xref: /openbmc/linux/mm/rmap.c (revision d5532ee7)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71 }
72 
73 void anon_vma_free(struct anon_vma *anon_vma)
74 {
75 	kmem_cache_free(anon_vma_cachep, anon_vma);
76 }
77 
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 {
80 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81 }
82 
83 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 {
85 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86 }
87 
88 /**
89  * anon_vma_prepare - attach an anon_vma to a memory region
90  * @vma: the memory region in question
91  *
92  * This makes sure the memory mapping described by 'vma' has
93  * an 'anon_vma' attached to it, so that we can associate the
94  * anonymous pages mapped into it with that anon_vma.
95  *
96  * The common case will be that we already have one, but if
97  * if not we either need to find an adjacent mapping that we
98  * can re-use the anon_vma from (very common when the only
99  * reason for splitting a vma has been mprotect()), or we
100  * allocate a new one.
101  *
102  * Anon-vma allocations are very subtle, because we may have
103  * optimistically looked up an anon_vma in page_lock_anon_vma()
104  * and that may actually touch the spinlock even in the newly
105  * allocated vma (it depends on RCU to make sure that the
106  * anon_vma isn't actually destroyed).
107  *
108  * As a result, we need to do proper anon_vma locking even
109  * for the new allocation. At the same time, we do not want
110  * to do any locking for the common case of already having
111  * an anon_vma.
112  *
113  * This must be called with the mmap_sem held for reading.
114  */
115 int anon_vma_prepare(struct vm_area_struct *vma)
116 {
117 	struct anon_vma *anon_vma = vma->anon_vma;
118 	struct anon_vma_chain *avc;
119 
120 	might_sleep();
121 	if (unlikely(!anon_vma)) {
122 		struct mm_struct *mm = vma->vm_mm;
123 		struct anon_vma *allocated;
124 
125 		avc = anon_vma_chain_alloc();
126 		if (!avc)
127 			goto out_enomem;
128 
129 		anon_vma = find_mergeable_anon_vma(vma);
130 		allocated = NULL;
131 		if (!anon_vma) {
132 			anon_vma = anon_vma_alloc();
133 			if (unlikely(!anon_vma))
134 				goto out_enomem_free_avc;
135 			allocated = anon_vma;
136 			/*
137 			 * This VMA had no anon_vma yet.  This anon_vma is
138 			 * the root of any anon_vma tree that might form.
139 			 */
140 			anon_vma->root = anon_vma;
141 		}
142 
143 		anon_vma_lock(anon_vma);
144 		/* page_table_lock to protect against threads */
145 		spin_lock(&mm->page_table_lock);
146 		if (likely(!vma->anon_vma)) {
147 			vma->anon_vma = anon_vma;
148 			avc->anon_vma = anon_vma;
149 			avc->vma = vma;
150 			list_add(&avc->same_vma, &vma->anon_vma_chain);
151 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 			allocated = NULL;
153 			avc = NULL;
154 		}
155 		spin_unlock(&mm->page_table_lock);
156 		anon_vma_unlock(anon_vma);
157 
158 		if (unlikely(allocated))
159 			anon_vma_free(allocated);
160 		if (unlikely(avc))
161 			anon_vma_chain_free(avc);
162 	}
163 	return 0;
164 
165  out_enomem_free_avc:
166 	anon_vma_chain_free(avc);
167  out_enomem:
168 	return -ENOMEM;
169 }
170 
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 				struct anon_vma_chain *avc,
173 				struct anon_vma *anon_vma)
174 {
175 	avc->vma = vma;
176 	avc->anon_vma = anon_vma;
177 	list_add(&avc->same_vma, &vma->anon_vma_chain);
178 
179 	anon_vma_lock(anon_vma);
180 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
181 	anon_vma_unlock(anon_vma);
182 }
183 
184 /*
185  * Attach the anon_vmas from src to dst.
186  * Returns 0 on success, -ENOMEM on failure.
187  */
188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
189 {
190 	struct anon_vma_chain *avc, *pavc;
191 
192 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
193 		avc = anon_vma_chain_alloc();
194 		if (!avc)
195 			goto enomem_failure;
196 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
197 	}
198 	return 0;
199 
200  enomem_failure:
201 	unlink_anon_vmas(dst);
202 	return -ENOMEM;
203 }
204 
205 /*
206  * Attach vma to its own anon_vma, as well as to the anon_vmas that
207  * the corresponding VMA in the parent process is attached to.
208  * Returns 0 on success, non-zero on failure.
209  */
210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
211 {
212 	struct anon_vma_chain *avc;
213 	struct anon_vma *anon_vma;
214 
215 	/* Don't bother if the parent process has no anon_vma here. */
216 	if (!pvma->anon_vma)
217 		return 0;
218 
219 	/*
220 	 * First, attach the new VMA to the parent VMA's anon_vmas,
221 	 * so rmap can find non-COWed pages in child processes.
222 	 */
223 	if (anon_vma_clone(vma, pvma))
224 		return -ENOMEM;
225 
226 	/* Then add our own anon_vma. */
227 	anon_vma = anon_vma_alloc();
228 	if (!anon_vma)
229 		goto out_error;
230 	avc = anon_vma_chain_alloc();
231 	if (!avc)
232 		goto out_error_free_anon_vma;
233 
234 	/*
235 	 * The root anon_vma's spinlock is the lock actually used when we
236 	 * lock any of the anon_vmas in this anon_vma tree.
237 	 */
238 	anon_vma->root = pvma->anon_vma->root;
239 	/*
240 	 * With KSM refcounts, an anon_vma can stay around longer than the
241 	 * process it belongs to.  The root anon_vma needs to be pinned
242 	 * until this anon_vma is freed, because the lock lives in the root.
243 	 */
244 	get_anon_vma(anon_vma->root);
245 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
246 	vma->anon_vma = anon_vma;
247 	anon_vma_chain_link(vma, avc, anon_vma);
248 
249 	return 0;
250 
251  out_error_free_anon_vma:
252 	anon_vma_free(anon_vma);
253  out_error:
254 	unlink_anon_vmas(vma);
255 	return -ENOMEM;
256 }
257 
258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
259 {
260 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
261 	int empty;
262 
263 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
264 	if (!anon_vma)
265 		return;
266 
267 	anon_vma_lock(anon_vma);
268 	list_del(&anon_vma_chain->same_anon_vma);
269 
270 	/* We must garbage collect the anon_vma if it's empty */
271 	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
272 	anon_vma_unlock(anon_vma);
273 
274 	if (empty) {
275 		/* We no longer need the root anon_vma */
276 		if (anon_vma->root != anon_vma)
277 			drop_anon_vma(anon_vma->root);
278 		anon_vma_free(anon_vma);
279 	}
280 }
281 
282 void unlink_anon_vmas(struct vm_area_struct *vma)
283 {
284 	struct anon_vma_chain *avc, *next;
285 
286 	/*
287 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
288 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
289 	 */
290 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291 		anon_vma_unlink(avc);
292 		list_del(&avc->same_vma);
293 		anon_vma_chain_free(avc);
294 	}
295 }
296 
297 static void anon_vma_ctor(void *data)
298 {
299 	struct anon_vma *anon_vma = data;
300 
301 	spin_lock_init(&anon_vma->lock);
302 	anonvma_external_refcount_init(anon_vma);
303 	INIT_LIST_HEAD(&anon_vma->head);
304 }
305 
306 void __init anon_vma_init(void)
307 {
308 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
309 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
310 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
311 }
312 
313 /*
314  * Getting a lock on a stable anon_vma from a page off the LRU is
315  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316  */
317 struct anon_vma *page_lock_anon_vma(struct page *page)
318 {
319 	struct anon_vma *anon_vma, *root_anon_vma;
320 	unsigned long anon_mapping;
321 
322 	rcu_read_lock();
323 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
324 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
325 		goto out;
326 	if (!page_mapped(page))
327 		goto out;
328 
329 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
330 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
331 	spin_lock(&root_anon_vma->lock);
332 
333 	/*
334 	 * If this page is still mapped, then its anon_vma cannot have been
335 	 * freed.  But if it has been unmapped, we have no security against
336 	 * the anon_vma structure being freed and reused (for another anon_vma:
337 	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
338 	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
339 	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
340 	 */
341 	if (page_mapped(page))
342 		return anon_vma;
343 
344 	spin_unlock(&root_anon_vma->lock);
345 out:
346 	rcu_read_unlock();
347 	return NULL;
348 }
349 
350 void page_unlock_anon_vma(struct anon_vma *anon_vma)
351 {
352 	anon_vma_unlock(anon_vma);
353 	rcu_read_unlock();
354 }
355 
356 /*
357  * At what user virtual address is page expected in @vma?
358  * Returns virtual address or -EFAULT if page's index/offset is not
359  * within the range mapped the @vma.
360  */
361 static inline unsigned long
362 vma_address(struct page *page, struct vm_area_struct *vma)
363 {
364 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
365 	unsigned long address;
366 
367 	if (unlikely(is_vm_hugetlb_page(vma)))
368 		pgoff = page->index << huge_page_order(page_hstate(page));
369 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
370 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
371 		/* page should be within @vma mapping range */
372 		return -EFAULT;
373 	}
374 	return address;
375 }
376 
377 /*
378  * At what user virtual address is page expected in vma?
379  * Caller should check the page is actually part of the vma.
380  */
381 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
382 {
383 	if (PageAnon(page)) {
384 		struct anon_vma *page__anon_vma = page_anon_vma(page);
385 		/*
386 		 * Note: swapoff's unuse_vma() is more efficient with this
387 		 * check, and needs it to match anon_vma when KSM is active.
388 		 */
389 		if (!vma->anon_vma || !page__anon_vma ||
390 		    vma->anon_vma->root != page__anon_vma->root)
391 			return -EFAULT;
392 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
393 		if (!vma->vm_file ||
394 		    vma->vm_file->f_mapping != page->mapping)
395 			return -EFAULT;
396 	} else
397 		return -EFAULT;
398 	return vma_address(page, vma);
399 }
400 
401 /*
402  * Check that @page is mapped at @address into @mm.
403  *
404  * If @sync is false, page_check_address may perform a racy check to avoid
405  * the page table lock when the pte is not present (helpful when reclaiming
406  * highly shared pages).
407  *
408  * On success returns with pte mapped and locked.
409  */
410 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
411 			  unsigned long address, spinlock_t **ptlp, int sync)
412 {
413 	pgd_t *pgd;
414 	pud_t *pud;
415 	pmd_t *pmd;
416 	pte_t *pte;
417 	spinlock_t *ptl;
418 
419 	if (unlikely(PageHuge(page))) {
420 		pte = huge_pte_offset(mm, address);
421 		ptl = &mm->page_table_lock;
422 		goto check;
423 	}
424 
425 	pgd = pgd_offset(mm, address);
426 	if (!pgd_present(*pgd))
427 		return NULL;
428 
429 	pud = pud_offset(pgd, address);
430 	if (!pud_present(*pud))
431 		return NULL;
432 
433 	pmd = pmd_offset(pud, address);
434 	if (!pmd_present(*pmd))
435 		return NULL;
436 
437 	pte = pte_offset_map(pmd, address);
438 	/* Make a quick check before getting the lock */
439 	if (!sync && !pte_present(*pte)) {
440 		pte_unmap(pte);
441 		return NULL;
442 	}
443 
444 	ptl = pte_lockptr(mm, pmd);
445 check:
446 	spin_lock(ptl);
447 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
448 		*ptlp = ptl;
449 		return pte;
450 	}
451 	pte_unmap_unlock(pte, ptl);
452 	return NULL;
453 }
454 
455 /**
456  * page_mapped_in_vma - check whether a page is really mapped in a VMA
457  * @page: the page to test
458  * @vma: the VMA to test
459  *
460  * Returns 1 if the page is mapped into the page tables of the VMA, 0
461  * if the page is not mapped into the page tables of this VMA.  Only
462  * valid for normal file or anonymous VMAs.
463  */
464 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
465 {
466 	unsigned long address;
467 	pte_t *pte;
468 	spinlock_t *ptl;
469 
470 	address = vma_address(page, vma);
471 	if (address == -EFAULT)		/* out of vma range */
472 		return 0;
473 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
474 	if (!pte)			/* the page is not in this mm */
475 		return 0;
476 	pte_unmap_unlock(pte, ptl);
477 
478 	return 1;
479 }
480 
481 /*
482  * Subfunctions of page_referenced: page_referenced_one called
483  * repeatedly from either page_referenced_anon or page_referenced_file.
484  */
485 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
486 			unsigned long address, unsigned int *mapcount,
487 			unsigned long *vm_flags)
488 {
489 	struct mm_struct *mm = vma->vm_mm;
490 	pte_t *pte;
491 	spinlock_t *ptl;
492 	int referenced = 0;
493 
494 	pte = page_check_address(page, mm, address, &ptl, 0);
495 	if (!pte)
496 		goto out;
497 
498 	/*
499 	 * Don't want to elevate referenced for mlocked page that gets this far,
500 	 * in order that it progresses to try_to_unmap and is moved to the
501 	 * unevictable list.
502 	 */
503 	if (vma->vm_flags & VM_LOCKED) {
504 		*mapcount = 1;	/* break early from loop */
505 		*vm_flags |= VM_LOCKED;
506 		goto out_unmap;
507 	}
508 
509 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
510 		/*
511 		 * Don't treat a reference through a sequentially read
512 		 * mapping as such.  If the page has been used in
513 		 * another mapping, we will catch it; if this other
514 		 * mapping is already gone, the unmap path will have
515 		 * set PG_referenced or activated the page.
516 		 */
517 		if (likely(!VM_SequentialReadHint(vma)))
518 			referenced++;
519 	}
520 
521 	/* Pretend the page is referenced if the task has the
522 	   swap token and is in the middle of a page fault. */
523 	if (mm != current->mm && has_swap_token(mm) &&
524 			rwsem_is_locked(&mm->mmap_sem))
525 		referenced++;
526 
527 out_unmap:
528 	(*mapcount)--;
529 	pte_unmap_unlock(pte, ptl);
530 
531 	if (referenced)
532 		*vm_flags |= vma->vm_flags;
533 out:
534 	return referenced;
535 }
536 
537 static int page_referenced_anon(struct page *page,
538 				struct mem_cgroup *mem_cont,
539 				unsigned long *vm_flags)
540 {
541 	unsigned int mapcount;
542 	struct anon_vma *anon_vma;
543 	struct anon_vma_chain *avc;
544 	int referenced = 0;
545 
546 	anon_vma = page_lock_anon_vma(page);
547 	if (!anon_vma)
548 		return referenced;
549 
550 	mapcount = page_mapcount(page);
551 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
552 		struct vm_area_struct *vma = avc->vma;
553 		unsigned long address = vma_address(page, vma);
554 		if (address == -EFAULT)
555 			continue;
556 		/*
557 		 * If we are reclaiming on behalf of a cgroup, skip
558 		 * counting on behalf of references from different
559 		 * cgroups
560 		 */
561 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
562 			continue;
563 		referenced += page_referenced_one(page, vma, address,
564 						  &mapcount, vm_flags);
565 		if (!mapcount)
566 			break;
567 	}
568 
569 	page_unlock_anon_vma(anon_vma);
570 	return referenced;
571 }
572 
573 /**
574  * page_referenced_file - referenced check for object-based rmap
575  * @page: the page we're checking references on.
576  * @mem_cont: target memory controller
577  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
578  *
579  * For an object-based mapped page, find all the places it is mapped and
580  * check/clear the referenced flag.  This is done by following the page->mapping
581  * pointer, then walking the chain of vmas it holds.  It returns the number
582  * of references it found.
583  *
584  * This function is only called from page_referenced for object-based pages.
585  */
586 static int page_referenced_file(struct page *page,
587 				struct mem_cgroup *mem_cont,
588 				unsigned long *vm_flags)
589 {
590 	unsigned int mapcount;
591 	struct address_space *mapping = page->mapping;
592 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
593 	struct vm_area_struct *vma;
594 	struct prio_tree_iter iter;
595 	int referenced = 0;
596 
597 	/*
598 	 * The caller's checks on page->mapping and !PageAnon have made
599 	 * sure that this is a file page: the check for page->mapping
600 	 * excludes the case just before it gets set on an anon page.
601 	 */
602 	BUG_ON(PageAnon(page));
603 
604 	/*
605 	 * The page lock not only makes sure that page->mapping cannot
606 	 * suddenly be NULLified by truncation, it makes sure that the
607 	 * structure at mapping cannot be freed and reused yet,
608 	 * so we can safely take mapping->i_mmap_lock.
609 	 */
610 	BUG_ON(!PageLocked(page));
611 
612 	spin_lock(&mapping->i_mmap_lock);
613 
614 	/*
615 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
616 	 * is more likely to be accurate if we note it after spinning.
617 	 */
618 	mapcount = page_mapcount(page);
619 
620 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
621 		unsigned long address = vma_address(page, vma);
622 		if (address == -EFAULT)
623 			continue;
624 		/*
625 		 * If we are reclaiming on behalf of a cgroup, skip
626 		 * counting on behalf of references from different
627 		 * cgroups
628 		 */
629 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
630 			continue;
631 		referenced += page_referenced_one(page, vma, address,
632 						  &mapcount, vm_flags);
633 		if (!mapcount)
634 			break;
635 	}
636 
637 	spin_unlock(&mapping->i_mmap_lock);
638 	return referenced;
639 }
640 
641 /**
642  * page_referenced - test if the page was referenced
643  * @page: the page to test
644  * @is_locked: caller holds lock on the page
645  * @mem_cont: target memory controller
646  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
647  *
648  * Quick test_and_clear_referenced for all mappings to a page,
649  * returns the number of ptes which referenced the page.
650  */
651 int page_referenced(struct page *page,
652 		    int is_locked,
653 		    struct mem_cgroup *mem_cont,
654 		    unsigned long *vm_flags)
655 {
656 	int referenced = 0;
657 	int we_locked = 0;
658 
659 	*vm_flags = 0;
660 	if (page_mapped(page) && page_rmapping(page)) {
661 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
662 			we_locked = trylock_page(page);
663 			if (!we_locked) {
664 				referenced++;
665 				goto out;
666 			}
667 		}
668 		if (unlikely(PageKsm(page)))
669 			referenced += page_referenced_ksm(page, mem_cont,
670 								vm_flags);
671 		else if (PageAnon(page))
672 			referenced += page_referenced_anon(page, mem_cont,
673 								vm_flags);
674 		else if (page->mapping)
675 			referenced += page_referenced_file(page, mem_cont,
676 								vm_flags);
677 		if (we_locked)
678 			unlock_page(page);
679 	}
680 out:
681 	if (page_test_and_clear_young(page))
682 		referenced++;
683 
684 	return referenced;
685 }
686 
687 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
688 			    unsigned long address)
689 {
690 	struct mm_struct *mm = vma->vm_mm;
691 	pte_t *pte;
692 	spinlock_t *ptl;
693 	int ret = 0;
694 
695 	pte = page_check_address(page, mm, address, &ptl, 1);
696 	if (!pte)
697 		goto out;
698 
699 	if (pte_dirty(*pte) || pte_write(*pte)) {
700 		pte_t entry;
701 
702 		flush_cache_page(vma, address, pte_pfn(*pte));
703 		entry = ptep_clear_flush_notify(vma, address, pte);
704 		entry = pte_wrprotect(entry);
705 		entry = pte_mkclean(entry);
706 		set_pte_at(mm, address, pte, entry);
707 		ret = 1;
708 	}
709 
710 	pte_unmap_unlock(pte, ptl);
711 out:
712 	return ret;
713 }
714 
715 static int page_mkclean_file(struct address_space *mapping, struct page *page)
716 {
717 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
718 	struct vm_area_struct *vma;
719 	struct prio_tree_iter iter;
720 	int ret = 0;
721 
722 	BUG_ON(PageAnon(page));
723 
724 	spin_lock(&mapping->i_mmap_lock);
725 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
726 		if (vma->vm_flags & VM_SHARED) {
727 			unsigned long address = vma_address(page, vma);
728 			if (address == -EFAULT)
729 				continue;
730 			ret += page_mkclean_one(page, vma, address);
731 		}
732 	}
733 	spin_unlock(&mapping->i_mmap_lock);
734 	return ret;
735 }
736 
737 int page_mkclean(struct page *page)
738 {
739 	int ret = 0;
740 
741 	BUG_ON(!PageLocked(page));
742 
743 	if (page_mapped(page)) {
744 		struct address_space *mapping = page_mapping(page);
745 		if (mapping) {
746 			ret = page_mkclean_file(mapping, page);
747 			if (page_test_dirty(page)) {
748 				page_clear_dirty(page);
749 				ret = 1;
750 			}
751 		}
752 	}
753 
754 	return ret;
755 }
756 EXPORT_SYMBOL_GPL(page_mkclean);
757 
758 /**
759  * page_move_anon_rmap - move a page to our anon_vma
760  * @page:	the page to move to our anon_vma
761  * @vma:	the vma the page belongs to
762  * @address:	the user virtual address mapped
763  *
764  * When a page belongs exclusively to one process after a COW event,
765  * that page can be moved into the anon_vma that belongs to just that
766  * process, so the rmap code will not search the parent or sibling
767  * processes.
768  */
769 void page_move_anon_rmap(struct page *page,
770 	struct vm_area_struct *vma, unsigned long address)
771 {
772 	struct anon_vma *anon_vma = vma->anon_vma;
773 
774 	VM_BUG_ON(!PageLocked(page));
775 	VM_BUG_ON(!anon_vma);
776 	VM_BUG_ON(page->index != linear_page_index(vma, address));
777 
778 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
779 	page->mapping = (struct address_space *) anon_vma;
780 }
781 
782 /**
783  * __page_set_anon_rmap - setup new anonymous rmap
784  * @page:	the page to add the mapping to
785  * @vma:	the vm area in which the mapping is added
786  * @address:	the user virtual address mapped
787  * @exclusive:	the page is exclusively owned by the current process
788  */
789 static void __page_set_anon_rmap(struct page *page,
790 	struct vm_area_struct *vma, unsigned long address, int exclusive)
791 {
792 	struct anon_vma *anon_vma = vma->anon_vma;
793 
794 	BUG_ON(!anon_vma);
795 
796 	/*
797 	 * If the page isn't exclusively mapped into this vma,
798 	 * we must use the _oldest_ possible anon_vma for the
799 	 * page mapping!
800 	 */
801 	if (!exclusive) {
802 		if (PageAnon(page))
803 			return;
804 		anon_vma = anon_vma->root;
805 	} else {
806 		/*
807 		 * In this case, swapped-out-but-not-discarded swap-cache
808 		 * is remapped. So, no need to update page->mapping here.
809 		 * We convice anon_vma poitned by page->mapping is not obsolete
810 		 * because vma->anon_vma is necessary to be a family of it.
811 		 */
812 		if (PageAnon(page))
813 			return;
814 	}
815 
816 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
817 	page->mapping = (struct address_space *) anon_vma;
818 	page->index = linear_page_index(vma, address);
819 }
820 
821 /**
822  * __page_check_anon_rmap - sanity check anonymous rmap addition
823  * @page:	the page to add the mapping to
824  * @vma:	the vm area in which the mapping is added
825  * @address:	the user virtual address mapped
826  */
827 static void __page_check_anon_rmap(struct page *page,
828 	struct vm_area_struct *vma, unsigned long address)
829 {
830 #ifdef CONFIG_DEBUG_VM
831 	/*
832 	 * The page's anon-rmap details (mapping and index) are guaranteed to
833 	 * be set up correctly at this point.
834 	 *
835 	 * We have exclusion against page_add_anon_rmap because the caller
836 	 * always holds the page locked, except if called from page_dup_rmap,
837 	 * in which case the page is already known to be setup.
838 	 *
839 	 * We have exclusion against page_add_new_anon_rmap because those pages
840 	 * are initially only visible via the pagetables, and the pte is locked
841 	 * over the call to page_add_new_anon_rmap.
842 	 */
843 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
844 	BUG_ON(page->index != linear_page_index(vma, address));
845 #endif
846 }
847 
848 /**
849  * page_add_anon_rmap - add pte mapping to an anonymous page
850  * @page:	the page to add the mapping to
851  * @vma:	the vm area in which the mapping is added
852  * @address:	the user virtual address mapped
853  *
854  * The caller needs to hold the pte lock, and the page must be locked in
855  * the anon_vma case: to serialize mapping,index checking after setting,
856  * and to ensure that PageAnon is not being upgraded racily to PageKsm
857  * (but PageKsm is never downgraded to PageAnon).
858  */
859 void page_add_anon_rmap(struct page *page,
860 	struct vm_area_struct *vma, unsigned long address)
861 {
862 	do_page_add_anon_rmap(page, vma, address, 0);
863 }
864 
865 /*
866  * Special version of the above for do_swap_page, which often runs
867  * into pages that are exclusively owned by the current process.
868  * Everybody else should continue to use page_add_anon_rmap above.
869  */
870 void do_page_add_anon_rmap(struct page *page,
871 	struct vm_area_struct *vma, unsigned long address, int exclusive)
872 {
873 	int first = atomic_inc_and_test(&page->_mapcount);
874 	if (first)
875 		__inc_zone_page_state(page, NR_ANON_PAGES);
876 	if (unlikely(PageKsm(page)))
877 		return;
878 
879 	VM_BUG_ON(!PageLocked(page));
880 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
881 	if (first)
882 		__page_set_anon_rmap(page, vma, address, exclusive);
883 	else
884 		__page_check_anon_rmap(page, vma, address);
885 }
886 
887 /**
888  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
889  * @page:	the page to add the mapping to
890  * @vma:	the vm area in which the mapping is added
891  * @address:	the user virtual address mapped
892  *
893  * Same as page_add_anon_rmap but must only be called on *new* pages.
894  * This means the inc-and-test can be bypassed.
895  * Page does not have to be locked.
896  */
897 void page_add_new_anon_rmap(struct page *page,
898 	struct vm_area_struct *vma, unsigned long address)
899 {
900 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
901 	SetPageSwapBacked(page);
902 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
903 	__inc_zone_page_state(page, NR_ANON_PAGES);
904 	__page_set_anon_rmap(page, vma, address, 1);
905 	if (page_evictable(page, vma))
906 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
907 	else
908 		add_page_to_unevictable_list(page);
909 }
910 
911 /**
912  * page_add_file_rmap - add pte mapping to a file page
913  * @page: the page to add the mapping to
914  *
915  * The caller needs to hold the pte lock.
916  */
917 void page_add_file_rmap(struct page *page)
918 {
919 	if (atomic_inc_and_test(&page->_mapcount)) {
920 		__inc_zone_page_state(page, NR_FILE_MAPPED);
921 		mem_cgroup_update_file_mapped(page, 1);
922 	}
923 }
924 
925 /**
926  * page_remove_rmap - take down pte mapping from a page
927  * @page: page to remove mapping from
928  *
929  * The caller needs to hold the pte lock.
930  */
931 void page_remove_rmap(struct page *page)
932 {
933 	/* page still mapped by someone else? */
934 	if (!atomic_add_negative(-1, &page->_mapcount))
935 		return;
936 
937 	/*
938 	 * Now that the last pte has gone, s390 must transfer dirty
939 	 * flag from storage key to struct page.  We can usually skip
940 	 * this if the page is anon, so about to be freed; but perhaps
941 	 * not if it's in swapcache - there might be another pte slot
942 	 * containing the swap entry, but page not yet written to swap.
943 	 */
944 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
945 		page_clear_dirty(page);
946 		set_page_dirty(page);
947 	}
948 	/*
949 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
950 	 * and not charged by memcg for now.
951 	 */
952 	if (unlikely(PageHuge(page)))
953 		return;
954 	if (PageAnon(page)) {
955 		mem_cgroup_uncharge_page(page);
956 		__dec_zone_page_state(page, NR_ANON_PAGES);
957 	} else {
958 		__dec_zone_page_state(page, NR_FILE_MAPPED);
959 		mem_cgroup_update_file_mapped(page, -1);
960 	}
961 	/*
962 	 * It would be tidy to reset the PageAnon mapping here,
963 	 * but that might overwrite a racing page_add_anon_rmap
964 	 * which increments mapcount after us but sets mapping
965 	 * before us: so leave the reset to free_hot_cold_page,
966 	 * and remember that it's only reliable while mapped.
967 	 * Leaving it set also helps swapoff to reinstate ptes
968 	 * faster for those pages still in swapcache.
969 	 */
970 }
971 
972 /*
973  * Subfunctions of try_to_unmap: try_to_unmap_one called
974  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
975  */
976 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
977 		     unsigned long address, enum ttu_flags flags)
978 {
979 	struct mm_struct *mm = vma->vm_mm;
980 	pte_t *pte;
981 	pte_t pteval;
982 	spinlock_t *ptl;
983 	int ret = SWAP_AGAIN;
984 
985 	pte = page_check_address(page, mm, address, &ptl, 0);
986 	if (!pte)
987 		goto out;
988 
989 	/*
990 	 * If the page is mlock()d, we cannot swap it out.
991 	 * If it's recently referenced (perhaps page_referenced
992 	 * skipped over this mm) then we should reactivate it.
993 	 */
994 	if (!(flags & TTU_IGNORE_MLOCK)) {
995 		if (vma->vm_flags & VM_LOCKED)
996 			goto out_mlock;
997 
998 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
999 			goto out_unmap;
1000 	}
1001 	if (!(flags & TTU_IGNORE_ACCESS)) {
1002 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1003 			ret = SWAP_FAIL;
1004 			goto out_unmap;
1005 		}
1006   	}
1007 
1008 	/* Nuke the page table entry. */
1009 	flush_cache_page(vma, address, page_to_pfn(page));
1010 	pteval = ptep_clear_flush_notify(vma, address, pte);
1011 
1012 	/* Move the dirty bit to the physical page now the pte is gone. */
1013 	if (pte_dirty(pteval))
1014 		set_page_dirty(page);
1015 
1016 	/* Update high watermark before we lower rss */
1017 	update_hiwater_rss(mm);
1018 
1019 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1020 		if (PageAnon(page))
1021 			dec_mm_counter(mm, MM_ANONPAGES);
1022 		else
1023 			dec_mm_counter(mm, MM_FILEPAGES);
1024 		set_pte_at(mm, address, pte,
1025 				swp_entry_to_pte(make_hwpoison_entry(page)));
1026 	} else if (PageAnon(page)) {
1027 		swp_entry_t entry = { .val = page_private(page) };
1028 
1029 		if (PageSwapCache(page)) {
1030 			/*
1031 			 * Store the swap location in the pte.
1032 			 * See handle_pte_fault() ...
1033 			 */
1034 			if (swap_duplicate(entry) < 0) {
1035 				set_pte_at(mm, address, pte, pteval);
1036 				ret = SWAP_FAIL;
1037 				goto out_unmap;
1038 			}
1039 			if (list_empty(&mm->mmlist)) {
1040 				spin_lock(&mmlist_lock);
1041 				if (list_empty(&mm->mmlist))
1042 					list_add(&mm->mmlist, &init_mm.mmlist);
1043 				spin_unlock(&mmlist_lock);
1044 			}
1045 			dec_mm_counter(mm, MM_ANONPAGES);
1046 			inc_mm_counter(mm, MM_SWAPENTS);
1047 		} else if (PAGE_MIGRATION) {
1048 			/*
1049 			 * Store the pfn of the page in a special migration
1050 			 * pte. do_swap_page() will wait until the migration
1051 			 * pte is removed and then restart fault handling.
1052 			 */
1053 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1054 			entry = make_migration_entry(page, pte_write(pteval));
1055 		}
1056 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1057 		BUG_ON(pte_file(*pte));
1058 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1059 		/* Establish migration entry for a file page */
1060 		swp_entry_t entry;
1061 		entry = make_migration_entry(page, pte_write(pteval));
1062 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1063 	} else
1064 		dec_mm_counter(mm, MM_FILEPAGES);
1065 
1066 	page_remove_rmap(page);
1067 	page_cache_release(page);
1068 
1069 out_unmap:
1070 	pte_unmap_unlock(pte, ptl);
1071 out:
1072 	return ret;
1073 
1074 out_mlock:
1075 	pte_unmap_unlock(pte, ptl);
1076 
1077 
1078 	/*
1079 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1080 	 * unstable result and race. Plus, We can't wait here because
1081 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1082 	 * if trylock failed, the page remain in evictable lru and later
1083 	 * vmscan could retry to move the page to unevictable lru if the
1084 	 * page is actually mlocked.
1085 	 */
1086 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1087 		if (vma->vm_flags & VM_LOCKED) {
1088 			mlock_vma_page(page);
1089 			ret = SWAP_MLOCK;
1090 		}
1091 		up_read(&vma->vm_mm->mmap_sem);
1092 	}
1093 	return ret;
1094 }
1095 
1096 /*
1097  * objrmap doesn't work for nonlinear VMAs because the assumption that
1098  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1099  * Consequently, given a particular page and its ->index, we cannot locate the
1100  * ptes which are mapping that page without an exhaustive linear search.
1101  *
1102  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1103  * maps the file to which the target page belongs.  The ->vm_private_data field
1104  * holds the current cursor into that scan.  Successive searches will circulate
1105  * around the vma's virtual address space.
1106  *
1107  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1108  * more scanning pressure is placed against them as well.   Eventually pages
1109  * will become fully unmapped and are eligible for eviction.
1110  *
1111  * For very sparsely populated VMAs this is a little inefficient - chances are
1112  * there there won't be many ptes located within the scan cluster.  In this case
1113  * maybe we could scan further - to the end of the pte page, perhaps.
1114  *
1115  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1116  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1117  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1118  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1119  */
1120 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1121 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1122 
1123 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1124 		struct vm_area_struct *vma, struct page *check_page)
1125 {
1126 	struct mm_struct *mm = vma->vm_mm;
1127 	pgd_t *pgd;
1128 	pud_t *pud;
1129 	pmd_t *pmd;
1130 	pte_t *pte;
1131 	pte_t pteval;
1132 	spinlock_t *ptl;
1133 	struct page *page;
1134 	unsigned long address;
1135 	unsigned long end;
1136 	int ret = SWAP_AGAIN;
1137 	int locked_vma = 0;
1138 
1139 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1140 	end = address + CLUSTER_SIZE;
1141 	if (address < vma->vm_start)
1142 		address = vma->vm_start;
1143 	if (end > vma->vm_end)
1144 		end = vma->vm_end;
1145 
1146 	pgd = pgd_offset(mm, address);
1147 	if (!pgd_present(*pgd))
1148 		return ret;
1149 
1150 	pud = pud_offset(pgd, address);
1151 	if (!pud_present(*pud))
1152 		return ret;
1153 
1154 	pmd = pmd_offset(pud, address);
1155 	if (!pmd_present(*pmd))
1156 		return ret;
1157 
1158 	/*
1159 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1160 	 * keep the sem while scanning the cluster for mlocking pages.
1161 	 */
1162 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1163 		locked_vma = (vma->vm_flags & VM_LOCKED);
1164 		if (!locked_vma)
1165 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1166 	}
1167 
1168 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1169 
1170 	/* Update high watermark before we lower rss */
1171 	update_hiwater_rss(mm);
1172 
1173 	for (; address < end; pte++, address += PAGE_SIZE) {
1174 		if (!pte_present(*pte))
1175 			continue;
1176 		page = vm_normal_page(vma, address, *pte);
1177 		BUG_ON(!page || PageAnon(page));
1178 
1179 		if (locked_vma) {
1180 			mlock_vma_page(page);   /* no-op if already mlocked */
1181 			if (page == check_page)
1182 				ret = SWAP_MLOCK;
1183 			continue;	/* don't unmap */
1184 		}
1185 
1186 		if (ptep_clear_flush_young_notify(vma, address, pte))
1187 			continue;
1188 
1189 		/* Nuke the page table entry. */
1190 		flush_cache_page(vma, address, pte_pfn(*pte));
1191 		pteval = ptep_clear_flush_notify(vma, address, pte);
1192 
1193 		/* If nonlinear, store the file page offset in the pte. */
1194 		if (page->index != linear_page_index(vma, address))
1195 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1196 
1197 		/* Move the dirty bit to the physical page now the pte is gone. */
1198 		if (pte_dirty(pteval))
1199 			set_page_dirty(page);
1200 
1201 		page_remove_rmap(page);
1202 		page_cache_release(page);
1203 		dec_mm_counter(mm, MM_FILEPAGES);
1204 		(*mapcount)--;
1205 	}
1206 	pte_unmap_unlock(pte - 1, ptl);
1207 	if (locked_vma)
1208 		up_read(&vma->vm_mm->mmap_sem);
1209 	return ret;
1210 }
1211 
1212 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1213 {
1214 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1215 
1216 	if (!maybe_stack)
1217 		return false;
1218 
1219 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1220 						VM_STACK_INCOMPLETE_SETUP)
1221 		return true;
1222 
1223 	return false;
1224 }
1225 
1226 /**
1227  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1228  * rmap method
1229  * @page: the page to unmap/unlock
1230  * @flags: action and flags
1231  *
1232  * Find all the mappings of a page using the mapping pointer and the vma chains
1233  * contained in the anon_vma struct it points to.
1234  *
1235  * This function is only called from try_to_unmap/try_to_munlock for
1236  * anonymous pages.
1237  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1238  * where the page was found will be held for write.  So, we won't recheck
1239  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1240  * 'LOCKED.
1241  */
1242 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1243 {
1244 	struct anon_vma *anon_vma;
1245 	struct anon_vma_chain *avc;
1246 	int ret = SWAP_AGAIN;
1247 
1248 	anon_vma = page_lock_anon_vma(page);
1249 	if (!anon_vma)
1250 		return ret;
1251 
1252 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1253 		struct vm_area_struct *vma = avc->vma;
1254 		unsigned long address;
1255 
1256 		/*
1257 		 * During exec, a temporary VMA is setup and later moved.
1258 		 * The VMA is moved under the anon_vma lock but not the
1259 		 * page tables leading to a race where migration cannot
1260 		 * find the migration ptes. Rather than increasing the
1261 		 * locking requirements of exec(), migration skips
1262 		 * temporary VMAs until after exec() completes.
1263 		 */
1264 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1265 				is_vma_temporary_stack(vma))
1266 			continue;
1267 
1268 		address = vma_address(page, vma);
1269 		if (address == -EFAULT)
1270 			continue;
1271 		ret = try_to_unmap_one(page, vma, address, flags);
1272 		if (ret != SWAP_AGAIN || !page_mapped(page))
1273 			break;
1274 	}
1275 
1276 	page_unlock_anon_vma(anon_vma);
1277 	return ret;
1278 }
1279 
1280 /**
1281  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1282  * @page: the page to unmap/unlock
1283  * @flags: action and flags
1284  *
1285  * Find all the mappings of a page using the mapping pointer and the vma chains
1286  * contained in the address_space struct it points to.
1287  *
1288  * This function is only called from try_to_unmap/try_to_munlock for
1289  * object-based pages.
1290  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1291  * where the page was found will be held for write.  So, we won't recheck
1292  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1293  * 'LOCKED.
1294  */
1295 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1296 {
1297 	struct address_space *mapping = page->mapping;
1298 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1299 	struct vm_area_struct *vma;
1300 	struct prio_tree_iter iter;
1301 	int ret = SWAP_AGAIN;
1302 	unsigned long cursor;
1303 	unsigned long max_nl_cursor = 0;
1304 	unsigned long max_nl_size = 0;
1305 	unsigned int mapcount;
1306 
1307 	spin_lock(&mapping->i_mmap_lock);
1308 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1309 		unsigned long address = vma_address(page, vma);
1310 		if (address == -EFAULT)
1311 			continue;
1312 		ret = try_to_unmap_one(page, vma, address, flags);
1313 		if (ret != SWAP_AGAIN || !page_mapped(page))
1314 			goto out;
1315 	}
1316 
1317 	if (list_empty(&mapping->i_mmap_nonlinear))
1318 		goto out;
1319 
1320 	/*
1321 	 * We don't bother to try to find the munlocked page in nonlinears.
1322 	 * It's costly. Instead, later, page reclaim logic may call
1323 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1324 	 */
1325 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1326 		goto out;
1327 
1328 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1329 						shared.vm_set.list) {
1330 		cursor = (unsigned long) vma->vm_private_data;
1331 		if (cursor > max_nl_cursor)
1332 			max_nl_cursor = cursor;
1333 		cursor = vma->vm_end - vma->vm_start;
1334 		if (cursor > max_nl_size)
1335 			max_nl_size = cursor;
1336 	}
1337 
1338 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1339 		ret = SWAP_FAIL;
1340 		goto out;
1341 	}
1342 
1343 	/*
1344 	 * We don't try to search for this page in the nonlinear vmas,
1345 	 * and page_referenced wouldn't have found it anyway.  Instead
1346 	 * just walk the nonlinear vmas trying to age and unmap some.
1347 	 * The mapcount of the page we came in with is irrelevant,
1348 	 * but even so use it as a guide to how hard we should try?
1349 	 */
1350 	mapcount = page_mapcount(page);
1351 	if (!mapcount)
1352 		goto out;
1353 	cond_resched_lock(&mapping->i_mmap_lock);
1354 
1355 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1356 	if (max_nl_cursor == 0)
1357 		max_nl_cursor = CLUSTER_SIZE;
1358 
1359 	do {
1360 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1361 						shared.vm_set.list) {
1362 			cursor = (unsigned long) vma->vm_private_data;
1363 			while ( cursor < max_nl_cursor &&
1364 				cursor < vma->vm_end - vma->vm_start) {
1365 				if (try_to_unmap_cluster(cursor, &mapcount,
1366 						vma, page) == SWAP_MLOCK)
1367 					ret = SWAP_MLOCK;
1368 				cursor += CLUSTER_SIZE;
1369 				vma->vm_private_data = (void *) cursor;
1370 				if ((int)mapcount <= 0)
1371 					goto out;
1372 			}
1373 			vma->vm_private_data = (void *) max_nl_cursor;
1374 		}
1375 		cond_resched_lock(&mapping->i_mmap_lock);
1376 		max_nl_cursor += CLUSTER_SIZE;
1377 	} while (max_nl_cursor <= max_nl_size);
1378 
1379 	/*
1380 	 * Don't loop forever (perhaps all the remaining pages are
1381 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1382 	 * vmas, now forgetting on which ones it had fallen behind.
1383 	 */
1384 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1385 		vma->vm_private_data = NULL;
1386 out:
1387 	spin_unlock(&mapping->i_mmap_lock);
1388 	return ret;
1389 }
1390 
1391 /**
1392  * try_to_unmap - try to remove all page table mappings to a page
1393  * @page: the page to get unmapped
1394  * @flags: action and flags
1395  *
1396  * Tries to remove all the page table entries which are mapping this
1397  * page, used in the pageout path.  Caller must hold the page lock.
1398  * Return values are:
1399  *
1400  * SWAP_SUCCESS	- we succeeded in removing all mappings
1401  * SWAP_AGAIN	- we missed a mapping, try again later
1402  * SWAP_FAIL	- the page is unswappable
1403  * SWAP_MLOCK	- page is mlocked.
1404  */
1405 int try_to_unmap(struct page *page, enum ttu_flags flags)
1406 {
1407 	int ret;
1408 
1409 	BUG_ON(!PageLocked(page));
1410 
1411 	if (unlikely(PageKsm(page)))
1412 		ret = try_to_unmap_ksm(page, flags);
1413 	else if (PageAnon(page))
1414 		ret = try_to_unmap_anon(page, flags);
1415 	else
1416 		ret = try_to_unmap_file(page, flags);
1417 	if (ret != SWAP_MLOCK && !page_mapped(page))
1418 		ret = SWAP_SUCCESS;
1419 	return ret;
1420 }
1421 
1422 /**
1423  * try_to_munlock - try to munlock a page
1424  * @page: the page to be munlocked
1425  *
1426  * Called from munlock code.  Checks all of the VMAs mapping the page
1427  * to make sure nobody else has this page mlocked. The page will be
1428  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1429  *
1430  * Return values are:
1431  *
1432  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1433  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1434  * SWAP_FAIL	- page cannot be located at present
1435  * SWAP_MLOCK	- page is now mlocked.
1436  */
1437 int try_to_munlock(struct page *page)
1438 {
1439 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1440 
1441 	if (unlikely(PageKsm(page)))
1442 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1443 	else if (PageAnon(page))
1444 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1445 	else
1446 		return try_to_unmap_file(page, TTU_MUNLOCK);
1447 }
1448 
1449 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1450 /*
1451  * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1452  * if necessary.  Be careful to do all the tests under the lock.  Once
1453  * we know we are the last user, nobody else can get a reference and we
1454  * can do the freeing without the lock.
1455  */
1456 void drop_anon_vma(struct anon_vma *anon_vma)
1457 {
1458 	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1459 	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1460 		struct anon_vma *root = anon_vma->root;
1461 		int empty = list_empty(&anon_vma->head);
1462 		int last_root_user = 0;
1463 		int root_empty = 0;
1464 
1465 		/*
1466 		 * The refcount on a non-root anon_vma got dropped.  Drop
1467 		 * the refcount on the root and check if we need to free it.
1468 		 */
1469 		if (empty && anon_vma != root) {
1470 			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1471 			last_root_user = atomic_dec_and_test(&root->external_refcount);
1472 			root_empty = list_empty(&root->head);
1473 		}
1474 		anon_vma_unlock(anon_vma);
1475 
1476 		if (empty) {
1477 			anon_vma_free(anon_vma);
1478 			if (root_empty && last_root_user)
1479 				anon_vma_free(root);
1480 		}
1481 	}
1482 }
1483 #endif
1484 
1485 #ifdef CONFIG_MIGRATION
1486 /*
1487  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1488  * Called by migrate.c to remove migration ptes, but might be used more later.
1489  */
1490 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1491 		struct vm_area_struct *, unsigned long, void *), void *arg)
1492 {
1493 	struct anon_vma *anon_vma;
1494 	struct anon_vma_chain *avc;
1495 	int ret = SWAP_AGAIN;
1496 
1497 	/*
1498 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1499 	 * because that depends on page_mapped(); but not all its usages
1500 	 * are holding mmap_sem. Users without mmap_sem are required to
1501 	 * take a reference count to prevent the anon_vma disappearing
1502 	 */
1503 	anon_vma = page_anon_vma(page);
1504 	if (!anon_vma)
1505 		return ret;
1506 	anon_vma_lock(anon_vma);
1507 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1508 		struct vm_area_struct *vma = avc->vma;
1509 		unsigned long address = vma_address(page, vma);
1510 		if (address == -EFAULT)
1511 			continue;
1512 		ret = rmap_one(page, vma, address, arg);
1513 		if (ret != SWAP_AGAIN)
1514 			break;
1515 	}
1516 	anon_vma_unlock(anon_vma);
1517 	return ret;
1518 }
1519 
1520 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1521 		struct vm_area_struct *, unsigned long, void *), void *arg)
1522 {
1523 	struct address_space *mapping = page->mapping;
1524 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1525 	struct vm_area_struct *vma;
1526 	struct prio_tree_iter iter;
1527 	int ret = SWAP_AGAIN;
1528 
1529 	if (!mapping)
1530 		return ret;
1531 	spin_lock(&mapping->i_mmap_lock);
1532 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1533 		unsigned long address = vma_address(page, vma);
1534 		if (address == -EFAULT)
1535 			continue;
1536 		ret = rmap_one(page, vma, address, arg);
1537 		if (ret != SWAP_AGAIN)
1538 			break;
1539 	}
1540 	/*
1541 	 * No nonlinear handling: being always shared, nonlinear vmas
1542 	 * never contain migration ptes.  Decide what to do about this
1543 	 * limitation to linear when we need rmap_walk() on nonlinear.
1544 	 */
1545 	spin_unlock(&mapping->i_mmap_lock);
1546 	return ret;
1547 }
1548 
1549 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1550 		struct vm_area_struct *, unsigned long, void *), void *arg)
1551 {
1552 	VM_BUG_ON(!PageLocked(page));
1553 
1554 	if (unlikely(PageKsm(page)))
1555 		return rmap_walk_ksm(page, rmap_one, arg);
1556 	else if (PageAnon(page))
1557 		return rmap_walk_anon(page, rmap_one, arg);
1558 	else
1559 		return rmap_walk_file(page, rmap_one, arg);
1560 }
1561 #endif /* CONFIG_MIGRATION */
1562 
1563 #ifdef CONFIG_HUGETLB_PAGE
1564 /*
1565  * The following three functions are for anonymous (private mapped) hugepages.
1566  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1567  * and no lru code, because we handle hugepages differently from common pages.
1568  */
1569 static void __hugepage_set_anon_rmap(struct page *page,
1570 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1571 {
1572 	struct anon_vma *anon_vma = vma->anon_vma;
1573 
1574 	BUG_ON(!anon_vma);
1575 
1576 	if (PageAnon(page))
1577 		return;
1578 	if (!exclusive)
1579 		anon_vma = anon_vma->root;
1580 
1581 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1582 	page->mapping = (struct address_space *) anon_vma;
1583 	page->index = linear_page_index(vma, address);
1584 }
1585 
1586 void hugepage_add_anon_rmap(struct page *page,
1587 			    struct vm_area_struct *vma, unsigned long address)
1588 {
1589 	struct anon_vma *anon_vma = vma->anon_vma;
1590 	int first;
1591 
1592 	BUG_ON(!PageLocked(page));
1593 	BUG_ON(!anon_vma);
1594 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1595 	first = atomic_inc_and_test(&page->_mapcount);
1596 	if (first)
1597 		__hugepage_set_anon_rmap(page, vma, address, 0);
1598 }
1599 
1600 void hugepage_add_new_anon_rmap(struct page *page,
1601 			struct vm_area_struct *vma, unsigned long address)
1602 {
1603 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1604 	atomic_set(&page->_mapcount, 0);
1605 	__hugepage_set_anon_rmap(page, vma, address, 1);
1606 }
1607 #endif /* CONFIG_HUGETLB_PAGE */
1608