xref: /openbmc/linux/mm/rmap.c (revision c4ee0af3)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89 	/*
90 	 * Synchronize against page_lock_anon_vma_read() such that
91 	 * we can safely hold the lock without the anon_vma getting
92 	 * freed.
93 	 *
94 	 * Relies on the full mb implied by the atomic_dec_and_test() from
95 	 * put_anon_vma() against the acquire barrier implied by
96 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 	 *
98 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
99 	 *   down_read_trylock()		  atomic_dec_and_test()
100 	 *   LOCK				  MB
101 	 *   atomic_read()			  rwsem_is_locked()
102 	 *
103 	 * LOCK should suffice since the actual taking of the lock must
104 	 * happen _before_ what follows.
105 	 */
106 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107 		anon_vma_lock_write(anon_vma);
108 		anon_vma_unlock_write(anon_vma);
109 	}
110 
111 	kmem_cache_free(anon_vma_cachep, anon_vma);
112 }
113 
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115 {
116 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117 }
118 
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120 {
121 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122 }
123 
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125 				struct anon_vma_chain *avc,
126 				struct anon_vma *anon_vma)
127 {
128 	avc->vma = vma;
129 	avc->anon_vma = anon_vma;
130 	list_add(&avc->same_vma, &vma->anon_vma_chain);
131 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132 }
133 
134 /**
135  * anon_vma_prepare - attach an anon_vma to a memory region
136  * @vma: the memory region in question
137  *
138  * This makes sure the memory mapping described by 'vma' has
139  * an 'anon_vma' attached to it, so that we can associate the
140  * anonymous pages mapped into it with that anon_vma.
141  *
142  * The common case will be that we already have one, but if
143  * not we either need to find an adjacent mapping that we
144  * can re-use the anon_vma from (very common when the only
145  * reason for splitting a vma has been mprotect()), or we
146  * allocate a new one.
147  *
148  * Anon-vma allocations are very subtle, because we may have
149  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150  * and that may actually touch the spinlock even in the newly
151  * allocated vma (it depends on RCU to make sure that the
152  * anon_vma isn't actually destroyed).
153  *
154  * As a result, we need to do proper anon_vma locking even
155  * for the new allocation. At the same time, we do not want
156  * to do any locking for the common case of already having
157  * an anon_vma.
158  *
159  * This must be called with the mmap_sem held for reading.
160  */
161 int anon_vma_prepare(struct vm_area_struct *vma)
162 {
163 	struct anon_vma *anon_vma = vma->anon_vma;
164 	struct anon_vma_chain *avc;
165 
166 	might_sleep();
167 	if (unlikely(!anon_vma)) {
168 		struct mm_struct *mm = vma->vm_mm;
169 		struct anon_vma *allocated;
170 
171 		avc = anon_vma_chain_alloc(GFP_KERNEL);
172 		if (!avc)
173 			goto out_enomem;
174 
175 		anon_vma = find_mergeable_anon_vma(vma);
176 		allocated = NULL;
177 		if (!anon_vma) {
178 			anon_vma = anon_vma_alloc();
179 			if (unlikely(!anon_vma))
180 				goto out_enomem_free_avc;
181 			allocated = anon_vma;
182 		}
183 
184 		anon_vma_lock_write(anon_vma);
185 		/* page_table_lock to protect against threads */
186 		spin_lock(&mm->page_table_lock);
187 		if (likely(!vma->anon_vma)) {
188 			vma->anon_vma = anon_vma;
189 			anon_vma_chain_link(vma, avc, anon_vma);
190 			allocated = NULL;
191 			avc = NULL;
192 		}
193 		spin_unlock(&mm->page_table_lock);
194 		anon_vma_unlock_write(anon_vma);
195 
196 		if (unlikely(allocated))
197 			put_anon_vma(allocated);
198 		if (unlikely(avc))
199 			anon_vma_chain_free(avc);
200 	}
201 	return 0;
202 
203  out_enomem_free_avc:
204 	anon_vma_chain_free(avc);
205  out_enomem:
206 	return -ENOMEM;
207 }
208 
209 /*
210  * This is a useful helper function for locking the anon_vma root as
211  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212  * have the same vma.
213  *
214  * Such anon_vma's should have the same root, so you'd expect to see
215  * just a single mutex_lock for the whole traversal.
216  */
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218 {
219 	struct anon_vma *new_root = anon_vma->root;
220 	if (new_root != root) {
221 		if (WARN_ON_ONCE(root))
222 			up_write(&root->rwsem);
223 		root = new_root;
224 		down_write(&root->rwsem);
225 	}
226 	return root;
227 }
228 
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
230 {
231 	if (root)
232 		up_write(&root->rwsem);
233 }
234 
235 /*
236  * Attach the anon_vmas from src to dst.
237  * Returns 0 on success, -ENOMEM on failure.
238  */
239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240 {
241 	struct anon_vma_chain *avc, *pavc;
242 	struct anon_vma *root = NULL;
243 
244 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 		struct anon_vma *anon_vma;
246 
247 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 		if (unlikely(!avc)) {
249 			unlock_anon_vma_root(root);
250 			root = NULL;
251 			avc = anon_vma_chain_alloc(GFP_KERNEL);
252 			if (!avc)
253 				goto enomem_failure;
254 		}
255 		anon_vma = pavc->anon_vma;
256 		root = lock_anon_vma_root(root, anon_vma);
257 		anon_vma_chain_link(dst, avc, anon_vma);
258 	}
259 	unlock_anon_vma_root(root);
260 	return 0;
261 
262  enomem_failure:
263 	unlink_anon_vmas(dst);
264 	return -ENOMEM;
265 }
266 
267 /*
268  * Attach vma to its own anon_vma, as well as to the anon_vmas that
269  * the corresponding VMA in the parent process is attached to.
270  * Returns 0 on success, non-zero on failure.
271  */
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273 {
274 	struct anon_vma_chain *avc;
275 	struct anon_vma *anon_vma;
276 
277 	/* Don't bother if the parent process has no anon_vma here. */
278 	if (!pvma->anon_vma)
279 		return 0;
280 
281 	/*
282 	 * First, attach the new VMA to the parent VMA's anon_vmas,
283 	 * so rmap can find non-COWed pages in child processes.
284 	 */
285 	if (anon_vma_clone(vma, pvma))
286 		return -ENOMEM;
287 
288 	/* Then add our own anon_vma. */
289 	anon_vma = anon_vma_alloc();
290 	if (!anon_vma)
291 		goto out_error;
292 	avc = anon_vma_chain_alloc(GFP_KERNEL);
293 	if (!avc)
294 		goto out_error_free_anon_vma;
295 
296 	/*
297 	 * The root anon_vma's spinlock is the lock actually used when we
298 	 * lock any of the anon_vmas in this anon_vma tree.
299 	 */
300 	anon_vma->root = pvma->anon_vma->root;
301 	/*
302 	 * With refcounts, an anon_vma can stay around longer than the
303 	 * process it belongs to. The root anon_vma needs to be pinned until
304 	 * this anon_vma is freed, because the lock lives in the root.
305 	 */
306 	get_anon_vma(anon_vma->root);
307 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
308 	vma->anon_vma = anon_vma;
309 	anon_vma_lock_write(anon_vma);
310 	anon_vma_chain_link(vma, avc, anon_vma);
311 	anon_vma_unlock_write(anon_vma);
312 
313 	return 0;
314 
315  out_error_free_anon_vma:
316 	put_anon_vma(anon_vma);
317  out_error:
318 	unlink_anon_vmas(vma);
319 	return -ENOMEM;
320 }
321 
322 void unlink_anon_vmas(struct vm_area_struct *vma)
323 {
324 	struct anon_vma_chain *avc, *next;
325 	struct anon_vma *root = NULL;
326 
327 	/*
328 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
329 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 	 */
331 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 		struct anon_vma *anon_vma = avc->anon_vma;
333 
334 		root = lock_anon_vma_root(root, anon_vma);
335 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336 
337 		/*
338 		 * Leave empty anon_vmas on the list - we'll need
339 		 * to free them outside the lock.
340 		 */
341 		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 			continue;
343 
344 		list_del(&avc->same_vma);
345 		anon_vma_chain_free(avc);
346 	}
347 	unlock_anon_vma_root(root);
348 
349 	/*
350 	 * Iterate the list once more, it now only contains empty and unlinked
351 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 	 * needing to write-acquire the anon_vma->root->rwsem.
353 	 */
354 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 		struct anon_vma *anon_vma = avc->anon_vma;
356 
357 		put_anon_vma(anon_vma);
358 
359 		list_del(&avc->same_vma);
360 		anon_vma_chain_free(avc);
361 	}
362 }
363 
364 static void anon_vma_ctor(void *data)
365 {
366 	struct anon_vma *anon_vma = data;
367 
368 	init_rwsem(&anon_vma->rwsem);
369 	atomic_set(&anon_vma->refcount, 0);
370 	anon_vma->rb_root = RB_ROOT;
371 }
372 
373 void __init anon_vma_init(void)
374 {
375 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378 }
379 
380 /*
381  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382  *
383  * Since there is no serialization what so ever against page_remove_rmap()
384  * the best this function can do is return a locked anon_vma that might
385  * have been relevant to this page.
386  *
387  * The page might have been remapped to a different anon_vma or the anon_vma
388  * returned may already be freed (and even reused).
389  *
390  * In case it was remapped to a different anon_vma, the new anon_vma will be a
391  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392  * ensure that any anon_vma obtained from the page will still be valid for as
393  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394  *
395  * All users of this function must be very careful when walking the anon_vma
396  * chain and verify that the page in question is indeed mapped in it
397  * [ something equivalent to page_mapped_in_vma() ].
398  *
399  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400  * that the anon_vma pointer from page->mapping is valid if there is a
401  * mapcount, we can dereference the anon_vma after observing those.
402  */
403 struct anon_vma *page_get_anon_vma(struct page *page)
404 {
405 	struct anon_vma *anon_vma = NULL;
406 	unsigned long anon_mapping;
407 
408 	rcu_read_lock();
409 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 		goto out;
412 	if (!page_mapped(page))
413 		goto out;
414 
415 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 		anon_vma = NULL;
418 		goto out;
419 	}
420 
421 	/*
422 	 * If this page is still mapped, then its anon_vma cannot have been
423 	 * freed.  But if it has been unmapped, we have no security against the
424 	 * anon_vma structure being freed and reused (for another anon_vma:
425 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 	 * above cannot corrupt).
427 	 */
428 	if (!page_mapped(page)) {
429 		put_anon_vma(anon_vma);
430 		anon_vma = NULL;
431 	}
432 out:
433 	rcu_read_unlock();
434 
435 	return anon_vma;
436 }
437 
438 /*
439  * Similar to page_get_anon_vma() except it locks the anon_vma.
440  *
441  * Its a little more complex as it tries to keep the fast path to a single
442  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443  * reference like with page_get_anon_vma() and then block on the mutex.
444  */
445 struct anon_vma *page_lock_anon_vma_read(struct page *page)
446 {
447 	struct anon_vma *anon_vma = NULL;
448 	struct anon_vma *root_anon_vma;
449 	unsigned long anon_mapping;
450 
451 	rcu_read_lock();
452 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 		goto out;
455 	if (!page_mapped(page))
456 		goto out;
457 
458 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 	if (down_read_trylock(&root_anon_vma->rwsem)) {
461 		/*
462 		 * If the page is still mapped, then this anon_vma is still
463 		 * its anon_vma, and holding the mutex ensures that it will
464 		 * not go away, see anon_vma_free().
465 		 */
466 		if (!page_mapped(page)) {
467 			up_read(&root_anon_vma->rwsem);
468 			anon_vma = NULL;
469 		}
470 		goto out;
471 	}
472 
473 	/* trylock failed, we got to sleep */
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	if (!page_mapped(page)) {
480 		put_anon_vma(anon_vma);
481 		anon_vma = NULL;
482 		goto out;
483 	}
484 
485 	/* we pinned the anon_vma, its safe to sleep */
486 	rcu_read_unlock();
487 	anon_vma_lock_read(anon_vma);
488 
489 	if (atomic_dec_and_test(&anon_vma->refcount)) {
490 		/*
491 		 * Oops, we held the last refcount, release the lock
492 		 * and bail -- can't simply use put_anon_vma() because
493 		 * we'll deadlock on the anon_vma_lock_write() recursion.
494 		 */
495 		anon_vma_unlock_read(anon_vma);
496 		__put_anon_vma(anon_vma);
497 		anon_vma = NULL;
498 	}
499 
500 	return anon_vma;
501 
502 out:
503 	rcu_read_unlock();
504 	return anon_vma;
505 }
506 
507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
508 {
509 	anon_vma_unlock_read(anon_vma);
510 }
511 
512 /*
513  * At what user virtual address is page expected in @vma?
514  */
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
517 {
518 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 
520 	if (unlikely(is_vm_hugetlb_page(vma)))
521 		pgoff = page->index << huge_page_order(page_hstate(page));
522 
523 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525 
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 	unsigned long address = __vma_address(page, vma);
530 
531 	/* page should be within @vma mapping range */
532 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533 
534 	return address;
535 }
536 
537 /*
538  * At what user virtual address is page expected in vma?
539  * Caller should check the page is actually part of the vma.
540  */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 	unsigned long address;
544 	if (PageAnon(page)) {
545 		struct anon_vma *page__anon_vma = page_anon_vma(page);
546 		/*
547 		 * Note: swapoff's unuse_vma() is more efficient with this
548 		 * check, and needs it to match anon_vma when KSM is active.
549 		 */
550 		if (!vma->anon_vma || !page__anon_vma ||
551 		    vma->anon_vma->root != page__anon_vma->root)
552 			return -EFAULT;
553 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 		if (!vma->vm_file ||
555 		    vma->vm_file->f_mapping != page->mapping)
556 			return -EFAULT;
557 	} else
558 		return -EFAULT;
559 	address = __vma_address(page, vma);
560 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 		return -EFAULT;
562 	return address;
563 }
564 
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566 {
567 	pgd_t *pgd;
568 	pud_t *pud;
569 	pmd_t *pmd = NULL;
570 
571 	pgd = pgd_offset(mm, address);
572 	if (!pgd_present(*pgd))
573 		goto out;
574 
575 	pud = pud_offset(pgd, address);
576 	if (!pud_present(*pud))
577 		goto out;
578 
579 	pmd = pmd_offset(pud, address);
580 	if (!pmd_present(*pmd))
581 		pmd = NULL;
582 out:
583 	return pmd;
584 }
585 
586 /*
587  * Check that @page is mapped at @address into @mm.
588  *
589  * If @sync is false, page_check_address may perform a racy check to avoid
590  * the page table lock when the pte is not present (helpful when reclaiming
591  * highly shared pages).
592  *
593  * On success returns with pte mapped and locked.
594  */
595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596 			  unsigned long address, spinlock_t **ptlp, int sync)
597 {
598 	pmd_t *pmd;
599 	pte_t *pte;
600 	spinlock_t *ptl;
601 
602 	if (unlikely(PageHuge(page))) {
603 		/* when pud is not present, pte will be NULL */
604 		pte = huge_pte_offset(mm, address);
605 		if (!pte)
606 			return NULL;
607 
608 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
609 		goto check;
610 	}
611 
612 	pmd = mm_find_pmd(mm, address);
613 	if (!pmd)
614 		return NULL;
615 
616 	if (pmd_trans_huge(*pmd))
617 		return NULL;
618 
619 	pte = pte_offset_map(pmd, address);
620 	/* Make a quick check before getting the lock */
621 	if (!sync && !pte_present(*pte)) {
622 		pte_unmap(pte);
623 		return NULL;
624 	}
625 
626 	ptl = pte_lockptr(mm, pmd);
627 check:
628 	spin_lock(ptl);
629 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
630 		*ptlp = ptl;
631 		return pte;
632 	}
633 	pte_unmap_unlock(pte, ptl);
634 	return NULL;
635 }
636 
637 /**
638  * page_mapped_in_vma - check whether a page is really mapped in a VMA
639  * @page: the page to test
640  * @vma: the VMA to test
641  *
642  * Returns 1 if the page is mapped into the page tables of the VMA, 0
643  * if the page is not mapped into the page tables of this VMA.  Only
644  * valid for normal file or anonymous VMAs.
645  */
646 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
647 {
648 	unsigned long address;
649 	pte_t *pte;
650 	spinlock_t *ptl;
651 
652 	address = __vma_address(page, vma);
653 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
654 		return 0;
655 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
656 	if (!pte)			/* the page is not in this mm */
657 		return 0;
658 	pte_unmap_unlock(pte, ptl);
659 
660 	return 1;
661 }
662 
663 /*
664  * Subfunctions of page_referenced: page_referenced_one called
665  * repeatedly from either page_referenced_anon or page_referenced_file.
666  */
667 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
668 			unsigned long address, unsigned int *mapcount,
669 			unsigned long *vm_flags)
670 {
671 	struct mm_struct *mm = vma->vm_mm;
672 	spinlock_t *ptl;
673 	int referenced = 0;
674 
675 	if (unlikely(PageTransHuge(page))) {
676 		pmd_t *pmd;
677 
678 		/*
679 		 * rmap might return false positives; we must filter
680 		 * these out using page_check_address_pmd().
681 		 */
682 		pmd = page_check_address_pmd(page, mm, address,
683 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
684 		if (!pmd)
685 			goto out;
686 
687 		if (vma->vm_flags & VM_LOCKED) {
688 			spin_unlock(ptl);
689 			*mapcount = 0;	/* break early from loop */
690 			*vm_flags |= VM_LOCKED;
691 			goto out;
692 		}
693 
694 		/* go ahead even if the pmd is pmd_trans_splitting() */
695 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
696 			referenced++;
697 		spin_unlock(ptl);
698 	} else {
699 		pte_t *pte;
700 
701 		/*
702 		 * rmap might return false positives; we must filter
703 		 * these out using page_check_address().
704 		 */
705 		pte = page_check_address(page, mm, address, &ptl, 0);
706 		if (!pte)
707 			goto out;
708 
709 		if (vma->vm_flags & VM_LOCKED) {
710 			pte_unmap_unlock(pte, ptl);
711 			*mapcount = 0;	/* break early from loop */
712 			*vm_flags |= VM_LOCKED;
713 			goto out;
714 		}
715 
716 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
717 			/*
718 			 * Don't treat a reference through a sequentially read
719 			 * mapping as such.  If the page has been used in
720 			 * another mapping, we will catch it; if this other
721 			 * mapping is already gone, the unmap path will have
722 			 * set PG_referenced or activated the page.
723 			 */
724 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
725 				referenced++;
726 		}
727 		pte_unmap_unlock(pte, ptl);
728 	}
729 
730 	(*mapcount)--;
731 
732 	if (referenced)
733 		*vm_flags |= vma->vm_flags;
734 out:
735 	return referenced;
736 }
737 
738 static int page_referenced_anon(struct page *page,
739 				struct mem_cgroup *memcg,
740 				unsigned long *vm_flags)
741 {
742 	unsigned int mapcount;
743 	struct anon_vma *anon_vma;
744 	pgoff_t pgoff;
745 	struct anon_vma_chain *avc;
746 	int referenced = 0;
747 
748 	anon_vma = page_lock_anon_vma_read(page);
749 	if (!anon_vma)
750 		return referenced;
751 
752 	mapcount = page_mapcount(page);
753 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
754 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
755 		struct vm_area_struct *vma = avc->vma;
756 		unsigned long address = vma_address(page, vma);
757 		/*
758 		 * If we are reclaiming on behalf of a cgroup, skip
759 		 * counting on behalf of references from different
760 		 * cgroups
761 		 */
762 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
763 			continue;
764 		referenced += page_referenced_one(page, vma, address,
765 						  &mapcount, vm_flags);
766 		if (!mapcount)
767 			break;
768 	}
769 
770 	page_unlock_anon_vma_read(anon_vma);
771 	return referenced;
772 }
773 
774 /**
775  * page_referenced_file - referenced check for object-based rmap
776  * @page: the page we're checking references on.
777  * @memcg: target memory control group
778  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
779  *
780  * For an object-based mapped page, find all the places it is mapped and
781  * check/clear the referenced flag.  This is done by following the page->mapping
782  * pointer, then walking the chain of vmas it holds.  It returns the number
783  * of references it found.
784  *
785  * This function is only called from page_referenced for object-based pages.
786  */
787 static int page_referenced_file(struct page *page,
788 				struct mem_cgroup *memcg,
789 				unsigned long *vm_flags)
790 {
791 	unsigned int mapcount;
792 	struct address_space *mapping = page->mapping;
793 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
794 	struct vm_area_struct *vma;
795 	int referenced = 0;
796 
797 	/*
798 	 * The caller's checks on page->mapping and !PageAnon have made
799 	 * sure that this is a file page: the check for page->mapping
800 	 * excludes the case just before it gets set on an anon page.
801 	 */
802 	BUG_ON(PageAnon(page));
803 
804 	/*
805 	 * The page lock not only makes sure that page->mapping cannot
806 	 * suddenly be NULLified by truncation, it makes sure that the
807 	 * structure at mapping cannot be freed and reused yet,
808 	 * so we can safely take mapping->i_mmap_mutex.
809 	 */
810 	BUG_ON(!PageLocked(page));
811 
812 	mutex_lock(&mapping->i_mmap_mutex);
813 
814 	/*
815 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
816 	 * is more likely to be accurate if we note it after spinning.
817 	 */
818 	mapcount = page_mapcount(page);
819 
820 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
821 		unsigned long address = vma_address(page, vma);
822 		/*
823 		 * If we are reclaiming on behalf of a cgroup, skip
824 		 * counting on behalf of references from different
825 		 * cgroups
826 		 */
827 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
828 			continue;
829 		referenced += page_referenced_one(page, vma, address,
830 						  &mapcount, vm_flags);
831 		if (!mapcount)
832 			break;
833 	}
834 
835 	mutex_unlock(&mapping->i_mmap_mutex);
836 	return referenced;
837 }
838 
839 /**
840  * page_referenced - test if the page was referenced
841  * @page: the page to test
842  * @is_locked: caller holds lock on the page
843  * @memcg: target memory cgroup
844  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
845  *
846  * Quick test_and_clear_referenced for all mappings to a page,
847  * returns the number of ptes which referenced the page.
848  */
849 int page_referenced(struct page *page,
850 		    int is_locked,
851 		    struct mem_cgroup *memcg,
852 		    unsigned long *vm_flags)
853 {
854 	int referenced = 0;
855 	int we_locked = 0;
856 
857 	*vm_flags = 0;
858 	if (page_mapped(page) && page_rmapping(page)) {
859 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
860 			we_locked = trylock_page(page);
861 			if (!we_locked) {
862 				referenced++;
863 				goto out;
864 			}
865 		}
866 		if (unlikely(PageKsm(page)))
867 			referenced += page_referenced_ksm(page, memcg,
868 								vm_flags);
869 		else if (PageAnon(page))
870 			referenced += page_referenced_anon(page, memcg,
871 								vm_flags);
872 		else if (page->mapping)
873 			referenced += page_referenced_file(page, memcg,
874 								vm_flags);
875 		if (we_locked)
876 			unlock_page(page);
877 	}
878 out:
879 	return referenced;
880 }
881 
882 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
883 			    unsigned long address)
884 {
885 	struct mm_struct *mm = vma->vm_mm;
886 	pte_t *pte;
887 	spinlock_t *ptl;
888 	int ret = 0;
889 
890 	pte = page_check_address(page, mm, address, &ptl, 1);
891 	if (!pte)
892 		goto out;
893 
894 	if (pte_dirty(*pte) || pte_write(*pte)) {
895 		pte_t entry;
896 
897 		flush_cache_page(vma, address, pte_pfn(*pte));
898 		entry = ptep_clear_flush(vma, address, pte);
899 		entry = pte_wrprotect(entry);
900 		entry = pte_mkclean(entry);
901 		set_pte_at(mm, address, pte, entry);
902 		ret = 1;
903 	}
904 
905 	pte_unmap_unlock(pte, ptl);
906 
907 	if (ret)
908 		mmu_notifier_invalidate_page(mm, address);
909 out:
910 	return ret;
911 }
912 
913 static int page_mkclean_file(struct address_space *mapping, struct page *page)
914 {
915 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
916 	struct vm_area_struct *vma;
917 	int ret = 0;
918 
919 	BUG_ON(PageAnon(page));
920 
921 	mutex_lock(&mapping->i_mmap_mutex);
922 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
923 		if (vma->vm_flags & VM_SHARED) {
924 			unsigned long address = vma_address(page, vma);
925 			ret += page_mkclean_one(page, vma, address);
926 		}
927 	}
928 	mutex_unlock(&mapping->i_mmap_mutex);
929 	return ret;
930 }
931 
932 int page_mkclean(struct page *page)
933 {
934 	int ret = 0;
935 
936 	BUG_ON(!PageLocked(page));
937 
938 	if (page_mapped(page)) {
939 		struct address_space *mapping = page_mapping(page);
940 		if (mapping)
941 			ret = page_mkclean_file(mapping, page);
942 	}
943 
944 	return ret;
945 }
946 EXPORT_SYMBOL_GPL(page_mkclean);
947 
948 /**
949  * page_move_anon_rmap - move a page to our anon_vma
950  * @page:	the page to move to our anon_vma
951  * @vma:	the vma the page belongs to
952  * @address:	the user virtual address mapped
953  *
954  * When a page belongs exclusively to one process after a COW event,
955  * that page can be moved into the anon_vma that belongs to just that
956  * process, so the rmap code will not search the parent or sibling
957  * processes.
958  */
959 void page_move_anon_rmap(struct page *page,
960 	struct vm_area_struct *vma, unsigned long address)
961 {
962 	struct anon_vma *anon_vma = vma->anon_vma;
963 
964 	VM_BUG_ON(!PageLocked(page));
965 	VM_BUG_ON(!anon_vma);
966 	VM_BUG_ON(page->index != linear_page_index(vma, address));
967 
968 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
969 	page->mapping = (struct address_space *) anon_vma;
970 }
971 
972 /**
973  * __page_set_anon_rmap - set up new anonymous rmap
974  * @page:	Page to add to rmap
975  * @vma:	VM area to add page to.
976  * @address:	User virtual address of the mapping
977  * @exclusive:	the page is exclusively owned by the current process
978  */
979 static void __page_set_anon_rmap(struct page *page,
980 	struct vm_area_struct *vma, unsigned long address, int exclusive)
981 {
982 	struct anon_vma *anon_vma = vma->anon_vma;
983 
984 	BUG_ON(!anon_vma);
985 
986 	if (PageAnon(page))
987 		return;
988 
989 	/*
990 	 * If the page isn't exclusively mapped into this vma,
991 	 * we must use the _oldest_ possible anon_vma for the
992 	 * page mapping!
993 	 */
994 	if (!exclusive)
995 		anon_vma = anon_vma->root;
996 
997 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
998 	page->mapping = (struct address_space *) anon_vma;
999 	page->index = linear_page_index(vma, address);
1000 }
1001 
1002 /**
1003  * __page_check_anon_rmap - sanity check anonymous rmap addition
1004  * @page:	the page to add the mapping to
1005  * @vma:	the vm area in which the mapping is added
1006  * @address:	the user virtual address mapped
1007  */
1008 static void __page_check_anon_rmap(struct page *page,
1009 	struct vm_area_struct *vma, unsigned long address)
1010 {
1011 #ifdef CONFIG_DEBUG_VM
1012 	/*
1013 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1014 	 * be set up correctly at this point.
1015 	 *
1016 	 * We have exclusion against page_add_anon_rmap because the caller
1017 	 * always holds the page locked, except if called from page_dup_rmap,
1018 	 * in which case the page is already known to be setup.
1019 	 *
1020 	 * We have exclusion against page_add_new_anon_rmap because those pages
1021 	 * are initially only visible via the pagetables, and the pte is locked
1022 	 * over the call to page_add_new_anon_rmap.
1023 	 */
1024 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1025 	BUG_ON(page->index != linear_page_index(vma, address));
1026 #endif
1027 }
1028 
1029 /**
1030  * page_add_anon_rmap - add pte mapping to an anonymous page
1031  * @page:	the page to add the mapping to
1032  * @vma:	the vm area in which the mapping is added
1033  * @address:	the user virtual address mapped
1034  *
1035  * The caller needs to hold the pte lock, and the page must be locked in
1036  * the anon_vma case: to serialize mapping,index checking after setting,
1037  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1038  * (but PageKsm is never downgraded to PageAnon).
1039  */
1040 void page_add_anon_rmap(struct page *page,
1041 	struct vm_area_struct *vma, unsigned long address)
1042 {
1043 	do_page_add_anon_rmap(page, vma, address, 0);
1044 }
1045 
1046 /*
1047  * Special version of the above for do_swap_page, which often runs
1048  * into pages that are exclusively owned by the current process.
1049  * Everybody else should continue to use page_add_anon_rmap above.
1050  */
1051 void do_page_add_anon_rmap(struct page *page,
1052 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1053 {
1054 	int first = atomic_inc_and_test(&page->_mapcount);
1055 	if (first) {
1056 		if (PageTransHuge(page))
1057 			__inc_zone_page_state(page,
1058 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1059 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1060 				hpage_nr_pages(page));
1061 	}
1062 	if (unlikely(PageKsm(page)))
1063 		return;
1064 
1065 	VM_BUG_ON(!PageLocked(page));
1066 	/* address might be in next vma when migration races vma_adjust */
1067 	if (first)
1068 		__page_set_anon_rmap(page, vma, address, exclusive);
1069 	else
1070 		__page_check_anon_rmap(page, vma, address);
1071 }
1072 
1073 /**
1074  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1075  * @page:	the page to add the mapping to
1076  * @vma:	the vm area in which the mapping is added
1077  * @address:	the user virtual address mapped
1078  *
1079  * Same as page_add_anon_rmap but must only be called on *new* pages.
1080  * This means the inc-and-test can be bypassed.
1081  * Page does not have to be locked.
1082  */
1083 void page_add_new_anon_rmap(struct page *page,
1084 	struct vm_area_struct *vma, unsigned long address)
1085 {
1086 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1087 	SetPageSwapBacked(page);
1088 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1089 	if (PageTransHuge(page))
1090 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1091 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1092 			hpage_nr_pages(page));
1093 	__page_set_anon_rmap(page, vma, address, 1);
1094 	if (!mlocked_vma_newpage(vma, page)) {
1095 		SetPageActive(page);
1096 		lru_cache_add(page);
1097 	} else
1098 		add_page_to_unevictable_list(page);
1099 }
1100 
1101 /**
1102  * page_add_file_rmap - add pte mapping to a file page
1103  * @page: the page to add the mapping to
1104  *
1105  * The caller needs to hold the pte lock.
1106  */
1107 void page_add_file_rmap(struct page *page)
1108 {
1109 	bool locked;
1110 	unsigned long flags;
1111 
1112 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1113 	if (atomic_inc_and_test(&page->_mapcount)) {
1114 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1115 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1116 	}
1117 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1118 }
1119 
1120 /**
1121  * page_remove_rmap - take down pte mapping from a page
1122  * @page: page to remove mapping from
1123  *
1124  * The caller needs to hold the pte lock.
1125  */
1126 void page_remove_rmap(struct page *page)
1127 {
1128 	bool anon = PageAnon(page);
1129 	bool locked;
1130 	unsigned long flags;
1131 
1132 	/*
1133 	 * The anon case has no mem_cgroup page_stat to update; but may
1134 	 * uncharge_page() below, where the lock ordering can deadlock if
1135 	 * we hold the lock against page_stat move: so avoid it on anon.
1136 	 */
1137 	if (!anon)
1138 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1139 
1140 	/* page still mapped by someone else? */
1141 	if (!atomic_add_negative(-1, &page->_mapcount))
1142 		goto out;
1143 
1144 	/*
1145 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1146 	 * and not charged by memcg for now.
1147 	 */
1148 	if (unlikely(PageHuge(page)))
1149 		goto out;
1150 	if (anon) {
1151 		mem_cgroup_uncharge_page(page);
1152 		if (PageTransHuge(page))
1153 			__dec_zone_page_state(page,
1154 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1155 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1156 				-hpage_nr_pages(page));
1157 	} else {
1158 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1159 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1160 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1161 	}
1162 	if (unlikely(PageMlocked(page)))
1163 		clear_page_mlock(page);
1164 	/*
1165 	 * It would be tidy to reset the PageAnon mapping here,
1166 	 * but that might overwrite a racing page_add_anon_rmap
1167 	 * which increments mapcount after us but sets mapping
1168 	 * before us: so leave the reset to free_hot_cold_page,
1169 	 * and remember that it's only reliable while mapped.
1170 	 * Leaving it set also helps swapoff to reinstate ptes
1171 	 * faster for those pages still in swapcache.
1172 	 */
1173 	return;
1174 out:
1175 	if (!anon)
1176 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1177 }
1178 
1179 /*
1180  * Subfunctions of try_to_unmap: try_to_unmap_one called
1181  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1182  */
1183 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1184 		     unsigned long address, enum ttu_flags flags)
1185 {
1186 	struct mm_struct *mm = vma->vm_mm;
1187 	pte_t *pte;
1188 	pte_t pteval;
1189 	spinlock_t *ptl;
1190 	int ret = SWAP_AGAIN;
1191 
1192 	pte = page_check_address(page, mm, address, &ptl, 0);
1193 	if (!pte)
1194 		goto out;
1195 
1196 	/*
1197 	 * If the page is mlock()d, we cannot swap it out.
1198 	 * If it's recently referenced (perhaps page_referenced
1199 	 * skipped over this mm) then we should reactivate it.
1200 	 */
1201 	if (!(flags & TTU_IGNORE_MLOCK)) {
1202 		if (vma->vm_flags & VM_LOCKED)
1203 			goto out_mlock;
1204 
1205 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1206 			goto out_unmap;
1207 	}
1208 	if (!(flags & TTU_IGNORE_ACCESS)) {
1209 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1210 			ret = SWAP_FAIL;
1211 			goto out_unmap;
1212 		}
1213   	}
1214 
1215 	/* Nuke the page table entry. */
1216 	flush_cache_page(vma, address, page_to_pfn(page));
1217 	pteval = ptep_clear_flush(vma, address, pte);
1218 
1219 	/* Move the dirty bit to the physical page now the pte is gone. */
1220 	if (pte_dirty(pteval))
1221 		set_page_dirty(page);
1222 
1223 	/* Update high watermark before we lower rss */
1224 	update_hiwater_rss(mm);
1225 
1226 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1227 		if (!PageHuge(page)) {
1228 			if (PageAnon(page))
1229 				dec_mm_counter(mm, MM_ANONPAGES);
1230 			else
1231 				dec_mm_counter(mm, MM_FILEPAGES);
1232 		}
1233 		set_pte_at(mm, address, pte,
1234 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1235 	} else if (PageAnon(page)) {
1236 		swp_entry_t entry = { .val = page_private(page) };
1237 		pte_t swp_pte;
1238 
1239 		if (PageSwapCache(page)) {
1240 			/*
1241 			 * Store the swap location in the pte.
1242 			 * See handle_pte_fault() ...
1243 			 */
1244 			if (swap_duplicate(entry) < 0) {
1245 				set_pte_at(mm, address, pte, pteval);
1246 				ret = SWAP_FAIL;
1247 				goto out_unmap;
1248 			}
1249 			if (list_empty(&mm->mmlist)) {
1250 				spin_lock(&mmlist_lock);
1251 				if (list_empty(&mm->mmlist))
1252 					list_add(&mm->mmlist, &init_mm.mmlist);
1253 				spin_unlock(&mmlist_lock);
1254 			}
1255 			dec_mm_counter(mm, MM_ANONPAGES);
1256 			inc_mm_counter(mm, MM_SWAPENTS);
1257 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1258 			/*
1259 			 * Store the pfn of the page in a special migration
1260 			 * pte. do_swap_page() will wait until the migration
1261 			 * pte is removed and then restart fault handling.
1262 			 */
1263 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1264 			entry = make_migration_entry(page, pte_write(pteval));
1265 		}
1266 		swp_pte = swp_entry_to_pte(entry);
1267 		if (pte_soft_dirty(pteval))
1268 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1269 		set_pte_at(mm, address, pte, swp_pte);
1270 		BUG_ON(pte_file(*pte));
1271 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1272 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1273 		/* Establish migration entry for a file page */
1274 		swp_entry_t entry;
1275 		entry = make_migration_entry(page, pte_write(pteval));
1276 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1277 	} else
1278 		dec_mm_counter(mm, MM_FILEPAGES);
1279 
1280 	page_remove_rmap(page);
1281 	page_cache_release(page);
1282 
1283 out_unmap:
1284 	pte_unmap_unlock(pte, ptl);
1285 	if (ret != SWAP_FAIL)
1286 		mmu_notifier_invalidate_page(mm, address);
1287 out:
1288 	return ret;
1289 
1290 out_mlock:
1291 	pte_unmap_unlock(pte, ptl);
1292 
1293 
1294 	/*
1295 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1296 	 * unstable result and race. Plus, We can't wait here because
1297 	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1298 	 * if trylock failed, the page remain in evictable lru and later
1299 	 * vmscan could retry to move the page to unevictable lru if the
1300 	 * page is actually mlocked.
1301 	 */
1302 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1303 		if (vma->vm_flags & VM_LOCKED) {
1304 			mlock_vma_page(page);
1305 			ret = SWAP_MLOCK;
1306 		}
1307 		up_read(&vma->vm_mm->mmap_sem);
1308 	}
1309 	return ret;
1310 }
1311 
1312 /*
1313  * objrmap doesn't work for nonlinear VMAs because the assumption that
1314  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1315  * Consequently, given a particular page and its ->index, we cannot locate the
1316  * ptes which are mapping that page without an exhaustive linear search.
1317  *
1318  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1319  * maps the file to which the target page belongs.  The ->vm_private_data field
1320  * holds the current cursor into that scan.  Successive searches will circulate
1321  * around the vma's virtual address space.
1322  *
1323  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1324  * more scanning pressure is placed against them as well.   Eventually pages
1325  * will become fully unmapped and are eligible for eviction.
1326  *
1327  * For very sparsely populated VMAs this is a little inefficient - chances are
1328  * there there won't be many ptes located within the scan cluster.  In this case
1329  * maybe we could scan further - to the end of the pte page, perhaps.
1330  *
1331  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1332  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1333  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1334  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1335  */
1336 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1337 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1338 
1339 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1340 		struct vm_area_struct *vma, struct page *check_page)
1341 {
1342 	struct mm_struct *mm = vma->vm_mm;
1343 	pmd_t *pmd;
1344 	pte_t *pte;
1345 	pte_t pteval;
1346 	spinlock_t *ptl;
1347 	struct page *page;
1348 	unsigned long address;
1349 	unsigned long mmun_start;	/* For mmu_notifiers */
1350 	unsigned long mmun_end;		/* For mmu_notifiers */
1351 	unsigned long end;
1352 	int ret = SWAP_AGAIN;
1353 	int locked_vma = 0;
1354 
1355 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1356 	end = address + CLUSTER_SIZE;
1357 	if (address < vma->vm_start)
1358 		address = vma->vm_start;
1359 	if (end > vma->vm_end)
1360 		end = vma->vm_end;
1361 
1362 	pmd = mm_find_pmd(mm, address);
1363 	if (!pmd)
1364 		return ret;
1365 
1366 	mmun_start = address;
1367 	mmun_end   = end;
1368 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1369 
1370 	/*
1371 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1372 	 * keep the sem while scanning the cluster for mlocking pages.
1373 	 */
1374 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1375 		locked_vma = (vma->vm_flags & VM_LOCKED);
1376 		if (!locked_vma)
1377 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1378 	}
1379 
1380 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1381 
1382 	/* Update high watermark before we lower rss */
1383 	update_hiwater_rss(mm);
1384 
1385 	for (; address < end; pte++, address += PAGE_SIZE) {
1386 		if (!pte_present(*pte))
1387 			continue;
1388 		page = vm_normal_page(vma, address, *pte);
1389 		BUG_ON(!page || PageAnon(page));
1390 
1391 		if (locked_vma) {
1392 			mlock_vma_page(page);   /* no-op if already mlocked */
1393 			if (page == check_page)
1394 				ret = SWAP_MLOCK;
1395 			continue;	/* don't unmap */
1396 		}
1397 
1398 		if (ptep_clear_flush_young_notify(vma, address, pte))
1399 			continue;
1400 
1401 		/* Nuke the page table entry. */
1402 		flush_cache_page(vma, address, pte_pfn(*pte));
1403 		pteval = ptep_clear_flush(vma, address, pte);
1404 
1405 		/* If nonlinear, store the file page offset in the pte. */
1406 		if (page->index != linear_page_index(vma, address)) {
1407 			pte_t ptfile = pgoff_to_pte(page->index);
1408 			if (pte_soft_dirty(pteval))
1409 				pte_file_mksoft_dirty(ptfile);
1410 			set_pte_at(mm, address, pte, ptfile);
1411 		}
1412 
1413 		/* Move the dirty bit to the physical page now the pte is gone. */
1414 		if (pte_dirty(pteval))
1415 			set_page_dirty(page);
1416 
1417 		page_remove_rmap(page);
1418 		page_cache_release(page);
1419 		dec_mm_counter(mm, MM_FILEPAGES);
1420 		(*mapcount)--;
1421 	}
1422 	pte_unmap_unlock(pte - 1, ptl);
1423 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1424 	if (locked_vma)
1425 		up_read(&vma->vm_mm->mmap_sem);
1426 	return ret;
1427 }
1428 
1429 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1430 {
1431 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1432 
1433 	if (!maybe_stack)
1434 		return false;
1435 
1436 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1437 						VM_STACK_INCOMPLETE_SETUP)
1438 		return true;
1439 
1440 	return false;
1441 }
1442 
1443 /**
1444  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1445  * rmap method
1446  * @page: the page to unmap/unlock
1447  * @flags: action and flags
1448  *
1449  * Find all the mappings of a page using the mapping pointer and the vma chains
1450  * contained in the anon_vma struct it points to.
1451  *
1452  * This function is only called from try_to_unmap/try_to_munlock for
1453  * anonymous pages.
1454  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1455  * where the page was found will be held for write.  So, we won't recheck
1456  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1457  * 'LOCKED.
1458  */
1459 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1460 {
1461 	struct anon_vma *anon_vma;
1462 	pgoff_t pgoff;
1463 	struct anon_vma_chain *avc;
1464 	int ret = SWAP_AGAIN;
1465 
1466 	anon_vma = page_lock_anon_vma_read(page);
1467 	if (!anon_vma)
1468 		return ret;
1469 
1470 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1471 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1472 		struct vm_area_struct *vma = avc->vma;
1473 		unsigned long address;
1474 
1475 		/*
1476 		 * During exec, a temporary VMA is setup and later moved.
1477 		 * The VMA is moved under the anon_vma lock but not the
1478 		 * page tables leading to a race where migration cannot
1479 		 * find the migration ptes. Rather than increasing the
1480 		 * locking requirements of exec(), migration skips
1481 		 * temporary VMAs until after exec() completes.
1482 		 */
1483 		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1484 				is_vma_temporary_stack(vma))
1485 			continue;
1486 
1487 		address = vma_address(page, vma);
1488 		ret = try_to_unmap_one(page, vma, address, flags);
1489 		if (ret != SWAP_AGAIN || !page_mapped(page))
1490 			break;
1491 	}
1492 
1493 	page_unlock_anon_vma_read(anon_vma);
1494 	return ret;
1495 }
1496 
1497 /**
1498  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1499  * @page: the page to unmap/unlock
1500  * @flags: action and flags
1501  *
1502  * Find all the mappings of a page using the mapping pointer and the vma chains
1503  * contained in the address_space struct it points to.
1504  *
1505  * This function is only called from try_to_unmap/try_to_munlock for
1506  * object-based pages.
1507  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1508  * where the page was found will be held for write.  So, we won't recheck
1509  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1510  * 'LOCKED.
1511  */
1512 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1513 {
1514 	struct address_space *mapping = page->mapping;
1515 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1516 	struct vm_area_struct *vma;
1517 	int ret = SWAP_AGAIN;
1518 	unsigned long cursor;
1519 	unsigned long max_nl_cursor = 0;
1520 	unsigned long max_nl_size = 0;
1521 	unsigned int mapcount;
1522 
1523 	if (PageHuge(page))
1524 		pgoff = page->index << compound_order(page);
1525 
1526 	mutex_lock(&mapping->i_mmap_mutex);
1527 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1528 		unsigned long address = vma_address(page, vma);
1529 		ret = try_to_unmap_one(page, vma, address, flags);
1530 		if (ret != SWAP_AGAIN || !page_mapped(page))
1531 			goto out;
1532 	}
1533 
1534 	if (list_empty(&mapping->i_mmap_nonlinear))
1535 		goto out;
1536 
1537 	/*
1538 	 * We don't bother to try to find the munlocked page in nonlinears.
1539 	 * It's costly. Instead, later, page reclaim logic may call
1540 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1541 	 */
1542 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1543 		goto out;
1544 
1545 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1546 							shared.nonlinear) {
1547 		cursor = (unsigned long) vma->vm_private_data;
1548 		if (cursor > max_nl_cursor)
1549 			max_nl_cursor = cursor;
1550 		cursor = vma->vm_end - vma->vm_start;
1551 		if (cursor > max_nl_size)
1552 			max_nl_size = cursor;
1553 	}
1554 
1555 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1556 		ret = SWAP_FAIL;
1557 		goto out;
1558 	}
1559 
1560 	/*
1561 	 * We don't try to search for this page in the nonlinear vmas,
1562 	 * and page_referenced wouldn't have found it anyway.  Instead
1563 	 * just walk the nonlinear vmas trying to age and unmap some.
1564 	 * The mapcount of the page we came in with is irrelevant,
1565 	 * but even so use it as a guide to how hard we should try?
1566 	 */
1567 	mapcount = page_mapcount(page);
1568 	if (!mapcount)
1569 		goto out;
1570 	cond_resched();
1571 
1572 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1573 	if (max_nl_cursor == 0)
1574 		max_nl_cursor = CLUSTER_SIZE;
1575 
1576 	do {
1577 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1578 							shared.nonlinear) {
1579 			cursor = (unsigned long) vma->vm_private_data;
1580 			while ( cursor < max_nl_cursor &&
1581 				cursor < vma->vm_end - vma->vm_start) {
1582 				if (try_to_unmap_cluster(cursor, &mapcount,
1583 						vma, page) == SWAP_MLOCK)
1584 					ret = SWAP_MLOCK;
1585 				cursor += CLUSTER_SIZE;
1586 				vma->vm_private_data = (void *) cursor;
1587 				if ((int)mapcount <= 0)
1588 					goto out;
1589 			}
1590 			vma->vm_private_data = (void *) max_nl_cursor;
1591 		}
1592 		cond_resched();
1593 		max_nl_cursor += CLUSTER_SIZE;
1594 	} while (max_nl_cursor <= max_nl_size);
1595 
1596 	/*
1597 	 * Don't loop forever (perhaps all the remaining pages are
1598 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1599 	 * vmas, now forgetting on which ones it had fallen behind.
1600 	 */
1601 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1602 		vma->vm_private_data = NULL;
1603 out:
1604 	mutex_unlock(&mapping->i_mmap_mutex);
1605 	return ret;
1606 }
1607 
1608 /**
1609  * try_to_unmap - try to remove all page table mappings to a page
1610  * @page: the page to get unmapped
1611  * @flags: action and flags
1612  *
1613  * Tries to remove all the page table entries which are mapping this
1614  * page, used in the pageout path.  Caller must hold the page lock.
1615  * Return values are:
1616  *
1617  * SWAP_SUCCESS	- we succeeded in removing all mappings
1618  * SWAP_AGAIN	- we missed a mapping, try again later
1619  * SWAP_FAIL	- the page is unswappable
1620  * SWAP_MLOCK	- page is mlocked.
1621  */
1622 int try_to_unmap(struct page *page, enum ttu_flags flags)
1623 {
1624 	int ret;
1625 
1626 	BUG_ON(!PageLocked(page));
1627 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1628 
1629 	if (unlikely(PageKsm(page)))
1630 		ret = try_to_unmap_ksm(page, flags);
1631 	else if (PageAnon(page))
1632 		ret = try_to_unmap_anon(page, flags);
1633 	else
1634 		ret = try_to_unmap_file(page, flags);
1635 	if (ret != SWAP_MLOCK && !page_mapped(page))
1636 		ret = SWAP_SUCCESS;
1637 	return ret;
1638 }
1639 
1640 /**
1641  * try_to_munlock - try to munlock a page
1642  * @page: the page to be munlocked
1643  *
1644  * Called from munlock code.  Checks all of the VMAs mapping the page
1645  * to make sure nobody else has this page mlocked. The page will be
1646  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1647  *
1648  * Return values are:
1649  *
1650  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1651  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1652  * SWAP_FAIL	- page cannot be located at present
1653  * SWAP_MLOCK	- page is now mlocked.
1654  */
1655 int try_to_munlock(struct page *page)
1656 {
1657 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1658 
1659 	if (unlikely(PageKsm(page)))
1660 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1661 	else if (PageAnon(page))
1662 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1663 	else
1664 		return try_to_unmap_file(page, TTU_MUNLOCK);
1665 }
1666 
1667 void __put_anon_vma(struct anon_vma *anon_vma)
1668 {
1669 	struct anon_vma *root = anon_vma->root;
1670 
1671 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1672 		anon_vma_free(root);
1673 
1674 	anon_vma_free(anon_vma);
1675 }
1676 
1677 #ifdef CONFIG_MIGRATION
1678 /*
1679  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1680  * Called by migrate.c to remove migration ptes, but might be used more later.
1681  */
1682 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1683 		struct vm_area_struct *, unsigned long, void *), void *arg)
1684 {
1685 	struct anon_vma *anon_vma;
1686 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1687 	struct anon_vma_chain *avc;
1688 	int ret = SWAP_AGAIN;
1689 
1690 	/*
1691 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1692 	 * because that depends on page_mapped(); but not all its usages
1693 	 * are holding mmap_sem. Users without mmap_sem are required to
1694 	 * take a reference count to prevent the anon_vma disappearing
1695 	 */
1696 	anon_vma = page_anon_vma(page);
1697 	if (!anon_vma)
1698 		return ret;
1699 	anon_vma_lock_read(anon_vma);
1700 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1701 		struct vm_area_struct *vma = avc->vma;
1702 		unsigned long address = vma_address(page, vma);
1703 		ret = rmap_one(page, vma, address, arg);
1704 		if (ret != SWAP_AGAIN)
1705 			break;
1706 	}
1707 	anon_vma_unlock_read(anon_vma);
1708 	return ret;
1709 }
1710 
1711 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1712 		struct vm_area_struct *, unsigned long, void *), void *arg)
1713 {
1714 	struct address_space *mapping = page->mapping;
1715 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1716 	struct vm_area_struct *vma;
1717 	int ret = SWAP_AGAIN;
1718 
1719 	if (!mapping)
1720 		return ret;
1721 	mutex_lock(&mapping->i_mmap_mutex);
1722 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1723 		unsigned long address = vma_address(page, vma);
1724 		ret = rmap_one(page, vma, address, arg);
1725 		if (ret != SWAP_AGAIN)
1726 			break;
1727 	}
1728 	/*
1729 	 * No nonlinear handling: being always shared, nonlinear vmas
1730 	 * never contain migration ptes.  Decide what to do about this
1731 	 * limitation to linear when we need rmap_walk() on nonlinear.
1732 	 */
1733 	mutex_unlock(&mapping->i_mmap_mutex);
1734 	return ret;
1735 }
1736 
1737 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1738 		struct vm_area_struct *, unsigned long, void *), void *arg)
1739 {
1740 	VM_BUG_ON(!PageLocked(page));
1741 
1742 	if (unlikely(PageKsm(page)))
1743 		return rmap_walk_ksm(page, rmap_one, arg);
1744 	else if (PageAnon(page))
1745 		return rmap_walk_anon(page, rmap_one, arg);
1746 	else
1747 		return rmap_walk_file(page, rmap_one, arg);
1748 }
1749 #endif /* CONFIG_MIGRATION */
1750 
1751 #ifdef CONFIG_HUGETLB_PAGE
1752 /*
1753  * The following three functions are for anonymous (private mapped) hugepages.
1754  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1755  * and no lru code, because we handle hugepages differently from common pages.
1756  */
1757 static void __hugepage_set_anon_rmap(struct page *page,
1758 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1759 {
1760 	struct anon_vma *anon_vma = vma->anon_vma;
1761 
1762 	BUG_ON(!anon_vma);
1763 
1764 	if (PageAnon(page))
1765 		return;
1766 	if (!exclusive)
1767 		anon_vma = anon_vma->root;
1768 
1769 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1770 	page->mapping = (struct address_space *) anon_vma;
1771 	page->index = linear_page_index(vma, address);
1772 }
1773 
1774 void hugepage_add_anon_rmap(struct page *page,
1775 			    struct vm_area_struct *vma, unsigned long address)
1776 {
1777 	struct anon_vma *anon_vma = vma->anon_vma;
1778 	int first;
1779 
1780 	BUG_ON(!PageLocked(page));
1781 	BUG_ON(!anon_vma);
1782 	/* address might be in next vma when migration races vma_adjust */
1783 	first = atomic_inc_and_test(&page->_mapcount);
1784 	if (first)
1785 		__hugepage_set_anon_rmap(page, vma, address, 0);
1786 }
1787 
1788 void hugepage_add_new_anon_rmap(struct page *page,
1789 			struct vm_area_struct *vma, unsigned long address)
1790 {
1791 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1792 	atomic_set(&page->_mapcount, 0);
1793 	__hugepage_set_anon_rmap(page, vma, address, 1);
1794 }
1795 #endif /* CONFIG_HUGETLB_PAGE */
1796