xref: /openbmc/linux/mm/rmap.c (revision e2f1cf25)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_rwsem
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *                 mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34  *                   mapping->tree_lock (widely used)
35  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
38  *                 mapping->tree_lock (widely used, in set_page_dirty,
39  *                           in arch-dependent flush_dcache_mmap_lock,
40  *                           within bdi.wb->list_lock in __sync_single_inode)
41  *
42  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
43  *   ->tasklist_lock
44  *     pte map lock
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
62 
63 #include <asm/tlbflush.h>
64 
65 #include "internal.h"
66 
67 static struct kmem_cache *anon_vma_cachep;
68 static struct kmem_cache *anon_vma_chain_cachep;
69 
70 static inline struct anon_vma *anon_vma_alloc(void)
71 {
72 	struct anon_vma *anon_vma;
73 
74 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
75 	if (anon_vma) {
76 		atomic_set(&anon_vma->refcount, 1);
77 		anon_vma->degree = 1;	/* Reference for first vma */
78 		anon_vma->parent = anon_vma;
79 		/*
80 		 * Initialise the anon_vma root to point to itself. If called
81 		 * from fork, the root will be reset to the parents anon_vma.
82 		 */
83 		anon_vma->root = anon_vma;
84 	}
85 
86 	return anon_vma;
87 }
88 
89 static inline void anon_vma_free(struct anon_vma *anon_vma)
90 {
91 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
92 
93 	/*
94 	 * Synchronize against page_lock_anon_vma_read() such that
95 	 * we can safely hold the lock without the anon_vma getting
96 	 * freed.
97 	 *
98 	 * Relies on the full mb implied by the atomic_dec_and_test() from
99 	 * put_anon_vma() against the acquire barrier implied by
100 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
101 	 *
102 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
103 	 *   down_read_trylock()		  atomic_dec_and_test()
104 	 *   LOCK				  MB
105 	 *   atomic_read()			  rwsem_is_locked()
106 	 *
107 	 * LOCK should suffice since the actual taking of the lock must
108 	 * happen _before_ what follows.
109 	 */
110 	might_sleep();
111 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
112 		anon_vma_lock_write(anon_vma);
113 		anon_vma_unlock_write(anon_vma);
114 	}
115 
116 	kmem_cache_free(anon_vma_cachep, anon_vma);
117 }
118 
119 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
120 {
121 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
122 }
123 
124 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
125 {
126 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
127 }
128 
129 static void anon_vma_chain_link(struct vm_area_struct *vma,
130 				struct anon_vma_chain *avc,
131 				struct anon_vma *anon_vma)
132 {
133 	avc->vma = vma;
134 	avc->anon_vma = anon_vma;
135 	list_add(&avc->same_vma, &vma->anon_vma_chain);
136 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
137 }
138 
139 /**
140  * anon_vma_prepare - attach an anon_vma to a memory region
141  * @vma: the memory region in question
142  *
143  * This makes sure the memory mapping described by 'vma' has
144  * an 'anon_vma' attached to it, so that we can associate the
145  * anonymous pages mapped into it with that anon_vma.
146  *
147  * The common case will be that we already have one, but if
148  * not we either need to find an adjacent mapping that we
149  * can re-use the anon_vma from (very common when the only
150  * reason for splitting a vma has been mprotect()), or we
151  * allocate a new one.
152  *
153  * Anon-vma allocations are very subtle, because we may have
154  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
155  * and that may actually touch the spinlock even in the newly
156  * allocated vma (it depends on RCU to make sure that the
157  * anon_vma isn't actually destroyed).
158  *
159  * As a result, we need to do proper anon_vma locking even
160  * for the new allocation. At the same time, we do not want
161  * to do any locking for the common case of already having
162  * an anon_vma.
163  *
164  * This must be called with the mmap_sem held for reading.
165  */
166 int anon_vma_prepare(struct vm_area_struct *vma)
167 {
168 	struct anon_vma *anon_vma = vma->anon_vma;
169 	struct anon_vma_chain *avc;
170 
171 	might_sleep();
172 	if (unlikely(!anon_vma)) {
173 		struct mm_struct *mm = vma->vm_mm;
174 		struct anon_vma *allocated;
175 
176 		avc = anon_vma_chain_alloc(GFP_KERNEL);
177 		if (!avc)
178 			goto out_enomem;
179 
180 		anon_vma = find_mergeable_anon_vma(vma);
181 		allocated = NULL;
182 		if (!anon_vma) {
183 			anon_vma = anon_vma_alloc();
184 			if (unlikely(!anon_vma))
185 				goto out_enomem_free_avc;
186 			allocated = anon_vma;
187 		}
188 
189 		anon_vma_lock_write(anon_vma);
190 		/* page_table_lock to protect against threads */
191 		spin_lock(&mm->page_table_lock);
192 		if (likely(!vma->anon_vma)) {
193 			vma->anon_vma = anon_vma;
194 			anon_vma_chain_link(vma, avc, anon_vma);
195 			/* vma reference or self-parent link for new root */
196 			anon_vma->degree++;
197 			allocated = NULL;
198 			avc = NULL;
199 		}
200 		spin_unlock(&mm->page_table_lock);
201 		anon_vma_unlock_write(anon_vma);
202 
203 		if (unlikely(allocated))
204 			put_anon_vma(allocated);
205 		if (unlikely(avc))
206 			anon_vma_chain_free(avc);
207 	}
208 	return 0;
209 
210  out_enomem_free_avc:
211 	anon_vma_chain_free(avc);
212  out_enomem:
213 	return -ENOMEM;
214 }
215 
216 /*
217  * This is a useful helper function for locking the anon_vma root as
218  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
219  * have the same vma.
220  *
221  * Such anon_vma's should have the same root, so you'd expect to see
222  * just a single mutex_lock for the whole traversal.
223  */
224 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
225 {
226 	struct anon_vma *new_root = anon_vma->root;
227 	if (new_root != root) {
228 		if (WARN_ON_ONCE(root))
229 			up_write(&root->rwsem);
230 		root = new_root;
231 		down_write(&root->rwsem);
232 	}
233 	return root;
234 }
235 
236 static inline void unlock_anon_vma_root(struct anon_vma *root)
237 {
238 	if (root)
239 		up_write(&root->rwsem);
240 }
241 
242 /*
243  * Attach the anon_vmas from src to dst.
244  * Returns 0 on success, -ENOMEM on failure.
245  *
246  * If dst->anon_vma is NULL this function tries to find and reuse existing
247  * anon_vma which has no vmas and only one child anon_vma. This prevents
248  * degradation of anon_vma hierarchy to endless linear chain in case of
249  * constantly forking task. On the other hand, an anon_vma with more than one
250  * child isn't reused even if there was no alive vma, thus rmap walker has a
251  * good chance of avoiding scanning the whole hierarchy when it searches where
252  * page is mapped.
253  */
254 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
255 {
256 	struct anon_vma_chain *avc, *pavc;
257 	struct anon_vma *root = NULL;
258 
259 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
260 		struct anon_vma *anon_vma;
261 
262 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
263 		if (unlikely(!avc)) {
264 			unlock_anon_vma_root(root);
265 			root = NULL;
266 			avc = anon_vma_chain_alloc(GFP_KERNEL);
267 			if (!avc)
268 				goto enomem_failure;
269 		}
270 		anon_vma = pavc->anon_vma;
271 		root = lock_anon_vma_root(root, anon_vma);
272 		anon_vma_chain_link(dst, avc, anon_vma);
273 
274 		/*
275 		 * Reuse existing anon_vma if its degree lower than two,
276 		 * that means it has no vma and only one anon_vma child.
277 		 *
278 		 * Do not chose parent anon_vma, otherwise first child
279 		 * will always reuse it. Root anon_vma is never reused:
280 		 * it has self-parent reference and at least one child.
281 		 */
282 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
283 				anon_vma->degree < 2)
284 			dst->anon_vma = anon_vma;
285 	}
286 	if (dst->anon_vma)
287 		dst->anon_vma->degree++;
288 	unlock_anon_vma_root(root);
289 	return 0;
290 
291  enomem_failure:
292 	/*
293 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
294 	 * decremented in unlink_anon_vmas().
295 	 * We can safely do this because callers of anon_vma_clone() don't care
296 	 * about dst->anon_vma if anon_vma_clone() failed.
297 	 */
298 	dst->anon_vma = NULL;
299 	unlink_anon_vmas(dst);
300 	return -ENOMEM;
301 }
302 
303 /*
304  * Attach vma to its own anon_vma, as well as to the anon_vmas that
305  * the corresponding VMA in the parent process is attached to.
306  * Returns 0 on success, non-zero on failure.
307  */
308 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
309 {
310 	struct anon_vma_chain *avc;
311 	struct anon_vma *anon_vma;
312 	int error;
313 
314 	/* Don't bother if the parent process has no anon_vma here. */
315 	if (!pvma->anon_vma)
316 		return 0;
317 
318 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
319 	vma->anon_vma = NULL;
320 
321 	/*
322 	 * First, attach the new VMA to the parent VMA's anon_vmas,
323 	 * so rmap can find non-COWed pages in child processes.
324 	 */
325 	error = anon_vma_clone(vma, pvma);
326 	if (error)
327 		return error;
328 
329 	/* An existing anon_vma has been reused, all done then. */
330 	if (vma->anon_vma)
331 		return 0;
332 
333 	/* Then add our own anon_vma. */
334 	anon_vma = anon_vma_alloc();
335 	if (!anon_vma)
336 		goto out_error;
337 	avc = anon_vma_chain_alloc(GFP_KERNEL);
338 	if (!avc)
339 		goto out_error_free_anon_vma;
340 
341 	/*
342 	 * The root anon_vma's spinlock is the lock actually used when we
343 	 * lock any of the anon_vmas in this anon_vma tree.
344 	 */
345 	anon_vma->root = pvma->anon_vma->root;
346 	anon_vma->parent = pvma->anon_vma;
347 	/*
348 	 * With refcounts, an anon_vma can stay around longer than the
349 	 * process it belongs to. The root anon_vma needs to be pinned until
350 	 * this anon_vma is freed, because the lock lives in the root.
351 	 */
352 	get_anon_vma(anon_vma->root);
353 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
354 	vma->anon_vma = anon_vma;
355 	anon_vma_lock_write(anon_vma);
356 	anon_vma_chain_link(vma, avc, anon_vma);
357 	anon_vma->parent->degree++;
358 	anon_vma_unlock_write(anon_vma);
359 
360 	return 0;
361 
362  out_error_free_anon_vma:
363 	put_anon_vma(anon_vma);
364  out_error:
365 	unlink_anon_vmas(vma);
366 	return -ENOMEM;
367 }
368 
369 void unlink_anon_vmas(struct vm_area_struct *vma)
370 {
371 	struct anon_vma_chain *avc, *next;
372 	struct anon_vma *root = NULL;
373 
374 	/*
375 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
376 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
377 	 */
378 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
379 		struct anon_vma *anon_vma = avc->anon_vma;
380 
381 		root = lock_anon_vma_root(root, anon_vma);
382 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
383 
384 		/*
385 		 * Leave empty anon_vmas on the list - we'll need
386 		 * to free them outside the lock.
387 		 */
388 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
389 			anon_vma->parent->degree--;
390 			continue;
391 		}
392 
393 		list_del(&avc->same_vma);
394 		anon_vma_chain_free(avc);
395 	}
396 	if (vma->anon_vma)
397 		vma->anon_vma->degree--;
398 	unlock_anon_vma_root(root);
399 
400 	/*
401 	 * Iterate the list once more, it now only contains empty and unlinked
402 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
403 	 * needing to write-acquire the anon_vma->root->rwsem.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		BUG_ON(anon_vma->degree);
409 		put_anon_vma(anon_vma);
410 
411 		list_del(&avc->same_vma);
412 		anon_vma_chain_free(avc);
413 	}
414 }
415 
416 static void anon_vma_ctor(void *data)
417 {
418 	struct anon_vma *anon_vma = data;
419 
420 	init_rwsem(&anon_vma->rwsem);
421 	atomic_set(&anon_vma->refcount, 0);
422 	anon_vma->rb_root = RB_ROOT;
423 }
424 
425 void __init anon_vma_init(void)
426 {
427 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
428 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
429 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
430 }
431 
432 /*
433  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
434  *
435  * Since there is no serialization what so ever against page_remove_rmap()
436  * the best this function can do is return a locked anon_vma that might
437  * have been relevant to this page.
438  *
439  * The page might have been remapped to a different anon_vma or the anon_vma
440  * returned may already be freed (and even reused).
441  *
442  * In case it was remapped to a different anon_vma, the new anon_vma will be a
443  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
444  * ensure that any anon_vma obtained from the page will still be valid for as
445  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
446  *
447  * All users of this function must be very careful when walking the anon_vma
448  * chain and verify that the page in question is indeed mapped in it
449  * [ something equivalent to page_mapped_in_vma() ].
450  *
451  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
452  * that the anon_vma pointer from page->mapping is valid if there is a
453  * mapcount, we can dereference the anon_vma after observing those.
454  */
455 struct anon_vma *page_get_anon_vma(struct page *page)
456 {
457 	struct anon_vma *anon_vma = NULL;
458 	unsigned long anon_mapping;
459 
460 	rcu_read_lock();
461 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
462 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
463 		goto out;
464 	if (!page_mapped(page))
465 		goto out;
466 
467 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
468 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
469 		anon_vma = NULL;
470 		goto out;
471 	}
472 
473 	/*
474 	 * If this page is still mapped, then its anon_vma cannot have been
475 	 * freed.  But if it has been unmapped, we have no security against the
476 	 * anon_vma structure being freed and reused (for another anon_vma:
477 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
478 	 * above cannot corrupt).
479 	 */
480 	if (!page_mapped(page)) {
481 		rcu_read_unlock();
482 		put_anon_vma(anon_vma);
483 		return NULL;
484 	}
485 out:
486 	rcu_read_unlock();
487 
488 	return anon_vma;
489 }
490 
491 /*
492  * Similar to page_get_anon_vma() except it locks the anon_vma.
493  *
494  * Its a little more complex as it tries to keep the fast path to a single
495  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
496  * reference like with page_get_anon_vma() and then block on the mutex.
497  */
498 struct anon_vma *page_lock_anon_vma_read(struct page *page)
499 {
500 	struct anon_vma *anon_vma = NULL;
501 	struct anon_vma *root_anon_vma;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
506 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 		goto out;
508 	if (!page_mapped(page))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 	root_anon_vma = READ_ONCE(anon_vma->root);
513 	if (down_read_trylock(&root_anon_vma->rwsem)) {
514 		/*
515 		 * If the page is still mapped, then this anon_vma is still
516 		 * its anon_vma, and holding the mutex ensures that it will
517 		 * not go away, see anon_vma_free().
518 		 */
519 		if (!page_mapped(page)) {
520 			up_read(&root_anon_vma->rwsem);
521 			anon_vma = NULL;
522 		}
523 		goto out;
524 	}
525 
526 	/* trylock failed, we got to sleep */
527 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
528 		anon_vma = NULL;
529 		goto out;
530 	}
531 
532 	if (!page_mapped(page)) {
533 		rcu_read_unlock();
534 		put_anon_vma(anon_vma);
535 		return NULL;
536 	}
537 
538 	/* we pinned the anon_vma, its safe to sleep */
539 	rcu_read_unlock();
540 	anon_vma_lock_read(anon_vma);
541 
542 	if (atomic_dec_and_test(&anon_vma->refcount)) {
543 		/*
544 		 * Oops, we held the last refcount, release the lock
545 		 * and bail -- can't simply use put_anon_vma() because
546 		 * we'll deadlock on the anon_vma_lock_write() recursion.
547 		 */
548 		anon_vma_unlock_read(anon_vma);
549 		__put_anon_vma(anon_vma);
550 		anon_vma = NULL;
551 	}
552 
553 	return anon_vma;
554 
555 out:
556 	rcu_read_unlock();
557 	return anon_vma;
558 }
559 
560 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
561 {
562 	anon_vma_unlock_read(anon_vma);
563 }
564 
565 /*
566  * At what user virtual address is page expected in @vma?
567  */
568 static inline unsigned long
569 __vma_address(struct page *page, struct vm_area_struct *vma)
570 {
571 	pgoff_t pgoff = page_to_pgoff(page);
572 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
573 }
574 
575 inline unsigned long
576 vma_address(struct page *page, struct vm_area_struct *vma)
577 {
578 	unsigned long address = __vma_address(page, vma);
579 
580 	/* page should be within @vma mapping range */
581 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
582 
583 	return address;
584 }
585 
586 /*
587  * At what user virtual address is page expected in vma?
588  * Caller should check the page is actually part of the vma.
589  */
590 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
591 {
592 	unsigned long address;
593 	if (PageAnon(page)) {
594 		struct anon_vma *page__anon_vma = page_anon_vma(page);
595 		/*
596 		 * Note: swapoff's unuse_vma() is more efficient with this
597 		 * check, and needs it to match anon_vma when KSM is active.
598 		 */
599 		if (!vma->anon_vma || !page__anon_vma ||
600 		    vma->anon_vma->root != page__anon_vma->root)
601 			return -EFAULT;
602 	} else if (page->mapping) {
603 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
604 			return -EFAULT;
605 	} else
606 		return -EFAULT;
607 	address = __vma_address(page, vma);
608 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
609 		return -EFAULT;
610 	return address;
611 }
612 
613 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
614 {
615 	pgd_t *pgd;
616 	pud_t *pud;
617 	pmd_t *pmd = NULL;
618 	pmd_t pmde;
619 
620 	pgd = pgd_offset(mm, address);
621 	if (!pgd_present(*pgd))
622 		goto out;
623 
624 	pud = pud_offset(pgd, address);
625 	if (!pud_present(*pud))
626 		goto out;
627 
628 	pmd = pmd_offset(pud, address);
629 	/*
630 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
631 	 * without holding anon_vma lock for write.  So when looking for a
632 	 * genuine pmde (in which to find pte), test present and !THP together.
633 	 */
634 	pmde = *pmd;
635 	barrier();
636 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
637 		pmd = NULL;
638 out:
639 	return pmd;
640 }
641 
642 /*
643  * Check that @page is mapped at @address into @mm.
644  *
645  * If @sync is false, page_check_address may perform a racy check to avoid
646  * the page table lock when the pte is not present (helpful when reclaiming
647  * highly shared pages).
648  *
649  * On success returns with pte mapped and locked.
650  */
651 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
652 			  unsigned long address, spinlock_t **ptlp, int sync)
653 {
654 	pmd_t *pmd;
655 	pte_t *pte;
656 	spinlock_t *ptl;
657 
658 	if (unlikely(PageHuge(page))) {
659 		/* when pud is not present, pte will be NULL */
660 		pte = huge_pte_offset(mm, address);
661 		if (!pte)
662 			return NULL;
663 
664 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
665 		goto check;
666 	}
667 
668 	pmd = mm_find_pmd(mm, address);
669 	if (!pmd)
670 		return NULL;
671 
672 	pte = pte_offset_map(pmd, address);
673 	/* Make a quick check before getting the lock */
674 	if (!sync && !pte_present(*pte)) {
675 		pte_unmap(pte);
676 		return NULL;
677 	}
678 
679 	ptl = pte_lockptr(mm, pmd);
680 check:
681 	spin_lock(ptl);
682 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
683 		*ptlp = ptl;
684 		return pte;
685 	}
686 	pte_unmap_unlock(pte, ptl);
687 	return NULL;
688 }
689 
690 /**
691  * page_mapped_in_vma - check whether a page is really mapped in a VMA
692  * @page: the page to test
693  * @vma: the VMA to test
694  *
695  * Returns 1 if the page is mapped into the page tables of the VMA, 0
696  * if the page is not mapped into the page tables of this VMA.  Only
697  * valid for normal file or anonymous VMAs.
698  */
699 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
700 {
701 	unsigned long address;
702 	pte_t *pte;
703 	spinlock_t *ptl;
704 
705 	address = __vma_address(page, vma);
706 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
707 		return 0;
708 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
709 	if (!pte)			/* the page is not in this mm */
710 		return 0;
711 	pte_unmap_unlock(pte, ptl);
712 
713 	return 1;
714 }
715 
716 struct page_referenced_arg {
717 	int mapcount;
718 	int referenced;
719 	unsigned long vm_flags;
720 	struct mem_cgroup *memcg;
721 };
722 /*
723  * arg: page_referenced_arg will be passed
724  */
725 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
726 			unsigned long address, void *arg)
727 {
728 	struct mm_struct *mm = vma->vm_mm;
729 	spinlock_t *ptl;
730 	int referenced = 0;
731 	struct page_referenced_arg *pra = arg;
732 
733 	if (unlikely(PageTransHuge(page))) {
734 		pmd_t *pmd;
735 
736 		/*
737 		 * rmap might return false positives; we must filter
738 		 * these out using page_check_address_pmd().
739 		 */
740 		pmd = page_check_address_pmd(page, mm, address,
741 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
742 		if (!pmd)
743 			return SWAP_AGAIN;
744 
745 		if (vma->vm_flags & VM_LOCKED) {
746 			spin_unlock(ptl);
747 			pra->vm_flags |= VM_LOCKED;
748 			return SWAP_FAIL; /* To break the loop */
749 		}
750 
751 		/* go ahead even if the pmd is pmd_trans_splitting() */
752 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
753 			referenced++;
754 		spin_unlock(ptl);
755 	} else {
756 		pte_t *pte;
757 
758 		/*
759 		 * rmap might return false positives; we must filter
760 		 * these out using page_check_address().
761 		 */
762 		pte = page_check_address(page, mm, address, &ptl, 0);
763 		if (!pte)
764 			return SWAP_AGAIN;
765 
766 		if (vma->vm_flags & VM_LOCKED) {
767 			pte_unmap_unlock(pte, ptl);
768 			pra->vm_flags |= VM_LOCKED;
769 			return SWAP_FAIL; /* To break the loop */
770 		}
771 
772 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
773 			/*
774 			 * Don't treat a reference through a sequentially read
775 			 * mapping as such.  If the page has been used in
776 			 * another mapping, we will catch it; if this other
777 			 * mapping is already gone, the unmap path will have
778 			 * set PG_referenced or activated the page.
779 			 */
780 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
781 				referenced++;
782 		}
783 		pte_unmap_unlock(pte, ptl);
784 	}
785 
786 	if (referenced) {
787 		pra->referenced++;
788 		pra->vm_flags |= vma->vm_flags;
789 	}
790 
791 	pra->mapcount--;
792 	if (!pra->mapcount)
793 		return SWAP_SUCCESS; /* To break the loop */
794 
795 	return SWAP_AGAIN;
796 }
797 
798 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
799 {
800 	struct page_referenced_arg *pra = arg;
801 	struct mem_cgroup *memcg = pra->memcg;
802 
803 	if (!mm_match_cgroup(vma->vm_mm, memcg))
804 		return true;
805 
806 	return false;
807 }
808 
809 /**
810  * page_referenced - test if the page was referenced
811  * @page: the page to test
812  * @is_locked: caller holds lock on the page
813  * @memcg: target memory cgroup
814  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
815  *
816  * Quick test_and_clear_referenced for all mappings to a page,
817  * returns the number of ptes which referenced the page.
818  */
819 int page_referenced(struct page *page,
820 		    int is_locked,
821 		    struct mem_cgroup *memcg,
822 		    unsigned long *vm_flags)
823 {
824 	int ret;
825 	int we_locked = 0;
826 	struct page_referenced_arg pra = {
827 		.mapcount = page_mapcount(page),
828 		.memcg = memcg,
829 	};
830 	struct rmap_walk_control rwc = {
831 		.rmap_one = page_referenced_one,
832 		.arg = (void *)&pra,
833 		.anon_lock = page_lock_anon_vma_read,
834 	};
835 
836 	*vm_flags = 0;
837 	if (!page_mapped(page))
838 		return 0;
839 
840 	if (!page_rmapping(page))
841 		return 0;
842 
843 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
844 		we_locked = trylock_page(page);
845 		if (!we_locked)
846 			return 1;
847 	}
848 
849 	/*
850 	 * If we are reclaiming on behalf of a cgroup, skip
851 	 * counting on behalf of references from different
852 	 * cgroups
853 	 */
854 	if (memcg) {
855 		rwc.invalid_vma = invalid_page_referenced_vma;
856 	}
857 
858 	ret = rmap_walk(page, &rwc);
859 	*vm_flags = pra.vm_flags;
860 
861 	if (we_locked)
862 		unlock_page(page);
863 
864 	return pra.referenced;
865 }
866 
867 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
868 			    unsigned long address, void *arg)
869 {
870 	struct mm_struct *mm = vma->vm_mm;
871 	pte_t *pte;
872 	spinlock_t *ptl;
873 	int ret = 0;
874 	int *cleaned = arg;
875 
876 	pte = page_check_address(page, mm, address, &ptl, 1);
877 	if (!pte)
878 		goto out;
879 
880 	if (pte_dirty(*pte) || pte_write(*pte)) {
881 		pte_t entry;
882 
883 		flush_cache_page(vma, address, pte_pfn(*pte));
884 		entry = ptep_clear_flush(vma, address, pte);
885 		entry = pte_wrprotect(entry);
886 		entry = pte_mkclean(entry);
887 		set_pte_at(mm, address, pte, entry);
888 		ret = 1;
889 	}
890 
891 	pte_unmap_unlock(pte, ptl);
892 
893 	if (ret) {
894 		mmu_notifier_invalidate_page(mm, address);
895 		(*cleaned)++;
896 	}
897 out:
898 	return SWAP_AGAIN;
899 }
900 
901 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
902 {
903 	if (vma->vm_flags & VM_SHARED)
904 		return false;
905 
906 	return true;
907 }
908 
909 int page_mkclean(struct page *page)
910 {
911 	int cleaned = 0;
912 	struct address_space *mapping;
913 	struct rmap_walk_control rwc = {
914 		.arg = (void *)&cleaned,
915 		.rmap_one = page_mkclean_one,
916 		.invalid_vma = invalid_mkclean_vma,
917 	};
918 
919 	BUG_ON(!PageLocked(page));
920 
921 	if (!page_mapped(page))
922 		return 0;
923 
924 	mapping = page_mapping(page);
925 	if (!mapping)
926 		return 0;
927 
928 	rmap_walk(page, &rwc);
929 
930 	return cleaned;
931 }
932 EXPORT_SYMBOL_GPL(page_mkclean);
933 
934 /**
935  * page_move_anon_rmap - move a page to our anon_vma
936  * @page:	the page to move to our anon_vma
937  * @vma:	the vma the page belongs to
938  * @address:	the user virtual address mapped
939  *
940  * When a page belongs exclusively to one process after a COW event,
941  * that page can be moved into the anon_vma that belongs to just that
942  * process, so the rmap code will not search the parent or sibling
943  * processes.
944  */
945 void page_move_anon_rmap(struct page *page,
946 	struct vm_area_struct *vma, unsigned long address)
947 {
948 	struct anon_vma *anon_vma = vma->anon_vma;
949 
950 	VM_BUG_ON_PAGE(!PageLocked(page), page);
951 	VM_BUG_ON_VMA(!anon_vma, vma);
952 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
953 
954 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
955 	/*
956 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
957 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
958 	 * PageAnon()) will not see one without the other.
959 	 */
960 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
961 }
962 
963 /**
964  * __page_set_anon_rmap - set up new anonymous rmap
965  * @page:	Page to add to rmap
966  * @vma:	VM area to add page to.
967  * @address:	User virtual address of the mapping
968  * @exclusive:	the page is exclusively owned by the current process
969  */
970 static void __page_set_anon_rmap(struct page *page,
971 	struct vm_area_struct *vma, unsigned long address, int exclusive)
972 {
973 	struct anon_vma *anon_vma = vma->anon_vma;
974 
975 	BUG_ON(!anon_vma);
976 
977 	if (PageAnon(page))
978 		return;
979 
980 	/*
981 	 * If the page isn't exclusively mapped into this vma,
982 	 * we must use the _oldest_ possible anon_vma for the
983 	 * page mapping!
984 	 */
985 	if (!exclusive)
986 		anon_vma = anon_vma->root;
987 
988 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
989 	page->mapping = (struct address_space *) anon_vma;
990 	page->index = linear_page_index(vma, address);
991 }
992 
993 /**
994  * __page_check_anon_rmap - sanity check anonymous rmap addition
995  * @page:	the page to add the mapping to
996  * @vma:	the vm area in which the mapping is added
997  * @address:	the user virtual address mapped
998  */
999 static void __page_check_anon_rmap(struct page *page,
1000 	struct vm_area_struct *vma, unsigned long address)
1001 {
1002 #ifdef CONFIG_DEBUG_VM
1003 	/*
1004 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1005 	 * be set up correctly at this point.
1006 	 *
1007 	 * We have exclusion against page_add_anon_rmap because the caller
1008 	 * always holds the page locked, except if called from page_dup_rmap,
1009 	 * in which case the page is already known to be setup.
1010 	 *
1011 	 * We have exclusion against page_add_new_anon_rmap because those pages
1012 	 * are initially only visible via the pagetables, and the pte is locked
1013 	 * over the call to page_add_new_anon_rmap.
1014 	 */
1015 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1016 	BUG_ON(page->index != linear_page_index(vma, address));
1017 #endif
1018 }
1019 
1020 /**
1021  * page_add_anon_rmap - add pte mapping to an anonymous page
1022  * @page:	the page to add the mapping to
1023  * @vma:	the vm area in which the mapping is added
1024  * @address:	the user virtual address mapped
1025  *
1026  * The caller needs to hold the pte lock, and the page must be locked in
1027  * the anon_vma case: to serialize mapping,index checking after setting,
1028  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1029  * (but PageKsm is never downgraded to PageAnon).
1030  */
1031 void page_add_anon_rmap(struct page *page,
1032 	struct vm_area_struct *vma, unsigned long address)
1033 {
1034 	do_page_add_anon_rmap(page, vma, address, 0);
1035 }
1036 
1037 /*
1038  * Special version of the above for do_swap_page, which often runs
1039  * into pages that are exclusively owned by the current process.
1040  * Everybody else should continue to use page_add_anon_rmap above.
1041  */
1042 void do_page_add_anon_rmap(struct page *page,
1043 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1044 {
1045 	int first = atomic_inc_and_test(&page->_mapcount);
1046 	if (first) {
1047 		/*
1048 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1049 		 * these counters are not modified in interrupt context, and
1050 		 * pte lock(a spinlock) is held, which implies preemption
1051 		 * disabled.
1052 		 */
1053 		if (PageTransHuge(page))
1054 			__inc_zone_page_state(page,
1055 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1056 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1057 				hpage_nr_pages(page));
1058 	}
1059 	if (unlikely(PageKsm(page)))
1060 		return;
1061 
1062 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1063 	/* address might be in next vma when migration races vma_adjust */
1064 	if (first)
1065 		__page_set_anon_rmap(page, vma, address, exclusive);
1066 	else
1067 		__page_check_anon_rmap(page, vma, address);
1068 }
1069 
1070 /**
1071  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1072  * @page:	the page to add the mapping to
1073  * @vma:	the vm area in which the mapping is added
1074  * @address:	the user virtual address mapped
1075  *
1076  * Same as page_add_anon_rmap but must only be called on *new* pages.
1077  * This means the inc-and-test can be bypassed.
1078  * Page does not have to be locked.
1079  */
1080 void page_add_new_anon_rmap(struct page *page,
1081 	struct vm_area_struct *vma, unsigned long address)
1082 {
1083 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1084 	SetPageSwapBacked(page);
1085 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1086 	if (PageTransHuge(page))
1087 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1088 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1089 			hpage_nr_pages(page));
1090 	__page_set_anon_rmap(page, vma, address, 1);
1091 }
1092 
1093 /**
1094  * page_add_file_rmap - add pte mapping to a file page
1095  * @page: the page to add the mapping to
1096  *
1097  * The caller needs to hold the pte lock.
1098  */
1099 void page_add_file_rmap(struct page *page)
1100 {
1101 	struct mem_cgroup *memcg;
1102 
1103 	memcg = mem_cgroup_begin_page_stat(page);
1104 	if (atomic_inc_and_test(&page->_mapcount)) {
1105 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1106 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1107 	}
1108 	mem_cgroup_end_page_stat(memcg);
1109 }
1110 
1111 static void page_remove_file_rmap(struct page *page)
1112 {
1113 	struct mem_cgroup *memcg;
1114 
1115 	memcg = mem_cgroup_begin_page_stat(page);
1116 
1117 	/* page still mapped by someone else? */
1118 	if (!atomic_add_negative(-1, &page->_mapcount))
1119 		goto out;
1120 
1121 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1122 	if (unlikely(PageHuge(page)))
1123 		goto out;
1124 
1125 	/*
1126 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1127 	 * these counters are not modified in interrupt context, and
1128 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1129 	 */
1130 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1131 	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1132 
1133 	if (unlikely(PageMlocked(page)))
1134 		clear_page_mlock(page);
1135 out:
1136 	mem_cgroup_end_page_stat(memcg);
1137 }
1138 
1139 /**
1140  * page_remove_rmap - take down pte mapping from a page
1141  * @page: page to remove mapping from
1142  *
1143  * The caller needs to hold the pte lock.
1144  */
1145 void page_remove_rmap(struct page *page)
1146 {
1147 	if (!PageAnon(page)) {
1148 		page_remove_file_rmap(page);
1149 		return;
1150 	}
1151 
1152 	/* page still mapped by someone else? */
1153 	if (!atomic_add_negative(-1, &page->_mapcount))
1154 		return;
1155 
1156 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1157 	if (unlikely(PageHuge(page)))
1158 		return;
1159 
1160 	/*
1161 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1162 	 * these counters are not modified in interrupt context, and
1163 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1164 	 */
1165 	if (PageTransHuge(page))
1166 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1167 
1168 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1169 			      -hpage_nr_pages(page));
1170 
1171 	if (unlikely(PageMlocked(page)))
1172 		clear_page_mlock(page);
1173 
1174 	/*
1175 	 * It would be tidy to reset the PageAnon mapping here,
1176 	 * but that might overwrite a racing page_add_anon_rmap
1177 	 * which increments mapcount after us but sets mapping
1178 	 * before us: so leave the reset to free_hot_cold_page,
1179 	 * and remember that it's only reliable while mapped.
1180 	 * Leaving it set also helps swapoff to reinstate ptes
1181 	 * faster for those pages still in swapcache.
1182 	 */
1183 }
1184 
1185 /*
1186  * @arg: enum ttu_flags will be passed to this argument
1187  */
1188 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1189 		     unsigned long address, void *arg)
1190 {
1191 	struct mm_struct *mm = vma->vm_mm;
1192 	pte_t *pte;
1193 	pte_t pteval;
1194 	spinlock_t *ptl;
1195 	int ret = SWAP_AGAIN;
1196 	enum ttu_flags flags = (enum ttu_flags)arg;
1197 
1198 	pte = page_check_address(page, mm, address, &ptl, 0);
1199 	if (!pte)
1200 		goto out;
1201 
1202 	/*
1203 	 * If the page is mlock()d, we cannot swap it out.
1204 	 * If it's recently referenced (perhaps page_referenced
1205 	 * skipped over this mm) then we should reactivate it.
1206 	 */
1207 	if (!(flags & TTU_IGNORE_MLOCK)) {
1208 		if (vma->vm_flags & VM_LOCKED)
1209 			goto out_mlock;
1210 
1211 		if (flags & TTU_MUNLOCK)
1212 			goto out_unmap;
1213 	}
1214 	if (!(flags & TTU_IGNORE_ACCESS)) {
1215 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1216 			ret = SWAP_FAIL;
1217 			goto out_unmap;
1218 		}
1219   	}
1220 
1221 	/* Nuke the page table entry. */
1222 	flush_cache_page(vma, address, page_to_pfn(page));
1223 	pteval = ptep_clear_flush(vma, address, pte);
1224 
1225 	/* Move the dirty bit to the physical page now the pte is gone. */
1226 	if (pte_dirty(pteval))
1227 		set_page_dirty(page);
1228 
1229 	/* Update high watermark before we lower rss */
1230 	update_hiwater_rss(mm);
1231 
1232 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1233 		if (!PageHuge(page)) {
1234 			if (PageAnon(page))
1235 				dec_mm_counter(mm, MM_ANONPAGES);
1236 			else
1237 				dec_mm_counter(mm, MM_FILEPAGES);
1238 		}
1239 		set_pte_at(mm, address, pte,
1240 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1241 	} else if (pte_unused(pteval)) {
1242 		/*
1243 		 * The guest indicated that the page content is of no
1244 		 * interest anymore. Simply discard the pte, vmscan
1245 		 * will take care of the rest.
1246 		 */
1247 		if (PageAnon(page))
1248 			dec_mm_counter(mm, MM_ANONPAGES);
1249 		else
1250 			dec_mm_counter(mm, MM_FILEPAGES);
1251 	} else if (PageAnon(page)) {
1252 		swp_entry_t entry = { .val = page_private(page) };
1253 		pte_t swp_pte;
1254 
1255 		if (PageSwapCache(page)) {
1256 			/*
1257 			 * Store the swap location in the pte.
1258 			 * See handle_pte_fault() ...
1259 			 */
1260 			if (swap_duplicate(entry) < 0) {
1261 				set_pte_at(mm, address, pte, pteval);
1262 				ret = SWAP_FAIL;
1263 				goto out_unmap;
1264 			}
1265 			if (list_empty(&mm->mmlist)) {
1266 				spin_lock(&mmlist_lock);
1267 				if (list_empty(&mm->mmlist))
1268 					list_add(&mm->mmlist, &init_mm.mmlist);
1269 				spin_unlock(&mmlist_lock);
1270 			}
1271 			dec_mm_counter(mm, MM_ANONPAGES);
1272 			inc_mm_counter(mm, MM_SWAPENTS);
1273 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1274 			/*
1275 			 * Store the pfn of the page in a special migration
1276 			 * pte. do_swap_page() will wait until the migration
1277 			 * pte is removed and then restart fault handling.
1278 			 */
1279 			BUG_ON(!(flags & TTU_MIGRATION));
1280 			entry = make_migration_entry(page, pte_write(pteval));
1281 		}
1282 		swp_pte = swp_entry_to_pte(entry);
1283 		if (pte_soft_dirty(pteval))
1284 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1285 		set_pte_at(mm, address, pte, swp_pte);
1286 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1287 		   (flags & TTU_MIGRATION)) {
1288 		/* Establish migration entry for a file page */
1289 		swp_entry_t entry;
1290 		entry = make_migration_entry(page, pte_write(pteval));
1291 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1292 	} else
1293 		dec_mm_counter(mm, MM_FILEPAGES);
1294 
1295 	page_remove_rmap(page);
1296 	page_cache_release(page);
1297 
1298 out_unmap:
1299 	pte_unmap_unlock(pte, ptl);
1300 	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1301 		mmu_notifier_invalidate_page(mm, address);
1302 out:
1303 	return ret;
1304 
1305 out_mlock:
1306 	pte_unmap_unlock(pte, ptl);
1307 
1308 
1309 	/*
1310 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1311 	 * unstable result and race. Plus, We can't wait here because
1312 	 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1313 	 * if trylock failed, the page remain in evictable lru and later
1314 	 * vmscan could retry to move the page to unevictable lru if the
1315 	 * page is actually mlocked.
1316 	 */
1317 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1318 		if (vma->vm_flags & VM_LOCKED) {
1319 			mlock_vma_page(page);
1320 			ret = SWAP_MLOCK;
1321 		}
1322 		up_read(&vma->vm_mm->mmap_sem);
1323 	}
1324 	return ret;
1325 }
1326 
1327 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1328 {
1329 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1330 
1331 	if (!maybe_stack)
1332 		return false;
1333 
1334 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1335 						VM_STACK_INCOMPLETE_SETUP)
1336 		return true;
1337 
1338 	return false;
1339 }
1340 
1341 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1342 {
1343 	return is_vma_temporary_stack(vma);
1344 }
1345 
1346 static int page_not_mapped(struct page *page)
1347 {
1348 	return !page_mapped(page);
1349 };
1350 
1351 /**
1352  * try_to_unmap - try to remove all page table mappings to a page
1353  * @page: the page to get unmapped
1354  * @flags: action and flags
1355  *
1356  * Tries to remove all the page table entries which are mapping this
1357  * page, used in the pageout path.  Caller must hold the page lock.
1358  * Return values are:
1359  *
1360  * SWAP_SUCCESS	- we succeeded in removing all mappings
1361  * SWAP_AGAIN	- we missed a mapping, try again later
1362  * SWAP_FAIL	- the page is unswappable
1363  * SWAP_MLOCK	- page is mlocked.
1364  */
1365 int try_to_unmap(struct page *page, enum ttu_flags flags)
1366 {
1367 	int ret;
1368 	struct rmap_walk_control rwc = {
1369 		.rmap_one = try_to_unmap_one,
1370 		.arg = (void *)flags,
1371 		.done = page_not_mapped,
1372 		.anon_lock = page_lock_anon_vma_read,
1373 	};
1374 
1375 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1376 
1377 	/*
1378 	 * During exec, a temporary VMA is setup and later moved.
1379 	 * The VMA is moved under the anon_vma lock but not the
1380 	 * page tables leading to a race where migration cannot
1381 	 * find the migration ptes. Rather than increasing the
1382 	 * locking requirements of exec(), migration skips
1383 	 * temporary VMAs until after exec() completes.
1384 	 */
1385 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1386 		rwc.invalid_vma = invalid_migration_vma;
1387 
1388 	ret = rmap_walk(page, &rwc);
1389 
1390 	if (ret != SWAP_MLOCK && !page_mapped(page))
1391 		ret = SWAP_SUCCESS;
1392 	return ret;
1393 }
1394 
1395 /**
1396  * try_to_munlock - try to munlock a page
1397  * @page: the page to be munlocked
1398  *
1399  * Called from munlock code.  Checks all of the VMAs mapping the page
1400  * to make sure nobody else has this page mlocked. The page will be
1401  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1402  *
1403  * Return values are:
1404  *
1405  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1406  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1407  * SWAP_FAIL	- page cannot be located at present
1408  * SWAP_MLOCK	- page is now mlocked.
1409  */
1410 int try_to_munlock(struct page *page)
1411 {
1412 	int ret;
1413 	struct rmap_walk_control rwc = {
1414 		.rmap_one = try_to_unmap_one,
1415 		.arg = (void *)TTU_MUNLOCK,
1416 		.done = page_not_mapped,
1417 		.anon_lock = page_lock_anon_vma_read,
1418 
1419 	};
1420 
1421 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1422 
1423 	ret = rmap_walk(page, &rwc);
1424 	return ret;
1425 }
1426 
1427 void __put_anon_vma(struct anon_vma *anon_vma)
1428 {
1429 	struct anon_vma *root = anon_vma->root;
1430 
1431 	anon_vma_free(anon_vma);
1432 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1433 		anon_vma_free(root);
1434 }
1435 
1436 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1437 					struct rmap_walk_control *rwc)
1438 {
1439 	struct anon_vma *anon_vma;
1440 
1441 	if (rwc->anon_lock)
1442 		return rwc->anon_lock(page);
1443 
1444 	/*
1445 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1446 	 * because that depends on page_mapped(); but not all its usages
1447 	 * are holding mmap_sem. Users without mmap_sem are required to
1448 	 * take a reference count to prevent the anon_vma disappearing
1449 	 */
1450 	anon_vma = page_anon_vma(page);
1451 	if (!anon_vma)
1452 		return NULL;
1453 
1454 	anon_vma_lock_read(anon_vma);
1455 	return anon_vma;
1456 }
1457 
1458 /*
1459  * rmap_walk_anon - do something to anonymous page using the object-based
1460  * rmap method
1461  * @page: the page to be handled
1462  * @rwc: control variable according to each walk type
1463  *
1464  * Find all the mappings of a page using the mapping pointer and the vma chains
1465  * contained in the anon_vma struct it points to.
1466  *
1467  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1468  * where the page was found will be held for write.  So, we won't recheck
1469  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1470  * LOCKED.
1471  */
1472 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1473 {
1474 	struct anon_vma *anon_vma;
1475 	pgoff_t pgoff;
1476 	struct anon_vma_chain *avc;
1477 	int ret = SWAP_AGAIN;
1478 
1479 	anon_vma = rmap_walk_anon_lock(page, rwc);
1480 	if (!anon_vma)
1481 		return ret;
1482 
1483 	pgoff = page_to_pgoff(page);
1484 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1485 		struct vm_area_struct *vma = avc->vma;
1486 		unsigned long address = vma_address(page, vma);
1487 
1488 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1489 			continue;
1490 
1491 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1492 		if (ret != SWAP_AGAIN)
1493 			break;
1494 		if (rwc->done && rwc->done(page))
1495 			break;
1496 	}
1497 	anon_vma_unlock_read(anon_vma);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * rmap_walk_file - do something to file page using the object-based rmap method
1503  * @page: the page to be handled
1504  * @rwc: control variable according to each walk type
1505  *
1506  * Find all the mappings of a page using the mapping pointer and the vma chains
1507  * contained in the address_space struct it points to.
1508  *
1509  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1510  * where the page was found will be held for write.  So, we won't recheck
1511  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1512  * LOCKED.
1513  */
1514 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1515 {
1516 	struct address_space *mapping = page->mapping;
1517 	pgoff_t pgoff;
1518 	struct vm_area_struct *vma;
1519 	int ret = SWAP_AGAIN;
1520 
1521 	/*
1522 	 * The page lock not only makes sure that page->mapping cannot
1523 	 * suddenly be NULLified by truncation, it makes sure that the
1524 	 * structure at mapping cannot be freed and reused yet,
1525 	 * so we can safely take mapping->i_mmap_rwsem.
1526 	 */
1527 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1528 
1529 	if (!mapping)
1530 		return ret;
1531 
1532 	pgoff = page_to_pgoff(page);
1533 	i_mmap_lock_read(mapping);
1534 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1535 		unsigned long address = vma_address(page, vma);
1536 
1537 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1538 			continue;
1539 
1540 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1541 		if (ret != SWAP_AGAIN)
1542 			goto done;
1543 		if (rwc->done && rwc->done(page))
1544 			goto done;
1545 	}
1546 
1547 done:
1548 	i_mmap_unlock_read(mapping);
1549 	return ret;
1550 }
1551 
1552 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1553 {
1554 	if (unlikely(PageKsm(page)))
1555 		return rmap_walk_ksm(page, rwc);
1556 	else if (PageAnon(page))
1557 		return rmap_walk_anon(page, rwc);
1558 	else
1559 		return rmap_walk_file(page, rwc);
1560 }
1561 
1562 #ifdef CONFIG_HUGETLB_PAGE
1563 /*
1564  * The following three functions are for anonymous (private mapped) hugepages.
1565  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1566  * and no lru code, because we handle hugepages differently from common pages.
1567  */
1568 static void __hugepage_set_anon_rmap(struct page *page,
1569 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1570 {
1571 	struct anon_vma *anon_vma = vma->anon_vma;
1572 
1573 	BUG_ON(!anon_vma);
1574 
1575 	if (PageAnon(page))
1576 		return;
1577 	if (!exclusive)
1578 		anon_vma = anon_vma->root;
1579 
1580 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1581 	page->mapping = (struct address_space *) anon_vma;
1582 	page->index = linear_page_index(vma, address);
1583 }
1584 
1585 void hugepage_add_anon_rmap(struct page *page,
1586 			    struct vm_area_struct *vma, unsigned long address)
1587 {
1588 	struct anon_vma *anon_vma = vma->anon_vma;
1589 	int first;
1590 
1591 	BUG_ON(!PageLocked(page));
1592 	BUG_ON(!anon_vma);
1593 	/* address might be in next vma when migration races vma_adjust */
1594 	first = atomic_inc_and_test(&page->_mapcount);
1595 	if (first)
1596 		__hugepage_set_anon_rmap(page, vma, address, 0);
1597 }
1598 
1599 void hugepage_add_new_anon_rmap(struct page *page,
1600 			struct vm_area_struct *vma, unsigned long address)
1601 {
1602 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1603 	atomic_set(&page->_mapcount, 0);
1604 	__hugepage_set_anon_rmap(page, vma, address, 1);
1605 }
1606 #endif /* CONFIG_HUGETLB_PAGE */
1607