
2223 		if (pte_write(pteval))
2224 			entry = make_writable_device_exclusive_entry(
2225 							page_to_pfn(subpage));
2226 		else
2227 			entry = make_readable_device_exclusive_entry(
2228 							page_to_pfn(subpage));
2229 		swp_pte = swp_entry_to_pte(entry);
2230 		if (pte_soft_dirty(pteval))
2231 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2232 		if (pte_uffd_wp(pteval))
2233 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2234 
2235 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2236 
2237 		/*
2238 		 * There is a reference on the page for the swap entry which has
2239 		 * been removed, so shouldn't take another.
2240 		 */
2241 		page_remove_rmap(subpage, vma, false);
2242 	}
2243 
2244 	mmu_notifier_invalidate_range_end(&range);
2245 
2246 	return ret;
2247 }
2248 
2249 /**
2250  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2251  * @folio: The folio to replace page table entries for.
2252  * @mm: The mm_struct where the folio is expected to be mapped.
2253  * @address: Address where the folio is expected to be mapped.
2254  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2255  *
2256  * Tries to remove all the page table entries which are mapping this
2257  * folio and replace them with special device exclusive swap entries to
2258  * grant a device exclusive access to the folio.
2259  *
2260  * Context: Caller must hold the folio lock.
2261  * Return: false if the page is still mapped, or if it could not be unmapped
2262  * from the expected address. Otherwise returns true (success).
2263  */
2264 static bool folio_make_device_exclusive(struct folio *folio,
2265 		struct mm_struct *mm, unsigned long address, void *owner)
2266 {
2267 	struct make_exclusive_args args = {
2268 		.mm = mm,
2269 		.address = address,
2270 		.owner = owner,
2271 		.valid = false,
2272 	};
2273 	struct rmap_walk_control rwc = {
2274 		.rmap_one = page_make_device_exclusive_one,
2275 		.done = page_not_mapped,
2276 		.anon_lock = folio_lock_anon_vma_read,
2277 		.arg = &args,
2278 	};
2279 
2280 	/*
2281 	 * Restrict to anonymous folios for now to avoid potential writeback
2282 	 * issues.
2283 	 */
2284 	if (!folio_test_anon(folio))
2285 		return false;
2286 
2287 	rmap_walk(folio, &rwc);
2288 
2289 	return args.valid && !folio_mapcount(folio);
2290 }
2291 
2292 /**
2293  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2294  * @mm: mm_struct of associated target process
2295  * @start: start of the region to mark for exclusive device access
2296  * @end: end address of region
2297  * @pages: returns the pages which were successfully marked for exclusive access
2298  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2299  *
2300  * Returns: number of pages found in the range by GUP. A page is marked for
2301  * exclusive access only if the page pointer is non-NULL.
2302  *
2303  * This function finds ptes mapping page(s) to the given address range, locks
2304  * them and replaces mappings with special swap entries preventing userspace CPU
2305  * access. On fault these entries are replaced with the original mapping after
2306  * calling MMU notifiers.
2307  *
2308  * A driver using this to program access from a device must use a mmu notifier
2309  * critical section to hold a device specific lock during programming. Once
2310  * programming is complete it should drop the page lock and reference after
2311  * which point CPU access to the page will revoke the exclusive access.
2312  */
2313 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2314 				unsigned long end, struct page **pages,
2315 				void *owner)
2316 {
2317 	long npages = (end - start) >> PAGE_SHIFT;
2318 	long i;
2319 
2320 	npages = get_user_pages_remote(mm, start, npages,
2321 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2322 				       pages, NULL, NULL);
2323 	if (npages < 0)
2324 		return npages;
2325 
2326 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2327 		struct folio *folio = page_folio(pages[i]);
2328 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2329 			folio_put(folio);
2330 			pages[i] = NULL;
2331 			continue;
2332 		}
2333 
2334 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2335 			folio_unlock(folio);
2336 			folio_put(folio);
2337 			pages[i] = NULL;
2338 		}
2339 	}
2340 
2341 	return npages;
2342 }
2343 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2344 #endif
2345 
2346 void __put_anon_vma(struct anon_vma *anon_vma)
2347 {
2348 	struct anon_vma *root = anon_vma->root;
2349 
2350 	anon_vma_free(anon_vma);
2351 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2352 		anon_vma_free(root);
2353 }
2354 
2355 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2356 					    struct rmap_walk_control *rwc)
2357 {
2358 	struct anon_vma *anon_vma;
2359 
2360 	if (rwc->anon_lock)
2361 		return rwc->anon_lock(folio, rwc);
2362 
2363 	/*
2364 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2365 	 * because that depends on page_mapped(); but not all its usages
2366 	 * are holding mmap_lock. Users without mmap_lock are required to
2367 	 * take a reference count to prevent the anon_vma disappearing
2368 	 */
2369 	anon_vma = folio_anon_vma(folio);
2370 	if (!anon_vma)
2371 		return NULL;
2372 
2373 	if (anon_vma_trylock_read(anon_vma))
2374 		goto out;
2375 
2376 	if (rwc->try_lock) {
2377 		anon_vma = NULL;
2378 		rwc->contended = true;
2379 		goto out;
2380 	}
2381 
2382 	anon_vma_lock_read(anon_vma);
2383 out:
2384 	return anon_vma;
2385 }
2386 
2387 /*
2388  * rmap_walk_anon - do something to anonymous page using the object-based
2389  * rmap method
2390  * @page: the page to be handled
2391  * @rwc: control variable according to each walk type
2392  *
2393  * Find all the mappings of a page using the mapping pointer and the vma chains
2394  * contained in the anon_vma struct it points to.
2395  */
2396 static void rmap_walk_anon(struct folio *folio,
2397 		struct rmap_walk_control *rwc, bool locked)
2398 {
2399 	struct anon_vma *anon_vma;
2400 	pgoff_t pgoff_start, pgoff_end;
2401 	struct anon_vma_chain *avc;
2402 
2403 	if (locked) {
2404 		anon_vma = folio_anon_vma(folio);
2405 		/* anon_vma disappear under us? */
2406 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2407 	} else {
2408 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2409 	}
2410 	if (!anon_vma)
2411 		return;
2412 
2413 	pgoff_start = folio_pgoff(folio);
2414 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2415 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2416 			pgoff_start, pgoff_end) {
2417 		struct vm_area_struct *vma = avc->vma;
2418 		unsigned long address = vma_address(&folio->page, vma);
2419 
2420 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2421 		cond_resched();
2422 
2423 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2424 			continue;
2425 
2426 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2427 			break;
2428 		if (rwc->done && rwc->done(folio))
2429 			break;
2430 	}
2431 
2432 	if (!locked)
2433 		anon_vma_unlock_read(anon_vma);
2434 }
2435 
2436 /*
2437  * rmap_walk_file - do something to file page using the object-based rmap method
2438  * @page: the page to be handled
2439  * @rwc: control variable according to each walk type
2440  *
2441  * Find all the mappings of a page using the mapping pointer and the vma chains
2442  * contained in the address_space struct it points to.
2443  */
2444 static void rmap_walk_file(struct folio *folio,
2445 		struct rmap_walk_control *rwc, bool locked)
2446 {
2447 	struct address_space *mapping = folio_mapping(folio);
2448 	pgoff_t pgoff_start, pgoff_end;
2449 	struct vm_area_struct *vma;
2450 
2451 	/*
2452 	 * The page lock not only makes sure that page->mapping cannot
2453 	 * suddenly be NULLified by truncation, it makes sure that the
2454 	 * structure at mapping cannot be freed and reused yet,
2455 	 * so we can safely take mapping->i_mmap_rwsem.
2456 	 */
2457 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2458 
2459 	if (!mapping)
2460 		return;
2461 
2462 	pgoff_start = folio_pgoff(folio);
2463 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2464 	if (!locked) {
2465 		if (i_mmap_trylock_read(mapping))
2466 			goto lookup;
2467 
2468 		if (rwc->try_lock) {
2469 			rwc->contended = true;
2470 			return;
2471 		}
2472 
2473 		i_mmap_lock_read(mapping);
2474 	}
2475 lookup:
2476 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2477 			pgoff_start, pgoff_end) {
2478 		unsigned long address = vma_address(&folio->page, vma);
2479 
2480 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2481 		cond_resched();
2482 
2483 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2484 			continue;
2485 
2486 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2487 			goto done;
2488 		if (rwc->done && rwc->done(folio))
2489 			goto done;
2490 	}
2491 
2492 done:
2493 	if (!locked)
2494 		i_mmap_unlock_read(mapping);
2495 }
2496 
2497 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2498 {
2499 	if (unlikely(folio_test_ksm(folio)))
2500 		rmap_walk_ksm(folio, rwc);
2501 	else if (folio_test_anon(folio))
2502 		rmap_walk_anon(folio, rwc, false);
2503 	else
2504 		rmap_walk_file(folio, rwc, false);
2505 }
2506 
2507 /* Like rmap_walk, but caller holds relevant rmap lock */
2508 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2509 {
2510 	/* no ksm support for now */
2511 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2512 	if (folio_test_anon(folio))
2513 		rmap_walk_anon(folio, rwc, true);
2514 	else
2515 		rmap_walk_file(folio, rwc, true);
2516 }
2517 
2518 #ifdef CONFIG_HUGETLB_PAGE
2519 /*
2520  * The following two functions are for anonymous (private mapped) hugepages.
2521  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2522  * and no lru code, because we handle hugepages differently from common pages.
2523  *
2524  * RMAP_COMPOUND is ignored.
2525  */
2526 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2527 			    unsigned long address, rmap_t flags)
2528 {
2529 	struct anon_vma *anon_vma = vma->anon_vma;
2530 	int first;
2531 
2532 	BUG_ON(!PageLocked(page));
2533 	BUG_ON(!anon_vma);
2534 	/* address might be in next vma when migration races vma_adjust */
2535 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2536 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2537 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2538 	if (first)
2539 		__page_set_anon_rmap(page, vma, address,
2540 				     !!(flags & RMAP_EXCLUSIVE));
2541 }
2542 
2543 void hugepage_add_new_anon_rmap(struct page *page,
2544 			struct vm_area_struct *vma, unsigned long address)
2545 {
2546 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2547 	atomic_set(compound_mapcount_ptr(page), 0);
2548 	atomic_set(compound_pincount_ptr(page), 0);
2549 
2550 	__page_set_anon_rmap(page, vma, address, 1);
2551 }
2552 #endif /* CONFIG_HUGETLB_PAGE */
2553