xref: /openbmc/linux/mm/rmap.c (revision d3402925)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           mapping->i_mmap_rwsem
29  *             anon_vma->rwsem
30  *               mm->page_table_lock or pte_lock
31  *                 swap_lock (in swap_duplicate, swap_info_get)
32  *                   mmlist_lock (in mmput, drain_mmlist and others)
33  *                   mapping->private_lock (in block_dirty_folio)
34  *                     folio_lock_memcg move_lock (in block_dirty_folio)
35  *                       i_pages lock (widely used)
36  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                     i_pages lock (widely used, in set_page_dirty,
41  *                               in arch-dependent flush_dcache_mmap_lock,
42  *                               within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         page->flags PG_locked (lock_page)
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 
78 #include <asm/tlbflush.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83 
84 #include "internal.h"
85 
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88 
89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 	struct anon_vma *anon_vma;
92 
93 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 	if (anon_vma) {
95 		atomic_set(&anon_vma->refcount, 1);
96 		anon_vma->num_children = 0;
97 		anon_vma->num_active_vmas = 0;
98 		anon_vma->parent = anon_vma;
99 		/*
100 		 * Initialise the anon_vma root to point to itself. If called
101 		 * from fork, the root will be reset to the parents anon_vma.
102 		 */
103 		anon_vma->root = anon_vma;
104 	}
105 
106 	return anon_vma;
107 }
108 
109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
112 
113 	/*
114 	 * Synchronize against folio_lock_anon_vma_read() such that
115 	 * we can safely hold the lock without the anon_vma getting
116 	 * freed.
117 	 *
118 	 * Relies on the full mb implied by the atomic_dec_and_test() from
119 	 * put_anon_vma() against the acquire barrier implied by
120 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 	 *
122 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
123 	 *   down_read_trylock()		  atomic_dec_and_test()
124 	 *   LOCK				  MB
125 	 *   atomic_read()			  rwsem_is_locked()
126 	 *
127 	 * LOCK should suffice since the actual taking of the lock must
128 	 * happen _before_ what follows.
129 	 */
130 	might_sleep();
131 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 		anon_vma_lock_write(anon_vma);
133 		anon_vma_unlock_write(anon_vma);
134 	}
135 
136 	kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138 
139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143 
144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148 
149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 				struct anon_vma_chain *avc,
151 				struct anon_vma *anon_vma)
152 {
153 	avc->vma = vma;
154 	avc->anon_vma = anon_vma;
155 	list_add(&avc->same_vma, &vma->anon_vma_chain);
156 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158 
159 /**
160  * __anon_vma_prepare - attach an anon_vma to a memory region
161  * @vma: the memory region in question
162  *
163  * This makes sure the memory mapping described by 'vma' has
164  * an 'anon_vma' attached to it, so that we can associate the
165  * anonymous pages mapped into it with that anon_vma.
166  *
167  * The common case will be that we already have one, which
168  * is handled inline by anon_vma_prepare(). But if
169  * not we either need to find an adjacent mapping that we
170  * can re-use the anon_vma from (very common when the only
171  * reason for splitting a vma has been mprotect()), or we
172  * allocate a new one.
173  *
174  * Anon-vma allocations are very subtle, because we may have
175  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176  * and that may actually touch the rwsem even in the newly
177  * allocated vma (it depends on RCU to make sure that the
178  * anon_vma isn't actually destroyed).
179  *
180  * As a result, we need to do proper anon_vma locking even
181  * for the new allocation. At the same time, we do not want
182  * to do any locking for the common case of already having
183  * an anon_vma.
184  *
185  * This must be called with the mmap_lock held for reading.
186  */
187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 	struct mm_struct *mm = vma->vm_mm;
190 	struct anon_vma *anon_vma, *allocated;
191 	struct anon_vma_chain *avc;
192 
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against page_remove_rmap()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  */
493 struct anon_vma *folio_get_anon_vma(struct folio *folio)
494 {
495 	struct anon_vma *anon_vma = NULL;
496 	unsigned long anon_mapping;
497 
498 	rcu_read_lock();
499 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
500 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
501 		goto out;
502 	if (!folio_mapped(folio))
503 		goto out;
504 
505 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
506 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
507 		anon_vma = NULL;
508 		goto out;
509 	}
510 
511 	/*
512 	 * If this folio is still mapped, then its anon_vma cannot have been
513 	 * freed.  But if it has been unmapped, we have no security against the
514 	 * anon_vma structure being freed and reused (for another anon_vma:
515 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
516 	 * above cannot corrupt).
517 	 */
518 	if (!folio_mapped(folio)) {
519 		rcu_read_unlock();
520 		put_anon_vma(anon_vma);
521 		return NULL;
522 	}
523 out:
524 	rcu_read_unlock();
525 
526 	return anon_vma;
527 }
528 
529 /*
530  * Similar to folio_get_anon_vma() except it locks the anon_vma.
531  *
532  * Its a little more complex as it tries to keep the fast path to a single
533  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
534  * reference like with folio_get_anon_vma() and then block on the mutex
535  * on !rwc->try_lock case.
536  */
537 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
538 					  struct rmap_walk_control *rwc)
539 {
540 	struct anon_vma *anon_vma = NULL;
541 	struct anon_vma *root_anon_vma;
542 	unsigned long anon_mapping;
543 
544 	rcu_read_lock();
545 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
546 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
547 		goto out;
548 	if (!folio_mapped(folio))
549 		goto out;
550 
551 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
552 	root_anon_vma = READ_ONCE(anon_vma->root);
553 	if (down_read_trylock(&root_anon_vma->rwsem)) {
554 		/*
555 		 * If the folio is still mapped, then this anon_vma is still
556 		 * its anon_vma, and holding the mutex ensures that it will
557 		 * not go away, see anon_vma_free().
558 		 */
559 		if (!folio_mapped(folio)) {
560 			up_read(&root_anon_vma->rwsem);
561 			anon_vma = NULL;
562 		}
563 		goto out;
564 	}
565 
566 	if (rwc && rwc->try_lock) {
567 		anon_vma = NULL;
568 		rwc->contended = true;
569 		goto out;
570 	}
571 
572 	/* trylock failed, we got to sleep */
573 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
574 		anon_vma = NULL;
575 		goto out;
576 	}
577 
578 	if (!folio_mapped(folio)) {
579 		rcu_read_unlock();
580 		put_anon_vma(anon_vma);
581 		return NULL;
582 	}
583 
584 	/* we pinned the anon_vma, its safe to sleep */
585 	rcu_read_unlock();
586 	anon_vma_lock_read(anon_vma);
587 
588 	if (atomic_dec_and_test(&anon_vma->refcount)) {
589 		/*
590 		 * Oops, we held the last refcount, release the lock
591 		 * and bail -- can't simply use put_anon_vma() because
592 		 * we'll deadlock on the anon_vma_lock_write() recursion.
593 		 */
594 		anon_vma_unlock_read(anon_vma);
595 		__put_anon_vma(anon_vma);
596 		anon_vma = NULL;
597 	}
598 
599 	return anon_vma;
600 
601 out:
602 	rcu_read_unlock();
603 	return anon_vma;
604 }
605 
606 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
607 /*
608  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
609  * important if a PTE was dirty when it was unmapped that it's flushed
610  * before any IO is initiated on the page to prevent lost writes. Similarly,
611  * it must be flushed before freeing to prevent data leakage.
612  */
613 void try_to_unmap_flush(void)
614 {
615 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
616 
617 	if (!tlb_ubc->flush_required)
618 		return;
619 
620 	arch_tlbbatch_flush(&tlb_ubc->arch);
621 	tlb_ubc->flush_required = false;
622 	tlb_ubc->writable = false;
623 }
624 
625 /* Flush iff there are potentially writable TLB entries that can race with IO */
626 void try_to_unmap_flush_dirty(void)
627 {
628 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
629 
630 	if (tlb_ubc->writable)
631 		try_to_unmap_flush();
632 }
633 
634 /*
635  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
636  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
637  */
638 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
639 #define TLB_FLUSH_BATCH_PENDING_MASK			\
640 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
641 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
642 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
643 
644 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
645 {
646 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647 	int batch;
648 
649 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
650 	tlb_ubc->flush_required = true;
651 
652 	/*
653 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
654 	 * before the PTE is cleared.
655 	 */
656 	barrier();
657 	batch = atomic_read(&mm->tlb_flush_batched);
658 retry:
659 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
660 		/*
661 		 * Prevent `pending' from catching up with `flushed' because of
662 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
663 		 * `pending' becomes large.
664 		 */
665 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
666 			goto retry;
667 	} else {
668 		atomic_inc(&mm->tlb_flush_batched);
669 	}
670 
671 	/*
672 	 * If the PTE was dirty then it's best to assume it's writable. The
673 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
674 	 * before the page is queued for IO.
675 	 */
676 	if (writable)
677 		tlb_ubc->writable = true;
678 }
679 
680 /*
681  * Returns true if the TLB flush should be deferred to the end of a batch of
682  * unmap operations to reduce IPIs.
683  */
684 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
685 {
686 	bool should_defer = false;
687 
688 	if (!(flags & TTU_BATCH_FLUSH))
689 		return false;
690 
691 	/* If remote CPUs need to be flushed then defer batch the flush */
692 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
693 		should_defer = true;
694 	put_cpu();
695 
696 	return should_defer;
697 }
698 
699 /*
700  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
701  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
702  * operation such as mprotect or munmap to race between reclaim unmapping
703  * the page and flushing the page. If this race occurs, it potentially allows
704  * access to data via a stale TLB entry. Tracking all mm's that have TLB
705  * batching in flight would be expensive during reclaim so instead track
706  * whether TLB batching occurred in the past and if so then do a flush here
707  * if required. This will cost one additional flush per reclaim cycle paid
708  * by the first operation at risk such as mprotect and mumap.
709  *
710  * This must be called under the PTL so that an access to tlb_flush_batched
711  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
712  * via the PTL.
713  */
714 void flush_tlb_batched_pending(struct mm_struct *mm)
715 {
716 	int batch = atomic_read(&mm->tlb_flush_batched);
717 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
718 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
719 
720 	if (pending != flushed) {
721 		flush_tlb_mm(mm);
722 		/*
723 		 * If the new TLB flushing is pending during flushing, leave
724 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
725 		 */
726 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
727 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
728 	}
729 }
730 #else
731 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
732 {
733 }
734 
735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
736 {
737 	return false;
738 }
739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
740 
741 /*
742  * At what user virtual address is page expected in vma?
743  * Caller should check the page is actually part of the vma.
744  */
745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
746 {
747 	struct folio *folio = page_folio(page);
748 	if (folio_test_anon(folio)) {
749 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
750 		/*
751 		 * Note: swapoff's unuse_vma() is more efficient with this
752 		 * check, and needs it to match anon_vma when KSM is active.
753 		 */
754 		if (!vma->anon_vma || !page__anon_vma ||
755 		    vma->anon_vma->root != page__anon_vma->root)
756 			return -EFAULT;
757 	} else if (!vma->vm_file) {
758 		return -EFAULT;
759 	} else if (vma->vm_file->f_mapping != folio->mapping) {
760 		return -EFAULT;
761 	}
762 
763 	return vma_address(page, vma);
764 }
765 
766 /*
767  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
768  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
769  * represents.
770  */
771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
772 {
773 	pgd_t *pgd;
774 	p4d_t *p4d;
775 	pud_t *pud;
776 	pmd_t *pmd = NULL;
777 
778 	pgd = pgd_offset(mm, address);
779 	if (!pgd_present(*pgd))
780 		goto out;
781 
782 	p4d = p4d_offset(pgd, address);
783 	if (!p4d_present(*p4d))
784 		goto out;
785 
786 	pud = pud_offset(p4d, address);
787 	if (!pud_present(*pud))
788 		goto out;
789 
790 	pmd = pmd_offset(pud, address);
791 out:
792 	return pmd;
793 }
794 
795 struct folio_referenced_arg {
796 	int mapcount;
797 	int referenced;
798 	unsigned long vm_flags;
799 	struct mem_cgroup *memcg;
800 };
801 /*
802  * arg: folio_referenced_arg will be passed
803  */
804 static bool folio_referenced_one(struct folio *folio,
805 		struct vm_area_struct *vma, unsigned long address, void *arg)
806 {
807 	struct folio_referenced_arg *pra = arg;
808 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
809 	int referenced = 0;
810 
811 	while (page_vma_mapped_walk(&pvmw)) {
812 		address = pvmw.address;
813 
814 		if ((vma->vm_flags & VM_LOCKED) &&
815 		    (!folio_test_large(folio) || !pvmw.pte)) {
816 			/* Restore the mlock which got missed */
817 			mlock_vma_folio(folio, vma, !pvmw.pte);
818 			page_vma_mapped_walk_done(&pvmw);
819 			pra->vm_flags |= VM_LOCKED;
820 			return false; /* To break the loop */
821 		}
822 
823 		if (pvmw.pte) {
824 			if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
825 				lru_gen_look_around(&pvmw);
826 				referenced++;
827 			}
828 
829 			if (ptep_clear_flush_young_notify(vma, address,
830 						pvmw.pte))
831 				referenced++;
832 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
833 			if (pmdp_clear_flush_young_notify(vma, address,
834 						pvmw.pmd))
835 				referenced++;
836 		} else {
837 			/* unexpected pmd-mapped folio? */
838 			WARN_ON_ONCE(1);
839 		}
840 
841 		pra->mapcount--;
842 	}
843 
844 	if (referenced)
845 		folio_clear_idle(folio);
846 	if (folio_test_clear_young(folio))
847 		referenced++;
848 
849 	if (referenced) {
850 		pra->referenced++;
851 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
852 	}
853 
854 	if (!pra->mapcount)
855 		return false; /* To break the loop */
856 
857 	return true;
858 }
859 
860 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
861 {
862 	struct folio_referenced_arg *pra = arg;
863 	struct mem_cgroup *memcg = pra->memcg;
864 
865 	/*
866 	 * Ignore references from this mapping if it has no recency. If the
867 	 * folio has been used in another mapping, we will catch it; if this
868 	 * other mapping is already gone, the unmap path will have set the
869 	 * referenced flag or activated the folio in zap_pte_range().
870 	 */
871 	if (!vma_has_recency(vma))
872 		return true;
873 
874 	/*
875 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
876 	 * of references from different cgroups.
877 	 */
878 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
879 		return true;
880 
881 	return false;
882 }
883 
884 /**
885  * folio_referenced() - Test if the folio was referenced.
886  * @folio: The folio to test.
887  * @is_locked: Caller holds lock on the folio.
888  * @memcg: target memory cgroup
889  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
890  *
891  * Quick test_and_clear_referenced for all mappings of a folio,
892  *
893  * Return: The number of mappings which referenced the folio. Return -1 if
894  * the function bailed out due to rmap lock contention.
895  */
896 int folio_referenced(struct folio *folio, int is_locked,
897 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
898 {
899 	int we_locked = 0;
900 	struct folio_referenced_arg pra = {
901 		.mapcount = folio_mapcount(folio),
902 		.memcg = memcg,
903 	};
904 	struct rmap_walk_control rwc = {
905 		.rmap_one = folio_referenced_one,
906 		.arg = (void *)&pra,
907 		.anon_lock = folio_lock_anon_vma_read,
908 		.try_lock = true,
909 		.invalid_vma = invalid_folio_referenced_vma,
910 	};
911 
912 	*vm_flags = 0;
913 	if (!pra.mapcount)
914 		return 0;
915 
916 	if (!folio_raw_mapping(folio))
917 		return 0;
918 
919 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
920 		we_locked = folio_trylock(folio);
921 		if (!we_locked)
922 			return 1;
923 	}
924 
925 	rmap_walk(folio, &rwc);
926 	*vm_flags = pra.vm_flags;
927 
928 	if (we_locked)
929 		folio_unlock(folio);
930 
931 	return rwc.contended ? -1 : pra.referenced;
932 }
933 
934 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
935 {
936 	int cleaned = 0;
937 	struct vm_area_struct *vma = pvmw->vma;
938 	struct mmu_notifier_range range;
939 	unsigned long address = pvmw->address;
940 
941 	/*
942 	 * We have to assume the worse case ie pmd for invalidation. Note that
943 	 * the folio can not be freed from this function.
944 	 */
945 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
946 				vma->vm_mm, address, vma_address_end(pvmw));
947 	mmu_notifier_invalidate_range_start(&range);
948 
949 	while (page_vma_mapped_walk(pvmw)) {
950 		int ret = 0;
951 
952 		address = pvmw->address;
953 		if (pvmw->pte) {
954 			pte_t entry;
955 			pte_t *pte = pvmw->pte;
956 
957 			if (!pte_dirty(*pte) && !pte_write(*pte))
958 				continue;
959 
960 			flush_cache_page(vma, address, pte_pfn(*pte));
961 			entry = ptep_clear_flush(vma, address, pte);
962 			entry = pte_wrprotect(entry);
963 			entry = pte_mkclean(entry);
964 			set_pte_at(vma->vm_mm, address, pte, entry);
965 			ret = 1;
966 		} else {
967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
968 			pmd_t *pmd = pvmw->pmd;
969 			pmd_t entry;
970 
971 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
972 				continue;
973 
974 			flush_cache_range(vma, address,
975 					  address + HPAGE_PMD_SIZE);
976 			entry = pmdp_invalidate(vma, address, pmd);
977 			entry = pmd_wrprotect(entry);
978 			entry = pmd_mkclean(entry);
979 			set_pmd_at(vma->vm_mm, address, pmd, entry);
980 			ret = 1;
981 #else
982 			/* unexpected pmd-mapped folio? */
983 			WARN_ON_ONCE(1);
984 #endif
985 		}
986 
987 		/*
988 		 * No need to call mmu_notifier_invalidate_range() as we are
989 		 * downgrading page table protection not changing it to point
990 		 * to a new page.
991 		 *
992 		 * See Documentation/mm/mmu_notifier.rst
993 		 */
994 		if (ret)
995 			cleaned++;
996 	}
997 
998 	mmu_notifier_invalidate_range_end(&range);
999 
1000 	return cleaned;
1001 }
1002 
1003 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1004 			     unsigned long address, void *arg)
1005 {
1006 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1007 	int *cleaned = arg;
1008 
1009 	*cleaned += page_vma_mkclean_one(&pvmw);
1010 
1011 	return true;
1012 }
1013 
1014 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1015 {
1016 	if (vma->vm_flags & VM_SHARED)
1017 		return false;
1018 
1019 	return true;
1020 }
1021 
1022 int folio_mkclean(struct folio *folio)
1023 {
1024 	int cleaned = 0;
1025 	struct address_space *mapping;
1026 	struct rmap_walk_control rwc = {
1027 		.arg = (void *)&cleaned,
1028 		.rmap_one = page_mkclean_one,
1029 		.invalid_vma = invalid_mkclean_vma,
1030 	};
1031 
1032 	BUG_ON(!folio_test_locked(folio));
1033 
1034 	if (!folio_mapped(folio))
1035 		return 0;
1036 
1037 	mapping = folio_mapping(folio);
1038 	if (!mapping)
1039 		return 0;
1040 
1041 	rmap_walk(folio, &rwc);
1042 
1043 	return cleaned;
1044 }
1045 EXPORT_SYMBOL_GPL(folio_mkclean);
1046 
1047 /**
1048  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1049  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1050  *                     within the @vma of shared mappings. And since clean PTEs
1051  *                     should also be readonly, write protects them too.
1052  * @pfn: start pfn.
1053  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1054  * @pgoff: page offset that the @pfn mapped with.
1055  * @vma: vma that @pfn mapped within.
1056  *
1057  * Returns the number of cleaned PTEs (including PMDs).
1058  */
1059 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1060 		      struct vm_area_struct *vma)
1061 {
1062 	struct page_vma_mapped_walk pvmw = {
1063 		.pfn		= pfn,
1064 		.nr_pages	= nr_pages,
1065 		.pgoff		= pgoff,
1066 		.vma		= vma,
1067 		.flags		= PVMW_SYNC,
1068 	};
1069 
1070 	if (invalid_mkclean_vma(vma, NULL))
1071 		return 0;
1072 
1073 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1074 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1075 
1076 	return page_vma_mkclean_one(&pvmw);
1077 }
1078 
1079 int folio_total_mapcount(struct folio *folio)
1080 {
1081 	int mapcount = folio_entire_mapcount(folio);
1082 	int nr_pages;
1083 	int i;
1084 
1085 	/* In the common case, avoid the loop when no pages mapped by PTE */
1086 	if (folio_nr_pages_mapped(folio) == 0)
1087 		return mapcount;
1088 	/*
1089 	 * Add all the PTE mappings of those pages mapped by PTE.
1090 	 * Limit the loop to folio_nr_pages_mapped()?
1091 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
1092 	 */
1093 	nr_pages = folio_nr_pages(folio);
1094 	for (i = 0; i < nr_pages; i++)
1095 		mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1096 
1097 	/* But each of those _mapcounts was based on -1 */
1098 	mapcount += nr_pages;
1099 	return mapcount;
1100 }
1101 
1102 /**
1103  * page_move_anon_rmap - move a page to our anon_vma
1104  * @page:	the page to move to our anon_vma
1105  * @vma:	the vma the page belongs to
1106  *
1107  * When a page belongs exclusively to one process after a COW event,
1108  * that page can be moved into the anon_vma that belongs to just that
1109  * process, so the rmap code will not search the parent or sibling
1110  * processes.
1111  */
1112 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1113 {
1114 	void *anon_vma = vma->anon_vma;
1115 	struct folio *folio = page_folio(page);
1116 
1117 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1118 	VM_BUG_ON_VMA(!anon_vma, vma);
1119 
1120 	anon_vma += PAGE_MAPPING_ANON;
1121 	/*
1122 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1123 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1124 	 * folio_test_anon()) will not see one without the other.
1125 	 */
1126 	WRITE_ONCE(folio->mapping, anon_vma);
1127 	SetPageAnonExclusive(page);
1128 }
1129 
1130 /**
1131  * __page_set_anon_rmap - set up new anonymous rmap
1132  * @folio:	Folio which contains page.
1133  * @page:	Page to add to rmap.
1134  * @vma:	VM area to add page to.
1135  * @address:	User virtual address of the mapping
1136  * @exclusive:	the page is exclusively owned by the current process
1137  */
1138 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1139 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1140 {
1141 	struct anon_vma *anon_vma = vma->anon_vma;
1142 
1143 	BUG_ON(!anon_vma);
1144 
1145 	if (folio_test_anon(folio))
1146 		goto out;
1147 
1148 	/*
1149 	 * If the page isn't exclusively mapped into this vma,
1150 	 * we must use the _oldest_ possible anon_vma for the
1151 	 * page mapping!
1152 	 */
1153 	if (!exclusive)
1154 		anon_vma = anon_vma->root;
1155 
1156 	/*
1157 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1158 	 * Make sure the compiler doesn't split the stores of anon_vma and
1159 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1160 	 * could mistake the mapping for a struct address_space and crash.
1161 	 */
1162 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1163 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1164 	folio->index = linear_page_index(vma, address);
1165 out:
1166 	if (exclusive)
1167 		SetPageAnonExclusive(page);
1168 }
1169 
1170 /**
1171  * __page_check_anon_rmap - sanity check anonymous rmap addition
1172  * @page:	the page to add the mapping to
1173  * @vma:	the vm area in which the mapping is added
1174  * @address:	the user virtual address mapped
1175  */
1176 static void __page_check_anon_rmap(struct page *page,
1177 	struct vm_area_struct *vma, unsigned long address)
1178 {
1179 	struct folio *folio = page_folio(page);
1180 	/*
1181 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1182 	 * be set up correctly at this point.
1183 	 *
1184 	 * We have exclusion against page_add_anon_rmap because the caller
1185 	 * always holds the page locked.
1186 	 *
1187 	 * We have exclusion against page_add_new_anon_rmap because those pages
1188 	 * are initially only visible via the pagetables, and the pte is locked
1189 	 * over the call to page_add_new_anon_rmap.
1190 	 */
1191 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1192 			folio);
1193 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1194 		       page);
1195 }
1196 
1197 /**
1198  * page_add_anon_rmap - add pte mapping to an anonymous page
1199  * @page:	the page to add the mapping to
1200  * @vma:	the vm area in which the mapping is added
1201  * @address:	the user virtual address mapped
1202  * @flags:	the rmap flags
1203  *
1204  * The caller needs to hold the pte lock, and the page must be locked in
1205  * the anon_vma case: to serialize mapping,index checking after setting,
1206  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1207  * (but PageKsm is never downgraded to PageAnon).
1208  */
1209 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1210 		unsigned long address, rmap_t flags)
1211 {
1212 	struct folio *folio = page_folio(page);
1213 	atomic_t *mapped = &folio->_nr_pages_mapped;
1214 	int nr = 0, nr_pmdmapped = 0;
1215 	bool compound = flags & RMAP_COMPOUND;
1216 	bool first = true;
1217 
1218 	/* Is page being mapped by PTE? Is this its first map to be added? */
1219 	if (likely(!compound)) {
1220 		first = atomic_inc_and_test(&page->_mapcount);
1221 		nr = first;
1222 		if (first && folio_test_large(folio)) {
1223 			nr = atomic_inc_return_relaxed(mapped);
1224 			nr = (nr < COMPOUND_MAPPED);
1225 		}
1226 	} else if (folio_test_pmd_mappable(folio)) {
1227 		/* That test is redundant: it's for safety or to optimize out */
1228 
1229 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1230 		if (first) {
1231 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1232 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1233 				nr_pmdmapped = folio_nr_pages(folio);
1234 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1235 				/* Raced ahead of a remove and another add? */
1236 				if (unlikely(nr < 0))
1237 					nr = 0;
1238 			} else {
1239 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1240 				nr = 0;
1241 			}
1242 		}
1243 	}
1244 
1245 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1246 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1247 
1248 	if (nr_pmdmapped)
1249 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1250 	if (nr)
1251 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1252 
1253 	if (likely(!folio_test_ksm(folio))) {
1254 		/* address might be in next vma when migration races vma_merge */
1255 		if (first)
1256 			__page_set_anon_rmap(folio, page, vma, address,
1257 					     !!(flags & RMAP_EXCLUSIVE));
1258 		else
1259 			__page_check_anon_rmap(page, vma, address);
1260 	}
1261 
1262 	mlock_vma_folio(folio, vma, compound);
1263 }
1264 
1265 /**
1266  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1267  * @folio:	The folio to add the mapping to.
1268  * @vma:	the vm area in which the mapping is added
1269  * @address:	the user virtual address mapped
1270  *
1271  * Like page_add_anon_rmap() but must only be called on *new* folios.
1272  * This means the inc-and-test can be bypassed.
1273  * The folio does not have to be locked.
1274  *
1275  * If the folio is large, it is accounted as a THP.  As the folio
1276  * is new, it's assumed to be mapped exclusively by a single process.
1277  */
1278 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1279 		unsigned long address)
1280 {
1281 	int nr;
1282 
1283 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1284 	__folio_set_swapbacked(folio);
1285 
1286 	if (likely(!folio_test_pmd_mappable(folio))) {
1287 		/* increment count (starts at -1) */
1288 		atomic_set(&folio->_mapcount, 0);
1289 		nr = 1;
1290 	} else {
1291 		/* increment count (starts at -1) */
1292 		atomic_set(&folio->_entire_mapcount, 0);
1293 		atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1294 		nr = folio_nr_pages(folio);
1295 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1296 	}
1297 
1298 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1299 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1300 }
1301 
1302 /**
1303  * page_add_file_rmap - add pte mapping to a file page
1304  * @page:	the page to add the mapping to
1305  * @vma:	the vm area in which the mapping is added
1306  * @compound:	charge the page as compound or small page
1307  *
1308  * The caller needs to hold the pte lock.
1309  */
1310 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1311 		bool compound)
1312 {
1313 	struct folio *folio = page_folio(page);
1314 	atomic_t *mapped = &folio->_nr_pages_mapped;
1315 	int nr = 0, nr_pmdmapped = 0;
1316 	bool first;
1317 
1318 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1319 
1320 	/* Is page being mapped by PTE? Is this its first map to be added? */
1321 	if (likely(!compound)) {
1322 		first = atomic_inc_and_test(&page->_mapcount);
1323 		nr = first;
1324 		if (first && folio_test_large(folio)) {
1325 			nr = atomic_inc_return_relaxed(mapped);
1326 			nr = (nr < COMPOUND_MAPPED);
1327 		}
1328 	} else if (folio_test_pmd_mappable(folio)) {
1329 		/* That test is redundant: it's for safety or to optimize out */
1330 
1331 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1332 		if (first) {
1333 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1334 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1335 				nr_pmdmapped = folio_nr_pages(folio);
1336 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1337 				/* Raced ahead of a remove and another add? */
1338 				if (unlikely(nr < 0))
1339 					nr = 0;
1340 			} else {
1341 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1342 				nr = 0;
1343 			}
1344 		}
1345 	}
1346 
1347 	if (nr_pmdmapped)
1348 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1349 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1350 	if (nr)
1351 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1352 
1353 	mlock_vma_folio(folio, vma, compound);
1354 }
1355 
1356 /**
1357  * page_remove_rmap - take down pte mapping from a page
1358  * @page:	page to remove mapping from
1359  * @vma:	the vm area from which the mapping is removed
1360  * @compound:	uncharge the page as compound or small page
1361  *
1362  * The caller needs to hold the pte lock.
1363  */
1364 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1365 		bool compound)
1366 {
1367 	struct folio *folio = page_folio(page);
1368 	atomic_t *mapped = &folio->_nr_pages_mapped;
1369 	int nr = 0, nr_pmdmapped = 0;
1370 	bool last;
1371 	enum node_stat_item idx;
1372 
1373 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1374 
1375 	/* Hugetlb pages are not counted in NR_*MAPPED */
1376 	if (unlikely(folio_test_hugetlb(folio))) {
1377 		/* hugetlb pages are always mapped with pmds */
1378 		atomic_dec(&folio->_entire_mapcount);
1379 		return;
1380 	}
1381 
1382 	/* Is page being unmapped by PTE? Is this its last map to be removed? */
1383 	if (likely(!compound)) {
1384 		last = atomic_add_negative(-1, &page->_mapcount);
1385 		nr = last;
1386 		if (last && folio_test_large(folio)) {
1387 			nr = atomic_dec_return_relaxed(mapped);
1388 			nr = (nr < COMPOUND_MAPPED);
1389 		}
1390 	} else if (folio_test_pmd_mappable(folio)) {
1391 		/* That test is redundant: it's for safety or to optimize out */
1392 
1393 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1394 		if (last) {
1395 			nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1396 			if (likely(nr < COMPOUND_MAPPED)) {
1397 				nr_pmdmapped = folio_nr_pages(folio);
1398 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1399 				/* Raced ahead of another remove and an add? */
1400 				if (unlikely(nr < 0))
1401 					nr = 0;
1402 			} else {
1403 				/* An add of COMPOUND_MAPPED raced ahead */
1404 				nr = 0;
1405 			}
1406 		}
1407 	}
1408 
1409 	if (nr_pmdmapped) {
1410 		if (folio_test_anon(folio))
1411 			idx = NR_ANON_THPS;
1412 		else if (folio_test_swapbacked(folio))
1413 			idx = NR_SHMEM_PMDMAPPED;
1414 		else
1415 			idx = NR_FILE_PMDMAPPED;
1416 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1417 	}
1418 	if (nr) {
1419 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1420 		__lruvec_stat_mod_folio(folio, idx, -nr);
1421 
1422 		/*
1423 		 * Queue anon THP for deferred split if at least one
1424 		 * page of the folio is unmapped and at least one page
1425 		 * is still mapped.
1426 		 */
1427 		if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1428 			if (!compound || nr < nr_pmdmapped)
1429 				deferred_split_folio(folio);
1430 	}
1431 
1432 	/*
1433 	 * It would be tidy to reset folio_test_anon mapping when fully
1434 	 * unmapped, but that might overwrite a racing page_add_anon_rmap
1435 	 * which increments mapcount after us but sets mapping before us:
1436 	 * so leave the reset to free_pages_prepare, and remember that
1437 	 * it's only reliable while mapped.
1438 	 */
1439 
1440 	munlock_vma_folio(folio, vma, compound);
1441 }
1442 
1443 /*
1444  * @arg: enum ttu_flags will be passed to this argument
1445  */
1446 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1447 		     unsigned long address, void *arg)
1448 {
1449 	struct mm_struct *mm = vma->vm_mm;
1450 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1451 	pte_t pteval;
1452 	struct page *subpage;
1453 	bool anon_exclusive, ret = true;
1454 	struct mmu_notifier_range range;
1455 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1456 
1457 	/*
1458 	 * When racing against e.g. zap_pte_range() on another cpu,
1459 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1460 	 * try_to_unmap() may return before page_mapped() has become false,
1461 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1462 	 */
1463 	if (flags & TTU_SYNC)
1464 		pvmw.flags = PVMW_SYNC;
1465 
1466 	if (flags & TTU_SPLIT_HUGE_PMD)
1467 		split_huge_pmd_address(vma, address, false, folio);
1468 
1469 	/*
1470 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1471 	 * For hugetlb, it could be much worse if we need to do pud
1472 	 * invalidation in the case of pmd sharing.
1473 	 *
1474 	 * Note that the folio can not be freed in this function as call of
1475 	 * try_to_unmap() must hold a reference on the folio.
1476 	 */
1477 	range.end = vma_address_end(&pvmw);
1478 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1479 				address, range.end);
1480 	if (folio_test_hugetlb(folio)) {
1481 		/*
1482 		 * If sharing is possible, start and end will be adjusted
1483 		 * accordingly.
1484 		 */
1485 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1486 						     &range.end);
1487 	}
1488 	mmu_notifier_invalidate_range_start(&range);
1489 
1490 	while (page_vma_mapped_walk(&pvmw)) {
1491 		/* Unexpected PMD-mapped THP? */
1492 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1493 
1494 		/*
1495 		 * If the folio is in an mlock()d vma, we must not swap it out.
1496 		 */
1497 		if (!(flags & TTU_IGNORE_MLOCK) &&
1498 		    (vma->vm_flags & VM_LOCKED)) {
1499 			/* Restore the mlock which got missed */
1500 			mlock_vma_folio(folio, vma, false);
1501 			page_vma_mapped_walk_done(&pvmw);
1502 			ret = false;
1503 			break;
1504 		}
1505 
1506 		subpage = folio_page(folio,
1507 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1508 		address = pvmw.address;
1509 		anon_exclusive = folio_test_anon(folio) &&
1510 				 PageAnonExclusive(subpage);
1511 
1512 		if (folio_test_hugetlb(folio)) {
1513 			bool anon = folio_test_anon(folio);
1514 
1515 			/*
1516 			 * The try_to_unmap() is only passed a hugetlb page
1517 			 * in the case where the hugetlb page is poisoned.
1518 			 */
1519 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1520 			/*
1521 			 * huge_pmd_unshare may unmap an entire PMD page.
1522 			 * There is no way of knowing exactly which PMDs may
1523 			 * be cached for this mm, so we must flush them all.
1524 			 * start/end were already adjusted above to cover this
1525 			 * range.
1526 			 */
1527 			flush_cache_range(vma, range.start, range.end);
1528 
1529 			/*
1530 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1531 			 * held in write mode.  Caller needs to explicitly
1532 			 * do this outside rmap routines.
1533 			 *
1534 			 * We also must hold hugetlb vma_lock in write mode.
1535 			 * Lock order dictates acquiring vma_lock BEFORE
1536 			 * i_mmap_rwsem.  We can only try lock here and fail
1537 			 * if unsuccessful.
1538 			 */
1539 			if (!anon) {
1540 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1541 				if (!hugetlb_vma_trylock_write(vma)) {
1542 					page_vma_mapped_walk_done(&pvmw);
1543 					ret = false;
1544 					break;
1545 				}
1546 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1547 					hugetlb_vma_unlock_write(vma);
1548 					flush_tlb_range(vma,
1549 						range.start, range.end);
1550 					mmu_notifier_invalidate_range(mm,
1551 						range.start, range.end);
1552 					/*
1553 					 * The ref count of the PMD page was
1554 					 * dropped which is part of the way map
1555 					 * counting is done for shared PMDs.
1556 					 * Return 'true' here.  When there is
1557 					 * no other sharing, huge_pmd_unshare
1558 					 * returns false and we will unmap the
1559 					 * actual page and drop map count
1560 					 * to zero.
1561 					 */
1562 					page_vma_mapped_walk_done(&pvmw);
1563 					break;
1564 				}
1565 				hugetlb_vma_unlock_write(vma);
1566 			}
1567 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1568 		} else {
1569 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1570 			/* Nuke the page table entry. */
1571 			if (should_defer_flush(mm, flags)) {
1572 				/*
1573 				 * We clear the PTE but do not flush so potentially
1574 				 * a remote CPU could still be writing to the folio.
1575 				 * If the entry was previously clean then the
1576 				 * architecture must guarantee that a clear->dirty
1577 				 * transition on a cached TLB entry is written through
1578 				 * and traps if the PTE is unmapped.
1579 				 */
1580 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1581 
1582 				set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1583 			} else {
1584 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1585 			}
1586 		}
1587 
1588 		/*
1589 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1590 		 * we may want to replace a none pte with a marker pte if
1591 		 * it's file-backed, so we don't lose the tracking info.
1592 		 */
1593 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1594 
1595 		/* Set the dirty flag on the folio now the pte is gone. */
1596 		if (pte_dirty(pteval))
1597 			folio_mark_dirty(folio);
1598 
1599 		/* Update high watermark before we lower rss */
1600 		update_hiwater_rss(mm);
1601 
1602 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1603 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1604 			if (folio_test_hugetlb(folio)) {
1605 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1606 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
1607 			} else {
1608 				dec_mm_counter(mm, mm_counter(&folio->page));
1609 				set_pte_at(mm, address, pvmw.pte, pteval);
1610 			}
1611 
1612 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1613 			/*
1614 			 * The guest indicated that the page content is of no
1615 			 * interest anymore. Simply discard the pte, vmscan
1616 			 * will take care of the rest.
1617 			 * A future reference will then fault in a new zero
1618 			 * page. When userfaultfd is active, we must not drop
1619 			 * this page though, as its main user (postcopy
1620 			 * migration) will not expect userfaults on already
1621 			 * copied pages.
1622 			 */
1623 			dec_mm_counter(mm, mm_counter(&folio->page));
1624 			/* We have to invalidate as we cleared the pte */
1625 			mmu_notifier_invalidate_range(mm, address,
1626 						      address + PAGE_SIZE);
1627 		} else if (folio_test_anon(folio)) {
1628 			swp_entry_t entry = { .val = page_private(subpage) };
1629 			pte_t swp_pte;
1630 			/*
1631 			 * Store the swap location in the pte.
1632 			 * See handle_pte_fault() ...
1633 			 */
1634 			if (unlikely(folio_test_swapbacked(folio) !=
1635 					folio_test_swapcache(folio))) {
1636 				WARN_ON_ONCE(1);
1637 				ret = false;
1638 				/* We have to invalidate as we cleared the pte */
1639 				mmu_notifier_invalidate_range(mm, address,
1640 							address + PAGE_SIZE);
1641 				page_vma_mapped_walk_done(&pvmw);
1642 				break;
1643 			}
1644 
1645 			/* MADV_FREE page check */
1646 			if (!folio_test_swapbacked(folio)) {
1647 				int ref_count, map_count;
1648 
1649 				/*
1650 				 * Synchronize with gup_pte_range():
1651 				 * - clear PTE; barrier; read refcount
1652 				 * - inc refcount; barrier; read PTE
1653 				 */
1654 				smp_mb();
1655 
1656 				ref_count = folio_ref_count(folio);
1657 				map_count = folio_mapcount(folio);
1658 
1659 				/*
1660 				 * Order reads for page refcount and dirty flag
1661 				 * (see comments in __remove_mapping()).
1662 				 */
1663 				smp_rmb();
1664 
1665 				/*
1666 				 * The only page refs must be one from isolation
1667 				 * plus the rmap(s) (dropped by discard:).
1668 				 */
1669 				if (ref_count == 1 + map_count &&
1670 				    !folio_test_dirty(folio)) {
1671 					/* Invalidate as we cleared the pte */
1672 					mmu_notifier_invalidate_range(mm,
1673 						address, address + PAGE_SIZE);
1674 					dec_mm_counter(mm, MM_ANONPAGES);
1675 					goto discard;
1676 				}
1677 
1678 				/*
1679 				 * If the folio was redirtied, it cannot be
1680 				 * discarded. Remap the page to page table.
1681 				 */
1682 				set_pte_at(mm, address, pvmw.pte, pteval);
1683 				folio_set_swapbacked(folio);
1684 				ret = false;
1685 				page_vma_mapped_walk_done(&pvmw);
1686 				break;
1687 			}
1688 
1689 			if (swap_duplicate(entry) < 0) {
1690 				set_pte_at(mm, address, pvmw.pte, pteval);
1691 				ret = false;
1692 				page_vma_mapped_walk_done(&pvmw);
1693 				break;
1694 			}
1695 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1696 				swap_free(entry);
1697 				set_pte_at(mm, address, pvmw.pte, pteval);
1698 				ret = false;
1699 				page_vma_mapped_walk_done(&pvmw);
1700 				break;
1701 			}
1702 
1703 			/* See page_try_share_anon_rmap(): clear PTE first. */
1704 			if (anon_exclusive &&
1705 			    page_try_share_anon_rmap(subpage)) {
1706 				swap_free(entry);
1707 				set_pte_at(mm, address, pvmw.pte, pteval);
1708 				ret = false;
1709 				page_vma_mapped_walk_done(&pvmw);
1710 				break;
1711 			}
1712 			if (list_empty(&mm->mmlist)) {
1713 				spin_lock(&mmlist_lock);
1714 				if (list_empty(&mm->mmlist))
1715 					list_add(&mm->mmlist, &init_mm.mmlist);
1716 				spin_unlock(&mmlist_lock);
1717 			}
1718 			dec_mm_counter(mm, MM_ANONPAGES);
1719 			inc_mm_counter(mm, MM_SWAPENTS);
1720 			swp_pte = swp_entry_to_pte(entry);
1721 			if (anon_exclusive)
1722 				swp_pte = pte_swp_mkexclusive(swp_pte);
1723 			if (pte_soft_dirty(pteval))
1724 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1725 			if (pte_uffd_wp(pteval))
1726 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1727 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1728 			/* Invalidate as we cleared the pte */
1729 			mmu_notifier_invalidate_range(mm, address,
1730 						      address + PAGE_SIZE);
1731 		} else {
1732 			/*
1733 			 * This is a locked file-backed folio,
1734 			 * so it cannot be removed from the page
1735 			 * cache and replaced by a new folio before
1736 			 * mmu_notifier_invalidate_range_end, so no
1737 			 * concurrent thread might update its page table
1738 			 * to point at a new folio while a device is
1739 			 * still using this folio.
1740 			 *
1741 			 * See Documentation/mm/mmu_notifier.rst
1742 			 */
1743 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1744 		}
1745 discard:
1746 		/*
1747 		 * No need to call mmu_notifier_invalidate_range() it has be
1748 		 * done above for all cases requiring it to happen under page
1749 		 * table lock before mmu_notifier_invalidate_range_end()
1750 		 *
1751 		 * See Documentation/mm/mmu_notifier.rst
1752 		 */
1753 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1754 		if (vma->vm_flags & VM_LOCKED)
1755 			mlock_drain_local();
1756 		folio_put(folio);
1757 	}
1758 
1759 	mmu_notifier_invalidate_range_end(&range);
1760 
1761 	return ret;
1762 }
1763 
1764 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1765 {
1766 	return vma_is_temporary_stack(vma);
1767 }
1768 
1769 static int folio_not_mapped(struct folio *folio)
1770 {
1771 	return !folio_mapped(folio);
1772 }
1773 
1774 /**
1775  * try_to_unmap - Try to remove all page table mappings to a folio.
1776  * @folio: The folio to unmap.
1777  * @flags: action and flags
1778  *
1779  * Tries to remove all the page table entries which are mapping this
1780  * folio.  It is the caller's responsibility to check if the folio is
1781  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1782  *
1783  * Context: Caller must hold the folio lock.
1784  */
1785 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1786 {
1787 	struct rmap_walk_control rwc = {
1788 		.rmap_one = try_to_unmap_one,
1789 		.arg = (void *)flags,
1790 		.done = folio_not_mapped,
1791 		.anon_lock = folio_lock_anon_vma_read,
1792 	};
1793 
1794 	if (flags & TTU_RMAP_LOCKED)
1795 		rmap_walk_locked(folio, &rwc);
1796 	else
1797 		rmap_walk(folio, &rwc);
1798 }
1799 
1800 /*
1801  * @arg: enum ttu_flags will be passed to this argument.
1802  *
1803  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1804  * containing migration entries.
1805  */
1806 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1807 		     unsigned long address, void *arg)
1808 {
1809 	struct mm_struct *mm = vma->vm_mm;
1810 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1811 	pte_t pteval;
1812 	struct page *subpage;
1813 	bool anon_exclusive, ret = true;
1814 	struct mmu_notifier_range range;
1815 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1816 
1817 	/*
1818 	 * When racing against e.g. zap_pte_range() on another cpu,
1819 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1820 	 * try_to_migrate() may return before page_mapped() has become false,
1821 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1822 	 */
1823 	if (flags & TTU_SYNC)
1824 		pvmw.flags = PVMW_SYNC;
1825 
1826 	/*
1827 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1828 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1829 	 */
1830 	if (flags & TTU_SPLIT_HUGE_PMD)
1831 		split_huge_pmd_address(vma, address, true, folio);
1832 
1833 	/*
1834 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1835 	 * For hugetlb, it could be much worse if we need to do pud
1836 	 * invalidation in the case of pmd sharing.
1837 	 *
1838 	 * Note that the page can not be free in this function as call of
1839 	 * try_to_unmap() must hold a reference on the page.
1840 	 */
1841 	range.end = vma_address_end(&pvmw);
1842 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1843 				address, range.end);
1844 	if (folio_test_hugetlb(folio)) {
1845 		/*
1846 		 * If sharing is possible, start and end will be adjusted
1847 		 * accordingly.
1848 		 */
1849 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1850 						     &range.end);
1851 	}
1852 	mmu_notifier_invalidate_range_start(&range);
1853 
1854 	while (page_vma_mapped_walk(&pvmw)) {
1855 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1856 		/* PMD-mapped THP migration entry */
1857 		if (!pvmw.pte) {
1858 			subpage = folio_page(folio,
1859 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1860 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1861 					!folio_test_pmd_mappable(folio), folio);
1862 
1863 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1864 				ret = false;
1865 				page_vma_mapped_walk_done(&pvmw);
1866 				break;
1867 			}
1868 			continue;
1869 		}
1870 #endif
1871 
1872 		/* Unexpected PMD-mapped THP? */
1873 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1874 
1875 		if (folio_is_zone_device(folio)) {
1876 			/*
1877 			 * Our PTE is a non-present device exclusive entry and
1878 			 * calculating the subpage as for the common case would
1879 			 * result in an invalid pointer.
1880 			 *
1881 			 * Since only PAGE_SIZE pages can currently be
1882 			 * migrated, just set it to page. This will need to be
1883 			 * changed when hugepage migrations to device private
1884 			 * memory are supported.
1885 			 */
1886 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1887 			subpage = &folio->page;
1888 		} else {
1889 			subpage = folio_page(folio,
1890 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1891 		}
1892 		address = pvmw.address;
1893 		anon_exclusive = folio_test_anon(folio) &&
1894 				 PageAnonExclusive(subpage);
1895 
1896 		if (folio_test_hugetlb(folio)) {
1897 			bool anon = folio_test_anon(folio);
1898 
1899 			/*
1900 			 * huge_pmd_unshare may unmap an entire PMD page.
1901 			 * There is no way of knowing exactly which PMDs may
1902 			 * be cached for this mm, so we must flush them all.
1903 			 * start/end were already adjusted above to cover this
1904 			 * range.
1905 			 */
1906 			flush_cache_range(vma, range.start, range.end);
1907 
1908 			/*
1909 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1910 			 * held in write mode.  Caller needs to explicitly
1911 			 * do this outside rmap routines.
1912 			 *
1913 			 * We also must hold hugetlb vma_lock in write mode.
1914 			 * Lock order dictates acquiring vma_lock BEFORE
1915 			 * i_mmap_rwsem.  We can only try lock here and
1916 			 * fail if unsuccessful.
1917 			 */
1918 			if (!anon) {
1919 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1920 				if (!hugetlb_vma_trylock_write(vma)) {
1921 					page_vma_mapped_walk_done(&pvmw);
1922 					ret = false;
1923 					break;
1924 				}
1925 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1926 					hugetlb_vma_unlock_write(vma);
1927 					flush_tlb_range(vma,
1928 						range.start, range.end);
1929 					mmu_notifier_invalidate_range(mm,
1930 						range.start, range.end);
1931 
1932 					/*
1933 					 * The ref count of the PMD page was
1934 					 * dropped which is part of the way map
1935 					 * counting is done for shared PMDs.
1936 					 * Return 'true' here.  When there is
1937 					 * no other sharing, huge_pmd_unshare
1938 					 * returns false and we will unmap the
1939 					 * actual page and drop map count
1940 					 * to zero.
1941 					 */
1942 					page_vma_mapped_walk_done(&pvmw);
1943 					break;
1944 				}
1945 				hugetlb_vma_unlock_write(vma);
1946 			}
1947 			/* Nuke the hugetlb page table entry */
1948 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1949 		} else {
1950 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1951 			/* Nuke the page table entry. */
1952 			if (should_defer_flush(mm, flags)) {
1953 				/*
1954 				 * We clear the PTE but do not flush so potentially
1955 				 * a remote CPU could still be writing to the folio.
1956 				 * If the entry was previously clean then the
1957 				 * architecture must guarantee that a clear->dirty
1958 				 * transition on a cached TLB entry is written through
1959 				 * and traps if the PTE is unmapped.
1960 				 */
1961 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1962 
1963 				set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1964 			} else {
1965 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1966 			}
1967 		}
1968 
1969 		/* Set the dirty flag on the folio now the pte is gone. */
1970 		if (pte_dirty(pteval))
1971 			folio_mark_dirty(folio);
1972 
1973 		/* Update high watermark before we lower rss */
1974 		update_hiwater_rss(mm);
1975 
1976 		if (folio_is_device_private(folio)) {
1977 			unsigned long pfn = folio_pfn(folio);
1978 			swp_entry_t entry;
1979 			pte_t swp_pte;
1980 
1981 			if (anon_exclusive)
1982 				BUG_ON(page_try_share_anon_rmap(subpage));
1983 
1984 			/*
1985 			 * Store the pfn of the page in a special migration
1986 			 * pte. do_swap_page() will wait until the migration
1987 			 * pte is removed and then restart fault handling.
1988 			 */
1989 			entry = pte_to_swp_entry(pteval);
1990 			if (is_writable_device_private_entry(entry))
1991 				entry = make_writable_migration_entry(pfn);
1992 			else if (anon_exclusive)
1993 				entry = make_readable_exclusive_migration_entry(pfn);
1994 			else
1995 				entry = make_readable_migration_entry(pfn);
1996 			swp_pte = swp_entry_to_pte(entry);
1997 
1998 			/*
1999 			 * pteval maps a zone device page and is therefore
2000 			 * a swap pte.
2001 			 */
2002 			if (pte_swp_soft_dirty(pteval))
2003 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2004 			if (pte_swp_uffd_wp(pteval))
2005 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2006 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2007 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2008 						compound_order(&folio->page));
2009 			/*
2010 			 * No need to invalidate here it will synchronize on
2011 			 * against the special swap migration pte.
2012 			 */
2013 		} else if (PageHWPoison(subpage)) {
2014 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2015 			if (folio_test_hugetlb(folio)) {
2016 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2017 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
2018 			} else {
2019 				dec_mm_counter(mm, mm_counter(&folio->page));
2020 				set_pte_at(mm, address, pvmw.pte, pteval);
2021 			}
2022 
2023 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2024 			/*
2025 			 * The guest indicated that the page content is of no
2026 			 * interest anymore. Simply discard the pte, vmscan
2027 			 * will take care of the rest.
2028 			 * A future reference will then fault in a new zero
2029 			 * page. When userfaultfd is active, we must not drop
2030 			 * this page though, as its main user (postcopy
2031 			 * migration) will not expect userfaults on already
2032 			 * copied pages.
2033 			 */
2034 			dec_mm_counter(mm, mm_counter(&folio->page));
2035 			/* We have to invalidate as we cleared the pte */
2036 			mmu_notifier_invalidate_range(mm, address,
2037 						      address + PAGE_SIZE);
2038 		} else {
2039 			swp_entry_t entry;
2040 			pte_t swp_pte;
2041 
2042 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2043 				if (folio_test_hugetlb(folio))
2044 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2045 				else
2046 					set_pte_at(mm, address, pvmw.pte, pteval);
2047 				ret = false;
2048 				page_vma_mapped_walk_done(&pvmw);
2049 				break;
2050 			}
2051 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2052 				       !anon_exclusive, subpage);
2053 
2054 			/* See page_try_share_anon_rmap(): clear PTE first. */
2055 			if (anon_exclusive &&
2056 			    page_try_share_anon_rmap(subpage)) {
2057 				if (folio_test_hugetlb(folio))
2058 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2059 				else
2060 					set_pte_at(mm, address, pvmw.pte, pteval);
2061 				ret = false;
2062 				page_vma_mapped_walk_done(&pvmw);
2063 				break;
2064 			}
2065 
2066 			/*
2067 			 * Store the pfn of the page in a special migration
2068 			 * pte. do_swap_page() will wait until the migration
2069 			 * pte is removed and then restart fault handling.
2070 			 */
2071 			if (pte_write(pteval))
2072 				entry = make_writable_migration_entry(
2073 							page_to_pfn(subpage));
2074 			else if (anon_exclusive)
2075 				entry = make_readable_exclusive_migration_entry(
2076 							page_to_pfn(subpage));
2077 			else
2078 				entry = make_readable_migration_entry(
2079 							page_to_pfn(subpage));
2080 			if (pte_young(pteval))
2081 				entry = make_migration_entry_young(entry);
2082 			if (pte_dirty(pteval))
2083 				entry = make_migration_entry_dirty(entry);
2084 			swp_pte = swp_entry_to_pte(entry);
2085 			if (pte_soft_dirty(pteval))
2086 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2087 			if (pte_uffd_wp(pteval))
2088 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2089 			if (folio_test_hugetlb(folio))
2090 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2091 			else
2092 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2093 			trace_set_migration_pte(address, pte_val(swp_pte),
2094 						compound_order(&folio->page));
2095 			/*
2096 			 * No need to invalidate here it will synchronize on
2097 			 * against the special swap migration pte.
2098 			 */
2099 		}
2100 
2101 		/*
2102 		 * No need to call mmu_notifier_invalidate_range() it has be
2103 		 * done above for all cases requiring it to happen under page
2104 		 * table lock before mmu_notifier_invalidate_range_end()
2105 		 *
2106 		 * See Documentation/mm/mmu_notifier.rst
2107 		 */
2108 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2109 		if (vma->vm_flags & VM_LOCKED)
2110 			mlock_drain_local();
2111 		folio_put(folio);
2112 	}
2113 
2114 	mmu_notifier_invalidate_range_end(&range);
2115 
2116 	return ret;
2117 }
2118 
2119 /**
2120  * try_to_migrate - try to replace all page table mappings with swap entries
2121  * @folio: the folio to replace page table entries for
2122  * @flags: action and flags
2123  *
2124  * Tries to remove all the page table entries which are mapping this folio and
2125  * replace them with special swap entries. Caller must hold the folio lock.
2126  */
2127 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2128 {
2129 	struct rmap_walk_control rwc = {
2130 		.rmap_one = try_to_migrate_one,
2131 		.arg = (void *)flags,
2132 		.done = folio_not_mapped,
2133 		.anon_lock = folio_lock_anon_vma_read,
2134 	};
2135 
2136 	/*
2137 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2138 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2139 	 */
2140 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2141 					TTU_SYNC | TTU_BATCH_FLUSH)))
2142 		return;
2143 
2144 	if (folio_is_zone_device(folio) &&
2145 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2146 		return;
2147 
2148 	/*
2149 	 * During exec, a temporary VMA is setup and later moved.
2150 	 * The VMA is moved under the anon_vma lock but not the
2151 	 * page tables leading to a race where migration cannot
2152 	 * find the migration ptes. Rather than increasing the
2153 	 * locking requirements of exec(), migration skips
2154 	 * temporary VMAs until after exec() completes.
2155 	 */
2156 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2157 		rwc.invalid_vma = invalid_migration_vma;
2158 
2159 	if (flags & TTU_RMAP_LOCKED)
2160 		rmap_walk_locked(folio, &rwc);
2161 	else
2162 		rmap_walk(folio, &rwc);
2163 }
2164 
2165 #ifdef CONFIG_DEVICE_PRIVATE
2166 struct make_exclusive_args {
2167 	struct mm_struct *mm;
2168 	unsigned long address;
2169 	void *owner;
2170 	bool valid;
2171 };
2172 
2173 static bool page_make_device_exclusive_one(struct folio *folio,
2174 		struct vm_area_struct *vma, unsigned long address, void *priv)
2175 {
2176 	struct mm_struct *mm = vma->vm_mm;
2177 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2178 	struct make_exclusive_args *args = priv;
2179 	pte_t pteval;
2180 	struct page *subpage;
2181 	bool ret = true;
2182 	struct mmu_notifier_range range;
2183 	swp_entry_t entry;
2184 	pte_t swp_pte;
2185 
2186 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2187 				      vma->vm_mm, address, min(vma->vm_end,
2188 				      address + folio_size(folio)),
2189 				      args->owner);
2190 	mmu_notifier_invalidate_range_start(&range);
2191 
2192 	while (page_vma_mapped_walk(&pvmw)) {
2193 		/* Unexpected PMD-mapped THP? */
2194 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2195 
2196 		if (!pte_present(*pvmw.pte)) {
2197 			ret = false;
2198 			page_vma_mapped_walk_done(&pvmw);
2199 			break;
2200 		}
2201 
2202 		subpage = folio_page(folio,
2203 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
2204 		address = pvmw.address;
2205 
2206 		/* Nuke the page table entry. */
2207 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2208 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2209 
2210 		/* Set the dirty flag on the folio now the pte is gone. */
2211 		if (pte_dirty(pteval))
2212 			folio_mark_dirty(folio);
2213 
2214 		/*
2215 		 * Check that our target page is still mapped at the expected
2216 		 * address.
2217 		 */
2218 		if (args->mm == mm && args->address == address &&
2219 		    pte_write(pteval))
2220 			args->valid = true;
2221 
2222 		/*
2223 		 * Store the pfn of the page in a special migration
2224 		 * pte. do_swap_page() will wait until the migration
2225 		 * pte is removed and then restart fault handling.
2226 		 */
2227 		if (pte_write(pteval))
2228 			entry = make_writable_device_exclusive_entry(
2229 							page_to_pfn(subpage));
2230 		else
2231 			entry = make_readable_device_exclusive_entry(
2232 							page_to_pfn(subpage));
2233 		swp_pte = swp_entry_to_pte(entry);
2234 		if (pte_soft_dirty(pteval))
2235 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2236 		if (pte_uffd_wp(pteval))
2237 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2238 
2239 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2240 
2241 		/*
2242 		 * There is a reference on the page for the swap entry which has
2243 		 * been removed, so shouldn't take another.
2244 		 */
2245 		page_remove_rmap(subpage, vma, false);
2246 	}
2247 
2248 	mmu_notifier_invalidate_range_end(&range);
2249 
2250 	return ret;
2251 }
2252 
2253 /**
2254  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2255  * @folio: The folio to replace page table entries for.
2256  * @mm: The mm_struct where the folio is expected to be mapped.
2257  * @address: Address where the folio is expected to be mapped.
2258  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2259  *
2260  * Tries to remove all the page table entries which are mapping this
2261  * folio and replace them with special device exclusive swap entries to
2262  * grant a device exclusive access to the folio.
2263  *
2264  * Context: Caller must hold the folio lock.
2265  * Return: false if the page is still mapped, or if it could not be unmapped
2266  * from the expected address. Otherwise returns true (success).
2267  */
2268 static bool folio_make_device_exclusive(struct folio *folio,
2269 		struct mm_struct *mm, unsigned long address, void *owner)
2270 {
2271 	struct make_exclusive_args args = {
2272 		.mm = mm,
2273 		.address = address,
2274 		.owner = owner,
2275 		.valid = false,
2276 	};
2277 	struct rmap_walk_control rwc = {
2278 		.rmap_one = page_make_device_exclusive_one,
2279 		.done = folio_not_mapped,
2280 		.anon_lock = folio_lock_anon_vma_read,
2281 		.arg = &args,
2282 	};
2283 
2284 	/*
2285 	 * Restrict to anonymous folios for now to avoid potential writeback
2286 	 * issues.
2287 	 */
2288 	if (!folio_test_anon(folio))
2289 		return false;
2290 
2291 	rmap_walk(folio, &rwc);
2292 
2293 	return args.valid && !folio_mapcount(folio);
2294 }
2295 
2296 /**
2297  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2298  * @mm: mm_struct of associated target process
2299  * @start: start of the region to mark for exclusive device access
2300  * @end: end address of region
2301  * @pages: returns the pages which were successfully marked for exclusive access
2302  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2303  *
2304  * Returns: number of pages found in the range by GUP. A page is marked for
2305  * exclusive access only if the page pointer is non-NULL.
2306  *
2307  * This function finds ptes mapping page(s) to the given address range, locks
2308  * them and replaces mappings with special swap entries preventing userspace CPU
2309  * access. On fault these entries are replaced with the original mapping after
2310  * calling MMU notifiers.
2311  *
2312  * A driver using this to program access from a device must use a mmu notifier
2313  * critical section to hold a device specific lock during programming. Once
2314  * programming is complete it should drop the page lock and reference after
2315  * which point CPU access to the page will revoke the exclusive access.
2316  */
2317 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2318 				unsigned long end, struct page **pages,
2319 				void *owner)
2320 {
2321 	long npages = (end - start) >> PAGE_SHIFT;
2322 	long i;
2323 
2324 	npages = get_user_pages_remote(mm, start, npages,
2325 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2326 				       pages, NULL, NULL);
2327 	if (npages < 0)
2328 		return npages;
2329 
2330 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2331 		struct folio *folio = page_folio(pages[i]);
2332 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2333 			folio_put(folio);
2334 			pages[i] = NULL;
2335 			continue;
2336 		}
2337 
2338 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2339 			folio_unlock(folio);
2340 			folio_put(folio);
2341 			pages[i] = NULL;
2342 		}
2343 	}
2344 
2345 	return npages;
2346 }
2347 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2348 #endif
2349 
2350 void __put_anon_vma(struct anon_vma *anon_vma)
2351 {
2352 	struct anon_vma *root = anon_vma->root;
2353 
2354 	anon_vma_free(anon_vma);
2355 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2356 		anon_vma_free(root);
2357 }
2358 
2359 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2360 					    struct rmap_walk_control *rwc)
2361 {
2362 	struct anon_vma *anon_vma;
2363 
2364 	if (rwc->anon_lock)
2365 		return rwc->anon_lock(folio, rwc);
2366 
2367 	/*
2368 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2369 	 * because that depends on page_mapped(); but not all its usages
2370 	 * are holding mmap_lock. Users without mmap_lock are required to
2371 	 * take a reference count to prevent the anon_vma disappearing
2372 	 */
2373 	anon_vma = folio_anon_vma(folio);
2374 	if (!anon_vma)
2375 		return NULL;
2376 
2377 	if (anon_vma_trylock_read(anon_vma))
2378 		goto out;
2379 
2380 	if (rwc->try_lock) {
2381 		anon_vma = NULL;
2382 		rwc->contended = true;
2383 		goto out;
2384 	}
2385 
2386 	anon_vma_lock_read(anon_vma);
2387 out:
2388 	return anon_vma;
2389 }
2390 
2391 /*
2392  * rmap_walk_anon - do something to anonymous page using the object-based
2393  * rmap method
2394  * @page: the page to be handled
2395  * @rwc: control variable according to each walk type
2396  *
2397  * Find all the mappings of a page using the mapping pointer and the vma chains
2398  * contained in the anon_vma struct it points to.
2399  */
2400 static void rmap_walk_anon(struct folio *folio,
2401 		struct rmap_walk_control *rwc, bool locked)
2402 {
2403 	struct anon_vma *anon_vma;
2404 	pgoff_t pgoff_start, pgoff_end;
2405 	struct anon_vma_chain *avc;
2406 
2407 	if (locked) {
2408 		anon_vma = folio_anon_vma(folio);
2409 		/* anon_vma disappear under us? */
2410 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2411 	} else {
2412 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2413 	}
2414 	if (!anon_vma)
2415 		return;
2416 
2417 	pgoff_start = folio_pgoff(folio);
2418 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2419 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2420 			pgoff_start, pgoff_end) {
2421 		struct vm_area_struct *vma = avc->vma;
2422 		unsigned long address = vma_address(&folio->page, vma);
2423 
2424 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2425 		cond_resched();
2426 
2427 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2428 			continue;
2429 
2430 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2431 			break;
2432 		if (rwc->done && rwc->done(folio))
2433 			break;
2434 	}
2435 
2436 	if (!locked)
2437 		anon_vma_unlock_read(anon_vma);
2438 }
2439 
2440 /*
2441  * rmap_walk_file - do something to file page using the object-based rmap method
2442  * @page: the page to be handled
2443  * @rwc: control variable according to each walk type
2444  *
2445  * Find all the mappings of a page using the mapping pointer and the vma chains
2446  * contained in the address_space struct it points to.
2447  */
2448 static void rmap_walk_file(struct folio *folio,
2449 		struct rmap_walk_control *rwc, bool locked)
2450 {
2451 	struct address_space *mapping = folio_mapping(folio);
2452 	pgoff_t pgoff_start, pgoff_end;
2453 	struct vm_area_struct *vma;
2454 
2455 	/*
2456 	 * The page lock not only makes sure that page->mapping cannot
2457 	 * suddenly be NULLified by truncation, it makes sure that the
2458 	 * structure at mapping cannot be freed and reused yet,
2459 	 * so we can safely take mapping->i_mmap_rwsem.
2460 	 */
2461 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2462 
2463 	if (!mapping)
2464 		return;
2465 
2466 	pgoff_start = folio_pgoff(folio);
2467 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2468 	if (!locked) {
2469 		if (i_mmap_trylock_read(mapping))
2470 			goto lookup;
2471 
2472 		if (rwc->try_lock) {
2473 			rwc->contended = true;
2474 			return;
2475 		}
2476 
2477 		i_mmap_lock_read(mapping);
2478 	}
2479 lookup:
2480 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2481 			pgoff_start, pgoff_end) {
2482 		unsigned long address = vma_address(&folio->page, vma);
2483 
2484 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2485 		cond_resched();
2486 
2487 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2488 			continue;
2489 
2490 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2491 			goto done;
2492 		if (rwc->done && rwc->done(folio))
2493 			goto done;
2494 	}
2495 
2496 done:
2497 	if (!locked)
2498 		i_mmap_unlock_read(mapping);
2499 }
2500 
2501 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2502 {
2503 	if (unlikely(folio_test_ksm(folio)))
2504 		rmap_walk_ksm(folio, rwc);
2505 	else if (folio_test_anon(folio))
2506 		rmap_walk_anon(folio, rwc, false);
2507 	else
2508 		rmap_walk_file(folio, rwc, false);
2509 }
2510 
2511 /* Like rmap_walk, but caller holds relevant rmap lock */
2512 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2513 {
2514 	/* no ksm support for now */
2515 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2516 	if (folio_test_anon(folio))
2517 		rmap_walk_anon(folio, rwc, true);
2518 	else
2519 		rmap_walk_file(folio, rwc, true);
2520 }
2521 
2522 #ifdef CONFIG_HUGETLB_PAGE
2523 /*
2524  * The following two functions are for anonymous (private mapped) hugepages.
2525  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2526  * and no lru code, because we handle hugepages differently from common pages.
2527  *
2528  * RMAP_COMPOUND is ignored.
2529  */
2530 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2531 			    unsigned long address, rmap_t flags)
2532 {
2533 	struct folio *folio = page_folio(page);
2534 	struct anon_vma *anon_vma = vma->anon_vma;
2535 	int first;
2536 
2537 	BUG_ON(!folio_test_locked(folio));
2538 	BUG_ON(!anon_vma);
2539 	/* address might be in next vma when migration races vma_merge */
2540 	first = atomic_inc_and_test(&folio->_entire_mapcount);
2541 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2542 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2543 	if (first)
2544 		__page_set_anon_rmap(folio, page, vma, address,
2545 				     !!(flags & RMAP_EXCLUSIVE));
2546 }
2547 
2548 void hugepage_add_new_anon_rmap(struct folio *folio,
2549 			struct vm_area_struct *vma, unsigned long address)
2550 {
2551 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2552 	/* increment count (starts at -1) */
2553 	atomic_set(&folio->_entire_mapcount, 0);
2554 	folio_clear_hugetlb_restore_reserve(folio);
2555 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2556 }
2557 #endif /* CONFIG_HUGETLB_PAGE */
2558