1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->mutex 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 60 #include <asm/tlbflush.h> 61 62 #include "internal.h" 63 64 static struct kmem_cache *anon_vma_cachep; 65 static struct kmem_cache *anon_vma_chain_cachep; 66 67 static inline struct anon_vma *anon_vma_alloc(void) 68 { 69 struct anon_vma *anon_vma; 70 71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 72 if (anon_vma) { 73 atomic_set(&anon_vma->refcount, 1); 74 /* 75 * Initialise the anon_vma root to point to itself. If called 76 * from fork, the root will be reset to the parents anon_vma. 77 */ 78 anon_vma->root = anon_vma; 79 } 80 81 return anon_vma; 82 } 83 84 static inline void anon_vma_free(struct anon_vma *anon_vma) 85 { 86 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 87 88 /* 89 * Synchronize against page_lock_anon_vma() such that 90 * we can safely hold the lock without the anon_vma getting 91 * freed. 92 * 93 * Relies on the full mb implied by the atomic_dec_and_test() from 94 * put_anon_vma() against the acquire barrier implied by 95 * mutex_trylock() from page_lock_anon_vma(). This orders: 96 * 97 * page_lock_anon_vma() VS put_anon_vma() 98 * mutex_trylock() atomic_dec_and_test() 99 * LOCK MB 100 * atomic_read() mutex_is_locked() 101 * 102 * LOCK should suffice since the actual taking of the lock must 103 * happen _before_ what follows. 104 */ 105 if (mutex_is_locked(&anon_vma->root->mutex)) { 106 anon_vma_lock(anon_vma); 107 anon_vma_unlock(anon_vma); 108 } 109 110 kmem_cache_free(anon_vma_cachep, anon_vma); 111 } 112 113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 114 { 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 116 } 117 118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 119 { 120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 121 } 122 123 static void anon_vma_chain_link(struct vm_area_struct *vma, 124 struct anon_vma_chain *avc, 125 struct anon_vma *anon_vma) 126 { 127 avc->vma = vma; 128 avc->anon_vma = anon_vma; 129 list_add(&avc->same_vma, &vma->anon_vma_chain); 130 131 /* 132 * It's critical to add new vmas to the tail of the anon_vma, 133 * see comment in huge_memory.c:__split_huge_page(). 134 */ 135 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 136 } 137 138 /** 139 * anon_vma_prepare - attach an anon_vma to a memory region 140 * @vma: the memory region in question 141 * 142 * This makes sure the memory mapping described by 'vma' has 143 * an 'anon_vma' attached to it, so that we can associate the 144 * anonymous pages mapped into it with that anon_vma. 145 * 146 * The common case will be that we already have one, but if 147 * not we either need to find an adjacent mapping that we 148 * can re-use the anon_vma from (very common when the only 149 * reason for splitting a vma has been mprotect()), or we 150 * allocate a new one. 151 * 152 * Anon-vma allocations are very subtle, because we may have 153 * optimistically looked up an anon_vma in page_lock_anon_vma() 154 * and that may actually touch the spinlock even in the newly 155 * allocated vma (it depends on RCU to make sure that the 156 * anon_vma isn't actually destroyed). 157 * 158 * As a result, we need to do proper anon_vma locking even 159 * for the new allocation. At the same time, we do not want 160 * to do any locking for the common case of already having 161 * an anon_vma. 162 * 163 * This must be called with the mmap_sem held for reading. 164 */ 165 int anon_vma_prepare(struct vm_area_struct *vma) 166 { 167 struct anon_vma *anon_vma = vma->anon_vma; 168 struct anon_vma_chain *avc; 169 170 might_sleep(); 171 if (unlikely(!anon_vma)) { 172 struct mm_struct *mm = vma->vm_mm; 173 struct anon_vma *allocated; 174 175 avc = anon_vma_chain_alloc(GFP_KERNEL); 176 if (!avc) 177 goto out_enomem; 178 179 anon_vma = find_mergeable_anon_vma(vma); 180 allocated = NULL; 181 if (!anon_vma) { 182 anon_vma = anon_vma_alloc(); 183 if (unlikely(!anon_vma)) 184 goto out_enomem_free_avc; 185 allocated = anon_vma; 186 } 187 188 anon_vma_lock(anon_vma); 189 /* page_table_lock to protect against threads */ 190 spin_lock(&mm->page_table_lock); 191 if (likely(!vma->anon_vma)) { 192 vma->anon_vma = anon_vma; 193 anon_vma_chain_link(vma, avc, anon_vma); 194 allocated = NULL; 195 avc = NULL; 196 } 197 spin_unlock(&mm->page_table_lock); 198 anon_vma_unlock(anon_vma); 199 200 if (unlikely(allocated)) 201 put_anon_vma(allocated); 202 if (unlikely(avc)) 203 anon_vma_chain_free(avc); 204 } 205 return 0; 206 207 out_enomem_free_avc: 208 anon_vma_chain_free(avc); 209 out_enomem: 210 return -ENOMEM; 211 } 212 213 /* 214 * This is a useful helper function for locking the anon_vma root as 215 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 216 * have the same vma. 217 * 218 * Such anon_vma's should have the same root, so you'd expect to see 219 * just a single mutex_lock for the whole traversal. 220 */ 221 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 222 { 223 struct anon_vma *new_root = anon_vma->root; 224 if (new_root != root) { 225 if (WARN_ON_ONCE(root)) 226 mutex_unlock(&root->mutex); 227 root = new_root; 228 mutex_lock(&root->mutex); 229 } 230 return root; 231 } 232 233 static inline void unlock_anon_vma_root(struct anon_vma *root) 234 { 235 if (root) 236 mutex_unlock(&root->mutex); 237 } 238 239 /* 240 * Attach the anon_vmas from src to dst. 241 * Returns 0 on success, -ENOMEM on failure. 242 */ 243 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 244 { 245 struct anon_vma_chain *avc, *pavc; 246 struct anon_vma *root = NULL; 247 248 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 249 struct anon_vma *anon_vma; 250 251 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 252 if (unlikely(!avc)) { 253 unlock_anon_vma_root(root); 254 root = NULL; 255 avc = anon_vma_chain_alloc(GFP_KERNEL); 256 if (!avc) 257 goto enomem_failure; 258 } 259 anon_vma = pavc->anon_vma; 260 root = lock_anon_vma_root(root, anon_vma); 261 anon_vma_chain_link(dst, avc, anon_vma); 262 } 263 unlock_anon_vma_root(root); 264 return 0; 265 266 enomem_failure: 267 unlink_anon_vmas(dst); 268 return -ENOMEM; 269 } 270 271 /* 272 * Some rmap walk that needs to find all ptes/hugepmds without false 273 * negatives (like migrate and split_huge_page) running concurrent 274 * with operations that copy or move pagetables (like mremap() and 275 * fork()) to be safe. They depend on the anon_vma "same_anon_vma" 276 * list to be in a certain order: the dst_vma must be placed after the 277 * src_vma in the list. This is always guaranteed by fork() but 278 * mremap() needs to call this function to enforce it in case the 279 * dst_vma isn't newly allocated and chained with the anon_vma_clone() 280 * function but just an extension of a pre-existing vma through 281 * vma_merge. 282 * 283 * NOTE: the same_anon_vma list can still be changed by other 284 * processes while mremap runs because mremap doesn't hold the 285 * anon_vma mutex to prevent modifications to the list while it 286 * runs. All we need to enforce is that the relative order of this 287 * process vmas isn't changing (we don't care about other vmas 288 * order). Each vma corresponds to an anon_vma_chain structure so 289 * there's no risk that other processes calling anon_vma_moveto_tail() 290 * and changing the same_anon_vma list under mremap() will screw with 291 * the relative order of this process vmas in the list, because we 292 * they can't alter the order of any vma that belongs to this 293 * process. And there can't be another anon_vma_moveto_tail() running 294 * concurrently with mremap() coming from this process because we hold 295 * the mmap_sem for the whole mremap(). fork() ordering dependency 296 * also shouldn't be affected because fork() only cares that the 297 * parent vmas are placed in the list before the child vmas and 298 * anon_vma_moveto_tail() won't reorder vmas from either the fork() 299 * parent or child. 300 */ 301 void anon_vma_moveto_tail(struct vm_area_struct *dst) 302 { 303 struct anon_vma_chain *pavc; 304 struct anon_vma *root = NULL; 305 306 list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) { 307 struct anon_vma *anon_vma = pavc->anon_vma; 308 VM_BUG_ON(pavc->vma != dst); 309 root = lock_anon_vma_root(root, anon_vma); 310 list_del(&pavc->same_anon_vma); 311 list_add_tail(&pavc->same_anon_vma, &anon_vma->head); 312 } 313 unlock_anon_vma_root(root); 314 } 315 316 /* 317 * Attach vma to its own anon_vma, as well as to the anon_vmas that 318 * the corresponding VMA in the parent process is attached to. 319 * Returns 0 on success, non-zero on failure. 320 */ 321 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 322 { 323 struct anon_vma_chain *avc; 324 struct anon_vma *anon_vma; 325 326 /* Don't bother if the parent process has no anon_vma here. */ 327 if (!pvma->anon_vma) 328 return 0; 329 330 /* 331 * First, attach the new VMA to the parent VMA's anon_vmas, 332 * so rmap can find non-COWed pages in child processes. 333 */ 334 if (anon_vma_clone(vma, pvma)) 335 return -ENOMEM; 336 337 /* Then add our own anon_vma. */ 338 anon_vma = anon_vma_alloc(); 339 if (!anon_vma) 340 goto out_error; 341 avc = anon_vma_chain_alloc(GFP_KERNEL); 342 if (!avc) 343 goto out_error_free_anon_vma; 344 345 /* 346 * The root anon_vma's spinlock is the lock actually used when we 347 * lock any of the anon_vmas in this anon_vma tree. 348 */ 349 anon_vma->root = pvma->anon_vma->root; 350 /* 351 * With refcounts, an anon_vma can stay around longer than the 352 * process it belongs to. The root anon_vma needs to be pinned until 353 * this anon_vma is freed, because the lock lives in the root. 354 */ 355 get_anon_vma(anon_vma->root); 356 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 357 vma->anon_vma = anon_vma; 358 anon_vma_lock(anon_vma); 359 anon_vma_chain_link(vma, avc, anon_vma); 360 anon_vma_unlock(anon_vma); 361 362 return 0; 363 364 out_error_free_anon_vma: 365 put_anon_vma(anon_vma); 366 out_error: 367 unlink_anon_vmas(vma); 368 return -ENOMEM; 369 } 370 371 void unlink_anon_vmas(struct vm_area_struct *vma) 372 { 373 struct anon_vma_chain *avc, *next; 374 struct anon_vma *root = NULL; 375 376 /* 377 * Unlink each anon_vma chained to the VMA. This list is ordered 378 * from newest to oldest, ensuring the root anon_vma gets freed last. 379 */ 380 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 381 struct anon_vma *anon_vma = avc->anon_vma; 382 383 root = lock_anon_vma_root(root, anon_vma); 384 list_del(&avc->same_anon_vma); 385 386 /* 387 * Leave empty anon_vmas on the list - we'll need 388 * to free them outside the lock. 389 */ 390 if (list_empty(&anon_vma->head)) 391 continue; 392 393 list_del(&avc->same_vma); 394 anon_vma_chain_free(avc); 395 } 396 unlock_anon_vma_root(root); 397 398 /* 399 * Iterate the list once more, it now only contains empty and unlinked 400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 401 * needing to acquire the anon_vma->root->mutex. 402 */ 403 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 404 struct anon_vma *anon_vma = avc->anon_vma; 405 406 put_anon_vma(anon_vma); 407 408 list_del(&avc->same_vma); 409 anon_vma_chain_free(avc); 410 } 411 } 412 413 static void anon_vma_ctor(void *data) 414 { 415 struct anon_vma *anon_vma = data; 416 417 mutex_init(&anon_vma->mutex); 418 atomic_set(&anon_vma->refcount, 0); 419 INIT_LIST_HEAD(&anon_vma->head); 420 } 421 422 void __init anon_vma_init(void) 423 { 424 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 425 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 426 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 427 } 428 429 /* 430 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 431 * 432 * Since there is no serialization what so ever against page_remove_rmap() 433 * the best this function can do is return a locked anon_vma that might 434 * have been relevant to this page. 435 * 436 * The page might have been remapped to a different anon_vma or the anon_vma 437 * returned may already be freed (and even reused). 438 * 439 * In case it was remapped to a different anon_vma, the new anon_vma will be a 440 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 441 * ensure that any anon_vma obtained from the page will still be valid for as 442 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 443 * 444 * All users of this function must be very careful when walking the anon_vma 445 * chain and verify that the page in question is indeed mapped in it 446 * [ something equivalent to page_mapped_in_vma() ]. 447 * 448 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 449 * that the anon_vma pointer from page->mapping is valid if there is a 450 * mapcount, we can dereference the anon_vma after observing those. 451 */ 452 struct anon_vma *page_get_anon_vma(struct page *page) 453 { 454 struct anon_vma *anon_vma = NULL; 455 unsigned long anon_mapping; 456 457 rcu_read_lock(); 458 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 459 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 460 goto out; 461 if (!page_mapped(page)) 462 goto out; 463 464 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 465 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 466 anon_vma = NULL; 467 goto out; 468 } 469 470 /* 471 * If this page is still mapped, then its anon_vma cannot have been 472 * freed. But if it has been unmapped, we have no security against the 473 * anon_vma structure being freed and reused (for another anon_vma: 474 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 475 * above cannot corrupt). 476 */ 477 if (!page_mapped(page)) { 478 put_anon_vma(anon_vma); 479 anon_vma = NULL; 480 } 481 out: 482 rcu_read_unlock(); 483 484 return anon_vma; 485 } 486 487 /* 488 * Similar to page_get_anon_vma() except it locks the anon_vma. 489 * 490 * Its a little more complex as it tries to keep the fast path to a single 491 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 492 * reference like with page_get_anon_vma() and then block on the mutex. 493 */ 494 struct anon_vma *page_lock_anon_vma(struct page *page) 495 { 496 struct anon_vma *anon_vma = NULL; 497 struct anon_vma *root_anon_vma; 498 unsigned long anon_mapping; 499 500 rcu_read_lock(); 501 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 502 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 503 goto out; 504 if (!page_mapped(page)) 505 goto out; 506 507 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 508 root_anon_vma = ACCESS_ONCE(anon_vma->root); 509 if (mutex_trylock(&root_anon_vma->mutex)) { 510 /* 511 * If the page is still mapped, then this anon_vma is still 512 * its anon_vma, and holding the mutex ensures that it will 513 * not go away, see anon_vma_free(). 514 */ 515 if (!page_mapped(page)) { 516 mutex_unlock(&root_anon_vma->mutex); 517 anon_vma = NULL; 518 } 519 goto out; 520 } 521 522 /* trylock failed, we got to sleep */ 523 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 524 anon_vma = NULL; 525 goto out; 526 } 527 528 if (!page_mapped(page)) { 529 put_anon_vma(anon_vma); 530 anon_vma = NULL; 531 goto out; 532 } 533 534 /* we pinned the anon_vma, its safe to sleep */ 535 rcu_read_unlock(); 536 anon_vma_lock(anon_vma); 537 538 if (atomic_dec_and_test(&anon_vma->refcount)) { 539 /* 540 * Oops, we held the last refcount, release the lock 541 * and bail -- can't simply use put_anon_vma() because 542 * we'll deadlock on the anon_vma_lock() recursion. 543 */ 544 anon_vma_unlock(anon_vma); 545 __put_anon_vma(anon_vma); 546 anon_vma = NULL; 547 } 548 549 return anon_vma; 550 551 out: 552 rcu_read_unlock(); 553 return anon_vma; 554 } 555 556 void page_unlock_anon_vma(struct anon_vma *anon_vma) 557 { 558 anon_vma_unlock(anon_vma); 559 } 560 561 /* 562 * At what user virtual address is page expected in @vma? 563 * Returns virtual address or -EFAULT if page's index/offset is not 564 * within the range mapped the @vma. 565 */ 566 inline unsigned long 567 vma_address(struct page *page, struct vm_area_struct *vma) 568 { 569 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 570 unsigned long address; 571 572 if (unlikely(is_vm_hugetlb_page(vma))) 573 pgoff = page->index << huge_page_order(page_hstate(page)); 574 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 575 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 576 /* page should be within @vma mapping range */ 577 return -EFAULT; 578 } 579 return address; 580 } 581 582 /* 583 * At what user virtual address is page expected in vma? 584 * Caller should check the page is actually part of the vma. 585 */ 586 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 587 { 588 if (PageAnon(page)) { 589 struct anon_vma *page__anon_vma = page_anon_vma(page); 590 /* 591 * Note: swapoff's unuse_vma() is more efficient with this 592 * check, and needs it to match anon_vma when KSM is active. 593 */ 594 if (!vma->anon_vma || !page__anon_vma || 595 vma->anon_vma->root != page__anon_vma->root) 596 return -EFAULT; 597 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 598 if (!vma->vm_file || 599 vma->vm_file->f_mapping != page->mapping) 600 return -EFAULT; 601 } else 602 return -EFAULT; 603 return vma_address(page, vma); 604 } 605 606 /* 607 * Check that @page is mapped at @address into @mm. 608 * 609 * If @sync is false, page_check_address may perform a racy check to avoid 610 * the page table lock when the pte is not present (helpful when reclaiming 611 * highly shared pages). 612 * 613 * On success returns with pte mapped and locked. 614 */ 615 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 616 unsigned long address, spinlock_t **ptlp, int sync) 617 { 618 pgd_t *pgd; 619 pud_t *pud; 620 pmd_t *pmd; 621 pte_t *pte; 622 spinlock_t *ptl; 623 624 if (unlikely(PageHuge(page))) { 625 pte = huge_pte_offset(mm, address); 626 ptl = &mm->page_table_lock; 627 goto check; 628 } 629 630 pgd = pgd_offset(mm, address); 631 if (!pgd_present(*pgd)) 632 return NULL; 633 634 pud = pud_offset(pgd, address); 635 if (!pud_present(*pud)) 636 return NULL; 637 638 pmd = pmd_offset(pud, address); 639 if (!pmd_present(*pmd)) 640 return NULL; 641 if (pmd_trans_huge(*pmd)) 642 return NULL; 643 644 pte = pte_offset_map(pmd, address); 645 /* Make a quick check before getting the lock */ 646 if (!sync && !pte_present(*pte)) { 647 pte_unmap(pte); 648 return NULL; 649 } 650 651 ptl = pte_lockptr(mm, pmd); 652 check: 653 spin_lock(ptl); 654 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 655 *ptlp = ptl; 656 return pte; 657 } 658 pte_unmap_unlock(pte, ptl); 659 return NULL; 660 } 661 662 /** 663 * page_mapped_in_vma - check whether a page is really mapped in a VMA 664 * @page: the page to test 665 * @vma: the VMA to test 666 * 667 * Returns 1 if the page is mapped into the page tables of the VMA, 0 668 * if the page is not mapped into the page tables of this VMA. Only 669 * valid for normal file or anonymous VMAs. 670 */ 671 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 672 { 673 unsigned long address; 674 pte_t *pte; 675 spinlock_t *ptl; 676 677 address = vma_address(page, vma); 678 if (address == -EFAULT) /* out of vma range */ 679 return 0; 680 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 681 if (!pte) /* the page is not in this mm */ 682 return 0; 683 pte_unmap_unlock(pte, ptl); 684 685 return 1; 686 } 687 688 /* 689 * Subfunctions of page_referenced: page_referenced_one called 690 * repeatedly from either page_referenced_anon or page_referenced_file. 691 */ 692 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 693 unsigned long address, unsigned int *mapcount, 694 unsigned long *vm_flags) 695 { 696 struct mm_struct *mm = vma->vm_mm; 697 int referenced = 0; 698 699 if (unlikely(PageTransHuge(page))) { 700 pmd_t *pmd; 701 702 spin_lock(&mm->page_table_lock); 703 /* 704 * rmap might return false positives; we must filter 705 * these out using page_check_address_pmd(). 706 */ 707 pmd = page_check_address_pmd(page, mm, address, 708 PAGE_CHECK_ADDRESS_PMD_FLAG); 709 if (!pmd) { 710 spin_unlock(&mm->page_table_lock); 711 goto out; 712 } 713 714 if (vma->vm_flags & VM_LOCKED) { 715 spin_unlock(&mm->page_table_lock); 716 *mapcount = 0; /* break early from loop */ 717 *vm_flags |= VM_LOCKED; 718 goto out; 719 } 720 721 /* go ahead even if the pmd is pmd_trans_splitting() */ 722 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 723 referenced++; 724 spin_unlock(&mm->page_table_lock); 725 } else { 726 pte_t *pte; 727 spinlock_t *ptl; 728 729 /* 730 * rmap might return false positives; we must filter 731 * these out using page_check_address(). 732 */ 733 pte = page_check_address(page, mm, address, &ptl, 0); 734 if (!pte) 735 goto out; 736 737 if (vma->vm_flags & VM_LOCKED) { 738 pte_unmap_unlock(pte, ptl); 739 *mapcount = 0; /* break early from loop */ 740 *vm_flags |= VM_LOCKED; 741 goto out; 742 } 743 744 if (ptep_clear_flush_young_notify(vma, address, pte)) { 745 /* 746 * Don't treat a reference through a sequentially read 747 * mapping as such. If the page has been used in 748 * another mapping, we will catch it; if this other 749 * mapping is already gone, the unmap path will have 750 * set PG_referenced or activated the page. 751 */ 752 if (likely(!VM_SequentialReadHint(vma))) 753 referenced++; 754 } 755 pte_unmap_unlock(pte, ptl); 756 } 757 758 /* Pretend the page is referenced if the task has the 759 swap token and is in the middle of a page fault. */ 760 if (mm != current->mm && has_swap_token(mm) && 761 rwsem_is_locked(&mm->mmap_sem)) 762 referenced++; 763 764 (*mapcount)--; 765 766 if (referenced) 767 *vm_flags |= vma->vm_flags; 768 out: 769 return referenced; 770 } 771 772 static int page_referenced_anon(struct page *page, 773 struct mem_cgroup *memcg, 774 unsigned long *vm_flags) 775 { 776 unsigned int mapcount; 777 struct anon_vma *anon_vma; 778 struct anon_vma_chain *avc; 779 int referenced = 0; 780 781 anon_vma = page_lock_anon_vma(page); 782 if (!anon_vma) 783 return referenced; 784 785 mapcount = page_mapcount(page); 786 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 787 struct vm_area_struct *vma = avc->vma; 788 unsigned long address = vma_address(page, vma); 789 if (address == -EFAULT) 790 continue; 791 /* 792 * If we are reclaiming on behalf of a cgroup, skip 793 * counting on behalf of references from different 794 * cgroups 795 */ 796 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 797 continue; 798 referenced += page_referenced_one(page, vma, address, 799 &mapcount, vm_flags); 800 if (!mapcount) 801 break; 802 } 803 804 page_unlock_anon_vma(anon_vma); 805 return referenced; 806 } 807 808 /** 809 * page_referenced_file - referenced check for object-based rmap 810 * @page: the page we're checking references on. 811 * @memcg: target memory control group 812 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 813 * 814 * For an object-based mapped page, find all the places it is mapped and 815 * check/clear the referenced flag. This is done by following the page->mapping 816 * pointer, then walking the chain of vmas it holds. It returns the number 817 * of references it found. 818 * 819 * This function is only called from page_referenced for object-based pages. 820 */ 821 static int page_referenced_file(struct page *page, 822 struct mem_cgroup *memcg, 823 unsigned long *vm_flags) 824 { 825 unsigned int mapcount; 826 struct address_space *mapping = page->mapping; 827 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 828 struct vm_area_struct *vma; 829 struct prio_tree_iter iter; 830 int referenced = 0; 831 832 /* 833 * The caller's checks on page->mapping and !PageAnon have made 834 * sure that this is a file page: the check for page->mapping 835 * excludes the case just before it gets set on an anon page. 836 */ 837 BUG_ON(PageAnon(page)); 838 839 /* 840 * The page lock not only makes sure that page->mapping cannot 841 * suddenly be NULLified by truncation, it makes sure that the 842 * structure at mapping cannot be freed and reused yet, 843 * so we can safely take mapping->i_mmap_mutex. 844 */ 845 BUG_ON(!PageLocked(page)); 846 847 mutex_lock(&mapping->i_mmap_mutex); 848 849 /* 850 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 851 * is more likely to be accurate if we note it after spinning. 852 */ 853 mapcount = page_mapcount(page); 854 855 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 856 unsigned long address = vma_address(page, vma); 857 if (address == -EFAULT) 858 continue; 859 /* 860 * If we are reclaiming on behalf of a cgroup, skip 861 * counting on behalf of references from different 862 * cgroups 863 */ 864 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 865 continue; 866 referenced += page_referenced_one(page, vma, address, 867 &mapcount, vm_flags); 868 if (!mapcount) 869 break; 870 } 871 872 mutex_unlock(&mapping->i_mmap_mutex); 873 return referenced; 874 } 875 876 /** 877 * page_referenced - test if the page was referenced 878 * @page: the page to test 879 * @is_locked: caller holds lock on the page 880 * @memcg: target memory cgroup 881 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 882 * 883 * Quick test_and_clear_referenced for all mappings to a page, 884 * returns the number of ptes which referenced the page. 885 */ 886 int page_referenced(struct page *page, 887 int is_locked, 888 struct mem_cgroup *memcg, 889 unsigned long *vm_flags) 890 { 891 int referenced = 0; 892 int we_locked = 0; 893 894 *vm_flags = 0; 895 if (page_mapped(page) && page_rmapping(page)) { 896 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 897 we_locked = trylock_page(page); 898 if (!we_locked) { 899 referenced++; 900 goto out; 901 } 902 } 903 if (unlikely(PageKsm(page))) 904 referenced += page_referenced_ksm(page, memcg, 905 vm_flags); 906 else if (PageAnon(page)) 907 referenced += page_referenced_anon(page, memcg, 908 vm_flags); 909 else if (page->mapping) 910 referenced += page_referenced_file(page, memcg, 911 vm_flags); 912 if (we_locked) 913 unlock_page(page); 914 915 if (page_test_and_clear_young(page_to_pfn(page))) 916 referenced++; 917 } 918 out: 919 return referenced; 920 } 921 922 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 923 unsigned long address) 924 { 925 struct mm_struct *mm = vma->vm_mm; 926 pte_t *pte; 927 spinlock_t *ptl; 928 int ret = 0; 929 930 pte = page_check_address(page, mm, address, &ptl, 1); 931 if (!pte) 932 goto out; 933 934 if (pte_dirty(*pte) || pte_write(*pte)) { 935 pte_t entry; 936 937 flush_cache_page(vma, address, pte_pfn(*pte)); 938 entry = ptep_clear_flush_notify(vma, address, pte); 939 entry = pte_wrprotect(entry); 940 entry = pte_mkclean(entry); 941 set_pte_at(mm, address, pte, entry); 942 ret = 1; 943 } 944 945 pte_unmap_unlock(pte, ptl); 946 out: 947 return ret; 948 } 949 950 static int page_mkclean_file(struct address_space *mapping, struct page *page) 951 { 952 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 953 struct vm_area_struct *vma; 954 struct prio_tree_iter iter; 955 int ret = 0; 956 957 BUG_ON(PageAnon(page)); 958 959 mutex_lock(&mapping->i_mmap_mutex); 960 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 961 if (vma->vm_flags & VM_SHARED) { 962 unsigned long address = vma_address(page, vma); 963 if (address == -EFAULT) 964 continue; 965 ret += page_mkclean_one(page, vma, address); 966 } 967 } 968 mutex_unlock(&mapping->i_mmap_mutex); 969 return ret; 970 } 971 972 int page_mkclean(struct page *page) 973 { 974 int ret = 0; 975 976 BUG_ON(!PageLocked(page)); 977 978 if (page_mapped(page)) { 979 struct address_space *mapping = page_mapping(page); 980 if (mapping) { 981 ret = page_mkclean_file(mapping, page); 982 if (page_test_and_clear_dirty(page_to_pfn(page), 1)) 983 ret = 1; 984 } 985 } 986 987 return ret; 988 } 989 EXPORT_SYMBOL_GPL(page_mkclean); 990 991 /** 992 * page_move_anon_rmap - move a page to our anon_vma 993 * @page: the page to move to our anon_vma 994 * @vma: the vma the page belongs to 995 * @address: the user virtual address mapped 996 * 997 * When a page belongs exclusively to one process after a COW event, 998 * that page can be moved into the anon_vma that belongs to just that 999 * process, so the rmap code will not search the parent or sibling 1000 * processes. 1001 */ 1002 void page_move_anon_rmap(struct page *page, 1003 struct vm_area_struct *vma, unsigned long address) 1004 { 1005 struct anon_vma *anon_vma = vma->anon_vma; 1006 1007 VM_BUG_ON(!PageLocked(page)); 1008 VM_BUG_ON(!anon_vma); 1009 VM_BUG_ON(page->index != linear_page_index(vma, address)); 1010 1011 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1012 page->mapping = (struct address_space *) anon_vma; 1013 } 1014 1015 /** 1016 * __page_set_anon_rmap - set up new anonymous rmap 1017 * @page: Page to add to rmap 1018 * @vma: VM area to add page to. 1019 * @address: User virtual address of the mapping 1020 * @exclusive: the page is exclusively owned by the current process 1021 */ 1022 static void __page_set_anon_rmap(struct page *page, 1023 struct vm_area_struct *vma, unsigned long address, int exclusive) 1024 { 1025 struct anon_vma *anon_vma = vma->anon_vma; 1026 1027 BUG_ON(!anon_vma); 1028 1029 if (PageAnon(page)) 1030 return; 1031 1032 /* 1033 * If the page isn't exclusively mapped into this vma, 1034 * we must use the _oldest_ possible anon_vma for the 1035 * page mapping! 1036 */ 1037 if (!exclusive) 1038 anon_vma = anon_vma->root; 1039 1040 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1041 page->mapping = (struct address_space *) anon_vma; 1042 page->index = linear_page_index(vma, address); 1043 } 1044 1045 /** 1046 * __page_check_anon_rmap - sanity check anonymous rmap addition 1047 * @page: the page to add the mapping to 1048 * @vma: the vm area in which the mapping is added 1049 * @address: the user virtual address mapped 1050 */ 1051 static void __page_check_anon_rmap(struct page *page, 1052 struct vm_area_struct *vma, unsigned long address) 1053 { 1054 #ifdef CONFIG_DEBUG_VM 1055 /* 1056 * The page's anon-rmap details (mapping and index) are guaranteed to 1057 * be set up correctly at this point. 1058 * 1059 * We have exclusion against page_add_anon_rmap because the caller 1060 * always holds the page locked, except if called from page_dup_rmap, 1061 * in which case the page is already known to be setup. 1062 * 1063 * We have exclusion against page_add_new_anon_rmap because those pages 1064 * are initially only visible via the pagetables, and the pte is locked 1065 * over the call to page_add_new_anon_rmap. 1066 */ 1067 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1068 BUG_ON(page->index != linear_page_index(vma, address)); 1069 #endif 1070 } 1071 1072 /** 1073 * page_add_anon_rmap - add pte mapping to an anonymous page 1074 * @page: the page to add the mapping to 1075 * @vma: the vm area in which the mapping is added 1076 * @address: the user virtual address mapped 1077 * 1078 * The caller needs to hold the pte lock, and the page must be locked in 1079 * the anon_vma case: to serialize mapping,index checking after setting, 1080 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1081 * (but PageKsm is never downgraded to PageAnon). 1082 */ 1083 void page_add_anon_rmap(struct page *page, 1084 struct vm_area_struct *vma, unsigned long address) 1085 { 1086 do_page_add_anon_rmap(page, vma, address, 0); 1087 } 1088 1089 /* 1090 * Special version of the above for do_swap_page, which often runs 1091 * into pages that are exclusively owned by the current process. 1092 * Everybody else should continue to use page_add_anon_rmap above. 1093 */ 1094 void do_page_add_anon_rmap(struct page *page, 1095 struct vm_area_struct *vma, unsigned long address, int exclusive) 1096 { 1097 int first = atomic_inc_and_test(&page->_mapcount); 1098 if (first) { 1099 if (!PageTransHuge(page)) 1100 __inc_zone_page_state(page, NR_ANON_PAGES); 1101 else 1102 __inc_zone_page_state(page, 1103 NR_ANON_TRANSPARENT_HUGEPAGES); 1104 } 1105 if (unlikely(PageKsm(page))) 1106 return; 1107 1108 VM_BUG_ON(!PageLocked(page)); 1109 /* address might be in next vma when migration races vma_adjust */ 1110 if (first) 1111 __page_set_anon_rmap(page, vma, address, exclusive); 1112 else 1113 __page_check_anon_rmap(page, vma, address); 1114 } 1115 1116 /** 1117 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1118 * @page: the page to add the mapping to 1119 * @vma: the vm area in which the mapping is added 1120 * @address: the user virtual address mapped 1121 * 1122 * Same as page_add_anon_rmap but must only be called on *new* pages. 1123 * This means the inc-and-test can be bypassed. 1124 * Page does not have to be locked. 1125 */ 1126 void page_add_new_anon_rmap(struct page *page, 1127 struct vm_area_struct *vma, unsigned long address) 1128 { 1129 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1130 SetPageSwapBacked(page); 1131 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1132 if (!PageTransHuge(page)) 1133 __inc_zone_page_state(page, NR_ANON_PAGES); 1134 else 1135 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1136 __page_set_anon_rmap(page, vma, address, 1); 1137 if (page_evictable(page, vma)) 1138 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1139 else 1140 add_page_to_unevictable_list(page); 1141 } 1142 1143 /** 1144 * page_add_file_rmap - add pte mapping to a file page 1145 * @page: the page to add the mapping to 1146 * 1147 * The caller needs to hold the pte lock. 1148 */ 1149 void page_add_file_rmap(struct page *page) 1150 { 1151 bool locked; 1152 unsigned long flags; 1153 1154 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1155 if (atomic_inc_and_test(&page->_mapcount)) { 1156 __inc_zone_page_state(page, NR_FILE_MAPPED); 1157 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1158 } 1159 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1160 } 1161 1162 /** 1163 * page_remove_rmap - take down pte mapping from a page 1164 * @page: page to remove mapping from 1165 * 1166 * The caller needs to hold the pte lock. 1167 */ 1168 void page_remove_rmap(struct page *page) 1169 { 1170 bool anon = PageAnon(page); 1171 bool locked; 1172 unsigned long flags; 1173 1174 /* 1175 * The anon case has no mem_cgroup page_stat to update; but may 1176 * uncharge_page() below, where the lock ordering can deadlock if 1177 * we hold the lock against page_stat move: so avoid it on anon. 1178 */ 1179 if (!anon) 1180 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1181 1182 /* page still mapped by someone else? */ 1183 if (!atomic_add_negative(-1, &page->_mapcount)) 1184 goto out; 1185 1186 /* 1187 * Now that the last pte has gone, s390 must transfer dirty 1188 * flag from storage key to struct page. We can usually skip 1189 * this if the page is anon, so about to be freed; but perhaps 1190 * not if it's in swapcache - there might be another pte slot 1191 * containing the swap entry, but page not yet written to swap. 1192 */ 1193 if ((!anon || PageSwapCache(page)) && 1194 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1195 set_page_dirty(page); 1196 /* 1197 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1198 * and not charged by memcg for now. 1199 */ 1200 if (unlikely(PageHuge(page))) 1201 goto out; 1202 if (anon) { 1203 mem_cgroup_uncharge_page(page); 1204 if (!PageTransHuge(page)) 1205 __dec_zone_page_state(page, NR_ANON_PAGES); 1206 else 1207 __dec_zone_page_state(page, 1208 NR_ANON_TRANSPARENT_HUGEPAGES); 1209 } else { 1210 __dec_zone_page_state(page, NR_FILE_MAPPED); 1211 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1212 } 1213 /* 1214 * It would be tidy to reset the PageAnon mapping here, 1215 * but that might overwrite a racing page_add_anon_rmap 1216 * which increments mapcount after us but sets mapping 1217 * before us: so leave the reset to free_hot_cold_page, 1218 * and remember that it's only reliable while mapped. 1219 * Leaving it set also helps swapoff to reinstate ptes 1220 * faster for those pages still in swapcache. 1221 */ 1222 out: 1223 if (!anon) 1224 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1225 } 1226 1227 /* 1228 * Subfunctions of try_to_unmap: try_to_unmap_one called 1229 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file. 1230 */ 1231 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1232 unsigned long address, enum ttu_flags flags) 1233 { 1234 struct mm_struct *mm = vma->vm_mm; 1235 pte_t *pte; 1236 pte_t pteval; 1237 spinlock_t *ptl; 1238 int ret = SWAP_AGAIN; 1239 1240 pte = page_check_address(page, mm, address, &ptl, 0); 1241 if (!pte) 1242 goto out; 1243 1244 /* 1245 * If the page is mlock()d, we cannot swap it out. 1246 * If it's recently referenced (perhaps page_referenced 1247 * skipped over this mm) then we should reactivate it. 1248 */ 1249 if (!(flags & TTU_IGNORE_MLOCK)) { 1250 if (vma->vm_flags & VM_LOCKED) 1251 goto out_mlock; 1252 1253 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1254 goto out_unmap; 1255 } 1256 if (!(flags & TTU_IGNORE_ACCESS)) { 1257 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1258 ret = SWAP_FAIL; 1259 goto out_unmap; 1260 } 1261 } 1262 1263 /* Nuke the page table entry. */ 1264 flush_cache_page(vma, address, page_to_pfn(page)); 1265 pteval = ptep_clear_flush_notify(vma, address, pte); 1266 1267 /* Move the dirty bit to the physical page now the pte is gone. */ 1268 if (pte_dirty(pteval)) 1269 set_page_dirty(page); 1270 1271 /* Update high watermark before we lower rss */ 1272 update_hiwater_rss(mm); 1273 1274 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1275 if (PageAnon(page)) 1276 dec_mm_counter(mm, MM_ANONPAGES); 1277 else 1278 dec_mm_counter(mm, MM_FILEPAGES); 1279 set_pte_at(mm, address, pte, 1280 swp_entry_to_pte(make_hwpoison_entry(page))); 1281 } else if (PageAnon(page)) { 1282 swp_entry_t entry = { .val = page_private(page) }; 1283 1284 if (PageSwapCache(page)) { 1285 /* 1286 * Store the swap location in the pte. 1287 * See handle_pte_fault() ... 1288 */ 1289 if (swap_duplicate(entry) < 0) { 1290 set_pte_at(mm, address, pte, pteval); 1291 ret = SWAP_FAIL; 1292 goto out_unmap; 1293 } 1294 if (list_empty(&mm->mmlist)) { 1295 spin_lock(&mmlist_lock); 1296 if (list_empty(&mm->mmlist)) 1297 list_add(&mm->mmlist, &init_mm.mmlist); 1298 spin_unlock(&mmlist_lock); 1299 } 1300 dec_mm_counter(mm, MM_ANONPAGES); 1301 inc_mm_counter(mm, MM_SWAPENTS); 1302 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1303 /* 1304 * Store the pfn of the page in a special migration 1305 * pte. do_swap_page() will wait until the migration 1306 * pte is removed and then restart fault handling. 1307 */ 1308 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1309 entry = make_migration_entry(page, pte_write(pteval)); 1310 } 1311 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1312 BUG_ON(pte_file(*pte)); 1313 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1314 (TTU_ACTION(flags) == TTU_MIGRATION)) { 1315 /* Establish migration entry for a file page */ 1316 swp_entry_t entry; 1317 entry = make_migration_entry(page, pte_write(pteval)); 1318 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1319 } else 1320 dec_mm_counter(mm, MM_FILEPAGES); 1321 1322 page_remove_rmap(page); 1323 page_cache_release(page); 1324 1325 out_unmap: 1326 pte_unmap_unlock(pte, ptl); 1327 out: 1328 return ret; 1329 1330 out_mlock: 1331 pte_unmap_unlock(pte, ptl); 1332 1333 1334 /* 1335 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1336 * unstable result and race. Plus, We can't wait here because 1337 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1338 * if trylock failed, the page remain in evictable lru and later 1339 * vmscan could retry to move the page to unevictable lru if the 1340 * page is actually mlocked. 1341 */ 1342 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1343 if (vma->vm_flags & VM_LOCKED) { 1344 mlock_vma_page(page); 1345 ret = SWAP_MLOCK; 1346 } 1347 up_read(&vma->vm_mm->mmap_sem); 1348 } 1349 return ret; 1350 } 1351 1352 /* 1353 * objrmap doesn't work for nonlinear VMAs because the assumption that 1354 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1355 * Consequently, given a particular page and its ->index, we cannot locate the 1356 * ptes which are mapping that page without an exhaustive linear search. 1357 * 1358 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1359 * maps the file to which the target page belongs. The ->vm_private_data field 1360 * holds the current cursor into that scan. Successive searches will circulate 1361 * around the vma's virtual address space. 1362 * 1363 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1364 * more scanning pressure is placed against them as well. Eventually pages 1365 * will become fully unmapped and are eligible for eviction. 1366 * 1367 * For very sparsely populated VMAs this is a little inefficient - chances are 1368 * there there won't be many ptes located within the scan cluster. In this case 1369 * maybe we could scan further - to the end of the pte page, perhaps. 1370 * 1371 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1372 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1373 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1374 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1375 */ 1376 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1377 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1378 1379 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1380 struct vm_area_struct *vma, struct page *check_page) 1381 { 1382 struct mm_struct *mm = vma->vm_mm; 1383 pgd_t *pgd; 1384 pud_t *pud; 1385 pmd_t *pmd; 1386 pte_t *pte; 1387 pte_t pteval; 1388 spinlock_t *ptl; 1389 struct page *page; 1390 unsigned long address; 1391 unsigned long end; 1392 int ret = SWAP_AGAIN; 1393 int locked_vma = 0; 1394 1395 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1396 end = address + CLUSTER_SIZE; 1397 if (address < vma->vm_start) 1398 address = vma->vm_start; 1399 if (end > vma->vm_end) 1400 end = vma->vm_end; 1401 1402 pgd = pgd_offset(mm, address); 1403 if (!pgd_present(*pgd)) 1404 return ret; 1405 1406 pud = pud_offset(pgd, address); 1407 if (!pud_present(*pud)) 1408 return ret; 1409 1410 pmd = pmd_offset(pud, address); 1411 if (!pmd_present(*pmd)) 1412 return ret; 1413 1414 /* 1415 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1416 * keep the sem while scanning the cluster for mlocking pages. 1417 */ 1418 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1419 locked_vma = (vma->vm_flags & VM_LOCKED); 1420 if (!locked_vma) 1421 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1422 } 1423 1424 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1425 1426 /* Update high watermark before we lower rss */ 1427 update_hiwater_rss(mm); 1428 1429 for (; address < end; pte++, address += PAGE_SIZE) { 1430 if (!pte_present(*pte)) 1431 continue; 1432 page = vm_normal_page(vma, address, *pte); 1433 BUG_ON(!page || PageAnon(page)); 1434 1435 if (locked_vma) { 1436 mlock_vma_page(page); /* no-op if already mlocked */ 1437 if (page == check_page) 1438 ret = SWAP_MLOCK; 1439 continue; /* don't unmap */ 1440 } 1441 1442 if (ptep_clear_flush_young_notify(vma, address, pte)) 1443 continue; 1444 1445 /* Nuke the page table entry. */ 1446 flush_cache_page(vma, address, pte_pfn(*pte)); 1447 pteval = ptep_clear_flush_notify(vma, address, pte); 1448 1449 /* If nonlinear, store the file page offset in the pte. */ 1450 if (page->index != linear_page_index(vma, address)) 1451 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1452 1453 /* Move the dirty bit to the physical page now the pte is gone. */ 1454 if (pte_dirty(pteval)) 1455 set_page_dirty(page); 1456 1457 page_remove_rmap(page); 1458 page_cache_release(page); 1459 dec_mm_counter(mm, MM_FILEPAGES); 1460 (*mapcount)--; 1461 } 1462 pte_unmap_unlock(pte - 1, ptl); 1463 if (locked_vma) 1464 up_read(&vma->vm_mm->mmap_sem); 1465 return ret; 1466 } 1467 1468 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1469 { 1470 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1471 1472 if (!maybe_stack) 1473 return false; 1474 1475 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1476 VM_STACK_INCOMPLETE_SETUP) 1477 return true; 1478 1479 return false; 1480 } 1481 1482 /** 1483 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1484 * rmap method 1485 * @page: the page to unmap/unlock 1486 * @flags: action and flags 1487 * 1488 * Find all the mappings of a page using the mapping pointer and the vma chains 1489 * contained in the anon_vma struct it points to. 1490 * 1491 * This function is only called from try_to_unmap/try_to_munlock for 1492 * anonymous pages. 1493 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1494 * where the page was found will be held for write. So, we won't recheck 1495 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1496 * 'LOCKED. 1497 */ 1498 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1499 { 1500 struct anon_vma *anon_vma; 1501 struct anon_vma_chain *avc; 1502 int ret = SWAP_AGAIN; 1503 1504 anon_vma = page_lock_anon_vma(page); 1505 if (!anon_vma) 1506 return ret; 1507 1508 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1509 struct vm_area_struct *vma = avc->vma; 1510 unsigned long address; 1511 1512 /* 1513 * During exec, a temporary VMA is setup and later moved. 1514 * The VMA is moved under the anon_vma lock but not the 1515 * page tables leading to a race where migration cannot 1516 * find the migration ptes. Rather than increasing the 1517 * locking requirements of exec(), migration skips 1518 * temporary VMAs until after exec() completes. 1519 */ 1520 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1521 is_vma_temporary_stack(vma)) 1522 continue; 1523 1524 address = vma_address(page, vma); 1525 if (address == -EFAULT) 1526 continue; 1527 ret = try_to_unmap_one(page, vma, address, flags); 1528 if (ret != SWAP_AGAIN || !page_mapped(page)) 1529 break; 1530 } 1531 1532 page_unlock_anon_vma(anon_vma); 1533 return ret; 1534 } 1535 1536 /** 1537 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1538 * @page: the page to unmap/unlock 1539 * @flags: action and flags 1540 * 1541 * Find all the mappings of a page using the mapping pointer and the vma chains 1542 * contained in the address_space struct it points to. 1543 * 1544 * This function is only called from try_to_unmap/try_to_munlock for 1545 * object-based pages. 1546 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1547 * where the page was found will be held for write. So, we won't recheck 1548 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1549 * 'LOCKED. 1550 */ 1551 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1552 { 1553 struct address_space *mapping = page->mapping; 1554 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1555 struct vm_area_struct *vma; 1556 struct prio_tree_iter iter; 1557 int ret = SWAP_AGAIN; 1558 unsigned long cursor; 1559 unsigned long max_nl_cursor = 0; 1560 unsigned long max_nl_size = 0; 1561 unsigned int mapcount; 1562 1563 mutex_lock(&mapping->i_mmap_mutex); 1564 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1565 unsigned long address = vma_address(page, vma); 1566 if (address == -EFAULT) 1567 continue; 1568 ret = try_to_unmap_one(page, vma, address, flags); 1569 if (ret != SWAP_AGAIN || !page_mapped(page)) 1570 goto out; 1571 } 1572 1573 if (list_empty(&mapping->i_mmap_nonlinear)) 1574 goto out; 1575 1576 /* 1577 * We don't bother to try to find the munlocked page in nonlinears. 1578 * It's costly. Instead, later, page reclaim logic may call 1579 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1580 */ 1581 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1582 goto out; 1583 1584 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1585 shared.vm_set.list) { 1586 cursor = (unsigned long) vma->vm_private_data; 1587 if (cursor > max_nl_cursor) 1588 max_nl_cursor = cursor; 1589 cursor = vma->vm_end - vma->vm_start; 1590 if (cursor > max_nl_size) 1591 max_nl_size = cursor; 1592 } 1593 1594 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1595 ret = SWAP_FAIL; 1596 goto out; 1597 } 1598 1599 /* 1600 * We don't try to search for this page in the nonlinear vmas, 1601 * and page_referenced wouldn't have found it anyway. Instead 1602 * just walk the nonlinear vmas trying to age and unmap some. 1603 * The mapcount of the page we came in with is irrelevant, 1604 * but even so use it as a guide to how hard we should try? 1605 */ 1606 mapcount = page_mapcount(page); 1607 if (!mapcount) 1608 goto out; 1609 cond_resched(); 1610 1611 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1612 if (max_nl_cursor == 0) 1613 max_nl_cursor = CLUSTER_SIZE; 1614 1615 do { 1616 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1617 shared.vm_set.list) { 1618 cursor = (unsigned long) vma->vm_private_data; 1619 while ( cursor < max_nl_cursor && 1620 cursor < vma->vm_end - vma->vm_start) { 1621 if (try_to_unmap_cluster(cursor, &mapcount, 1622 vma, page) == SWAP_MLOCK) 1623 ret = SWAP_MLOCK; 1624 cursor += CLUSTER_SIZE; 1625 vma->vm_private_data = (void *) cursor; 1626 if ((int)mapcount <= 0) 1627 goto out; 1628 } 1629 vma->vm_private_data = (void *) max_nl_cursor; 1630 } 1631 cond_resched(); 1632 max_nl_cursor += CLUSTER_SIZE; 1633 } while (max_nl_cursor <= max_nl_size); 1634 1635 /* 1636 * Don't loop forever (perhaps all the remaining pages are 1637 * in locked vmas). Reset cursor on all unreserved nonlinear 1638 * vmas, now forgetting on which ones it had fallen behind. 1639 */ 1640 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1641 vma->vm_private_data = NULL; 1642 out: 1643 mutex_unlock(&mapping->i_mmap_mutex); 1644 return ret; 1645 } 1646 1647 /** 1648 * try_to_unmap - try to remove all page table mappings to a page 1649 * @page: the page to get unmapped 1650 * @flags: action and flags 1651 * 1652 * Tries to remove all the page table entries which are mapping this 1653 * page, used in the pageout path. Caller must hold the page lock. 1654 * Return values are: 1655 * 1656 * SWAP_SUCCESS - we succeeded in removing all mappings 1657 * SWAP_AGAIN - we missed a mapping, try again later 1658 * SWAP_FAIL - the page is unswappable 1659 * SWAP_MLOCK - page is mlocked. 1660 */ 1661 int try_to_unmap(struct page *page, enum ttu_flags flags) 1662 { 1663 int ret; 1664 1665 BUG_ON(!PageLocked(page)); 1666 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1667 1668 if (unlikely(PageKsm(page))) 1669 ret = try_to_unmap_ksm(page, flags); 1670 else if (PageAnon(page)) 1671 ret = try_to_unmap_anon(page, flags); 1672 else 1673 ret = try_to_unmap_file(page, flags); 1674 if (ret != SWAP_MLOCK && !page_mapped(page)) 1675 ret = SWAP_SUCCESS; 1676 return ret; 1677 } 1678 1679 /** 1680 * try_to_munlock - try to munlock a page 1681 * @page: the page to be munlocked 1682 * 1683 * Called from munlock code. Checks all of the VMAs mapping the page 1684 * to make sure nobody else has this page mlocked. The page will be 1685 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1686 * 1687 * Return values are: 1688 * 1689 * SWAP_AGAIN - no vma is holding page mlocked, or, 1690 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1691 * SWAP_FAIL - page cannot be located at present 1692 * SWAP_MLOCK - page is now mlocked. 1693 */ 1694 int try_to_munlock(struct page *page) 1695 { 1696 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1697 1698 if (unlikely(PageKsm(page))) 1699 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1700 else if (PageAnon(page)) 1701 return try_to_unmap_anon(page, TTU_MUNLOCK); 1702 else 1703 return try_to_unmap_file(page, TTU_MUNLOCK); 1704 } 1705 1706 void __put_anon_vma(struct anon_vma *anon_vma) 1707 { 1708 struct anon_vma *root = anon_vma->root; 1709 1710 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1711 anon_vma_free(root); 1712 1713 anon_vma_free(anon_vma); 1714 } 1715 1716 #ifdef CONFIG_MIGRATION 1717 /* 1718 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1719 * Called by migrate.c to remove migration ptes, but might be used more later. 1720 */ 1721 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1722 struct vm_area_struct *, unsigned long, void *), void *arg) 1723 { 1724 struct anon_vma *anon_vma; 1725 struct anon_vma_chain *avc; 1726 int ret = SWAP_AGAIN; 1727 1728 /* 1729 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1730 * because that depends on page_mapped(); but not all its usages 1731 * are holding mmap_sem. Users without mmap_sem are required to 1732 * take a reference count to prevent the anon_vma disappearing 1733 */ 1734 anon_vma = page_anon_vma(page); 1735 if (!anon_vma) 1736 return ret; 1737 anon_vma_lock(anon_vma); 1738 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1739 struct vm_area_struct *vma = avc->vma; 1740 unsigned long address = vma_address(page, vma); 1741 if (address == -EFAULT) 1742 continue; 1743 ret = rmap_one(page, vma, address, arg); 1744 if (ret != SWAP_AGAIN) 1745 break; 1746 } 1747 anon_vma_unlock(anon_vma); 1748 return ret; 1749 } 1750 1751 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1752 struct vm_area_struct *, unsigned long, void *), void *arg) 1753 { 1754 struct address_space *mapping = page->mapping; 1755 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1756 struct vm_area_struct *vma; 1757 struct prio_tree_iter iter; 1758 int ret = SWAP_AGAIN; 1759 1760 if (!mapping) 1761 return ret; 1762 mutex_lock(&mapping->i_mmap_mutex); 1763 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1764 unsigned long address = vma_address(page, vma); 1765 if (address == -EFAULT) 1766 continue; 1767 ret = rmap_one(page, vma, address, arg); 1768 if (ret != SWAP_AGAIN) 1769 break; 1770 } 1771 /* 1772 * No nonlinear handling: being always shared, nonlinear vmas 1773 * never contain migration ptes. Decide what to do about this 1774 * limitation to linear when we need rmap_walk() on nonlinear. 1775 */ 1776 mutex_unlock(&mapping->i_mmap_mutex); 1777 return ret; 1778 } 1779 1780 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1781 struct vm_area_struct *, unsigned long, void *), void *arg) 1782 { 1783 VM_BUG_ON(!PageLocked(page)); 1784 1785 if (unlikely(PageKsm(page))) 1786 return rmap_walk_ksm(page, rmap_one, arg); 1787 else if (PageAnon(page)) 1788 return rmap_walk_anon(page, rmap_one, arg); 1789 else 1790 return rmap_walk_file(page, rmap_one, arg); 1791 } 1792 #endif /* CONFIG_MIGRATION */ 1793 1794 #ifdef CONFIG_HUGETLB_PAGE 1795 /* 1796 * The following three functions are for anonymous (private mapped) hugepages. 1797 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1798 * and no lru code, because we handle hugepages differently from common pages. 1799 */ 1800 static void __hugepage_set_anon_rmap(struct page *page, 1801 struct vm_area_struct *vma, unsigned long address, int exclusive) 1802 { 1803 struct anon_vma *anon_vma = vma->anon_vma; 1804 1805 BUG_ON(!anon_vma); 1806 1807 if (PageAnon(page)) 1808 return; 1809 if (!exclusive) 1810 anon_vma = anon_vma->root; 1811 1812 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1813 page->mapping = (struct address_space *) anon_vma; 1814 page->index = linear_page_index(vma, address); 1815 } 1816 1817 void hugepage_add_anon_rmap(struct page *page, 1818 struct vm_area_struct *vma, unsigned long address) 1819 { 1820 struct anon_vma *anon_vma = vma->anon_vma; 1821 int first; 1822 1823 BUG_ON(!PageLocked(page)); 1824 BUG_ON(!anon_vma); 1825 /* address might be in next vma when migration races vma_adjust */ 1826 first = atomic_inc_and_test(&page->_mapcount); 1827 if (first) 1828 __hugepage_set_anon_rmap(page, vma, address, 0); 1829 } 1830 1831 void hugepage_add_new_anon_rmap(struct page *page, 1832 struct vm_area_struct *vma, unsigned long address) 1833 { 1834 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1835 atomic_set(&page->_mapcount, 0); 1836 __hugepage_set_anon_rmap(page, vma, address, 1); 1837 } 1838 #endif /* CONFIG_HUGETLB_PAGE */ 1839