1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 * 40 * (code doesn't rely on that order so it could be switched around) 41 * ->tasklist_lock 42 * anon_vma->lock (memory_failure, collect_procs_anon) 43 * pte map lock 44 */ 45 46 #include <linux/mm.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/slab.h> 51 #include <linux/init.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 #include <linux/memcontrol.h> 57 #include <linux/mmu_notifier.h> 58 #include <linux/migrate.h> 59 #include <linux/hugetlb.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 71 } 72 73 void anon_vma_free(struct anon_vma *anon_vma) 74 { 75 kmem_cache_free(anon_vma_cachep, anon_vma); 76 } 77 78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void) 79 { 80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); 81 } 82 83 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 84 { 85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 86 } 87 88 /** 89 * anon_vma_prepare - attach an anon_vma to a memory region 90 * @vma: the memory region in question 91 * 92 * This makes sure the memory mapping described by 'vma' has 93 * an 'anon_vma' attached to it, so that we can associate the 94 * anonymous pages mapped into it with that anon_vma. 95 * 96 * The common case will be that we already have one, but if 97 * if not we either need to find an adjacent mapping that we 98 * can re-use the anon_vma from (very common when the only 99 * reason for splitting a vma has been mprotect()), or we 100 * allocate a new one. 101 * 102 * Anon-vma allocations are very subtle, because we may have 103 * optimistically looked up an anon_vma in page_lock_anon_vma() 104 * and that may actually touch the spinlock even in the newly 105 * allocated vma (it depends on RCU to make sure that the 106 * anon_vma isn't actually destroyed). 107 * 108 * As a result, we need to do proper anon_vma locking even 109 * for the new allocation. At the same time, we do not want 110 * to do any locking for the common case of already having 111 * an anon_vma. 112 * 113 * This must be called with the mmap_sem held for reading. 114 */ 115 int anon_vma_prepare(struct vm_area_struct *vma) 116 { 117 struct anon_vma *anon_vma = vma->anon_vma; 118 struct anon_vma_chain *avc; 119 120 might_sleep(); 121 if (unlikely(!anon_vma)) { 122 struct mm_struct *mm = vma->vm_mm; 123 struct anon_vma *allocated; 124 125 avc = anon_vma_chain_alloc(); 126 if (!avc) 127 goto out_enomem; 128 129 anon_vma = find_mergeable_anon_vma(vma); 130 allocated = NULL; 131 if (!anon_vma) { 132 anon_vma = anon_vma_alloc(); 133 if (unlikely(!anon_vma)) 134 goto out_enomem_free_avc; 135 allocated = anon_vma; 136 /* 137 * This VMA had no anon_vma yet. This anon_vma is 138 * the root of any anon_vma tree that might form. 139 */ 140 anon_vma->root = anon_vma; 141 } 142 143 anon_vma_lock(anon_vma); 144 /* page_table_lock to protect against threads */ 145 spin_lock(&mm->page_table_lock); 146 if (likely(!vma->anon_vma)) { 147 vma->anon_vma = anon_vma; 148 avc->anon_vma = anon_vma; 149 avc->vma = vma; 150 list_add(&avc->same_vma, &vma->anon_vma_chain); 151 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 152 allocated = NULL; 153 avc = NULL; 154 } 155 spin_unlock(&mm->page_table_lock); 156 anon_vma_unlock(anon_vma); 157 158 if (unlikely(allocated)) 159 anon_vma_free(allocated); 160 if (unlikely(avc)) 161 anon_vma_chain_free(avc); 162 } 163 return 0; 164 165 out_enomem_free_avc: 166 anon_vma_chain_free(avc); 167 out_enomem: 168 return -ENOMEM; 169 } 170 171 static void anon_vma_chain_link(struct vm_area_struct *vma, 172 struct anon_vma_chain *avc, 173 struct anon_vma *anon_vma) 174 { 175 avc->vma = vma; 176 avc->anon_vma = anon_vma; 177 list_add(&avc->same_vma, &vma->anon_vma_chain); 178 179 anon_vma_lock(anon_vma); 180 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 181 anon_vma_unlock(anon_vma); 182 } 183 184 /* 185 * Attach the anon_vmas from src to dst. 186 * Returns 0 on success, -ENOMEM on failure. 187 */ 188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 189 { 190 struct anon_vma_chain *avc, *pavc; 191 192 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 193 avc = anon_vma_chain_alloc(); 194 if (!avc) 195 goto enomem_failure; 196 anon_vma_chain_link(dst, avc, pavc->anon_vma); 197 } 198 return 0; 199 200 enomem_failure: 201 unlink_anon_vmas(dst); 202 return -ENOMEM; 203 } 204 205 /* 206 * Attach vma to its own anon_vma, as well as to the anon_vmas that 207 * the corresponding VMA in the parent process is attached to. 208 * Returns 0 on success, non-zero on failure. 209 */ 210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 211 { 212 struct anon_vma_chain *avc; 213 struct anon_vma *anon_vma; 214 215 /* Don't bother if the parent process has no anon_vma here. */ 216 if (!pvma->anon_vma) 217 return 0; 218 219 /* 220 * First, attach the new VMA to the parent VMA's anon_vmas, 221 * so rmap can find non-COWed pages in child processes. 222 */ 223 if (anon_vma_clone(vma, pvma)) 224 return -ENOMEM; 225 226 /* Then add our own anon_vma. */ 227 anon_vma = anon_vma_alloc(); 228 if (!anon_vma) 229 goto out_error; 230 avc = anon_vma_chain_alloc(); 231 if (!avc) 232 goto out_error_free_anon_vma; 233 234 /* 235 * The root anon_vma's spinlock is the lock actually used when we 236 * lock any of the anon_vmas in this anon_vma tree. 237 */ 238 anon_vma->root = pvma->anon_vma->root; 239 /* 240 * With KSM refcounts, an anon_vma can stay around longer than the 241 * process it belongs to. The root anon_vma needs to be pinned 242 * until this anon_vma is freed, because the lock lives in the root. 243 */ 244 get_anon_vma(anon_vma->root); 245 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 246 vma->anon_vma = anon_vma; 247 anon_vma_chain_link(vma, avc, anon_vma); 248 249 return 0; 250 251 out_error_free_anon_vma: 252 anon_vma_free(anon_vma); 253 out_error: 254 unlink_anon_vmas(vma); 255 return -ENOMEM; 256 } 257 258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) 259 { 260 struct anon_vma *anon_vma = anon_vma_chain->anon_vma; 261 int empty; 262 263 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ 264 if (!anon_vma) 265 return; 266 267 anon_vma_lock(anon_vma); 268 list_del(&anon_vma_chain->same_anon_vma); 269 270 /* We must garbage collect the anon_vma if it's empty */ 271 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); 272 anon_vma_unlock(anon_vma); 273 274 if (empty) { 275 /* We no longer need the root anon_vma */ 276 if (anon_vma->root != anon_vma) 277 drop_anon_vma(anon_vma->root); 278 anon_vma_free(anon_vma); 279 } 280 } 281 282 void unlink_anon_vmas(struct vm_area_struct *vma) 283 { 284 struct anon_vma_chain *avc, *next; 285 286 /* 287 * Unlink each anon_vma chained to the VMA. This list is ordered 288 * from newest to oldest, ensuring the root anon_vma gets freed last. 289 */ 290 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 291 anon_vma_unlink(avc); 292 list_del(&avc->same_vma); 293 anon_vma_chain_free(avc); 294 } 295 } 296 297 static void anon_vma_ctor(void *data) 298 { 299 struct anon_vma *anon_vma = data; 300 301 spin_lock_init(&anon_vma->lock); 302 anonvma_external_refcount_init(anon_vma); 303 INIT_LIST_HEAD(&anon_vma->head); 304 } 305 306 void __init anon_vma_init(void) 307 { 308 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 309 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 310 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 311 } 312 313 /* 314 * Getting a lock on a stable anon_vma from a page off the LRU is 315 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 316 */ 317 struct anon_vma *page_lock_anon_vma(struct page *page) 318 { 319 struct anon_vma *anon_vma, *root_anon_vma; 320 unsigned long anon_mapping; 321 322 rcu_read_lock(); 323 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 324 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 325 goto out; 326 if (!page_mapped(page)) 327 goto out; 328 329 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 330 root_anon_vma = ACCESS_ONCE(anon_vma->root); 331 spin_lock(&root_anon_vma->lock); 332 333 /* 334 * If this page is still mapped, then its anon_vma cannot have been 335 * freed. But if it has been unmapped, we have no security against 336 * the anon_vma structure being freed and reused (for another anon_vma: 337 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot 338 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting 339 * anon_vma->root before page_unlock_anon_vma() is called to unlock. 340 */ 341 if (page_mapped(page)) 342 return anon_vma; 343 344 spin_unlock(&root_anon_vma->lock); 345 out: 346 rcu_read_unlock(); 347 return NULL; 348 } 349 350 void page_unlock_anon_vma(struct anon_vma *anon_vma) 351 { 352 anon_vma_unlock(anon_vma); 353 rcu_read_unlock(); 354 } 355 356 /* 357 * At what user virtual address is page expected in @vma? 358 * Returns virtual address or -EFAULT if page's index/offset is not 359 * within the range mapped the @vma. 360 */ 361 static inline unsigned long 362 vma_address(struct page *page, struct vm_area_struct *vma) 363 { 364 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 365 unsigned long address; 366 367 if (unlikely(is_vm_hugetlb_page(vma))) 368 pgoff = page->index << huge_page_order(page_hstate(page)); 369 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 370 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 371 /* page should be within @vma mapping range */ 372 return -EFAULT; 373 } 374 return address; 375 } 376 377 /* 378 * At what user virtual address is page expected in vma? 379 * Caller should check the page is actually part of the vma. 380 */ 381 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 382 { 383 if (PageAnon(page)) { 384 struct anon_vma *page__anon_vma = page_anon_vma(page); 385 /* 386 * Note: swapoff's unuse_vma() is more efficient with this 387 * check, and needs it to match anon_vma when KSM is active. 388 */ 389 if (!vma->anon_vma || !page__anon_vma || 390 vma->anon_vma->root != page__anon_vma->root) 391 return -EFAULT; 392 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 393 if (!vma->vm_file || 394 vma->vm_file->f_mapping != page->mapping) 395 return -EFAULT; 396 } else 397 return -EFAULT; 398 return vma_address(page, vma); 399 } 400 401 /* 402 * Check that @page is mapped at @address into @mm. 403 * 404 * If @sync is false, page_check_address may perform a racy check to avoid 405 * the page table lock when the pte is not present (helpful when reclaiming 406 * highly shared pages). 407 * 408 * On success returns with pte mapped and locked. 409 */ 410 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 411 unsigned long address, spinlock_t **ptlp, int sync) 412 { 413 pgd_t *pgd; 414 pud_t *pud; 415 pmd_t *pmd; 416 pte_t *pte; 417 spinlock_t *ptl; 418 419 if (unlikely(PageHuge(page))) { 420 pte = huge_pte_offset(mm, address); 421 ptl = &mm->page_table_lock; 422 goto check; 423 } 424 425 pgd = pgd_offset(mm, address); 426 if (!pgd_present(*pgd)) 427 return NULL; 428 429 pud = pud_offset(pgd, address); 430 if (!pud_present(*pud)) 431 return NULL; 432 433 pmd = pmd_offset(pud, address); 434 if (!pmd_present(*pmd)) 435 return NULL; 436 437 pte = pte_offset_map(pmd, address); 438 /* Make a quick check before getting the lock */ 439 if (!sync && !pte_present(*pte)) { 440 pte_unmap(pte); 441 return NULL; 442 } 443 444 ptl = pte_lockptr(mm, pmd); 445 check: 446 spin_lock(ptl); 447 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 448 *ptlp = ptl; 449 return pte; 450 } 451 pte_unmap_unlock(pte, ptl); 452 return NULL; 453 } 454 455 /** 456 * page_mapped_in_vma - check whether a page is really mapped in a VMA 457 * @page: the page to test 458 * @vma: the VMA to test 459 * 460 * Returns 1 if the page is mapped into the page tables of the VMA, 0 461 * if the page is not mapped into the page tables of this VMA. Only 462 * valid for normal file or anonymous VMAs. 463 */ 464 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 465 { 466 unsigned long address; 467 pte_t *pte; 468 spinlock_t *ptl; 469 470 address = vma_address(page, vma); 471 if (address == -EFAULT) /* out of vma range */ 472 return 0; 473 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 474 if (!pte) /* the page is not in this mm */ 475 return 0; 476 pte_unmap_unlock(pte, ptl); 477 478 return 1; 479 } 480 481 /* 482 * Subfunctions of page_referenced: page_referenced_one called 483 * repeatedly from either page_referenced_anon or page_referenced_file. 484 */ 485 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 486 unsigned long address, unsigned int *mapcount, 487 unsigned long *vm_flags) 488 { 489 struct mm_struct *mm = vma->vm_mm; 490 pte_t *pte; 491 spinlock_t *ptl; 492 int referenced = 0; 493 494 pte = page_check_address(page, mm, address, &ptl, 0); 495 if (!pte) 496 goto out; 497 498 /* 499 * Don't want to elevate referenced for mlocked page that gets this far, 500 * in order that it progresses to try_to_unmap and is moved to the 501 * unevictable list. 502 */ 503 if (vma->vm_flags & VM_LOCKED) { 504 *mapcount = 1; /* break early from loop */ 505 *vm_flags |= VM_LOCKED; 506 goto out_unmap; 507 } 508 509 if (ptep_clear_flush_young_notify(vma, address, pte)) { 510 /* 511 * Don't treat a reference through a sequentially read 512 * mapping as such. If the page has been used in 513 * another mapping, we will catch it; if this other 514 * mapping is already gone, the unmap path will have 515 * set PG_referenced or activated the page. 516 */ 517 if (likely(!VM_SequentialReadHint(vma))) 518 referenced++; 519 } 520 521 /* Pretend the page is referenced if the task has the 522 swap token and is in the middle of a page fault. */ 523 if (mm != current->mm && has_swap_token(mm) && 524 rwsem_is_locked(&mm->mmap_sem)) 525 referenced++; 526 527 out_unmap: 528 (*mapcount)--; 529 pte_unmap_unlock(pte, ptl); 530 531 if (referenced) 532 *vm_flags |= vma->vm_flags; 533 out: 534 return referenced; 535 } 536 537 static int page_referenced_anon(struct page *page, 538 struct mem_cgroup *mem_cont, 539 unsigned long *vm_flags) 540 { 541 unsigned int mapcount; 542 struct anon_vma *anon_vma; 543 struct anon_vma_chain *avc; 544 int referenced = 0; 545 546 anon_vma = page_lock_anon_vma(page); 547 if (!anon_vma) 548 return referenced; 549 550 mapcount = page_mapcount(page); 551 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 552 struct vm_area_struct *vma = avc->vma; 553 unsigned long address = vma_address(page, vma); 554 if (address == -EFAULT) 555 continue; 556 /* 557 * If we are reclaiming on behalf of a cgroup, skip 558 * counting on behalf of references from different 559 * cgroups 560 */ 561 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 562 continue; 563 referenced += page_referenced_one(page, vma, address, 564 &mapcount, vm_flags); 565 if (!mapcount) 566 break; 567 } 568 569 page_unlock_anon_vma(anon_vma); 570 return referenced; 571 } 572 573 /** 574 * page_referenced_file - referenced check for object-based rmap 575 * @page: the page we're checking references on. 576 * @mem_cont: target memory controller 577 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 578 * 579 * For an object-based mapped page, find all the places it is mapped and 580 * check/clear the referenced flag. This is done by following the page->mapping 581 * pointer, then walking the chain of vmas it holds. It returns the number 582 * of references it found. 583 * 584 * This function is only called from page_referenced for object-based pages. 585 */ 586 static int page_referenced_file(struct page *page, 587 struct mem_cgroup *mem_cont, 588 unsigned long *vm_flags) 589 { 590 unsigned int mapcount; 591 struct address_space *mapping = page->mapping; 592 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 593 struct vm_area_struct *vma; 594 struct prio_tree_iter iter; 595 int referenced = 0; 596 597 /* 598 * The caller's checks on page->mapping and !PageAnon have made 599 * sure that this is a file page: the check for page->mapping 600 * excludes the case just before it gets set on an anon page. 601 */ 602 BUG_ON(PageAnon(page)); 603 604 /* 605 * The page lock not only makes sure that page->mapping cannot 606 * suddenly be NULLified by truncation, it makes sure that the 607 * structure at mapping cannot be freed and reused yet, 608 * so we can safely take mapping->i_mmap_lock. 609 */ 610 BUG_ON(!PageLocked(page)); 611 612 spin_lock(&mapping->i_mmap_lock); 613 614 /* 615 * i_mmap_lock does not stabilize mapcount at all, but mapcount 616 * is more likely to be accurate if we note it after spinning. 617 */ 618 mapcount = page_mapcount(page); 619 620 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 621 unsigned long address = vma_address(page, vma); 622 if (address == -EFAULT) 623 continue; 624 /* 625 * If we are reclaiming on behalf of a cgroup, skip 626 * counting on behalf of references from different 627 * cgroups 628 */ 629 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 630 continue; 631 referenced += page_referenced_one(page, vma, address, 632 &mapcount, vm_flags); 633 if (!mapcount) 634 break; 635 } 636 637 spin_unlock(&mapping->i_mmap_lock); 638 return referenced; 639 } 640 641 /** 642 * page_referenced - test if the page was referenced 643 * @page: the page to test 644 * @is_locked: caller holds lock on the page 645 * @mem_cont: target memory controller 646 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 647 * 648 * Quick test_and_clear_referenced for all mappings to a page, 649 * returns the number of ptes which referenced the page. 650 */ 651 int page_referenced(struct page *page, 652 int is_locked, 653 struct mem_cgroup *mem_cont, 654 unsigned long *vm_flags) 655 { 656 int referenced = 0; 657 int we_locked = 0; 658 659 *vm_flags = 0; 660 if (page_mapped(page) && page_rmapping(page)) { 661 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 662 we_locked = trylock_page(page); 663 if (!we_locked) { 664 referenced++; 665 goto out; 666 } 667 } 668 if (unlikely(PageKsm(page))) 669 referenced += page_referenced_ksm(page, mem_cont, 670 vm_flags); 671 else if (PageAnon(page)) 672 referenced += page_referenced_anon(page, mem_cont, 673 vm_flags); 674 else if (page->mapping) 675 referenced += page_referenced_file(page, mem_cont, 676 vm_flags); 677 if (we_locked) 678 unlock_page(page); 679 } 680 out: 681 if (page_test_and_clear_young(page)) 682 referenced++; 683 684 return referenced; 685 } 686 687 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 688 unsigned long address) 689 { 690 struct mm_struct *mm = vma->vm_mm; 691 pte_t *pte; 692 spinlock_t *ptl; 693 int ret = 0; 694 695 pte = page_check_address(page, mm, address, &ptl, 1); 696 if (!pte) 697 goto out; 698 699 if (pte_dirty(*pte) || pte_write(*pte)) { 700 pte_t entry; 701 702 flush_cache_page(vma, address, pte_pfn(*pte)); 703 entry = ptep_clear_flush_notify(vma, address, pte); 704 entry = pte_wrprotect(entry); 705 entry = pte_mkclean(entry); 706 set_pte_at(mm, address, pte, entry); 707 ret = 1; 708 } 709 710 pte_unmap_unlock(pte, ptl); 711 out: 712 return ret; 713 } 714 715 static int page_mkclean_file(struct address_space *mapping, struct page *page) 716 { 717 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 718 struct vm_area_struct *vma; 719 struct prio_tree_iter iter; 720 int ret = 0; 721 722 BUG_ON(PageAnon(page)); 723 724 spin_lock(&mapping->i_mmap_lock); 725 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 726 if (vma->vm_flags & VM_SHARED) { 727 unsigned long address = vma_address(page, vma); 728 if (address == -EFAULT) 729 continue; 730 ret += page_mkclean_one(page, vma, address); 731 } 732 } 733 spin_unlock(&mapping->i_mmap_lock); 734 return ret; 735 } 736 737 int page_mkclean(struct page *page) 738 { 739 int ret = 0; 740 741 BUG_ON(!PageLocked(page)); 742 743 if (page_mapped(page)) { 744 struct address_space *mapping = page_mapping(page); 745 if (mapping) { 746 ret = page_mkclean_file(mapping, page); 747 if (page_test_dirty(page)) { 748 page_clear_dirty(page); 749 ret = 1; 750 } 751 } 752 } 753 754 return ret; 755 } 756 EXPORT_SYMBOL_GPL(page_mkclean); 757 758 /** 759 * page_move_anon_rmap - move a page to our anon_vma 760 * @page: the page to move to our anon_vma 761 * @vma: the vma the page belongs to 762 * @address: the user virtual address mapped 763 * 764 * When a page belongs exclusively to one process after a COW event, 765 * that page can be moved into the anon_vma that belongs to just that 766 * process, so the rmap code will not search the parent or sibling 767 * processes. 768 */ 769 void page_move_anon_rmap(struct page *page, 770 struct vm_area_struct *vma, unsigned long address) 771 { 772 struct anon_vma *anon_vma = vma->anon_vma; 773 774 VM_BUG_ON(!PageLocked(page)); 775 VM_BUG_ON(!anon_vma); 776 VM_BUG_ON(page->index != linear_page_index(vma, address)); 777 778 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 779 page->mapping = (struct address_space *) anon_vma; 780 } 781 782 /** 783 * __page_set_anon_rmap - setup new anonymous rmap 784 * @page: the page to add the mapping to 785 * @vma: the vm area in which the mapping is added 786 * @address: the user virtual address mapped 787 * @exclusive: the page is exclusively owned by the current process 788 */ 789 static void __page_set_anon_rmap(struct page *page, 790 struct vm_area_struct *vma, unsigned long address, int exclusive) 791 { 792 struct anon_vma *anon_vma = vma->anon_vma; 793 794 BUG_ON(!anon_vma); 795 796 /* 797 * If the page isn't exclusively mapped into this vma, 798 * we must use the _oldest_ possible anon_vma for the 799 * page mapping! 800 */ 801 if (!exclusive) { 802 if (PageAnon(page)) 803 return; 804 anon_vma = anon_vma->root; 805 } else { 806 /* 807 * In this case, swapped-out-but-not-discarded swap-cache 808 * is remapped. So, no need to update page->mapping here. 809 * We convice anon_vma poitned by page->mapping is not obsolete 810 * because vma->anon_vma is necessary to be a family of it. 811 */ 812 if (PageAnon(page)) 813 return; 814 } 815 816 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 817 page->mapping = (struct address_space *) anon_vma; 818 page->index = linear_page_index(vma, address); 819 } 820 821 /** 822 * __page_check_anon_rmap - sanity check anonymous rmap addition 823 * @page: the page to add the mapping to 824 * @vma: the vm area in which the mapping is added 825 * @address: the user virtual address mapped 826 */ 827 static void __page_check_anon_rmap(struct page *page, 828 struct vm_area_struct *vma, unsigned long address) 829 { 830 #ifdef CONFIG_DEBUG_VM 831 /* 832 * The page's anon-rmap details (mapping and index) are guaranteed to 833 * be set up correctly at this point. 834 * 835 * We have exclusion against page_add_anon_rmap because the caller 836 * always holds the page locked, except if called from page_dup_rmap, 837 * in which case the page is already known to be setup. 838 * 839 * We have exclusion against page_add_new_anon_rmap because those pages 840 * are initially only visible via the pagetables, and the pte is locked 841 * over the call to page_add_new_anon_rmap. 842 */ 843 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 844 BUG_ON(page->index != linear_page_index(vma, address)); 845 #endif 846 } 847 848 /** 849 * page_add_anon_rmap - add pte mapping to an anonymous page 850 * @page: the page to add the mapping to 851 * @vma: the vm area in which the mapping is added 852 * @address: the user virtual address mapped 853 * 854 * The caller needs to hold the pte lock, and the page must be locked in 855 * the anon_vma case: to serialize mapping,index checking after setting, 856 * and to ensure that PageAnon is not being upgraded racily to PageKsm 857 * (but PageKsm is never downgraded to PageAnon). 858 */ 859 void page_add_anon_rmap(struct page *page, 860 struct vm_area_struct *vma, unsigned long address) 861 { 862 do_page_add_anon_rmap(page, vma, address, 0); 863 } 864 865 /* 866 * Special version of the above for do_swap_page, which often runs 867 * into pages that are exclusively owned by the current process. 868 * Everybody else should continue to use page_add_anon_rmap above. 869 */ 870 void do_page_add_anon_rmap(struct page *page, 871 struct vm_area_struct *vma, unsigned long address, int exclusive) 872 { 873 int first = atomic_inc_and_test(&page->_mapcount); 874 if (first) 875 __inc_zone_page_state(page, NR_ANON_PAGES); 876 if (unlikely(PageKsm(page))) 877 return; 878 879 VM_BUG_ON(!PageLocked(page)); 880 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 881 if (first) 882 __page_set_anon_rmap(page, vma, address, exclusive); 883 else 884 __page_check_anon_rmap(page, vma, address); 885 } 886 887 /** 888 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 889 * @page: the page to add the mapping to 890 * @vma: the vm area in which the mapping is added 891 * @address: the user virtual address mapped 892 * 893 * Same as page_add_anon_rmap but must only be called on *new* pages. 894 * This means the inc-and-test can be bypassed. 895 * Page does not have to be locked. 896 */ 897 void page_add_new_anon_rmap(struct page *page, 898 struct vm_area_struct *vma, unsigned long address) 899 { 900 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 901 SetPageSwapBacked(page); 902 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 903 __inc_zone_page_state(page, NR_ANON_PAGES); 904 __page_set_anon_rmap(page, vma, address, 1); 905 if (page_evictable(page, vma)) 906 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 907 else 908 add_page_to_unevictable_list(page); 909 } 910 911 /** 912 * page_add_file_rmap - add pte mapping to a file page 913 * @page: the page to add the mapping to 914 * 915 * The caller needs to hold the pte lock. 916 */ 917 void page_add_file_rmap(struct page *page) 918 { 919 if (atomic_inc_and_test(&page->_mapcount)) { 920 __inc_zone_page_state(page, NR_FILE_MAPPED); 921 mem_cgroup_update_file_mapped(page, 1); 922 } 923 } 924 925 /** 926 * page_remove_rmap - take down pte mapping from a page 927 * @page: page to remove mapping from 928 * 929 * The caller needs to hold the pte lock. 930 */ 931 void page_remove_rmap(struct page *page) 932 { 933 /* page still mapped by someone else? */ 934 if (!atomic_add_negative(-1, &page->_mapcount)) 935 return; 936 937 /* 938 * Now that the last pte has gone, s390 must transfer dirty 939 * flag from storage key to struct page. We can usually skip 940 * this if the page is anon, so about to be freed; but perhaps 941 * not if it's in swapcache - there might be another pte slot 942 * containing the swap entry, but page not yet written to swap. 943 */ 944 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { 945 page_clear_dirty(page); 946 set_page_dirty(page); 947 } 948 /* 949 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 950 * and not charged by memcg for now. 951 */ 952 if (unlikely(PageHuge(page))) 953 return; 954 if (PageAnon(page)) { 955 mem_cgroup_uncharge_page(page); 956 __dec_zone_page_state(page, NR_ANON_PAGES); 957 } else { 958 __dec_zone_page_state(page, NR_FILE_MAPPED); 959 mem_cgroup_update_file_mapped(page, -1); 960 } 961 /* 962 * It would be tidy to reset the PageAnon mapping here, 963 * but that might overwrite a racing page_add_anon_rmap 964 * which increments mapcount after us but sets mapping 965 * before us: so leave the reset to free_hot_cold_page, 966 * and remember that it's only reliable while mapped. 967 * Leaving it set also helps swapoff to reinstate ptes 968 * faster for those pages still in swapcache. 969 */ 970 } 971 972 /* 973 * Subfunctions of try_to_unmap: try_to_unmap_one called 974 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 975 */ 976 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 977 unsigned long address, enum ttu_flags flags) 978 { 979 struct mm_struct *mm = vma->vm_mm; 980 pte_t *pte; 981 pte_t pteval; 982 spinlock_t *ptl; 983 int ret = SWAP_AGAIN; 984 985 pte = page_check_address(page, mm, address, &ptl, 0); 986 if (!pte) 987 goto out; 988 989 /* 990 * If the page is mlock()d, we cannot swap it out. 991 * If it's recently referenced (perhaps page_referenced 992 * skipped over this mm) then we should reactivate it. 993 */ 994 if (!(flags & TTU_IGNORE_MLOCK)) { 995 if (vma->vm_flags & VM_LOCKED) 996 goto out_mlock; 997 998 if (TTU_ACTION(flags) == TTU_MUNLOCK) 999 goto out_unmap; 1000 } 1001 if (!(flags & TTU_IGNORE_ACCESS)) { 1002 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1003 ret = SWAP_FAIL; 1004 goto out_unmap; 1005 } 1006 } 1007 1008 /* Nuke the page table entry. */ 1009 flush_cache_page(vma, address, page_to_pfn(page)); 1010 pteval = ptep_clear_flush_notify(vma, address, pte); 1011 1012 /* Move the dirty bit to the physical page now the pte is gone. */ 1013 if (pte_dirty(pteval)) 1014 set_page_dirty(page); 1015 1016 /* Update high watermark before we lower rss */ 1017 update_hiwater_rss(mm); 1018 1019 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1020 if (PageAnon(page)) 1021 dec_mm_counter(mm, MM_ANONPAGES); 1022 else 1023 dec_mm_counter(mm, MM_FILEPAGES); 1024 set_pte_at(mm, address, pte, 1025 swp_entry_to_pte(make_hwpoison_entry(page))); 1026 } else if (PageAnon(page)) { 1027 swp_entry_t entry = { .val = page_private(page) }; 1028 1029 if (PageSwapCache(page)) { 1030 /* 1031 * Store the swap location in the pte. 1032 * See handle_pte_fault() ... 1033 */ 1034 if (swap_duplicate(entry) < 0) { 1035 set_pte_at(mm, address, pte, pteval); 1036 ret = SWAP_FAIL; 1037 goto out_unmap; 1038 } 1039 if (list_empty(&mm->mmlist)) { 1040 spin_lock(&mmlist_lock); 1041 if (list_empty(&mm->mmlist)) 1042 list_add(&mm->mmlist, &init_mm.mmlist); 1043 spin_unlock(&mmlist_lock); 1044 } 1045 dec_mm_counter(mm, MM_ANONPAGES); 1046 inc_mm_counter(mm, MM_SWAPENTS); 1047 } else if (PAGE_MIGRATION) { 1048 /* 1049 * Store the pfn of the page in a special migration 1050 * pte. do_swap_page() will wait until the migration 1051 * pte is removed and then restart fault handling. 1052 */ 1053 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1054 entry = make_migration_entry(page, pte_write(pteval)); 1055 } 1056 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1057 BUG_ON(pte_file(*pte)); 1058 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1059 /* Establish migration entry for a file page */ 1060 swp_entry_t entry; 1061 entry = make_migration_entry(page, pte_write(pteval)); 1062 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1063 } else 1064 dec_mm_counter(mm, MM_FILEPAGES); 1065 1066 page_remove_rmap(page); 1067 page_cache_release(page); 1068 1069 out_unmap: 1070 pte_unmap_unlock(pte, ptl); 1071 out: 1072 return ret; 1073 1074 out_mlock: 1075 pte_unmap_unlock(pte, ptl); 1076 1077 1078 /* 1079 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1080 * unstable result and race. Plus, We can't wait here because 1081 * we now hold anon_vma->lock or mapping->i_mmap_lock. 1082 * if trylock failed, the page remain in evictable lru and later 1083 * vmscan could retry to move the page to unevictable lru if the 1084 * page is actually mlocked. 1085 */ 1086 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1087 if (vma->vm_flags & VM_LOCKED) { 1088 mlock_vma_page(page); 1089 ret = SWAP_MLOCK; 1090 } 1091 up_read(&vma->vm_mm->mmap_sem); 1092 } 1093 return ret; 1094 } 1095 1096 /* 1097 * objrmap doesn't work for nonlinear VMAs because the assumption that 1098 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1099 * Consequently, given a particular page and its ->index, we cannot locate the 1100 * ptes which are mapping that page without an exhaustive linear search. 1101 * 1102 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1103 * maps the file to which the target page belongs. The ->vm_private_data field 1104 * holds the current cursor into that scan. Successive searches will circulate 1105 * around the vma's virtual address space. 1106 * 1107 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1108 * more scanning pressure is placed against them as well. Eventually pages 1109 * will become fully unmapped and are eligible for eviction. 1110 * 1111 * For very sparsely populated VMAs this is a little inefficient - chances are 1112 * there there won't be many ptes located within the scan cluster. In this case 1113 * maybe we could scan further - to the end of the pte page, perhaps. 1114 * 1115 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1116 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1117 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1118 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1119 */ 1120 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1121 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1122 1123 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1124 struct vm_area_struct *vma, struct page *check_page) 1125 { 1126 struct mm_struct *mm = vma->vm_mm; 1127 pgd_t *pgd; 1128 pud_t *pud; 1129 pmd_t *pmd; 1130 pte_t *pte; 1131 pte_t pteval; 1132 spinlock_t *ptl; 1133 struct page *page; 1134 unsigned long address; 1135 unsigned long end; 1136 int ret = SWAP_AGAIN; 1137 int locked_vma = 0; 1138 1139 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1140 end = address + CLUSTER_SIZE; 1141 if (address < vma->vm_start) 1142 address = vma->vm_start; 1143 if (end > vma->vm_end) 1144 end = vma->vm_end; 1145 1146 pgd = pgd_offset(mm, address); 1147 if (!pgd_present(*pgd)) 1148 return ret; 1149 1150 pud = pud_offset(pgd, address); 1151 if (!pud_present(*pud)) 1152 return ret; 1153 1154 pmd = pmd_offset(pud, address); 1155 if (!pmd_present(*pmd)) 1156 return ret; 1157 1158 /* 1159 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1160 * keep the sem while scanning the cluster for mlocking pages. 1161 */ 1162 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1163 locked_vma = (vma->vm_flags & VM_LOCKED); 1164 if (!locked_vma) 1165 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1166 } 1167 1168 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1169 1170 /* Update high watermark before we lower rss */ 1171 update_hiwater_rss(mm); 1172 1173 for (; address < end; pte++, address += PAGE_SIZE) { 1174 if (!pte_present(*pte)) 1175 continue; 1176 page = vm_normal_page(vma, address, *pte); 1177 BUG_ON(!page || PageAnon(page)); 1178 1179 if (locked_vma) { 1180 mlock_vma_page(page); /* no-op if already mlocked */ 1181 if (page == check_page) 1182 ret = SWAP_MLOCK; 1183 continue; /* don't unmap */ 1184 } 1185 1186 if (ptep_clear_flush_young_notify(vma, address, pte)) 1187 continue; 1188 1189 /* Nuke the page table entry. */ 1190 flush_cache_page(vma, address, pte_pfn(*pte)); 1191 pteval = ptep_clear_flush_notify(vma, address, pte); 1192 1193 /* If nonlinear, store the file page offset in the pte. */ 1194 if (page->index != linear_page_index(vma, address)) 1195 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1196 1197 /* Move the dirty bit to the physical page now the pte is gone. */ 1198 if (pte_dirty(pteval)) 1199 set_page_dirty(page); 1200 1201 page_remove_rmap(page); 1202 page_cache_release(page); 1203 dec_mm_counter(mm, MM_FILEPAGES); 1204 (*mapcount)--; 1205 } 1206 pte_unmap_unlock(pte - 1, ptl); 1207 if (locked_vma) 1208 up_read(&vma->vm_mm->mmap_sem); 1209 return ret; 1210 } 1211 1212 static bool is_vma_temporary_stack(struct vm_area_struct *vma) 1213 { 1214 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1215 1216 if (!maybe_stack) 1217 return false; 1218 1219 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1220 VM_STACK_INCOMPLETE_SETUP) 1221 return true; 1222 1223 return false; 1224 } 1225 1226 /** 1227 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1228 * rmap method 1229 * @page: the page to unmap/unlock 1230 * @flags: action and flags 1231 * 1232 * Find all the mappings of a page using the mapping pointer and the vma chains 1233 * contained in the anon_vma struct it points to. 1234 * 1235 * This function is only called from try_to_unmap/try_to_munlock for 1236 * anonymous pages. 1237 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1238 * where the page was found will be held for write. So, we won't recheck 1239 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1240 * 'LOCKED. 1241 */ 1242 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1243 { 1244 struct anon_vma *anon_vma; 1245 struct anon_vma_chain *avc; 1246 int ret = SWAP_AGAIN; 1247 1248 anon_vma = page_lock_anon_vma(page); 1249 if (!anon_vma) 1250 return ret; 1251 1252 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1253 struct vm_area_struct *vma = avc->vma; 1254 unsigned long address; 1255 1256 /* 1257 * During exec, a temporary VMA is setup and later moved. 1258 * The VMA is moved under the anon_vma lock but not the 1259 * page tables leading to a race where migration cannot 1260 * find the migration ptes. Rather than increasing the 1261 * locking requirements of exec(), migration skips 1262 * temporary VMAs until after exec() completes. 1263 */ 1264 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1265 is_vma_temporary_stack(vma)) 1266 continue; 1267 1268 address = vma_address(page, vma); 1269 if (address == -EFAULT) 1270 continue; 1271 ret = try_to_unmap_one(page, vma, address, flags); 1272 if (ret != SWAP_AGAIN || !page_mapped(page)) 1273 break; 1274 } 1275 1276 page_unlock_anon_vma(anon_vma); 1277 return ret; 1278 } 1279 1280 /** 1281 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1282 * @page: the page to unmap/unlock 1283 * @flags: action and flags 1284 * 1285 * Find all the mappings of a page using the mapping pointer and the vma chains 1286 * contained in the address_space struct it points to. 1287 * 1288 * This function is only called from try_to_unmap/try_to_munlock for 1289 * object-based pages. 1290 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1291 * where the page was found will be held for write. So, we won't recheck 1292 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1293 * 'LOCKED. 1294 */ 1295 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1296 { 1297 struct address_space *mapping = page->mapping; 1298 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1299 struct vm_area_struct *vma; 1300 struct prio_tree_iter iter; 1301 int ret = SWAP_AGAIN; 1302 unsigned long cursor; 1303 unsigned long max_nl_cursor = 0; 1304 unsigned long max_nl_size = 0; 1305 unsigned int mapcount; 1306 1307 spin_lock(&mapping->i_mmap_lock); 1308 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1309 unsigned long address = vma_address(page, vma); 1310 if (address == -EFAULT) 1311 continue; 1312 ret = try_to_unmap_one(page, vma, address, flags); 1313 if (ret != SWAP_AGAIN || !page_mapped(page)) 1314 goto out; 1315 } 1316 1317 if (list_empty(&mapping->i_mmap_nonlinear)) 1318 goto out; 1319 1320 /* 1321 * We don't bother to try to find the munlocked page in nonlinears. 1322 * It's costly. Instead, later, page reclaim logic may call 1323 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1324 */ 1325 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1326 goto out; 1327 1328 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1329 shared.vm_set.list) { 1330 cursor = (unsigned long) vma->vm_private_data; 1331 if (cursor > max_nl_cursor) 1332 max_nl_cursor = cursor; 1333 cursor = vma->vm_end - vma->vm_start; 1334 if (cursor > max_nl_size) 1335 max_nl_size = cursor; 1336 } 1337 1338 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1339 ret = SWAP_FAIL; 1340 goto out; 1341 } 1342 1343 /* 1344 * We don't try to search for this page in the nonlinear vmas, 1345 * and page_referenced wouldn't have found it anyway. Instead 1346 * just walk the nonlinear vmas trying to age and unmap some. 1347 * The mapcount of the page we came in with is irrelevant, 1348 * but even so use it as a guide to how hard we should try? 1349 */ 1350 mapcount = page_mapcount(page); 1351 if (!mapcount) 1352 goto out; 1353 cond_resched_lock(&mapping->i_mmap_lock); 1354 1355 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1356 if (max_nl_cursor == 0) 1357 max_nl_cursor = CLUSTER_SIZE; 1358 1359 do { 1360 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1361 shared.vm_set.list) { 1362 cursor = (unsigned long) vma->vm_private_data; 1363 while ( cursor < max_nl_cursor && 1364 cursor < vma->vm_end - vma->vm_start) { 1365 if (try_to_unmap_cluster(cursor, &mapcount, 1366 vma, page) == SWAP_MLOCK) 1367 ret = SWAP_MLOCK; 1368 cursor += CLUSTER_SIZE; 1369 vma->vm_private_data = (void *) cursor; 1370 if ((int)mapcount <= 0) 1371 goto out; 1372 } 1373 vma->vm_private_data = (void *) max_nl_cursor; 1374 } 1375 cond_resched_lock(&mapping->i_mmap_lock); 1376 max_nl_cursor += CLUSTER_SIZE; 1377 } while (max_nl_cursor <= max_nl_size); 1378 1379 /* 1380 * Don't loop forever (perhaps all the remaining pages are 1381 * in locked vmas). Reset cursor on all unreserved nonlinear 1382 * vmas, now forgetting on which ones it had fallen behind. 1383 */ 1384 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1385 vma->vm_private_data = NULL; 1386 out: 1387 spin_unlock(&mapping->i_mmap_lock); 1388 return ret; 1389 } 1390 1391 /** 1392 * try_to_unmap - try to remove all page table mappings to a page 1393 * @page: the page to get unmapped 1394 * @flags: action and flags 1395 * 1396 * Tries to remove all the page table entries which are mapping this 1397 * page, used in the pageout path. Caller must hold the page lock. 1398 * Return values are: 1399 * 1400 * SWAP_SUCCESS - we succeeded in removing all mappings 1401 * SWAP_AGAIN - we missed a mapping, try again later 1402 * SWAP_FAIL - the page is unswappable 1403 * SWAP_MLOCK - page is mlocked. 1404 */ 1405 int try_to_unmap(struct page *page, enum ttu_flags flags) 1406 { 1407 int ret; 1408 1409 BUG_ON(!PageLocked(page)); 1410 1411 if (unlikely(PageKsm(page))) 1412 ret = try_to_unmap_ksm(page, flags); 1413 else if (PageAnon(page)) 1414 ret = try_to_unmap_anon(page, flags); 1415 else 1416 ret = try_to_unmap_file(page, flags); 1417 if (ret != SWAP_MLOCK && !page_mapped(page)) 1418 ret = SWAP_SUCCESS; 1419 return ret; 1420 } 1421 1422 /** 1423 * try_to_munlock - try to munlock a page 1424 * @page: the page to be munlocked 1425 * 1426 * Called from munlock code. Checks all of the VMAs mapping the page 1427 * to make sure nobody else has this page mlocked. The page will be 1428 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1429 * 1430 * Return values are: 1431 * 1432 * SWAP_AGAIN - no vma is holding page mlocked, or, 1433 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1434 * SWAP_FAIL - page cannot be located at present 1435 * SWAP_MLOCK - page is now mlocked. 1436 */ 1437 int try_to_munlock(struct page *page) 1438 { 1439 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1440 1441 if (unlikely(PageKsm(page))) 1442 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1443 else if (PageAnon(page)) 1444 return try_to_unmap_anon(page, TTU_MUNLOCK); 1445 else 1446 return try_to_unmap_file(page, TTU_MUNLOCK); 1447 } 1448 1449 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) 1450 /* 1451 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root 1452 * if necessary. Be careful to do all the tests under the lock. Once 1453 * we know we are the last user, nobody else can get a reference and we 1454 * can do the freeing without the lock. 1455 */ 1456 void drop_anon_vma(struct anon_vma *anon_vma) 1457 { 1458 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); 1459 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { 1460 struct anon_vma *root = anon_vma->root; 1461 int empty = list_empty(&anon_vma->head); 1462 int last_root_user = 0; 1463 int root_empty = 0; 1464 1465 /* 1466 * The refcount on a non-root anon_vma got dropped. Drop 1467 * the refcount on the root and check if we need to free it. 1468 */ 1469 if (empty && anon_vma != root) { 1470 BUG_ON(atomic_read(&root->external_refcount) <= 0); 1471 last_root_user = atomic_dec_and_test(&root->external_refcount); 1472 root_empty = list_empty(&root->head); 1473 } 1474 anon_vma_unlock(anon_vma); 1475 1476 if (empty) { 1477 anon_vma_free(anon_vma); 1478 if (root_empty && last_root_user) 1479 anon_vma_free(root); 1480 } 1481 } 1482 } 1483 #endif 1484 1485 #ifdef CONFIG_MIGRATION 1486 /* 1487 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1488 * Called by migrate.c to remove migration ptes, but might be used more later. 1489 */ 1490 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1491 struct vm_area_struct *, unsigned long, void *), void *arg) 1492 { 1493 struct anon_vma *anon_vma; 1494 struct anon_vma_chain *avc; 1495 int ret = SWAP_AGAIN; 1496 1497 /* 1498 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1499 * because that depends on page_mapped(); but not all its usages 1500 * are holding mmap_sem. Users without mmap_sem are required to 1501 * take a reference count to prevent the anon_vma disappearing 1502 */ 1503 anon_vma = page_anon_vma(page); 1504 if (!anon_vma) 1505 return ret; 1506 anon_vma_lock(anon_vma); 1507 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1508 struct vm_area_struct *vma = avc->vma; 1509 unsigned long address = vma_address(page, vma); 1510 if (address == -EFAULT) 1511 continue; 1512 ret = rmap_one(page, vma, address, arg); 1513 if (ret != SWAP_AGAIN) 1514 break; 1515 } 1516 anon_vma_unlock(anon_vma); 1517 return ret; 1518 } 1519 1520 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1521 struct vm_area_struct *, unsigned long, void *), void *arg) 1522 { 1523 struct address_space *mapping = page->mapping; 1524 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1525 struct vm_area_struct *vma; 1526 struct prio_tree_iter iter; 1527 int ret = SWAP_AGAIN; 1528 1529 if (!mapping) 1530 return ret; 1531 spin_lock(&mapping->i_mmap_lock); 1532 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1533 unsigned long address = vma_address(page, vma); 1534 if (address == -EFAULT) 1535 continue; 1536 ret = rmap_one(page, vma, address, arg); 1537 if (ret != SWAP_AGAIN) 1538 break; 1539 } 1540 /* 1541 * No nonlinear handling: being always shared, nonlinear vmas 1542 * never contain migration ptes. Decide what to do about this 1543 * limitation to linear when we need rmap_walk() on nonlinear. 1544 */ 1545 spin_unlock(&mapping->i_mmap_lock); 1546 return ret; 1547 } 1548 1549 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1550 struct vm_area_struct *, unsigned long, void *), void *arg) 1551 { 1552 VM_BUG_ON(!PageLocked(page)); 1553 1554 if (unlikely(PageKsm(page))) 1555 return rmap_walk_ksm(page, rmap_one, arg); 1556 else if (PageAnon(page)) 1557 return rmap_walk_anon(page, rmap_one, arg); 1558 else 1559 return rmap_walk_file(page, rmap_one, arg); 1560 } 1561 #endif /* CONFIG_MIGRATION */ 1562 1563 #ifdef CONFIG_HUGETLB_PAGE 1564 /* 1565 * The following three functions are for anonymous (private mapped) hugepages. 1566 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1567 * and no lru code, because we handle hugepages differently from common pages. 1568 */ 1569 static void __hugepage_set_anon_rmap(struct page *page, 1570 struct vm_area_struct *vma, unsigned long address, int exclusive) 1571 { 1572 struct anon_vma *anon_vma = vma->anon_vma; 1573 1574 BUG_ON(!anon_vma); 1575 1576 if (PageAnon(page)) 1577 return; 1578 if (!exclusive) 1579 anon_vma = anon_vma->root; 1580 1581 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1582 page->mapping = (struct address_space *) anon_vma; 1583 page->index = linear_page_index(vma, address); 1584 } 1585 1586 void hugepage_add_anon_rmap(struct page *page, 1587 struct vm_area_struct *vma, unsigned long address) 1588 { 1589 struct anon_vma *anon_vma = vma->anon_vma; 1590 int first; 1591 1592 BUG_ON(!PageLocked(page)); 1593 BUG_ON(!anon_vma); 1594 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1595 first = atomic_inc_and_test(&page->_mapcount); 1596 if (first) 1597 __hugepage_set_anon_rmap(page, vma, address, 0); 1598 } 1599 1600 void hugepage_add_new_anon_rmap(struct page *page, 1601 struct vm_area_struct *vma, unsigned long address) 1602 { 1603 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1604 atomic_set(&page->_mapcount, 0); 1605 __hugepage_set_anon_rmap(page, vma, address, 1); 1606 } 1607 #endif /* CONFIG_HUGETLB_PAGE */ 1608