xref: /openbmc/linux/mm/rmap.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->mutex
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	struct anon_vma *anon_vma;
70 
71 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 	if (anon_vma) {
73 		atomic_set(&anon_vma->refcount, 1);
74 		/*
75 		 * Initialise the anon_vma root to point to itself. If called
76 		 * from fork, the root will be reset to the parents anon_vma.
77 		 */
78 		anon_vma->root = anon_vma;
79 	}
80 
81 	return anon_vma;
82 }
83 
84 static inline void anon_vma_free(struct anon_vma *anon_vma)
85 {
86 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
87 
88 	/*
89 	 * Synchronize against page_lock_anon_vma() such that
90 	 * we can safely hold the lock without the anon_vma getting
91 	 * freed.
92 	 *
93 	 * Relies on the full mb implied by the atomic_dec_and_test() from
94 	 * put_anon_vma() against the acquire barrier implied by
95 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 	 *
97 	 * page_lock_anon_vma()		VS	put_anon_vma()
98 	 *   mutex_trylock()			  atomic_dec_and_test()
99 	 *   LOCK				  MB
100 	 *   atomic_read()			  mutex_is_locked()
101 	 *
102 	 * LOCK should suffice since the actual taking of the lock must
103 	 * happen _before_ what follows.
104 	 */
105 	if (mutex_is_locked(&anon_vma->root->mutex)) {
106 		anon_vma_lock(anon_vma);
107 		anon_vma_unlock(anon_vma);
108 	}
109 
110 	kmem_cache_free(anon_vma_cachep, anon_vma);
111 }
112 
113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114 {
115 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116 }
117 
118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119 {
120 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121 }
122 
123 static void anon_vma_chain_link(struct vm_area_struct *vma,
124 				struct anon_vma_chain *avc,
125 				struct anon_vma *anon_vma)
126 {
127 	avc->vma = vma;
128 	avc->anon_vma = anon_vma;
129 	list_add(&avc->same_vma, &vma->anon_vma_chain);
130 
131 	/*
132 	 * It's critical to add new vmas to the tail of the anon_vma,
133 	 * see comment in huge_memory.c:__split_huge_page().
134 	 */
135 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
136 }
137 
138 /**
139  * anon_vma_prepare - attach an anon_vma to a memory region
140  * @vma: the memory region in question
141  *
142  * This makes sure the memory mapping described by 'vma' has
143  * an 'anon_vma' attached to it, so that we can associate the
144  * anonymous pages mapped into it with that anon_vma.
145  *
146  * The common case will be that we already have one, but if
147  * not we either need to find an adjacent mapping that we
148  * can re-use the anon_vma from (very common when the only
149  * reason for splitting a vma has been mprotect()), or we
150  * allocate a new one.
151  *
152  * Anon-vma allocations are very subtle, because we may have
153  * optimistically looked up an anon_vma in page_lock_anon_vma()
154  * and that may actually touch the spinlock even in the newly
155  * allocated vma (it depends on RCU to make sure that the
156  * anon_vma isn't actually destroyed).
157  *
158  * As a result, we need to do proper anon_vma locking even
159  * for the new allocation. At the same time, we do not want
160  * to do any locking for the common case of already having
161  * an anon_vma.
162  *
163  * This must be called with the mmap_sem held for reading.
164  */
165 int anon_vma_prepare(struct vm_area_struct *vma)
166 {
167 	struct anon_vma *anon_vma = vma->anon_vma;
168 	struct anon_vma_chain *avc;
169 
170 	might_sleep();
171 	if (unlikely(!anon_vma)) {
172 		struct mm_struct *mm = vma->vm_mm;
173 		struct anon_vma *allocated;
174 
175 		avc = anon_vma_chain_alloc(GFP_KERNEL);
176 		if (!avc)
177 			goto out_enomem;
178 
179 		anon_vma = find_mergeable_anon_vma(vma);
180 		allocated = NULL;
181 		if (!anon_vma) {
182 			anon_vma = anon_vma_alloc();
183 			if (unlikely(!anon_vma))
184 				goto out_enomem_free_avc;
185 			allocated = anon_vma;
186 		}
187 
188 		anon_vma_lock(anon_vma);
189 		/* page_table_lock to protect against threads */
190 		spin_lock(&mm->page_table_lock);
191 		if (likely(!vma->anon_vma)) {
192 			vma->anon_vma = anon_vma;
193 			anon_vma_chain_link(vma, avc, anon_vma);
194 			allocated = NULL;
195 			avc = NULL;
196 		}
197 		spin_unlock(&mm->page_table_lock);
198 		anon_vma_unlock(anon_vma);
199 
200 		if (unlikely(allocated))
201 			put_anon_vma(allocated);
202 		if (unlikely(avc))
203 			anon_vma_chain_free(avc);
204 	}
205 	return 0;
206 
207  out_enomem_free_avc:
208 	anon_vma_chain_free(avc);
209  out_enomem:
210 	return -ENOMEM;
211 }
212 
213 /*
214  * This is a useful helper function for locking the anon_vma root as
215  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
216  * have the same vma.
217  *
218  * Such anon_vma's should have the same root, so you'd expect to see
219  * just a single mutex_lock for the whole traversal.
220  */
221 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
222 {
223 	struct anon_vma *new_root = anon_vma->root;
224 	if (new_root != root) {
225 		if (WARN_ON_ONCE(root))
226 			mutex_unlock(&root->mutex);
227 		root = new_root;
228 		mutex_lock(&root->mutex);
229 	}
230 	return root;
231 }
232 
233 static inline void unlock_anon_vma_root(struct anon_vma *root)
234 {
235 	if (root)
236 		mutex_unlock(&root->mutex);
237 }
238 
239 /*
240  * Attach the anon_vmas from src to dst.
241  * Returns 0 on success, -ENOMEM on failure.
242  */
243 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
244 {
245 	struct anon_vma_chain *avc, *pavc;
246 	struct anon_vma *root = NULL;
247 
248 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
249 		struct anon_vma *anon_vma;
250 
251 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
252 		if (unlikely(!avc)) {
253 			unlock_anon_vma_root(root);
254 			root = NULL;
255 			avc = anon_vma_chain_alloc(GFP_KERNEL);
256 			if (!avc)
257 				goto enomem_failure;
258 		}
259 		anon_vma = pavc->anon_vma;
260 		root = lock_anon_vma_root(root, anon_vma);
261 		anon_vma_chain_link(dst, avc, anon_vma);
262 	}
263 	unlock_anon_vma_root(root);
264 	return 0;
265 
266  enomem_failure:
267 	unlink_anon_vmas(dst);
268 	return -ENOMEM;
269 }
270 
271 /*
272  * Some rmap walk that needs to find all ptes/hugepmds without false
273  * negatives (like migrate and split_huge_page) running concurrent
274  * with operations that copy or move pagetables (like mremap() and
275  * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
276  * list to be in a certain order: the dst_vma must be placed after the
277  * src_vma in the list. This is always guaranteed by fork() but
278  * mremap() needs to call this function to enforce it in case the
279  * dst_vma isn't newly allocated and chained with the anon_vma_clone()
280  * function but just an extension of a pre-existing vma through
281  * vma_merge.
282  *
283  * NOTE: the same_anon_vma list can still be changed by other
284  * processes while mremap runs because mremap doesn't hold the
285  * anon_vma mutex to prevent modifications to the list while it
286  * runs. All we need to enforce is that the relative order of this
287  * process vmas isn't changing (we don't care about other vmas
288  * order). Each vma corresponds to an anon_vma_chain structure so
289  * there's no risk that other processes calling anon_vma_moveto_tail()
290  * and changing the same_anon_vma list under mremap() will screw with
291  * the relative order of this process vmas in the list, because we
292  * they can't alter the order of any vma that belongs to this
293  * process. And there can't be another anon_vma_moveto_tail() running
294  * concurrently with mremap() coming from this process because we hold
295  * the mmap_sem for the whole mremap(). fork() ordering dependency
296  * also shouldn't be affected because fork() only cares that the
297  * parent vmas are placed in the list before the child vmas and
298  * anon_vma_moveto_tail() won't reorder vmas from either the fork()
299  * parent or child.
300  */
301 void anon_vma_moveto_tail(struct vm_area_struct *dst)
302 {
303 	struct anon_vma_chain *pavc;
304 	struct anon_vma *root = NULL;
305 
306 	list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
307 		struct anon_vma *anon_vma = pavc->anon_vma;
308 		VM_BUG_ON(pavc->vma != dst);
309 		root = lock_anon_vma_root(root, anon_vma);
310 		list_del(&pavc->same_anon_vma);
311 		list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
312 	}
313 	unlock_anon_vma_root(root);
314 }
315 
316 /*
317  * Attach vma to its own anon_vma, as well as to the anon_vmas that
318  * the corresponding VMA in the parent process is attached to.
319  * Returns 0 on success, non-zero on failure.
320  */
321 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
322 {
323 	struct anon_vma_chain *avc;
324 	struct anon_vma *anon_vma;
325 
326 	/* Don't bother if the parent process has no anon_vma here. */
327 	if (!pvma->anon_vma)
328 		return 0;
329 
330 	/*
331 	 * First, attach the new VMA to the parent VMA's anon_vmas,
332 	 * so rmap can find non-COWed pages in child processes.
333 	 */
334 	if (anon_vma_clone(vma, pvma))
335 		return -ENOMEM;
336 
337 	/* Then add our own anon_vma. */
338 	anon_vma = anon_vma_alloc();
339 	if (!anon_vma)
340 		goto out_error;
341 	avc = anon_vma_chain_alloc(GFP_KERNEL);
342 	if (!avc)
343 		goto out_error_free_anon_vma;
344 
345 	/*
346 	 * The root anon_vma's spinlock is the lock actually used when we
347 	 * lock any of the anon_vmas in this anon_vma tree.
348 	 */
349 	anon_vma->root = pvma->anon_vma->root;
350 	/*
351 	 * With refcounts, an anon_vma can stay around longer than the
352 	 * process it belongs to. The root anon_vma needs to be pinned until
353 	 * this anon_vma is freed, because the lock lives in the root.
354 	 */
355 	get_anon_vma(anon_vma->root);
356 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
357 	vma->anon_vma = anon_vma;
358 	anon_vma_lock(anon_vma);
359 	anon_vma_chain_link(vma, avc, anon_vma);
360 	anon_vma_unlock(anon_vma);
361 
362 	return 0;
363 
364  out_error_free_anon_vma:
365 	put_anon_vma(anon_vma);
366  out_error:
367 	unlink_anon_vmas(vma);
368 	return -ENOMEM;
369 }
370 
371 void unlink_anon_vmas(struct vm_area_struct *vma)
372 {
373 	struct anon_vma_chain *avc, *next;
374 	struct anon_vma *root = NULL;
375 
376 	/*
377 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
378 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
379 	 */
380 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
381 		struct anon_vma *anon_vma = avc->anon_vma;
382 
383 		root = lock_anon_vma_root(root, anon_vma);
384 		list_del(&avc->same_anon_vma);
385 
386 		/*
387 		 * Leave empty anon_vmas on the list - we'll need
388 		 * to free them outside the lock.
389 		 */
390 		if (list_empty(&anon_vma->head))
391 			continue;
392 
393 		list_del(&avc->same_vma);
394 		anon_vma_chain_free(avc);
395 	}
396 	unlock_anon_vma_root(root);
397 
398 	/*
399 	 * Iterate the list once more, it now only contains empty and unlinked
400 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 	 * needing to acquire the anon_vma->root->mutex.
402 	 */
403 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404 		struct anon_vma *anon_vma = avc->anon_vma;
405 
406 		put_anon_vma(anon_vma);
407 
408 		list_del(&avc->same_vma);
409 		anon_vma_chain_free(avc);
410 	}
411 }
412 
413 static void anon_vma_ctor(void *data)
414 {
415 	struct anon_vma *anon_vma = data;
416 
417 	mutex_init(&anon_vma->mutex);
418 	atomic_set(&anon_vma->refcount, 0);
419 	INIT_LIST_HEAD(&anon_vma->head);
420 }
421 
422 void __init anon_vma_init(void)
423 {
424 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
425 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
426 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
427 }
428 
429 /*
430  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
431  *
432  * Since there is no serialization what so ever against page_remove_rmap()
433  * the best this function can do is return a locked anon_vma that might
434  * have been relevant to this page.
435  *
436  * The page might have been remapped to a different anon_vma or the anon_vma
437  * returned may already be freed (and even reused).
438  *
439  * In case it was remapped to a different anon_vma, the new anon_vma will be a
440  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
441  * ensure that any anon_vma obtained from the page will still be valid for as
442  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
443  *
444  * All users of this function must be very careful when walking the anon_vma
445  * chain and verify that the page in question is indeed mapped in it
446  * [ something equivalent to page_mapped_in_vma() ].
447  *
448  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
449  * that the anon_vma pointer from page->mapping is valid if there is a
450  * mapcount, we can dereference the anon_vma after observing those.
451  */
452 struct anon_vma *page_get_anon_vma(struct page *page)
453 {
454 	struct anon_vma *anon_vma = NULL;
455 	unsigned long anon_mapping;
456 
457 	rcu_read_lock();
458 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
459 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
460 		goto out;
461 	if (!page_mapped(page))
462 		goto out;
463 
464 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
465 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
466 		anon_vma = NULL;
467 		goto out;
468 	}
469 
470 	/*
471 	 * If this page is still mapped, then its anon_vma cannot have been
472 	 * freed.  But if it has been unmapped, we have no security against the
473 	 * anon_vma structure being freed and reused (for another anon_vma:
474 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
475 	 * above cannot corrupt).
476 	 */
477 	if (!page_mapped(page)) {
478 		put_anon_vma(anon_vma);
479 		anon_vma = NULL;
480 	}
481 out:
482 	rcu_read_unlock();
483 
484 	return anon_vma;
485 }
486 
487 /*
488  * Similar to page_get_anon_vma() except it locks the anon_vma.
489  *
490  * Its a little more complex as it tries to keep the fast path to a single
491  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
492  * reference like with page_get_anon_vma() and then block on the mutex.
493  */
494 struct anon_vma *page_lock_anon_vma(struct page *page)
495 {
496 	struct anon_vma *anon_vma = NULL;
497 	struct anon_vma *root_anon_vma;
498 	unsigned long anon_mapping;
499 
500 	rcu_read_lock();
501 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
502 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
503 		goto out;
504 	if (!page_mapped(page))
505 		goto out;
506 
507 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
508 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
509 	if (mutex_trylock(&root_anon_vma->mutex)) {
510 		/*
511 		 * If the page is still mapped, then this anon_vma is still
512 		 * its anon_vma, and holding the mutex ensures that it will
513 		 * not go away, see anon_vma_free().
514 		 */
515 		if (!page_mapped(page)) {
516 			mutex_unlock(&root_anon_vma->mutex);
517 			anon_vma = NULL;
518 		}
519 		goto out;
520 	}
521 
522 	/* trylock failed, we got to sleep */
523 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
524 		anon_vma = NULL;
525 		goto out;
526 	}
527 
528 	if (!page_mapped(page)) {
529 		put_anon_vma(anon_vma);
530 		anon_vma = NULL;
531 		goto out;
532 	}
533 
534 	/* we pinned the anon_vma, its safe to sleep */
535 	rcu_read_unlock();
536 	anon_vma_lock(anon_vma);
537 
538 	if (atomic_dec_and_test(&anon_vma->refcount)) {
539 		/*
540 		 * Oops, we held the last refcount, release the lock
541 		 * and bail -- can't simply use put_anon_vma() because
542 		 * we'll deadlock on the anon_vma_lock() recursion.
543 		 */
544 		anon_vma_unlock(anon_vma);
545 		__put_anon_vma(anon_vma);
546 		anon_vma = NULL;
547 	}
548 
549 	return anon_vma;
550 
551 out:
552 	rcu_read_unlock();
553 	return anon_vma;
554 }
555 
556 void page_unlock_anon_vma(struct anon_vma *anon_vma)
557 {
558 	anon_vma_unlock(anon_vma);
559 }
560 
561 /*
562  * At what user virtual address is page expected in @vma?
563  * Returns virtual address or -EFAULT if page's index/offset is not
564  * within the range mapped the @vma.
565  */
566 inline unsigned long
567 vma_address(struct page *page, struct vm_area_struct *vma)
568 {
569 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
570 	unsigned long address;
571 
572 	if (unlikely(is_vm_hugetlb_page(vma)))
573 		pgoff = page->index << huge_page_order(page_hstate(page));
574 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
575 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
576 		/* page should be within @vma mapping range */
577 		return -EFAULT;
578 	}
579 	return address;
580 }
581 
582 /*
583  * At what user virtual address is page expected in vma?
584  * Caller should check the page is actually part of the vma.
585  */
586 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
587 {
588 	if (PageAnon(page)) {
589 		struct anon_vma *page__anon_vma = page_anon_vma(page);
590 		/*
591 		 * Note: swapoff's unuse_vma() is more efficient with this
592 		 * check, and needs it to match anon_vma when KSM is active.
593 		 */
594 		if (!vma->anon_vma || !page__anon_vma ||
595 		    vma->anon_vma->root != page__anon_vma->root)
596 			return -EFAULT;
597 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
598 		if (!vma->vm_file ||
599 		    vma->vm_file->f_mapping != page->mapping)
600 			return -EFAULT;
601 	} else
602 		return -EFAULT;
603 	return vma_address(page, vma);
604 }
605 
606 /*
607  * Check that @page is mapped at @address into @mm.
608  *
609  * If @sync is false, page_check_address may perform a racy check to avoid
610  * the page table lock when the pte is not present (helpful when reclaiming
611  * highly shared pages).
612  *
613  * On success returns with pte mapped and locked.
614  */
615 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
616 			  unsigned long address, spinlock_t **ptlp, int sync)
617 {
618 	pgd_t *pgd;
619 	pud_t *pud;
620 	pmd_t *pmd;
621 	pte_t *pte;
622 	spinlock_t *ptl;
623 
624 	if (unlikely(PageHuge(page))) {
625 		pte = huge_pte_offset(mm, address);
626 		ptl = &mm->page_table_lock;
627 		goto check;
628 	}
629 
630 	pgd = pgd_offset(mm, address);
631 	if (!pgd_present(*pgd))
632 		return NULL;
633 
634 	pud = pud_offset(pgd, address);
635 	if (!pud_present(*pud))
636 		return NULL;
637 
638 	pmd = pmd_offset(pud, address);
639 	if (!pmd_present(*pmd))
640 		return NULL;
641 	if (pmd_trans_huge(*pmd))
642 		return NULL;
643 
644 	pte = pte_offset_map(pmd, address);
645 	/* Make a quick check before getting the lock */
646 	if (!sync && !pte_present(*pte)) {
647 		pte_unmap(pte);
648 		return NULL;
649 	}
650 
651 	ptl = pte_lockptr(mm, pmd);
652 check:
653 	spin_lock(ptl);
654 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
655 		*ptlp = ptl;
656 		return pte;
657 	}
658 	pte_unmap_unlock(pte, ptl);
659 	return NULL;
660 }
661 
662 /**
663  * page_mapped_in_vma - check whether a page is really mapped in a VMA
664  * @page: the page to test
665  * @vma: the VMA to test
666  *
667  * Returns 1 if the page is mapped into the page tables of the VMA, 0
668  * if the page is not mapped into the page tables of this VMA.  Only
669  * valid for normal file or anonymous VMAs.
670  */
671 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
672 {
673 	unsigned long address;
674 	pte_t *pte;
675 	spinlock_t *ptl;
676 
677 	address = vma_address(page, vma);
678 	if (address == -EFAULT)		/* out of vma range */
679 		return 0;
680 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
681 	if (!pte)			/* the page is not in this mm */
682 		return 0;
683 	pte_unmap_unlock(pte, ptl);
684 
685 	return 1;
686 }
687 
688 /*
689  * Subfunctions of page_referenced: page_referenced_one called
690  * repeatedly from either page_referenced_anon or page_referenced_file.
691  */
692 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
693 			unsigned long address, unsigned int *mapcount,
694 			unsigned long *vm_flags)
695 {
696 	struct mm_struct *mm = vma->vm_mm;
697 	int referenced = 0;
698 
699 	if (unlikely(PageTransHuge(page))) {
700 		pmd_t *pmd;
701 
702 		spin_lock(&mm->page_table_lock);
703 		/*
704 		 * rmap might return false positives; we must filter
705 		 * these out using page_check_address_pmd().
706 		 */
707 		pmd = page_check_address_pmd(page, mm, address,
708 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
709 		if (!pmd) {
710 			spin_unlock(&mm->page_table_lock);
711 			goto out;
712 		}
713 
714 		if (vma->vm_flags & VM_LOCKED) {
715 			spin_unlock(&mm->page_table_lock);
716 			*mapcount = 0;	/* break early from loop */
717 			*vm_flags |= VM_LOCKED;
718 			goto out;
719 		}
720 
721 		/* go ahead even if the pmd is pmd_trans_splitting() */
722 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
723 			referenced++;
724 		spin_unlock(&mm->page_table_lock);
725 	} else {
726 		pte_t *pte;
727 		spinlock_t *ptl;
728 
729 		/*
730 		 * rmap might return false positives; we must filter
731 		 * these out using page_check_address().
732 		 */
733 		pte = page_check_address(page, mm, address, &ptl, 0);
734 		if (!pte)
735 			goto out;
736 
737 		if (vma->vm_flags & VM_LOCKED) {
738 			pte_unmap_unlock(pte, ptl);
739 			*mapcount = 0;	/* break early from loop */
740 			*vm_flags |= VM_LOCKED;
741 			goto out;
742 		}
743 
744 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
745 			/*
746 			 * Don't treat a reference through a sequentially read
747 			 * mapping as such.  If the page has been used in
748 			 * another mapping, we will catch it; if this other
749 			 * mapping is already gone, the unmap path will have
750 			 * set PG_referenced or activated the page.
751 			 */
752 			if (likely(!VM_SequentialReadHint(vma)))
753 				referenced++;
754 		}
755 		pte_unmap_unlock(pte, ptl);
756 	}
757 
758 	/* Pretend the page is referenced if the task has the
759 	   swap token and is in the middle of a page fault. */
760 	if (mm != current->mm && has_swap_token(mm) &&
761 			rwsem_is_locked(&mm->mmap_sem))
762 		referenced++;
763 
764 	(*mapcount)--;
765 
766 	if (referenced)
767 		*vm_flags |= vma->vm_flags;
768 out:
769 	return referenced;
770 }
771 
772 static int page_referenced_anon(struct page *page,
773 				struct mem_cgroup *memcg,
774 				unsigned long *vm_flags)
775 {
776 	unsigned int mapcount;
777 	struct anon_vma *anon_vma;
778 	struct anon_vma_chain *avc;
779 	int referenced = 0;
780 
781 	anon_vma = page_lock_anon_vma(page);
782 	if (!anon_vma)
783 		return referenced;
784 
785 	mapcount = page_mapcount(page);
786 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
787 		struct vm_area_struct *vma = avc->vma;
788 		unsigned long address = vma_address(page, vma);
789 		if (address == -EFAULT)
790 			continue;
791 		/*
792 		 * If we are reclaiming on behalf of a cgroup, skip
793 		 * counting on behalf of references from different
794 		 * cgroups
795 		 */
796 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
797 			continue;
798 		referenced += page_referenced_one(page, vma, address,
799 						  &mapcount, vm_flags);
800 		if (!mapcount)
801 			break;
802 	}
803 
804 	page_unlock_anon_vma(anon_vma);
805 	return referenced;
806 }
807 
808 /**
809  * page_referenced_file - referenced check for object-based rmap
810  * @page: the page we're checking references on.
811  * @memcg: target memory control group
812  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
813  *
814  * For an object-based mapped page, find all the places it is mapped and
815  * check/clear the referenced flag.  This is done by following the page->mapping
816  * pointer, then walking the chain of vmas it holds.  It returns the number
817  * of references it found.
818  *
819  * This function is only called from page_referenced for object-based pages.
820  */
821 static int page_referenced_file(struct page *page,
822 				struct mem_cgroup *memcg,
823 				unsigned long *vm_flags)
824 {
825 	unsigned int mapcount;
826 	struct address_space *mapping = page->mapping;
827 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
828 	struct vm_area_struct *vma;
829 	struct prio_tree_iter iter;
830 	int referenced = 0;
831 
832 	/*
833 	 * The caller's checks on page->mapping and !PageAnon have made
834 	 * sure that this is a file page: the check for page->mapping
835 	 * excludes the case just before it gets set on an anon page.
836 	 */
837 	BUG_ON(PageAnon(page));
838 
839 	/*
840 	 * The page lock not only makes sure that page->mapping cannot
841 	 * suddenly be NULLified by truncation, it makes sure that the
842 	 * structure at mapping cannot be freed and reused yet,
843 	 * so we can safely take mapping->i_mmap_mutex.
844 	 */
845 	BUG_ON(!PageLocked(page));
846 
847 	mutex_lock(&mapping->i_mmap_mutex);
848 
849 	/*
850 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
851 	 * is more likely to be accurate if we note it after spinning.
852 	 */
853 	mapcount = page_mapcount(page);
854 
855 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
856 		unsigned long address = vma_address(page, vma);
857 		if (address == -EFAULT)
858 			continue;
859 		/*
860 		 * If we are reclaiming on behalf of a cgroup, skip
861 		 * counting on behalf of references from different
862 		 * cgroups
863 		 */
864 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
865 			continue;
866 		referenced += page_referenced_one(page, vma, address,
867 						  &mapcount, vm_flags);
868 		if (!mapcount)
869 			break;
870 	}
871 
872 	mutex_unlock(&mapping->i_mmap_mutex);
873 	return referenced;
874 }
875 
876 /**
877  * page_referenced - test if the page was referenced
878  * @page: the page to test
879  * @is_locked: caller holds lock on the page
880  * @memcg: target memory cgroup
881  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
882  *
883  * Quick test_and_clear_referenced for all mappings to a page,
884  * returns the number of ptes which referenced the page.
885  */
886 int page_referenced(struct page *page,
887 		    int is_locked,
888 		    struct mem_cgroup *memcg,
889 		    unsigned long *vm_flags)
890 {
891 	int referenced = 0;
892 	int we_locked = 0;
893 
894 	*vm_flags = 0;
895 	if (page_mapped(page) && page_rmapping(page)) {
896 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
897 			we_locked = trylock_page(page);
898 			if (!we_locked) {
899 				referenced++;
900 				goto out;
901 			}
902 		}
903 		if (unlikely(PageKsm(page)))
904 			referenced += page_referenced_ksm(page, memcg,
905 								vm_flags);
906 		else if (PageAnon(page))
907 			referenced += page_referenced_anon(page, memcg,
908 								vm_flags);
909 		else if (page->mapping)
910 			referenced += page_referenced_file(page, memcg,
911 								vm_flags);
912 		if (we_locked)
913 			unlock_page(page);
914 
915 		if (page_test_and_clear_young(page_to_pfn(page)))
916 			referenced++;
917 	}
918 out:
919 	return referenced;
920 }
921 
922 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
923 			    unsigned long address)
924 {
925 	struct mm_struct *mm = vma->vm_mm;
926 	pte_t *pte;
927 	spinlock_t *ptl;
928 	int ret = 0;
929 
930 	pte = page_check_address(page, mm, address, &ptl, 1);
931 	if (!pte)
932 		goto out;
933 
934 	if (pte_dirty(*pte) || pte_write(*pte)) {
935 		pte_t entry;
936 
937 		flush_cache_page(vma, address, pte_pfn(*pte));
938 		entry = ptep_clear_flush_notify(vma, address, pte);
939 		entry = pte_wrprotect(entry);
940 		entry = pte_mkclean(entry);
941 		set_pte_at(mm, address, pte, entry);
942 		ret = 1;
943 	}
944 
945 	pte_unmap_unlock(pte, ptl);
946 out:
947 	return ret;
948 }
949 
950 static int page_mkclean_file(struct address_space *mapping, struct page *page)
951 {
952 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
953 	struct vm_area_struct *vma;
954 	struct prio_tree_iter iter;
955 	int ret = 0;
956 
957 	BUG_ON(PageAnon(page));
958 
959 	mutex_lock(&mapping->i_mmap_mutex);
960 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
961 		if (vma->vm_flags & VM_SHARED) {
962 			unsigned long address = vma_address(page, vma);
963 			if (address == -EFAULT)
964 				continue;
965 			ret += page_mkclean_one(page, vma, address);
966 		}
967 	}
968 	mutex_unlock(&mapping->i_mmap_mutex);
969 	return ret;
970 }
971 
972 int page_mkclean(struct page *page)
973 {
974 	int ret = 0;
975 
976 	BUG_ON(!PageLocked(page));
977 
978 	if (page_mapped(page)) {
979 		struct address_space *mapping = page_mapping(page);
980 		if (mapping) {
981 			ret = page_mkclean_file(mapping, page);
982 			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
983 				ret = 1;
984 		}
985 	}
986 
987 	return ret;
988 }
989 EXPORT_SYMBOL_GPL(page_mkclean);
990 
991 /**
992  * page_move_anon_rmap - move a page to our anon_vma
993  * @page:	the page to move to our anon_vma
994  * @vma:	the vma the page belongs to
995  * @address:	the user virtual address mapped
996  *
997  * When a page belongs exclusively to one process after a COW event,
998  * that page can be moved into the anon_vma that belongs to just that
999  * process, so the rmap code will not search the parent or sibling
1000  * processes.
1001  */
1002 void page_move_anon_rmap(struct page *page,
1003 	struct vm_area_struct *vma, unsigned long address)
1004 {
1005 	struct anon_vma *anon_vma = vma->anon_vma;
1006 
1007 	VM_BUG_ON(!PageLocked(page));
1008 	VM_BUG_ON(!anon_vma);
1009 	VM_BUG_ON(page->index != linear_page_index(vma, address));
1010 
1011 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1012 	page->mapping = (struct address_space *) anon_vma;
1013 }
1014 
1015 /**
1016  * __page_set_anon_rmap - set up new anonymous rmap
1017  * @page:	Page to add to rmap
1018  * @vma:	VM area to add page to.
1019  * @address:	User virtual address of the mapping
1020  * @exclusive:	the page is exclusively owned by the current process
1021  */
1022 static void __page_set_anon_rmap(struct page *page,
1023 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1024 {
1025 	struct anon_vma *anon_vma = vma->anon_vma;
1026 
1027 	BUG_ON(!anon_vma);
1028 
1029 	if (PageAnon(page))
1030 		return;
1031 
1032 	/*
1033 	 * If the page isn't exclusively mapped into this vma,
1034 	 * we must use the _oldest_ possible anon_vma for the
1035 	 * page mapping!
1036 	 */
1037 	if (!exclusive)
1038 		anon_vma = anon_vma->root;
1039 
1040 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1041 	page->mapping = (struct address_space *) anon_vma;
1042 	page->index = linear_page_index(vma, address);
1043 }
1044 
1045 /**
1046  * __page_check_anon_rmap - sanity check anonymous rmap addition
1047  * @page:	the page to add the mapping to
1048  * @vma:	the vm area in which the mapping is added
1049  * @address:	the user virtual address mapped
1050  */
1051 static void __page_check_anon_rmap(struct page *page,
1052 	struct vm_area_struct *vma, unsigned long address)
1053 {
1054 #ifdef CONFIG_DEBUG_VM
1055 	/*
1056 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1057 	 * be set up correctly at this point.
1058 	 *
1059 	 * We have exclusion against page_add_anon_rmap because the caller
1060 	 * always holds the page locked, except if called from page_dup_rmap,
1061 	 * in which case the page is already known to be setup.
1062 	 *
1063 	 * We have exclusion against page_add_new_anon_rmap because those pages
1064 	 * are initially only visible via the pagetables, and the pte is locked
1065 	 * over the call to page_add_new_anon_rmap.
1066 	 */
1067 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1068 	BUG_ON(page->index != linear_page_index(vma, address));
1069 #endif
1070 }
1071 
1072 /**
1073  * page_add_anon_rmap - add pte mapping to an anonymous page
1074  * @page:	the page to add the mapping to
1075  * @vma:	the vm area in which the mapping is added
1076  * @address:	the user virtual address mapped
1077  *
1078  * The caller needs to hold the pte lock, and the page must be locked in
1079  * the anon_vma case: to serialize mapping,index checking after setting,
1080  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1081  * (but PageKsm is never downgraded to PageAnon).
1082  */
1083 void page_add_anon_rmap(struct page *page,
1084 	struct vm_area_struct *vma, unsigned long address)
1085 {
1086 	do_page_add_anon_rmap(page, vma, address, 0);
1087 }
1088 
1089 /*
1090  * Special version of the above for do_swap_page, which often runs
1091  * into pages that are exclusively owned by the current process.
1092  * Everybody else should continue to use page_add_anon_rmap above.
1093  */
1094 void do_page_add_anon_rmap(struct page *page,
1095 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1096 {
1097 	int first = atomic_inc_and_test(&page->_mapcount);
1098 	if (first) {
1099 		if (!PageTransHuge(page))
1100 			__inc_zone_page_state(page, NR_ANON_PAGES);
1101 		else
1102 			__inc_zone_page_state(page,
1103 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1104 	}
1105 	if (unlikely(PageKsm(page)))
1106 		return;
1107 
1108 	VM_BUG_ON(!PageLocked(page));
1109 	/* address might be in next vma when migration races vma_adjust */
1110 	if (first)
1111 		__page_set_anon_rmap(page, vma, address, exclusive);
1112 	else
1113 		__page_check_anon_rmap(page, vma, address);
1114 }
1115 
1116 /**
1117  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1118  * @page:	the page to add the mapping to
1119  * @vma:	the vm area in which the mapping is added
1120  * @address:	the user virtual address mapped
1121  *
1122  * Same as page_add_anon_rmap but must only be called on *new* pages.
1123  * This means the inc-and-test can be bypassed.
1124  * Page does not have to be locked.
1125  */
1126 void page_add_new_anon_rmap(struct page *page,
1127 	struct vm_area_struct *vma, unsigned long address)
1128 {
1129 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1130 	SetPageSwapBacked(page);
1131 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1132 	if (!PageTransHuge(page))
1133 		__inc_zone_page_state(page, NR_ANON_PAGES);
1134 	else
1135 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1136 	__page_set_anon_rmap(page, vma, address, 1);
1137 	if (page_evictable(page, vma))
1138 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1139 	else
1140 		add_page_to_unevictable_list(page);
1141 }
1142 
1143 /**
1144  * page_add_file_rmap - add pte mapping to a file page
1145  * @page: the page to add the mapping to
1146  *
1147  * The caller needs to hold the pte lock.
1148  */
1149 void page_add_file_rmap(struct page *page)
1150 {
1151 	bool locked;
1152 	unsigned long flags;
1153 
1154 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1155 	if (atomic_inc_and_test(&page->_mapcount)) {
1156 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1157 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1158 	}
1159 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1160 }
1161 
1162 /**
1163  * page_remove_rmap - take down pte mapping from a page
1164  * @page: page to remove mapping from
1165  *
1166  * The caller needs to hold the pte lock.
1167  */
1168 void page_remove_rmap(struct page *page)
1169 {
1170 	bool anon = PageAnon(page);
1171 	bool locked;
1172 	unsigned long flags;
1173 
1174 	/*
1175 	 * The anon case has no mem_cgroup page_stat to update; but may
1176 	 * uncharge_page() below, where the lock ordering can deadlock if
1177 	 * we hold the lock against page_stat move: so avoid it on anon.
1178 	 */
1179 	if (!anon)
1180 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1181 
1182 	/* page still mapped by someone else? */
1183 	if (!atomic_add_negative(-1, &page->_mapcount))
1184 		goto out;
1185 
1186 	/*
1187 	 * Now that the last pte has gone, s390 must transfer dirty
1188 	 * flag from storage key to struct page.  We can usually skip
1189 	 * this if the page is anon, so about to be freed; but perhaps
1190 	 * not if it's in swapcache - there might be another pte slot
1191 	 * containing the swap entry, but page not yet written to swap.
1192 	 */
1193 	if ((!anon || PageSwapCache(page)) &&
1194 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1195 		set_page_dirty(page);
1196 	/*
1197 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1198 	 * and not charged by memcg for now.
1199 	 */
1200 	if (unlikely(PageHuge(page)))
1201 		goto out;
1202 	if (anon) {
1203 		mem_cgroup_uncharge_page(page);
1204 		if (!PageTransHuge(page))
1205 			__dec_zone_page_state(page, NR_ANON_PAGES);
1206 		else
1207 			__dec_zone_page_state(page,
1208 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1209 	} else {
1210 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1211 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1212 	}
1213 	/*
1214 	 * It would be tidy to reset the PageAnon mapping here,
1215 	 * but that might overwrite a racing page_add_anon_rmap
1216 	 * which increments mapcount after us but sets mapping
1217 	 * before us: so leave the reset to free_hot_cold_page,
1218 	 * and remember that it's only reliable while mapped.
1219 	 * Leaving it set also helps swapoff to reinstate ptes
1220 	 * faster for those pages still in swapcache.
1221 	 */
1222 out:
1223 	if (!anon)
1224 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1225 }
1226 
1227 /*
1228  * Subfunctions of try_to_unmap: try_to_unmap_one called
1229  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1230  */
1231 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1232 		     unsigned long address, enum ttu_flags flags)
1233 {
1234 	struct mm_struct *mm = vma->vm_mm;
1235 	pte_t *pte;
1236 	pte_t pteval;
1237 	spinlock_t *ptl;
1238 	int ret = SWAP_AGAIN;
1239 
1240 	pte = page_check_address(page, mm, address, &ptl, 0);
1241 	if (!pte)
1242 		goto out;
1243 
1244 	/*
1245 	 * If the page is mlock()d, we cannot swap it out.
1246 	 * If it's recently referenced (perhaps page_referenced
1247 	 * skipped over this mm) then we should reactivate it.
1248 	 */
1249 	if (!(flags & TTU_IGNORE_MLOCK)) {
1250 		if (vma->vm_flags & VM_LOCKED)
1251 			goto out_mlock;
1252 
1253 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1254 			goto out_unmap;
1255 	}
1256 	if (!(flags & TTU_IGNORE_ACCESS)) {
1257 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1258 			ret = SWAP_FAIL;
1259 			goto out_unmap;
1260 		}
1261   	}
1262 
1263 	/* Nuke the page table entry. */
1264 	flush_cache_page(vma, address, page_to_pfn(page));
1265 	pteval = ptep_clear_flush_notify(vma, address, pte);
1266 
1267 	/* Move the dirty bit to the physical page now the pte is gone. */
1268 	if (pte_dirty(pteval))
1269 		set_page_dirty(page);
1270 
1271 	/* Update high watermark before we lower rss */
1272 	update_hiwater_rss(mm);
1273 
1274 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1275 		if (PageAnon(page))
1276 			dec_mm_counter(mm, MM_ANONPAGES);
1277 		else
1278 			dec_mm_counter(mm, MM_FILEPAGES);
1279 		set_pte_at(mm, address, pte,
1280 				swp_entry_to_pte(make_hwpoison_entry(page)));
1281 	} else if (PageAnon(page)) {
1282 		swp_entry_t entry = { .val = page_private(page) };
1283 
1284 		if (PageSwapCache(page)) {
1285 			/*
1286 			 * Store the swap location in the pte.
1287 			 * See handle_pte_fault() ...
1288 			 */
1289 			if (swap_duplicate(entry) < 0) {
1290 				set_pte_at(mm, address, pte, pteval);
1291 				ret = SWAP_FAIL;
1292 				goto out_unmap;
1293 			}
1294 			if (list_empty(&mm->mmlist)) {
1295 				spin_lock(&mmlist_lock);
1296 				if (list_empty(&mm->mmlist))
1297 					list_add(&mm->mmlist, &init_mm.mmlist);
1298 				spin_unlock(&mmlist_lock);
1299 			}
1300 			dec_mm_counter(mm, MM_ANONPAGES);
1301 			inc_mm_counter(mm, MM_SWAPENTS);
1302 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1303 			/*
1304 			 * Store the pfn of the page in a special migration
1305 			 * pte. do_swap_page() will wait until the migration
1306 			 * pte is removed and then restart fault handling.
1307 			 */
1308 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1309 			entry = make_migration_entry(page, pte_write(pteval));
1310 		}
1311 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1312 		BUG_ON(pte_file(*pte));
1313 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1314 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1315 		/* Establish migration entry for a file page */
1316 		swp_entry_t entry;
1317 		entry = make_migration_entry(page, pte_write(pteval));
1318 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1319 	} else
1320 		dec_mm_counter(mm, MM_FILEPAGES);
1321 
1322 	page_remove_rmap(page);
1323 	page_cache_release(page);
1324 
1325 out_unmap:
1326 	pte_unmap_unlock(pte, ptl);
1327 out:
1328 	return ret;
1329 
1330 out_mlock:
1331 	pte_unmap_unlock(pte, ptl);
1332 
1333 
1334 	/*
1335 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1336 	 * unstable result and race. Plus, We can't wait here because
1337 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1338 	 * if trylock failed, the page remain in evictable lru and later
1339 	 * vmscan could retry to move the page to unevictable lru if the
1340 	 * page is actually mlocked.
1341 	 */
1342 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1343 		if (vma->vm_flags & VM_LOCKED) {
1344 			mlock_vma_page(page);
1345 			ret = SWAP_MLOCK;
1346 		}
1347 		up_read(&vma->vm_mm->mmap_sem);
1348 	}
1349 	return ret;
1350 }
1351 
1352 /*
1353  * objrmap doesn't work for nonlinear VMAs because the assumption that
1354  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1355  * Consequently, given a particular page and its ->index, we cannot locate the
1356  * ptes which are mapping that page without an exhaustive linear search.
1357  *
1358  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1359  * maps the file to which the target page belongs.  The ->vm_private_data field
1360  * holds the current cursor into that scan.  Successive searches will circulate
1361  * around the vma's virtual address space.
1362  *
1363  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1364  * more scanning pressure is placed against them as well.   Eventually pages
1365  * will become fully unmapped and are eligible for eviction.
1366  *
1367  * For very sparsely populated VMAs this is a little inefficient - chances are
1368  * there there won't be many ptes located within the scan cluster.  In this case
1369  * maybe we could scan further - to the end of the pte page, perhaps.
1370  *
1371  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1372  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1373  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1374  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1375  */
1376 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1377 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1378 
1379 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1380 		struct vm_area_struct *vma, struct page *check_page)
1381 {
1382 	struct mm_struct *mm = vma->vm_mm;
1383 	pgd_t *pgd;
1384 	pud_t *pud;
1385 	pmd_t *pmd;
1386 	pte_t *pte;
1387 	pte_t pteval;
1388 	spinlock_t *ptl;
1389 	struct page *page;
1390 	unsigned long address;
1391 	unsigned long end;
1392 	int ret = SWAP_AGAIN;
1393 	int locked_vma = 0;
1394 
1395 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1396 	end = address + CLUSTER_SIZE;
1397 	if (address < vma->vm_start)
1398 		address = vma->vm_start;
1399 	if (end > vma->vm_end)
1400 		end = vma->vm_end;
1401 
1402 	pgd = pgd_offset(mm, address);
1403 	if (!pgd_present(*pgd))
1404 		return ret;
1405 
1406 	pud = pud_offset(pgd, address);
1407 	if (!pud_present(*pud))
1408 		return ret;
1409 
1410 	pmd = pmd_offset(pud, address);
1411 	if (!pmd_present(*pmd))
1412 		return ret;
1413 
1414 	/*
1415 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1416 	 * keep the sem while scanning the cluster for mlocking pages.
1417 	 */
1418 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1419 		locked_vma = (vma->vm_flags & VM_LOCKED);
1420 		if (!locked_vma)
1421 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1422 	}
1423 
1424 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1425 
1426 	/* Update high watermark before we lower rss */
1427 	update_hiwater_rss(mm);
1428 
1429 	for (; address < end; pte++, address += PAGE_SIZE) {
1430 		if (!pte_present(*pte))
1431 			continue;
1432 		page = vm_normal_page(vma, address, *pte);
1433 		BUG_ON(!page || PageAnon(page));
1434 
1435 		if (locked_vma) {
1436 			mlock_vma_page(page);   /* no-op if already mlocked */
1437 			if (page == check_page)
1438 				ret = SWAP_MLOCK;
1439 			continue;	/* don't unmap */
1440 		}
1441 
1442 		if (ptep_clear_flush_young_notify(vma, address, pte))
1443 			continue;
1444 
1445 		/* Nuke the page table entry. */
1446 		flush_cache_page(vma, address, pte_pfn(*pte));
1447 		pteval = ptep_clear_flush_notify(vma, address, pte);
1448 
1449 		/* If nonlinear, store the file page offset in the pte. */
1450 		if (page->index != linear_page_index(vma, address))
1451 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1452 
1453 		/* Move the dirty bit to the physical page now the pte is gone. */
1454 		if (pte_dirty(pteval))
1455 			set_page_dirty(page);
1456 
1457 		page_remove_rmap(page);
1458 		page_cache_release(page);
1459 		dec_mm_counter(mm, MM_FILEPAGES);
1460 		(*mapcount)--;
1461 	}
1462 	pte_unmap_unlock(pte - 1, ptl);
1463 	if (locked_vma)
1464 		up_read(&vma->vm_mm->mmap_sem);
1465 	return ret;
1466 }
1467 
1468 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1469 {
1470 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1471 
1472 	if (!maybe_stack)
1473 		return false;
1474 
1475 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1476 						VM_STACK_INCOMPLETE_SETUP)
1477 		return true;
1478 
1479 	return false;
1480 }
1481 
1482 /**
1483  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1484  * rmap method
1485  * @page: the page to unmap/unlock
1486  * @flags: action and flags
1487  *
1488  * Find all the mappings of a page using the mapping pointer and the vma chains
1489  * contained in the anon_vma struct it points to.
1490  *
1491  * This function is only called from try_to_unmap/try_to_munlock for
1492  * anonymous pages.
1493  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1494  * where the page was found will be held for write.  So, we won't recheck
1495  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1496  * 'LOCKED.
1497  */
1498 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1499 {
1500 	struct anon_vma *anon_vma;
1501 	struct anon_vma_chain *avc;
1502 	int ret = SWAP_AGAIN;
1503 
1504 	anon_vma = page_lock_anon_vma(page);
1505 	if (!anon_vma)
1506 		return ret;
1507 
1508 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1509 		struct vm_area_struct *vma = avc->vma;
1510 		unsigned long address;
1511 
1512 		/*
1513 		 * During exec, a temporary VMA is setup and later moved.
1514 		 * The VMA is moved under the anon_vma lock but not the
1515 		 * page tables leading to a race where migration cannot
1516 		 * find the migration ptes. Rather than increasing the
1517 		 * locking requirements of exec(), migration skips
1518 		 * temporary VMAs until after exec() completes.
1519 		 */
1520 		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1521 				is_vma_temporary_stack(vma))
1522 			continue;
1523 
1524 		address = vma_address(page, vma);
1525 		if (address == -EFAULT)
1526 			continue;
1527 		ret = try_to_unmap_one(page, vma, address, flags);
1528 		if (ret != SWAP_AGAIN || !page_mapped(page))
1529 			break;
1530 	}
1531 
1532 	page_unlock_anon_vma(anon_vma);
1533 	return ret;
1534 }
1535 
1536 /**
1537  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1538  * @page: the page to unmap/unlock
1539  * @flags: action and flags
1540  *
1541  * Find all the mappings of a page using the mapping pointer and the vma chains
1542  * contained in the address_space struct it points to.
1543  *
1544  * This function is only called from try_to_unmap/try_to_munlock for
1545  * object-based pages.
1546  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1547  * where the page was found will be held for write.  So, we won't recheck
1548  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1549  * 'LOCKED.
1550  */
1551 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1552 {
1553 	struct address_space *mapping = page->mapping;
1554 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1555 	struct vm_area_struct *vma;
1556 	struct prio_tree_iter iter;
1557 	int ret = SWAP_AGAIN;
1558 	unsigned long cursor;
1559 	unsigned long max_nl_cursor = 0;
1560 	unsigned long max_nl_size = 0;
1561 	unsigned int mapcount;
1562 
1563 	mutex_lock(&mapping->i_mmap_mutex);
1564 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1565 		unsigned long address = vma_address(page, vma);
1566 		if (address == -EFAULT)
1567 			continue;
1568 		ret = try_to_unmap_one(page, vma, address, flags);
1569 		if (ret != SWAP_AGAIN || !page_mapped(page))
1570 			goto out;
1571 	}
1572 
1573 	if (list_empty(&mapping->i_mmap_nonlinear))
1574 		goto out;
1575 
1576 	/*
1577 	 * We don't bother to try to find the munlocked page in nonlinears.
1578 	 * It's costly. Instead, later, page reclaim logic may call
1579 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1580 	 */
1581 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1582 		goto out;
1583 
1584 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1585 						shared.vm_set.list) {
1586 		cursor = (unsigned long) vma->vm_private_data;
1587 		if (cursor > max_nl_cursor)
1588 			max_nl_cursor = cursor;
1589 		cursor = vma->vm_end - vma->vm_start;
1590 		if (cursor > max_nl_size)
1591 			max_nl_size = cursor;
1592 	}
1593 
1594 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1595 		ret = SWAP_FAIL;
1596 		goto out;
1597 	}
1598 
1599 	/*
1600 	 * We don't try to search for this page in the nonlinear vmas,
1601 	 * and page_referenced wouldn't have found it anyway.  Instead
1602 	 * just walk the nonlinear vmas trying to age and unmap some.
1603 	 * The mapcount of the page we came in with is irrelevant,
1604 	 * but even so use it as a guide to how hard we should try?
1605 	 */
1606 	mapcount = page_mapcount(page);
1607 	if (!mapcount)
1608 		goto out;
1609 	cond_resched();
1610 
1611 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1612 	if (max_nl_cursor == 0)
1613 		max_nl_cursor = CLUSTER_SIZE;
1614 
1615 	do {
1616 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1617 						shared.vm_set.list) {
1618 			cursor = (unsigned long) vma->vm_private_data;
1619 			while ( cursor < max_nl_cursor &&
1620 				cursor < vma->vm_end - vma->vm_start) {
1621 				if (try_to_unmap_cluster(cursor, &mapcount,
1622 						vma, page) == SWAP_MLOCK)
1623 					ret = SWAP_MLOCK;
1624 				cursor += CLUSTER_SIZE;
1625 				vma->vm_private_data = (void *) cursor;
1626 				if ((int)mapcount <= 0)
1627 					goto out;
1628 			}
1629 			vma->vm_private_data = (void *) max_nl_cursor;
1630 		}
1631 		cond_resched();
1632 		max_nl_cursor += CLUSTER_SIZE;
1633 	} while (max_nl_cursor <= max_nl_size);
1634 
1635 	/*
1636 	 * Don't loop forever (perhaps all the remaining pages are
1637 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1638 	 * vmas, now forgetting on which ones it had fallen behind.
1639 	 */
1640 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1641 		vma->vm_private_data = NULL;
1642 out:
1643 	mutex_unlock(&mapping->i_mmap_mutex);
1644 	return ret;
1645 }
1646 
1647 /**
1648  * try_to_unmap - try to remove all page table mappings to a page
1649  * @page: the page to get unmapped
1650  * @flags: action and flags
1651  *
1652  * Tries to remove all the page table entries which are mapping this
1653  * page, used in the pageout path.  Caller must hold the page lock.
1654  * Return values are:
1655  *
1656  * SWAP_SUCCESS	- we succeeded in removing all mappings
1657  * SWAP_AGAIN	- we missed a mapping, try again later
1658  * SWAP_FAIL	- the page is unswappable
1659  * SWAP_MLOCK	- page is mlocked.
1660  */
1661 int try_to_unmap(struct page *page, enum ttu_flags flags)
1662 {
1663 	int ret;
1664 
1665 	BUG_ON(!PageLocked(page));
1666 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1667 
1668 	if (unlikely(PageKsm(page)))
1669 		ret = try_to_unmap_ksm(page, flags);
1670 	else if (PageAnon(page))
1671 		ret = try_to_unmap_anon(page, flags);
1672 	else
1673 		ret = try_to_unmap_file(page, flags);
1674 	if (ret != SWAP_MLOCK && !page_mapped(page))
1675 		ret = SWAP_SUCCESS;
1676 	return ret;
1677 }
1678 
1679 /**
1680  * try_to_munlock - try to munlock a page
1681  * @page: the page to be munlocked
1682  *
1683  * Called from munlock code.  Checks all of the VMAs mapping the page
1684  * to make sure nobody else has this page mlocked. The page will be
1685  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1686  *
1687  * Return values are:
1688  *
1689  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1690  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1691  * SWAP_FAIL	- page cannot be located at present
1692  * SWAP_MLOCK	- page is now mlocked.
1693  */
1694 int try_to_munlock(struct page *page)
1695 {
1696 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1697 
1698 	if (unlikely(PageKsm(page)))
1699 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1700 	else if (PageAnon(page))
1701 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1702 	else
1703 		return try_to_unmap_file(page, TTU_MUNLOCK);
1704 }
1705 
1706 void __put_anon_vma(struct anon_vma *anon_vma)
1707 {
1708 	struct anon_vma *root = anon_vma->root;
1709 
1710 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1711 		anon_vma_free(root);
1712 
1713 	anon_vma_free(anon_vma);
1714 }
1715 
1716 #ifdef CONFIG_MIGRATION
1717 /*
1718  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1719  * Called by migrate.c to remove migration ptes, but might be used more later.
1720  */
1721 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1722 		struct vm_area_struct *, unsigned long, void *), void *arg)
1723 {
1724 	struct anon_vma *anon_vma;
1725 	struct anon_vma_chain *avc;
1726 	int ret = SWAP_AGAIN;
1727 
1728 	/*
1729 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1730 	 * because that depends on page_mapped(); but not all its usages
1731 	 * are holding mmap_sem. Users without mmap_sem are required to
1732 	 * take a reference count to prevent the anon_vma disappearing
1733 	 */
1734 	anon_vma = page_anon_vma(page);
1735 	if (!anon_vma)
1736 		return ret;
1737 	anon_vma_lock(anon_vma);
1738 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1739 		struct vm_area_struct *vma = avc->vma;
1740 		unsigned long address = vma_address(page, vma);
1741 		if (address == -EFAULT)
1742 			continue;
1743 		ret = rmap_one(page, vma, address, arg);
1744 		if (ret != SWAP_AGAIN)
1745 			break;
1746 	}
1747 	anon_vma_unlock(anon_vma);
1748 	return ret;
1749 }
1750 
1751 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1752 		struct vm_area_struct *, unsigned long, void *), void *arg)
1753 {
1754 	struct address_space *mapping = page->mapping;
1755 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1756 	struct vm_area_struct *vma;
1757 	struct prio_tree_iter iter;
1758 	int ret = SWAP_AGAIN;
1759 
1760 	if (!mapping)
1761 		return ret;
1762 	mutex_lock(&mapping->i_mmap_mutex);
1763 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1764 		unsigned long address = vma_address(page, vma);
1765 		if (address == -EFAULT)
1766 			continue;
1767 		ret = rmap_one(page, vma, address, arg);
1768 		if (ret != SWAP_AGAIN)
1769 			break;
1770 	}
1771 	/*
1772 	 * No nonlinear handling: being always shared, nonlinear vmas
1773 	 * never contain migration ptes.  Decide what to do about this
1774 	 * limitation to linear when we need rmap_walk() on nonlinear.
1775 	 */
1776 	mutex_unlock(&mapping->i_mmap_mutex);
1777 	return ret;
1778 }
1779 
1780 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1781 		struct vm_area_struct *, unsigned long, void *), void *arg)
1782 {
1783 	VM_BUG_ON(!PageLocked(page));
1784 
1785 	if (unlikely(PageKsm(page)))
1786 		return rmap_walk_ksm(page, rmap_one, arg);
1787 	else if (PageAnon(page))
1788 		return rmap_walk_anon(page, rmap_one, arg);
1789 	else
1790 		return rmap_walk_file(page, rmap_one, arg);
1791 }
1792 #endif /* CONFIG_MIGRATION */
1793 
1794 #ifdef CONFIG_HUGETLB_PAGE
1795 /*
1796  * The following three functions are for anonymous (private mapped) hugepages.
1797  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1798  * and no lru code, because we handle hugepages differently from common pages.
1799  */
1800 static void __hugepage_set_anon_rmap(struct page *page,
1801 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1802 {
1803 	struct anon_vma *anon_vma = vma->anon_vma;
1804 
1805 	BUG_ON(!anon_vma);
1806 
1807 	if (PageAnon(page))
1808 		return;
1809 	if (!exclusive)
1810 		anon_vma = anon_vma->root;
1811 
1812 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1813 	page->mapping = (struct address_space *) anon_vma;
1814 	page->index = linear_page_index(vma, address);
1815 }
1816 
1817 void hugepage_add_anon_rmap(struct page *page,
1818 			    struct vm_area_struct *vma, unsigned long address)
1819 {
1820 	struct anon_vma *anon_vma = vma->anon_vma;
1821 	int first;
1822 
1823 	BUG_ON(!PageLocked(page));
1824 	BUG_ON(!anon_vma);
1825 	/* address might be in next vma when migration races vma_adjust */
1826 	first = atomic_inc_and_test(&page->_mapcount);
1827 	if (first)
1828 		__hugepage_set_anon_rmap(page, vma, address, 0);
1829 }
1830 
1831 void hugepage_add_new_anon_rmap(struct page *page,
1832 			struct vm_area_struct *vma, unsigned long address)
1833 {
1834 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1835 	atomic_set(&page->_mapcount, 0);
1836 	__hugepage_set_anon_rmap(page, vma, address, 1);
1837 }
1838 #endif /* CONFIG_HUGETLB_PAGE */
1839