1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_mutex 28 * anon_vma->mutex 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty) 36 * sb_lock (within inode_lock in fs/fs-writeback.c) 37 * mapping->tree_lock (widely used, in set_page_dirty, 38 * in arch-dependent flush_dcache_mmap_lock, 39 * within inode_wb_list_lock in __sync_single_inode) 40 * 41 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon) 42 * ->tasklist_lock 43 * pte map lock 44 */ 45 46 #include <linux/mm.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/slab.h> 51 #include <linux/init.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 #include <linux/memcontrol.h> 57 #include <linux/mmu_notifier.h> 58 #include <linux/migrate.h> 59 #include <linux/hugetlb.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 /* 76 * Initialise the anon_vma root to point to itself. If called 77 * from fork, the root will be reset to the parents anon_vma. 78 */ 79 anon_vma->root = anon_vma; 80 } 81 82 return anon_vma; 83 } 84 85 static inline void anon_vma_free(struct anon_vma *anon_vma) 86 { 87 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 88 89 /* 90 * Synchronize against page_lock_anon_vma() such that 91 * we can safely hold the lock without the anon_vma getting 92 * freed. 93 * 94 * Relies on the full mb implied by the atomic_dec_and_test() from 95 * put_anon_vma() against the acquire barrier implied by 96 * mutex_trylock() from page_lock_anon_vma(). This orders: 97 * 98 * page_lock_anon_vma() VS put_anon_vma() 99 * mutex_trylock() atomic_dec_and_test() 100 * LOCK MB 101 * atomic_read() mutex_is_locked() 102 * 103 * LOCK should suffice since the actual taking of the lock must 104 * happen _before_ what follows. 105 */ 106 if (mutex_is_locked(&anon_vma->root->mutex)) { 107 anon_vma_lock(anon_vma); 108 anon_vma_unlock(anon_vma); 109 } 110 111 kmem_cache_free(anon_vma_cachep, anon_vma); 112 } 113 114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 115 { 116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 117 } 118 119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 120 { 121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 122 } 123 124 /** 125 * anon_vma_prepare - attach an anon_vma to a memory region 126 * @vma: the memory region in question 127 * 128 * This makes sure the memory mapping described by 'vma' has 129 * an 'anon_vma' attached to it, so that we can associate the 130 * anonymous pages mapped into it with that anon_vma. 131 * 132 * The common case will be that we already have one, but if 133 * not we either need to find an adjacent mapping that we 134 * can re-use the anon_vma from (very common when the only 135 * reason for splitting a vma has been mprotect()), or we 136 * allocate a new one. 137 * 138 * Anon-vma allocations are very subtle, because we may have 139 * optimistically looked up an anon_vma in page_lock_anon_vma() 140 * and that may actually touch the spinlock even in the newly 141 * allocated vma (it depends on RCU to make sure that the 142 * anon_vma isn't actually destroyed). 143 * 144 * As a result, we need to do proper anon_vma locking even 145 * for the new allocation. At the same time, we do not want 146 * to do any locking for the common case of already having 147 * an anon_vma. 148 * 149 * This must be called with the mmap_sem held for reading. 150 */ 151 int anon_vma_prepare(struct vm_area_struct *vma) 152 { 153 struct anon_vma *anon_vma = vma->anon_vma; 154 struct anon_vma_chain *avc; 155 156 might_sleep(); 157 if (unlikely(!anon_vma)) { 158 struct mm_struct *mm = vma->vm_mm; 159 struct anon_vma *allocated; 160 161 avc = anon_vma_chain_alloc(GFP_KERNEL); 162 if (!avc) 163 goto out_enomem; 164 165 anon_vma = find_mergeable_anon_vma(vma); 166 allocated = NULL; 167 if (!anon_vma) { 168 anon_vma = anon_vma_alloc(); 169 if (unlikely(!anon_vma)) 170 goto out_enomem_free_avc; 171 allocated = anon_vma; 172 } 173 174 anon_vma_lock(anon_vma); 175 /* page_table_lock to protect against threads */ 176 spin_lock(&mm->page_table_lock); 177 if (likely(!vma->anon_vma)) { 178 vma->anon_vma = anon_vma; 179 avc->anon_vma = anon_vma; 180 avc->vma = vma; 181 list_add(&avc->same_vma, &vma->anon_vma_chain); 182 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 183 allocated = NULL; 184 avc = NULL; 185 } 186 spin_unlock(&mm->page_table_lock); 187 anon_vma_unlock(anon_vma); 188 189 if (unlikely(allocated)) 190 put_anon_vma(allocated); 191 if (unlikely(avc)) 192 anon_vma_chain_free(avc); 193 } 194 return 0; 195 196 out_enomem_free_avc: 197 anon_vma_chain_free(avc); 198 out_enomem: 199 return -ENOMEM; 200 } 201 202 /* 203 * This is a useful helper function for locking the anon_vma root as 204 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 205 * have the same vma. 206 * 207 * Such anon_vma's should have the same root, so you'd expect to see 208 * just a single mutex_lock for the whole traversal. 209 */ 210 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 211 { 212 struct anon_vma *new_root = anon_vma->root; 213 if (new_root != root) { 214 if (WARN_ON_ONCE(root)) 215 mutex_unlock(&root->mutex); 216 root = new_root; 217 mutex_lock(&root->mutex); 218 } 219 return root; 220 } 221 222 static inline void unlock_anon_vma_root(struct anon_vma *root) 223 { 224 if (root) 225 mutex_unlock(&root->mutex); 226 } 227 228 static void anon_vma_chain_link(struct vm_area_struct *vma, 229 struct anon_vma_chain *avc, 230 struct anon_vma *anon_vma) 231 { 232 avc->vma = vma; 233 avc->anon_vma = anon_vma; 234 list_add(&avc->same_vma, &vma->anon_vma_chain); 235 236 /* 237 * It's critical to add new vmas to the tail of the anon_vma, 238 * see comment in huge_memory.c:__split_huge_page(). 239 */ 240 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 241 } 242 243 /* 244 * Attach the anon_vmas from src to dst. 245 * Returns 0 on success, -ENOMEM on failure. 246 */ 247 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 248 { 249 struct anon_vma_chain *avc, *pavc; 250 struct anon_vma *root = NULL; 251 252 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 253 struct anon_vma *anon_vma; 254 255 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 256 if (unlikely(!avc)) { 257 unlock_anon_vma_root(root); 258 root = NULL; 259 avc = anon_vma_chain_alloc(GFP_KERNEL); 260 if (!avc) 261 goto enomem_failure; 262 } 263 anon_vma = pavc->anon_vma; 264 root = lock_anon_vma_root(root, anon_vma); 265 anon_vma_chain_link(dst, avc, anon_vma); 266 } 267 unlock_anon_vma_root(root); 268 return 0; 269 270 enomem_failure: 271 unlink_anon_vmas(dst); 272 return -ENOMEM; 273 } 274 275 /* 276 * Attach vma to its own anon_vma, as well as to the anon_vmas that 277 * the corresponding VMA in the parent process is attached to. 278 * Returns 0 on success, non-zero on failure. 279 */ 280 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 281 { 282 struct anon_vma_chain *avc; 283 struct anon_vma *anon_vma; 284 285 /* Don't bother if the parent process has no anon_vma here. */ 286 if (!pvma->anon_vma) 287 return 0; 288 289 /* 290 * First, attach the new VMA to the parent VMA's anon_vmas, 291 * so rmap can find non-COWed pages in child processes. 292 */ 293 if (anon_vma_clone(vma, pvma)) 294 return -ENOMEM; 295 296 /* Then add our own anon_vma. */ 297 anon_vma = anon_vma_alloc(); 298 if (!anon_vma) 299 goto out_error; 300 avc = anon_vma_chain_alloc(GFP_KERNEL); 301 if (!avc) 302 goto out_error_free_anon_vma; 303 304 /* 305 * The root anon_vma's spinlock is the lock actually used when we 306 * lock any of the anon_vmas in this anon_vma tree. 307 */ 308 anon_vma->root = pvma->anon_vma->root; 309 /* 310 * With refcounts, an anon_vma can stay around longer than the 311 * process it belongs to. The root anon_vma needs to be pinned until 312 * this anon_vma is freed, because the lock lives in the root. 313 */ 314 get_anon_vma(anon_vma->root); 315 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 316 vma->anon_vma = anon_vma; 317 anon_vma_lock(anon_vma); 318 anon_vma_chain_link(vma, avc, anon_vma); 319 anon_vma_unlock(anon_vma); 320 321 return 0; 322 323 out_error_free_anon_vma: 324 put_anon_vma(anon_vma); 325 out_error: 326 unlink_anon_vmas(vma); 327 return -ENOMEM; 328 } 329 330 void unlink_anon_vmas(struct vm_area_struct *vma) 331 { 332 struct anon_vma_chain *avc, *next; 333 struct anon_vma *root = NULL; 334 335 /* 336 * Unlink each anon_vma chained to the VMA. This list is ordered 337 * from newest to oldest, ensuring the root anon_vma gets freed last. 338 */ 339 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 340 struct anon_vma *anon_vma = avc->anon_vma; 341 342 root = lock_anon_vma_root(root, anon_vma); 343 list_del(&avc->same_anon_vma); 344 345 /* 346 * Leave empty anon_vmas on the list - we'll need 347 * to free them outside the lock. 348 */ 349 if (list_empty(&anon_vma->head)) 350 continue; 351 352 list_del(&avc->same_vma); 353 anon_vma_chain_free(avc); 354 } 355 unlock_anon_vma_root(root); 356 357 /* 358 * Iterate the list once more, it now only contains empty and unlinked 359 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 360 * needing to acquire the anon_vma->root->mutex. 361 */ 362 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 363 struct anon_vma *anon_vma = avc->anon_vma; 364 365 put_anon_vma(anon_vma); 366 367 list_del(&avc->same_vma); 368 anon_vma_chain_free(avc); 369 } 370 } 371 372 static void anon_vma_ctor(void *data) 373 { 374 struct anon_vma *anon_vma = data; 375 376 mutex_init(&anon_vma->mutex); 377 atomic_set(&anon_vma->refcount, 0); 378 INIT_LIST_HEAD(&anon_vma->head); 379 } 380 381 void __init anon_vma_init(void) 382 { 383 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 384 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 385 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 386 } 387 388 /* 389 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 390 * 391 * Since there is no serialization what so ever against page_remove_rmap() 392 * the best this function can do is return a locked anon_vma that might 393 * have been relevant to this page. 394 * 395 * The page might have been remapped to a different anon_vma or the anon_vma 396 * returned may already be freed (and even reused). 397 * 398 * In case it was remapped to a different anon_vma, the new anon_vma will be a 399 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 400 * ensure that any anon_vma obtained from the page will still be valid for as 401 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 402 * 403 * All users of this function must be very careful when walking the anon_vma 404 * chain and verify that the page in question is indeed mapped in it 405 * [ something equivalent to page_mapped_in_vma() ]. 406 * 407 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 408 * that the anon_vma pointer from page->mapping is valid if there is a 409 * mapcount, we can dereference the anon_vma after observing those. 410 */ 411 struct anon_vma *page_get_anon_vma(struct page *page) 412 { 413 struct anon_vma *anon_vma = NULL; 414 unsigned long anon_mapping; 415 416 rcu_read_lock(); 417 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 418 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 419 goto out; 420 if (!page_mapped(page)) 421 goto out; 422 423 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 424 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 425 anon_vma = NULL; 426 goto out; 427 } 428 429 /* 430 * If this page is still mapped, then its anon_vma cannot have been 431 * freed. But if it has been unmapped, we have no security against the 432 * anon_vma structure being freed and reused (for another anon_vma: 433 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 434 * above cannot corrupt). 435 */ 436 if (!page_mapped(page)) { 437 put_anon_vma(anon_vma); 438 anon_vma = NULL; 439 } 440 out: 441 rcu_read_unlock(); 442 443 return anon_vma; 444 } 445 446 /* 447 * Similar to page_get_anon_vma() except it locks the anon_vma. 448 * 449 * Its a little more complex as it tries to keep the fast path to a single 450 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 451 * reference like with page_get_anon_vma() and then block on the mutex. 452 */ 453 struct anon_vma *page_lock_anon_vma(struct page *page) 454 { 455 struct anon_vma *anon_vma = NULL; 456 struct anon_vma *root_anon_vma; 457 unsigned long anon_mapping; 458 459 rcu_read_lock(); 460 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 461 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 462 goto out; 463 if (!page_mapped(page)) 464 goto out; 465 466 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 467 root_anon_vma = ACCESS_ONCE(anon_vma->root); 468 if (mutex_trylock(&root_anon_vma->mutex)) { 469 /* 470 * If the page is still mapped, then this anon_vma is still 471 * its anon_vma, and holding the mutex ensures that it will 472 * not go away, see anon_vma_free(). 473 */ 474 if (!page_mapped(page)) { 475 mutex_unlock(&root_anon_vma->mutex); 476 anon_vma = NULL; 477 } 478 goto out; 479 } 480 481 /* trylock failed, we got to sleep */ 482 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 483 anon_vma = NULL; 484 goto out; 485 } 486 487 if (!page_mapped(page)) { 488 put_anon_vma(anon_vma); 489 anon_vma = NULL; 490 goto out; 491 } 492 493 /* we pinned the anon_vma, its safe to sleep */ 494 rcu_read_unlock(); 495 anon_vma_lock(anon_vma); 496 497 if (atomic_dec_and_test(&anon_vma->refcount)) { 498 /* 499 * Oops, we held the last refcount, release the lock 500 * and bail -- can't simply use put_anon_vma() because 501 * we'll deadlock on the anon_vma_lock() recursion. 502 */ 503 anon_vma_unlock(anon_vma); 504 __put_anon_vma(anon_vma); 505 anon_vma = NULL; 506 } 507 508 return anon_vma; 509 510 out: 511 rcu_read_unlock(); 512 return anon_vma; 513 } 514 515 void page_unlock_anon_vma(struct anon_vma *anon_vma) 516 { 517 anon_vma_unlock(anon_vma); 518 } 519 520 /* 521 * At what user virtual address is page expected in @vma? 522 * Returns virtual address or -EFAULT if page's index/offset is not 523 * within the range mapped the @vma. 524 */ 525 inline unsigned long 526 vma_address(struct page *page, struct vm_area_struct *vma) 527 { 528 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 529 unsigned long address; 530 531 if (unlikely(is_vm_hugetlb_page(vma))) 532 pgoff = page->index << huge_page_order(page_hstate(page)); 533 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 534 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 535 /* page should be within @vma mapping range */ 536 return -EFAULT; 537 } 538 return address; 539 } 540 541 /* 542 * At what user virtual address is page expected in vma? 543 * Caller should check the page is actually part of the vma. 544 */ 545 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 546 { 547 if (PageAnon(page)) { 548 struct anon_vma *page__anon_vma = page_anon_vma(page); 549 /* 550 * Note: swapoff's unuse_vma() is more efficient with this 551 * check, and needs it to match anon_vma when KSM is active. 552 */ 553 if (!vma->anon_vma || !page__anon_vma || 554 vma->anon_vma->root != page__anon_vma->root) 555 return -EFAULT; 556 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 557 if (!vma->vm_file || 558 vma->vm_file->f_mapping != page->mapping) 559 return -EFAULT; 560 } else 561 return -EFAULT; 562 return vma_address(page, vma); 563 } 564 565 /* 566 * Check that @page is mapped at @address into @mm. 567 * 568 * If @sync is false, page_check_address may perform a racy check to avoid 569 * the page table lock when the pte is not present (helpful when reclaiming 570 * highly shared pages). 571 * 572 * On success returns with pte mapped and locked. 573 */ 574 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 575 unsigned long address, spinlock_t **ptlp, int sync) 576 { 577 pgd_t *pgd; 578 pud_t *pud; 579 pmd_t *pmd; 580 pte_t *pte; 581 spinlock_t *ptl; 582 583 if (unlikely(PageHuge(page))) { 584 pte = huge_pte_offset(mm, address); 585 ptl = &mm->page_table_lock; 586 goto check; 587 } 588 589 pgd = pgd_offset(mm, address); 590 if (!pgd_present(*pgd)) 591 return NULL; 592 593 pud = pud_offset(pgd, address); 594 if (!pud_present(*pud)) 595 return NULL; 596 597 pmd = pmd_offset(pud, address); 598 if (!pmd_present(*pmd)) 599 return NULL; 600 if (pmd_trans_huge(*pmd)) 601 return NULL; 602 603 pte = pte_offset_map(pmd, address); 604 /* Make a quick check before getting the lock */ 605 if (!sync && !pte_present(*pte)) { 606 pte_unmap(pte); 607 return NULL; 608 } 609 610 ptl = pte_lockptr(mm, pmd); 611 check: 612 spin_lock(ptl); 613 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 614 *ptlp = ptl; 615 return pte; 616 } 617 pte_unmap_unlock(pte, ptl); 618 return NULL; 619 } 620 621 /** 622 * page_mapped_in_vma - check whether a page is really mapped in a VMA 623 * @page: the page to test 624 * @vma: the VMA to test 625 * 626 * Returns 1 if the page is mapped into the page tables of the VMA, 0 627 * if the page is not mapped into the page tables of this VMA. Only 628 * valid for normal file or anonymous VMAs. 629 */ 630 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 631 { 632 unsigned long address; 633 pte_t *pte; 634 spinlock_t *ptl; 635 636 address = vma_address(page, vma); 637 if (address == -EFAULT) /* out of vma range */ 638 return 0; 639 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 640 if (!pte) /* the page is not in this mm */ 641 return 0; 642 pte_unmap_unlock(pte, ptl); 643 644 return 1; 645 } 646 647 /* 648 * Subfunctions of page_referenced: page_referenced_one called 649 * repeatedly from either page_referenced_anon or page_referenced_file. 650 */ 651 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 652 unsigned long address, unsigned int *mapcount, 653 unsigned long *vm_flags) 654 { 655 struct mm_struct *mm = vma->vm_mm; 656 int referenced = 0; 657 658 if (unlikely(PageTransHuge(page))) { 659 pmd_t *pmd; 660 661 spin_lock(&mm->page_table_lock); 662 /* 663 * rmap might return false positives; we must filter 664 * these out using page_check_address_pmd(). 665 */ 666 pmd = page_check_address_pmd(page, mm, address, 667 PAGE_CHECK_ADDRESS_PMD_FLAG); 668 if (!pmd) { 669 spin_unlock(&mm->page_table_lock); 670 goto out; 671 } 672 673 if (vma->vm_flags & VM_LOCKED) { 674 spin_unlock(&mm->page_table_lock); 675 *mapcount = 0; /* break early from loop */ 676 *vm_flags |= VM_LOCKED; 677 goto out; 678 } 679 680 /* go ahead even if the pmd is pmd_trans_splitting() */ 681 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 682 referenced++; 683 spin_unlock(&mm->page_table_lock); 684 } else { 685 pte_t *pte; 686 spinlock_t *ptl; 687 688 /* 689 * rmap might return false positives; we must filter 690 * these out using page_check_address(). 691 */ 692 pte = page_check_address(page, mm, address, &ptl, 0); 693 if (!pte) 694 goto out; 695 696 if (vma->vm_flags & VM_LOCKED) { 697 pte_unmap_unlock(pte, ptl); 698 *mapcount = 0; /* break early from loop */ 699 *vm_flags |= VM_LOCKED; 700 goto out; 701 } 702 703 if (ptep_clear_flush_young_notify(vma, address, pte)) { 704 /* 705 * Don't treat a reference through a sequentially read 706 * mapping as such. If the page has been used in 707 * another mapping, we will catch it; if this other 708 * mapping is already gone, the unmap path will have 709 * set PG_referenced or activated the page. 710 */ 711 if (likely(!VM_SequentialReadHint(vma))) 712 referenced++; 713 } 714 pte_unmap_unlock(pte, ptl); 715 } 716 717 /* Pretend the page is referenced if the task has the 718 swap token and is in the middle of a page fault. */ 719 if (mm != current->mm && has_swap_token(mm) && 720 rwsem_is_locked(&mm->mmap_sem)) 721 referenced++; 722 723 (*mapcount)--; 724 725 if (referenced) 726 *vm_flags |= vma->vm_flags; 727 out: 728 return referenced; 729 } 730 731 static int page_referenced_anon(struct page *page, 732 struct mem_cgroup *mem_cont, 733 unsigned long *vm_flags) 734 { 735 unsigned int mapcount; 736 struct anon_vma *anon_vma; 737 struct anon_vma_chain *avc; 738 int referenced = 0; 739 740 anon_vma = page_lock_anon_vma(page); 741 if (!anon_vma) 742 return referenced; 743 744 mapcount = page_mapcount(page); 745 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 746 struct vm_area_struct *vma = avc->vma; 747 unsigned long address = vma_address(page, vma); 748 if (address == -EFAULT) 749 continue; 750 /* 751 * If we are reclaiming on behalf of a cgroup, skip 752 * counting on behalf of references from different 753 * cgroups 754 */ 755 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 756 continue; 757 referenced += page_referenced_one(page, vma, address, 758 &mapcount, vm_flags); 759 if (!mapcount) 760 break; 761 } 762 763 page_unlock_anon_vma(anon_vma); 764 return referenced; 765 } 766 767 /** 768 * page_referenced_file - referenced check for object-based rmap 769 * @page: the page we're checking references on. 770 * @mem_cont: target memory controller 771 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 772 * 773 * For an object-based mapped page, find all the places it is mapped and 774 * check/clear the referenced flag. This is done by following the page->mapping 775 * pointer, then walking the chain of vmas it holds. It returns the number 776 * of references it found. 777 * 778 * This function is only called from page_referenced for object-based pages. 779 */ 780 static int page_referenced_file(struct page *page, 781 struct mem_cgroup *mem_cont, 782 unsigned long *vm_flags) 783 { 784 unsigned int mapcount; 785 struct address_space *mapping = page->mapping; 786 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 787 struct vm_area_struct *vma; 788 struct prio_tree_iter iter; 789 int referenced = 0; 790 791 /* 792 * The caller's checks on page->mapping and !PageAnon have made 793 * sure that this is a file page: the check for page->mapping 794 * excludes the case just before it gets set on an anon page. 795 */ 796 BUG_ON(PageAnon(page)); 797 798 /* 799 * The page lock not only makes sure that page->mapping cannot 800 * suddenly be NULLified by truncation, it makes sure that the 801 * structure at mapping cannot be freed and reused yet, 802 * so we can safely take mapping->i_mmap_mutex. 803 */ 804 BUG_ON(!PageLocked(page)); 805 806 mutex_lock(&mapping->i_mmap_mutex); 807 808 /* 809 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 810 * is more likely to be accurate if we note it after spinning. 811 */ 812 mapcount = page_mapcount(page); 813 814 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 815 unsigned long address = vma_address(page, vma); 816 if (address == -EFAULT) 817 continue; 818 /* 819 * If we are reclaiming on behalf of a cgroup, skip 820 * counting on behalf of references from different 821 * cgroups 822 */ 823 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 824 continue; 825 referenced += page_referenced_one(page, vma, address, 826 &mapcount, vm_flags); 827 if (!mapcount) 828 break; 829 } 830 831 mutex_unlock(&mapping->i_mmap_mutex); 832 return referenced; 833 } 834 835 /** 836 * page_referenced - test if the page was referenced 837 * @page: the page to test 838 * @is_locked: caller holds lock on the page 839 * @mem_cont: target memory controller 840 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 841 * 842 * Quick test_and_clear_referenced for all mappings to a page, 843 * returns the number of ptes which referenced the page. 844 */ 845 int page_referenced(struct page *page, 846 int is_locked, 847 struct mem_cgroup *mem_cont, 848 unsigned long *vm_flags) 849 { 850 int referenced = 0; 851 int we_locked = 0; 852 853 *vm_flags = 0; 854 if (page_mapped(page) && page_rmapping(page)) { 855 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 856 we_locked = trylock_page(page); 857 if (!we_locked) { 858 referenced++; 859 goto out; 860 } 861 } 862 if (unlikely(PageKsm(page))) 863 referenced += page_referenced_ksm(page, mem_cont, 864 vm_flags); 865 else if (PageAnon(page)) 866 referenced += page_referenced_anon(page, mem_cont, 867 vm_flags); 868 else if (page->mapping) 869 referenced += page_referenced_file(page, mem_cont, 870 vm_flags); 871 if (we_locked) 872 unlock_page(page); 873 } 874 out: 875 if (page_test_and_clear_young(page_to_pfn(page))) 876 referenced++; 877 878 return referenced; 879 } 880 881 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 882 unsigned long address) 883 { 884 struct mm_struct *mm = vma->vm_mm; 885 pte_t *pte; 886 spinlock_t *ptl; 887 int ret = 0; 888 889 pte = page_check_address(page, mm, address, &ptl, 1); 890 if (!pte) 891 goto out; 892 893 if (pte_dirty(*pte) || pte_write(*pte)) { 894 pte_t entry; 895 896 flush_cache_page(vma, address, pte_pfn(*pte)); 897 entry = ptep_clear_flush_notify(vma, address, pte); 898 entry = pte_wrprotect(entry); 899 entry = pte_mkclean(entry); 900 set_pte_at(mm, address, pte, entry); 901 ret = 1; 902 } 903 904 pte_unmap_unlock(pte, ptl); 905 out: 906 return ret; 907 } 908 909 static int page_mkclean_file(struct address_space *mapping, struct page *page) 910 { 911 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 912 struct vm_area_struct *vma; 913 struct prio_tree_iter iter; 914 int ret = 0; 915 916 BUG_ON(PageAnon(page)); 917 918 mutex_lock(&mapping->i_mmap_mutex); 919 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 920 if (vma->vm_flags & VM_SHARED) { 921 unsigned long address = vma_address(page, vma); 922 if (address == -EFAULT) 923 continue; 924 ret += page_mkclean_one(page, vma, address); 925 } 926 } 927 mutex_unlock(&mapping->i_mmap_mutex); 928 return ret; 929 } 930 931 int page_mkclean(struct page *page) 932 { 933 int ret = 0; 934 935 BUG_ON(!PageLocked(page)); 936 937 if (page_mapped(page)) { 938 struct address_space *mapping = page_mapping(page); 939 if (mapping) { 940 ret = page_mkclean_file(mapping, page); 941 if (page_test_and_clear_dirty(page_to_pfn(page), 1)) 942 ret = 1; 943 } 944 } 945 946 return ret; 947 } 948 EXPORT_SYMBOL_GPL(page_mkclean); 949 950 /** 951 * page_move_anon_rmap - move a page to our anon_vma 952 * @page: the page to move to our anon_vma 953 * @vma: the vma the page belongs to 954 * @address: the user virtual address mapped 955 * 956 * When a page belongs exclusively to one process after a COW event, 957 * that page can be moved into the anon_vma that belongs to just that 958 * process, so the rmap code will not search the parent or sibling 959 * processes. 960 */ 961 void page_move_anon_rmap(struct page *page, 962 struct vm_area_struct *vma, unsigned long address) 963 { 964 struct anon_vma *anon_vma = vma->anon_vma; 965 966 VM_BUG_ON(!PageLocked(page)); 967 VM_BUG_ON(!anon_vma); 968 VM_BUG_ON(page->index != linear_page_index(vma, address)); 969 970 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 971 page->mapping = (struct address_space *) anon_vma; 972 } 973 974 /** 975 * __page_set_anon_rmap - set up new anonymous rmap 976 * @page: Page to add to rmap 977 * @vma: VM area to add page to. 978 * @address: User virtual address of the mapping 979 * @exclusive: the page is exclusively owned by the current process 980 */ 981 static void __page_set_anon_rmap(struct page *page, 982 struct vm_area_struct *vma, unsigned long address, int exclusive) 983 { 984 struct anon_vma *anon_vma = vma->anon_vma; 985 986 BUG_ON(!anon_vma); 987 988 if (PageAnon(page)) 989 return; 990 991 /* 992 * If the page isn't exclusively mapped into this vma, 993 * we must use the _oldest_ possible anon_vma for the 994 * page mapping! 995 */ 996 if (!exclusive) 997 anon_vma = anon_vma->root; 998 999 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1000 page->mapping = (struct address_space *) anon_vma; 1001 page->index = linear_page_index(vma, address); 1002 } 1003 1004 /** 1005 * __page_check_anon_rmap - sanity check anonymous rmap addition 1006 * @page: the page to add the mapping to 1007 * @vma: the vm area in which the mapping is added 1008 * @address: the user virtual address mapped 1009 */ 1010 static void __page_check_anon_rmap(struct page *page, 1011 struct vm_area_struct *vma, unsigned long address) 1012 { 1013 #ifdef CONFIG_DEBUG_VM 1014 /* 1015 * The page's anon-rmap details (mapping and index) are guaranteed to 1016 * be set up correctly at this point. 1017 * 1018 * We have exclusion against page_add_anon_rmap because the caller 1019 * always holds the page locked, except if called from page_dup_rmap, 1020 * in which case the page is already known to be setup. 1021 * 1022 * We have exclusion against page_add_new_anon_rmap because those pages 1023 * are initially only visible via the pagetables, and the pte is locked 1024 * over the call to page_add_new_anon_rmap. 1025 */ 1026 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1027 BUG_ON(page->index != linear_page_index(vma, address)); 1028 #endif 1029 } 1030 1031 /** 1032 * page_add_anon_rmap - add pte mapping to an anonymous page 1033 * @page: the page to add the mapping to 1034 * @vma: the vm area in which the mapping is added 1035 * @address: the user virtual address mapped 1036 * 1037 * The caller needs to hold the pte lock, and the page must be locked in 1038 * the anon_vma case: to serialize mapping,index checking after setting, 1039 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1040 * (but PageKsm is never downgraded to PageAnon). 1041 */ 1042 void page_add_anon_rmap(struct page *page, 1043 struct vm_area_struct *vma, unsigned long address) 1044 { 1045 do_page_add_anon_rmap(page, vma, address, 0); 1046 } 1047 1048 /* 1049 * Special version of the above for do_swap_page, which often runs 1050 * into pages that are exclusively owned by the current process. 1051 * Everybody else should continue to use page_add_anon_rmap above. 1052 */ 1053 void do_page_add_anon_rmap(struct page *page, 1054 struct vm_area_struct *vma, unsigned long address, int exclusive) 1055 { 1056 int first = atomic_inc_and_test(&page->_mapcount); 1057 if (first) { 1058 if (!PageTransHuge(page)) 1059 __inc_zone_page_state(page, NR_ANON_PAGES); 1060 else 1061 __inc_zone_page_state(page, 1062 NR_ANON_TRANSPARENT_HUGEPAGES); 1063 } 1064 if (unlikely(PageKsm(page))) 1065 return; 1066 1067 VM_BUG_ON(!PageLocked(page)); 1068 /* address might be in next vma when migration races vma_adjust */ 1069 if (first) 1070 __page_set_anon_rmap(page, vma, address, exclusive); 1071 else 1072 __page_check_anon_rmap(page, vma, address); 1073 } 1074 1075 /** 1076 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1077 * @page: the page to add the mapping to 1078 * @vma: the vm area in which the mapping is added 1079 * @address: the user virtual address mapped 1080 * 1081 * Same as page_add_anon_rmap but must only be called on *new* pages. 1082 * This means the inc-and-test can be bypassed. 1083 * Page does not have to be locked. 1084 */ 1085 void page_add_new_anon_rmap(struct page *page, 1086 struct vm_area_struct *vma, unsigned long address) 1087 { 1088 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1089 SetPageSwapBacked(page); 1090 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1091 if (!PageTransHuge(page)) 1092 __inc_zone_page_state(page, NR_ANON_PAGES); 1093 else 1094 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1095 __page_set_anon_rmap(page, vma, address, 1); 1096 if (page_evictable(page, vma)) 1097 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1098 else 1099 add_page_to_unevictable_list(page); 1100 } 1101 1102 /** 1103 * page_add_file_rmap - add pte mapping to a file page 1104 * @page: the page to add the mapping to 1105 * 1106 * The caller needs to hold the pte lock. 1107 */ 1108 void page_add_file_rmap(struct page *page) 1109 { 1110 if (atomic_inc_and_test(&page->_mapcount)) { 1111 __inc_zone_page_state(page, NR_FILE_MAPPED); 1112 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1113 } 1114 } 1115 1116 /** 1117 * page_remove_rmap - take down pte mapping from a page 1118 * @page: page to remove mapping from 1119 * 1120 * The caller needs to hold the pte lock. 1121 */ 1122 void page_remove_rmap(struct page *page) 1123 { 1124 /* page still mapped by someone else? */ 1125 if (!atomic_add_negative(-1, &page->_mapcount)) 1126 return; 1127 1128 /* 1129 * Now that the last pte has gone, s390 must transfer dirty 1130 * flag from storage key to struct page. We can usually skip 1131 * this if the page is anon, so about to be freed; but perhaps 1132 * not if it's in swapcache - there might be another pte slot 1133 * containing the swap entry, but page not yet written to swap. 1134 */ 1135 if ((!PageAnon(page) || PageSwapCache(page)) && 1136 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1137 set_page_dirty(page); 1138 /* 1139 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1140 * and not charged by memcg for now. 1141 */ 1142 if (unlikely(PageHuge(page))) 1143 return; 1144 if (PageAnon(page)) { 1145 mem_cgroup_uncharge_page(page); 1146 if (!PageTransHuge(page)) 1147 __dec_zone_page_state(page, NR_ANON_PAGES); 1148 else 1149 __dec_zone_page_state(page, 1150 NR_ANON_TRANSPARENT_HUGEPAGES); 1151 } else { 1152 __dec_zone_page_state(page, NR_FILE_MAPPED); 1153 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1154 } 1155 /* 1156 * It would be tidy to reset the PageAnon mapping here, 1157 * but that might overwrite a racing page_add_anon_rmap 1158 * which increments mapcount after us but sets mapping 1159 * before us: so leave the reset to free_hot_cold_page, 1160 * and remember that it's only reliable while mapped. 1161 * Leaving it set also helps swapoff to reinstate ptes 1162 * faster for those pages still in swapcache. 1163 */ 1164 } 1165 1166 /* 1167 * Subfunctions of try_to_unmap: try_to_unmap_one called 1168 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 1169 */ 1170 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1171 unsigned long address, enum ttu_flags flags) 1172 { 1173 struct mm_struct *mm = vma->vm_mm; 1174 pte_t *pte; 1175 pte_t pteval; 1176 spinlock_t *ptl; 1177 int ret = SWAP_AGAIN; 1178 1179 pte = page_check_address(page, mm, address, &ptl, 0); 1180 if (!pte) 1181 goto out; 1182 1183 /* 1184 * If the page is mlock()d, we cannot swap it out. 1185 * If it's recently referenced (perhaps page_referenced 1186 * skipped over this mm) then we should reactivate it. 1187 */ 1188 if (!(flags & TTU_IGNORE_MLOCK)) { 1189 if (vma->vm_flags & VM_LOCKED) 1190 goto out_mlock; 1191 1192 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1193 goto out_unmap; 1194 } 1195 if (!(flags & TTU_IGNORE_ACCESS)) { 1196 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1197 ret = SWAP_FAIL; 1198 goto out_unmap; 1199 } 1200 } 1201 1202 /* Nuke the page table entry. */ 1203 flush_cache_page(vma, address, page_to_pfn(page)); 1204 pteval = ptep_clear_flush_notify(vma, address, pte); 1205 1206 /* Move the dirty bit to the physical page now the pte is gone. */ 1207 if (pte_dirty(pteval)) 1208 set_page_dirty(page); 1209 1210 /* Update high watermark before we lower rss */ 1211 update_hiwater_rss(mm); 1212 1213 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1214 if (PageAnon(page)) 1215 dec_mm_counter(mm, MM_ANONPAGES); 1216 else 1217 dec_mm_counter(mm, MM_FILEPAGES); 1218 set_pte_at(mm, address, pte, 1219 swp_entry_to_pte(make_hwpoison_entry(page))); 1220 } else if (PageAnon(page)) { 1221 swp_entry_t entry = { .val = page_private(page) }; 1222 1223 if (PageSwapCache(page)) { 1224 /* 1225 * Store the swap location in the pte. 1226 * See handle_pte_fault() ... 1227 */ 1228 if (swap_duplicate(entry) < 0) { 1229 set_pte_at(mm, address, pte, pteval); 1230 ret = SWAP_FAIL; 1231 goto out_unmap; 1232 } 1233 if (list_empty(&mm->mmlist)) { 1234 spin_lock(&mmlist_lock); 1235 if (list_empty(&mm->mmlist)) 1236 list_add(&mm->mmlist, &init_mm.mmlist); 1237 spin_unlock(&mmlist_lock); 1238 } 1239 dec_mm_counter(mm, MM_ANONPAGES); 1240 inc_mm_counter(mm, MM_SWAPENTS); 1241 } else if (PAGE_MIGRATION) { 1242 /* 1243 * Store the pfn of the page in a special migration 1244 * pte. do_swap_page() will wait until the migration 1245 * pte is removed and then restart fault handling. 1246 */ 1247 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1248 entry = make_migration_entry(page, pte_write(pteval)); 1249 } 1250 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1251 BUG_ON(pte_file(*pte)); 1252 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1253 /* Establish migration entry for a file page */ 1254 swp_entry_t entry; 1255 entry = make_migration_entry(page, pte_write(pteval)); 1256 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1257 } else 1258 dec_mm_counter(mm, MM_FILEPAGES); 1259 1260 page_remove_rmap(page); 1261 page_cache_release(page); 1262 1263 out_unmap: 1264 pte_unmap_unlock(pte, ptl); 1265 out: 1266 return ret; 1267 1268 out_mlock: 1269 pte_unmap_unlock(pte, ptl); 1270 1271 1272 /* 1273 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1274 * unstable result and race. Plus, We can't wait here because 1275 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1276 * if trylock failed, the page remain in evictable lru and later 1277 * vmscan could retry to move the page to unevictable lru if the 1278 * page is actually mlocked. 1279 */ 1280 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1281 if (vma->vm_flags & VM_LOCKED) { 1282 mlock_vma_page(page); 1283 ret = SWAP_MLOCK; 1284 } 1285 up_read(&vma->vm_mm->mmap_sem); 1286 } 1287 return ret; 1288 } 1289 1290 /* 1291 * objrmap doesn't work for nonlinear VMAs because the assumption that 1292 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1293 * Consequently, given a particular page and its ->index, we cannot locate the 1294 * ptes which are mapping that page without an exhaustive linear search. 1295 * 1296 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1297 * maps the file to which the target page belongs. The ->vm_private_data field 1298 * holds the current cursor into that scan. Successive searches will circulate 1299 * around the vma's virtual address space. 1300 * 1301 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1302 * more scanning pressure is placed against them as well. Eventually pages 1303 * will become fully unmapped and are eligible for eviction. 1304 * 1305 * For very sparsely populated VMAs this is a little inefficient - chances are 1306 * there there won't be many ptes located within the scan cluster. In this case 1307 * maybe we could scan further - to the end of the pte page, perhaps. 1308 * 1309 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1310 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1311 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1312 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1313 */ 1314 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1315 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1316 1317 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1318 struct vm_area_struct *vma, struct page *check_page) 1319 { 1320 struct mm_struct *mm = vma->vm_mm; 1321 pgd_t *pgd; 1322 pud_t *pud; 1323 pmd_t *pmd; 1324 pte_t *pte; 1325 pte_t pteval; 1326 spinlock_t *ptl; 1327 struct page *page; 1328 unsigned long address; 1329 unsigned long end; 1330 int ret = SWAP_AGAIN; 1331 int locked_vma = 0; 1332 1333 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1334 end = address + CLUSTER_SIZE; 1335 if (address < vma->vm_start) 1336 address = vma->vm_start; 1337 if (end > vma->vm_end) 1338 end = vma->vm_end; 1339 1340 pgd = pgd_offset(mm, address); 1341 if (!pgd_present(*pgd)) 1342 return ret; 1343 1344 pud = pud_offset(pgd, address); 1345 if (!pud_present(*pud)) 1346 return ret; 1347 1348 pmd = pmd_offset(pud, address); 1349 if (!pmd_present(*pmd)) 1350 return ret; 1351 1352 /* 1353 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1354 * keep the sem while scanning the cluster for mlocking pages. 1355 */ 1356 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1357 locked_vma = (vma->vm_flags & VM_LOCKED); 1358 if (!locked_vma) 1359 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1360 } 1361 1362 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1363 1364 /* Update high watermark before we lower rss */ 1365 update_hiwater_rss(mm); 1366 1367 for (; address < end; pte++, address += PAGE_SIZE) { 1368 if (!pte_present(*pte)) 1369 continue; 1370 page = vm_normal_page(vma, address, *pte); 1371 BUG_ON(!page || PageAnon(page)); 1372 1373 if (locked_vma) { 1374 mlock_vma_page(page); /* no-op if already mlocked */ 1375 if (page == check_page) 1376 ret = SWAP_MLOCK; 1377 continue; /* don't unmap */ 1378 } 1379 1380 if (ptep_clear_flush_young_notify(vma, address, pte)) 1381 continue; 1382 1383 /* Nuke the page table entry. */ 1384 flush_cache_page(vma, address, pte_pfn(*pte)); 1385 pteval = ptep_clear_flush_notify(vma, address, pte); 1386 1387 /* If nonlinear, store the file page offset in the pte. */ 1388 if (page->index != linear_page_index(vma, address)) 1389 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1390 1391 /* Move the dirty bit to the physical page now the pte is gone. */ 1392 if (pte_dirty(pteval)) 1393 set_page_dirty(page); 1394 1395 page_remove_rmap(page); 1396 page_cache_release(page); 1397 dec_mm_counter(mm, MM_FILEPAGES); 1398 (*mapcount)--; 1399 } 1400 pte_unmap_unlock(pte - 1, ptl); 1401 if (locked_vma) 1402 up_read(&vma->vm_mm->mmap_sem); 1403 return ret; 1404 } 1405 1406 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1407 { 1408 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1409 1410 if (!maybe_stack) 1411 return false; 1412 1413 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1414 VM_STACK_INCOMPLETE_SETUP) 1415 return true; 1416 1417 return false; 1418 } 1419 1420 /** 1421 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1422 * rmap method 1423 * @page: the page to unmap/unlock 1424 * @flags: action and flags 1425 * 1426 * Find all the mappings of a page using the mapping pointer and the vma chains 1427 * contained in the anon_vma struct it points to. 1428 * 1429 * This function is only called from try_to_unmap/try_to_munlock for 1430 * anonymous pages. 1431 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1432 * where the page was found will be held for write. So, we won't recheck 1433 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1434 * 'LOCKED. 1435 */ 1436 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1437 { 1438 struct anon_vma *anon_vma; 1439 struct anon_vma_chain *avc; 1440 int ret = SWAP_AGAIN; 1441 1442 anon_vma = page_lock_anon_vma(page); 1443 if (!anon_vma) 1444 return ret; 1445 1446 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1447 struct vm_area_struct *vma = avc->vma; 1448 unsigned long address; 1449 1450 /* 1451 * During exec, a temporary VMA is setup and later moved. 1452 * The VMA is moved under the anon_vma lock but not the 1453 * page tables leading to a race where migration cannot 1454 * find the migration ptes. Rather than increasing the 1455 * locking requirements of exec(), migration skips 1456 * temporary VMAs until after exec() completes. 1457 */ 1458 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1459 is_vma_temporary_stack(vma)) 1460 continue; 1461 1462 address = vma_address(page, vma); 1463 if (address == -EFAULT) 1464 continue; 1465 ret = try_to_unmap_one(page, vma, address, flags); 1466 if (ret != SWAP_AGAIN || !page_mapped(page)) 1467 break; 1468 } 1469 1470 page_unlock_anon_vma(anon_vma); 1471 return ret; 1472 } 1473 1474 /** 1475 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1476 * @page: the page to unmap/unlock 1477 * @flags: action and flags 1478 * 1479 * Find all the mappings of a page using the mapping pointer and the vma chains 1480 * contained in the address_space struct it points to. 1481 * 1482 * This function is only called from try_to_unmap/try_to_munlock for 1483 * object-based pages. 1484 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1485 * where the page was found will be held for write. So, we won't recheck 1486 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1487 * 'LOCKED. 1488 */ 1489 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1490 { 1491 struct address_space *mapping = page->mapping; 1492 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1493 struct vm_area_struct *vma; 1494 struct prio_tree_iter iter; 1495 int ret = SWAP_AGAIN; 1496 unsigned long cursor; 1497 unsigned long max_nl_cursor = 0; 1498 unsigned long max_nl_size = 0; 1499 unsigned int mapcount; 1500 1501 mutex_lock(&mapping->i_mmap_mutex); 1502 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1503 unsigned long address = vma_address(page, vma); 1504 if (address == -EFAULT) 1505 continue; 1506 ret = try_to_unmap_one(page, vma, address, flags); 1507 if (ret != SWAP_AGAIN || !page_mapped(page)) 1508 goto out; 1509 } 1510 1511 if (list_empty(&mapping->i_mmap_nonlinear)) 1512 goto out; 1513 1514 /* 1515 * We don't bother to try to find the munlocked page in nonlinears. 1516 * It's costly. Instead, later, page reclaim logic may call 1517 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1518 */ 1519 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1520 goto out; 1521 1522 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1523 shared.vm_set.list) { 1524 cursor = (unsigned long) vma->vm_private_data; 1525 if (cursor > max_nl_cursor) 1526 max_nl_cursor = cursor; 1527 cursor = vma->vm_end - vma->vm_start; 1528 if (cursor > max_nl_size) 1529 max_nl_size = cursor; 1530 } 1531 1532 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1533 ret = SWAP_FAIL; 1534 goto out; 1535 } 1536 1537 /* 1538 * We don't try to search for this page in the nonlinear vmas, 1539 * and page_referenced wouldn't have found it anyway. Instead 1540 * just walk the nonlinear vmas trying to age and unmap some. 1541 * The mapcount of the page we came in with is irrelevant, 1542 * but even so use it as a guide to how hard we should try? 1543 */ 1544 mapcount = page_mapcount(page); 1545 if (!mapcount) 1546 goto out; 1547 cond_resched(); 1548 1549 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1550 if (max_nl_cursor == 0) 1551 max_nl_cursor = CLUSTER_SIZE; 1552 1553 do { 1554 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1555 shared.vm_set.list) { 1556 cursor = (unsigned long) vma->vm_private_data; 1557 while ( cursor < max_nl_cursor && 1558 cursor < vma->vm_end - vma->vm_start) { 1559 if (try_to_unmap_cluster(cursor, &mapcount, 1560 vma, page) == SWAP_MLOCK) 1561 ret = SWAP_MLOCK; 1562 cursor += CLUSTER_SIZE; 1563 vma->vm_private_data = (void *) cursor; 1564 if ((int)mapcount <= 0) 1565 goto out; 1566 } 1567 vma->vm_private_data = (void *) max_nl_cursor; 1568 } 1569 cond_resched(); 1570 max_nl_cursor += CLUSTER_SIZE; 1571 } while (max_nl_cursor <= max_nl_size); 1572 1573 /* 1574 * Don't loop forever (perhaps all the remaining pages are 1575 * in locked vmas). Reset cursor on all unreserved nonlinear 1576 * vmas, now forgetting on which ones it had fallen behind. 1577 */ 1578 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1579 vma->vm_private_data = NULL; 1580 out: 1581 mutex_unlock(&mapping->i_mmap_mutex); 1582 return ret; 1583 } 1584 1585 /** 1586 * try_to_unmap - try to remove all page table mappings to a page 1587 * @page: the page to get unmapped 1588 * @flags: action and flags 1589 * 1590 * Tries to remove all the page table entries which are mapping this 1591 * page, used in the pageout path. Caller must hold the page lock. 1592 * Return values are: 1593 * 1594 * SWAP_SUCCESS - we succeeded in removing all mappings 1595 * SWAP_AGAIN - we missed a mapping, try again later 1596 * SWAP_FAIL - the page is unswappable 1597 * SWAP_MLOCK - page is mlocked. 1598 */ 1599 int try_to_unmap(struct page *page, enum ttu_flags flags) 1600 { 1601 int ret; 1602 1603 BUG_ON(!PageLocked(page)); 1604 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1605 1606 if (unlikely(PageKsm(page))) 1607 ret = try_to_unmap_ksm(page, flags); 1608 else if (PageAnon(page)) 1609 ret = try_to_unmap_anon(page, flags); 1610 else 1611 ret = try_to_unmap_file(page, flags); 1612 if (ret != SWAP_MLOCK && !page_mapped(page)) 1613 ret = SWAP_SUCCESS; 1614 return ret; 1615 } 1616 1617 /** 1618 * try_to_munlock - try to munlock a page 1619 * @page: the page to be munlocked 1620 * 1621 * Called from munlock code. Checks all of the VMAs mapping the page 1622 * to make sure nobody else has this page mlocked. The page will be 1623 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1624 * 1625 * Return values are: 1626 * 1627 * SWAP_AGAIN - no vma is holding page mlocked, or, 1628 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1629 * SWAP_FAIL - page cannot be located at present 1630 * SWAP_MLOCK - page is now mlocked. 1631 */ 1632 int try_to_munlock(struct page *page) 1633 { 1634 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1635 1636 if (unlikely(PageKsm(page))) 1637 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1638 else if (PageAnon(page)) 1639 return try_to_unmap_anon(page, TTU_MUNLOCK); 1640 else 1641 return try_to_unmap_file(page, TTU_MUNLOCK); 1642 } 1643 1644 void __put_anon_vma(struct anon_vma *anon_vma) 1645 { 1646 struct anon_vma *root = anon_vma->root; 1647 1648 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1649 anon_vma_free(root); 1650 1651 anon_vma_free(anon_vma); 1652 } 1653 1654 #ifdef CONFIG_MIGRATION 1655 /* 1656 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1657 * Called by migrate.c to remove migration ptes, but might be used more later. 1658 */ 1659 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1660 struct vm_area_struct *, unsigned long, void *), void *arg) 1661 { 1662 struct anon_vma *anon_vma; 1663 struct anon_vma_chain *avc; 1664 int ret = SWAP_AGAIN; 1665 1666 /* 1667 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1668 * because that depends on page_mapped(); but not all its usages 1669 * are holding mmap_sem. Users without mmap_sem are required to 1670 * take a reference count to prevent the anon_vma disappearing 1671 */ 1672 anon_vma = page_anon_vma(page); 1673 if (!anon_vma) 1674 return ret; 1675 anon_vma_lock(anon_vma); 1676 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1677 struct vm_area_struct *vma = avc->vma; 1678 unsigned long address = vma_address(page, vma); 1679 if (address == -EFAULT) 1680 continue; 1681 ret = rmap_one(page, vma, address, arg); 1682 if (ret != SWAP_AGAIN) 1683 break; 1684 } 1685 anon_vma_unlock(anon_vma); 1686 return ret; 1687 } 1688 1689 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1690 struct vm_area_struct *, unsigned long, void *), void *arg) 1691 { 1692 struct address_space *mapping = page->mapping; 1693 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1694 struct vm_area_struct *vma; 1695 struct prio_tree_iter iter; 1696 int ret = SWAP_AGAIN; 1697 1698 if (!mapping) 1699 return ret; 1700 mutex_lock(&mapping->i_mmap_mutex); 1701 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1702 unsigned long address = vma_address(page, vma); 1703 if (address == -EFAULT) 1704 continue; 1705 ret = rmap_one(page, vma, address, arg); 1706 if (ret != SWAP_AGAIN) 1707 break; 1708 } 1709 /* 1710 * No nonlinear handling: being always shared, nonlinear vmas 1711 * never contain migration ptes. Decide what to do about this 1712 * limitation to linear when we need rmap_walk() on nonlinear. 1713 */ 1714 mutex_unlock(&mapping->i_mmap_mutex); 1715 return ret; 1716 } 1717 1718 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1719 struct vm_area_struct *, unsigned long, void *), void *arg) 1720 { 1721 VM_BUG_ON(!PageLocked(page)); 1722 1723 if (unlikely(PageKsm(page))) 1724 return rmap_walk_ksm(page, rmap_one, arg); 1725 else if (PageAnon(page)) 1726 return rmap_walk_anon(page, rmap_one, arg); 1727 else 1728 return rmap_walk_file(page, rmap_one, arg); 1729 } 1730 #endif /* CONFIG_MIGRATION */ 1731 1732 #ifdef CONFIG_HUGETLB_PAGE 1733 /* 1734 * The following three functions are for anonymous (private mapped) hugepages. 1735 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1736 * and no lru code, because we handle hugepages differently from common pages. 1737 */ 1738 static void __hugepage_set_anon_rmap(struct page *page, 1739 struct vm_area_struct *vma, unsigned long address, int exclusive) 1740 { 1741 struct anon_vma *anon_vma = vma->anon_vma; 1742 1743 BUG_ON(!anon_vma); 1744 1745 if (PageAnon(page)) 1746 return; 1747 if (!exclusive) 1748 anon_vma = anon_vma->root; 1749 1750 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1751 page->mapping = (struct address_space *) anon_vma; 1752 page->index = linear_page_index(vma, address); 1753 } 1754 1755 void hugepage_add_anon_rmap(struct page *page, 1756 struct vm_area_struct *vma, unsigned long address) 1757 { 1758 struct anon_vma *anon_vma = vma->anon_vma; 1759 int first; 1760 1761 BUG_ON(!PageLocked(page)); 1762 BUG_ON(!anon_vma); 1763 /* address might be in next vma when migration races vma_adjust */ 1764 first = atomic_inc_and_test(&page->_mapcount); 1765 if (first) 1766 __hugepage_set_anon_rmap(page, vma, address, 0); 1767 } 1768 1769 void hugepage_add_new_anon_rmap(struct page *page, 1770 struct vm_area_struct *vma, unsigned long address) 1771 { 1772 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1773 atomic_set(&page->_mapcount, 0); 1774 __hugepage_set_anon_rmap(page, vma, address, 1); 1775 } 1776 #endif /* CONFIG_HUGETLB_PAGE */ 1777