1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * page->flags PG_locked (lock_page) 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against page_remove_rmap() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 */ 494 struct anon_vma *folio_get_anon_vma(struct folio *folio) 495 { 496 struct anon_vma *anon_vma = NULL; 497 unsigned long anon_mapping; 498 499 rcu_read_lock(); 500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 502 goto out; 503 if (!folio_mapped(folio)) 504 goto out; 505 506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 507 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 508 anon_vma = NULL; 509 goto out; 510 } 511 512 /* 513 * If this folio is still mapped, then its anon_vma cannot have been 514 * freed. But if it has been unmapped, we have no security against the 515 * anon_vma structure being freed and reused (for another anon_vma: 516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 517 * above cannot corrupt). 518 */ 519 if (!folio_mapped(folio)) { 520 rcu_read_unlock(); 521 put_anon_vma(anon_vma); 522 return NULL; 523 } 524 out: 525 rcu_read_unlock(); 526 527 return anon_vma; 528 } 529 530 /* 531 * Similar to folio_get_anon_vma() except it locks the anon_vma. 532 * 533 * Its a little more complex as it tries to keep the fast path to a single 534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 535 * reference like with folio_get_anon_vma() and then block on the mutex 536 * on !rwc->try_lock case. 537 */ 538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 539 struct rmap_walk_control *rwc) 540 { 541 struct anon_vma *anon_vma = NULL; 542 struct anon_vma *root_anon_vma; 543 unsigned long anon_mapping; 544 545 rcu_read_lock(); 546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 548 goto out; 549 if (!folio_mapped(folio)) 550 goto out; 551 552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 553 root_anon_vma = READ_ONCE(anon_vma->root); 554 if (down_read_trylock(&root_anon_vma->rwsem)) { 555 /* 556 * If the folio is still mapped, then this anon_vma is still 557 * its anon_vma, and holding the mutex ensures that it will 558 * not go away, see anon_vma_free(). 559 */ 560 if (!folio_mapped(folio)) { 561 up_read(&root_anon_vma->rwsem); 562 anon_vma = NULL; 563 } 564 goto out; 565 } 566 567 if (rwc && rwc->try_lock) { 568 anon_vma = NULL; 569 rwc->contended = true; 570 goto out; 571 } 572 573 /* trylock failed, we got to sleep */ 574 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 575 anon_vma = NULL; 576 goto out; 577 } 578 579 if (!folio_mapped(folio)) { 580 rcu_read_unlock(); 581 put_anon_vma(anon_vma); 582 return NULL; 583 } 584 585 /* we pinned the anon_vma, its safe to sleep */ 586 rcu_read_unlock(); 587 anon_vma_lock_read(anon_vma); 588 589 if (atomic_dec_and_test(&anon_vma->refcount)) { 590 /* 591 * Oops, we held the last refcount, release the lock 592 * and bail -- can't simply use put_anon_vma() because 593 * we'll deadlock on the anon_vma_lock_write() recursion. 594 */ 595 anon_vma_unlock_read(anon_vma); 596 __put_anon_vma(anon_vma); 597 anon_vma = NULL; 598 } 599 600 return anon_vma; 601 602 out: 603 rcu_read_unlock(); 604 return anon_vma; 605 } 606 607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608 /* 609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 610 * important if a PTE was dirty when it was unmapped that it's flushed 611 * before any IO is initiated on the page to prevent lost writes. Similarly, 612 * it must be flushed before freeing to prevent data leakage. 613 */ 614 void try_to_unmap_flush(void) 615 { 616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 617 618 if (!tlb_ubc->flush_required) 619 return; 620 621 arch_tlbbatch_flush(&tlb_ubc->arch); 622 tlb_ubc->flush_required = false; 623 tlb_ubc->writable = false; 624 } 625 626 /* Flush iff there are potentially writable TLB entries that can race with IO */ 627 void try_to_unmap_flush_dirty(void) 628 { 629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 630 631 if (tlb_ubc->writable) 632 try_to_unmap_flush(); 633 } 634 635 /* 636 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 638 */ 639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 640 #define TLB_FLUSH_BATCH_PENDING_MASK \ 641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 642 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 643 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 644 645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 646 { 647 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 648 int batch; 649 650 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 651 tlb_ubc->flush_required = true; 652 653 /* 654 * Ensure compiler does not re-order the setting of tlb_flush_batched 655 * before the PTE is cleared. 656 */ 657 barrier(); 658 batch = atomic_read(&mm->tlb_flush_batched); 659 retry: 660 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 661 /* 662 * Prevent `pending' from catching up with `flushed' because of 663 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 664 * `pending' becomes large. 665 */ 666 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 667 goto retry; 668 } else { 669 atomic_inc(&mm->tlb_flush_batched); 670 } 671 672 /* 673 * If the PTE was dirty then it's best to assume it's writable. The 674 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 675 * before the page is queued for IO. 676 */ 677 if (writable) 678 tlb_ubc->writable = true; 679 } 680 681 /* 682 * Returns true if the TLB flush should be deferred to the end of a batch of 683 * unmap operations to reduce IPIs. 684 */ 685 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 686 { 687 bool should_defer = false; 688 689 if (!(flags & TTU_BATCH_FLUSH)) 690 return false; 691 692 /* If remote CPUs need to be flushed then defer batch the flush */ 693 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 694 should_defer = true; 695 put_cpu(); 696 697 return should_defer; 698 } 699 700 /* 701 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 702 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 703 * operation such as mprotect or munmap to race between reclaim unmapping 704 * the page and flushing the page. If this race occurs, it potentially allows 705 * access to data via a stale TLB entry. Tracking all mm's that have TLB 706 * batching in flight would be expensive during reclaim so instead track 707 * whether TLB batching occurred in the past and if so then do a flush here 708 * if required. This will cost one additional flush per reclaim cycle paid 709 * by the first operation at risk such as mprotect and mumap. 710 * 711 * This must be called under the PTL so that an access to tlb_flush_batched 712 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 713 * via the PTL. 714 */ 715 void flush_tlb_batched_pending(struct mm_struct *mm) 716 { 717 int batch = atomic_read(&mm->tlb_flush_batched); 718 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 719 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 720 721 if (pending != flushed) { 722 flush_tlb_mm(mm); 723 /* 724 * If the new TLB flushing is pending during flushing, leave 725 * mm->tlb_flush_batched as is, to avoid losing flushing. 726 */ 727 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 728 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 729 } 730 } 731 #else 732 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 733 { 734 } 735 736 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 737 { 738 return false; 739 } 740 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 741 742 /* 743 * At what user virtual address is page expected in vma? 744 * Caller should check the page is actually part of the vma. 745 */ 746 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 747 { 748 struct folio *folio = page_folio(page); 749 if (folio_test_anon(folio)) { 750 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 751 /* 752 * Note: swapoff's unuse_vma() is more efficient with this 753 * check, and needs it to match anon_vma when KSM is active. 754 */ 755 if (!vma->anon_vma || !page__anon_vma || 756 vma->anon_vma->root != page__anon_vma->root) 757 return -EFAULT; 758 } else if (!vma->vm_file) { 759 return -EFAULT; 760 } else if (vma->vm_file->f_mapping != folio->mapping) { 761 return -EFAULT; 762 } 763 764 return vma_address(page, vma); 765 } 766 767 /* 768 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 769 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 770 * represents. 771 */ 772 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 773 { 774 pgd_t *pgd; 775 p4d_t *p4d; 776 pud_t *pud; 777 pmd_t *pmd = NULL; 778 779 pgd = pgd_offset(mm, address); 780 if (!pgd_present(*pgd)) 781 goto out; 782 783 p4d = p4d_offset(pgd, address); 784 if (!p4d_present(*p4d)) 785 goto out; 786 787 pud = pud_offset(p4d, address); 788 if (!pud_present(*pud)) 789 goto out; 790 791 pmd = pmd_offset(pud, address); 792 out: 793 return pmd; 794 } 795 796 struct folio_referenced_arg { 797 int mapcount; 798 int referenced; 799 unsigned long vm_flags; 800 struct mem_cgroup *memcg; 801 }; 802 /* 803 * arg: folio_referenced_arg will be passed 804 */ 805 static bool folio_referenced_one(struct folio *folio, 806 struct vm_area_struct *vma, unsigned long address, void *arg) 807 { 808 struct folio_referenced_arg *pra = arg; 809 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 810 int referenced = 0; 811 812 while (page_vma_mapped_walk(&pvmw)) { 813 address = pvmw.address; 814 815 if ((vma->vm_flags & VM_LOCKED) && 816 (!folio_test_large(folio) || !pvmw.pte)) { 817 /* Restore the mlock which got missed */ 818 mlock_vma_folio(folio, vma, !pvmw.pte); 819 page_vma_mapped_walk_done(&pvmw); 820 pra->vm_flags |= VM_LOCKED; 821 return false; /* To break the loop */ 822 } 823 824 if (pvmw.pte) { 825 if (lru_gen_enabled() && pte_young(*pvmw.pte)) { 826 lru_gen_look_around(&pvmw); 827 referenced++; 828 } 829 830 if (ptep_clear_flush_young_notify(vma, address, 831 pvmw.pte)) 832 referenced++; 833 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 834 if (pmdp_clear_flush_young_notify(vma, address, 835 pvmw.pmd)) 836 referenced++; 837 } else { 838 /* unexpected pmd-mapped folio? */ 839 WARN_ON_ONCE(1); 840 } 841 842 pra->mapcount--; 843 } 844 845 if (referenced) 846 folio_clear_idle(folio); 847 if (folio_test_clear_young(folio)) 848 referenced++; 849 850 if (referenced) { 851 pra->referenced++; 852 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 853 } 854 855 if (!pra->mapcount) 856 return false; /* To break the loop */ 857 858 return true; 859 } 860 861 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 862 { 863 struct folio_referenced_arg *pra = arg; 864 struct mem_cgroup *memcg = pra->memcg; 865 866 /* 867 * Ignore references from this mapping if it has no recency. If the 868 * folio has been used in another mapping, we will catch it; if this 869 * other mapping is already gone, the unmap path will have set the 870 * referenced flag or activated the folio in zap_pte_range(). 871 */ 872 if (!vma_has_recency(vma)) 873 return true; 874 875 /* 876 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 877 * of references from different cgroups. 878 */ 879 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 880 return true; 881 882 return false; 883 } 884 885 /** 886 * folio_referenced() - Test if the folio was referenced. 887 * @folio: The folio to test. 888 * @is_locked: Caller holds lock on the folio. 889 * @memcg: target memory cgroup 890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 891 * 892 * Quick test_and_clear_referenced for all mappings of a folio, 893 * 894 * Return: The number of mappings which referenced the folio. Return -1 if 895 * the function bailed out due to rmap lock contention. 896 */ 897 int folio_referenced(struct folio *folio, int is_locked, 898 struct mem_cgroup *memcg, unsigned long *vm_flags) 899 { 900 int we_locked = 0; 901 struct folio_referenced_arg pra = { 902 .mapcount = folio_mapcount(folio), 903 .memcg = memcg, 904 }; 905 struct rmap_walk_control rwc = { 906 .rmap_one = folio_referenced_one, 907 .arg = (void *)&pra, 908 .anon_lock = folio_lock_anon_vma_read, 909 .try_lock = true, 910 .invalid_vma = invalid_folio_referenced_vma, 911 }; 912 913 *vm_flags = 0; 914 if (!pra.mapcount) 915 return 0; 916 917 if (!folio_raw_mapping(folio)) 918 return 0; 919 920 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 921 we_locked = folio_trylock(folio); 922 if (!we_locked) 923 return 1; 924 } 925 926 rmap_walk(folio, &rwc); 927 *vm_flags = pra.vm_flags; 928 929 if (we_locked) 930 folio_unlock(folio); 931 932 return rwc.contended ? -1 : pra.referenced; 933 } 934 935 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 936 { 937 int cleaned = 0; 938 struct vm_area_struct *vma = pvmw->vma; 939 struct mmu_notifier_range range; 940 unsigned long address = pvmw->address; 941 942 /* 943 * We have to assume the worse case ie pmd for invalidation. Note that 944 * the folio can not be freed from this function. 945 */ 946 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 947 vma->vm_mm, address, vma_address_end(pvmw)); 948 mmu_notifier_invalidate_range_start(&range); 949 950 while (page_vma_mapped_walk(pvmw)) { 951 int ret = 0; 952 953 address = pvmw->address; 954 if (pvmw->pte) { 955 pte_t entry; 956 pte_t *pte = pvmw->pte; 957 958 if (!pte_dirty(*pte) && !pte_write(*pte)) 959 continue; 960 961 flush_cache_page(vma, address, pte_pfn(*pte)); 962 entry = ptep_clear_flush(vma, address, pte); 963 entry = pte_wrprotect(entry); 964 entry = pte_mkclean(entry); 965 set_pte_at(vma->vm_mm, address, pte, entry); 966 ret = 1; 967 } else { 968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 969 pmd_t *pmd = pvmw->pmd; 970 pmd_t entry; 971 972 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 973 continue; 974 975 flush_cache_range(vma, address, 976 address + HPAGE_PMD_SIZE); 977 entry = pmdp_invalidate(vma, address, pmd); 978 entry = pmd_wrprotect(entry); 979 entry = pmd_mkclean(entry); 980 set_pmd_at(vma->vm_mm, address, pmd, entry); 981 ret = 1; 982 #else 983 /* unexpected pmd-mapped folio? */ 984 WARN_ON_ONCE(1); 985 #endif 986 } 987 988 /* 989 * No need to call mmu_notifier_invalidate_range() as we are 990 * downgrading page table protection not changing it to point 991 * to a new page. 992 * 993 * See Documentation/mm/mmu_notifier.rst 994 */ 995 if (ret) 996 cleaned++; 997 } 998 999 mmu_notifier_invalidate_range_end(&range); 1000 1001 return cleaned; 1002 } 1003 1004 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1005 unsigned long address, void *arg) 1006 { 1007 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1008 int *cleaned = arg; 1009 1010 *cleaned += page_vma_mkclean_one(&pvmw); 1011 1012 return true; 1013 } 1014 1015 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1016 { 1017 if (vma->vm_flags & VM_SHARED) 1018 return false; 1019 1020 return true; 1021 } 1022 1023 int folio_mkclean(struct folio *folio) 1024 { 1025 int cleaned = 0; 1026 struct address_space *mapping; 1027 struct rmap_walk_control rwc = { 1028 .arg = (void *)&cleaned, 1029 .rmap_one = page_mkclean_one, 1030 .invalid_vma = invalid_mkclean_vma, 1031 }; 1032 1033 BUG_ON(!folio_test_locked(folio)); 1034 1035 if (!folio_mapped(folio)) 1036 return 0; 1037 1038 mapping = folio_mapping(folio); 1039 if (!mapping) 1040 return 0; 1041 1042 rmap_walk(folio, &rwc); 1043 1044 return cleaned; 1045 } 1046 EXPORT_SYMBOL_GPL(folio_mkclean); 1047 1048 /** 1049 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1050 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1051 * within the @vma of shared mappings. And since clean PTEs 1052 * should also be readonly, write protects them too. 1053 * @pfn: start pfn. 1054 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1055 * @pgoff: page offset that the @pfn mapped with. 1056 * @vma: vma that @pfn mapped within. 1057 * 1058 * Returns the number of cleaned PTEs (including PMDs). 1059 */ 1060 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1061 struct vm_area_struct *vma) 1062 { 1063 struct page_vma_mapped_walk pvmw = { 1064 .pfn = pfn, 1065 .nr_pages = nr_pages, 1066 .pgoff = pgoff, 1067 .vma = vma, 1068 .flags = PVMW_SYNC, 1069 }; 1070 1071 if (invalid_mkclean_vma(vma, NULL)) 1072 return 0; 1073 1074 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1075 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1076 1077 return page_vma_mkclean_one(&pvmw); 1078 } 1079 1080 int folio_total_mapcount(struct folio *folio) 1081 { 1082 int mapcount = folio_entire_mapcount(folio); 1083 int nr_pages; 1084 int i; 1085 1086 /* In the common case, avoid the loop when no pages mapped by PTE */ 1087 if (folio_nr_pages_mapped(folio) == 0) 1088 return mapcount; 1089 /* 1090 * Add all the PTE mappings of those pages mapped by PTE. 1091 * Limit the loop to folio_nr_pages_mapped()? 1092 * Perhaps: given all the raciness, that may be a good or a bad idea. 1093 */ 1094 nr_pages = folio_nr_pages(folio); 1095 for (i = 0; i < nr_pages; i++) 1096 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1097 1098 /* But each of those _mapcounts was based on -1 */ 1099 mapcount += nr_pages; 1100 return mapcount; 1101 } 1102 1103 /** 1104 * page_move_anon_rmap - move a page to our anon_vma 1105 * @page: the page to move to our anon_vma 1106 * @vma: the vma the page belongs to 1107 * 1108 * When a page belongs exclusively to one process after a COW event, 1109 * that page can be moved into the anon_vma that belongs to just that 1110 * process, so the rmap code will not search the parent or sibling 1111 * processes. 1112 */ 1113 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1114 { 1115 void *anon_vma = vma->anon_vma; 1116 struct folio *folio = page_folio(page); 1117 1118 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1119 VM_BUG_ON_VMA(!anon_vma, vma); 1120 1121 anon_vma += PAGE_MAPPING_ANON; 1122 /* 1123 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1124 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1125 * folio_test_anon()) will not see one without the other. 1126 */ 1127 WRITE_ONCE(folio->mapping, anon_vma); 1128 SetPageAnonExclusive(page); 1129 } 1130 1131 /** 1132 * __page_set_anon_rmap - set up new anonymous rmap 1133 * @folio: Folio which contains page. 1134 * @page: Page to add to rmap. 1135 * @vma: VM area to add page to. 1136 * @address: User virtual address of the mapping 1137 * @exclusive: the page is exclusively owned by the current process 1138 */ 1139 static void __page_set_anon_rmap(struct folio *folio, struct page *page, 1140 struct vm_area_struct *vma, unsigned long address, int exclusive) 1141 { 1142 struct anon_vma *anon_vma = vma->anon_vma; 1143 1144 BUG_ON(!anon_vma); 1145 1146 if (folio_test_anon(folio)) 1147 goto out; 1148 1149 /* 1150 * If the page isn't exclusively mapped into this vma, 1151 * we must use the _oldest_ possible anon_vma for the 1152 * page mapping! 1153 */ 1154 if (!exclusive) 1155 anon_vma = anon_vma->root; 1156 1157 /* 1158 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1159 * Make sure the compiler doesn't split the stores of anon_vma and 1160 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1161 * could mistake the mapping for a struct address_space and crash. 1162 */ 1163 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1164 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1165 folio->index = linear_page_index(vma, address); 1166 out: 1167 if (exclusive) 1168 SetPageAnonExclusive(page); 1169 } 1170 1171 /** 1172 * __page_check_anon_rmap - sanity check anonymous rmap addition 1173 * @page: the page to add the mapping to 1174 * @vma: the vm area in which the mapping is added 1175 * @address: the user virtual address mapped 1176 */ 1177 static void __page_check_anon_rmap(struct page *page, 1178 struct vm_area_struct *vma, unsigned long address) 1179 { 1180 struct folio *folio = page_folio(page); 1181 /* 1182 * The page's anon-rmap details (mapping and index) are guaranteed to 1183 * be set up correctly at this point. 1184 * 1185 * We have exclusion against page_add_anon_rmap because the caller 1186 * always holds the page locked. 1187 * 1188 * We have exclusion against page_add_new_anon_rmap because those pages 1189 * are initially only visible via the pagetables, and the pte is locked 1190 * over the call to page_add_new_anon_rmap. 1191 */ 1192 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1193 folio); 1194 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1195 page); 1196 } 1197 1198 /** 1199 * page_add_anon_rmap - add pte mapping to an anonymous page 1200 * @page: the page to add the mapping to 1201 * @vma: the vm area in which the mapping is added 1202 * @address: the user virtual address mapped 1203 * @flags: the rmap flags 1204 * 1205 * The caller needs to hold the pte lock, and the page must be locked in 1206 * the anon_vma case: to serialize mapping,index checking after setting, 1207 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1208 * (but PageKsm is never downgraded to PageAnon). 1209 */ 1210 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1211 unsigned long address, rmap_t flags) 1212 { 1213 struct folio *folio = page_folio(page); 1214 atomic_t *mapped = &folio->_nr_pages_mapped; 1215 int nr = 0, nr_pmdmapped = 0; 1216 bool compound = flags & RMAP_COMPOUND; 1217 bool first = true; 1218 1219 /* Is page being mapped by PTE? Is this its first map to be added? */ 1220 if (likely(!compound)) { 1221 first = atomic_inc_and_test(&page->_mapcount); 1222 nr = first; 1223 if (first && folio_test_large(folio)) { 1224 nr = atomic_inc_return_relaxed(mapped); 1225 nr = (nr < COMPOUND_MAPPED); 1226 } 1227 } else if (folio_test_pmd_mappable(folio)) { 1228 /* That test is redundant: it's for safety or to optimize out */ 1229 1230 first = atomic_inc_and_test(&folio->_entire_mapcount); 1231 if (first) { 1232 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1233 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1234 nr_pmdmapped = folio_nr_pages(folio); 1235 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1236 /* Raced ahead of a remove and another add? */ 1237 if (unlikely(nr < 0)) 1238 nr = 0; 1239 } else { 1240 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1241 nr = 0; 1242 } 1243 } 1244 } 1245 1246 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1247 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1248 1249 if (nr_pmdmapped) 1250 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1251 if (nr) 1252 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1253 1254 if (likely(!folio_test_ksm(folio))) { 1255 /* address might be in next vma when migration races vma_merge */ 1256 if (first) 1257 __page_set_anon_rmap(folio, page, vma, address, 1258 !!(flags & RMAP_EXCLUSIVE)); 1259 else 1260 __page_check_anon_rmap(page, vma, address); 1261 } 1262 1263 mlock_vma_folio(folio, vma, compound); 1264 } 1265 1266 /** 1267 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1268 * @folio: The folio to add the mapping to. 1269 * @vma: the vm area in which the mapping is added 1270 * @address: the user virtual address mapped 1271 * 1272 * Like page_add_anon_rmap() but must only be called on *new* folios. 1273 * This means the inc-and-test can be bypassed. 1274 * The folio does not have to be locked. 1275 * 1276 * If the folio is large, it is accounted as a THP. As the folio 1277 * is new, it's assumed to be mapped exclusively by a single process. 1278 */ 1279 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1280 unsigned long address) 1281 { 1282 int nr; 1283 1284 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1285 __folio_set_swapbacked(folio); 1286 1287 if (likely(!folio_test_pmd_mappable(folio))) { 1288 /* increment count (starts at -1) */ 1289 atomic_set(&folio->_mapcount, 0); 1290 nr = 1; 1291 } else { 1292 /* increment count (starts at -1) */ 1293 atomic_set(&folio->_entire_mapcount, 0); 1294 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1295 nr = folio_nr_pages(folio); 1296 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1297 } 1298 1299 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1300 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 1301 } 1302 1303 /** 1304 * page_add_file_rmap - add pte mapping to a file page 1305 * @page: the page to add the mapping to 1306 * @vma: the vm area in which the mapping is added 1307 * @compound: charge the page as compound or small page 1308 * 1309 * The caller needs to hold the pte lock. 1310 */ 1311 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1312 bool compound) 1313 { 1314 struct folio *folio = page_folio(page); 1315 atomic_t *mapped = &folio->_nr_pages_mapped; 1316 int nr = 0, nr_pmdmapped = 0; 1317 bool first; 1318 1319 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1320 1321 /* Is page being mapped by PTE? Is this its first map to be added? */ 1322 if (likely(!compound)) { 1323 first = atomic_inc_and_test(&page->_mapcount); 1324 nr = first; 1325 if (first && folio_test_large(folio)) { 1326 nr = atomic_inc_return_relaxed(mapped); 1327 nr = (nr < COMPOUND_MAPPED); 1328 } 1329 } else if (folio_test_pmd_mappable(folio)) { 1330 /* That test is redundant: it's for safety or to optimize out */ 1331 1332 first = atomic_inc_and_test(&folio->_entire_mapcount); 1333 if (first) { 1334 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1335 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1336 nr_pmdmapped = folio_nr_pages(folio); 1337 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1338 /* Raced ahead of a remove and another add? */ 1339 if (unlikely(nr < 0)) 1340 nr = 0; 1341 } else { 1342 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1343 nr = 0; 1344 } 1345 } 1346 } 1347 1348 if (nr_pmdmapped) 1349 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1350 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1351 if (nr) 1352 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1353 1354 mlock_vma_folio(folio, vma, compound); 1355 } 1356 1357 /** 1358 * page_remove_rmap - take down pte mapping from a page 1359 * @page: page to remove mapping from 1360 * @vma: the vm area from which the mapping is removed 1361 * @compound: uncharge the page as compound or small page 1362 * 1363 * The caller needs to hold the pte lock. 1364 */ 1365 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1366 bool compound) 1367 { 1368 struct folio *folio = page_folio(page); 1369 atomic_t *mapped = &folio->_nr_pages_mapped; 1370 int nr = 0, nr_pmdmapped = 0; 1371 bool last; 1372 enum node_stat_item idx; 1373 1374 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1375 1376 /* Hugetlb pages are not counted in NR_*MAPPED */ 1377 if (unlikely(folio_test_hugetlb(folio))) { 1378 /* hugetlb pages are always mapped with pmds */ 1379 atomic_dec(&folio->_entire_mapcount); 1380 return; 1381 } 1382 1383 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1384 if (likely(!compound)) { 1385 last = atomic_add_negative(-1, &page->_mapcount); 1386 nr = last; 1387 if (last && folio_test_large(folio)) { 1388 nr = atomic_dec_return_relaxed(mapped); 1389 nr = (nr < COMPOUND_MAPPED); 1390 } 1391 } else if (folio_test_pmd_mappable(folio)) { 1392 /* That test is redundant: it's for safety or to optimize out */ 1393 1394 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1395 if (last) { 1396 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1397 if (likely(nr < COMPOUND_MAPPED)) { 1398 nr_pmdmapped = folio_nr_pages(folio); 1399 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1400 /* Raced ahead of another remove and an add? */ 1401 if (unlikely(nr < 0)) 1402 nr = 0; 1403 } else { 1404 /* An add of COMPOUND_MAPPED raced ahead */ 1405 nr = 0; 1406 } 1407 } 1408 } 1409 1410 if (nr_pmdmapped) { 1411 if (folio_test_anon(folio)) 1412 idx = NR_ANON_THPS; 1413 else if (folio_test_swapbacked(folio)) 1414 idx = NR_SHMEM_PMDMAPPED; 1415 else 1416 idx = NR_FILE_PMDMAPPED; 1417 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1418 } 1419 if (nr) { 1420 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1421 __lruvec_stat_mod_folio(folio, idx, -nr); 1422 1423 /* 1424 * Queue anon THP for deferred split if at least one 1425 * page of the folio is unmapped and at least one page 1426 * is still mapped. 1427 */ 1428 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1429 if (!compound || nr < nr_pmdmapped) 1430 deferred_split_folio(folio); 1431 } 1432 1433 /* 1434 * It would be tidy to reset folio_test_anon mapping when fully 1435 * unmapped, but that might overwrite a racing page_add_anon_rmap 1436 * which increments mapcount after us but sets mapping before us: 1437 * so leave the reset to free_pages_prepare, and remember that 1438 * it's only reliable while mapped. 1439 */ 1440 1441 munlock_vma_folio(folio, vma, compound); 1442 } 1443 1444 /* 1445 * @arg: enum ttu_flags will be passed to this argument 1446 */ 1447 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1448 unsigned long address, void *arg) 1449 { 1450 struct mm_struct *mm = vma->vm_mm; 1451 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1452 pte_t pteval; 1453 struct page *subpage; 1454 bool anon_exclusive, ret = true; 1455 struct mmu_notifier_range range; 1456 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1457 1458 /* 1459 * When racing against e.g. zap_pte_range() on another cpu, 1460 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1461 * try_to_unmap() may return before page_mapped() has become false, 1462 * if page table locking is skipped: use TTU_SYNC to wait for that. 1463 */ 1464 if (flags & TTU_SYNC) 1465 pvmw.flags = PVMW_SYNC; 1466 1467 if (flags & TTU_SPLIT_HUGE_PMD) 1468 split_huge_pmd_address(vma, address, false, folio); 1469 1470 /* 1471 * For THP, we have to assume the worse case ie pmd for invalidation. 1472 * For hugetlb, it could be much worse if we need to do pud 1473 * invalidation in the case of pmd sharing. 1474 * 1475 * Note that the folio can not be freed in this function as call of 1476 * try_to_unmap() must hold a reference on the folio. 1477 */ 1478 range.end = vma_address_end(&pvmw); 1479 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1480 address, range.end); 1481 if (folio_test_hugetlb(folio)) { 1482 /* 1483 * If sharing is possible, start and end will be adjusted 1484 * accordingly. 1485 */ 1486 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1487 &range.end); 1488 } 1489 mmu_notifier_invalidate_range_start(&range); 1490 1491 while (page_vma_mapped_walk(&pvmw)) { 1492 /* Unexpected PMD-mapped THP? */ 1493 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1494 1495 /* 1496 * If the folio is in an mlock()d vma, we must not swap it out. 1497 */ 1498 if (!(flags & TTU_IGNORE_MLOCK) && 1499 (vma->vm_flags & VM_LOCKED)) { 1500 /* Restore the mlock which got missed */ 1501 mlock_vma_folio(folio, vma, false); 1502 page_vma_mapped_walk_done(&pvmw); 1503 ret = false; 1504 break; 1505 } 1506 1507 subpage = folio_page(folio, 1508 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1509 address = pvmw.address; 1510 anon_exclusive = folio_test_anon(folio) && 1511 PageAnonExclusive(subpage); 1512 1513 if (folio_test_hugetlb(folio)) { 1514 bool anon = folio_test_anon(folio); 1515 1516 /* 1517 * The try_to_unmap() is only passed a hugetlb page 1518 * in the case where the hugetlb page is poisoned. 1519 */ 1520 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1521 /* 1522 * huge_pmd_unshare may unmap an entire PMD page. 1523 * There is no way of knowing exactly which PMDs may 1524 * be cached for this mm, so we must flush them all. 1525 * start/end were already adjusted above to cover this 1526 * range. 1527 */ 1528 flush_cache_range(vma, range.start, range.end); 1529 1530 /* 1531 * To call huge_pmd_unshare, i_mmap_rwsem must be 1532 * held in write mode. Caller needs to explicitly 1533 * do this outside rmap routines. 1534 * 1535 * We also must hold hugetlb vma_lock in write mode. 1536 * Lock order dictates acquiring vma_lock BEFORE 1537 * i_mmap_rwsem. We can only try lock here and fail 1538 * if unsuccessful. 1539 */ 1540 if (!anon) { 1541 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1542 if (!hugetlb_vma_trylock_write(vma)) { 1543 page_vma_mapped_walk_done(&pvmw); 1544 ret = false; 1545 break; 1546 } 1547 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1548 hugetlb_vma_unlock_write(vma); 1549 flush_tlb_range(vma, 1550 range.start, range.end); 1551 mmu_notifier_invalidate_range(mm, 1552 range.start, range.end); 1553 /* 1554 * The ref count of the PMD page was 1555 * dropped which is part of the way map 1556 * counting is done for shared PMDs. 1557 * Return 'true' here. When there is 1558 * no other sharing, huge_pmd_unshare 1559 * returns false and we will unmap the 1560 * actual page and drop map count 1561 * to zero. 1562 */ 1563 page_vma_mapped_walk_done(&pvmw); 1564 break; 1565 } 1566 hugetlb_vma_unlock_write(vma); 1567 } 1568 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1569 } else { 1570 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1571 /* Nuke the page table entry. */ 1572 if (should_defer_flush(mm, flags)) { 1573 /* 1574 * We clear the PTE but do not flush so potentially 1575 * a remote CPU could still be writing to the folio. 1576 * If the entry was previously clean then the 1577 * architecture must guarantee that a clear->dirty 1578 * transition on a cached TLB entry is written through 1579 * and traps if the PTE is unmapped. 1580 */ 1581 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1582 1583 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1584 } else { 1585 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1586 } 1587 } 1588 1589 /* 1590 * Now the pte is cleared. If this pte was uffd-wp armed, 1591 * we may want to replace a none pte with a marker pte if 1592 * it's file-backed, so we don't lose the tracking info. 1593 */ 1594 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1595 1596 /* Set the dirty flag on the folio now the pte is gone. */ 1597 if (pte_dirty(pteval)) 1598 folio_mark_dirty(folio); 1599 1600 /* Update high watermark before we lower rss */ 1601 update_hiwater_rss(mm); 1602 1603 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1604 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1605 if (folio_test_hugetlb(folio)) { 1606 hugetlb_count_sub(folio_nr_pages(folio), mm); 1607 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1608 } else { 1609 dec_mm_counter(mm, mm_counter(&folio->page)); 1610 set_pte_at(mm, address, pvmw.pte, pteval); 1611 } 1612 1613 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1614 /* 1615 * The guest indicated that the page content is of no 1616 * interest anymore. Simply discard the pte, vmscan 1617 * will take care of the rest. 1618 * A future reference will then fault in a new zero 1619 * page. When userfaultfd is active, we must not drop 1620 * this page though, as its main user (postcopy 1621 * migration) will not expect userfaults on already 1622 * copied pages. 1623 */ 1624 dec_mm_counter(mm, mm_counter(&folio->page)); 1625 /* We have to invalidate as we cleared the pte */ 1626 mmu_notifier_invalidate_range(mm, address, 1627 address + PAGE_SIZE); 1628 } else if (folio_test_anon(folio)) { 1629 swp_entry_t entry = { .val = page_private(subpage) }; 1630 pte_t swp_pte; 1631 /* 1632 * Store the swap location in the pte. 1633 * See handle_pte_fault() ... 1634 */ 1635 if (unlikely(folio_test_swapbacked(folio) != 1636 folio_test_swapcache(folio))) { 1637 WARN_ON_ONCE(1); 1638 ret = false; 1639 /* We have to invalidate as we cleared the pte */ 1640 mmu_notifier_invalidate_range(mm, address, 1641 address + PAGE_SIZE); 1642 page_vma_mapped_walk_done(&pvmw); 1643 break; 1644 } 1645 1646 /* MADV_FREE page check */ 1647 if (!folio_test_swapbacked(folio)) { 1648 int ref_count, map_count; 1649 1650 /* 1651 * Synchronize with gup_pte_range(): 1652 * - clear PTE; barrier; read refcount 1653 * - inc refcount; barrier; read PTE 1654 */ 1655 smp_mb(); 1656 1657 ref_count = folio_ref_count(folio); 1658 map_count = folio_mapcount(folio); 1659 1660 /* 1661 * Order reads for page refcount and dirty flag 1662 * (see comments in __remove_mapping()). 1663 */ 1664 smp_rmb(); 1665 1666 /* 1667 * The only page refs must be one from isolation 1668 * plus the rmap(s) (dropped by discard:). 1669 */ 1670 if (ref_count == 1 + map_count && 1671 !folio_test_dirty(folio)) { 1672 /* Invalidate as we cleared the pte */ 1673 mmu_notifier_invalidate_range(mm, 1674 address, address + PAGE_SIZE); 1675 dec_mm_counter(mm, MM_ANONPAGES); 1676 goto discard; 1677 } 1678 1679 /* 1680 * If the folio was redirtied, it cannot be 1681 * discarded. Remap the page to page table. 1682 */ 1683 set_pte_at(mm, address, pvmw.pte, pteval); 1684 folio_set_swapbacked(folio); 1685 ret = false; 1686 page_vma_mapped_walk_done(&pvmw); 1687 break; 1688 } 1689 1690 if (swap_duplicate(entry) < 0) { 1691 set_pte_at(mm, address, pvmw.pte, pteval); 1692 ret = false; 1693 page_vma_mapped_walk_done(&pvmw); 1694 break; 1695 } 1696 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1697 swap_free(entry); 1698 set_pte_at(mm, address, pvmw.pte, pteval); 1699 ret = false; 1700 page_vma_mapped_walk_done(&pvmw); 1701 break; 1702 } 1703 1704 /* See page_try_share_anon_rmap(): clear PTE first. */ 1705 if (anon_exclusive && 1706 page_try_share_anon_rmap(subpage)) { 1707 swap_free(entry); 1708 set_pte_at(mm, address, pvmw.pte, pteval); 1709 ret = false; 1710 page_vma_mapped_walk_done(&pvmw); 1711 break; 1712 } 1713 if (list_empty(&mm->mmlist)) { 1714 spin_lock(&mmlist_lock); 1715 if (list_empty(&mm->mmlist)) 1716 list_add(&mm->mmlist, &init_mm.mmlist); 1717 spin_unlock(&mmlist_lock); 1718 } 1719 dec_mm_counter(mm, MM_ANONPAGES); 1720 inc_mm_counter(mm, MM_SWAPENTS); 1721 swp_pte = swp_entry_to_pte(entry); 1722 if (anon_exclusive) 1723 swp_pte = pte_swp_mkexclusive(swp_pte); 1724 if (pte_soft_dirty(pteval)) 1725 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1726 if (pte_uffd_wp(pteval)) 1727 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1728 set_pte_at(mm, address, pvmw.pte, swp_pte); 1729 /* Invalidate as we cleared the pte */ 1730 mmu_notifier_invalidate_range(mm, address, 1731 address + PAGE_SIZE); 1732 } else { 1733 /* 1734 * This is a locked file-backed folio, 1735 * so it cannot be removed from the page 1736 * cache and replaced by a new folio before 1737 * mmu_notifier_invalidate_range_end, so no 1738 * concurrent thread might update its page table 1739 * to point at a new folio while a device is 1740 * still using this folio. 1741 * 1742 * See Documentation/mm/mmu_notifier.rst 1743 */ 1744 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1745 } 1746 discard: 1747 /* 1748 * No need to call mmu_notifier_invalidate_range() it has be 1749 * done above for all cases requiring it to happen under page 1750 * table lock before mmu_notifier_invalidate_range_end() 1751 * 1752 * See Documentation/mm/mmu_notifier.rst 1753 */ 1754 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1755 if (vma->vm_flags & VM_LOCKED) 1756 mlock_drain_local(); 1757 folio_put(folio); 1758 } 1759 1760 mmu_notifier_invalidate_range_end(&range); 1761 1762 return ret; 1763 } 1764 1765 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1766 { 1767 return vma_is_temporary_stack(vma); 1768 } 1769 1770 static int folio_not_mapped(struct folio *folio) 1771 { 1772 return !folio_mapped(folio); 1773 } 1774 1775 /** 1776 * try_to_unmap - Try to remove all page table mappings to a folio. 1777 * @folio: The folio to unmap. 1778 * @flags: action and flags 1779 * 1780 * Tries to remove all the page table entries which are mapping this 1781 * folio. It is the caller's responsibility to check if the folio is 1782 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1783 * 1784 * Context: Caller must hold the folio lock. 1785 */ 1786 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1787 { 1788 struct rmap_walk_control rwc = { 1789 .rmap_one = try_to_unmap_one, 1790 .arg = (void *)flags, 1791 .done = folio_not_mapped, 1792 .anon_lock = folio_lock_anon_vma_read, 1793 }; 1794 1795 if (flags & TTU_RMAP_LOCKED) 1796 rmap_walk_locked(folio, &rwc); 1797 else 1798 rmap_walk(folio, &rwc); 1799 } 1800 1801 /* 1802 * @arg: enum ttu_flags will be passed to this argument. 1803 * 1804 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1805 * containing migration entries. 1806 */ 1807 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1808 unsigned long address, void *arg) 1809 { 1810 struct mm_struct *mm = vma->vm_mm; 1811 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1812 pte_t pteval; 1813 struct page *subpage; 1814 bool anon_exclusive, ret = true; 1815 struct mmu_notifier_range range; 1816 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1817 1818 /* 1819 * When racing against e.g. zap_pte_range() on another cpu, 1820 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1821 * try_to_migrate() may return before page_mapped() has become false, 1822 * if page table locking is skipped: use TTU_SYNC to wait for that. 1823 */ 1824 if (flags & TTU_SYNC) 1825 pvmw.flags = PVMW_SYNC; 1826 1827 /* 1828 * unmap_page() in mm/huge_memory.c is the only user of migration with 1829 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1830 */ 1831 if (flags & TTU_SPLIT_HUGE_PMD) 1832 split_huge_pmd_address(vma, address, true, folio); 1833 1834 /* 1835 * For THP, we have to assume the worse case ie pmd for invalidation. 1836 * For hugetlb, it could be much worse if we need to do pud 1837 * invalidation in the case of pmd sharing. 1838 * 1839 * Note that the page can not be free in this function as call of 1840 * try_to_unmap() must hold a reference on the page. 1841 */ 1842 range.end = vma_address_end(&pvmw); 1843 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1844 address, range.end); 1845 if (folio_test_hugetlb(folio)) { 1846 /* 1847 * If sharing is possible, start and end will be adjusted 1848 * accordingly. 1849 */ 1850 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1851 &range.end); 1852 } 1853 mmu_notifier_invalidate_range_start(&range); 1854 1855 while (page_vma_mapped_walk(&pvmw)) { 1856 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1857 /* PMD-mapped THP migration entry */ 1858 if (!pvmw.pte) { 1859 subpage = folio_page(folio, 1860 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1861 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1862 !folio_test_pmd_mappable(folio), folio); 1863 1864 if (set_pmd_migration_entry(&pvmw, subpage)) { 1865 ret = false; 1866 page_vma_mapped_walk_done(&pvmw); 1867 break; 1868 } 1869 continue; 1870 } 1871 #endif 1872 1873 /* Unexpected PMD-mapped THP? */ 1874 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1875 1876 if (folio_is_zone_device(folio)) { 1877 /* 1878 * Our PTE is a non-present device exclusive entry and 1879 * calculating the subpage as for the common case would 1880 * result in an invalid pointer. 1881 * 1882 * Since only PAGE_SIZE pages can currently be 1883 * migrated, just set it to page. This will need to be 1884 * changed when hugepage migrations to device private 1885 * memory are supported. 1886 */ 1887 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1888 subpage = &folio->page; 1889 } else { 1890 subpage = folio_page(folio, 1891 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1892 } 1893 address = pvmw.address; 1894 anon_exclusive = folio_test_anon(folio) && 1895 PageAnonExclusive(subpage); 1896 1897 if (folio_test_hugetlb(folio)) { 1898 bool anon = folio_test_anon(folio); 1899 1900 /* 1901 * huge_pmd_unshare may unmap an entire PMD page. 1902 * There is no way of knowing exactly which PMDs may 1903 * be cached for this mm, so we must flush them all. 1904 * start/end were already adjusted above to cover this 1905 * range. 1906 */ 1907 flush_cache_range(vma, range.start, range.end); 1908 1909 /* 1910 * To call huge_pmd_unshare, i_mmap_rwsem must be 1911 * held in write mode. Caller needs to explicitly 1912 * do this outside rmap routines. 1913 * 1914 * We also must hold hugetlb vma_lock in write mode. 1915 * Lock order dictates acquiring vma_lock BEFORE 1916 * i_mmap_rwsem. We can only try lock here and 1917 * fail if unsuccessful. 1918 */ 1919 if (!anon) { 1920 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1921 if (!hugetlb_vma_trylock_write(vma)) { 1922 page_vma_mapped_walk_done(&pvmw); 1923 ret = false; 1924 break; 1925 } 1926 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1927 hugetlb_vma_unlock_write(vma); 1928 flush_tlb_range(vma, 1929 range.start, range.end); 1930 mmu_notifier_invalidate_range(mm, 1931 range.start, range.end); 1932 1933 /* 1934 * The ref count of the PMD page was 1935 * dropped which is part of the way map 1936 * counting is done for shared PMDs. 1937 * Return 'true' here. When there is 1938 * no other sharing, huge_pmd_unshare 1939 * returns false and we will unmap the 1940 * actual page and drop map count 1941 * to zero. 1942 */ 1943 page_vma_mapped_walk_done(&pvmw); 1944 break; 1945 } 1946 hugetlb_vma_unlock_write(vma); 1947 } 1948 /* Nuke the hugetlb page table entry */ 1949 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1950 } else { 1951 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1952 /* Nuke the page table entry. */ 1953 if (should_defer_flush(mm, flags)) { 1954 /* 1955 * We clear the PTE but do not flush so potentially 1956 * a remote CPU could still be writing to the folio. 1957 * If the entry was previously clean then the 1958 * architecture must guarantee that a clear->dirty 1959 * transition on a cached TLB entry is written through 1960 * and traps if the PTE is unmapped. 1961 */ 1962 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1963 1964 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1965 } else { 1966 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1967 } 1968 } 1969 1970 /* Set the dirty flag on the folio now the pte is gone. */ 1971 if (pte_dirty(pteval)) 1972 folio_mark_dirty(folio); 1973 1974 /* Update high watermark before we lower rss */ 1975 update_hiwater_rss(mm); 1976 1977 if (folio_is_device_private(folio)) { 1978 unsigned long pfn = folio_pfn(folio); 1979 swp_entry_t entry; 1980 pte_t swp_pte; 1981 1982 if (anon_exclusive) 1983 BUG_ON(page_try_share_anon_rmap(subpage)); 1984 1985 /* 1986 * Store the pfn of the page in a special migration 1987 * pte. do_swap_page() will wait until the migration 1988 * pte is removed and then restart fault handling. 1989 */ 1990 entry = pte_to_swp_entry(pteval); 1991 if (is_writable_device_private_entry(entry)) 1992 entry = make_writable_migration_entry(pfn); 1993 else if (anon_exclusive) 1994 entry = make_readable_exclusive_migration_entry(pfn); 1995 else 1996 entry = make_readable_migration_entry(pfn); 1997 swp_pte = swp_entry_to_pte(entry); 1998 1999 /* 2000 * pteval maps a zone device page and is therefore 2001 * a swap pte. 2002 */ 2003 if (pte_swp_soft_dirty(pteval)) 2004 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2005 if (pte_swp_uffd_wp(pteval)) 2006 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2007 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2008 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2009 compound_order(&folio->page)); 2010 /* 2011 * No need to invalidate here it will synchronize on 2012 * against the special swap migration pte. 2013 */ 2014 } else if (PageHWPoison(subpage)) { 2015 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2016 if (folio_test_hugetlb(folio)) { 2017 hugetlb_count_sub(folio_nr_pages(folio), mm); 2018 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2019 } else { 2020 dec_mm_counter(mm, mm_counter(&folio->page)); 2021 set_pte_at(mm, address, pvmw.pte, pteval); 2022 } 2023 2024 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2025 /* 2026 * The guest indicated that the page content is of no 2027 * interest anymore. Simply discard the pte, vmscan 2028 * will take care of the rest. 2029 * A future reference will then fault in a new zero 2030 * page. When userfaultfd is active, we must not drop 2031 * this page though, as its main user (postcopy 2032 * migration) will not expect userfaults on already 2033 * copied pages. 2034 */ 2035 dec_mm_counter(mm, mm_counter(&folio->page)); 2036 /* We have to invalidate as we cleared the pte */ 2037 mmu_notifier_invalidate_range(mm, address, 2038 address + PAGE_SIZE); 2039 } else { 2040 swp_entry_t entry; 2041 pte_t swp_pte; 2042 2043 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2044 if (folio_test_hugetlb(folio)) 2045 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2046 else 2047 set_pte_at(mm, address, pvmw.pte, pteval); 2048 ret = false; 2049 page_vma_mapped_walk_done(&pvmw); 2050 break; 2051 } 2052 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2053 !anon_exclusive, subpage); 2054 2055 /* See page_try_share_anon_rmap(): clear PTE first. */ 2056 if (anon_exclusive && 2057 page_try_share_anon_rmap(subpage)) { 2058 if (folio_test_hugetlb(folio)) 2059 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2060 else 2061 set_pte_at(mm, address, pvmw.pte, pteval); 2062 ret = false; 2063 page_vma_mapped_walk_done(&pvmw); 2064 break; 2065 } 2066 2067 /* 2068 * Store the pfn of the page in a special migration 2069 * pte. do_swap_page() will wait until the migration 2070 * pte is removed and then restart fault handling. 2071 */ 2072 if (pte_write(pteval)) 2073 entry = make_writable_migration_entry( 2074 page_to_pfn(subpage)); 2075 else if (anon_exclusive) 2076 entry = make_readable_exclusive_migration_entry( 2077 page_to_pfn(subpage)); 2078 else 2079 entry = make_readable_migration_entry( 2080 page_to_pfn(subpage)); 2081 if (pte_young(pteval)) 2082 entry = make_migration_entry_young(entry); 2083 if (pte_dirty(pteval)) 2084 entry = make_migration_entry_dirty(entry); 2085 swp_pte = swp_entry_to_pte(entry); 2086 if (pte_soft_dirty(pteval)) 2087 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2088 if (pte_uffd_wp(pteval)) 2089 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2090 if (folio_test_hugetlb(folio)) 2091 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2092 else 2093 set_pte_at(mm, address, pvmw.pte, swp_pte); 2094 trace_set_migration_pte(address, pte_val(swp_pte), 2095 compound_order(&folio->page)); 2096 /* 2097 * No need to invalidate here it will synchronize on 2098 * against the special swap migration pte. 2099 */ 2100 } 2101 2102 /* 2103 * No need to call mmu_notifier_invalidate_range() it has be 2104 * done above for all cases requiring it to happen under page 2105 * table lock before mmu_notifier_invalidate_range_end() 2106 * 2107 * See Documentation/mm/mmu_notifier.rst 2108 */ 2109 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2110 if (vma->vm_flags & VM_LOCKED) 2111 mlock_drain_local(); 2112 folio_put(folio); 2113 } 2114 2115 mmu_notifier_invalidate_range_end(&range); 2116 2117 return ret; 2118 } 2119 2120 /** 2121 * try_to_migrate - try to replace all page table mappings with swap entries 2122 * @folio: the folio to replace page table entries for 2123 * @flags: action and flags 2124 * 2125 * Tries to remove all the page table entries which are mapping this folio and 2126 * replace them with special swap entries. Caller must hold the folio lock. 2127 */ 2128 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2129 { 2130 struct rmap_walk_control rwc = { 2131 .rmap_one = try_to_migrate_one, 2132 .arg = (void *)flags, 2133 .done = folio_not_mapped, 2134 .anon_lock = folio_lock_anon_vma_read, 2135 }; 2136 2137 /* 2138 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2139 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2140 */ 2141 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2142 TTU_SYNC | TTU_BATCH_FLUSH))) 2143 return; 2144 2145 if (folio_is_zone_device(folio) && 2146 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2147 return; 2148 2149 /* 2150 * During exec, a temporary VMA is setup and later moved. 2151 * The VMA is moved under the anon_vma lock but not the 2152 * page tables leading to a race where migration cannot 2153 * find the migration ptes. Rather than increasing the 2154 * locking requirements of exec(), migration skips 2155 * temporary VMAs until after exec() completes. 2156 */ 2157 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2158 rwc.invalid_vma = invalid_migration_vma; 2159 2160 if (flags & TTU_RMAP_LOCKED) 2161 rmap_walk_locked(folio, &rwc); 2162 else 2163 rmap_walk(folio, &rwc); 2164 } 2165 2166 #ifdef CONFIG_DEVICE_PRIVATE 2167 struct make_exclusive_args { 2168 struct mm_struct *mm; 2169 unsigned long address; 2170 void *owner; 2171 bool valid; 2172 }; 2173 2174 static bool page_make_device_exclusive_one(struct folio *folio, 2175 struct vm_area_struct *vma, unsigned long address, void *priv) 2176 { 2177 struct mm_struct *mm = vma->vm_mm; 2178 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2179 struct make_exclusive_args *args = priv; 2180 pte_t pteval; 2181 struct page *subpage; 2182 bool ret = true; 2183 struct mmu_notifier_range range; 2184 swp_entry_t entry; 2185 pte_t swp_pte; 2186 2187 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2188 vma->vm_mm, address, min(vma->vm_end, 2189 address + folio_size(folio)), 2190 args->owner); 2191 mmu_notifier_invalidate_range_start(&range); 2192 2193 while (page_vma_mapped_walk(&pvmw)) { 2194 /* Unexpected PMD-mapped THP? */ 2195 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2196 2197 if (!pte_present(*pvmw.pte)) { 2198 ret = false; 2199 page_vma_mapped_walk_done(&pvmw); 2200 break; 2201 } 2202 2203 subpage = folio_page(folio, 2204 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2205 address = pvmw.address; 2206 2207 /* Nuke the page table entry. */ 2208 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2209 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2210 2211 /* Set the dirty flag on the folio now the pte is gone. */ 2212 if (pte_dirty(pteval)) 2213 folio_mark_dirty(folio); 2214 2215 /* 2216 * Check that our target page is still mapped at the expected 2217 * address. 2218 */ 2219 if (args->mm == mm && args->address == address && 2220 pte_write(pteval)) 2221 args->valid = true; 2222 2223 /* 2224 * Store the pfn of the page in a special migration 2225 * pte. do_swap_page() will wait until the migration 2226 * pte is removed and then restart fault handling. 2227 */ 2228 if (pte_write(pteval)) 2229 entry = make_writable_device_exclusive_entry( 2230 page_to_pfn(subpage)); 2231 else 2232 entry = make_readable_device_exclusive_entry( 2233 page_to_pfn(subpage)); 2234 swp_pte = swp_entry_to_pte(entry); 2235 if (pte_soft_dirty(pteval)) 2236 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2237 if (pte_uffd_wp(pteval)) 2238 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2239 2240 set_pte_at(mm, address, pvmw.pte, swp_pte); 2241 2242 /* 2243 * There is a reference on the page for the swap entry which has 2244 * been removed, so shouldn't take another. 2245 */ 2246 page_remove_rmap(subpage, vma, false); 2247 } 2248 2249 mmu_notifier_invalidate_range_end(&range); 2250 2251 return ret; 2252 } 2253 2254 /** 2255 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2256 * @folio: The folio to replace page table entries for. 2257 * @mm: The mm_struct where the folio is expected to be mapped. 2258 * @address: Address where the folio is expected to be mapped. 2259 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2260 * 2261 * Tries to remove all the page table entries which are mapping this 2262 * folio and replace them with special device exclusive swap entries to 2263 * grant a device exclusive access to the folio. 2264 * 2265 * Context: Caller must hold the folio lock. 2266 * Return: false if the page is still mapped, or if it could not be unmapped 2267 * from the expected address. Otherwise returns true (success). 2268 */ 2269 static bool folio_make_device_exclusive(struct folio *folio, 2270 struct mm_struct *mm, unsigned long address, void *owner) 2271 { 2272 struct make_exclusive_args args = { 2273 .mm = mm, 2274 .address = address, 2275 .owner = owner, 2276 .valid = false, 2277 }; 2278 struct rmap_walk_control rwc = { 2279 .rmap_one = page_make_device_exclusive_one, 2280 .done = folio_not_mapped, 2281 .anon_lock = folio_lock_anon_vma_read, 2282 .arg = &args, 2283 }; 2284 2285 /* 2286 * Restrict to anonymous folios for now to avoid potential writeback 2287 * issues. 2288 */ 2289 if (!folio_test_anon(folio)) 2290 return false; 2291 2292 rmap_walk(folio, &rwc); 2293 2294 return args.valid && !folio_mapcount(folio); 2295 } 2296 2297 /** 2298 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2299 * @mm: mm_struct of associated target process 2300 * @start: start of the region to mark for exclusive device access 2301 * @end: end address of region 2302 * @pages: returns the pages which were successfully marked for exclusive access 2303 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2304 * 2305 * Returns: number of pages found in the range by GUP. A page is marked for 2306 * exclusive access only if the page pointer is non-NULL. 2307 * 2308 * This function finds ptes mapping page(s) to the given address range, locks 2309 * them and replaces mappings with special swap entries preventing userspace CPU 2310 * access. On fault these entries are replaced with the original mapping after 2311 * calling MMU notifiers. 2312 * 2313 * A driver using this to program access from a device must use a mmu notifier 2314 * critical section to hold a device specific lock during programming. Once 2315 * programming is complete it should drop the page lock and reference after 2316 * which point CPU access to the page will revoke the exclusive access. 2317 */ 2318 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2319 unsigned long end, struct page **pages, 2320 void *owner) 2321 { 2322 long npages = (end - start) >> PAGE_SHIFT; 2323 long i; 2324 2325 npages = get_user_pages_remote(mm, start, npages, 2326 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2327 pages, NULL, NULL); 2328 if (npages < 0) 2329 return npages; 2330 2331 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2332 struct folio *folio = page_folio(pages[i]); 2333 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2334 folio_put(folio); 2335 pages[i] = NULL; 2336 continue; 2337 } 2338 2339 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2340 folio_unlock(folio); 2341 folio_put(folio); 2342 pages[i] = NULL; 2343 } 2344 } 2345 2346 return npages; 2347 } 2348 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2349 #endif 2350 2351 void __put_anon_vma(struct anon_vma *anon_vma) 2352 { 2353 struct anon_vma *root = anon_vma->root; 2354 2355 anon_vma_free(anon_vma); 2356 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2357 anon_vma_free(root); 2358 } 2359 2360 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2361 struct rmap_walk_control *rwc) 2362 { 2363 struct anon_vma *anon_vma; 2364 2365 if (rwc->anon_lock) 2366 return rwc->anon_lock(folio, rwc); 2367 2368 /* 2369 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2370 * because that depends on page_mapped(); but not all its usages 2371 * are holding mmap_lock. Users without mmap_lock are required to 2372 * take a reference count to prevent the anon_vma disappearing 2373 */ 2374 anon_vma = folio_anon_vma(folio); 2375 if (!anon_vma) 2376 return NULL; 2377 2378 if (anon_vma_trylock_read(anon_vma)) 2379 goto out; 2380 2381 if (rwc->try_lock) { 2382 anon_vma = NULL; 2383 rwc->contended = true; 2384 goto out; 2385 } 2386 2387 anon_vma_lock_read(anon_vma); 2388 out: 2389 return anon_vma; 2390 } 2391 2392 /* 2393 * rmap_walk_anon - do something to anonymous page using the object-based 2394 * rmap method 2395 * @page: the page to be handled 2396 * @rwc: control variable according to each walk type 2397 * 2398 * Find all the mappings of a page using the mapping pointer and the vma chains 2399 * contained in the anon_vma struct it points to. 2400 */ 2401 static void rmap_walk_anon(struct folio *folio, 2402 struct rmap_walk_control *rwc, bool locked) 2403 { 2404 struct anon_vma *anon_vma; 2405 pgoff_t pgoff_start, pgoff_end; 2406 struct anon_vma_chain *avc; 2407 2408 if (locked) { 2409 anon_vma = folio_anon_vma(folio); 2410 /* anon_vma disappear under us? */ 2411 VM_BUG_ON_FOLIO(!anon_vma, folio); 2412 } else { 2413 anon_vma = rmap_walk_anon_lock(folio, rwc); 2414 } 2415 if (!anon_vma) 2416 return; 2417 2418 pgoff_start = folio_pgoff(folio); 2419 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2420 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2421 pgoff_start, pgoff_end) { 2422 struct vm_area_struct *vma = avc->vma; 2423 unsigned long address = vma_address(&folio->page, vma); 2424 2425 VM_BUG_ON_VMA(address == -EFAULT, vma); 2426 cond_resched(); 2427 2428 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2429 continue; 2430 2431 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2432 break; 2433 if (rwc->done && rwc->done(folio)) 2434 break; 2435 } 2436 2437 if (!locked) 2438 anon_vma_unlock_read(anon_vma); 2439 } 2440 2441 /* 2442 * rmap_walk_file - do something to file page using the object-based rmap method 2443 * @page: the page to be handled 2444 * @rwc: control variable according to each walk type 2445 * 2446 * Find all the mappings of a page using the mapping pointer and the vma chains 2447 * contained in the address_space struct it points to. 2448 */ 2449 static void rmap_walk_file(struct folio *folio, 2450 struct rmap_walk_control *rwc, bool locked) 2451 { 2452 struct address_space *mapping = folio_mapping(folio); 2453 pgoff_t pgoff_start, pgoff_end; 2454 struct vm_area_struct *vma; 2455 2456 /* 2457 * The page lock not only makes sure that page->mapping cannot 2458 * suddenly be NULLified by truncation, it makes sure that the 2459 * structure at mapping cannot be freed and reused yet, 2460 * so we can safely take mapping->i_mmap_rwsem. 2461 */ 2462 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2463 2464 if (!mapping) 2465 return; 2466 2467 pgoff_start = folio_pgoff(folio); 2468 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2469 if (!locked) { 2470 if (i_mmap_trylock_read(mapping)) 2471 goto lookup; 2472 2473 if (rwc->try_lock) { 2474 rwc->contended = true; 2475 return; 2476 } 2477 2478 i_mmap_lock_read(mapping); 2479 } 2480 lookup: 2481 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2482 pgoff_start, pgoff_end) { 2483 unsigned long address = vma_address(&folio->page, vma); 2484 2485 VM_BUG_ON_VMA(address == -EFAULT, vma); 2486 cond_resched(); 2487 2488 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2489 continue; 2490 2491 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2492 goto done; 2493 if (rwc->done && rwc->done(folio)) 2494 goto done; 2495 } 2496 2497 done: 2498 if (!locked) 2499 i_mmap_unlock_read(mapping); 2500 } 2501 2502 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2503 { 2504 if (unlikely(folio_test_ksm(folio))) 2505 rmap_walk_ksm(folio, rwc); 2506 else if (folio_test_anon(folio)) 2507 rmap_walk_anon(folio, rwc, false); 2508 else 2509 rmap_walk_file(folio, rwc, false); 2510 } 2511 2512 /* Like rmap_walk, but caller holds relevant rmap lock */ 2513 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2514 { 2515 /* no ksm support for now */ 2516 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2517 if (folio_test_anon(folio)) 2518 rmap_walk_anon(folio, rwc, true); 2519 else 2520 rmap_walk_file(folio, rwc, true); 2521 } 2522 2523 #ifdef CONFIG_HUGETLB_PAGE 2524 /* 2525 * The following two functions are for anonymous (private mapped) hugepages. 2526 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2527 * and no lru code, because we handle hugepages differently from common pages. 2528 * 2529 * RMAP_COMPOUND is ignored. 2530 */ 2531 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2532 unsigned long address, rmap_t flags) 2533 { 2534 struct folio *folio = page_folio(page); 2535 struct anon_vma *anon_vma = vma->anon_vma; 2536 int first; 2537 2538 BUG_ON(!folio_test_locked(folio)); 2539 BUG_ON(!anon_vma); 2540 /* address might be in next vma when migration races vma_merge */ 2541 first = atomic_inc_and_test(&folio->_entire_mapcount); 2542 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2543 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2544 if (first) 2545 __page_set_anon_rmap(folio, page, vma, address, 2546 !!(flags & RMAP_EXCLUSIVE)); 2547 } 2548 2549 void hugepage_add_new_anon_rmap(struct folio *folio, 2550 struct vm_area_struct *vma, unsigned long address) 2551 { 2552 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2553 /* increment count (starts at -1) */ 2554 atomic_set(&folio->_entire_mapcount, 0); 2555 folio_clear_hugetlb_restore_reserve(folio); 2556 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 2557 } 2558 #endif /* CONFIG_HUGETLB_PAGE */ 2559