1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) * (see hugetlbfs below) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 28 * mapping->i_mmap_rwsem 29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in __set_page_dirty_buffers) 35 * lock_page_memcg move_lock (in __set_page_dirty_buffers) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * * hugetlbfs PageHuge() pages take locks in this order: 50 * mapping->i_mmap_rwsem 51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 77 #include <asm/tlbflush.h> 78 79 #include <trace/events/tlb.h> 80 81 #include "internal.h" 82 83 static struct kmem_cache *anon_vma_cachep; 84 static struct kmem_cache *anon_vma_chain_cachep; 85 86 static inline struct anon_vma *anon_vma_alloc(void) 87 { 88 struct anon_vma *anon_vma; 89 90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 91 if (anon_vma) { 92 atomic_set(&anon_vma->refcount, 1); 93 anon_vma->degree = 1; /* Reference for first vma */ 94 anon_vma->parent = anon_vma; 95 /* 96 * Initialise the anon_vma root to point to itself. If called 97 * from fork, the root will be reset to the parents anon_vma. 98 */ 99 anon_vma->root = anon_vma; 100 } 101 102 return anon_vma; 103 } 104 105 static inline void anon_vma_free(struct anon_vma *anon_vma) 106 { 107 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 108 109 /* 110 * Synchronize against page_lock_anon_vma_read() such that 111 * we can safely hold the lock without the anon_vma getting 112 * freed. 113 * 114 * Relies on the full mb implied by the atomic_dec_and_test() from 115 * put_anon_vma() against the acquire barrier implied by 116 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 117 * 118 * page_lock_anon_vma_read() VS put_anon_vma() 119 * down_read_trylock() atomic_dec_and_test() 120 * LOCK MB 121 * atomic_read() rwsem_is_locked() 122 * 123 * LOCK should suffice since the actual taking of the lock must 124 * happen _before_ what follows. 125 */ 126 might_sleep(); 127 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 128 anon_vma_lock_write(anon_vma); 129 anon_vma_unlock_write(anon_vma); 130 } 131 132 kmem_cache_free(anon_vma_cachep, anon_vma); 133 } 134 135 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 136 { 137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 138 } 139 140 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 141 { 142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 143 } 144 145 static void anon_vma_chain_link(struct vm_area_struct *vma, 146 struct anon_vma_chain *avc, 147 struct anon_vma *anon_vma) 148 { 149 avc->vma = vma; 150 avc->anon_vma = anon_vma; 151 list_add(&avc->same_vma, &vma->anon_vma_chain); 152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 153 } 154 155 /** 156 * __anon_vma_prepare - attach an anon_vma to a memory region 157 * @vma: the memory region in question 158 * 159 * This makes sure the memory mapping described by 'vma' has 160 * an 'anon_vma' attached to it, so that we can associate the 161 * anonymous pages mapped into it with that anon_vma. 162 * 163 * The common case will be that we already have one, which 164 * is handled inline by anon_vma_prepare(). But if 165 * not we either need to find an adjacent mapping that we 166 * can re-use the anon_vma from (very common when the only 167 * reason for splitting a vma has been mprotect()), or we 168 * allocate a new one. 169 * 170 * Anon-vma allocations are very subtle, because we may have 171 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 172 * and that may actually touch the rwsem even in the newly 173 * allocated vma (it depends on RCU to make sure that the 174 * anon_vma isn't actually destroyed). 175 * 176 * As a result, we need to do proper anon_vma locking even 177 * for the new allocation. At the same time, we do not want 178 * to do any locking for the common case of already having 179 * an anon_vma. 180 * 181 * This must be called with the mmap_lock held for reading. 182 */ 183 int __anon_vma_prepare(struct vm_area_struct *vma) 184 { 185 struct mm_struct *mm = vma->vm_mm; 186 struct anon_vma *anon_vma, *allocated; 187 struct anon_vma_chain *avc; 188 189 might_sleep(); 190 191 avc = anon_vma_chain_alloc(GFP_KERNEL); 192 if (!avc) 193 goto out_enomem; 194 195 anon_vma = find_mergeable_anon_vma(vma); 196 allocated = NULL; 197 if (!anon_vma) { 198 anon_vma = anon_vma_alloc(); 199 if (unlikely(!anon_vma)) 200 goto out_enomem_free_avc; 201 allocated = anon_vma; 202 } 203 204 anon_vma_lock_write(anon_vma); 205 /* page_table_lock to protect against threads */ 206 spin_lock(&mm->page_table_lock); 207 if (likely(!vma->anon_vma)) { 208 vma->anon_vma = anon_vma; 209 anon_vma_chain_link(vma, avc, anon_vma); 210 /* vma reference or self-parent link for new root */ 211 anon_vma->degree++; 212 allocated = NULL; 213 avc = NULL; 214 } 215 spin_unlock(&mm->page_table_lock); 216 anon_vma_unlock_write(anon_vma); 217 218 if (unlikely(allocated)) 219 put_anon_vma(allocated); 220 if (unlikely(avc)) 221 anon_vma_chain_free(avc); 222 223 return 0; 224 225 out_enomem_free_avc: 226 anon_vma_chain_free(avc); 227 out_enomem: 228 return -ENOMEM; 229 } 230 231 /* 232 * This is a useful helper function for locking the anon_vma root as 233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 234 * have the same vma. 235 * 236 * Such anon_vma's should have the same root, so you'd expect to see 237 * just a single mutex_lock for the whole traversal. 238 */ 239 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 240 { 241 struct anon_vma *new_root = anon_vma->root; 242 if (new_root != root) { 243 if (WARN_ON_ONCE(root)) 244 up_write(&root->rwsem); 245 root = new_root; 246 down_write(&root->rwsem); 247 } 248 return root; 249 } 250 251 static inline void unlock_anon_vma_root(struct anon_vma *root) 252 { 253 if (root) 254 up_write(&root->rwsem); 255 } 256 257 /* 258 * Attach the anon_vmas from src to dst. 259 * Returns 0 on success, -ENOMEM on failure. 260 * 261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 262 * anon_vma_fork(). The first three want an exact copy of src, while the last 263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 266 * 267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 268 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 269 * This prevents degradation of anon_vma hierarchy to endless linear chain in 270 * case of constantly forking task. On the other hand, an anon_vma with more 271 * than one child isn't reused even if there was no alive vma, thus rmap 272 * walker has a good chance of avoiding scanning the whole hierarchy when it 273 * searches where page is mapped. 274 */ 275 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 276 { 277 struct anon_vma_chain *avc, *pavc; 278 struct anon_vma *root = NULL; 279 280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 281 struct anon_vma *anon_vma; 282 283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 284 if (unlikely(!avc)) { 285 unlock_anon_vma_root(root); 286 root = NULL; 287 avc = anon_vma_chain_alloc(GFP_KERNEL); 288 if (!avc) 289 goto enomem_failure; 290 } 291 anon_vma = pavc->anon_vma; 292 root = lock_anon_vma_root(root, anon_vma); 293 anon_vma_chain_link(dst, avc, anon_vma); 294 295 /* 296 * Reuse existing anon_vma if its degree lower than two, 297 * that means it has no vma and only one anon_vma child. 298 * 299 * Do not chose parent anon_vma, otherwise first child 300 * will always reuse it. Root anon_vma is never reused: 301 * it has self-parent reference and at least one child. 302 */ 303 if (!dst->anon_vma && src->anon_vma && 304 anon_vma != src->anon_vma && anon_vma->degree < 2) 305 dst->anon_vma = anon_vma; 306 } 307 if (dst->anon_vma) 308 dst->anon_vma->degree++; 309 unlock_anon_vma_root(root); 310 return 0; 311 312 enomem_failure: 313 /* 314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 315 * decremented in unlink_anon_vmas(). 316 * We can safely do this because callers of anon_vma_clone() don't care 317 * about dst->anon_vma if anon_vma_clone() failed. 318 */ 319 dst->anon_vma = NULL; 320 unlink_anon_vmas(dst); 321 return -ENOMEM; 322 } 323 324 /* 325 * Attach vma to its own anon_vma, as well as to the anon_vmas that 326 * the corresponding VMA in the parent process is attached to. 327 * Returns 0 on success, non-zero on failure. 328 */ 329 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 330 { 331 struct anon_vma_chain *avc; 332 struct anon_vma *anon_vma; 333 int error; 334 335 /* Don't bother if the parent process has no anon_vma here. */ 336 if (!pvma->anon_vma) 337 return 0; 338 339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 340 vma->anon_vma = NULL; 341 342 /* 343 * First, attach the new VMA to the parent VMA's anon_vmas, 344 * so rmap can find non-COWed pages in child processes. 345 */ 346 error = anon_vma_clone(vma, pvma); 347 if (error) 348 return error; 349 350 /* An existing anon_vma has been reused, all done then. */ 351 if (vma->anon_vma) 352 return 0; 353 354 /* Then add our own anon_vma. */ 355 anon_vma = anon_vma_alloc(); 356 if (!anon_vma) 357 goto out_error; 358 avc = anon_vma_chain_alloc(GFP_KERNEL); 359 if (!avc) 360 goto out_error_free_anon_vma; 361 362 /* 363 * The root anon_vma's rwsem is the lock actually used when we 364 * lock any of the anon_vmas in this anon_vma tree. 365 */ 366 anon_vma->root = pvma->anon_vma->root; 367 anon_vma->parent = pvma->anon_vma; 368 /* 369 * With refcounts, an anon_vma can stay around longer than the 370 * process it belongs to. The root anon_vma needs to be pinned until 371 * this anon_vma is freed, because the lock lives in the root. 372 */ 373 get_anon_vma(anon_vma->root); 374 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 375 vma->anon_vma = anon_vma; 376 anon_vma_lock_write(anon_vma); 377 anon_vma_chain_link(vma, avc, anon_vma); 378 anon_vma->parent->degree++; 379 anon_vma_unlock_write(anon_vma); 380 381 return 0; 382 383 out_error_free_anon_vma: 384 put_anon_vma(anon_vma); 385 out_error: 386 unlink_anon_vmas(vma); 387 return -ENOMEM; 388 } 389 390 void unlink_anon_vmas(struct vm_area_struct *vma) 391 { 392 struct anon_vma_chain *avc, *next; 393 struct anon_vma *root = NULL; 394 395 /* 396 * Unlink each anon_vma chained to the VMA. This list is ordered 397 * from newest to oldest, ensuring the root anon_vma gets freed last. 398 */ 399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 400 struct anon_vma *anon_vma = avc->anon_vma; 401 402 root = lock_anon_vma_root(root, anon_vma); 403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 404 405 /* 406 * Leave empty anon_vmas on the list - we'll need 407 * to free them outside the lock. 408 */ 409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 410 anon_vma->parent->degree--; 411 continue; 412 } 413 414 list_del(&avc->same_vma); 415 anon_vma_chain_free(avc); 416 } 417 if (vma->anon_vma) { 418 vma->anon_vma->degree--; 419 420 /* 421 * vma would still be needed after unlink, and anon_vma will be prepared 422 * when handle fault. 423 */ 424 vma->anon_vma = NULL; 425 } 426 unlock_anon_vma_root(root); 427 428 /* 429 * Iterate the list once more, it now only contains empty and unlinked 430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 431 * needing to write-acquire the anon_vma->root->rwsem. 432 */ 433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 434 struct anon_vma *anon_vma = avc->anon_vma; 435 436 VM_WARN_ON(anon_vma->degree); 437 put_anon_vma(anon_vma); 438 439 list_del(&avc->same_vma); 440 anon_vma_chain_free(avc); 441 } 442 } 443 444 static void anon_vma_ctor(void *data) 445 { 446 struct anon_vma *anon_vma = data; 447 448 init_rwsem(&anon_vma->rwsem); 449 atomic_set(&anon_vma->refcount, 0); 450 anon_vma->rb_root = RB_ROOT_CACHED; 451 } 452 453 void __init anon_vma_init(void) 454 { 455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 457 anon_vma_ctor); 458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 459 SLAB_PANIC|SLAB_ACCOUNT); 460 } 461 462 /* 463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 464 * 465 * Since there is no serialization what so ever against page_remove_rmap() 466 * the best this function can do is return a refcount increased anon_vma 467 * that might have been relevant to this page. 468 * 469 * The page might have been remapped to a different anon_vma or the anon_vma 470 * returned may already be freed (and even reused). 471 * 472 * In case it was remapped to a different anon_vma, the new anon_vma will be a 473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 474 * ensure that any anon_vma obtained from the page will still be valid for as 475 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 476 * 477 * All users of this function must be very careful when walking the anon_vma 478 * chain and verify that the page in question is indeed mapped in it 479 * [ something equivalent to page_mapped_in_vma() ]. 480 * 481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 483 * if there is a mapcount, we can dereference the anon_vma after observing 484 * those. 485 */ 486 struct anon_vma *page_get_anon_vma(struct page *page) 487 { 488 struct anon_vma *anon_vma = NULL; 489 unsigned long anon_mapping; 490 491 rcu_read_lock(); 492 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 494 goto out; 495 if (!page_mapped(page)) 496 goto out; 497 498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 499 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 500 anon_vma = NULL; 501 goto out; 502 } 503 504 /* 505 * If this page is still mapped, then its anon_vma cannot have been 506 * freed. But if it has been unmapped, we have no security against the 507 * anon_vma structure being freed and reused (for another anon_vma: 508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 509 * above cannot corrupt). 510 */ 511 if (!page_mapped(page)) { 512 rcu_read_unlock(); 513 put_anon_vma(anon_vma); 514 return NULL; 515 } 516 out: 517 rcu_read_unlock(); 518 519 return anon_vma; 520 } 521 522 /* 523 * Similar to page_get_anon_vma() except it locks the anon_vma. 524 * 525 * Its a little more complex as it tries to keep the fast path to a single 526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 527 * reference like with page_get_anon_vma() and then block on the mutex. 528 */ 529 struct anon_vma *page_lock_anon_vma_read(struct page *page) 530 { 531 struct anon_vma *anon_vma = NULL; 532 struct anon_vma *root_anon_vma; 533 unsigned long anon_mapping; 534 535 rcu_read_lock(); 536 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 538 goto out; 539 if (!page_mapped(page)) 540 goto out; 541 542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 543 root_anon_vma = READ_ONCE(anon_vma->root); 544 if (down_read_trylock(&root_anon_vma->rwsem)) { 545 /* 546 * If the page is still mapped, then this anon_vma is still 547 * its anon_vma, and holding the mutex ensures that it will 548 * not go away, see anon_vma_free(). 549 */ 550 if (!page_mapped(page)) { 551 up_read(&root_anon_vma->rwsem); 552 anon_vma = NULL; 553 } 554 goto out; 555 } 556 557 /* trylock failed, we got to sleep */ 558 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 559 anon_vma = NULL; 560 goto out; 561 } 562 563 if (!page_mapped(page)) { 564 rcu_read_unlock(); 565 put_anon_vma(anon_vma); 566 return NULL; 567 } 568 569 /* we pinned the anon_vma, its safe to sleep */ 570 rcu_read_unlock(); 571 anon_vma_lock_read(anon_vma); 572 573 if (atomic_dec_and_test(&anon_vma->refcount)) { 574 /* 575 * Oops, we held the last refcount, release the lock 576 * and bail -- can't simply use put_anon_vma() because 577 * we'll deadlock on the anon_vma_lock_write() recursion. 578 */ 579 anon_vma_unlock_read(anon_vma); 580 __put_anon_vma(anon_vma); 581 anon_vma = NULL; 582 } 583 584 return anon_vma; 585 586 out: 587 rcu_read_unlock(); 588 return anon_vma; 589 } 590 591 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 592 { 593 anon_vma_unlock_read(anon_vma); 594 } 595 596 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 597 /* 598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 599 * important if a PTE was dirty when it was unmapped that it's flushed 600 * before any IO is initiated on the page to prevent lost writes. Similarly, 601 * it must be flushed before freeing to prevent data leakage. 602 */ 603 void try_to_unmap_flush(void) 604 { 605 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 606 607 if (!tlb_ubc->flush_required) 608 return; 609 610 arch_tlbbatch_flush(&tlb_ubc->arch); 611 tlb_ubc->flush_required = false; 612 tlb_ubc->writable = false; 613 } 614 615 /* Flush iff there are potentially writable TLB entries that can race with IO */ 616 void try_to_unmap_flush_dirty(void) 617 { 618 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 619 620 if (tlb_ubc->writable) 621 try_to_unmap_flush(); 622 } 623 624 /* 625 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 626 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 627 */ 628 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 629 #define TLB_FLUSH_BATCH_PENDING_MASK \ 630 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 631 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 632 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 633 634 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 635 { 636 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 637 int batch, nbatch; 638 639 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 640 tlb_ubc->flush_required = true; 641 642 /* 643 * Ensure compiler does not re-order the setting of tlb_flush_batched 644 * before the PTE is cleared. 645 */ 646 barrier(); 647 batch = atomic_read(&mm->tlb_flush_batched); 648 retry: 649 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 650 /* 651 * Prevent `pending' from catching up with `flushed' because of 652 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 653 * `pending' becomes large. 654 */ 655 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); 656 if (nbatch != batch) { 657 batch = nbatch; 658 goto retry; 659 } 660 } else { 661 atomic_inc(&mm->tlb_flush_batched); 662 } 663 664 /* 665 * If the PTE was dirty then it's best to assume it's writable. The 666 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 667 * before the page is queued for IO. 668 */ 669 if (writable) 670 tlb_ubc->writable = true; 671 } 672 673 /* 674 * Returns true if the TLB flush should be deferred to the end of a batch of 675 * unmap operations to reduce IPIs. 676 */ 677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 678 { 679 bool should_defer = false; 680 681 if (!(flags & TTU_BATCH_FLUSH)) 682 return false; 683 684 /* If remote CPUs need to be flushed then defer batch the flush */ 685 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 686 should_defer = true; 687 put_cpu(); 688 689 return should_defer; 690 } 691 692 /* 693 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 694 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 695 * operation such as mprotect or munmap to race between reclaim unmapping 696 * the page and flushing the page. If this race occurs, it potentially allows 697 * access to data via a stale TLB entry. Tracking all mm's that have TLB 698 * batching in flight would be expensive during reclaim so instead track 699 * whether TLB batching occurred in the past and if so then do a flush here 700 * if required. This will cost one additional flush per reclaim cycle paid 701 * by the first operation at risk such as mprotect and mumap. 702 * 703 * This must be called under the PTL so that an access to tlb_flush_batched 704 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 705 * via the PTL. 706 */ 707 void flush_tlb_batched_pending(struct mm_struct *mm) 708 { 709 int batch = atomic_read(&mm->tlb_flush_batched); 710 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 711 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 712 713 if (pending != flushed) { 714 flush_tlb_mm(mm); 715 /* 716 * If the new TLB flushing is pending during flushing, leave 717 * mm->tlb_flush_batched as is, to avoid losing flushing. 718 */ 719 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 720 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 721 } 722 } 723 #else 724 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 725 { 726 } 727 728 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 729 { 730 return false; 731 } 732 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 733 734 /* 735 * At what user virtual address is page expected in vma? 736 * Caller should check the page is actually part of the vma. 737 */ 738 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 739 { 740 if (PageAnon(page)) { 741 struct anon_vma *page__anon_vma = page_anon_vma(page); 742 /* 743 * Note: swapoff's unuse_vma() is more efficient with this 744 * check, and needs it to match anon_vma when KSM is active. 745 */ 746 if (!vma->anon_vma || !page__anon_vma || 747 vma->anon_vma->root != page__anon_vma->root) 748 return -EFAULT; 749 } else if (!vma->vm_file) { 750 return -EFAULT; 751 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) { 752 return -EFAULT; 753 } 754 755 return vma_address(page, vma); 756 } 757 758 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 759 { 760 pgd_t *pgd; 761 p4d_t *p4d; 762 pud_t *pud; 763 pmd_t *pmd = NULL; 764 pmd_t pmde; 765 766 pgd = pgd_offset(mm, address); 767 if (!pgd_present(*pgd)) 768 goto out; 769 770 p4d = p4d_offset(pgd, address); 771 if (!p4d_present(*p4d)) 772 goto out; 773 774 pud = pud_offset(p4d, address); 775 if (!pud_present(*pud)) 776 goto out; 777 778 pmd = pmd_offset(pud, address); 779 /* 780 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 781 * without holding anon_vma lock for write. So when looking for a 782 * genuine pmde (in which to find pte), test present and !THP together. 783 */ 784 pmde = *pmd; 785 barrier(); 786 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 787 pmd = NULL; 788 out: 789 return pmd; 790 } 791 792 struct page_referenced_arg { 793 int mapcount; 794 int referenced; 795 unsigned long vm_flags; 796 struct mem_cgroup *memcg; 797 }; 798 /* 799 * arg: page_referenced_arg will be passed 800 */ 801 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 802 unsigned long address, void *arg) 803 { 804 struct page_referenced_arg *pra = arg; 805 struct page_vma_mapped_walk pvmw = { 806 .page = page, 807 .vma = vma, 808 .address = address, 809 }; 810 int referenced = 0; 811 812 while (page_vma_mapped_walk(&pvmw)) { 813 address = pvmw.address; 814 815 if (vma->vm_flags & VM_LOCKED) { 816 page_vma_mapped_walk_done(&pvmw); 817 pra->vm_flags |= VM_LOCKED; 818 return false; /* To break the loop */ 819 } 820 821 if (pvmw.pte) { 822 if (ptep_clear_flush_young_notify(vma, address, 823 pvmw.pte)) { 824 /* 825 * Don't treat a reference through 826 * a sequentially read mapping as such. 827 * If the page has been used in another mapping, 828 * we will catch it; if this other mapping is 829 * already gone, the unmap path will have set 830 * PG_referenced or activated the page. 831 */ 832 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 833 referenced++; 834 } 835 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 836 if (pmdp_clear_flush_young_notify(vma, address, 837 pvmw.pmd)) 838 referenced++; 839 } else { 840 /* unexpected pmd-mapped page? */ 841 WARN_ON_ONCE(1); 842 } 843 844 pra->mapcount--; 845 } 846 847 if (referenced) 848 clear_page_idle(page); 849 if (test_and_clear_page_young(page)) 850 referenced++; 851 852 if (referenced) { 853 pra->referenced++; 854 pra->vm_flags |= vma->vm_flags; 855 } 856 857 if (!pra->mapcount) 858 return false; /* To break the loop */ 859 860 return true; 861 } 862 863 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 864 { 865 struct page_referenced_arg *pra = arg; 866 struct mem_cgroup *memcg = pra->memcg; 867 868 if (!mm_match_cgroup(vma->vm_mm, memcg)) 869 return true; 870 871 return false; 872 } 873 874 /** 875 * page_referenced - test if the page was referenced 876 * @page: the page to test 877 * @is_locked: caller holds lock on the page 878 * @memcg: target memory cgroup 879 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 880 * 881 * Quick test_and_clear_referenced for all mappings to a page, 882 * returns the number of ptes which referenced the page. 883 */ 884 int page_referenced(struct page *page, 885 int is_locked, 886 struct mem_cgroup *memcg, 887 unsigned long *vm_flags) 888 { 889 int we_locked = 0; 890 struct page_referenced_arg pra = { 891 .mapcount = total_mapcount(page), 892 .memcg = memcg, 893 }; 894 struct rmap_walk_control rwc = { 895 .rmap_one = page_referenced_one, 896 .arg = (void *)&pra, 897 .anon_lock = page_lock_anon_vma_read, 898 }; 899 900 *vm_flags = 0; 901 if (!pra.mapcount) 902 return 0; 903 904 if (!page_rmapping(page)) 905 return 0; 906 907 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 908 we_locked = trylock_page(page); 909 if (!we_locked) 910 return 1; 911 } 912 913 /* 914 * If we are reclaiming on behalf of a cgroup, skip 915 * counting on behalf of references from different 916 * cgroups 917 */ 918 if (memcg) { 919 rwc.invalid_vma = invalid_page_referenced_vma; 920 } 921 922 rmap_walk(page, &rwc); 923 *vm_flags = pra.vm_flags; 924 925 if (we_locked) 926 unlock_page(page); 927 928 return pra.referenced; 929 } 930 931 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 932 unsigned long address, void *arg) 933 { 934 struct page_vma_mapped_walk pvmw = { 935 .page = page, 936 .vma = vma, 937 .address = address, 938 .flags = PVMW_SYNC, 939 }; 940 struct mmu_notifier_range range; 941 int *cleaned = arg; 942 943 /* 944 * We have to assume the worse case ie pmd for invalidation. Note that 945 * the page can not be free from this function. 946 */ 947 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 948 0, vma, vma->vm_mm, address, 949 vma_address_end(page, vma)); 950 mmu_notifier_invalidate_range_start(&range); 951 952 while (page_vma_mapped_walk(&pvmw)) { 953 int ret = 0; 954 955 address = pvmw.address; 956 if (pvmw.pte) { 957 pte_t entry; 958 pte_t *pte = pvmw.pte; 959 960 if (!pte_dirty(*pte) && !pte_write(*pte)) 961 continue; 962 963 flush_cache_page(vma, address, pte_pfn(*pte)); 964 entry = ptep_clear_flush(vma, address, pte); 965 entry = pte_wrprotect(entry); 966 entry = pte_mkclean(entry); 967 set_pte_at(vma->vm_mm, address, pte, entry); 968 ret = 1; 969 } else { 970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 971 pmd_t *pmd = pvmw.pmd; 972 pmd_t entry; 973 974 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 975 continue; 976 977 flush_cache_page(vma, address, page_to_pfn(page)); 978 entry = pmdp_invalidate(vma, address, pmd); 979 entry = pmd_wrprotect(entry); 980 entry = pmd_mkclean(entry); 981 set_pmd_at(vma->vm_mm, address, pmd, entry); 982 ret = 1; 983 #else 984 /* unexpected pmd-mapped page? */ 985 WARN_ON_ONCE(1); 986 #endif 987 } 988 989 /* 990 * No need to call mmu_notifier_invalidate_range() as we are 991 * downgrading page table protection not changing it to point 992 * to a new page. 993 * 994 * See Documentation/vm/mmu_notifier.rst 995 */ 996 if (ret) 997 (*cleaned)++; 998 } 999 1000 mmu_notifier_invalidate_range_end(&range); 1001 1002 return true; 1003 } 1004 1005 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1006 { 1007 if (vma->vm_flags & VM_SHARED) 1008 return false; 1009 1010 return true; 1011 } 1012 1013 int folio_mkclean(struct folio *folio) 1014 { 1015 int cleaned = 0; 1016 struct address_space *mapping; 1017 struct rmap_walk_control rwc = { 1018 .arg = (void *)&cleaned, 1019 .rmap_one = page_mkclean_one, 1020 .invalid_vma = invalid_mkclean_vma, 1021 }; 1022 1023 BUG_ON(!folio_test_locked(folio)); 1024 1025 if (!folio_mapped(folio)) 1026 return 0; 1027 1028 mapping = folio_mapping(folio); 1029 if (!mapping) 1030 return 0; 1031 1032 rmap_walk(&folio->page, &rwc); 1033 1034 return cleaned; 1035 } 1036 EXPORT_SYMBOL_GPL(folio_mkclean); 1037 1038 /** 1039 * page_move_anon_rmap - move a page to our anon_vma 1040 * @page: the page to move to our anon_vma 1041 * @vma: the vma the page belongs to 1042 * 1043 * When a page belongs exclusively to one process after a COW event, 1044 * that page can be moved into the anon_vma that belongs to just that 1045 * process, so the rmap code will not search the parent or sibling 1046 * processes. 1047 */ 1048 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1049 { 1050 struct anon_vma *anon_vma = vma->anon_vma; 1051 1052 page = compound_head(page); 1053 1054 VM_BUG_ON_PAGE(!PageLocked(page), page); 1055 VM_BUG_ON_VMA(!anon_vma, vma); 1056 1057 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1058 /* 1059 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1060 * simultaneously, so a concurrent reader (eg page_referenced()'s 1061 * PageAnon()) will not see one without the other. 1062 */ 1063 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1064 } 1065 1066 /** 1067 * __page_set_anon_rmap - set up new anonymous rmap 1068 * @page: Page or Hugepage to add to rmap 1069 * @vma: VM area to add page to. 1070 * @address: User virtual address of the mapping 1071 * @exclusive: the page is exclusively owned by the current process 1072 */ 1073 static void __page_set_anon_rmap(struct page *page, 1074 struct vm_area_struct *vma, unsigned long address, int exclusive) 1075 { 1076 struct anon_vma *anon_vma = vma->anon_vma; 1077 1078 BUG_ON(!anon_vma); 1079 1080 if (PageAnon(page)) 1081 return; 1082 1083 /* 1084 * If the page isn't exclusively mapped into this vma, 1085 * we must use the _oldest_ possible anon_vma for the 1086 * page mapping! 1087 */ 1088 if (!exclusive) 1089 anon_vma = anon_vma->root; 1090 1091 /* 1092 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1093 * Make sure the compiler doesn't split the stores of anon_vma and 1094 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1095 * could mistake the mapping for a struct address_space and crash. 1096 */ 1097 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1098 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1099 page->index = linear_page_index(vma, address); 1100 } 1101 1102 /** 1103 * __page_check_anon_rmap - sanity check anonymous rmap addition 1104 * @page: the page to add the mapping to 1105 * @vma: the vm area in which the mapping is added 1106 * @address: the user virtual address mapped 1107 */ 1108 static void __page_check_anon_rmap(struct page *page, 1109 struct vm_area_struct *vma, unsigned long address) 1110 { 1111 /* 1112 * The page's anon-rmap details (mapping and index) are guaranteed to 1113 * be set up correctly at this point. 1114 * 1115 * We have exclusion against page_add_anon_rmap because the caller 1116 * always holds the page locked. 1117 * 1118 * We have exclusion against page_add_new_anon_rmap because those pages 1119 * are initially only visible via the pagetables, and the pte is locked 1120 * over the call to page_add_new_anon_rmap. 1121 */ 1122 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page); 1123 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1124 page); 1125 } 1126 1127 /** 1128 * page_add_anon_rmap - add pte mapping to an anonymous page 1129 * @page: the page to add the mapping to 1130 * @vma: the vm area in which the mapping is added 1131 * @address: the user virtual address mapped 1132 * @compound: charge the page as compound or small page 1133 * 1134 * The caller needs to hold the pte lock, and the page must be locked in 1135 * the anon_vma case: to serialize mapping,index checking after setting, 1136 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1137 * (but PageKsm is never downgraded to PageAnon). 1138 */ 1139 void page_add_anon_rmap(struct page *page, 1140 struct vm_area_struct *vma, unsigned long address, bool compound) 1141 { 1142 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1143 } 1144 1145 /* 1146 * Special version of the above for do_swap_page, which often runs 1147 * into pages that are exclusively owned by the current process. 1148 * Everybody else should continue to use page_add_anon_rmap above. 1149 */ 1150 void do_page_add_anon_rmap(struct page *page, 1151 struct vm_area_struct *vma, unsigned long address, int flags) 1152 { 1153 bool compound = flags & RMAP_COMPOUND; 1154 bool first; 1155 1156 if (unlikely(PageKsm(page))) 1157 lock_page_memcg(page); 1158 else 1159 VM_BUG_ON_PAGE(!PageLocked(page), page); 1160 1161 if (compound) { 1162 atomic_t *mapcount; 1163 VM_BUG_ON_PAGE(!PageLocked(page), page); 1164 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1165 mapcount = compound_mapcount_ptr(page); 1166 first = atomic_inc_and_test(mapcount); 1167 } else { 1168 first = atomic_inc_and_test(&page->_mapcount); 1169 } 1170 1171 if (first) { 1172 int nr = compound ? thp_nr_pages(page) : 1; 1173 /* 1174 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1175 * these counters are not modified in interrupt context, and 1176 * pte lock(a spinlock) is held, which implies preemption 1177 * disabled. 1178 */ 1179 if (compound) 1180 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1181 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1182 } 1183 1184 if (unlikely(PageKsm(page))) { 1185 unlock_page_memcg(page); 1186 return; 1187 } 1188 1189 /* address might be in next vma when migration races vma_adjust */ 1190 if (first) 1191 __page_set_anon_rmap(page, vma, address, 1192 flags & RMAP_EXCLUSIVE); 1193 else 1194 __page_check_anon_rmap(page, vma, address); 1195 } 1196 1197 /** 1198 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1199 * @page: the page to add the mapping to 1200 * @vma: the vm area in which the mapping is added 1201 * @address: the user virtual address mapped 1202 * @compound: charge the page as compound or small page 1203 * 1204 * Same as page_add_anon_rmap but must only be called on *new* pages. 1205 * This means the inc-and-test can be bypassed. 1206 * Page does not have to be locked. 1207 */ 1208 void page_add_new_anon_rmap(struct page *page, 1209 struct vm_area_struct *vma, unsigned long address, bool compound) 1210 { 1211 int nr = compound ? thp_nr_pages(page) : 1; 1212 1213 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1214 __SetPageSwapBacked(page); 1215 if (compound) { 1216 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1217 /* increment count (starts at -1) */ 1218 atomic_set(compound_mapcount_ptr(page), 0); 1219 if (hpage_pincount_available(page)) 1220 atomic_set(compound_pincount_ptr(page), 0); 1221 1222 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1223 } else { 1224 /* Anon THP always mapped first with PMD */ 1225 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1226 /* increment count (starts at -1) */ 1227 atomic_set(&page->_mapcount, 0); 1228 } 1229 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1230 __page_set_anon_rmap(page, vma, address, 1); 1231 } 1232 1233 /** 1234 * page_add_file_rmap - add pte mapping to a file page 1235 * @page: the page to add the mapping to 1236 * @compound: charge the page as compound or small page 1237 * 1238 * The caller needs to hold the pte lock. 1239 */ 1240 void page_add_file_rmap(struct page *page, bool compound) 1241 { 1242 int i, nr = 1; 1243 1244 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1245 lock_page_memcg(page); 1246 if (compound && PageTransHuge(page)) { 1247 int nr_pages = thp_nr_pages(page); 1248 1249 for (i = 0, nr = 0; i < nr_pages; i++) { 1250 if (atomic_inc_and_test(&page[i]._mapcount)) 1251 nr++; 1252 } 1253 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1254 goto out; 1255 1256 /* 1257 * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); 1258 * but page lock is held by all page_add_file_rmap() compound 1259 * callers, and SetPageDoubleMap below warns if !PageLocked: 1260 * so here is a place that DoubleMap can be safely cleared. 1261 */ 1262 VM_WARN_ON_ONCE(!PageLocked(page)); 1263 if (nr == nr_pages && PageDoubleMap(page)) 1264 ClearPageDoubleMap(page); 1265 1266 if (PageSwapBacked(page)) 1267 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1268 nr_pages); 1269 else 1270 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1271 nr_pages); 1272 } else { 1273 if (PageTransCompound(page) && page_mapping(page)) { 1274 struct page *head = compound_head(page); 1275 1276 VM_WARN_ON_ONCE(!PageLocked(page)); 1277 1278 SetPageDoubleMap(head); 1279 if (PageMlocked(page)) 1280 clear_page_mlock(head); 1281 } 1282 if (!atomic_inc_and_test(&page->_mapcount)) 1283 goto out; 1284 } 1285 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1286 out: 1287 unlock_page_memcg(page); 1288 } 1289 1290 static void page_remove_file_rmap(struct page *page, bool compound) 1291 { 1292 int i, nr = 1; 1293 1294 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1295 1296 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1297 if (unlikely(PageHuge(page))) { 1298 /* hugetlb pages are always mapped with pmds */ 1299 atomic_dec(compound_mapcount_ptr(page)); 1300 return; 1301 } 1302 1303 /* page still mapped by someone else? */ 1304 if (compound && PageTransHuge(page)) { 1305 int nr_pages = thp_nr_pages(page); 1306 1307 for (i = 0, nr = 0; i < nr_pages; i++) { 1308 if (atomic_add_negative(-1, &page[i]._mapcount)) 1309 nr++; 1310 } 1311 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1312 return; 1313 if (PageSwapBacked(page)) 1314 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1315 -nr_pages); 1316 else 1317 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1318 -nr_pages); 1319 } else { 1320 if (!atomic_add_negative(-1, &page->_mapcount)) 1321 return; 1322 } 1323 1324 /* 1325 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because 1326 * these counters are not modified in interrupt context, and 1327 * pte lock(a spinlock) is held, which implies preemption disabled. 1328 */ 1329 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1330 1331 if (unlikely(PageMlocked(page))) 1332 clear_page_mlock(page); 1333 } 1334 1335 static void page_remove_anon_compound_rmap(struct page *page) 1336 { 1337 int i, nr; 1338 1339 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1340 return; 1341 1342 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1343 if (unlikely(PageHuge(page))) 1344 return; 1345 1346 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1347 return; 1348 1349 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); 1350 1351 if (TestClearPageDoubleMap(page)) { 1352 /* 1353 * Subpages can be mapped with PTEs too. Check how many of 1354 * them are still mapped. 1355 */ 1356 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { 1357 if (atomic_add_negative(-1, &page[i]._mapcount)) 1358 nr++; 1359 } 1360 1361 /* 1362 * Queue the page for deferred split if at least one small 1363 * page of the compound page is unmapped, but at least one 1364 * small page is still mapped. 1365 */ 1366 if (nr && nr < thp_nr_pages(page)) 1367 deferred_split_huge_page(page); 1368 } else { 1369 nr = thp_nr_pages(page); 1370 } 1371 1372 if (unlikely(PageMlocked(page))) 1373 clear_page_mlock(page); 1374 1375 if (nr) 1376 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); 1377 } 1378 1379 /** 1380 * page_remove_rmap - take down pte mapping from a page 1381 * @page: page to remove mapping from 1382 * @compound: uncharge the page as compound or small page 1383 * 1384 * The caller needs to hold the pte lock. 1385 */ 1386 void page_remove_rmap(struct page *page, bool compound) 1387 { 1388 lock_page_memcg(page); 1389 1390 if (!PageAnon(page)) { 1391 page_remove_file_rmap(page, compound); 1392 goto out; 1393 } 1394 1395 if (compound) { 1396 page_remove_anon_compound_rmap(page); 1397 goto out; 1398 } 1399 1400 /* page still mapped by someone else? */ 1401 if (!atomic_add_negative(-1, &page->_mapcount)) 1402 goto out; 1403 1404 /* 1405 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1406 * these counters are not modified in interrupt context, and 1407 * pte lock(a spinlock) is held, which implies preemption disabled. 1408 */ 1409 __dec_lruvec_page_state(page, NR_ANON_MAPPED); 1410 1411 if (unlikely(PageMlocked(page))) 1412 clear_page_mlock(page); 1413 1414 if (PageTransCompound(page)) 1415 deferred_split_huge_page(compound_head(page)); 1416 1417 /* 1418 * It would be tidy to reset the PageAnon mapping here, 1419 * but that might overwrite a racing page_add_anon_rmap 1420 * which increments mapcount after us but sets mapping 1421 * before us: so leave the reset to free_unref_page, 1422 * and remember that it's only reliable while mapped. 1423 * Leaving it set also helps swapoff to reinstate ptes 1424 * faster for those pages still in swapcache. 1425 */ 1426 out: 1427 unlock_page_memcg(page); 1428 } 1429 1430 /* 1431 * @arg: enum ttu_flags will be passed to this argument 1432 */ 1433 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1434 unsigned long address, void *arg) 1435 { 1436 struct mm_struct *mm = vma->vm_mm; 1437 struct page_vma_mapped_walk pvmw = { 1438 .page = page, 1439 .vma = vma, 1440 .address = address, 1441 }; 1442 pte_t pteval; 1443 struct page *subpage; 1444 bool ret = true; 1445 struct mmu_notifier_range range; 1446 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1447 1448 /* 1449 * When racing against e.g. zap_pte_range() on another cpu, 1450 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1451 * try_to_unmap() may return before page_mapped() has become false, 1452 * if page table locking is skipped: use TTU_SYNC to wait for that. 1453 */ 1454 if (flags & TTU_SYNC) 1455 pvmw.flags = PVMW_SYNC; 1456 1457 if (flags & TTU_SPLIT_HUGE_PMD) 1458 split_huge_pmd_address(vma, address, false, page); 1459 1460 /* 1461 * For THP, we have to assume the worse case ie pmd for invalidation. 1462 * For hugetlb, it could be much worse if we need to do pud 1463 * invalidation in the case of pmd sharing. 1464 * 1465 * Note that the page can not be free in this function as call of 1466 * try_to_unmap() must hold a reference on the page. 1467 */ 1468 range.end = PageKsm(page) ? 1469 address + PAGE_SIZE : vma_address_end(page, vma); 1470 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1471 address, range.end); 1472 if (PageHuge(page)) { 1473 /* 1474 * If sharing is possible, start and end will be adjusted 1475 * accordingly. 1476 */ 1477 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1478 &range.end); 1479 } 1480 mmu_notifier_invalidate_range_start(&range); 1481 1482 while (page_vma_mapped_walk(&pvmw)) { 1483 /* 1484 * If the page is mlock()d, we cannot swap it out. 1485 */ 1486 if (!(flags & TTU_IGNORE_MLOCK) && 1487 (vma->vm_flags & VM_LOCKED)) { 1488 /* 1489 * PTE-mapped THP are never marked as mlocked: so do 1490 * not set it on a DoubleMap THP, nor on an Anon THP 1491 * (which may still be PTE-mapped after DoubleMap was 1492 * cleared). But stop unmapping even in those cases. 1493 */ 1494 if (!PageTransCompound(page) || (PageHead(page) && 1495 !PageDoubleMap(page) && !PageAnon(page))) 1496 mlock_vma_page(page); 1497 page_vma_mapped_walk_done(&pvmw); 1498 ret = false; 1499 break; 1500 } 1501 1502 /* Unexpected PMD-mapped THP? */ 1503 VM_BUG_ON_PAGE(!pvmw.pte, page); 1504 1505 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1506 address = pvmw.address; 1507 1508 if (PageHuge(page) && !PageAnon(page)) { 1509 /* 1510 * To call huge_pmd_unshare, i_mmap_rwsem must be 1511 * held in write mode. Caller needs to explicitly 1512 * do this outside rmap routines. 1513 */ 1514 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1515 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1516 /* 1517 * huge_pmd_unshare unmapped an entire PMD 1518 * page. There is no way of knowing exactly 1519 * which PMDs may be cached for this mm, so 1520 * we must flush them all. start/end were 1521 * already adjusted above to cover this range. 1522 */ 1523 flush_cache_range(vma, range.start, range.end); 1524 flush_tlb_range(vma, range.start, range.end); 1525 mmu_notifier_invalidate_range(mm, range.start, 1526 range.end); 1527 1528 /* 1529 * The ref count of the PMD page was dropped 1530 * which is part of the way map counting 1531 * is done for shared PMDs. Return 'true' 1532 * here. When there is no other sharing, 1533 * huge_pmd_unshare returns false and we will 1534 * unmap the actual page and drop map count 1535 * to zero. 1536 */ 1537 page_vma_mapped_walk_done(&pvmw); 1538 break; 1539 } 1540 } 1541 1542 /* Nuke the page table entry. */ 1543 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1544 if (should_defer_flush(mm, flags)) { 1545 /* 1546 * We clear the PTE but do not flush so potentially 1547 * a remote CPU could still be writing to the page. 1548 * If the entry was previously clean then the 1549 * architecture must guarantee that a clear->dirty 1550 * transition on a cached TLB entry is written through 1551 * and traps if the PTE is unmapped. 1552 */ 1553 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1554 1555 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1556 } else { 1557 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1558 } 1559 1560 /* Move the dirty bit to the page. Now the pte is gone. */ 1561 if (pte_dirty(pteval)) 1562 set_page_dirty(page); 1563 1564 /* Update high watermark before we lower rss */ 1565 update_hiwater_rss(mm); 1566 1567 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { 1568 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1569 if (PageHuge(page)) { 1570 hugetlb_count_sub(compound_nr(page), mm); 1571 set_huge_swap_pte_at(mm, address, 1572 pvmw.pte, pteval, 1573 vma_mmu_pagesize(vma)); 1574 } else { 1575 dec_mm_counter(mm, mm_counter(page)); 1576 set_pte_at(mm, address, pvmw.pte, pteval); 1577 } 1578 1579 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1580 /* 1581 * The guest indicated that the page content is of no 1582 * interest anymore. Simply discard the pte, vmscan 1583 * will take care of the rest. 1584 * A future reference will then fault in a new zero 1585 * page. When userfaultfd is active, we must not drop 1586 * this page though, as its main user (postcopy 1587 * migration) will not expect userfaults on already 1588 * copied pages. 1589 */ 1590 dec_mm_counter(mm, mm_counter(page)); 1591 /* We have to invalidate as we cleared the pte */ 1592 mmu_notifier_invalidate_range(mm, address, 1593 address + PAGE_SIZE); 1594 } else if (PageAnon(page)) { 1595 swp_entry_t entry = { .val = page_private(subpage) }; 1596 pte_t swp_pte; 1597 /* 1598 * Store the swap location in the pte. 1599 * See handle_pte_fault() ... 1600 */ 1601 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1602 WARN_ON_ONCE(1); 1603 ret = false; 1604 /* We have to invalidate as we cleared the pte */ 1605 mmu_notifier_invalidate_range(mm, address, 1606 address + PAGE_SIZE); 1607 page_vma_mapped_walk_done(&pvmw); 1608 break; 1609 } 1610 1611 /* MADV_FREE page check */ 1612 if (!PageSwapBacked(page)) { 1613 if (!PageDirty(page)) { 1614 /* Invalidate as we cleared the pte */ 1615 mmu_notifier_invalidate_range(mm, 1616 address, address + PAGE_SIZE); 1617 dec_mm_counter(mm, MM_ANONPAGES); 1618 goto discard; 1619 } 1620 1621 /* 1622 * If the page was redirtied, it cannot be 1623 * discarded. Remap the page to page table. 1624 */ 1625 set_pte_at(mm, address, pvmw.pte, pteval); 1626 SetPageSwapBacked(page); 1627 ret = false; 1628 page_vma_mapped_walk_done(&pvmw); 1629 break; 1630 } 1631 1632 if (swap_duplicate(entry) < 0) { 1633 set_pte_at(mm, address, pvmw.pte, pteval); 1634 ret = false; 1635 page_vma_mapped_walk_done(&pvmw); 1636 break; 1637 } 1638 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1639 set_pte_at(mm, address, pvmw.pte, pteval); 1640 ret = false; 1641 page_vma_mapped_walk_done(&pvmw); 1642 break; 1643 } 1644 if (list_empty(&mm->mmlist)) { 1645 spin_lock(&mmlist_lock); 1646 if (list_empty(&mm->mmlist)) 1647 list_add(&mm->mmlist, &init_mm.mmlist); 1648 spin_unlock(&mmlist_lock); 1649 } 1650 dec_mm_counter(mm, MM_ANONPAGES); 1651 inc_mm_counter(mm, MM_SWAPENTS); 1652 swp_pte = swp_entry_to_pte(entry); 1653 if (pte_soft_dirty(pteval)) 1654 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1655 if (pte_uffd_wp(pteval)) 1656 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1657 set_pte_at(mm, address, pvmw.pte, swp_pte); 1658 /* Invalidate as we cleared the pte */ 1659 mmu_notifier_invalidate_range(mm, address, 1660 address + PAGE_SIZE); 1661 } else { 1662 /* 1663 * This is a locked file-backed page, thus it cannot 1664 * be removed from the page cache and replaced by a new 1665 * page before mmu_notifier_invalidate_range_end, so no 1666 * concurrent thread might update its page table to 1667 * point at new page while a device still is using this 1668 * page. 1669 * 1670 * See Documentation/vm/mmu_notifier.rst 1671 */ 1672 dec_mm_counter(mm, mm_counter_file(page)); 1673 } 1674 discard: 1675 /* 1676 * No need to call mmu_notifier_invalidate_range() it has be 1677 * done above for all cases requiring it to happen under page 1678 * table lock before mmu_notifier_invalidate_range_end() 1679 * 1680 * See Documentation/vm/mmu_notifier.rst 1681 */ 1682 page_remove_rmap(subpage, PageHuge(page)); 1683 put_page(page); 1684 } 1685 1686 mmu_notifier_invalidate_range_end(&range); 1687 1688 return ret; 1689 } 1690 1691 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1692 { 1693 return vma_is_temporary_stack(vma); 1694 } 1695 1696 static int page_not_mapped(struct page *page) 1697 { 1698 return !page_mapped(page); 1699 } 1700 1701 /** 1702 * try_to_unmap - try to remove all page table mappings to a page 1703 * @page: the page to get unmapped 1704 * @flags: action and flags 1705 * 1706 * Tries to remove all the page table entries which are mapping this 1707 * page, used in the pageout path. Caller must hold the page lock. 1708 * 1709 * It is the caller's responsibility to check if the page is still 1710 * mapped when needed (use TTU_SYNC to prevent accounting races). 1711 */ 1712 void try_to_unmap(struct page *page, enum ttu_flags flags) 1713 { 1714 struct rmap_walk_control rwc = { 1715 .rmap_one = try_to_unmap_one, 1716 .arg = (void *)flags, 1717 .done = page_not_mapped, 1718 .anon_lock = page_lock_anon_vma_read, 1719 }; 1720 1721 if (flags & TTU_RMAP_LOCKED) 1722 rmap_walk_locked(page, &rwc); 1723 else 1724 rmap_walk(page, &rwc); 1725 } 1726 1727 /* 1728 * @arg: enum ttu_flags will be passed to this argument. 1729 * 1730 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1731 * containing migration entries. 1732 */ 1733 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma, 1734 unsigned long address, void *arg) 1735 { 1736 struct mm_struct *mm = vma->vm_mm; 1737 struct page_vma_mapped_walk pvmw = { 1738 .page = page, 1739 .vma = vma, 1740 .address = address, 1741 }; 1742 pte_t pteval; 1743 struct page *subpage; 1744 bool ret = true; 1745 struct mmu_notifier_range range; 1746 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1747 1748 /* 1749 * When racing against e.g. zap_pte_range() on another cpu, 1750 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1751 * try_to_migrate() may return before page_mapped() has become false, 1752 * if page table locking is skipped: use TTU_SYNC to wait for that. 1753 */ 1754 if (flags & TTU_SYNC) 1755 pvmw.flags = PVMW_SYNC; 1756 1757 /* 1758 * unmap_page() in mm/huge_memory.c is the only user of migration with 1759 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1760 */ 1761 if (flags & TTU_SPLIT_HUGE_PMD) 1762 split_huge_pmd_address(vma, address, true, page); 1763 1764 /* 1765 * For THP, we have to assume the worse case ie pmd for invalidation. 1766 * For hugetlb, it could be much worse if we need to do pud 1767 * invalidation in the case of pmd sharing. 1768 * 1769 * Note that the page can not be free in this function as call of 1770 * try_to_unmap() must hold a reference on the page. 1771 */ 1772 range.end = PageKsm(page) ? 1773 address + PAGE_SIZE : vma_address_end(page, vma); 1774 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1775 address, range.end); 1776 if (PageHuge(page)) { 1777 /* 1778 * If sharing is possible, start and end will be adjusted 1779 * accordingly. 1780 */ 1781 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1782 &range.end); 1783 } 1784 mmu_notifier_invalidate_range_start(&range); 1785 1786 while (page_vma_mapped_walk(&pvmw)) { 1787 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1788 /* PMD-mapped THP migration entry */ 1789 if (!pvmw.pte) { 1790 VM_BUG_ON_PAGE(PageHuge(page) || 1791 !PageTransCompound(page), page); 1792 1793 set_pmd_migration_entry(&pvmw, page); 1794 continue; 1795 } 1796 #endif 1797 1798 /* Unexpected PMD-mapped THP? */ 1799 VM_BUG_ON_PAGE(!pvmw.pte, page); 1800 1801 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1802 address = pvmw.address; 1803 1804 if (PageHuge(page) && !PageAnon(page)) { 1805 /* 1806 * To call huge_pmd_unshare, i_mmap_rwsem must be 1807 * held in write mode. Caller needs to explicitly 1808 * do this outside rmap routines. 1809 */ 1810 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1811 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1812 /* 1813 * huge_pmd_unshare unmapped an entire PMD 1814 * page. There is no way of knowing exactly 1815 * which PMDs may be cached for this mm, so 1816 * we must flush them all. start/end were 1817 * already adjusted above to cover this range. 1818 */ 1819 flush_cache_range(vma, range.start, range.end); 1820 flush_tlb_range(vma, range.start, range.end); 1821 mmu_notifier_invalidate_range(mm, range.start, 1822 range.end); 1823 1824 /* 1825 * The ref count of the PMD page was dropped 1826 * which is part of the way map counting 1827 * is done for shared PMDs. Return 'true' 1828 * here. When there is no other sharing, 1829 * huge_pmd_unshare returns false and we will 1830 * unmap the actual page and drop map count 1831 * to zero. 1832 */ 1833 page_vma_mapped_walk_done(&pvmw); 1834 break; 1835 } 1836 } 1837 1838 /* Nuke the page table entry. */ 1839 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1840 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1841 1842 /* Move the dirty bit to the page. Now the pte is gone. */ 1843 if (pte_dirty(pteval)) 1844 set_page_dirty(page); 1845 1846 /* Update high watermark before we lower rss */ 1847 update_hiwater_rss(mm); 1848 1849 if (is_zone_device_page(page)) { 1850 unsigned long pfn = page_to_pfn(page); 1851 swp_entry_t entry; 1852 pte_t swp_pte; 1853 1854 /* 1855 * Store the pfn of the page in a special migration 1856 * pte. do_swap_page() will wait until the migration 1857 * pte is removed and then restart fault handling. 1858 */ 1859 entry = pte_to_swp_entry(pteval); 1860 if (is_writable_device_private_entry(entry)) 1861 entry = make_writable_migration_entry(pfn); 1862 else 1863 entry = make_readable_migration_entry(pfn); 1864 swp_pte = swp_entry_to_pte(entry); 1865 1866 /* 1867 * pteval maps a zone device page and is therefore 1868 * a swap pte. 1869 */ 1870 if (pte_swp_soft_dirty(pteval)) 1871 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1872 if (pte_swp_uffd_wp(pteval)) 1873 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1874 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1875 /* 1876 * No need to invalidate here it will synchronize on 1877 * against the special swap migration pte. 1878 * 1879 * The assignment to subpage above was computed from a 1880 * swap PTE which results in an invalid pointer. 1881 * Since only PAGE_SIZE pages can currently be 1882 * migrated, just set it to page. This will need to be 1883 * changed when hugepage migrations to device private 1884 * memory are supported. 1885 */ 1886 subpage = page; 1887 } else if (PageHWPoison(subpage)) { 1888 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1889 if (PageHuge(page)) { 1890 hugetlb_count_sub(compound_nr(page), mm); 1891 set_huge_swap_pte_at(mm, address, 1892 pvmw.pte, pteval, 1893 vma_mmu_pagesize(vma)); 1894 } else { 1895 dec_mm_counter(mm, mm_counter(page)); 1896 set_pte_at(mm, address, pvmw.pte, pteval); 1897 } 1898 1899 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1900 /* 1901 * The guest indicated that the page content is of no 1902 * interest anymore. Simply discard the pte, vmscan 1903 * will take care of the rest. 1904 * A future reference will then fault in a new zero 1905 * page. When userfaultfd is active, we must not drop 1906 * this page though, as its main user (postcopy 1907 * migration) will not expect userfaults on already 1908 * copied pages. 1909 */ 1910 dec_mm_counter(mm, mm_counter(page)); 1911 /* We have to invalidate as we cleared the pte */ 1912 mmu_notifier_invalidate_range(mm, address, 1913 address + PAGE_SIZE); 1914 } else { 1915 swp_entry_t entry; 1916 pte_t swp_pte; 1917 1918 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1919 set_pte_at(mm, address, pvmw.pte, pteval); 1920 ret = false; 1921 page_vma_mapped_walk_done(&pvmw); 1922 break; 1923 } 1924 1925 /* 1926 * Store the pfn of the page in a special migration 1927 * pte. do_swap_page() will wait until the migration 1928 * pte is removed and then restart fault handling. 1929 */ 1930 if (pte_write(pteval)) 1931 entry = make_writable_migration_entry( 1932 page_to_pfn(subpage)); 1933 else 1934 entry = make_readable_migration_entry( 1935 page_to_pfn(subpage)); 1936 1937 swp_pte = swp_entry_to_pte(entry); 1938 if (pte_soft_dirty(pteval)) 1939 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1940 if (pte_uffd_wp(pteval)) 1941 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1942 set_pte_at(mm, address, pvmw.pte, swp_pte); 1943 /* 1944 * No need to invalidate here it will synchronize on 1945 * against the special swap migration pte. 1946 */ 1947 } 1948 1949 /* 1950 * No need to call mmu_notifier_invalidate_range() it has be 1951 * done above for all cases requiring it to happen under page 1952 * table lock before mmu_notifier_invalidate_range_end() 1953 * 1954 * See Documentation/vm/mmu_notifier.rst 1955 */ 1956 page_remove_rmap(subpage, PageHuge(page)); 1957 put_page(page); 1958 } 1959 1960 mmu_notifier_invalidate_range_end(&range); 1961 1962 return ret; 1963 } 1964 1965 /** 1966 * try_to_migrate - try to replace all page table mappings with swap entries 1967 * @page: the page to replace page table entries for 1968 * @flags: action and flags 1969 * 1970 * Tries to remove all the page table entries which are mapping this page and 1971 * replace them with special swap entries. Caller must hold the page lock. 1972 */ 1973 void try_to_migrate(struct page *page, enum ttu_flags flags) 1974 { 1975 struct rmap_walk_control rwc = { 1976 .rmap_one = try_to_migrate_one, 1977 .arg = (void *)flags, 1978 .done = page_not_mapped, 1979 .anon_lock = page_lock_anon_vma_read, 1980 }; 1981 1982 /* 1983 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 1984 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 1985 */ 1986 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 1987 TTU_SYNC))) 1988 return; 1989 1990 if (is_zone_device_page(page) && !is_device_private_page(page)) 1991 return; 1992 1993 /* 1994 * During exec, a temporary VMA is setup and later moved. 1995 * The VMA is moved under the anon_vma lock but not the 1996 * page tables leading to a race where migration cannot 1997 * find the migration ptes. Rather than increasing the 1998 * locking requirements of exec(), migration skips 1999 * temporary VMAs until after exec() completes. 2000 */ 2001 if (!PageKsm(page) && PageAnon(page)) 2002 rwc.invalid_vma = invalid_migration_vma; 2003 2004 if (flags & TTU_RMAP_LOCKED) 2005 rmap_walk_locked(page, &rwc); 2006 else 2007 rmap_walk(page, &rwc); 2008 } 2009 2010 /* 2011 * Walks the vma's mapping a page and mlocks the page if any locked vma's are 2012 * found. Once one is found the page is locked and the scan can be terminated. 2013 */ 2014 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma, 2015 unsigned long address, void *unused) 2016 { 2017 struct page_vma_mapped_walk pvmw = { 2018 .page = page, 2019 .vma = vma, 2020 .address = address, 2021 }; 2022 2023 /* An un-locked vma doesn't have any pages to lock, continue the scan */ 2024 if (!(vma->vm_flags & VM_LOCKED)) 2025 return true; 2026 2027 while (page_vma_mapped_walk(&pvmw)) { 2028 /* 2029 * Need to recheck under the ptl to serialise with 2030 * __munlock_pagevec_fill() after VM_LOCKED is cleared in 2031 * munlock_vma_pages_range(). 2032 */ 2033 if (vma->vm_flags & VM_LOCKED) { 2034 /* 2035 * PTE-mapped THP are never marked as mlocked; but 2036 * this function is never called on a DoubleMap THP, 2037 * nor on an Anon THP (which may still be PTE-mapped 2038 * after DoubleMap was cleared). 2039 */ 2040 mlock_vma_page(page); 2041 /* 2042 * No need to scan further once the page is marked 2043 * as mlocked. 2044 */ 2045 page_vma_mapped_walk_done(&pvmw); 2046 return false; 2047 } 2048 } 2049 2050 return true; 2051 } 2052 2053 /** 2054 * page_mlock - try to mlock a page 2055 * @page: the page to be mlocked 2056 * 2057 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks 2058 * the page if any are found. The page will be returned with PG_mlocked cleared 2059 * if it is not mapped by any locked vmas. 2060 */ 2061 void page_mlock(struct page *page) 2062 { 2063 struct rmap_walk_control rwc = { 2064 .rmap_one = page_mlock_one, 2065 .done = page_not_mapped, 2066 .anon_lock = page_lock_anon_vma_read, 2067 2068 }; 2069 2070 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 2071 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 2072 2073 /* Anon THP are only marked as mlocked when singly mapped */ 2074 if (PageTransCompound(page) && PageAnon(page)) 2075 return; 2076 2077 rmap_walk(page, &rwc); 2078 } 2079 2080 #ifdef CONFIG_DEVICE_PRIVATE 2081 struct make_exclusive_args { 2082 struct mm_struct *mm; 2083 unsigned long address; 2084 void *owner; 2085 bool valid; 2086 }; 2087 2088 static bool page_make_device_exclusive_one(struct page *page, 2089 struct vm_area_struct *vma, unsigned long address, void *priv) 2090 { 2091 struct mm_struct *mm = vma->vm_mm; 2092 struct page_vma_mapped_walk pvmw = { 2093 .page = page, 2094 .vma = vma, 2095 .address = address, 2096 }; 2097 struct make_exclusive_args *args = priv; 2098 pte_t pteval; 2099 struct page *subpage; 2100 bool ret = true; 2101 struct mmu_notifier_range range; 2102 swp_entry_t entry; 2103 pte_t swp_pte; 2104 2105 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 2106 vma->vm_mm, address, min(vma->vm_end, 2107 address + page_size(page)), args->owner); 2108 mmu_notifier_invalidate_range_start(&range); 2109 2110 while (page_vma_mapped_walk(&pvmw)) { 2111 /* Unexpected PMD-mapped THP? */ 2112 VM_BUG_ON_PAGE(!pvmw.pte, page); 2113 2114 if (!pte_present(*pvmw.pte)) { 2115 ret = false; 2116 page_vma_mapped_walk_done(&pvmw); 2117 break; 2118 } 2119 2120 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 2121 address = pvmw.address; 2122 2123 /* Nuke the page table entry. */ 2124 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2125 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2126 2127 /* Move the dirty bit to the page. Now the pte is gone. */ 2128 if (pte_dirty(pteval)) 2129 set_page_dirty(page); 2130 2131 /* 2132 * Check that our target page is still mapped at the expected 2133 * address. 2134 */ 2135 if (args->mm == mm && args->address == address && 2136 pte_write(pteval)) 2137 args->valid = true; 2138 2139 /* 2140 * Store the pfn of the page in a special migration 2141 * pte. do_swap_page() will wait until the migration 2142 * pte is removed and then restart fault handling. 2143 */ 2144 if (pte_write(pteval)) 2145 entry = make_writable_device_exclusive_entry( 2146 page_to_pfn(subpage)); 2147 else 2148 entry = make_readable_device_exclusive_entry( 2149 page_to_pfn(subpage)); 2150 swp_pte = swp_entry_to_pte(entry); 2151 if (pte_soft_dirty(pteval)) 2152 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2153 if (pte_uffd_wp(pteval)) 2154 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2155 2156 set_pte_at(mm, address, pvmw.pte, swp_pte); 2157 2158 /* 2159 * There is a reference on the page for the swap entry which has 2160 * been removed, so shouldn't take another. 2161 */ 2162 page_remove_rmap(subpage, false); 2163 } 2164 2165 mmu_notifier_invalidate_range_end(&range); 2166 2167 return ret; 2168 } 2169 2170 /** 2171 * page_make_device_exclusive - mark the page exclusively owned by a device 2172 * @page: the page to replace page table entries for 2173 * @mm: the mm_struct where the page is expected to be mapped 2174 * @address: address where the page is expected to be mapped 2175 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2176 * 2177 * Tries to remove all the page table entries which are mapping this page and 2178 * replace them with special device exclusive swap entries to grant a device 2179 * exclusive access to the page. Caller must hold the page lock. 2180 * 2181 * Returns false if the page is still mapped, or if it could not be unmapped 2182 * from the expected address. Otherwise returns true (success). 2183 */ 2184 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm, 2185 unsigned long address, void *owner) 2186 { 2187 struct make_exclusive_args args = { 2188 .mm = mm, 2189 .address = address, 2190 .owner = owner, 2191 .valid = false, 2192 }; 2193 struct rmap_walk_control rwc = { 2194 .rmap_one = page_make_device_exclusive_one, 2195 .done = page_not_mapped, 2196 .anon_lock = page_lock_anon_vma_read, 2197 .arg = &args, 2198 }; 2199 2200 /* 2201 * Restrict to anonymous pages for now to avoid potential writeback 2202 * issues. Also tail pages shouldn't be passed to rmap_walk so skip 2203 * those. 2204 */ 2205 if (!PageAnon(page) || PageTail(page)) 2206 return false; 2207 2208 rmap_walk(page, &rwc); 2209 2210 return args.valid && !page_mapcount(page); 2211 } 2212 2213 /** 2214 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2215 * @mm: mm_struct of assoicated target process 2216 * @start: start of the region to mark for exclusive device access 2217 * @end: end address of region 2218 * @pages: returns the pages which were successfully marked for exclusive access 2219 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2220 * 2221 * Returns: number of pages found in the range by GUP. A page is marked for 2222 * exclusive access only if the page pointer is non-NULL. 2223 * 2224 * This function finds ptes mapping page(s) to the given address range, locks 2225 * them and replaces mappings with special swap entries preventing userspace CPU 2226 * access. On fault these entries are replaced with the original mapping after 2227 * calling MMU notifiers. 2228 * 2229 * A driver using this to program access from a device must use a mmu notifier 2230 * critical section to hold a device specific lock during programming. Once 2231 * programming is complete it should drop the page lock and reference after 2232 * which point CPU access to the page will revoke the exclusive access. 2233 */ 2234 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2235 unsigned long end, struct page **pages, 2236 void *owner) 2237 { 2238 long npages = (end - start) >> PAGE_SHIFT; 2239 long i; 2240 2241 npages = get_user_pages_remote(mm, start, npages, 2242 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2243 pages, NULL, NULL); 2244 if (npages < 0) 2245 return npages; 2246 2247 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2248 if (!trylock_page(pages[i])) { 2249 put_page(pages[i]); 2250 pages[i] = NULL; 2251 continue; 2252 } 2253 2254 if (!page_make_device_exclusive(pages[i], mm, start, owner)) { 2255 unlock_page(pages[i]); 2256 put_page(pages[i]); 2257 pages[i] = NULL; 2258 } 2259 } 2260 2261 return npages; 2262 } 2263 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2264 #endif 2265 2266 void __put_anon_vma(struct anon_vma *anon_vma) 2267 { 2268 struct anon_vma *root = anon_vma->root; 2269 2270 anon_vma_free(anon_vma); 2271 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2272 anon_vma_free(root); 2273 } 2274 2275 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 2276 struct rmap_walk_control *rwc) 2277 { 2278 struct anon_vma *anon_vma; 2279 2280 if (rwc->anon_lock) 2281 return rwc->anon_lock(page); 2282 2283 /* 2284 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 2285 * because that depends on page_mapped(); but not all its usages 2286 * are holding mmap_lock. Users without mmap_lock are required to 2287 * take a reference count to prevent the anon_vma disappearing 2288 */ 2289 anon_vma = page_anon_vma(page); 2290 if (!anon_vma) 2291 return NULL; 2292 2293 anon_vma_lock_read(anon_vma); 2294 return anon_vma; 2295 } 2296 2297 /* 2298 * rmap_walk_anon - do something to anonymous page using the object-based 2299 * rmap method 2300 * @page: the page to be handled 2301 * @rwc: control variable according to each walk type 2302 * 2303 * Find all the mappings of a page using the mapping pointer and the vma chains 2304 * contained in the anon_vma struct it points to. 2305 * 2306 * When called from page_mlock(), the mmap_lock of the mm containing the vma 2307 * where the page was found will be held for write. So, we won't recheck 2308 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 2309 * LOCKED. 2310 */ 2311 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 2312 bool locked) 2313 { 2314 struct anon_vma *anon_vma; 2315 pgoff_t pgoff_start, pgoff_end; 2316 struct anon_vma_chain *avc; 2317 2318 if (locked) { 2319 anon_vma = page_anon_vma(page); 2320 /* anon_vma disappear under us? */ 2321 VM_BUG_ON_PAGE(!anon_vma, page); 2322 } else { 2323 anon_vma = rmap_walk_anon_lock(page, rwc); 2324 } 2325 if (!anon_vma) 2326 return; 2327 2328 pgoff_start = page_to_pgoff(page); 2329 pgoff_end = pgoff_start + thp_nr_pages(page) - 1; 2330 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2331 pgoff_start, pgoff_end) { 2332 struct vm_area_struct *vma = avc->vma; 2333 unsigned long address = vma_address(page, vma); 2334 2335 VM_BUG_ON_VMA(address == -EFAULT, vma); 2336 cond_resched(); 2337 2338 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2339 continue; 2340 2341 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 2342 break; 2343 if (rwc->done && rwc->done(page)) 2344 break; 2345 } 2346 2347 if (!locked) 2348 anon_vma_unlock_read(anon_vma); 2349 } 2350 2351 /* 2352 * rmap_walk_file - do something to file page using the object-based rmap method 2353 * @page: the page to be handled 2354 * @rwc: control variable according to each walk type 2355 * 2356 * Find all the mappings of a page using the mapping pointer and the vma chains 2357 * contained in the address_space struct it points to. 2358 * 2359 * When called from page_mlock(), the mmap_lock of the mm containing the vma 2360 * where the page was found will be held for write. So, we won't recheck 2361 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 2362 * LOCKED. 2363 */ 2364 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 2365 bool locked) 2366 { 2367 struct address_space *mapping = page_mapping(page); 2368 pgoff_t pgoff_start, pgoff_end; 2369 struct vm_area_struct *vma; 2370 2371 /* 2372 * The page lock not only makes sure that page->mapping cannot 2373 * suddenly be NULLified by truncation, it makes sure that the 2374 * structure at mapping cannot be freed and reused yet, 2375 * so we can safely take mapping->i_mmap_rwsem. 2376 */ 2377 VM_BUG_ON_PAGE(!PageLocked(page), page); 2378 2379 if (!mapping) 2380 return; 2381 2382 pgoff_start = page_to_pgoff(page); 2383 pgoff_end = pgoff_start + thp_nr_pages(page) - 1; 2384 if (!locked) 2385 i_mmap_lock_read(mapping); 2386 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2387 pgoff_start, pgoff_end) { 2388 unsigned long address = vma_address(page, vma); 2389 2390 VM_BUG_ON_VMA(address == -EFAULT, vma); 2391 cond_resched(); 2392 2393 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2394 continue; 2395 2396 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 2397 goto done; 2398 if (rwc->done && rwc->done(page)) 2399 goto done; 2400 } 2401 2402 done: 2403 if (!locked) 2404 i_mmap_unlock_read(mapping); 2405 } 2406 2407 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 2408 { 2409 if (unlikely(PageKsm(page))) 2410 rmap_walk_ksm(page, rwc); 2411 else if (PageAnon(page)) 2412 rmap_walk_anon(page, rwc, false); 2413 else 2414 rmap_walk_file(page, rwc, false); 2415 } 2416 2417 /* Like rmap_walk, but caller holds relevant rmap lock */ 2418 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 2419 { 2420 /* no ksm support for now */ 2421 VM_BUG_ON_PAGE(PageKsm(page), page); 2422 if (PageAnon(page)) 2423 rmap_walk_anon(page, rwc, true); 2424 else 2425 rmap_walk_file(page, rwc, true); 2426 } 2427 2428 #ifdef CONFIG_HUGETLB_PAGE 2429 /* 2430 * The following two functions are for anonymous (private mapped) hugepages. 2431 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2432 * and no lru code, because we handle hugepages differently from common pages. 2433 */ 2434 void hugepage_add_anon_rmap(struct page *page, 2435 struct vm_area_struct *vma, unsigned long address) 2436 { 2437 struct anon_vma *anon_vma = vma->anon_vma; 2438 int first; 2439 2440 BUG_ON(!PageLocked(page)); 2441 BUG_ON(!anon_vma); 2442 /* address might be in next vma when migration races vma_adjust */ 2443 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 2444 if (first) 2445 __page_set_anon_rmap(page, vma, address, 0); 2446 } 2447 2448 void hugepage_add_new_anon_rmap(struct page *page, 2449 struct vm_area_struct *vma, unsigned long address) 2450 { 2451 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2452 atomic_set(compound_mapcount_ptr(page), 0); 2453 if (hpage_pincount_available(page)) 2454 atomic_set(compound_pincount_ptr(page), 0); 2455 2456 __page_set_anon_rmap(page, vma, address, 1); 2457 } 2458 #endif /* CONFIG_HUGETLB_PAGE */ 2459