1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * anon_vma->rwsem 29 * mm->page_table_lock or pte_lock 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 35 * i_pages lock (widely used) 36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 38 * sb_lock (within inode_lock in fs/fs-writeback.c) 39 * i_pages lock (widely used, in set_page_dirty, 40 * in arch-dependent flush_dcache_mmap_lock, 41 * within bdi.wb->list_lock in __sync_single_inode) 42 * 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 44 * ->tasklist_lock 45 * pte map lock 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/pagemap.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/slab.h> 55 #include <linux/init.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/rcupdate.h> 59 #include <linux/export.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/backing-dev.h> 65 #include <linux/page_idle.h> 66 #include <linux/memremap.h> 67 #include <linux/userfaultfd_k.h> 68 69 #include <asm/tlbflush.h> 70 71 #include <trace/events/tlb.h> 72 73 #include "internal.h" 74 75 static struct kmem_cache *anon_vma_cachep; 76 static struct kmem_cache *anon_vma_chain_cachep; 77 78 static inline struct anon_vma *anon_vma_alloc(void) 79 { 80 struct anon_vma *anon_vma; 81 82 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 83 if (anon_vma) { 84 atomic_set(&anon_vma->refcount, 1); 85 anon_vma->degree = 1; /* Reference for first vma */ 86 anon_vma->parent = anon_vma; 87 /* 88 * Initialise the anon_vma root to point to itself. If called 89 * from fork, the root will be reset to the parents anon_vma. 90 */ 91 anon_vma->root = anon_vma; 92 } 93 94 return anon_vma; 95 } 96 97 static inline void anon_vma_free(struct anon_vma *anon_vma) 98 { 99 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 100 101 /* 102 * Synchronize against page_lock_anon_vma_read() such that 103 * we can safely hold the lock without the anon_vma getting 104 * freed. 105 * 106 * Relies on the full mb implied by the atomic_dec_and_test() from 107 * put_anon_vma() against the acquire barrier implied by 108 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 109 * 110 * page_lock_anon_vma_read() VS put_anon_vma() 111 * down_read_trylock() atomic_dec_and_test() 112 * LOCK MB 113 * atomic_read() rwsem_is_locked() 114 * 115 * LOCK should suffice since the actual taking of the lock must 116 * happen _before_ what follows. 117 */ 118 might_sleep(); 119 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 120 anon_vma_lock_write(anon_vma); 121 anon_vma_unlock_write(anon_vma); 122 } 123 124 kmem_cache_free(anon_vma_cachep, anon_vma); 125 } 126 127 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 128 { 129 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 130 } 131 132 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 133 { 134 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 135 } 136 137 static void anon_vma_chain_link(struct vm_area_struct *vma, 138 struct anon_vma_chain *avc, 139 struct anon_vma *anon_vma) 140 { 141 avc->vma = vma; 142 avc->anon_vma = anon_vma; 143 list_add(&avc->same_vma, &vma->anon_vma_chain); 144 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 145 } 146 147 /** 148 * __anon_vma_prepare - attach an anon_vma to a memory region 149 * @vma: the memory region in question 150 * 151 * This makes sure the memory mapping described by 'vma' has 152 * an 'anon_vma' attached to it, so that we can associate the 153 * anonymous pages mapped into it with that anon_vma. 154 * 155 * The common case will be that we already have one, which 156 * is handled inline by anon_vma_prepare(). But if 157 * not we either need to find an adjacent mapping that we 158 * can re-use the anon_vma from (very common when the only 159 * reason for splitting a vma has been mprotect()), or we 160 * allocate a new one. 161 * 162 * Anon-vma allocations are very subtle, because we may have 163 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 164 * and that may actually touch the spinlock even in the newly 165 * allocated vma (it depends on RCU to make sure that the 166 * anon_vma isn't actually destroyed). 167 * 168 * As a result, we need to do proper anon_vma locking even 169 * for the new allocation. At the same time, we do not want 170 * to do any locking for the common case of already having 171 * an anon_vma. 172 * 173 * This must be called with the mmap_sem held for reading. 174 */ 175 int __anon_vma_prepare(struct vm_area_struct *vma) 176 { 177 struct mm_struct *mm = vma->vm_mm; 178 struct anon_vma *anon_vma, *allocated; 179 struct anon_vma_chain *avc; 180 181 might_sleep(); 182 183 avc = anon_vma_chain_alloc(GFP_KERNEL); 184 if (!avc) 185 goto out_enomem; 186 187 anon_vma = find_mergeable_anon_vma(vma); 188 allocated = NULL; 189 if (!anon_vma) { 190 anon_vma = anon_vma_alloc(); 191 if (unlikely(!anon_vma)) 192 goto out_enomem_free_avc; 193 allocated = anon_vma; 194 } 195 196 anon_vma_lock_write(anon_vma); 197 /* page_table_lock to protect against threads */ 198 spin_lock(&mm->page_table_lock); 199 if (likely(!vma->anon_vma)) { 200 vma->anon_vma = anon_vma; 201 anon_vma_chain_link(vma, avc, anon_vma); 202 /* vma reference or self-parent link for new root */ 203 anon_vma->degree++; 204 allocated = NULL; 205 avc = NULL; 206 } 207 spin_unlock(&mm->page_table_lock); 208 anon_vma_unlock_write(anon_vma); 209 210 if (unlikely(allocated)) 211 put_anon_vma(allocated); 212 if (unlikely(avc)) 213 anon_vma_chain_free(avc); 214 215 return 0; 216 217 out_enomem_free_avc: 218 anon_vma_chain_free(avc); 219 out_enomem: 220 return -ENOMEM; 221 } 222 223 /* 224 * This is a useful helper function for locking the anon_vma root as 225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 226 * have the same vma. 227 * 228 * Such anon_vma's should have the same root, so you'd expect to see 229 * just a single mutex_lock for the whole traversal. 230 */ 231 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 232 { 233 struct anon_vma *new_root = anon_vma->root; 234 if (new_root != root) { 235 if (WARN_ON_ONCE(root)) 236 up_write(&root->rwsem); 237 root = new_root; 238 down_write(&root->rwsem); 239 } 240 return root; 241 } 242 243 static inline void unlock_anon_vma_root(struct anon_vma *root) 244 { 245 if (root) 246 up_write(&root->rwsem); 247 } 248 249 /* 250 * Attach the anon_vmas from src to dst. 251 * Returns 0 on success, -ENOMEM on failure. 252 * 253 * If dst->anon_vma is NULL this function tries to find and reuse existing 254 * anon_vma which has no vmas and only one child anon_vma. This prevents 255 * degradation of anon_vma hierarchy to endless linear chain in case of 256 * constantly forking task. On the other hand, an anon_vma with more than one 257 * child isn't reused even if there was no alive vma, thus rmap walker has a 258 * good chance of avoiding scanning the whole hierarchy when it searches where 259 * page is mapped. 260 */ 261 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 262 { 263 struct anon_vma_chain *avc, *pavc; 264 struct anon_vma *root = NULL; 265 266 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 267 struct anon_vma *anon_vma; 268 269 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 270 if (unlikely(!avc)) { 271 unlock_anon_vma_root(root); 272 root = NULL; 273 avc = anon_vma_chain_alloc(GFP_KERNEL); 274 if (!avc) 275 goto enomem_failure; 276 } 277 anon_vma = pavc->anon_vma; 278 root = lock_anon_vma_root(root, anon_vma); 279 anon_vma_chain_link(dst, avc, anon_vma); 280 281 /* 282 * Reuse existing anon_vma if its degree lower than two, 283 * that means it has no vma and only one anon_vma child. 284 * 285 * Do not chose parent anon_vma, otherwise first child 286 * will always reuse it. Root anon_vma is never reused: 287 * it has self-parent reference and at least one child. 288 */ 289 if (!dst->anon_vma && anon_vma != src->anon_vma && 290 anon_vma->degree < 2) 291 dst->anon_vma = anon_vma; 292 } 293 if (dst->anon_vma) 294 dst->anon_vma->degree++; 295 unlock_anon_vma_root(root); 296 return 0; 297 298 enomem_failure: 299 /* 300 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 301 * decremented in unlink_anon_vmas(). 302 * We can safely do this because callers of anon_vma_clone() don't care 303 * about dst->anon_vma if anon_vma_clone() failed. 304 */ 305 dst->anon_vma = NULL; 306 unlink_anon_vmas(dst); 307 return -ENOMEM; 308 } 309 310 /* 311 * Attach vma to its own anon_vma, as well as to the anon_vmas that 312 * the corresponding VMA in the parent process is attached to. 313 * Returns 0 on success, non-zero on failure. 314 */ 315 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 316 { 317 struct anon_vma_chain *avc; 318 struct anon_vma *anon_vma; 319 int error; 320 321 /* Don't bother if the parent process has no anon_vma here. */ 322 if (!pvma->anon_vma) 323 return 0; 324 325 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 326 vma->anon_vma = NULL; 327 328 /* 329 * First, attach the new VMA to the parent VMA's anon_vmas, 330 * so rmap can find non-COWed pages in child processes. 331 */ 332 error = anon_vma_clone(vma, pvma); 333 if (error) 334 return error; 335 336 /* An existing anon_vma has been reused, all done then. */ 337 if (vma->anon_vma) 338 return 0; 339 340 /* Then add our own anon_vma. */ 341 anon_vma = anon_vma_alloc(); 342 if (!anon_vma) 343 goto out_error; 344 avc = anon_vma_chain_alloc(GFP_KERNEL); 345 if (!avc) 346 goto out_error_free_anon_vma; 347 348 /* 349 * The root anon_vma's spinlock is the lock actually used when we 350 * lock any of the anon_vmas in this anon_vma tree. 351 */ 352 anon_vma->root = pvma->anon_vma->root; 353 anon_vma->parent = pvma->anon_vma; 354 /* 355 * With refcounts, an anon_vma can stay around longer than the 356 * process it belongs to. The root anon_vma needs to be pinned until 357 * this anon_vma is freed, because the lock lives in the root. 358 */ 359 get_anon_vma(anon_vma->root); 360 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 361 vma->anon_vma = anon_vma; 362 anon_vma_lock_write(anon_vma); 363 anon_vma_chain_link(vma, avc, anon_vma); 364 anon_vma->parent->degree++; 365 anon_vma_unlock_write(anon_vma); 366 367 return 0; 368 369 out_error_free_anon_vma: 370 put_anon_vma(anon_vma); 371 out_error: 372 unlink_anon_vmas(vma); 373 return -ENOMEM; 374 } 375 376 void unlink_anon_vmas(struct vm_area_struct *vma) 377 { 378 struct anon_vma_chain *avc, *next; 379 struct anon_vma *root = NULL; 380 381 /* 382 * Unlink each anon_vma chained to the VMA. This list is ordered 383 * from newest to oldest, ensuring the root anon_vma gets freed last. 384 */ 385 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 386 struct anon_vma *anon_vma = avc->anon_vma; 387 388 root = lock_anon_vma_root(root, anon_vma); 389 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 390 391 /* 392 * Leave empty anon_vmas on the list - we'll need 393 * to free them outside the lock. 394 */ 395 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 396 anon_vma->parent->degree--; 397 continue; 398 } 399 400 list_del(&avc->same_vma); 401 anon_vma_chain_free(avc); 402 } 403 if (vma->anon_vma) 404 vma->anon_vma->degree--; 405 unlock_anon_vma_root(root); 406 407 /* 408 * Iterate the list once more, it now only contains empty and unlinked 409 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 410 * needing to write-acquire the anon_vma->root->rwsem. 411 */ 412 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 413 struct anon_vma *anon_vma = avc->anon_vma; 414 415 VM_WARN_ON(anon_vma->degree); 416 put_anon_vma(anon_vma); 417 418 list_del(&avc->same_vma); 419 anon_vma_chain_free(avc); 420 } 421 } 422 423 static void anon_vma_ctor(void *data) 424 { 425 struct anon_vma *anon_vma = data; 426 427 init_rwsem(&anon_vma->rwsem); 428 atomic_set(&anon_vma->refcount, 0); 429 anon_vma->rb_root = RB_ROOT_CACHED; 430 } 431 432 void __init anon_vma_init(void) 433 { 434 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 435 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 436 anon_vma_ctor); 437 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 438 SLAB_PANIC|SLAB_ACCOUNT); 439 } 440 441 /* 442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 443 * 444 * Since there is no serialization what so ever against page_remove_rmap() 445 * the best this function can do is return a locked anon_vma that might 446 * have been relevant to this page. 447 * 448 * The page might have been remapped to a different anon_vma or the anon_vma 449 * returned may already be freed (and even reused). 450 * 451 * In case it was remapped to a different anon_vma, the new anon_vma will be a 452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 453 * ensure that any anon_vma obtained from the page will still be valid for as 454 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 455 * 456 * All users of this function must be very careful when walking the anon_vma 457 * chain and verify that the page in question is indeed mapped in it 458 * [ something equivalent to page_mapped_in_vma() ]. 459 * 460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 461 * that the anon_vma pointer from page->mapping is valid if there is a 462 * mapcount, we can dereference the anon_vma after observing those. 463 */ 464 struct anon_vma *page_get_anon_vma(struct page *page) 465 { 466 struct anon_vma *anon_vma = NULL; 467 unsigned long anon_mapping; 468 469 rcu_read_lock(); 470 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 471 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 472 goto out; 473 if (!page_mapped(page)) 474 goto out; 475 476 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 477 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 478 anon_vma = NULL; 479 goto out; 480 } 481 482 /* 483 * If this page is still mapped, then its anon_vma cannot have been 484 * freed. But if it has been unmapped, we have no security against the 485 * anon_vma structure being freed and reused (for another anon_vma: 486 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 487 * above cannot corrupt). 488 */ 489 if (!page_mapped(page)) { 490 rcu_read_unlock(); 491 put_anon_vma(anon_vma); 492 return NULL; 493 } 494 out: 495 rcu_read_unlock(); 496 497 return anon_vma; 498 } 499 500 /* 501 * Similar to page_get_anon_vma() except it locks the anon_vma. 502 * 503 * Its a little more complex as it tries to keep the fast path to a single 504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 505 * reference like with page_get_anon_vma() and then block on the mutex. 506 */ 507 struct anon_vma *page_lock_anon_vma_read(struct page *page) 508 { 509 struct anon_vma *anon_vma = NULL; 510 struct anon_vma *root_anon_vma; 511 unsigned long anon_mapping; 512 513 rcu_read_lock(); 514 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 515 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 516 goto out; 517 if (!page_mapped(page)) 518 goto out; 519 520 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 521 root_anon_vma = READ_ONCE(anon_vma->root); 522 if (down_read_trylock(&root_anon_vma->rwsem)) { 523 /* 524 * If the page is still mapped, then this anon_vma is still 525 * its anon_vma, and holding the mutex ensures that it will 526 * not go away, see anon_vma_free(). 527 */ 528 if (!page_mapped(page)) { 529 up_read(&root_anon_vma->rwsem); 530 anon_vma = NULL; 531 } 532 goto out; 533 } 534 535 /* trylock failed, we got to sleep */ 536 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 537 anon_vma = NULL; 538 goto out; 539 } 540 541 if (!page_mapped(page)) { 542 rcu_read_unlock(); 543 put_anon_vma(anon_vma); 544 return NULL; 545 } 546 547 /* we pinned the anon_vma, its safe to sleep */ 548 rcu_read_unlock(); 549 anon_vma_lock_read(anon_vma); 550 551 if (atomic_dec_and_test(&anon_vma->refcount)) { 552 /* 553 * Oops, we held the last refcount, release the lock 554 * and bail -- can't simply use put_anon_vma() because 555 * we'll deadlock on the anon_vma_lock_write() recursion. 556 */ 557 anon_vma_unlock_read(anon_vma); 558 __put_anon_vma(anon_vma); 559 anon_vma = NULL; 560 } 561 562 return anon_vma; 563 564 out: 565 rcu_read_unlock(); 566 return anon_vma; 567 } 568 569 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 570 { 571 anon_vma_unlock_read(anon_vma); 572 } 573 574 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 575 /* 576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 577 * important if a PTE was dirty when it was unmapped that it's flushed 578 * before any IO is initiated on the page to prevent lost writes. Similarly, 579 * it must be flushed before freeing to prevent data leakage. 580 */ 581 void try_to_unmap_flush(void) 582 { 583 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 584 585 if (!tlb_ubc->flush_required) 586 return; 587 588 arch_tlbbatch_flush(&tlb_ubc->arch); 589 tlb_ubc->flush_required = false; 590 tlb_ubc->writable = false; 591 } 592 593 /* Flush iff there are potentially writable TLB entries that can race with IO */ 594 void try_to_unmap_flush_dirty(void) 595 { 596 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 597 598 if (tlb_ubc->writable) 599 try_to_unmap_flush(); 600 } 601 602 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 603 { 604 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 605 606 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 607 tlb_ubc->flush_required = true; 608 609 /* 610 * Ensure compiler does not re-order the setting of tlb_flush_batched 611 * before the PTE is cleared. 612 */ 613 barrier(); 614 mm->tlb_flush_batched = true; 615 616 /* 617 * If the PTE was dirty then it's best to assume it's writable. The 618 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 619 * before the page is queued for IO. 620 */ 621 if (writable) 622 tlb_ubc->writable = true; 623 } 624 625 /* 626 * Returns true if the TLB flush should be deferred to the end of a batch of 627 * unmap operations to reduce IPIs. 628 */ 629 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 630 { 631 bool should_defer = false; 632 633 if (!(flags & TTU_BATCH_FLUSH)) 634 return false; 635 636 /* If remote CPUs need to be flushed then defer batch the flush */ 637 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 638 should_defer = true; 639 put_cpu(); 640 641 return should_defer; 642 } 643 644 /* 645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 647 * operation such as mprotect or munmap to race between reclaim unmapping 648 * the page and flushing the page. If this race occurs, it potentially allows 649 * access to data via a stale TLB entry. Tracking all mm's that have TLB 650 * batching in flight would be expensive during reclaim so instead track 651 * whether TLB batching occurred in the past and if so then do a flush here 652 * if required. This will cost one additional flush per reclaim cycle paid 653 * by the first operation at risk such as mprotect and mumap. 654 * 655 * This must be called under the PTL so that an access to tlb_flush_batched 656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 657 * via the PTL. 658 */ 659 void flush_tlb_batched_pending(struct mm_struct *mm) 660 { 661 if (mm->tlb_flush_batched) { 662 flush_tlb_mm(mm); 663 664 /* 665 * Do not allow the compiler to re-order the clearing of 666 * tlb_flush_batched before the tlb is flushed. 667 */ 668 barrier(); 669 mm->tlb_flush_batched = false; 670 } 671 } 672 #else 673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 674 { 675 } 676 677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 678 { 679 return false; 680 } 681 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 682 683 /* 684 * At what user virtual address is page expected in vma? 685 * Caller should check the page is actually part of the vma. 686 */ 687 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 688 { 689 unsigned long address; 690 if (PageAnon(page)) { 691 struct anon_vma *page__anon_vma = page_anon_vma(page); 692 /* 693 * Note: swapoff's unuse_vma() is more efficient with this 694 * check, and needs it to match anon_vma when KSM is active. 695 */ 696 if (!vma->anon_vma || !page__anon_vma || 697 vma->anon_vma->root != page__anon_vma->root) 698 return -EFAULT; 699 } else if (page->mapping) { 700 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 701 return -EFAULT; 702 } else 703 return -EFAULT; 704 address = __vma_address(page, vma); 705 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 706 return -EFAULT; 707 return address; 708 } 709 710 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 711 { 712 pgd_t *pgd; 713 p4d_t *p4d; 714 pud_t *pud; 715 pmd_t *pmd = NULL; 716 pmd_t pmde; 717 718 pgd = pgd_offset(mm, address); 719 if (!pgd_present(*pgd)) 720 goto out; 721 722 p4d = p4d_offset(pgd, address); 723 if (!p4d_present(*p4d)) 724 goto out; 725 726 pud = pud_offset(p4d, address); 727 if (!pud_present(*pud)) 728 goto out; 729 730 pmd = pmd_offset(pud, address); 731 /* 732 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 733 * without holding anon_vma lock for write. So when looking for a 734 * genuine pmde (in which to find pte), test present and !THP together. 735 */ 736 pmde = *pmd; 737 barrier(); 738 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 739 pmd = NULL; 740 out: 741 return pmd; 742 } 743 744 struct page_referenced_arg { 745 int mapcount; 746 int referenced; 747 unsigned long vm_flags; 748 struct mem_cgroup *memcg; 749 }; 750 /* 751 * arg: page_referenced_arg will be passed 752 */ 753 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 754 unsigned long address, void *arg) 755 { 756 struct page_referenced_arg *pra = arg; 757 struct page_vma_mapped_walk pvmw = { 758 .page = page, 759 .vma = vma, 760 .address = address, 761 }; 762 int referenced = 0; 763 764 while (page_vma_mapped_walk(&pvmw)) { 765 address = pvmw.address; 766 767 if (vma->vm_flags & VM_LOCKED) { 768 page_vma_mapped_walk_done(&pvmw); 769 pra->vm_flags |= VM_LOCKED; 770 return false; /* To break the loop */ 771 } 772 773 if (pvmw.pte) { 774 if (ptep_clear_flush_young_notify(vma, address, 775 pvmw.pte)) { 776 /* 777 * Don't treat a reference through 778 * a sequentially read mapping as such. 779 * If the page has been used in another mapping, 780 * we will catch it; if this other mapping is 781 * already gone, the unmap path will have set 782 * PG_referenced or activated the page. 783 */ 784 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 785 referenced++; 786 } 787 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 788 if (pmdp_clear_flush_young_notify(vma, address, 789 pvmw.pmd)) 790 referenced++; 791 } else { 792 /* unexpected pmd-mapped page? */ 793 WARN_ON_ONCE(1); 794 } 795 796 pra->mapcount--; 797 } 798 799 if (referenced) 800 clear_page_idle(page); 801 if (test_and_clear_page_young(page)) 802 referenced++; 803 804 if (referenced) { 805 pra->referenced++; 806 pra->vm_flags |= vma->vm_flags; 807 } 808 809 if (!pra->mapcount) 810 return false; /* To break the loop */ 811 812 return true; 813 } 814 815 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 816 { 817 struct page_referenced_arg *pra = arg; 818 struct mem_cgroup *memcg = pra->memcg; 819 820 if (!mm_match_cgroup(vma->vm_mm, memcg)) 821 return true; 822 823 return false; 824 } 825 826 /** 827 * page_referenced - test if the page was referenced 828 * @page: the page to test 829 * @is_locked: caller holds lock on the page 830 * @memcg: target memory cgroup 831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 832 * 833 * Quick test_and_clear_referenced for all mappings to a page, 834 * returns the number of ptes which referenced the page. 835 */ 836 int page_referenced(struct page *page, 837 int is_locked, 838 struct mem_cgroup *memcg, 839 unsigned long *vm_flags) 840 { 841 int we_locked = 0; 842 struct page_referenced_arg pra = { 843 .mapcount = total_mapcount(page), 844 .memcg = memcg, 845 }; 846 struct rmap_walk_control rwc = { 847 .rmap_one = page_referenced_one, 848 .arg = (void *)&pra, 849 .anon_lock = page_lock_anon_vma_read, 850 }; 851 852 *vm_flags = 0; 853 if (!page_mapped(page)) 854 return 0; 855 856 if (!page_rmapping(page)) 857 return 0; 858 859 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 860 we_locked = trylock_page(page); 861 if (!we_locked) 862 return 1; 863 } 864 865 /* 866 * If we are reclaiming on behalf of a cgroup, skip 867 * counting on behalf of references from different 868 * cgroups 869 */ 870 if (memcg) { 871 rwc.invalid_vma = invalid_page_referenced_vma; 872 } 873 874 rmap_walk(page, &rwc); 875 *vm_flags = pra.vm_flags; 876 877 if (we_locked) 878 unlock_page(page); 879 880 return pra.referenced; 881 } 882 883 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 884 unsigned long address, void *arg) 885 { 886 struct page_vma_mapped_walk pvmw = { 887 .page = page, 888 .vma = vma, 889 .address = address, 890 .flags = PVMW_SYNC, 891 }; 892 struct mmu_notifier_range range; 893 int *cleaned = arg; 894 895 /* 896 * We have to assume the worse case ie pmd for invalidation. Note that 897 * the page can not be free from this function. 898 */ 899 mmu_notifier_range_init(&range, vma->vm_mm, address, 900 min(vma->vm_end, address + 901 (PAGE_SIZE << compound_order(page)))); 902 mmu_notifier_invalidate_range_start(&range); 903 904 while (page_vma_mapped_walk(&pvmw)) { 905 unsigned long cstart; 906 int ret = 0; 907 908 cstart = address = pvmw.address; 909 if (pvmw.pte) { 910 pte_t entry; 911 pte_t *pte = pvmw.pte; 912 913 if (!pte_dirty(*pte) && !pte_write(*pte)) 914 continue; 915 916 flush_cache_page(vma, address, pte_pfn(*pte)); 917 entry = ptep_clear_flush(vma, address, pte); 918 entry = pte_wrprotect(entry); 919 entry = pte_mkclean(entry); 920 set_pte_at(vma->vm_mm, address, pte, entry); 921 ret = 1; 922 } else { 923 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 924 pmd_t *pmd = pvmw.pmd; 925 pmd_t entry; 926 927 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 928 continue; 929 930 flush_cache_page(vma, address, page_to_pfn(page)); 931 entry = pmdp_huge_clear_flush(vma, address, pmd); 932 entry = pmd_wrprotect(entry); 933 entry = pmd_mkclean(entry); 934 set_pmd_at(vma->vm_mm, address, pmd, entry); 935 cstart &= PMD_MASK; 936 ret = 1; 937 #else 938 /* unexpected pmd-mapped page? */ 939 WARN_ON_ONCE(1); 940 #endif 941 } 942 943 /* 944 * No need to call mmu_notifier_invalidate_range() as we are 945 * downgrading page table protection not changing it to point 946 * to a new page. 947 * 948 * See Documentation/vm/mmu_notifier.rst 949 */ 950 if (ret) 951 (*cleaned)++; 952 } 953 954 mmu_notifier_invalidate_range_end(&range); 955 956 return true; 957 } 958 959 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 960 { 961 if (vma->vm_flags & VM_SHARED) 962 return false; 963 964 return true; 965 } 966 967 int page_mkclean(struct page *page) 968 { 969 int cleaned = 0; 970 struct address_space *mapping; 971 struct rmap_walk_control rwc = { 972 .arg = (void *)&cleaned, 973 .rmap_one = page_mkclean_one, 974 .invalid_vma = invalid_mkclean_vma, 975 }; 976 977 BUG_ON(!PageLocked(page)); 978 979 if (!page_mapped(page)) 980 return 0; 981 982 mapping = page_mapping(page); 983 if (!mapping) 984 return 0; 985 986 rmap_walk(page, &rwc); 987 988 return cleaned; 989 } 990 EXPORT_SYMBOL_GPL(page_mkclean); 991 992 /** 993 * page_move_anon_rmap - move a page to our anon_vma 994 * @page: the page to move to our anon_vma 995 * @vma: the vma the page belongs to 996 * 997 * When a page belongs exclusively to one process after a COW event, 998 * that page can be moved into the anon_vma that belongs to just that 999 * process, so the rmap code will not search the parent or sibling 1000 * processes. 1001 */ 1002 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1003 { 1004 struct anon_vma *anon_vma = vma->anon_vma; 1005 1006 page = compound_head(page); 1007 1008 VM_BUG_ON_PAGE(!PageLocked(page), page); 1009 VM_BUG_ON_VMA(!anon_vma, vma); 1010 1011 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1012 /* 1013 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1014 * simultaneously, so a concurrent reader (eg page_referenced()'s 1015 * PageAnon()) will not see one without the other. 1016 */ 1017 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1018 } 1019 1020 /** 1021 * __page_set_anon_rmap - set up new anonymous rmap 1022 * @page: Page or Hugepage to add to rmap 1023 * @vma: VM area to add page to. 1024 * @address: User virtual address of the mapping 1025 * @exclusive: the page is exclusively owned by the current process 1026 */ 1027 static void __page_set_anon_rmap(struct page *page, 1028 struct vm_area_struct *vma, unsigned long address, int exclusive) 1029 { 1030 struct anon_vma *anon_vma = vma->anon_vma; 1031 1032 BUG_ON(!anon_vma); 1033 1034 if (PageAnon(page)) 1035 return; 1036 1037 /* 1038 * If the page isn't exclusively mapped into this vma, 1039 * we must use the _oldest_ possible anon_vma for the 1040 * page mapping! 1041 */ 1042 if (!exclusive) 1043 anon_vma = anon_vma->root; 1044 1045 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1046 page->mapping = (struct address_space *) anon_vma; 1047 page->index = linear_page_index(vma, address); 1048 } 1049 1050 /** 1051 * __page_check_anon_rmap - sanity check anonymous rmap addition 1052 * @page: the page to add the mapping to 1053 * @vma: the vm area in which the mapping is added 1054 * @address: the user virtual address mapped 1055 */ 1056 static void __page_check_anon_rmap(struct page *page, 1057 struct vm_area_struct *vma, unsigned long address) 1058 { 1059 #ifdef CONFIG_DEBUG_VM 1060 /* 1061 * The page's anon-rmap details (mapping and index) are guaranteed to 1062 * be set up correctly at this point. 1063 * 1064 * We have exclusion against page_add_anon_rmap because the caller 1065 * always holds the page locked, except if called from page_dup_rmap, 1066 * in which case the page is already known to be setup. 1067 * 1068 * We have exclusion against page_add_new_anon_rmap because those pages 1069 * are initially only visible via the pagetables, and the pte is locked 1070 * over the call to page_add_new_anon_rmap. 1071 */ 1072 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1073 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); 1074 #endif 1075 } 1076 1077 /** 1078 * page_add_anon_rmap - add pte mapping to an anonymous page 1079 * @page: the page to add the mapping to 1080 * @vma: the vm area in which the mapping is added 1081 * @address: the user virtual address mapped 1082 * @compound: charge the page as compound or small page 1083 * 1084 * The caller needs to hold the pte lock, and the page must be locked in 1085 * the anon_vma case: to serialize mapping,index checking after setting, 1086 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1087 * (but PageKsm is never downgraded to PageAnon). 1088 */ 1089 void page_add_anon_rmap(struct page *page, 1090 struct vm_area_struct *vma, unsigned long address, bool compound) 1091 { 1092 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1093 } 1094 1095 /* 1096 * Special version of the above for do_swap_page, which often runs 1097 * into pages that are exclusively owned by the current process. 1098 * Everybody else should continue to use page_add_anon_rmap above. 1099 */ 1100 void do_page_add_anon_rmap(struct page *page, 1101 struct vm_area_struct *vma, unsigned long address, int flags) 1102 { 1103 bool compound = flags & RMAP_COMPOUND; 1104 bool first; 1105 1106 if (compound) { 1107 atomic_t *mapcount; 1108 VM_BUG_ON_PAGE(!PageLocked(page), page); 1109 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1110 mapcount = compound_mapcount_ptr(page); 1111 first = atomic_inc_and_test(mapcount); 1112 } else { 1113 first = atomic_inc_and_test(&page->_mapcount); 1114 } 1115 1116 if (first) { 1117 int nr = compound ? hpage_nr_pages(page) : 1; 1118 /* 1119 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1120 * these counters are not modified in interrupt context, and 1121 * pte lock(a spinlock) is held, which implies preemption 1122 * disabled. 1123 */ 1124 if (compound) 1125 __inc_node_page_state(page, NR_ANON_THPS); 1126 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1127 } 1128 if (unlikely(PageKsm(page))) 1129 return; 1130 1131 VM_BUG_ON_PAGE(!PageLocked(page), page); 1132 1133 /* address might be in next vma when migration races vma_adjust */ 1134 if (first) 1135 __page_set_anon_rmap(page, vma, address, 1136 flags & RMAP_EXCLUSIVE); 1137 else 1138 __page_check_anon_rmap(page, vma, address); 1139 } 1140 1141 /** 1142 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1143 * @page: the page to add the mapping to 1144 * @vma: the vm area in which the mapping is added 1145 * @address: the user virtual address mapped 1146 * @compound: charge the page as compound or small page 1147 * 1148 * Same as page_add_anon_rmap but must only be called on *new* pages. 1149 * This means the inc-and-test can be bypassed. 1150 * Page does not have to be locked. 1151 */ 1152 void page_add_new_anon_rmap(struct page *page, 1153 struct vm_area_struct *vma, unsigned long address, bool compound) 1154 { 1155 int nr = compound ? hpage_nr_pages(page) : 1; 1156 1157 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1158 __SetPageSwapBacked(page); 1159 if (compound) { 1160 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1161 /* increment count (starts at -1) */ 1162 atomic_set(compound_mapcount_ptr(page), 0); 1163 __inc_node_page_state(page, NR_ANON_THPS); 1164 } else { 1165 /* Anon THP always mapped first with PMD */ 1166 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1167 /* increment count (starts at -1) */ 1168 atomic_set(&page->_mapcount, 0); 1169 } 1170 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1171 __page_set_anon_rmap(page, vma, address, 1); 1172 } 1173 1174 /** 1175 * page_add_file_rmap - add pte mapping to a file page 1176 * @page: the page to add the mapping to 1177 * @compound: charge the page as compound or small page 1178 * 1179 * The caller needs to hold the pte lock. 1180 */ 1181 void page_add_file_rmap(struct page *page, bool compound) 1182 { 1183 int i, nr = 1; 1184 1185 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1186 lock_page_memcg(page); 1187 if (compound && PageTransHuge(page)) { 1188 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1189 if (atomic_inc_and_test(&page[i]._mapcount)) 1190 nr++; 1191 } 1192 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1193 goto out; 1194 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1195 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); 1196 } else { 1197 if (PageTransCompound(page) && page_mapping(page)) { 1198 VM_WARN_ON_ONCE(!PageLocked(page)); 1199 1200 SetPageDoubleMap(compound_head(page)); 1201 if (PageMlocked(page)) 1202 clear_page_mlock(compound_head(page)); 1203 } 1204 if (!atomic_inc_and_test(&page->_mapcount)) 1205 goto out; 1206 } 1207 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1208 out: 1209 unlock_page_memcg(page); 1210 } 1211 1212 static void page_remove_file_rmap(struct page *page, bool compound) 1213 { 1214 int i, nr = 1; 1215 1216 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1217 lock_page_memcg(page); 1218 1219 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1220 if (unlikely(PageHuge(page))) { 1221 /* hugetlb pages are always mapped with pmds */ 1222 atomic_dec(compound_mapcount_ptr(page)); 1223 goto out; 1224 } 1225 1226 /* page still mapped by someone else? */ 1227 if (compound && PageTransHuge(page)) { 1228 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1229 if (atomic_add_negative(-1, &page[i]._mapcount)) 1230 nr++; 1231 } 1232 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1233 goto out; 1234 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1235 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); 1236 } else { 1237 if (!atomic_add_negative(-1, &page->_mapcount)) 1238 goto out; 1239 } 1240 1241 /* 1242 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because 1243 * these counters are not modified in interrupt context, and 1244 * pte lock(a spinlock) is held, which implies preemption disabled. 1245 */ 1246 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1247 1248 if (unlikely(PageMlocked(page))) 1249 clear_page_mlock(page); 1250 out: 1251 unlock_page_memcg(page); 1252 } 1253 1254 static void page_remove_anon_compound_rmap(struct page *page) 1255 { 1256 int i, nr; 1257 1258 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1259 return; 1260 1261 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1262 if (unlikely(PageHuge(page))) 1263 return; 1264 1265 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1266 return; 1267 1268 __dec_node_page_state(page, NR_ANON_THPS); 1269 1270 if (TestClearPageDoubleMap(page)) { 1271 /* 1272 * Subpages can be mapped with PTEs too. Check how many of 1273 * themi are still mapped. 1274 */ 1275 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1276 if (atomic_add_negative(-1, &page[i]._mapcount)) 1277 nr++; 1278 } 1279 } else { 1280 nr = HPAGE_PMD_NR; 1281 } 1282 1283 if (unlikely(PageMlocked(page))) 1284 clear_page_mlock(page); 1285 1286 if (nr) { 1287 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); 1288 deferred_split_huge_page(page); 1289 } 1290 } 1291 1292 /** 1293 * page_remove_rmap - take down pte mapping from a page 1294 * @page: page to remove mapping from 1295 * @compound: uncharge the page as compound or small page 1296 * 1297 * The caller needs to hold the pte lock. 1298 */ 1299 void page_remove_rmap(struct page *page, bool compound) 1300 { 1301 if (!PageAnon(page)) 1302 return page_remove_file_rmap(page, compound); 1303 1304 if (compound) 1305 return page_remove_anon_compound_rmap(page); 1306 1307 /* page still mapped by someone else? */ 1308 if (!atomic_add_negative(-1, &page->_mapcount)) 1309 return; 1310 1311 /* 1312 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1313 * these counters are not modified in interrupt context, and 1314 * pte lock(a spinlock) is held, which implies preemption disabled. 1315 */ 1316 __dec_node_page_state(page, NR_ANON_MAPPED); 1317 1318 if (unlikely(PageMlocked(page))) 1319 clear_page_mlock(page); 1320 1321 if (PageTransCompound(page)) 1322 deferred_split_huge_page(compound_head(page)); 1323 1324 /* 1325 * It would be tidy to reset the PageAnon mapping here, 1326 * but that might overwrite a racing page_add_anon_rmap 1327 * which increments mapcount after us but sets mapping 1328 * before us: so leave the reset to free_unref_page, 1329 * and remember that it's only reliable while mapped. 1330 * Leaving it set also helps swapoff to reinstate ptes 1331 * faster for those pages still in swapcache. 1332 */ 1333 } 1334 1335 /* 1336 * @arg: enum ttu_flags will be passed to this argument 1337 */ 1338 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1339 unsigned long address, void *arg) 1340 { 1341 struct mm_struct *mm = vma->vm_mm; 1342 struct page_vma_mapped_walk pvmw = { 1343 .page = page, 1344 .vma = vma, 1345 .address = address, 1346 }; 1347 pte_t pteval; 1348 struct page *subpage; 1349 bool ret = true; 1350 struct mmu_notifier_range range; 1351 enum ttu_flags flags = (enum ttu_flags)arg; 1352 1353 /* munlock has nothing to gain from examining un-locked vmas */ 1354 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1355 return true; 1356 1357 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1358 is_zone_device_page(page) && !is_device_private_page(page)) 1359 return true; 1360 1361 if (flags & TTU_SPLIT_HUGE_PMD) { 1362 split_huge_pmd_address(vma, address, 1363 flags & TTU_SPLIT_FREEZE, page); 1364 } 1365 1366 /* 1367 * For THP, we have to assume the worse case ie pmd for invalidation. 1368 * For hugetlb, it could be much worse if we need to do pud 1369 * invalidation in the case of pmd sharing. 1370 * 1371 * Note that the page can not be free in this function as call of 1372 * try_to_unmap() must hold a reference on the page. 1373 */ 1374 mmu_notifier_range_init(&range, vma->vm_mm, address, 1375 min(vma->vm_end, address + 1376 (PAGE_SIZE << compound_order(page)))); 1377 if (PageHuge(page)) { 1378 /* 1379 * If sharing is possible, start and end will be adjusted 1380 * accordingly. 1381 */ 1382 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1383 &range.end); 1384 } 1385 mmu_notifier_invalidate_range_start(&range); 1386 1387 while (page_vma_mapped_walk(&pvmw)) { 1388 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1389 /* PMD-mapped THP migration entry */ 1390 if (!pvmw.pte && (flags & TTU_MIGRATION)) { 1391 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 1392 1393 set_pmd_migration_entry(&pvmw, page); 1394 continue; 1395 } 1396 #endif 1397 1398 /* 1399 * If the page is mlock()d, we cannot swap it out. 1400 * If it's recently referenced (perhaps page_referenced 1401 * skipped over this mm) then we should reactivate it. 1402 */ 1403 if (!(flags & TTU_IGNORE_MLOCK)) { 1404 if (vma->vm_flags & VM_LOCKED) { 1405 /* PTE-mapped THP are never mlocked */ 1406 if (!PageTransCompound(page)) { 1407 /* 1408 * Holding pte lock, we do *not* need 1409 * mmap_sem here 1410 */ 1411 mlock_vma_page(page); 1412 } 1413 ret = false; 1414 page_vma_mapped_walk_done(&pvmw); 1415 break; 1416 } 1417 if (flags & TTU_MUNLOCK) 1418 continue; 1419 } 1420 1421 /* Unexpected PMD-mapped THP? */ 1422 VM_BUG_ON_PAGE(!pvmw.pte, page); 1423 1424 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1425 address = pvmw.address; 1426 1427 if (PageHuge(page)) { 1428 if (huge_pmd_unshare(mm, &address, pvmw.pte)) { 1429 /* 1430 * huge_pmd_unshare unmapped an entire PMD 1431 * page. There is no way of knowing exactly 1432 * which PMDs may be cached for this mm, so 1433 * we must flush them all. start/end were 1434 * already adjusted above to cover this range. 1435 */ 1436 flush_cache_range(vma, range.start, range.end); 1437 flush_tlb_range(vma, range.start, range.end); 1438 mmu_notifier_invalidate_range(mm, range.start, 1439 range.end); 1440 1441 /* 1442 * The ref count of the PMD page was dropped 1443 * which is part of the way map counting 1444 * is done for shared PMDs. Return 'true' 1445 * here. When there is no other sharing, 1446 * huge_pmd_unshare returns false and we will 1447 * unmap the actual page and drop map count 1448 * to zero. 1449 */ 1450 page_vma_mapped_walk_done(&pvmw); 1451 break; 1452 } 1453 } 1454 1455 if (IS_ENABLED(CONFIG_MIGRATION) && 1456 (flags & TTU_MIGRATION) && 1457 is_zone_device_page(page)) { 1458 swp_entry_t entry; 1459 pte_t swp_pte; 1460 1461 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); 1462 1463 /* 1464 * Store the pfn of the page in a special migration 1465 * pte. do_swap_page() will wait until the migration 1466 * pte is removed and then restart fault handling. 1467 */ 1468 entry = make_migration_entry(page, 0); 1469 swp_pte = swp_entry_to_pte(entry); 1470 if (pte_soft_dirty(pteval)) 1471 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1472 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1473 /* 1474 * No need to invalidate here it will synchronize on 1475 * against the special swap migration pte. 1476 */ 1477 goto discard; 1478 } 1479 1480 if (!(flags & TTU_IGNORE_ACCESS)) { 1481 if (ptep_clear_flush_young_notify(vma, address, 1482 pvmw.pte)) { 1483 ret = false; 1484 page_vma_mapped_walk_done(&pvmw); 1485 break; 1486 } 1487 } 1488 1489 /* Nuke the page table entry. */ 1490 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1491 if (should_defer_flush(mm, flags)) { 1492 /* 1493 * We clear the PTE but do not flush so potentially 1494 * a remote CPU could still be writing to the page. 1495 * If the entry was previously clean then the 1496 * architecture must guarantee that a clear->dirty 1497 * transition on a cached TLB entry is written through 1498 * and traps if the PTE is unmapped. 1499 */ 1500 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1501 1502 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1503 } else { 1504 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1505 } 1506 1507 /* Move the dirty bit to the page. Now the pte is gone. */ 1508 if (pte_dirty(pteval)) 1509 set_page_dirty(page); 1510 1511 /* Update high watermark before we lower rss */ 1512 update_hiwater_rss(mm); 1513 1514 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1515 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1516 if (PageHuge(page)) { 1517 int nr = 1 << compound_order(page); 1518 hugetlb_count_sub(nr, mm); 1519 set_huge_swap_pte_at(mm, address, 1520 pvmw.pte, pteval, 1521 vma_mmu_pagesize(vma)); 1522 } else { 1523 dec_mm_counter(mm, mm_counter(page)); 1524 set_pte_at(mm, address, pvmw.pte, pteval); 1525 } 1526 1527 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1528 /* 1529 * The guest indicated that the page content is of no 1530 * interest anymore. Simply discard the pte, vmscan 1531 * will take care of the rest. 1532 * A future reference will then fault in a new zero 1533 * page. When userfaultfd is active, we must not drop 1534 * this page though, as its main user (postcopy 1535 * migration) will not expect userfaults on already 1536 * copied pages. 1537 */ 1538 dec_mm_counter(mm, mm_counter(page)); 1539 /* We have to invalidate as we cleared the pte */ 1540 mmu_notifier_invalidate_range(mm, address, 1541 address + PAGE_SIZE); 1542 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1543 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { 1544 swp_entry_t entry; 1545 pte_t swp_pte; 1546 1547 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1548 set_pte_at(mm, address, pvmw.pte, pteval); 1549 ret = false; 1550 page_vma_mapped_walk_done(&pvmw); 1551 break; 1552 } 1553 1554 /* 1555 * Store the pfn of the page in a special migration 1556 * pte. do_swap_page() will wait until the migration 1557 * pte is removed and then restart fault handling. 1558 */ 1559 entry = make_migration_entry(subpage, 1560 pte_write(pteval)); 1561 swp_pte = swp_entry_to_pte(entry); 1562 if (pte_soft_dirty(pteval)) 1563 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1564 set_pte_at(mm, address, pvmw.pte, swp_pte); 1565 /* 1566 * No need to invalidate here it will synchronize on 1567 * against the special swap migration pte. 1568 */ 1569 } else if (PageAnon(page)) { 1570 swp_entry_t entry = { .val = page_private(subpage) }; 1571 pte_t swp_pte; 1572 /* 1573 * Store the swap location in the pte. 1574 * See handle_pte_fault() ... 1575 */ 1576 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1577 WARN_ON_ONCE(1); 1578 ret = false; 1579 /* We have to invalidate as we cleared the pte */ 1580 mmu_notifier_invalidate_range(mm, address, 1581 address + PAGE_SIZE); 1582 page_vma_mapped_walk_done(&pvmw); 1583 break; 1584 } 1585 1586 /* MADV_FREE page check */ 1587 if (!PageSwapBacked(page)) { 1588 if (!PageDirty(page)) { 1589 /* Invalidate as we cleared the pte */ 1590 mmu_notifier_invalidate_range(mm, 1591 address, address + PAGE_SIZE); 1592 dec_mm_counter(mm, MM_ANONPAGES); 1593 goto discard; 1594 } 1595 1596 /* 1597 * If the page was redirtied, it cannot be 1598 * discarded. Remap the page to page table. 1599 */ 1600 set_pte_at(mm, address, pvmw.pte, pteval); 1601 SetPageSwapBacked(page); 1602 ret = false; 1603 page_vma_mapped_walk_done(&pvmw); 1604 break; 1605 } 1606 1607 if (swap_duplicate(entry) < 0) { 1608 set_pte_at(mm, address, pvmw.pte, pteval); 1609 ret = false; 1610 page_vma_mapped_walk_done(&pvmw); 1611 break; 1612 } 1613 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1614 set_pte_at(mm, address, pvmw.pte, pteval); 1615 ret = false; 1616 page_vma_mapped_walk_done(&pvmw); 1617 break; 1618 } 1619 if (list_empty(&mm->mmlist)) { 1620 spin_lock(&mmlist_lock); 1621 if (list_empty(&mm->mmlist)) 1622 list_add(&mm->mmlist, &init_mm.mmlist); 1623 spin_unlock(&mmlist_lock); 1624 } 1625 dec_mm_counter(mm, MM_ANONPAGES); 1626 inc_mm_counter(mm, MM_SWAPENTS); 1627 swp_pte = swp_entry_to_pte(entry); 1628 if (pte_soft_dirty(pteval)) 1629 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1630 set_pte_at(mm, address, pvmw.pte, swp_pte); 1631 /* Invalidate as we cleared the pte */ 1632 mmu_notifier_invalidate_range(mm, address, 1633 address + PAGE_SIZE); 1634 } else { 1635 /* 1636 * This is a locked file-backed page, thus it cannot 1637 * be removed from the page cache and replaced by a new 1638 * page before mmu_notifier_invalidate_range_end, so no 1639 * concurrent thread might update its page table to 1640 * point at new page while a device still is using this 1641 * page. 1642 * 1643 * See Documentation/vm/mmu_notifier.rst 1644 */ 1645 dec_mm_counter(mm, mm_counter_file(page)); 1646 } 1647 discard: 1648 /* 1649 * No need to call mmu_notifier_invalidate_range() it has be 1650 * done above for all cases requiring it to happen under page 1651 * table lock before mmu_notifier_invalidate_range_end() 1652 * 1653 * See Documentation/vm/mmu_notifier.rst 1654 */ 1655 page_remove_rmap(subpage, PageHuge(page)); 1656 put_page(page); 1657 } 1658 1659 mmu_notifier_invalidate_range_end(&range); 1660 1661 return ret; 1662 } 1663 1664 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1665 { 1666 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1667 1668 if (!maybe_stack) 1669 return false; 1670 1671 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1672 VM_STACK_INCOMPLETE_SETUP) 1673 return true; 1674 1675 return false; 1676 } 1677 1678 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1679 { 1680 return is_vma_temporary_stack(vma); 1681 } 1682 1683 static int page_mapcount_is_zero(struct page *page) 1684 { 1685 return !total_mapcount(page); 1686 } 1687 1688 /** 1689 * try_to_unmap - try to remove all page table mappings to a page 1690 * @page: the page to get unmapped 1691 * @flags: action and flags 1692 * 1693 * Tries to remove all the page table entries which are mapping this 1694 * page, used in the pageout path. Caller must hold the page lock. 1695 * 1696 * If unmap is successful, return true. Otherwise, false. 1697 */ 1698 bool try_to_unmap(struct page *page, enum ttu_flags flags) 1699 { 1700 struct rmap_walk_control rwc = { 1701 .rmap_one = try_to_unmap_one, 1702 .arg = (void *)flags, 1703 .done = page_mapcount_is_zero, 1704 .anon_lock = page_lock_anon_vma_read, 1705 }; 1706 1707 /* 1708 * During exec, a temporary VMA is setup and later moved. 1709 * The VMA is moved under the anon_vma lock but not the 1710 * page tables leading to a race where migration cannot 1711 * find the migration ptes. Rather than increasing the 1712 * locking requirements of exec(), migration skips 1713 * temporary VMAs until after exec() completes. 1714 */ 1715 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) 1716 && !PageKsm(page) && PageAnon(page)) 1717 rwc.invalid_vma = invalid_migration_vma; 1718 1719 if (flags & TTU_RMAP_LOCKED) 1720 rmap_walk_locked(page, &rwc); 1721 else 1722 rmap_walk(page, &rwc); 1723 1724 return !page_mapcount(page) ? true : false; 1725 } 1726 1727 static int page_not_mapped(struct page *page) 1728 { 1729 return !page_mapped(page); 1730 }; 1731 1732 /** 1733 * try_to_munlock - try to munlock a page 1734 * @page: the page to be munlocked 1735 * 1736 * Called from munlock code. Checks all of the VMAs mapping the page 1737 * to make sure nobody else has this page mlocked. The page will be 1738 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1739 */ 1740 1741 void try_to_munlock(struct page *page) 1742 { 1743 struct rmap_walk_control rwc = { 1744 .rmap_one = try_to_unmap_one, 1745 .arg = (void *)TTU_MUNLOCK, 1746 .done = page_not_mapped, 1747 .anon_lock = page_lock_anon_vma_read, 1748 1749 }; 1750 1751 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1752 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 1753 1754 rmap_walk(page, &rwc); 1755 } 1756 1757 void __put_anon_vma(struct anon_vma *anon_vma) 1758 { 1759 struct anon_vma *root = anon_vma->root; 1760 1761 anon_vma_free(anon_vma); 1762 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1763 anon_vma_free(root); 1764 } 1765 1766 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1767 struct rmap_walk_control *rwc) 1768 { 1769 struct anon_vma *anon_vma; 1770 1771 if (rwc->anon_lock) 1772 return rwc->anon_lock(page); 1773 1774 /* 1775 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1776 * because that depends on page_mapped(); but not all its usages 1777 * are holding mmap_sem. Users without mmap_sem are required to 1778 * take a reference count to prevent the anon_vma disappearing 1779 */ 1780 anon_vma = page_anon_vma(page); 1781 if (!anon_vma) 1782 return NULL; 1783 1784 anon_vma_lock_read(anon_vma); 1785 return anon_vma; 1786 } 1787 1788 /* 1789 * rmap_walk_anon - do something to anonymous page using the object-based 1790 * rmap method 1791 * @page: the page to be handled 1792 * @rwc: control variable according to each walk type 1793 * 1794 * Find all the mappings of a page using the mapping pointer and the vma chains 1795 * contained in the anon_vma struct it points to. 1796 * 1797 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1798 * where the page was found will be held for write. So, we won't recheck 1799 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1800 * LOCKED. 1801 */ 1802 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1803 bool locked) 1804 { 1805 struct anon_vma *anon_vma; 1806 pgoff_t pgoff_start, pgoff_end; 1807 struct anon_vma_chain *avc; 1808 1809 if (locked) { 1810 anon_vma = page_anon_vma(page); 1811 /* anon_vma disappear under us? */ 1812 VM_BUG_ON_PAGE(!anon_vma, page); 1813 } else { 1814 anon_vma = rmap_walk_anon_lock(page, rwc); 1815 } 1816 if (!anon_vma) 1817 return; 1818 1819 pgoff_start = page_to_pgoff(page); 1820 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1821 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1822 pgoff_start, pgoff_end) { 1823 struct vm_area_struct *vma = avc->vma; 1824 unsigned long address = vma_address(page, vma); 1825 1826 cond_resched(); 1827 1828 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1829 continue; 1830 1831 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1832 break; 1833 if (rwc->done && rwc->done(page)) 1834 break; 1835 } 1836 1837 if (!locked) 1838 anon_vma_unlock_read(anon_vma); 1839 } 1840 1841 /* 1842 * rmap_walk_file - do something to file page using the object-based rmap method 1843 * @page: the page to be handled 1844 * @rwc: control variable according to each walk type 1845 * 1846 * Find all the mappings of a page using the mapping pointer and the vma chains 1847 * contained in the address_space struct it points to. 1848 * 1849 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1850 * where the page was found will be held for write. So, we won't recheck 1851 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1852 * LOCKED. 1853 */ 1854 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1855 bool locked) 1856 { 1857 struct address_space *mapping = page_mapping(page); 1858 pgoff_t pgoff_start, pgoff_end; 1859 struct vm_area_struct *vma; 1860 1861 /* 1862 * The page lock not only makes sure that page->mapping cannot 1863 * suddenly be NULLified by truncation, it makes sure that the 1864 * structure at mapping cannot be freed and reused yet, 1865 * so we can safely take mapping->i_mmap_rwsem. 1866 */ 1867 VM_BUG_ON_PAGE(!PageLocked(page), page); 1868 1869 if (!mapping) 1870 return; 1871 1872 pgoff_start = page_to_pgoff(page); 1873 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1874 if (!locked) 1875 i_mmap_lock_read(mapping); 1876 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1877 pgoff_start, pgoff_end) { 1878 unsigned long address = vma_address(page, vma); 1879 1880 cond_resched(); 1881 1882 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1883 continue; 1884 1885 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1886 goto done; 1887 if (rwc->done && rwc->done(page)) 1888 goto done; 1889 } 1890 1891 done: 1892 if (!locked) 1893 i_mmap_unlock_read(mapping); 1894 } 1895 1896 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1897 { 1898 if (unlikely(PageKsm(page))) 1899 rmap_walk_ksm(page, rwc); 1900 else if (PageAnon(page)) 1901 rmap_walk_anon(page, rwc, false); 1902 else 1903 rmap_walk_file(page, rwc, false); 1904 } 1905 1906 /* Like rmap_walk, but caller holds relevant rmap lock */ 1907 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1908 { 1909 /* no ksm support for now */ 1910 VM_BUG_ON_PAGE(PageKsm(page), page); 1911 if (PageAnon(page)) 1912 rmap_walk_anon(page, rwc, true); 1913 else 1914 rmap_walk_file(page, rwc, true); 1915 } 1916 1917 #ifdef CONFIG_HUGETLB_PAGE 1918 /* 1919 * The following two functions are for anonymous (private mapped) hugepages. 1920 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1921 * and no lru code, because we handle hugepages differently from common pages. 1922 */ 1923 void hugepage_add_anon_rmap(struct page *page, 1924 struct vm_area_struct *vma, unsigned long address) 1925 { 1926 struct anon_vma *anon_vma = vma->anon_vma; 1927 int first; 1928 1929 BUG_ON(!PageLocked(page)); 1930 BUG_ON(!anon_vma); 1931 /* address might be in next vma when migration races vma_adjust */ 1932 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1933 if (first) 1934 __page_set_anon_rmap(page, vma, address, 0); 1935 } 1936 1937 void hugepage_add_new_anon_rmap(struct page *page, 1938 struct vm_area_struct *vma, unsigned long address) 1939 { 1940 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1941 atomic_set(compound_mapcount_ptr(page), 0); 1942 __page_set_anon_rmap(page, vma, address, 1); 1943 } 1944 #endif /* CONFIG_HUGETLB_PAGE */ 1945